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Abstract

In an operation�centric framework� the behavior of a system is decomposed and de�
scribed as a collection of operations� An operation is de�ned by a predicate condition
and an e�ect on the system�s state� An execution of the system corresponds to some
sequential interleaving of the operations such that each operation in the sequence pro�
duces a state that enables the next operation� An operation�s e�ect on the system is
global and atomic� In other words� an operation 	reads
 the state of the system in one
step� and� if enabled� the operation updates the state in the same step� This atomic
semantics simpli�es the task of hardware description by permitting the designer to
formulate each operation as if the system were otherwise static�

This thesis develops a method for hardware synthesis from an operation�centric
description� The crux of the synthesis problem is in �nding a synchronous state tran�
sition system that carries out multiple parallelizable operations per clock cycle and
yet maintains a behavior that is consistent with the atomic and sequential semantics
of the operations� The thesis �rst de�nes an Abstract Transition System �ATS�� an
operation�centric state machine abstraction� The thesis next develops the theories and
algorithms to synthesize an ecient synchronous digital circuit implementation of an
ATS� Finally� the thesis presents TRSpec� a source�level operation�centric hardware
description language based on the formalism of Term Rewriting Systems�

The results of this thesis show that an operation�centric framework o�ers a sig�
ni�cant improvement over traditional hardware design �ows� The TRSpec language
and synthesis algorithms developed in this thesis have been realized in the Term
Rewriting Architectural Compiler �TRAC�� This thesis presents the results of several
operation�centric design exercises using TRSpec and TRAC� In an example based
on a ���bit MIPS integer core� the operation�centric description can be developed
�ve times faster than a hand�coded structural Verilog description� Nevertheless� the
circuit implementation produced by the operation�centric framework is comparable
to the hand�coded design in terms of speed and area�
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Chapter �

Introduction

This thesis presents a method for hardware synthesis from an 	operation centric
 de�
scription� In an operation�centric description� the behavior of a system is decomposed
and described as a collection of operations� This operation�centric view of hardware
is new in synthesis but not in description� Most high�level hardware speci�cations
intended for human reading are given operation�centrically� A typical assembly pro�
grammer�s manual for a microprocessor is an example where the behavior of the pro�
cessor is broken down into per�instruction operations� Although informal� the writ�
ten material in most computer architecture textbooks also presents ideas and designs
operation�centrically� This thesis improves the usefulness of the operation�centric ap�
proach to hardware description by developing a formal description framework and by
enabling automatic synthesis of an ecient synchronous circuit implementation� The
results of this thesis show that an operation�centric hardware development framework
o�ers a signi�cant reduction in design time and e�ort� without loss in implementation
quality� when compared to traditional frameworks�

��� Operation�Centric Hardware Description

An operation is de�ned by a predicate condition and an e�ect� The interpretation
is that an operation�s e�ect on the system state can take place when the predicate
condition is satis�ed� Although an implementation may execute multiple operations
concurrently� the end result of an execution must correspond to some sequential in�
terleaving of the operations such that each operation in the sequence produces a state
that enables the next operation�

For an unambiguous interpretation� the e�ect of an operation is taken to be atomic�
In other words� an operation 	reads
 the entire state of the system in one step� and�
if the operation is enabled� the operation updates the state in the same step� If
several operations are enabled in a state� any one of the operations can be selected
to update the state in one step� and afterwards a new step begins with the updated
state� This atomic semantics simpli�es the task of hardware description by permitting
the designer to formulate each operation as if the system were otherwise static� The
designer does not have to worry about unexpected interactions with other concurrent
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operations� For related reasons� the atomic semantics of operations also makes an
operational�centric description easier to interpret by a human� It is important to
re�emphasize that this sequential and atomic interpretation of a description does
not prevent a legal implementation from executing several operations concurrently�
provided the concurrent execution does not introduce new behaviors that are not
producible by sequential executions�

The instruction reorder bu�er �ROB� of a modern out�of�order microprocessor
exempli�es complexity and concurrency in hardware behavior�� Describing an ROB
poses a great challenge for traditional hardware description frameworks where concur�
rency needs to be managed explicitly� However� in an operation�centric framework�
the behavior of an ROB can be perspicuously described as a collection of atomic op�
erations including dispatch� complete� commit� etc� �AS���� For example� the dispatch
operation is speci�ed to take place if there is an instruction that has all of its operands
and is waiting to execute� and� furthermore� the execution unit needed by the instruc�
tion is available� The e�ect of the dispatch operation is to send the instruction to the
execution unit� The speci�cation of the dispatch operation need not include informa�
tion about how to resolve potential con�icts arising from the concurrent execution of
other operations�

��� Limitations of Operation�Centric Frameworks

Instead of marking the progress of time with an explicit global clock� the behavior of
an operation�centric description is interpreted as a sequence of operations executed
in atomic steps� This abstract model of time permits an unambiguous sequential
interpretation by the designer but at the same time enables a compiler to automat�
ically exploit parallelism by scheduling multiple parallelizable operations into the
same clock cycle in a synchronous implementation� Unfortunately� at times� this nor�
mally simplifying abstraction gets in the way of describing hardware designs whose
correctness criteria include a speci�c synchronous execution timing� For example� a
microprocessor often has to interface with the memory controller via a synchronous
bus protocol that assumes prede�ned latencies between the exchanges of bus signals�
As another example� suppose the description of the out�of�order processor above con�
tains a fully�pipelined multiplier unit with a latency of exactly four clock cycles� After
a dispatch operation launches a multiply instruction� a corresponding complete opera�
tion should be triggered exactly four cycles later� This kind of temporal relationships
between operations cannot be expressed directly in an operation�centric framework�
In more severe cases� glue logic expressed in a lower�level synchronous representation
becomes necessary� However� in many cases� this limitation can be avoided by us�
ing an asynchronous handshake between the interacting elements� For example� an
operation�centrically described processor can interface with a bus protocol where the
initiations of exchanges are demarcated by appropriate strobe signals� The multipli�
cation unit in the out�of�order processor can be out�tted with ready and done status

�Refer to �HP��� and �Joh��� for background information on the operation of an ROB�
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signals that can be tested by the predicates of the dispatch and complete operations�

��� Comparison to CFSM�based Frameworks

Digital hardware designs inherently embody highly concurrent behaviors� The im�
plementation of any non�trivial design invariably consists of a collection of cooper�
ating �nite state machines �CFSM�� Hence� most hardware description frameworks�
whether schematic or textual� use CFSM as the underlying abstraction� In a CFSM
framework� a designer explicitly manages concurrency by scheduling the exact cycle�
by�cycle interactions between multiple concurrent state machines� It is easy to make a
mistake in coordinating interactions between two state machines because transitions
in di�erent state machines are not coupled semantically� It is also dicult to modify
one state machine without considering its interaction with the rest of the system�

The advantage of a CFSM framework lies in its resemblance to the underlying
circuit implementation� This makes automatic circuit synthesis simpler and more
ecient� The close correlation between description and implementation also gives
designers tighter control over lower�level implementation choices� On the other hand�
a CFSM description cannot be easily correlated to the functionality of the design�
Producing a CFSM�based description from a high�level design speci�cation requires
considerable time and expertise because the designer has to translate between two very
di�erent abstractions� The development of a CFSM�based description is also error�
prone due to its explicit concurrency model� The disadvantages of CFSM frameworks
can quickly outweigh their advantages as hardware design complexity increases�

��� Comparison to Other High�Level Frameworks

RTL Description and Synthesis� Synthesizing hardware from textual register�
transfer level �RTL� descriptions is currently the standard practice in the development
of digital integrated circuits� Many high�end integrated�circuit companies own pro�
prietary hardware description languages �HDLs� and synthesis tools to cater to their
applications and fabrication technologies� On the other hand� Verilog �TM��� and
VHDL� �Ins��� are two standardized HDLs that are supported by commercial tools
and are widely used in both industry and academia� The Synopsis Design Com�
piler �Synb� and Synplify �Synd� are commercial synthesis tools that compile the RTL
�a�k�a� structural� subsets of Verilog and VHDL� Synthesizable RTL descriptions rely
on the same synchronous CFSM abstraction as traditional schematic frameworks�
In comparison to schematic capture� the productivity gain of an RTL�based design
�ow comes from the relative compactness of textual descriptions and from automatic
logic optimizations by synthesis tools� The operation�centric synthesis framework in
this thesis outputs RTL descriptions and relies on commercial hardware compilers to
produce the �nal circuit implementations�

�VHSIC Hardware Description Language� where VHSIC stands for Very High Speed Integrated
Circuits�
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Behavioral Description and Synthesis� The term behavioral description typi�
cally refers to describing hardware� or hardware�software systems� as multiple threads
of computation that communicate via message passing or a shared�memory paradigm�
The underlying multithreaded abstraction can be traced to Communicating Sequen�
tial Processes �Hoa���� The objective of behavioral synthesis is to infer and allocate
the necessary hardware resources and schedule their usage by the threads� Topics
relating to this style of high�level synthesis are discussed in �GDWL��� and �MLD����
The behavioral frameworks describe each hardware thread using high�level sequential
languages like C or behavioral Verilog� A comprehensive summary of early e�orts
can be found in �WC��� and �CW���� More recent e�orts are represented by Hard�
wareC �Sta���� Esterel �Ber���� ECL �LS���� SpecC �GZD����� and a hybrid C�Verilog
co�speci�cation framework by Thomas� et al� �TPPW���� Commercially� besides be�
havioral Verilog and VHDL� SystemC �LTG��� and Superlog �Co��� based on C�C��
and C�Verilog respectively� are two threaded behavioral languages that are currently
gaining acceptance� The multithreaded behavioral abstraction is an improvement
over the CFSM frameworks� Instead of synchronizing cycle�by�cycle� the threaded
abstraction allows hardware threads to synchronize at coarser granularity or only at
communication points� Nevertheless� a designer still needs to coordinate the interac�
tions between concurrent threads of computations explicitly�

Software Languages for Hardware Description and Synthesis� Both sequen�
tial and parallel programming languages have been used to capture functionalities for
hardware implementation� Transmogri�er�C is based on C plus additional hardware�
speci�c constructs �Gal���� The Programmable Active Memory �PAM� project uses
C�� syntax for RTL description �VBR����� These �rst two usages of software lan�
guages are strongly in�uenced by hardware description needs� Although these lan�
guages leverage the familiar syntax of C and C��� a description is typically illegal
or not meaningful as a C or C�� program� Semantically and syntactically correct
sequential C and Fortran programs have been automatically parallelized to target an
array of con�gurable structures in the RAW project �BRM����� The SpC project
attempts to synthesize full ANSI�compliant C programs and� in particular� addresses
C programs with pointers to variables �SM��� Mic���� Data�parallel C languages have
also been used to program an array of FPGAs in Splash � �GM��� and CLAy �GG����
These latter examples synthesize hardware from semantically correct programs and
thus are convenient tools for implementing algorithms� However� these program�based
descriptions are not suitable for describing microarchitectural mechanisms� In the
operation�centric framework of this thesis� both algorithms and microarchitectures
can be expressed in the TRSpec language for synthesis�

Processor�Speci�c High�level Description and Synthesis� High�level hard�
ware description and synthesis are employed in the development of application spe�
ci�c instruction set processors �ASIPs�� For example� the ADAS �PSH���� environ�
ment accepts an instruction set architecture �ISA� described in Prolog and emits
a VLSI implementation using a combination of tools in stages� During behavioral
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synthesis� the Piper tool attempts to pipeline the microarchitecture while taking
into account factors like instruction issue frequencies� pipeline stage latencies� etc�
The whole ADAS development suite is driven at the front�end by ASIA �HHD���� a
system that automatically generates a custom ISA for a particular application pro�
gram� Other processor�speci�c high�level description and synthesis frameworks in�
clude Mimola �Mar���� Dagar �Raj���� nML �FPF���� and ISDL �HHD���� Although
not domain�speci�c to ASIP developments� the operation�centric framework in this
thesis can also be used to give concise speci�cations of ISA semantics and processor
microarchitectures� Furthermore� an operation�centric ISA speci�cation is amenable
to automatic synthesis and architectural transformations�

Other Representative Work� Hardware description frameworks with formal ba�
sis have been used in the context of formal design speci�cation and veri�cation� For
example� the speci�cation language of the HOL theorem proving system �SRI��� has
been used to describe a pipelined processor� and a methodology has been developed to
verify a pipelined processor description against its non�pipelined counterpart �Win����
The Hawk language� based on Haskell �JHA����� can be used to create executable
speci�cations of processor microarchitectures �MLC���� a Hawk pipelined processor
speci�cation can be reduced into a non�pipelined equivalent for veri�cation �ML����
The TRSpec language described in this thesis is based on the formalism of Term
Rewriting Systems �TRS�� Besides being synthesizable� a TRSpec description is also
amenable to formal veri�cation� In a closely related research� Marinescu and Ri�
nard address the problem of synthesizing a synchronous pipeline from a description
of loosely�coupled modules connected by queues �MR����

��� Thesis Contributions

The operation�centric view of hardware has existed in many forms of hardware spec�
i�cations� usually to convey high�level architectural concepts� This thesis creates a
new hardware development framework where an ecient circuit implementation can
be synthesized automatically from an operation�centric description� Speci�cally� this
thesis makes the following contributions�

� Identi�cation of key properties and advantages of operation�centric hardware
description frameworks

� Design of TRSpec� a source�level operation�centric hardware description lan�
guage based on the TRS formalism

� De�nition of an operation�centric state machine abstraction that serves as the
syntax�independent intermediate representation during hardware synthesis

� Formulation of the theories and algorithms necessary to create an ecient hard�
ware implementation from an operation�centric description
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� Implementation of the Term Rewriting Architectural Compiler �TRAC�� a com�
piler for TRSpec

� Investigation of the e�ectiveness of TRSpec and TRAC in comparison to tra�
ditional RTL�based development �ows

� Preliminary investigation of pipelined superscalar processor development via
source�to�source transformations of TRSpec descriptions

In this early step towards the study of operation�centric hardware development frame�
works� several important and interesting points of research are not fully addressed�
These open issues are summarized in Section ���

��� Thesis Organization

Following this introductory chapter� the next chapter �rst provides a further introduc�
tion to operation�centric hardware descriptions using four design examples� Chapter �
then explains the synthesis of operation�centric hardware descriptions� The chapter
�rst develops a formal representation for operation�centric hardware description and
then describes the synthesis algorithms implemented in TRAC� Chapter � presents
TRSpec� the source�level TRS language accepted by TRAC� Chapter � presents the
results from applying TRAC to TRSpec descriptions� Chapter � presents the ap�
plication of TRSpec and TRAC to the design of a pipelined superscalar processor�
Chapter � concludes with a summary of this thesis and identi�es areas for continued
investigation�

��



Chapter �

Operation�Centric Design

Examples

Four design examples are explored to provide a concrete demonstration of operation�
centric hardware description� The �rst example develops a hardware implementa�
tion of Euclid�s Algorithm� The second example describes a simple instruction set
architecture �ISA�� The third and fourth examples describe two di�erent pipelined
implementations of the same ISA� In this chapter� the operation�centric descriptions
borrow the notation of Term Rewriting Systems �TRS� �BN��� Klo����

��� Euclid�s Algorithm

This example develops a �nite state machine �FSM� that computes the greatest com�
mon divisor �GCD� of two positive integers using Euclid�s Algorithm�� The FSM�s
state elements consist of two ���bit registers� a and b� The behavior of this FSM
can be captured operation�centrically using a TRS whose terms has the signature
Gcd�a�b� where the variables a and b correspond to the unsigned integer contents of
registers a and b� The FSM has two operations� Mod and Flip� The Mod operation
can be described by the rewrite rule�

Mod Rule�
Gcd�a�b� if �a�b� � �b ���� � Gcd�a�b�b�

In general� a rewrite rule has three components� a left�hand�side pattern term� a
right�hand�side rewrite term� and an optional predicate� In the Mod rule� the pat�
tern is Gcd�a�b�� the rewrite term is Gcd�a�b�b�� and the predicate is the expression
�a�b� � �b����� A rule can be applied if the pattern matches the current state value
and if the predicate is true� In the context of operations� the pattern and the pred�
icate describe the condition of an operation� i�e�� the Mod operation is enabled only

�Euclid�s Algorithm states Gcd�a� b	 
 Gcd�b� �a mod b		 if b �
 �� This equality can be used
to repeatedly reduce the problem of computing Gcd�a� b	 to a simpler problem� For example�
Gcd��� 	 
 Gcd�� �	 
 Gcd��� �	 
 ��
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when �a � b���b �� ��� The right�hand�side rewrite term speci�es the new state value
after a rewrite� In describing the behavior of an FSM� the rewrite term conveys how
an operation updates the state elements� The e�ect of the Mod operation is to update
the register a by the value a� b�

The Flip operation can be described by the rewrite rule�

Flip Rule�
Gcd�a�b� if �a�b� � Gcd�b�a�

The e�ect of the Flip operation is to exchange the contents of registers a and b� This
operation is enabled only when �a � b��

Starting with two integers in registers a and b� an execution of the FSM computes
the GCD of these initial values� The execution of the FSM must correspond to some
sequential and atomic interleaving of the Mod operation and the Flip operation� The
sequence of operations stops when register b contains � because neither operation can
be enabled� The GCD of the initial values is in register a at the end of the sequence�
For example� starting with an initial state corresponding to the term Gcd������ the
sequence of operations that follows is

Gcd����� �F lip Gcd����� �Mod Gcd����� �Mod Gcd����� �F lip Gcd�����

This operation�centric description of an FSM is not only easy to understand� but
it also allows certain properties of the whole system to be proven by examining the
property of each operation individually� For example� it can be shown that if an
FSM correctly implements this two�operation system� then it maintains the invariant
that the GCD of the contents of registers a and b never changes� To show this� one
can make the argument that neither the Mod operation nor the Flip operation can
change the GCD of a and b�� Since an execution of a correctly implemented FSM
must correspond to some sequential and atomic interleaving of these two operations�
the GCD of a and b should never change from operation to operation�

In a TRS� the state of the system is represented by a collection of values� and a
rule rewrites values to values� Given a collective state value s� a TRS rule computes
a new value s � such that

s ��if ��s� then ��s� else s

where the � function captures the �ring condition and the � function captures the
e�ect of the rule� It is also possible to view a rule as a state�transformer in a state�
based system� In the state�transformer view� the applicability of a rule is determined
by computing the � function on the current state� and the next�state logic consists
of a set of actions that alter the contents of the state elements to match the value

�For the Mod operation� if �a � b	��b �
 �	 then �a mod b	 
 ��a � b	 mod b	� and thus�
Gcd�a� b	 
 Gcd�a mod b� b	 
 Gcd��a � b	 mod b� b	 
 Gcd�a � b� b	� For the Flip operation�
Gcd�a� b	 
 Gcd�b� a	�
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Figure ���� Next�state logic corresponding to �a� the Mod operation and �b� the Flip
operation�

of ��s�� The execution semantics of operations remains sequential and atomic in this
action�on�state interpretation�

The operations in this example can be restated in terms of actions� In the notation
below� �Mod is the predicate of the Mod operation� aMod�a is the action on register a
according to the Mod operation� etc�

�Mod � �a � b� � �b �� ��
aMod�a � set�a� b�

�F lip � �a � b�
aF lip�a � set�b�
aF lip�b � set�a�

If an operation is mapped to a synchronous state transition of the FSM� �Mod and
aMod�a map to the next�state logic in circuit �a� of Figure ���� The Flip operation
maps to the next�state logic in circuit �b� of Figure ����
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Figure ���� Circuit for computing Gcd�a� b��

The �nal FSM implementation can be derived by combining the two circuits from
Figure ���� Both the Mod operation and the Flip operation a�ect register a� but the
two operations are never enabled in the same state� �Their predicates contradict��
Since the two operations are mutually exclusive� the latch enable for a is simply the
logical�OR of the two operations� predicates �i�e�� �Mod � �F lip� and the next�state
value of a is selected from either aMod�a or aF lip�a through a multiplexer� The next�
state value and latch enable of b is controlled by the Flip operation alone�

Figure ��� shows the merged circuit� The circuit behaves like circuit �a� of Fig�
ure ��� in a cycle when the condition �a � b���b �� ��� required by the Mod operation�
is satis�ed� In a cycle when the condition �a � b�� required by the Flip operation�
is satis�ed� the circuit behaves like circuit �b� of Figure ��� instead� Since the two
operations are mutually exclusive� the atomic semantics of operations is maintained
in this implementation automatically�

��� A Simple Processor

A simple ISA can be speci�ed operation�centrically as a TRS whose terms have the
signature Proc�pc� rf� imem� dmem�� The four �elds of a processor term correspond to
the values of the programmer�visible states of the ISA� The variable pc represents the
program counter register� The rf variable corresponds to the register �le� an array of
integer values� In an expression� rf�r� gives the value stored in location r of rf� and
rf�r	
v� gives the new value of the array after location r has been updated by the value
v� The imem variable is an array of instructions� The dmem variable corresponds to
the data memory� another array of integer values�

The behavior of the processor can be described by giving a rewrite rule for each in�
struction in the ISA� The following rule describes the execution of an Add instruction�

Add Rule�
Proc�pc� rf� imem� dmem� where Add�rd�r��r��
imem�pc�

� Proc�pc��� rf�rd	
�rf�r���rf�r����� imem� dmem�

This rule conveys the same level of information as one would �nd in a programmer�s
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manual� The rule is enabled for a processor term whose current instruction� imem�pc��
is an Add instruction� �An Add instruction is represented by a term with the signature
Add�rd�r��r��� The rule uses a pattern�matching where statement to require imem�pc�
to match the pattern Add�rd�r��r���� Given a processor term that satis�es this con�
dition� the rule�s rewrite term speci�es that the processor term�s pc �eld should be
incremented by � and the destination register rd in rf should be updated with the
sum of rf�r�� and rf�r��� In the state�transformer view� the operation described by the
Add rule can be stated as

�Add � �imem�pc�
Add�rd�r��r���
aAdd�pc � set�pc���
aAdd�rf � a�set�rd�rf�r���rf�r���

Figure ��� gives the rewrite rules for all instructions in the ISA� The instructions
are move PC to register� load immediate� register�to�register addition and subtraction�
branch if zero� memory load and store� The complete TRS not only describes an ISA�
but it also constitutes an operation�centric description of an FSM that implements
the ISA� The datapath for the processor can be derived automatically and is depicted
in Figure ����

��� A Pipelined Processor

The ISA description from the previous example can be transformed into the descrip�
tion of a pipelined processor by adding FIFOs as pipeline bu�ers and by systematically
splitting every instruction operation into sub�operations local to the pipeline stages�

For example� a two�stage pipelined processor can be speci�ed as a TRS whose
terms have the signature Proc�pc� rf� bf� imem� dmem�� A FIFO bf is included as the
pipeline bu�er between the fetch stage and the execute stage� The FIFO is abstracted
to have a �nite but unspeci�ed size� Using a list�like syntax� a FIFO containing three
elements can be expressed as b�b�b�� The two main operations on a FIFO are
enqueue and dequeue� Enqueuing b to bf yields bfb while dequeuing from bbf leaves
bf� An empty FIFO is expressed as ����

Using a FIFO to separate pipeline stages provides the necessary isolation that
allows the operations in one stage to be described independently of the other stages�
Although this style of pipeline description re�ects a pipeline that is asynchronous and
elastic� it is possible to infer a legal implementation that is fully�synchronous and has
stages separated by simple registers�

The Add rule from the previous example can be split into two sub�rules that de�
scribe the operations in the fetch stage and the execute stage of the pipeline� The
fetch�stage sub�rule is

Fetch Rule�
Proc�pc� rf� bf� imem� dmem�

� Proc�pc��� rf� bfimem�pc�� imem� dmem�
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Loadi Rule�
Proc�pc� rf� imem� dmem� where Loadi�rd�const�
imem�pc�

� Proc�pc��� rf�rd	
const�� imem� dmem�

Loadpc Rule�
Proc�pc� rf� imem� dmem� where Loadpc�rd�
imem�pc�

� Proc�pc��� rf�rd	
pc�� imem� dmem�

Add Rule�
Proc�pc� rf� imem� dmem� where Add�rd�r��r��
imem�pc�

� Proc�pc��� rf�rd	
�rf�r���rf�r����� imem� dmem�

Sub Rule�
Proc�pc� rf� imem� dmem� where Sub�rd�r��r��
imem�pc�

� Proc�pc��� rf�rd	
�rf�r���rf�r����� imem� dmem�

Bz Taken Rule�
Proc�pc� rf� imem� dmem� if �rf�rc�
�� where Bz�rc�ra�
imem�pc�

� Proc�rf�ra�� rf� imem� dmem�

Bz Not�Taken Rule�
Proc�pc� rf� imem� dmem� if �rf�rc� ���� where Bz�rc�ra�
imem�pc�

� Proc�pc��� rf� imem� dmem�

Load Rule�
Proc�pc� rf� imem� dmem� where Load�rd�ra�
imem�pc�

� Proc�pc��� rf�rd	
dmem�rf�ra���� imem� dmem�

Store Rule�
Proc�pc� rf� imem� dmem� where Store�ra�r�
imem�pc�

� Proc�pc��� rf� imem� dmem�rf�ra�	
rf�r���

Figure ���� TRS rules for a simple ISA�

��



+1

Register

File

(rf)

ALU

(+,-)    

Program

ROM

Data

Memory

(dmem)

pc

(imem)

Figure ���� A simple non�pipelined processor datapath� shown without control signals�

The execute�stage sub�rule is

Add Execute Rule�
Proc�pc� rf� instbf� imem� dmem� where Add�rd�r��r��
inst

� Proc�pc� rf�rd	
�rf�r���rf�r����� bf� imem� dmem�

The Fetch rule fetches instructions from consecutive instruction memory locations
and enqueues them into bf� The Fetch rule is not concerned with what happens if a
branch is taken or if the pipeline encounters an exception� The Add Execute rule� on
the other hand� would process the next pending instruction in bf as long as it is an
Add instruction�

In this TRS� more than one rule can be enabled on a given state� The Fetch
rule is always ready to �re� and at the same time� the Add Execute rule� or other
execute�stage rules� may be ready to �re as well� Even though conceptually only
one rule should be �red in each step� an implementation of this processor description
must carry out the e�ect of both rules in the same clock cycle� Without concurrent
execution� the implementation does not behave like a pipeline� Nevertheless� the
implementation must also ensure that a concurrent execution of multiple operations
produces the same result as a sequential execution�

The Bz Taken rule and the Bz Not�Taken rule from the previous example can also
be split into separate fetch and execute rules� The execute�stage components of the
Bz Taken and Bz Not�Taken rules are

Bz Taken Execute Rule�
Proc�pc� rf� instbf� imem� dmem� if �rf�rc�
�� where Bz�rc�ra�
inst

� Proc�rf�ra�� rf� �� imem� dmem�

and

Bz Not�Taken Execute Rule�
Proc�pc� rf� instbf� imem� dmem� if �rf�rc� ���� where Bz�rc�ra�
inst

� Proc�pc� rf� bf� imem� dmem�
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The Fetch rule performs a weak form of branch speculation by always incrementing
pc� Consequently� in the execute stage� if a branch is resolved to be taken� besides
setting pc to the branch target� all speculatively fetched instructions in bf need to be
discarded� This is indicated by setting bf to ��� in the Bz Taken Execute rule�

Although both the Fetch rule and the Bz Taken Execute rule can a�ect pc and bf�
the sequential semantics of rules allows the formulation of the Bz Taken Execute rule
to ignore the possibility of contentions or race conditions with the Fetch rule� In a
clock cycle where the processor state enables both rules� the description permits an
implementation to behave as if the two operations are executed sequentially� in either
order� This implementation choice determines whether one or two pipeline bubbles
are inserted after a taken branch� but it does not a�ect the processor�s ability to
correctly execute a program�

The operations in this example can also be restated in terms of actions�

�Fetch � notfull�bf�
aFetch�pc � set�pc���
aFetch�bf � enq�imem�pc��

�Add�Exec � ��rst�bf�
Add�rd�r��r����notempty�bf�
aAdd�Exec�rf � a�set�rd�rf�r���rf�r���
aAdd�Exec�bf � deq� �

�BzTaken�Exec � ��rst�bf�
Bz�rc�rt����rf�rc�
���notempty�bf�
aBzTaken�Exec�pc � set�rf�ra��
aBzTaken�Exec�bf � clear� �

�BzNotTaken�Exec � ��rst�bf�
Bz�rc�rt����rf�rc� �����notempty�bf�
aBzNotTaken�Exec�bf � deq� �

Null actions� represented as �� on a state element are omitted from the action lists
above� �The full action list for the Add Execute rule is h apc� arf � abf � aimem� admem i
where apc� aimem and admem are ��s�� Also notice� each operation�s � expression has
been augmented with an explicit test� notfull�bf� or notempty�bf�� depending on
how the operation accesses bf�

��� Another Pipelined Processor

This example demonstrates the versatility of operation�centric descriptions by deriv�
ing a variation of the pipelined processor� In the previous example� instruction decode
and register �le read are performed in the execute stage� The processor described in
this example performs instruction decode and register read in the fetch stage instead�

The new two�stage pipelined processor is speci�ed as a TRS whose terms have the
signature Proc�pc� rf� bf� imem� dmem�� Decoded instructions and their operand values
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are stored as instruction templates in the pipeline bu�er bf� The instruction template
terms have the signatures� TLoadi�rd�v�� TAdd�rd�v��v��� TSub�rd�v��v��� TBz�vc�va��
TLoad�rd�va�� and TStore�va�v��

Below� the Add rule from Section ��� is split into two sub�rules such that instruc�
tion decode is included in the fetch�stage rule� The fetch�stage sub�rule is

Add Fetch Rule�
Proc�pc� rf� bf� imem� dmem�

if �r���Target�bf�� � �r���Target�bf�� where Add�rd�r��r��
imem�pc�
� Proc�pc��� rf� bfTAdd�rd�rf�r���rf�r���� imem� dmem�

The execute�stage sub�rule is

Add Execute Rule�
Proc�pc� rf� itempbf� imem� dmem� where TAdd�rd�v��v��
itemp

� Proc�pc� rf�rd	
�v��v���� bf� imem� dmem�

Splitting an operation into sub�operations destroys the atomicity of the original op�
eration and can cause new behaviors that are not part of the original description�
Thus� the sub�operations may need to resolve newly created hazards� In this case�
the Add Fetch rule�s predicate expression has been extended to check if the source
register names� r� and r�� are in Target�bf��� This extra condition stalls instruction
fetching when a RAW �read�after�write� hazard exists�

As another example� consider the Bz Taken rule and the Bz Not�Taken rule from
Section ���� Again� the rules can be split into their fetch and execute sub�operations�
Both Bz rules share the following instruction fetch rule�

Bz Fetch Rule�
Proc�pc� rf� bf� imem� dmem�

if �rc��Target�bf�� � �ra��Target�bf�� where Bz�rc�ra�
imem�pc�
� Proc�pc��� rf� bfTBz�rf�rc��rf�ra��� imem� dmem�

The two execute rules for the Bz instruction template are

Bz Taken Execute Rule�
Proc�pc� rf� itempbf� imem� dmem� if �vc
�� where TBz�vc�va�
itemp

� Proc�va� rf� �� imem� dmem�

and

Bz Not�Taken Execute Rule�
Proc�pc� rf� itempbf� imem� dmem� if �vc���� where TBz�vc�va�
itemp

� Proc�pc� rf� bf� imem� dmem�

As in the previous examples� the operations in this example can also be restated

�Target�bf� is a shorthand for the set of destination register names in bf� Let bf contain entries
i������in� �r��Target�bf�� stands for ��r�
Dest�i���������r �
Dest�in		� where Dest�itemp� extracts the
destination register name of an instruction template�
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in terms of actions�

�Add�Fetch � �imem�pc�
Add�rd�r��r���
��r���Target�bf����r���Target�bf���notfull�bf�

aAdd�Fetch�pc � set�pc���
aAdd�Fetch�bf � enq�TAdd�rd�rf�r���rf�r����

�Add�Exec � ��rst�bf�
TAdd�rd�v��v����notempty�bf�
aAdd�Exec�rf � a�set�rd�v��v��
aAdd�Exec�bf � deq� �

�Bz�Fetch � �imem�pc�
Bz�rc�ra��
��rc��Target�bf����ra��Target�bf���notfull�bf�

aBz�Fetch�pc � set�pc���
aBz�Fetch�bf � enq�TBz�rf�rc��rf�ra���

�BzTaken�Exec � ��rst�bf�
TBz�vc�vt����vc
���notempty�bf�
aBzTaken�Exec�pc � set�va�
aBzTaken�Exec�bf � clear� �

�BzNotTaken�Exec � ��rst�bf�
TBz�vc�vt����vc�����notempty�bf�
aBzNotTaken�Exec�bf � deq� �
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Chapter �

Hardware Synthesis and

Scheduling

Implementing an operation�centric description involves combining the atomic oper�
ations into a single coherent next�state logic for a state machine� For performance
reasons� an implementation should carry out multiple operations concurrently while
still maintaining a behavior that is consistent with a sequential execution of the atomic
operations� This chapter �rst presents the Abstract Transition System �ATS�� an ab�
stract state machine whose transitions are speci�ed operation�centrically� The chapter
next develops the procedure to synthesize an ATS into an ecient synchronous digital
implementation� A straightforward implementation that only executes one operation
per clock cycle is presented �rst� This is followed by two increasingly optimized
implementations that support the concurrent execution of operations�

��� Abstract Transition Systems

ATS is designed to be the intermediate target in the compilation of source�level
operation�centric hardware description languages� An ATS is de�ned by S� So and
X � S is a list of state elements� and So is a list of initial values for the elements in S�
X is a list of operation�centric transitions� The structure of an ATS is summarized
in Figure ����

����� State Elements

This thesis de�nes a restricted ATS where an element in S can only be a register�
an array� or a FIFO� For generality� the ATS abstraction can be extended with new
elements and variations on existing elements�

A register R can store an integer value up to a speci�ed maximum word size�
The value stored in R can be referenced in an expression using the side�e�ect�free
R�get� � query operator� For conciseness� R�get� � can be abbreviated simply as R in
an expression� R�s content can be set to value by the R�set�value� action operator�
Any number of queries are allowed in an atomic update step� but each register allows
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AT S � h S� So� X i
S � hR�� ����RNR�A�� ����ANA�F�� ����FNF �O�� ����ONO � I�� ���� INI i
So � h vR�� ����vRNR �vA� � ����vANA�vF�� ����vFNF �vO�� ����vONO i
X � fT�� ����TM g
T � h �� � i
� � exp

� � h aR�� ����aRNR �aA� � ����aANA �aF�� ����aFNF �aO�� ����aONO �aI� � ����aINI i
a
R � � �� set�exp�
a
A � � �� a�set�expidx� expdata�
a
F � � �� enq�exp� �� deq� � �� en�deq�exp� �� clear� �

a
O � � �� set�exp�
a
I � �

exp � constant �� Primitive�Op�exp�� ���� expn�
�� R�get� � �� A�a�get�idx�
�� F��rst� � �� F�notfull� � �� F�notempty� �
�� O�get� � �� I�get� �

Figure ���� ATS summary�

at most one set action in each atomic update step� An atomic update step is de�ned
in Section ����� where the operational semantics of an ATS is de�ned�

An array A can store a speci�ed number of values� The value stored in the idx �th
entry of A can be referenced in an expression using the side�e�ect�free A�a�get�idx�
query operator� A�a�get�idx� can be abbreviated as A�idx �� The content of the idx �th
entry of A can be set to value using the A�a�set�idx �value� action operator� Out�of�
bound queries or actions on an array are not allowed� In this thesis� each array allows
at most one a�set action in each atomic update step� but any number of queries on
an array are allowed� In general� variations of the array elements can be de�ned to
allow multiple a�set actions or to limit the number of a�get queries�

A FIFO F stores a �nite but unspeci�ed number of values in a �rst�in� �rst�out
manner� The oldest value in F can be referenced in an expression using the side�e�ect�
free F��rst� � query operator� and can be removed by the F�deq� � action operator� A
new value can be added to F using the F�enq�value� action operator� F�en�deq�value�
is a compound action that enqueues a new value after dequeuing the oldest value� In
addition� the entire contents of F can be cleared using the F�clear� � action operator�
Under�owing or over�owing a FIFO by an enq or a deq action is not allowed� The
status of F can be queried using the side�e�ect�free F�notfull� � and F�notempty� �
query operators that return a Boolean status� Each FIFO allows at most one action
in each atomic update step� but any number of queries are allowed� Again� variations
of FIFO elements can be de�ned to support multiple actions per update step�

Input elements and output elements are register�like state elements� An input
element I is like a register without the set operator� I�get� � returns the value of an
external input port instead of the content of an actual register� An output element O
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supports both set and get � and its content is visible outside of the ATS on an output
port� Input and output elements can be treated exactly like registers except when
the input and output ports are instantiated in the �nal phase of circuit synthesis
�described in Section �������

����� State Transitions

An element in X is a transition� A transition is a pair� h ��� i� � is a Boolean
value expression� In general� a value expression can contain arithmetic and logical
operations on scalar values� A value in an expression can be a constant or a value
queried from a state element� Given an ATS whose S has N elements� � is a list of
N actions� one for each state element� An action is speci�ed as an action operator
plus its arguments in terms of value expressions� A null action is represented by the
symbol ���� For all actions in �� the i�th action of � must be valid for the i�th state
element in S�

����� Operational Semantics

The initial value of the i�th state element �except for input elements� is taken from
the i�th element of So� From this initial state� the execution of an ATS takes place
as a sequence of state transitions in atomic update steps�

At the start of an atomic update step� all � expressions in X are evaluated using
the current contents of the state elements� In a given step� an applicable transition
is one whose � expression evaluates to true� All argument expressions to the actions
in ��s are also evaluated using the current state of S�

At the end of an atomic update step� one transition is selected nondeterministically
from the applicable transitions� S is then modi�ed according to the actions of the
selected transition� For each action in the selected �� the i�th action is applied to the
i�th state element in S� using the argument values evaluated at the beginning of the
step� If an illegal action or combination of actions is performed on a state element�
the system halts with an error� A valid ATS speci�cation never produces an error�

The atomic update step repeats until S is in a state where none of the transitions
are applicable� In this case� the system halts without an error� Alternatively� a
sequence of transitions can lead S to a state where selecting any applicable transition
leaves S unchanged� The system also halts without an error in this case� Some systems
may never halt� Due to nondeterminism� some systems could halt in di�erent states
from one execution to the next�

����� Functional Interpretation

ATS is de�ned in terms of state elements and actions with side�e�ects� In some
circumstances� it is convenient to have a functional interpretation of ATS where an
execution produces a sequence of S values� In the functional domain� the state of S
is represented by a collection of values� R is represented by an integer value� A is an
array of values� and F is an ordered list of values� The e�ect of a transition on state
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s can be expressed as a function of � and � such that

� s� if ��s� then ��s� else s

where � is a function that computes a new S value based on the current S value�
Given a transition whose � is h aR����� aA� ���� aF� ��� i� its � in the functional domain is

��s�� let
h vR����� vA����� vF���� i�s

in
hApply�aR�� vR��� ���� Apply�aA�� vA��� ���� Apply�aF�� vF��� ��� i

Applying an action in the functional domain entails computing the new value of a
state element based on the old values of the state elements� Given a state element
whose current value is v � the state�s new value after receiving action a can be com�
puted by

Apply�a� v�� case a of
set�exp� � Eval�exp�
a�set�expidx� expdata� � v �Eval�expidx���Eval�expdata��
enq�exp� � v �Eval�exp�
deq� � � RestOf�v�
en�deq�exp� � RestOf�v��Eval�exp�
clear� � � empty list
� � v

where RestOf�list� is the remainder of list after the �rst element is removed�

Example 	�� �GCD�

This ATS corresponds to the TRS described in Section ���� The ATS describes the
computation of the greatest common divisor of two ���bit integers using Euclid�s
Algorithm� S is hRa� Rb i where Ra and Rb are ���bit registers� X consists of two
transition pairs� h ��� �� i and h ��� �� i where

�� � �Ra�Rb� � �Rb �� ��
�� � h set�Ra�Rb�� � i

�� � Ra�Rb
�� � h set�Rb�� set�Ra� i

The two transitions correspond to the Mod operation and the Flip operation from
Section ���� respectively� The initial values So�h �� � i initialize Ra and Rb for the
computation of Gcd��� ���

�
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Example 	�� �A Simple Processor�

This ATS corresponds to the ISA described in Section ���� The programmer�visible
processor states are represented by S�hRPC �ARF �AIMEM �ADMEM i where RPC is a
���bit program counter register� ARF is a general purpose register �le of four ���
bit values� AIMEM is a ����entry array of ���bit instruction words� and ADMEM is a
����entry array of ���bit values�

X consists of transitions that correspond to the rewrite rules from Section ���� i�e��
each transition describes the execution of an instruction in the ISA� Let �� � and �
be the numerical values assigned to the instruction opcodes Loadi �Load Immediate��
Add �Triadic Register Add� and Bz �Branch if Zero�� Also� let the instruction word
stored in AIMEM be decoded as

opcode � bits �� down to �� of AIMEM �RPC �
rd � bits �� down to �� of AIMEM �RPC�
r� � bits �� down to �� of AIMEM �RPC�
r� � bits �� down to �� of AIMEM �RPC�
const � bits �� down to � of AIMEM �RPC�

��s and ��s of the transitions corresponding to the execution of Loadi� Add and Bz are

�Loadi � �opcode���
�Loadi � h set�RPC���� a�set�rd � const�� �� � i

�Add � �opcode���
�Add � h set�RPC���� a�set�rd � ARF �r� ��ARF �r� ��� �� � i

�BzTaken � �opcode��� � �ARF �r� ����
�BzTaken � h set�ARF �r� ��� �� �� � i

�BzNotTaken � �opcode��� � �ARF �r� �����
�BzNotTaken � h set�RPC���� �� �� � i

�

Example 	�	 �A Pipelined Processor�

This ATS corresponds to the two�stage pipelined processor from Section ���� S is
hRPC�ARF �FBF �AIMEM �ADMEM i� FBF is the pipeline stage FIFO for holding fetched
instruction words�

Separate transitions are used to describe the operations in the Fetch stage and the
Execute stage of the pipeline� � and � of the transition that correspond to instruction
fetch are

�Fetch � FBF �notfull� �
�Fetch � h set�RPC���� �� enq�AIMEM �RPC ��� �� � i

Again� let �� � and � be the numerical values assigned to the instruction opcodes
Loadi �Load Immediate�� Add �Triadic Register Add� and Bz �Branch if Zero�� and
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let the instruction word returned by FBF ��rst� � be decoded as

opcode � bits �� down to �� of FBF ��rst� �
rd � bits �� down to �� of FBF ��rst� �
r� � bits �� down to �� of FBF ��rst� �
r� � bits �� down to �� of FBF ��rst� �
const � bits �� down to � of FBF ��rst� �

��s and ��s of the transitions that correspond to the execution of Loadi� Add and Bz
in the Execute stage are

�Loadi�Execute � FBF �notempty� � � �opcode���
�Loadi�Execute � h �� a�set�rd � const�� deq� �� �� � i

�Add�Execute � FBF �notempty� � � �opcode���
�Add�Execute � h �� a�set�rd � ARF �r� ��ARF �r� ��� deq� �� �� � i

�BzTaken�Execute � FBF �notempty� � � �opcode��� � �ARF �r� ����
�BzTaken�Execute � h set�ARF �r� ��� �� clear� �� �� � i

�BzNotTaken�Execute � FBF �notempty� � � �opcode��� � �ARF �r� �����
�BzNotTaken�Execute � h �� �� deq� �� �� � i

�

��� Reference Implementation of an ATS

One straightforward implementation of an ATS is a �nite state machine �FSM� that
performs one atomic update step per clock cycle� The elements of S� instantiated
as clock synchronous registers� arrays and FIFOs� are the state of the FSM� �The
hardware manifestations of the ATS state elements are shown in Figure ����� The
atomic transitions in X are combined to form the next�state logic of the FSM�

����� State Storage

The register primitive is rising�edge�triggered and has a clock enable� A register can
take on a new value on every clock edge� but the current value of the register can
fan out to many locations� This hardware usage paradigm is directly re�ected in the
de�nition of the R element of an ATS where only one set action is allowed in an atomic
update step� but any number of get queries are allowed� In general� the capability
of the storage primitives should match their respective ATS counterparts� When the
ATS state element models are extended or modi�ed� their hardware representations
need to be adjusted accordingly� and vice versa�

The array primitive supports combinational reads� that is� the read�data port
�RD� continuously outputs the value stored at the entry selected by the read�address
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port �RA�� The construction of the reference implementation assumes that an ar�
ray primitive has as many read ports as necessary to support all a�get� � queries of
ATS transitions� After a register�transfer level �RTL� design is generated� the ac�
tual number of combinational read ports can be reduced by common subexpression
elimination� The array primitive only has one synchronous write port� allowing one
update per clock cycle� In general� the number of array write ports should match
the speci�ed capability of the ATS array element A� The data at the write�data port
�WD� is stored to the entry selected by the write�address port �WA� on a rising clock
edge if the write�enable �WE� is asserted�

A FIFO primitive has three output ports that output the oldest value ��rst�� a
Boolean 	not full
 status � full�� and a Boolean 	not empty
 status � empty�� The
FIFO primitive also has three synchronous interfaces that change the state of the
FIFO by enqueuing a new value� dequeuing the oldest value� and clearing the entire
FIFO� Each synchronous interface has an enable that must be asserted at the rising
clock edge for the state change to take e�ect� New entries should not be enqueued to
a FIFO if the FIFO is full� The exact size of the FIFO primitive does not have to be
speci�ed until the �nal design is simulated or synthesized�

����� State Transition Logic

The next�state logic can be derived from the transitions in X in three steps�

Step �� All value expressions in the ATS are mapped to combinational logic signals
on the current state of the state elements� In particular� this step creates a set of
signals� �T�������TM � that are the � signals of transitions T������TM of an M �transition
ATS� The logic mapping in this step assumes all required combinational resources are
available� RTL optimizations can be employed to simplify the combinational logic
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Figure ���� Circuits for merging two transitions� actions on the same register�

and to share duplicated logic�

Step �� A scheduler is created to generate the set of arbitrated enable signals�
	T� �����	TM � based on �T�������TM � �The block diagram of a scheduler is shown in
Figure ����� The reference implementation�s scheduler asserts only one 	 signal in each
clock cycle� re�ecting the selection of one applicable transition� A priority encoder is
a valid scheduler for the reference implementation�

Step 	� One conceptually creates M independent versions of next�state logic� each
corresponding to one of the M transitions in the ATS� Next� the M sets of next�state
logic are merged� state�element by state�element� using the 	 signals for arbitration�
For example� a register may have N transitions that could a�ect it over time� �N 	M
because some transitions may not a�ect the register�� The register takes on a new
value if any of the N relevant transitions is enabled in a clock cycle� Thus� the
register�s latch enable is the logical�OR of the 	 signals of the N relevant transitions�
The new value of the register is selected from the N candidate next�state values
via a decoded multiplexer controlled by the 	 signals� Figure ��� illustrates the
merging circuit for a register that is a�ected by the set actions from two transitions�
This merging scheme assumes at most one transition�s action needs to be applied
to a particular register element in a clock cycle� Furthermore� all actions of the
same transition should be enabled everywhere in the same clock cycle to achieve the
appearance of an atomic transition� The algorithm for generating the RTL description
of a reference ATS implementation is given next�
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����� RTL Description

Scheduler� Given an ATS with M transitions T������TM � a scheduler generates ar�
bitrated transition enable signals 	T� �����	TM where 	Ti is used to select the actions of
Ti� In any state s� a valid scheduler must� at least� ensure that

�� 	Ti � �Ti�s�
�� �T��s�
 ��� 
�TM �s� � 	T�
 ��� 
	TM

where �Ti�s� is the value of Ti�s � expression in state s� A priority encoder is a valid
scheduler that selects one applicable transition per clock cycle� Since ATS allows
nondeterminism in the selection� the priority encoder could use a static� round�robin
or randomized priority�

Register Update Logic� Each R in S can be implemented using a synchronous
register with clock enable �see Figure ����� For each R in S� the set of transitions
that update R is

fTxi j a
R
Txi

�set�expxi� g

where aRTxi is the action of Txi on R� The register�s latch enable signal �LE� is

LE � 	Tx�
 ��� 
	Txn

The register�s data input signal �D� is

D � 	Tx� �expx� � ��� � 	Txn �expxn

The data input expression corresponds to a pass�gate multiplexer where expxi is
enabled by 	Txi �

Array Update Logic� Each A in S can be implemented using a memory array
with a synchronous write port �see Figure ����� �Given an array implementation with
sucient independent write ports� this scheme can also be generalized to support an
ATS that allows multiple array writes in an atomic step�� For each A in S� the set of
transitions that write A is

fTxi j a
A
Txi

�a�set�idxxi� dataxi� g

The array�s write address �WA� and data �WD� are

WA � 	Tx� �idxx� � ��� � 	Txn �idxxn

WD � 	Tx� �datax� � ��� � 	Txn �dataxn
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The array�s write enable signal �WE� is

WE � 	Tx�
 ��� 
	Txn

FIFO Update Logic� Each F in S can be implemented using a �rst�in� �rst�out
queue with synchronous enqueue� dequeue and clear interfaces �see Figure ����� For
each F� the inputs to the interfaces can be constructed as follows�

Enqueue Interface� The set of transitions that enqueues a new value into F is

fTxi j �aFTxi�enq�expxi��
�a
F
Txi

�en�deq�expxi�� g

Every transition Txi that enqueues into F is required to test F�notfull� � in its � ex�
pression� Hence� no 	Txi will be asserted if F is already full� F�s enqueue data �ED�
and enable �EE� signals are

ED � 	Tx� �expx� � ��� � 	Txn �expxn

EE � 	Tx�
 ��� 
	Txn

Dequeue Interface� The set of transitions that dequeues from F is

fTxi j �aFTxi�deq� ��
�a
F
Txi

�en�deq�expxi�� g

Every transition Txi which dequeues from F is required to test F�notempty� � in its �
expression� Similarly� no 	Txi will be asserted if F is empty� F�s dequeue enable �DE�
signal is

DE � 	Tx�
 ��� 
	Txn

Clear Interface� The set of transitions that clears the contents of F is

fTxi j a
F
Txi

�clear� � g

F�s clear enable �CE� is

CE � 	Tx�
 ��� 
	Txn

Input and Output Ports� Thus far� input�output elements� I�s and O�s� have been
treated as R�s� This is the only occasion where I and O elements require additional
handling� To support output� the output of each O register is wired to an external
output port of the same width� To support input� the net driven by the Q output of
an I register is rewired to an external input port of the same width� The I register
itself is only a placeholder structure that can be removed after its output connection
has been rewired�
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Figure ���� The GCD circuit from Example ����

Example 	�
 �GCD�

A reference implementation of the ATS from Example ��� can be derived as follows�

Scheduler� The ATS consists of two transitions� For convenience� let the two tran�
sitions be named Mod and Flip� A two�way priority encoder suces as a simple
scheduler� The inputs to the priority encoder are

�Mod � �Ra�Rb� � �Rb �� ��
�F lip � Ra�Rb

The outputs of the priority enconder are 	Mod and 	F lip�

Register Update Logic� The ATS consists of two registers Ra and Rb� Ra is up�
dated by both transitions whereas Rb is only updated by the Flip transition� Thus�
the latch enables for the two registers are

LERa
� 	Mod 
 	F lip

LERb
� 	F lip

The registers� data inputs are

DRa
� 	Mod��Ra�Rb� � 	F lip��Rb�

DRb
� Ra

Rb is only updated by one rule� and hence� multiplexing of its data input is not
required� The synthesized circuit is depicted in Figure ���� �The scheduler is not
shown��

�
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����� Correctness of a Synchronous Implementation

An implementation is said to implement an ATS correctly if

�� The implementation�s sequence of state transitions corresponds to some execu�
tion of the ATS�

�� The implementation maintains liveness of state transitions�

Suppose for any T the next�state logic of the reference implementation produces the
same state changes as an application of �T� provided 	T is the only 	 signal asserted
at the clock edge� the correctness of the reference implementation can be argued from
the properties of the priority�encoder scheduler� First� the priority encoder main�
tains liveness because the encoder asserts a 	 signal whenever at least one � signal
is asserted� �In general� liveness is maintained by any scheduler that satis�es the
condition �T��s�
���
�TM �s�� 	T�
���
	TM �� Second� an implementation clock cycle
corresponds exactly to an atomic update step of the ATS because the priority en�
coder selects only one of the applicable transitions to update the state at each clock
edge� The sequence of state values constructed by sampling the reference implemen�
tation after every clock edge must correspond to some allowed sequence of ATS state
transitions�

A dimension of correctness that is not addressed in the requirements above is the
treatment of nondeterminism in an ATS� Unless the priority encoder in the reference
implementation has true randomization� the reference implementation is determin�
istic� that is� the implementation can only embody one of the behaviors allowed
by the ATS� Thus� an implementation can enter a livelock if the ATS depends on
nondeterminism to make progress� The reference implementation cannot guarantee
strong�fairness in the selection of transitions� that is� the reference implementation
cannot guarantee any one transition will always be selected eventually� regardless of
how many times the transition becomes applicable� However� using a round�robin
priority encoder as the scheduler is sucient to ensure weak�fairness� that is� if a
transition remains applicable over a bounded number of consecutive steps� it will be
selected at least once�

����� Performance Considerations

In a given atomic update step� if two simultaneously applicable transitions read and
write mutually disjoint parts of S� then the two transitions can be executed in any
order in two successive steps to produce the same �nal state� In this scenario� al�
though the ATS operational semantics prescribes a sequential execution in two atomic
update steps� a synchronous hardware implementation can exploit the underlying par�
allelism and execute the two transitions concurrently in one clock cycle� In the case
of the examples from Sections ��� and ��� where pipelined processors are described
operation�centrically by stages� it is necessary to execute transitions from di�erent
pipeline stages concurrently to achieve pipelined executions� In general� it is danger�
ous to let two arbitrary transitions execute in the same clock cycle because of possible
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data dependence and structural con�icts� The next two sections� ��� and ���� formalize
the conditions for the concurrent execution of transitions and suggest implementa�
tions with more aggressive scheduling schemes that execute multiple transitions in
the same clock cycle�

��� Optimization I	 Parallel Compositions

In a multiple�transitions�per�cycle implementation� the state transition in each clock
cycle must correspond to a sequential execution of the ATS transitions in some order�
If two transitions Ta and Tb become applicable in the same clock cycle when S is in
state s� �Ta��Tb�s�� or �Tb��Ta�s�� must be true for an implementation to correctly
select both transitions for execution� Otherwise� executing both transitions would be
inconsistent with any sequential execution in two atomic update steps�

Given �Ta��Tb�s�� or �Tb��Ta�s��� there are two approaches to execute the actions
of Ta and Tb in the same clock cycle� The �rst approach cascades the combinational
logic from the two transitions� However� arbitrary cascading does not always improve
the overall performance since it may lead to a longer cycle time� In a more practical
approach� Ta and Tb are executed in the same clock cycle only if the correct �nal state
can be constructed from an independent evaluation of their combinational logic on
the same starting state�

����� Con�ict�Free Transitions

Based on the intuition above� this section develops a scheduling algorithm based
on the con�ict�free relationship ���CF �� ��CF is a symmetrical relationship that
imposes a stronger requirement than necessary for executing two transitions con�
currently� However� the symmetry of ��CF permits a straightforward implementa�
tion that concurrently executes multiple transitions if they are pairwise con�ict�free�
�Section ��� will present an improvement based on a more exact condition�� The
con�ict�free relationship and the parallel composition function PC are de�ned in
De�nition ��� and De�nition ����

De�nition 	�� �Con�ict�Free Relationship�

Two transitions Ta and Tb are said to be con�ict�free �Ta ��CF Tb� if

� s� �Ta�s� � �Tb�s� � �Tb��Ta�s�� � �Ta��Tb�s�� �
��Tb��Ta�s�� � �Ta��Tb�s�� � �PC�s��

where �PC is the functional equivalent of PC ��Ta� �Tb��
�
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De�nition 	�� �Parallel Composition�

PC ��a� �b�� h pcR�aR� � bR��� ���� pcA�aA� � bA��� ���� pcF �aF� � bF��� ��� i

where �a�h a
R� � ���� aA� � ���� aF�� ��� i� �b�h b

R�� ���� bA�� ���� bF�� ��� i

pcR�a� b��case a� b of a� � � a

�� b � b

��� � unde	ned

pcA�a� b��case a� b of a� � � a

�� b � b

��� � unde	ned

pcF �a� b��case a� b of a� � � a

�� b � b

enq�exp�� deq� � � en�deq�exp�
deq� �� enq�exp� � en�deq�exp�
��� � unde	ned

�

The function PC computes a new � by composing two ��s that do not contain con�
�icting actions on the same state element� It can be shown that PC is commutative
and associative�

Suppose Ta and Tb become applicable in the same state s� Ta ��CF Tb implies that
the two transitions can be applied in either order in two successive steps to produce
the same �nal state s �� Ta ��CF Tb further implies that an implementation could
produce s � by applying the parallel composition of �Ta and �Tb to the same initial
state s� Theorem ��� extends this result to multiple pairwise con�ict�free transitions�

Theorem 	�� �Composition of ��CF Transitions�

Given a collection of n transitions that are applicable in state s� if all n transitions are
pairwise con�ict�free� then the following condition holds for any ordering of Tx� �����Txn �

�Tx� ��Tx� �s�� � ��� � �Txn ��Txn�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� �� �

��Txn ��Txn�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� �� � �PC�s��

�PC is the functional equivalent of the parallel composition of �Tx� ������Txn � in any
order�

Proof� Suppose Theorem ��� holds for n � K�

Part �� Given a collection of K�� transitions� T������TK���TK �TK��� that are all
applicable in state s and are pairwise con�ict�free� it follows from the induction hy�
pothesis that

�TxK ��TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ��
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and also

�TxK��
��TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ��

In other words� �TxK �s
�� � �TxK��

�s �� where s � is �TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ��
It follows from the de�nition of ��CF that

�TxK��
��TxK �s

���

and hence

�TxK��
��TxK ��TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ���

Part �� It also follows from the induction hypothesis that

�TxK ��TxK�� �����Tx� ��Tx� ��Tx� �s����������Apply�PC ��Tx� ������TxK�� ��TxK ����s�

and

�TxK��
��TxK�� �����Tx� ��Tx� ��Tx� �s����������Apply�PC ��Tx� ������TxK�� ��TxK��

����s�

Following the de�nition of PC � �� one can conclude from the second statement above
that �� any state element e acted on by �TxK��

is not acted on by �TxK�� ������Tx�
and �� the state of e is the same after �TxK��

�s� as after �TxK��
�s �� where s � is

�TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ��

It is already shown from the �rst part of the proof that �TxK �s
�� � �TxK��

�s ��� It

follows from the de�nition of ��CF that �TxK��
��TxK �s

��� � �TxK ��TxK��
�s ���� Any

state element e acted on by �TxK��
is not acted on by �TxK and the state of e is the

same after �TxK��
��TxK �s

��� as after �TxK��
�s ��� and thus the same as after �xK��

�s��
Hence�

�xK��
��TxK ��TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ���

� �xK��
� �Apply�PC ��Tx� � ���� �TxK�� � �TxK ����s��

� �Apply�PC ��Tx� � ���� �TxK�� � �TxK ��TxK��
����s�

Therefore� the theorem holds for n � K�� if the theorem holds for n � K� The
theorem holds for K � � by the de�nition of ��CF � By induction� Theorem ��� holds
for any n greater or equal to ��

�
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����� Static Deduction of ��CF

The scheduling algorithm given later in this section can work with a conservative
��CF test� that is� if the conservative test fails to identify a pair of transitions as
��CF � the algorithm might generate a less optimal but still correct implementation�

Analysis based on Domain and Range�

A static determination of ��CF can be made by comparing the domains and ranges
of two transitions� The domain of a transition is the set of state elements in S 	read

by the expressions in either � or �� The domain of a transition can be further sub�
classi�ed as ��domain and ��domain depending on whether the state element is read
by the ��expression or an expression in ��

The range of a transition is the set of state elements in S that are acted on by
�� For this analysis� the head and the tail of a FIFO are considered to be separate
elements� The functions to extract the domain and range of a transition are de�ned
below�

De�nition 	�	 �Domain of � and ��

De�exp� � case exp of
constant � f g
R�get� � � fR g
A�a�get�idx� � fA g  De�idx�
F��rst� � � f Fhead g
F�notfull� � � f Ftail g
F�notempty� � � f Fhead g
Op�exp�� ���� expn� � De�exp��  ���  De�expn�

D���� � DR�aR��  ���  DA�aA��  ���  DF �aF��  ���
where ��h aR�� ���� aA� � ���� aF� � ��� i

DR�a� � case a of � � f g
set�exp� � De�exp�

DA�a� � case a of � � f g
a�set�idx �data� � De�idx�  De�data�

DF �a� � case a of � � f g
enq�exp� � De�exp�
en�deq�exp� � De�exp�
deq� � � f g
clear� � � f g

�
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De�nition 	�
 �Range of ��

R���� � RR�aR��  ���  RA�aA��  ���  RF �aF��  ���
where ��h aR�� ���� aA� � ���� aF� � ��� i

RR�aR� � case a
R of � � f g

set��� � fR g

RA�aA� � case a
A of � � f g

a�set��� �� � fA g

RF �aF� � case a
F of � � f g

enq��� � f Ftail g
deq� � � f Fhead g
en�deq��� � f Fhead� Ftail g
clear� � � f Fhead� Ftail g

�

UsingD� � and R� �� a sucient condition that ensures two transitions are con�ict�
free is given in Theorem ����

Theorem 	�� �Su�cient Condition for ��CF�

� �D��Ta�D��Ta�� � � R��Tb� � � � �D��Tb�D��Tb�� � � R��Ta� � �
� R��Ta� � � R��Tb� �

� �Ta ��CF Tb�
�

If the domain and range of two transitions do not overlap� then the two transitions
do not have any data dependence� Since their ranges do not overlap� a valid parallel
composition of �Ta and �Tb must exist�

Analysis based on Mutual Exclusion�

If two transitions never become applicable on the same state� then they are said to
be mutually exclusive�

De�nition 	�� �Mutually Exclusive Relationship�

Ta ��ME Tb if � s� ���Ta�s���Tb�s��
�

Two transitions that are ��ME satisfy the de�nition of ��CF trivially� An exact test
for ��ME requires determining the satis�ability of the expression ��Ta�s���Tb�s���
Fortunately� the � expression is usually a conjunction of relational constraints on the
current values of state elements� A conservative test that scans two � expressions for
contradicting constraints on any one state element works well in practice�
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����� Scheduling of ��CF Transitions

Using Theorem ���� instead of selecting a single transition per clock cycle� a sched�
uler can select any number of applicable transitions that are pairwise con�ict�free� In
other words� in each clock cycle� the 	�s should satisfy the condition�

	Ta � 	Tb � Ta ��CF Tb

where 	T is the arbitrated transition enable signal for transition T� Given a set of
applicable transitions in a clock cycle� many di�erent subsets of pairwise con�ict�free
transitions could exist� Selecting the optimum subset requires evaluating the relative
importance of the transitions� Alternatively� an objective metric simply optimizes the
number of transitions executed in each clock cycle�

Partitioned Scheduler�

In a partitioned scheduler� transitions in X are �rst partitioned into as many disjoint
scheduling groups� P������Pk� as possible such that

�Ta � Pa� � �Tb � Pb� � Ta ��CF Tb

Transitions in di�erent scheduling groups are con�ict�free� and hence each scheduling
group can be scheduled independently of other groups� For a given scheduling group
containing Tx������Txn � 	Tx� �����	Txn can be generated from �Tx� �s�������Txn �s� using a
priority encoder� In the best case� a transition T is con�ict�free with every other
transition in X � In which case� T is in a scheduling group by itself� and 	T��T
without arbitration�

X can be partitioned into scheduling groups by �nding the connected components
of an undirected graph whose nodes are transitions T�� ���� TM and whose edges are
f �Ti� Tj� j ��Ti ��CF Tj� g� Each connected component is a scheduling group�

Example 	�� �Partitioned Scheduler�

The undirected graph �a� in Figure ��� depicts the con�ict�free relationships in an
ATS with six transitions� X�fT�� T�� T�� T�� T�� T� g� Each transition is represented
as a node in the graph� Two transitions are con�ict�free if their corresponding nodes
are connected� i�e��

�T� ��CF T��� �T� ��CF T��� �T� ��CF T��� �T� ��CF T���
�T� ��CF T��� �T� ��CF T��� �T� ��CF T���
�T� ��CF T��� �T� ��CF T��� �T� ��CF T���
�T� ��CF T���
�T� ��CF T��

Graph �b� in Figure ��� gives the corresponding con�ict graph where two nodes
are connected if they are not con�ict�free� The con�ict graph has three connected

��



T3

T2T1

T3

T1 T2

T6

T5 T4

T6

T5 T4

(a) (b)

Scheduling Group 1 Scheduling Group 2

Scheduling Group 3
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components� corresponding to the three ��CF scheduling groups� The 	 signals
corresponding to T�� T� and T� can be generated using a priority encoding of their
corresponding ��s� Scheduling group � also requires a scheduler to ensure 	� and 	�
are not asserted in the same clock cycle� However� 	T���T� without any arbitration�

�

Example 	� �Fully Partitioned Scheduling�

In Example ���� a two�way priority scheduler is instantiated for a two�transition ATS�
The two transitions� ��expressions are

�Mod � �Ra�Rb� � �Rb �� ��
�F lip � Ra�Rb

Notice� the two transitions� ��expressions have contradicting requirements on the
value of Ra� �F lip requires Ra�Rb� but �Mod requires Ra�Rb� Thus the two transi�
tions are ��ME and therefore ��CF � The transitions are each in its own scheduling
group� Hence� 	Mod��Mod and 	F lip��F lip without any arbitration�

�

Enumerated Scheduler�

Scheduling group � of graph �b� in Figure ��� contains three transitions fT�� T�� T� g
such that T� ��CF T� but both T� and T� are not ��CF with T�� Although the three
transitions cannot be scheduled independently of each other� T� and T� can be selected
together as long as T� is not selected in the same clock cycle� This selection is valid
because T� and T� are ��CF between themselves and every transition selected by the
other groups� In any given clock cycle� the scheduler for each group can independently
select multiple transitions that are pairwise con�ict�free within the scheduling group�
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Figure ���� Enumerated encoder table for Example ����

For a scheduling group with transitions Tx� �����Txn � 	Tx� �����	Txn can be computed
by a �n�n lookup table indexed by �Tx� �s�������Txn �s�� The data value d������dn at the
table entry with index b������bn can be determined by �nding a clique in an undirected
graph whose nodes N and edges E are de�ned as follows�

N � fTxi j index bit bi is asserted g
E � f �Txi� Txj � j �Txi�N � � �Txj�N � � �Txi ��CF Txj � g

For each Txi that is in the clique� assert data bit di�

Example 	�� �Enumerated Encoder�

Scheduling group � from Example ��� can be scheduled by an enumerated encoder
�Figure ���� that allows T� and T� to execute concurrently�

�

����� Performance Gain

When X can be partitioned into scheduling groups� the partitioned scheduler is
smaller and faster than the monolithic encoder of the reference implementation from
Section ������ The partitioned scheduler also reduces wiring cost and delay since ��s
and 	�s of unrelated transitions are not brought together for arbitration�

The property of the parallel composition function� PC � ensures that transitions
are con�ict�free only if their actions on state elements do not con�ict� For example�
given a set of transitions that are all pairwise con�ict�free� each R in S can be updated
by at most one of those transitions at a time� Hence� the state update logic described
in Section ����� can be used without any modi�cation� Consequently� parallel com�
position of actions does not increase the combinational delay of the datapath� All
in all� the implementation in this section achieves better performance than the refer�
ence implementation by allowing more transitions to execute in a clock cycle without
increasing the cycle time�
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��� Optimization II	 Sequential Compositions

Consider the following example where PC ��Ta��Tb� and its functional equivalent� �PC �
is well�de�ned for any choice of two transitions Ta and Tb from the following ATS�

S � hR�� R�� R� i
X � f h true� h set�R����� �� � i i

h true� h �� set�R����� � i i
h true� h �� �� set�R���� i i g

Although all transitions are always applicable� the ��CF scheduler proposed in the
previous section would not permit Ta and Tb to execute in the same clock cycle be�
cause� in general� �Ta��Tb�s�� �� �Tb��Ta�s��� It can be shown that� for all s� �PC�s� is
consistent with at least one order of sequential execution of Ta and Tb� Hence� their
concurrent execution can be allowed in an implementation� However� the concurrent
execution of all three transitions in a parallel composition does not always produce
a consistent new state due to circular data dependencies among the three transi�
tions� To capture these conditions� this section presents a more exact requirement for
concurrent execution based on the sequential composibility relationship�

����� Sequentially�Composible Transitions

De�nition 	� �Sequential Composibility�

Two transitions Ta and Tb are said to be sequentially composible �Ta �SC Tb�� if

� s� �Ta�s� � �Tb�s� � �Tb��Ta�s�� �
��Tb��Ta�s�� � �SC�s��

where �SC is the functional equivalent of SC ��Ta� �Tb��
�

De�nition 	�� �Sequential Composition�

SC ��a� �b�� h scR�aR� � bR��� ���� scA�aA� � bA��� ���� scF �aF� � bF��� ��� i

where �a�h aR� � ���� aA� � ���� aF�� ��� i� �b�h bR�� ���� bA�� ���� bF�� ��� i

scR�a� b��case a� b of
a� � � a

�� b � b

��� � b

��



scA�a� b��case a� b of
a� � � a

�� b � b

��� � unde	ned

scF �a� b��case a� b of
a� � � a

�� b � b

enq�exp�� deq� � � en�deq�exp�
deq� �� enq�exp� � en�deq�exp�
a� clear� � � clear� �
��� � unde	ned

�

The sequential composition function SC returns a new � by composing actions
on the same element from two ��s� scR� scA and scF are the same as pcR� pcA and
pcF except in two cases where SC allows two con�icting actions to be sequentialized�
First� scR�set�expa�� set�expb�� is set�expb� since the e�ect of the �rst action is over�
written by the second in a sequential application� Second� scF �a� clear� �� returns
clear� � since regardless of a� applying clear� � leaves the FIFO emptied�

The �SC relationship is a relaxation of��CF � In particular��SC is not symmetric�
Suppose Ta and Tb are applicable in state s� Ta �SC Tb only requires the concurrent
execution of Ta and Tb on s to correspond to �Tb��Ta�s��� but not �Ta��Tb�s��� Two �SC

transitions can also have con�icting actions that can be sequentialized� Theorem ���
extends this result to multiple transitions whose transitive closure on �SC is ordered�

Theorem 	�	 �Composition of �SC Transitions�

Given a sequence of n transitions� Tx������Txn � that are all applicable in state s� if
Txj �SC Txk for all j � k then

�Tx� ��Tx� �s�� � ��� �
�Txn ��Txn�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� �� �

��Txn ��Txn�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� �� � �SC�s��

where �SC is the functional equivalent of the nested sequential composition
SC � ��� SC �SC ��Tx� ��Tx� �� �Tx� �� ��� ��

Proof� The induction proof is similar to the proof of Theorem ���� Suppose Theo�
rem ��� holds for n � K�

Part �� Given a sequence of K�� transitions� Tx� �����TxK�� �TxK �TxK��
� that are all

applicable in state s and Txi �SC Txj for all i � j� it follows from the induction
hypothesis that

�TxK ��TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ��
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and also

�TxK��
��TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ��

In other words� �TxK �s
�� � �TxK��

�s �� where s � is �TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ��
It follows from the de�nition of �SC that

�TxK��
��TxK �s

���

and hence

�TxK��
��TxK ��TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ���

Part �� It also follows from the induction hypothesis that

�TxK ��TxK�� �����Tx� ��Tx� ��Tx� �s����������Apply�SC ��Tx� ������TxK�� ��TxK ����s�

and

�TxK��
��TxK�� �����Tx� ��Tx� ��Tx� �s����������Apply�SC ��Tx� ������TxK�� ��TxK��

����s�

Following the de�nition of SC � �� one can conclude from the second statement above
that �� any state element e acted on by �TxK��

can ignore the actions by �TxK�� ������Tx�
and �� the state of e is the same after �TxK��

�s� as after �TxK��
�s �� where s � is

�TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ��

It is already shown from the �rst part of the proof that �TxK �s
�� � �TxK��

�s ��� It

follows from the de�nition of �SC that �TxK��
��TxK �s

��� � �Apply��TxK � �TxK��
���s ���

Any state element e acted on by �TxK��
can ignore the actions by �TxK and the state

of e is the same after �TxK��
��TxK �s

��� as after �TxK��
�s ��� and thus the same as after

�xK��
�s�� Hence�

�xK��
��TxK ��TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ���

� �xK��
� �Apply�SC ��Tx� � ���� �TxK�� � �TxK ����s��

� �Apply�SC ��Tx� � ���� �TxK�� � �TxK � �TxK��
����s�

Therefore� the theorem holds for n � K�� if the theorem holds for n � K� The
theorem holds for K � � by the de�nition of �SC � By induction� Theorem ��� holds
for any n greater or equal to ��

�
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����� Static Deduction of �SC

Using D� � and R� �� a sucient condition for two transitions to be sequentially
composible is given in Theorem ����

Theorem 	�
 �Su�cient Condition for �SC�

��D��Tb�D��Tb��� �R��Ta�� � �SC ��Ta� �Tb� is de	ned�
� Ta �SC Tb

�

����� Scheduling of �SC Transitions

Incorporating the results from Theorem ��� into the partitioned scheduler from Sec�
tion ����� allows additional transitions to execute in the same clock cycle� For each
con�ict�free scheduling group containing Tx� �����Txn � its scheduler generates the arbi�
trated transition enable signals 	Tx� �����	Txn � In every s� there must be an ordering of
all asserted 	�s� 	Ty� �����	Tym � such that Tyj �SC Tyk if j � k� However� to simplify
the state update logic� our algorithm further requires a statically chosen SC�ordering
Tz� �����Tzn for each scheduling group such that

� s� 	Tzj�	Tzk � Tzj �SC Tzk if j � k

Scheduler�

To construct the �SC scheduler for a con�ict�free scheduling group that contains
Tx� �����Txn � one �rst computes the group�s SC�ordering using a topological sort on a
directed graph whose nodes are Tx� �����Txn and whose edges ESCacyclic is the largest
subset of ESC such that the graph is acyclic� ESC is de�ned as

f �Txi� Txj� j �Txi �SC Txj �� ��Txi ��CF Txj� g

Next� one needs to �nd the connected components of an undirected graph whose
nodes are Tx�� ���� Txn and whose edges are

f �Txi� Txj� j ��Txi� Txj� �� ESCacyclic� � ��Txj � Txi� �� ESCacyclic� �
��Txi ��CF Txj � g

Each connected component forms a scheduling subgroup� Transitions in di�erent
scheduling subgroups are either con�ict�free or sequentially�composible� 	�s for the
transitions in a subgroup can be generated using a priority encoder� On each clock
cycle� the transitions Ty� �����Tym � selected collectively by all subgroup encoders of a
particular scheduling group� satisfy the conditions of Theorem ��� because the selected
transitions can always be ordered according to the static SC�ordering of the parent
scheduling group�
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Example 	�� �Sequentially Composed Implementation�

The directed graph �a� in Figure ��� depicts the sequential composibility relationships
in an ATS with �ve transitions� X�fT�� T�� T�� T�� T� g� A directed edge from Ta to
Tb implies Ta �SC Tb� i�e��

�T� �SC T��� �T� �SC T��� �T� �SC T���
�T� �SC T��� �T� �SC T���
�T� �SC T��� �T� �SC T���
�T� �SC T��

Graph �b� in Figure ��� shows the acyclic �SC graph when the edge from T� to T�
is removed� A topological sort of the acyclic �SC graph yields the SC�ordering of
T�� T�� T�� T� and T�� �The order of T� and T� can be reversed also�� Graph �c� in
Figure ��� gives the corresponding con�ict graph� The two connected components
of the con�ict graph are the two scheduling groups� 	T���T� without any arbitra�
tion� The remaining 	 signals can be generated using a priority encoding of their
corresponding ��s� More transitions can be executed concurrently if the enumerated
encoder in Figure ��� is used instead�

�

State Update Logic�

When sequentially�composible transitions are allowed in the same clock cycle� the
register update logic cannot assume that only one transition acts on a register in each
clock cycle� When multiple actions are enabled for a register� the register update
logic should ignore all except for the latest action with respect to the SC�ordering of
some scheduling group� �All transitions that update the same register are in the same
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Figure ���� Enumerated encoder table for Example ����

scheduling group� except for a transition that is mutually exclusive with the rest��
For each R in S� the set of transitions that update R is

fTxi j a
R
Txi

�set�expxi� g

The register�s latch enable signal is

LE � 	Tx�
 ��� 
	Txn

The register�s data input signal is

D � 	Tx� �
Tx� �expx� � ��� � 	Txn �
Txn �expxn

where 
Txi � ��	Ty�
	Ty�
 ��� �� The expression 
Txi
contains 	Tyi �s from the set of

transitions�

f Tyi j R � R��Tyi � �
Txi comes before Tyi in the SC�ordering �
��Txi ��ME Tyi� g

In essence� the register�s data input �D� is selected through a prioritized multiplexer
that gives higher priority to transitions later in the SC�ordering� The update logic
for arrays and FIFOs remain unchanged from Section ������
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��� Summary

This chapter describes the procedure to synthesize an operation�centric description
given as an ATS into an ecient synchronous digital implementation� The chapter
�rst gives a straightforward implementation that executes one operation per clock
cycle� The chapter next develops the necessary theories and algorithms to construct
more optimized implementations that can carry out multiple operations concurrently
while still maintaining a behavior that is consistent with a sequential execution of the
atomic operations�
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Chapter �

TRSpec Hardware Description

Language

The TRSpec language is an adaptation of Term Rewriting Systems �TRSs� �BN���
Klo��� for operation�centric hardware description� This synthesizable TRS language
includes extensions beyond the standard TRS formalism to facilitate hardware de�
scription� On the other hand� the generality of TRS has to be restricted in some areas
to ensure synthesizability� This chapter �rst introduces the basic concepts in the TRS
formalism� Next� the chapter presents the TRSpec language� The discussion begins
with TRSpec�s type system and then moves onto the topics of rewrite rules� initial�
ization and input�output� The concrete syntax of TRSpec is given separately in
Appendix A� This chapter concludes with a discussion on how to map a TRSpec
description to an ATS�

��� Term Rewriting Systems

TRSs have been used extensively to give operational semantics of programming lan�
guages� More recently� TRSs have become a powerful tool� in research and in class�
rooms� to concisely describe the operation of computer hardware� For example� TRSs
have made it possible to describe a processor with out�of�order and speculative execu�
tion in a page of text �AS���� Such hardware descriptions in TRSs are also amenable
to formal veri�cation techniques�

A TRS consists of a set of terms and a set of rewrite rules� The general structure
of a rewrite rule is

pat lhs if exppred � exprhs

A rule can be applied to rewrite a term s if the rule�s left�hand�side pattern pat lhs
matches s �or a subterm in s� and the predicate exppred evaluates to true� A successful
pattern match binds the variables in pat lhs to the corresponding subterms in s� When
a rule is applied� the new term is constructed by replacing the whole or part of s that
matched pat lhs with the resulting term from evaluating exprhs�
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The e�ect of a rewrite is atomic� that is� the whole term is 	read
 in one step
and if the rule is applicable then a new term is returned in the same step� If several
rules are applicable� then any one of them is chosen nondeterministically and applied�
Afterwards� all rules are re�evaluated for applicability on the new term� Starting from
a source term� successive rounds of rewrites continue until the �nal term cannot be
rewritten using any rule� TRSs that describe hardware are sometimes nondetermin�
istic �
not con�uent� in the programming language parlance� and nonterminating�

In a functional interpretation� a rule can be thought of as the function�

� s� case s of
pat lhs � if exppred then

exprhs
else

s

��� � s

This function uses a pattern�matching case statement in which two patterns� pat lhs
and ������ are checked sequentially against s until the �rst successful match� If pat lhs
matches s� the variables in pat lhs are bound to the subterms in s� and the function
returns the evaluation of the consequent expression exprhs� If pat lhs fails to match s�
the wild�card pattern ����� always matches s successfully� and the function returns a
term identical to s�

��� TRS for Hardware Description

Chapter � uses the TRS notation to describe the behaviors of �nite state machines�
In those descriptions� the collective values of the state elements are symbolically
represented as terms� Each rewrite rule describes an atomic operation by specifying
when the operation could take place and what is the new value of the state elements
afterwards� In general� a TRS for hardware description has to be restricted to have
a �nite number of �nite�size terms� and the rewrite rules cannot change the size of
the terms� These restrictions guarantee that a TRS can be synthesized using a �nite
amount of hardware� These restrictions can be enforced by augmenting the TRS
formalism with a type system�

The rest of this chapter presents TRSpec� a strongly�typed TRS language for
operation�centric hardware description� TRSpec features built�in integers� common
arithmetic and logical operators� non�recursive algebraic types and two built�in ab�
stract datatypes� array and FIFO� User�de�ned abstract datatypes� with both se�
quential and combinational functionalities� can also be imported into a TRSpec

description by providing an interface declaration and a separate implementation de�
scription�
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��� Type System

The TRSpec language is strongly typed� that is� every term has a type that is de�
�ned by the user� The allowed type classes in TRSpec are listed below�

TYPE �� STYPE
�� CPRODUCT
�� ABSTRACT
�� IOTYPE

CPRODUCT �� Cnk�TYPE�� ���� TYPEk� where k � �
ABSTRACT �� Array �STYPEidx� STYPE

�� Fifo STYPE
IOTYPE �� ITYPE

�� OTYPE

����� Simple Types

Simple types �STYPE� in TRSpec include built�in booleans� signed and unsigned
integers� as well as algebraic product and sum types� An integer type can be declared
to have an arbitrary word width� Each product type has a unique constructor name
and consists of one or more subtypes� A sum type� a disjoint union type� is made up
of two or more disjuncts� A disjunct is similar to a product except a disjunct may
have zero elements� A sum type with only zero�element disjuncts is an enumeration
type� Product and sum types can be composed to construct arbitrary algebraic type
structures� but recursive types are not allowed� Members of the STYPE class are
listed below�

STYPE �� Bool
�� Bit�N �
�� Int�N �
�� PRODUCT
�� SUM

PRODUCT �� Cnk�STYPE�� ���� STYPEk� where k � �
SUM �� DISJUNCT jj DISJUNCT

�� DISJUNCT jj SUM
DISJUNCT �� Cnk�STYPE�� ���� STYPEk� where k � �

Example 
�� �Euclid�s Algorithm�

The terms in the TRS from Section ��� has the type declared as GCD below�

Type GCD 
 Gcd�NUM� NUM�
Type NUM 
 Bit����

A GCD term �ts the signature Gcd�a�b�� where a and b are unsigned ���bit integers�
�
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Example 
�� �Alternate Description of Euclid�s Algorithm�

This example gives an alternate description of Euclid�s Algorithm to illustrate some
modularity and type�related issues� The following TRS describes the computation of
the mod function via iterative subtraction�

Type VAL 
 Mod�NUM�NUM� jj Val�NUM�
Type NUM 
 Bit����

Mod Iterate Rule�
Mod�a�b� if a�b � Mod�a�b�b�

Mod Done Rule�
Mod�a�b� if a�b � Val�a�

Using this description of mod� Euclid�s Algorithm can be rewritten as follows�

Type GCD 
 Gcd�VAL�VAL�

Flip � Mod Rule�
Gcd�Val�a�� Val�b�� if b��� � Gcd�Val�b�� Mod�a�b��

To �nd the greatest common divisor of two unsigned integers� Ca and Cb� the source
term should be Gcd�Val�Ca��Val�Cb��� The normal term is Gcd�Val�Cgcd��Val���� where
Cgcd is the greatest common divisor of Ca and Cb� The sequence of rewrites to �nd
the GCD of � and � is

Gcd�Val����Val���� � Gcd�Val����Mod������ � Gcd�Val����Val���� �
Gcd�Val����Mod������ � Gcd�Val����Mod������ � Gcd�Val����Mod������ �
Gcd�Val����Val����

�

����� Abstract Types

Abstract datatypes are de�ned by their interfaces� without information about its
internal operation or implementation� An interface can be classi�ed as performing
either a combinational operation or a state�transforming operation� TRSpec has
built�in abstract datatypes of arrays and FIFOs�

An array is used to model register �les� memories� etc� An array term has only
two operations� read and write� In a rule� if a is an array� a�idx� gives the value stored
in the idx�th location of a� and a�idx	
v�� a state�transforming 	write
� is an array
identical to a except location idx has been changed to the value v� TRSpec supports
arrays of STYPE entries indexed by enumeration�type or integer�type indices�

FIFOs provide the primary means of communication between di�erent modules
and pipeline stages� The two main state�transforming operations on FIFOs are en�
queue and dequeue� Enqueuing an element e to a FIFO q is written as q�enq�e�
while dequeuing the �rst element from q is written as q�deq� �� An additional state�
transforming interface q�clear� � clears the contents of q� The combinational query
interface q��rst� � returns the value of the oldest element in q� FIFOs are restricted to

��



Type PROC 
 Proc�PC� RF� IMEM� DMEM�
Type PC 
 Bit����
Type RF 
 Array �RNAME� VAL
Type RNAME 
 Reg�� � jj Reg�� � jj Reg�� � jj Reg�� �
Type VAL 
 Bit����
Type IMEM 
 Array �PC� INST
Type INST 
 Loadi�RNAME� VAL�

jj Loadpc�RNAME�
jj Add�RNAME� RNAME� RNAME�
jj Sub�RNAME� RNAME� RNAME�
jj Bz�RNAME� RNAME�
jj Load�RNAME� RNAME�
jj Store�RNAME� RNAME�

Type DMEM 
 Array �ADDR� VAL
Type ADDR 
 Bit����

Figure ���� Type de�nitions for a simple non�pipelined processor�

have STYPE entries� In the description phase� a FIFO is abstracted to have a �nite
but unspeci�ed size� A TRSpec rule that uses a FIFO�s interfaces has an implied
predicate that tests whether the FIFO is not empty or not full� as appropriate�

TRSpec allows abstract types to be included in the construction of new product
types� but an abstract type cannot be included in the algebraic type hierarchy de�
scending from a sum type� Hence� TRSpec distinguishes between a complex product
type �CPRODUCT� versus a simple product type �PRODUCT�� depending on whether
or not its algebraic structure contains an abstract type� Complex product types can�
not be included in the disjunct of a sum type�

Example 
�	 �Simple Processor�

The TRS in Section ��� describes a simple ISA whose programmer�visible states
consist of a program counter� a register �le� instruction memory and data memory�
The terms from that TRS have the types declared in Figure ���� A term that captures
the processor state has the type PROC� Instruction terms have the type INST�

�

Example 
�
 �Pipelined Processor�

The TRS in Section ��� describes a two�stage pipelined processor� The processor
performs instruction fetch and decode in the �rst stage and instruction execute in the
second stage� A FIFO stores decoded instruction templates between the two pipeline
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stages� A term that captures the state of this pipelined processor has the type�

Type PROC 
 Proc�PC� RF� BF� IMEM� DMEM�

The type of the abstract FIFO �BF� and the type of the instruction templates �ITEMP�
are de�ned as

Type BF 
 Fifo ITEMP
Type ITEMP 
 TLoadi�RNAME� VAL�

jj TAdd�RNAME� VAL� VAL�
jj TSub�RNAME� VAL� VAL�
jj TBz�VAL� PC�
jj TLoad�RNAME� ADDR�
jj TStore�ADDR� VAL�

�

��� Rewrite Rules

����� Abstract Syntax

Syntactically� a TRSpec rewrite rule is composed of a left�hand�side pattern and
a right�hand�side expression� A rule can optionally include a predicate expression
and where bindings� The where bindings on the left�hand�side have pattern�matching
semantics� A failure in matching PATi to EXPlhs�i in the i�th left�hand�side binding
also deems the rule inapplicable to a term� The right�hand�side where bindings are
simple irrefutable variable assignments� The concrete TRSpec syntax is given in
Appendix A� The abstract syntax of a TRSpec rewrite rule is summarized below�
���� is the don�t�care symbol��

RULE �� LHS � RHS
LHS �� PATlhs �if EXPpred� �where PAT��EXPlhs��� ����PATn�EXPlhs�n�
PAT �� ��� �� variable �� numerical constant �� Cn�� � �� Cnk�PAT�� ����PATk�
RHS �� EXPrhs �where variable��EXPrhs��� ����variablen�EXPrhs�m�
EXP �� ��� �� variable �� numerical constant �� Cn�� � �� Cnk�EXP�� ����EXPk�

�� Primitive�Op �EXP�� ����EXPk�
Primitive�Op �� Arithmetic �� Logical �� Array�Access �� FIFO�Access

����� Type Restrictions

The type of PATlhs must be PRODUCT� CPRODUCT or SUM� In addition� each rule
must have PATlhs and EXPrhs of the same type� In Example ���� the Mod Done rule
rewrites a Mod term to a Val term� The Mod Done rule does not violate this type
discipline because both a Val term and a Mod term belong to the same sum type�
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TRSpec�s non�recursive type system and the type disciplines on rewrite rules ensure
the size of every term is �nite and a rewrite does not change the size of the terms�

����� Semantics

In a functional interpretation� a TRSpec rewrite rule can be thought of as a function
of typeof�PATlhs��typeof�PATlhs�� The function returns a term identical to the
input term if the rule is not applicable� If the rule is applicable� the return value is a
new term based on the evaluation of the main right�hand�side expression EXPrhs� A
rule of the form�

pat lhs
if exppred where pat� � explhs��� ���� patn � explhs�n

� exprhs
where var � � exprhs��� ���� varm � exprhs�m

corresponds to the function�

� s� case s of
pat lhs �

case explhs�� of
pat� �

������
case explhs�n of

patn �
if exppred then

let
var � � exprhs��� ���� varm � exprhs�m

in
exprhs

else
s

��� � s

������
��� � s

��� � s
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The previous function can be decomposed into its two components� � and �� where

� � � s� case s of
pat lhs �

case explhs�� of
pat� �

������
case explhs�n of

patn � exppred
��� � false

������
��� � false

��� � false

and

� � � s� let
pat lhs � s

pat� � explhs��� ���� patn � explhs�n
var � � exprhs��� ���� varm � exprhs�m

in
exprhs

The � function determines a rule�s applicability to a term and has the type signature
typeof�pat lhs��Bool� On the other hand� the � function� with the type signature
typeof�pat lhs��typeof�pat lhs�� determines the new term in case ��s� evaluates to
true� Using � and �� a rule can also be written as the function�

� s� if ��s� then ��s� else s

��� Source Term

A TRSpec description includes a source term to specify the initial state of a system�
The top�level type of the system is inferred from the type of the source term� which
must be PRODUCT� CPRODUCT or SUM� A source term can specify an initial value
for every subterm that is not an ABSTRACT type� A source term can include don�t�
care symbols to leave some subterms unconstrained� Unless otherwise speci�ed� the
initial contents of an abstract array term are unde�ned� An abstract FIFO term is
initially empty�

��� Input and Output

Traditionally� a TRS models a closed system� that is� it does not interact outside of the
modeled system� TRSpec augments the TRS formalism to allow users to assign I�O
semantics to STYPE terms� For example� the TRSpec fragment in Figure ��� can
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Type TOP 
 Top�CNTRI� NUMI� NUMI� NUMO� GCD�
IType CNTRI 
 CNTR
Type CNTR 
 Load� � jj Run� �
IType NUMI 
 NUM
OType NUMO 
 NUM

GCD Start Rule�
Top�Load� �� x� y� �� ��

� Top�Load� �� x� y� �� Gcd�Val�x��Val�y���
GCD Done Rule�

Top�Run� �� x� y� �� Gcd�Val�gcd�� Val�����
� Top�Run� �� x� y� gcd� Gcd�Val�gcd�� Val�����

Figure ���� TRSpec description of I�O

be combined with the TRSpec design from Example ��� to provide I�O capabilities�
When synthesized as hardware� this I�O wrapper description maps to a module with
the I�O ports shown in Figure ����

TOP is a collection of several I�O types along with GCD� NUMO is an output type
derived from NUM� An output type can be derived from any STYPE� and the output
type itself can be included in the construction of new CPRODUCT types� In the
implementation of a TRSpec description� the value of an output term is externally
visible�

On the other hand� NUMI is an input type derived from NUM� Like an output
type� an input type can also be derived from any STYPE and be included in the
construction of new CPRODUCT types� The value of an input term can only be
rewritten by an agent external to the system� The e�ect of an externally�triggered
rewrite appears spontaneously but atomically between the atomic e�ects of rewrite
rules� Rewrite rules inside the system are not allowed to change the value of an input
term� In the implementation of a TRSpec description� input interfaces are created
to control the values of the input terms�

Although the TRSpec compiler has some liberty in the exact implementation of
the input and output interfaces� as a rule of thumb� one should be able to connect
the output port from a correctly implemented module to the input port of another
correctly implemented module� as long as the ports are derived from the same type�

The GCD Start and GCD Done rules describe the input and output operations�
Given a TOP term� the GCD Start rule states that when the �rst subterm is Load� ��
the GCD subterm can be initialized using the second and third subterms� �The �rst
three subterms of a TOP term are all input terms�� The GCD Done rule states if the
�rst subterm is Run� � and the GCD subterm looks like Gcd�Val�a��Val���� then the
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32
NUM2

32
NUMO

Figure ���� I�O interfaces synthesized for TOP�

NUMO output subterm should be set to a to report the answer�

Using the symbol ���� to represent externally�triggered rewrites� a possible se�
quence of rewrites that computes the GCD of � and � is

���� �Top�Run���������Gcd�Val����Val�����
��Top�Load���������Gcd�Val����Val����� �Top�Load���������Gcd�Val����Val�����
��Top�Run���������Gcd�Val����Val����� �Top�Run���������Gcd�Val����Mod�������
�Top�Run���������Gcd�Val����Val����� �Top�Run���������Gcd�Val����Mod�������
�Top�Run���������Gcd�Val����Mod������� �Top�Run���������Gcd�Val����Mod�������
�Top�Run���������Gcd�Val����Val����� �Top�Run���������Gcd�Val����Val�����
�� ����

At the start of the sequence� the �rst external rewrite modi�es the �rst three subterms
of Top�Run� ��������Gcd�Val����Val����� to Top�Load� ��������Gcd�Val����Val������ Af�
terwards� the GCD Start rule is applied to set the GCD subterm to Gcd�Val����Val�����
Another external rewrite changes the �rst subterm from Load� � to Run� �� this disables
the GCD Start rule� Applications of the rules from Example ��� ultimately reduce
the GCD subterm from Gcd�Val����Val���� to Gcd�Val����Val����� At this point� the
GCD Done rule becomes enabled and rewrites the NUMO subterm from � to ��

Due to nondeterminism� many sequences are possible for the same external manip�
ulations of the input subterms� Therefore� I�O handshakes in a TRSpec description
must be asynchronous by design� For example� after the �rst external rewrite there is
no guarantee on how soon the GCD Start rule is applied� Hence� the external agents
should not trigger the second external rewrite until it has observed a transition to �
on the NUMO output� Also before the second external rewrite� the GCD Start rule
could be applied several more times� Moreover� the GCD rules from Example ���
could also start rewriting the GCD subterm� Nevertheless� regardless of the sequence
of events between the �rst and the second external rewrites� this TRS produces the
correct answer when the NUMO output term transitions out of ��

��
 Mapping TRSpec to ATS

The TRSpec type discipline requires each rewrite rule to have the same type on
both sides of �� Therefore� all terms reachable from the source term by rewriting
must have the same type� Given TRSpec�s non�recursive type system� the terms in

��



‘1,Mod,2’
Val

Mod

NUM

VAL

VAL

Tag

Tag

Val

NUM NUM

Mod

NUM NUM

NUM

GCD

Figure ���� A tree graph representing the GCD type structure from Example ����

a TRSpec TRS can always be encoded as the collective value of a �nite set of ATS
state elements�

����� Terms to ATS State Elements

The ATS state elements needed to represent all possible terms of the same type as
the source term can be conceptually organized in a tree graph according to the source
term�s algebraic type structure� In this tree� the ATS state elements� R� A and F�
appear at the leaves� For example� the tree graph of the algebraic type� GCD� from
Example ��� is shown in Figure ���� A product node� like the one labeled GCD� has a
child branch for each constituent subtype� A sum node� like the one labeled VAL� has
a branch for each disjunct� A sum node also has an extra branch where a dlog�de�bit
	tag register
 node records which one of the d disjuncts is active� A disjunct node�
like the one labeled Mod� has a child branch for each of its constituent subtypes� In
this case� the Mod disjunct node has two leaf children that are ���bit register nodes
corresponding to the ���bit integer type NUM�

A sum node has a branch for each of the disjuncts� but� at any time� only the
branch whose tag matches the content of the tag register holds meaningful data� For
example� the active subtree corresponding to the term Gcd�Val���� Mod������ is shaded
in Figure ���� As an optimization� registers on di�erent disjuncts of a sum node can
share the same physical register� In Figure ���� the registers aligned horizontally can
be allocated to the same physical register�

A unique name can be assigned to each ATS state element based on the path �also
known as projection� from the root to the corresponding leaf node� For example� the
name for the second �from the left� NUM register in Figure ��� is ���Mod� ��� Following
this naming scheme� the ATS state elements needed by a type can also be organized
as a set of name�state�element pairs where each pair h proj � e i speci�es an ATS state
element e and its name proj �
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The storage elements �and their names� needed to represent all possible term in�
stances of GCD are given by the set�

f h ��� tag�� R��bit i�
h ���Mod� ��� R���bit i� h ���Mod� ��� R���bit i� h ���Val� ��� R���bit i�

h ��� tag�� R��bit i�
h ���Mod� ��� R���bit i� h ���Mod� ��� R���bit i� h ���Val� ��� R���bit i g

Every name�state�element pair in this set has a one�to�one correspondence with a
leaf node in the tree graph in Figure ����

����� Rules to ATS Transitions

With a nearly identical execution semantics as an ATS transition� a TRSpec rewrite
rule readily maps to an ATS transition� Using the functional interpretation of rules
presented in Section ������ the � and � functions for the Flip�Mod rule from Exam�
ple ��� are

� � � s� case s of
Gcd�Val�a��Val�b�� � b���
��� � false

and

� � � s� let
Gcd�Val�a��Val�b�� � s

in
Gcd�Val�b��Mod�a�b��

The � function of a rule maps to the � expression of an ATS transition� In an ATS�
the condition computed by ��s� is speci�ed as a logic expression that tests the con�
tents of the ATS state elements� The � expression implied by the pattern matching
and the predicate of the Flip�Mod rule is

�R��tag � Val� � �R��tag � Val� � �R��V al�� �� ��

The � function of a rule can be viewed as specifying actions on the ATS state ele�
ments� The � function of the Flip�Mod rule can be mapped to the following set of
state�element�action pairs� h e� action i� �Elements with null actions are omitted��

f hR��tag� set�Val� i� hR��Val��� set�b� i�
hR��tag� set�Mod� i� hR��Mod��� set�a� i� hR��Mod��� set�b� i g

The variables a and b in the Flip�Mod rule�s � function are bound to the subterms in
the input term s by pattern matching� In the ATS context� a and b are the contents
of the corresponding ATS storage elements� namely R��V al�� and R��V al���

Notice� the � expression of this transition requires R��tag�Val� Thus� the action
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hR��tag� set�Val� i in the set above is redundant in any state that satis�es the tran�
sition�s predicate� The set action on R��tag can be replaced by a null action without
changing the semantics of the transition� In general� the predicate of a transition
restricts the possible starting values of the state when the transition is applied� A
compiler can eliminate an action from a transition if the compiler can statically detect
that the action has no e�ect on its state element anytime the transition�s predicate
is satis�ed�

In another example� the pipelined processor TRS from Example ��� requires the
following set of storage elements�

f h ���� RPC i� h ���� ARF i� h ���� FBF i� h ���� AIMEM i� h ���� ADMEM i g

The transition corresponding to the Fetch rule has the following actions�

f hRPC� set�RPC��� i� h FBF � enq�AIMEM �RPC �� i g

The transition corresponding to the Add Execute rule has the following actions�

f hARF � a�set�ARF �r���ARF ��r��� i� h FBF � deq� � i g

����� Local Rules

A local rule may be applicable to many di�erent parts of the top�level term� In these
cases� a local rule maps to multiple ATS transitions� It is as if a local rule is replaced
by multiple lifted instances of the rule� one for each possible application site� The ef�
fect of applying a particular lifted instance to the whole term is the same as applying
the original local rule to the corresponding local site� For example� the Mod Done
rule from Example ��� can be applied to both the �rst and second subterms of a GCD
term� The two lifted instances of the Mod Done rule are

Gcd�Mod�a�b��x� if a�b � Gcd�Val�a��x�

and

Gcd�x�Mod�a�b�� if a�b � Gcd�x�Val�a��

��� Summary

This chapter presents the TRSpec operation�centric hardware description language�
The TRSpec language is an adaptation of the TRS notation to enable concise and
precise descriptions of hardware behavior� The TRSpec language includes both
extensions and restrictions on the standard TRS formalism to increase its usefulness

��



in hardware descriptions� The concrete syntax of TRSpec is given in Appendix A�
This chapter also shows how to translate a TRSpec description to an equivalent
ATS�
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Chapter �

Examples of TRSpec Descriptions

and Synthesis

The procedures for synthesizing operation�centric descriptions� described in Chap�
ter �� has been implemented in the Term Rewriting Architectural Compiler �TRAC��
TRAC accepts TRSpec descriptions and outputs synthesizable structural descrip�
tions in the Verilog Hardware Description Language �TM���� This chapter presents
the results from applying TRAC to TRSpec examples� To produce the �nal imple�
mentations� the TRAC�generated Verilog descriptions are further compiled by com�
mercial hardware compilers to target a number of implementation technologies� The
quality of TRAC�generated implementations is evaluated against reference implemen�
tations synthesized from hand�coded Verilog structural descriptions�

��� Euclid�s Algorithm

TRSpec and TRAC combine to form a high�level hardware development framework�
Staying within the TRS formalism� even someone without a digital design background
can capture an algorithm and produce a hardware implementation�

����� Design Capture

The TRSpec language o�ers a level of abstraction and conciseness that is comparable
to high�level programming languages� Example ��� gives a description of Euclid�s Al�
gorithm as a TRS� The description is reiterated in Figure ��� using concrete TRSpec
syntax� This TRSpec description compares favorably against a software implemen�
tation of the same algorithm in Scheme �shown in Figure ����� In both TRSpec and
Scheme� a designer�programmer can rely on the high�level language abstractions to
express the algorithm in a direct and intuitive way� Notice that both the TRSpec
and the Scheme descriptions are easy to understand even without comments�

In comparison� a hand�coded Verilog register�transfer level �RTL� description of
Euclid�s Algorithm �excerpt shown in Figure ���� cannot be created or understood by
someone who is not familiar with synchronous logic design� Besides the information
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Type GCD � Gcd�VAL� VAL�
Type VAL � Mod�NUM� NUM� �� Val�NUM�
Type NUM � Bit����

Rule �Flip � Mod�

Gcd�Val�a	
 Val�b		 if b��� �� Gcd�Val�b	
 Mod�a
b		

Rule �Mod Iterate�

Mod�a
b	 if a�b �� Mod�a�b
b	

Rule �Mod Done�

Mod�a
b	 if a�b �� Val�a	

Figure ���� TRSpec description of Euclid�s Algorithm�

inherent to the algorithm� an RTL designer must also inject information about syn�
chronous hardware implementation� such as exactly how the algorithm is scheduled
over multiple clock cycles�

����� Debugging

As discussed in Section ���� the correctness of a TRSpec description can be es�
tablished by verifying the correctness of each rewrite rule independently� Each rule
only has to individually maintain the invariant that given any valid term� if enabled�
the rule must produce another valid term� TRAC guarantees that the synthesized
implementation behaves according to some valid sequence of atomic rewrites� thus
producing a corresponding sequence of valid states� In practice� TRAC also helps
designers uncover many mistakes by type checking the TRSpec sources�

Once the correctness of each individual rule is veri�ed� the remaining mistakes
are likely to be either due to unintended nondeterminism or missing rules� Executing
a TRS with unintended nondeterminism can result in a livelock where the rewrite
sequence repeats without making progress� On the other hand� the rewrite sequence
of a TRS with an incomplete set of rules can terminate prematurely� The TRAC
compiler can assist in debugging these two classes of errors by generating a simulatable
Verilog description� The simulatable description has the same state structure and
cycle�by�cycle behavior as the synthesizable description� However� the simulatable
description can be instrumented to print an on�screen warning� or halt the simulation�
whenever multiple rules are enabled in the same clock cycle� A designer can then verify
if the nondeterminism exists by design� Likewise� the simulatable Verilog description
can also issue a warning when none of the rules are enabled in a clock cycle� The
designer can examine the state of a stopped simulation and determine if new rules
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�define �gcd a b	

�if �� b �	

a

�gcd b �iter�remainder a b				

�define �iter�remainder a b	

�if �� a b	

a

�iter�remainder �� a b	 b			

Figure ���� Scheme implementation of Euclid�s Algorithm�

are needed to complete the description�

����� Synthesis Results

The algorithmic description in Figure ��� needs to be combined with the TRSpec
description of a top�level I�O wrapper �similar to the example in Section ���� to form
a usable hardware module� TRAC can compile the combined TRSpec description
into a synthesizable Verilog RTL description in less than � seconds on a workstation
with a ��� MHz Pentium III processor� The TRAC�generated Verilog description can
then be compiled for implementation on a Xilinx XC����XL��� FPGA �Xila� using
the Xilinx Foundation ���i tools �Xilb�� For this example� the compilation time in the
Xilinx tools is about �� minutes�

The table in Figure ��� reports the circuit characteristics of the synthesized FPGA
implementation in terms of the number of �ip��ops� the overall FPGA resource uti�
lization� and the maximum clock frequency� The row labeled 	TRSpec
 in Fig�
ure ��� characterizes the implementation synthesized from the TRSpec description�
For comparison� an implementation is also synthesized from the hand�coded Verilog
RTL description �Figure ����� its circuit characteristics are reported in the row la�
beled 	Hand�coded RTL
� To account for the algorithmic di�erences between the two
designs� the last column of the table reports the number of clock cycles needed to
compute the GCD of ����������� and �������������

The results indicate that the implementation synthesized from the TRSpec de�
scription is much worse than the version synthesized from the hand�coded Verilog RTL
description� In comparison to the hand�coded RTL design� the TRAC�synthesized de�
sign requires �� additional bits of storage� has a longer critical path� and needs an
extra cycle for every remainder computed� This di�erence in circuit quality and

���������
����������� and ���������
������������ ������ ����� and ����� are prime
numbers�
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module GCD �

Gcd
 Done
 Start
 �� Outputs

Clk
 Reset
 Mode
 A
 B �� Inputs

	�

� � � � � � � �

reg ������ x�

reg ������ y�

� � � � � � � �

always � �posedge Clk or negedge Reset	

begin

if ��Reset	 begin

x �� ��

y �� ��

end else if �newStart	 begin

x �� A�

y �� B�

end else if �x � y	 begin

x �� x � y�

y �� y�

end else begin

x �� y�

y �� x�

end

end

� � � � � � � �

endmodule

�Courtesy of D� L� Rosenband��

Figure ���� Excerpt from the hand�coded Verilog RTL description of Euclid�s Algo�
rithm�
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FF Util� Freq� Elapse
Version �bit� ��� �MHz� �cyc�

TRSpec ��� �� ���� ���

Hand�coded RTL �� �� ���� ��

TRSpec �Optimized� �� �� ���� ��

Figure ���� Summary of GCD synthesis results�

performance is a consequence of the trade�o� between performance and ease of de�
velopment in a high�level design framework� In creating a hand�coded RTL descrip�
tion� a human designer needs to do extra work to inject some minimal amount of
implementation�related information� but� at the same time� the RTL designer can
also inject 	creative
 optimizations to achieve a smaller and simpler implementation�
TRAC does not have the same ingenuity� after all� TRAC can only synthesize what
has been described and cannot invent new mechanisms� For simple designs� a human
designer can almost always create a better circuit directly in a lower�level abstrac�
tion than relying on automatic synthesis from a high�level abstraction� However� as
the design complexity increases� the bene�t of low�level hand optimizations quickly
diminishes while the required e�ort increases dramatically� The advantage of high�
level design and synthesis becomes more prominent in larger designs where managing
complexity and concurrency becomes the dominant problem� This trend is already
evident in the development of a simple processor in the next section�

Although TRAC cannot match the ingenuity of a human designer� the TRSpec
language does not prevent a performance�conscious designer from adding source�
level optimizations to a description� With an understanding of how TRAC maps
a TRSpec description to its RTL implementation� a designer can in�uence the
synthesized outcome by making changes to the source�level description� Figure ���
gives another TRSpec description of Euclid�s Algorithm that has been formulated to
match the hand�coded RTL design� �The rules and type de�nitions in Figure ��� are
�rst shown in Section ��� and Example ����� The implementation of the optimized
TRSpec description shows a large improvement over the more literal algorithmic�
style description� The implementation synthesized from the optimized TRSpec de�
scription is characterized in the row labeled 	TRSpec �Optimized�
 in Figure ����
The source�level optimizations result in an implementation that is within ��� of the
hand�coded RTL design in terms of overall circuit size and ��� in terms of circuit
speed�

This design example serves to demonstrate the TRSpec design �ow for imple�
menting an algorithm in hardware and also to compare the TRAC�synthesized im�
plementations against traditional hand implementations� One caveat of this example
is that a software implementation of Euclid�s Algorithm on the latest microprocessor
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Type GCD � Gcd�NUM
 NUM	

Type NUM � Bit����

Rule �Mod�

Gcd�a
b	 if �a�b	 �� �b���	 �� Gcd�a�b
b	

Rule �Flip�

Gcd�a
b	 if �a�b	 �� Gcd�b
a	

Figure ���� Another TRSpec description of Euclid�s Algorithm�

would� in fact� run faster than any FPGA implementation� provided the software im�
plementation can directly compute the mod function on the processor�s �oating�point
unit� For algorithm synthesis� the TRSpec framework is better suited for problems
with a high degree of �ne�grain concurrency and bit�level operations�

��� A Simple Processor

The rules and type de�nitions from Section ��� and Example ��� describe a simple
Instruction Set Architecture �ISA�� As an architectural description� it is convenient
to model the instruction memory and the data memory as abstract arrays internal to
the system� As is� the description can be synthesized to a processor with an internal
instruction ROM and an internal data RAM� However� in a realistic design� the
processor module should access external memory modules through input and output
ports�

����� Adaptation for Synthesis

A new processor description in concrete TRSpec syntax is given in Figures ��� and ��
�� The rules and type de�nitions are derived directly from the architectural�level ISA
description of Section ��� and Example ���� The new description synthesizes to a
processor with instruction and data memory interfaces shown in Figure ����

Instruction Memory Interface�

In the new de�nition of PROC� internal memory arrays have been replaced by I�O
subterms� �The semantics of I�O types is described in Section ����� PC O is an output
type derived from PC� The PC O subterm in a PROC term is the program counter� Its
value appears on a corresponding output port of the synthesized processor� INSTPORT
is an input type derived from INST� The value of the INSTPORT subterm in a PROC

term is taken from a corresponding input port of the synthesized processor� The

��



Type PROC � Proc�PC O
 RF
 INSTPORT
 RPORT
 WPORT	

OType PC O � PC

Type PC � Bit����

Type RF � Array �RNAME� VAL

Type RNAME � Reg�� 	 �� Reg�� 	 �� Reg�� 	 �� Reg�� 	

Type VAL � Bit����

IType INSTPORT � INST

Type INST � Loadi�RNAME
VAL	

�� Loadpc�RNAME	

�� Add�RNAME
RNAME
RNAME	

�� Sub�RNAME
RNAME
RNAME	

�� Bz�RNAME
RNAME	

�� Load�RNAME
RNAME	

�� Store�RNAME
RNAME	

Type RPORT � Rport�ADDR O
 VAL I
 BUSY	

OType ADDR O � ADDR

Type ADDR � Bit����

IType VAL I � VAL

Type BUSY � Busy� 	 �� NotBusy� 	

Type WPORT � Wport�ADDR O
 VAL O
 ENABLE O	

OType VAL O � VAL

OType ENABLE O � ENABLE

Type ENABLE � Enable� 	 �� Disable� 	

Figure ���� TRSpec type de�nitions for a processor with instruction and data mem�
ory interfaces�
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Rule �Loadi�

Proc�pc
rf
inst
rport
wport	 where Loadi�rd
const	�inst

�� Proc�pc��
rf�rd��const�
inst
rport
wport	

Rule �Loadpc�

Proc�pc
rf
inst
rport
wport	 where Loadpc�rd	�inst

�� Proc�pc��
rf�rd��pc�
inst
rport
wport	

Rule �Add�

Proc�pc
rf
inst
rport
wport	 where Add�rd
r�
r�	�inst

�� Proc�pc��
rf�rd���rf�r���rf�r��	�
inst
rport
wport	

Rule �Sub�

Proc�pc
rf
inst
rport
wport	 where Sub�rd
r�
r�	�inst

�� Proc�pc��
rf�rd���rf�r���rf�r��	�
inst
rport
wport	

Rule �Bz�Taken�

Proc�pc
rf
inst
rport
wport	 if �rf�rc����	

where Bz�rc
ra	�inst

�� Proc�rf�ra�
rf
inst
rport
wport	

Rule �Bz�Not�Taken�

Proc�pc
rf
inst
rport
wport	 if �rf�rc����	

where Bz�rc
ra	�inst

�� Proc�pc��
rf
inst
rport
wport	

Rule �Load Start�

Proc�pc
rf
inst
Rport��
�
NotBusy� 		
wport	

where Load�rd
ra	�inst

�� Proc�pc
rf
inst
Rport�rf�ra�
�
Busy� 		
wport	

Rule �Load Finish�

Proc�pc
rf
inst
Rport��
val
Busy� 		
wport	

where Load�rd
ra	�inst

�� Proc�pc��
rf�rd��val�
inst
Rport��
val
NotBusy� 		
wport	

Rule �Store Enable�

Proc�pc
rf
inst
rport
wport	 where Store�ra
r	�inst

�� Proc�pc��
rf
inst
rport
Wport�rf�ra�
rf�r�
Enable� 			

Rule �Store Disable�

Proc�pc
rf
inst
rport
wport	 if Store��
�	��inst

�� Proc�pc
rf
inst
rport
Wport��
�
Disable� 			

Figure ���� TRSpec rewrite rules for a processor with instruction and data memory
interfaces�

��



W_ENABLE

W_ADDR

W_DATA

R_ADDR

R_DATA

PC

INSTPORT

16

16

16

16

16

PROCDMEM
WE

WA

RA

RD

RA

RD

WD

IMEM

25

Figure ���� A processor�s memory interfaces and their connections�

PC O output port and INSTPORT input port of the synthesized processor should be
connected to the external instruction memory module as shown in Figure ���� This
interface assumes an instruction memory module with combinational lookup�

The new rewrite rule for the execution of the Add instruction is

Rule �Add�

Proc�pc
 rf
 inst
 rport
 wport	 where Add�rd
r�
r�	�inst

�� Proc�pc��
 rf�rd���rf�r���rf�r��	�
 inst
 rport
 wport	

The external instruction memory is indexed by the current value of the PC O subterm�
and the rule looks to the INSTPORT subterm for the instruction returned by the
external instruction memory� Besides this di�erence in instruction lookup� the rule is
otherwise identical to the original Add rule from Section ����

Data Memory Interfaces�

In the new de�nition of PROC� the internal data memory array has also been replaced
by read and write interfaces to an external memory module� The data read�port term�
RPORT� is a product term consisting of an output ADDR subterm� an input VAL sub�
term� and a BUSY status subterm� Their connections to the external memory module
are shown in Figure ���� To execute a Load instruction� the following two rules are
needed to manipulate the memory read interface in two steps�

Rule �Load Start�

Proc�pc
 rf
 inst
 Rport��
�
NotBusy� 		
 wport	

where Load�rd
ra	�inst

�� Proc�pc
 rf
 inst
 Rport�rf�ra�
�
Busy� 		
 wport	

Rule �Load Finish�

Proc�pc
 rf
 inst
 Rport��
val
Busy� 		
 wport	

where Load�rd
ra	�inst

�� Proc�pc��
 rf�rd��val�
 inst
 Rport��
val
NotBusy� 		
 wport	
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FF Util� Freq�
Version �bit� ��� �MHz�

TRSpec ��� �� � ����

Hand�coded RTL ��� �� � ����

Figure ���� Summary of the processor synthesis results�

When the current instruction is a Load instruction� the Load Start rule sets the ADDR
subterm to the load address and sets the BUSY status subterm to Busy� 	� In the
second step� the Load Finish rule completes the Load instruction by updating the
register �le with the returned load value and by resetting the BUSY status term to
NotBusy� 	�

The data write�port term� WPORT� is a product term consisting of an output ADDR
subterm� an output VAL subterm� and an output ENABLE status term� The following
two rules are needed to control this synchronous write interface�

Rule �Store Enable�

Proc�pc
 rf
 inst
 rport
 wport	 where Store�ra
r	�inst

�� Proc�pc��
 rf
 inst
 rport
 Wport�rf�ra�
rf�r�
Enable� 			

Rule �Store Disable�

Proc�pc
 rf
 inst
 rport
 wport	 if Store��
�	��inst

�� Proc�pc
 rf
 inst
 rport
 Wport��
�
Disable� 			

When the current instruction is a Store instruction� the Store Enable rule sets the
current store address and store data in the write�port term� Furthermore� the Store
Enable rule enables the write interface by setting the ENABLE subterm to Enable� 	�
The Store Disable rule resets the ENABLE subterm to Disable� 	 after a store operation
is completed�

����� Synthesis Results

In this example� the TRSpec framework not only o�ers the ease of a high�level
design �ow but also produces a �nal implementation that is comparable to a hand�
crafted e�ort� A synthesizable Verilog RTL description of the processor can be gen�
erated by TRAC from the description in Figures ��� and ���� The TRAC�generated
RTL description is further compiled for implementation in a Xilinx XC����XL���
FPGA �Xila� using the Xilinx Foundation ���i tools �Xilb�� The row labeled 	TRSpec

in Figure ��� characterizes the FPGA implementation in terms of the number of
�ip��ops� the overall resource utilization� and the maximum clock frequency� As a
reference� a hand�coded Verilog RTL description of the same processor �included in
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Figure ���� and ����� is also synthesized in this study� The row labeled 	Hand�coded
RTL
 characterizes the implementation synthesized from the hand�coded Verilog de�
scription� The data indicate that the TRSpec description results in an FPGA im�
plementation that is similar in size and speed to the result of the hand�coded Verilog
description� This similarity should not be surprising because� after all� both de�
scriptions are describing the same processor ISA� albeit under very di�erent design
methodologies� In the manual Verilog design �ow� a human designer has interpreted
the ISA to create an RTL circuit description� but unlike in the simple GCD circuit of
the previous section� it is hard for the designer to depart too far from the speci�cation
in a design with even modest complexity� Thus� if TRAC can correctly and eciently
interpret the operation�centric ISA description� one should expect TRAC to generate
an RTL description that resembles the human designed circuit�

What is not apparent from the circuit characterizations is the di�erence in devel�
opment time and e�ort� The TRSpec and the hand�coded Verilog descriptions are
comparable in length� However� the TRSpec description can be translated in a literal
fashion from an ISA manual� Whereas� although the hand�coded Verilog description
is relatively simple� it has a much weaker correlation to the ISA speci�cation� The
hand�coded RTL description also includes circuit implementation information that
the RTL designer has to improvise� Whereas� in a TRSpec design �ow� the designer
can rely on TRAC to supply the implementation�related information� The TRSpec
framework permits a natural and intuitive decomposition of hardware behavior into
atomic operations with a sequential interpretation� It is TRAC�s responsibility to
identify operations that can be implemented as concurrent hardware and to insert
interlocks between operations that need to be sequentialized� In a traditional design
framework� a similar type of analysis and translation must be performed manually by
the designer� This not only creates more work for the designer but also creates more
opportunity for error�

��� MIPS R���� Processor

Appendix B gives the TRSpec description of a �ve�stage pipelined integer processor
core based on the MIPS R���� ISA �as described in �Kan����� The description cor�
responds to the elastic pipeline illustrated in Figure ����� The stages of the elastic
pipeline are separated by abstract FIFOs� which have a �nite but unspeci�ed size�
During synthesis� TRAC converts such an asynchronous elastic pipeline description
into a synchronous pipeline by instantiating a special FIFO implementation that
consists of a single stage of register and �ow�control logic� Further information on
creating a pipelined description is discussed in Section ���� The conversion from an
asynchronous pipeline description to a synchronous implementation is described in
Section ������
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module PROC �

WriteData� WriteAddr� WriteEnable�

ReadAddr� ReadData�

InstAddr� Inst�

CLK� �RST

��

output����	
 WriteData�

output����	
 WriteAddr�

output WriteEnable�

output����	
 ReadAddr�

input����	
 ReadData�

output����	
 InstAddr�

input����	
 Inst�

input CLK�

input �RST�

reg����	
 pc�

reg����	
 regFile�	��
�

wire���	
 op�

wire���	
 rd�

wire���	
 r��

wire���	
 r��

wire����	
 rdv�

wire����	
 r�v�

wire����	
 r�v�

wire����	
 immediate�

�Courtesy of D� L� Rosenband��

Figure ����� Hand�coded Verilog description of a simple processor� �Part ��
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assign op�Inst�����	
�

assign rd�Inst�����
�

assign r��Inst����
�

assign r��Inst���	
�

assign immediate������Inst���
���Inst�����
��

assign rdv�regFile�rd
�

assign r�v�regFile�r�
�

assign r�v�regFile�r�
�

assign WriteData�r�v� �� store data out�

assign WriteAddr�rdv� �� store address out�

assign WriteEnable��op�����

assign ReadAddr�r�v�

assign InstAddr�pc�

always��posedge CLK� begin

case �op�

	� regFile�rd
��immediate�

�� regFile�rd
��pc�

�� regFile�rd
��regFile�r�
�regFile�r�
�

�� regFile�rd
��regFile�r�
�regFile�r�
�

�� regFile�rd
��ReadData�

endcase

end

always��posedge CLK� begin

if ��RST� begin

if ��op���� �� �rdv��	�� begin

pc��r�v�

end else begin

pc��pc���

end

end else begin

pc��	�

end

end

endmodule

�Courtesy of D� L� Rosenband��

Figure ����� Hand�coded Verilog description of a simple processor� �Part ��
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Figure ����� Block diagram of the �ve�stage pipelined MIPS processor core�
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����� MIPS Integer Subset

The TRSpec description in Appendix B implements all MIPS R���� instructions
except�

�� Integer multiple and divide instructions �MFHI� MTHI� MFLO� MTLO� MULT�
MULTU� DIV� DIVU�

�� Half�word� byte and non�aligned load and store instructions �LB� LH� LWL�
LBU� LHU� LWR� SB� SH� SWL� SWR�

�� Privileged instructions �SYSCALL� BREAK�

�� Coprocessor related instructions

The integer core description also does not support exception handling� privileged
mode or memory management� The semantics of the memory load and branch�jump
instructions has been altered to eliminate delay slots� In other words� the result of a
load instruction is immediately available to the next instruction� and the e�ect of a
branch�jump instruction takes place immediately�

����� Microarchitecture

The description corresponds to an implementation of the MIPS ISA in a �ve�stage
pipelined Harvard microarchitecture� The description speci�es separate external in�
struction and data memory interfaces that are similar to the scheme in Section ����
The rewrite rules imply a register �le usage that requires two combinational read
ports and one synchronous write port�

Fetch Stage� A single rule describes the sequential instruction fetch using the in�
struction fetch interface�

Decode Stage� Separate rules specify the decoding of the di�erent instruction sub�
classes� When a read�after�write hazard is detected� the decode�stage rules attempt
to bypass completed data from the execute� memory and write�back stages� If read�
after�write hazards cannot be resolved by bypassing� the decode�stage rules stop �ring�
Branch or jump instructions are also carried out by decode�stage rules� After a control
�ow instruction� one bubble is inserted into the pipeline before the execution can
restart at the correct jump target�

Execute Stage� Execute�stage rules describe the execution of various ALU instruc�
tions� Separate execute�stage rules also describe memory address calculations for load
and store instructions� The type de�nition of the MIPS processor term includes a
user�de�ned abstract type SHIFTER� The SHIFTER abstract type encapsulates a barrel
shifter implemented in Verilog� The execute�stage rules access the SHIFTER term�s
interface to compute arithmetic and logical shifts of integer operands�
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CBA tc�a LSI ��K
area speed area speed

version �cell� �MHz� �cell� �MHz�

TRSpec ���� ���� ����� ����

Hand�coded RTL ���� ���� ����� ����

Figure ����� Summary of MIPS synthesis results�

Memory Stage� Load and store instructions are executed� Other instructions
simply pass through this stage�

Write�Back Stage� All register updates are performed in the write�back stage�

����� Synthesis Results

The TRSpec description of the MIPS core can be compiled by TRAC into a syn�
thesizable Verilog RTL description� The synthesizable Verilog description can then
be compiled by the Synopsys Design Compiler �Synb� to target both the Synop�
sys CBA �Syna� and LSI Logic ��K �LSI� gate�array libraries� For comparison� a
hand�coded Verilog RTL description of the same MIPS microarchitecture is also com�
piled for the same technology libraries� Figure ���� summarizes the pre�layout area
and speed estimates reported by the Synopsys Design Compiler� The row labeled
	TRSpec
 characterizes the implementation synthesizes from the TRSpec descrip�
tion� The row labeled 	Hand�coded RTL
 characterizes the implementation synthe�
sized from the hand�coded Verilog description�

As is the case for the simple processor in the previous section� the results from
synthesizing the TRSpec description and the hand�coded Verilog description are in
good agreement� especially in terms of cycle time�� The implementation synthesized
from the hand�coded Verilog RTL description is �� to �� percent smaller than the
implementation synthesized from the TRSpec description� The TRSpec and the
hand�coded Verilog descriptions are similar in length ���� vs� ��� lines of source
code�� but the TRSpec description is developed in less than one day �eight hours��
whereas the hand�coded Verilog description requires nearly �ve days to complete�

�Both Synopsys synthesis runs are con�gured for high�e�ort on minimizing cycle time�
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��� Summary

This chapter presents the results from applying TRAC to synthesize TRSpec descrip�
tions� The designs are targeted for implementation technologies that include Xilinx
FPGAs and ASIC gate�array libraries� The quality of TRAC�generated implemen�
tations is evaluated against reference implementations synthesized from hand�coded
Verilog RTL descriptions�

As part of this study� several examples have also been targeted for the Wild�
card Recon�gurable Computing Engine from Annapolis Micro Systems �Ann�� The
Wildcard hardware contains a single Xilinx Vertex XCV����� FPGA packaged in a
PCMCIA form�factor� �Higher capacity devices are available on PCI cards�� The
Wildcard hardware can be plugged into standard expansion slots of personal comput�
ers� and FPGA con�gurations can be created and uploaded onto the Wildcard FPGA
from the main processor� The FPGA con�guration can include memory�mapped
I�O and DMA functionalities so a software application on the main processor can
interface with the hardware application on the FPGA interactively� Such a �exible
recon�gurable hardware platform perfectly complements the ability to rapidly create
hardware designs in the TRSpec framework�

In one scenario� algorithmic descriptions in TRSpec� like Euclid�s Algorithm
from Section ���� can be synthesized for the Wildcard FPGA� This e�ectively creates
a hardware�software co�processing environment where an application running on the
processor can launch hardware�assisted computations on the FPGA hardware� In this
usage� TRSpec provides the means for an application developer to retarget suitable
parts of an application for hardware acceleration� expending only comparable time
and e�ort as software development�

In another usage� an architect can create simulatable and synthesizable hardware
prototypes from architectural descriptions in TRSpec� For example� the TRSpec
description of the MIPS processor from Section ��� can be synthesized for execution
on the Wildcard FPGA� In this context� the Wildcard FPGA becomes a hardware
emulator where actual MIPS binaries can be executed� New mechanisms and ideas can
be quickly added to the FPGA�emulated prototype by making high�level modi�cations
to the architectural�level TRSpec description�
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Chapter �

Microprocessor Design Exploration

This chapter demonstrates the application of operation�centric hardware description
and synthesis in microprocessor design� A high�level TRSpec description of an in�
struction set architecture �ISA� is amenable to transformations that produce descrip�
tions of pipelined and superscalar processors� This ability to rapidly create derivative
designs enables a feedback�driven iterative approach to custom microprocessor devel�
opment�

��� Design Flow Overview

In this design �ow� an architect starts by formulating a high�level ISA speci�cation
as a TRS� The goal at this stage is to de�ne an ISA precisely without injecting imple�
mentation details� For example� the rewrite rules from Section ��� and the type def�
initions from Example ���� together� constitute an ISA speci�cation in the TRSpec
language� Interpreting the speci�cation as is� TRAC synthesizes the register�transfer
level �RTL� implementation of a single�issue� non�pipelined processor�

Based on this ISA description� the architect can further derive TRSpec descrip�
tions of pipelined processors by introducing pipeline bu�ers �as described in Sec�
tions ��� and ����� The TRSpec framework simpli�es the insertion of pipeline stages
by allowing the architect to create elastic pipelines where pipeline stages are sepa�
rated by FIFOs� The operations in one pipeline stage can be described independently
of the operations in the other stages� During synthesis� TRAC maps an asynchronous
elastic pipeline description onto a synchronous pipeline where the stages are separated
by simple pipeline registers�

A pipelined processor description in TRSpec can be further transformed into a
superscalar description by adding new rules derived from composing existing rules
from the same pipeline stage� A composite rule� when applied� has the same e�ect as
the sequential in�order execution of its constituent rules� The predicate of a composite
rule is only enabled in a state where the full sequence of rules can be applied� Thus�
the correctness of the expanded description is guaranteed because adding composite
rules cannot introduce any new behavior�

Both pipelining and superscalar design derivations are performed as source�to�

��



Type PROC 
 Proc�PC� RF� IMEM� DMEM�
Type PC 
 Bit����
Type RF 
 Array �RNAME� VAL
Type RNAME 
 Reg�� � jj Reg�� � jj Reg�� � jj Reg�� �
Type VAL 
 Bit����
Type IMEM 
 Array �PC� INST
Type INST 
 Loadi�RNAME�VAL�

jj Loadpc�RNAME�
jj Add�RNAME�RNAME�RNAME�
jj Sub�RNAME�RNAME�RNAME�
jj Bz�RNAME�RNAME�
jj Load�RNAME�RNAME�
jj Store�RNAME�RNAME�

Type DMEM 
 Array �ADDR� VAL
Type ADDR 
 Bit����

Figure ���� Type de�nitions for a simple non�pipelined processor�

source transformations in the TRSpec language� The derived designs can be com�
piled into Verilog RTL descriptions using TRAC� For design feedback� the generated
Verilog descriptions can be simulated and evaluated using commercial tools like the
Cadence Arma NC Verilog Simulator �Cad� and the Synopsys RTL Analyzer �Sync��

��� Step �	 ISA Specication

Figures ��� and ��� repeat the rules and type de�nitions of a simple ISA� already
presented in Section ��� and Example ���� The type de�nitions in Figure ��� have
been altered to increase the processor data width from �� to �� bits� For conciseness�
the rules in Figure ��� are given in an abbreviated format where all rules share
a common left�hand�side pattern� given once at the top� When synthesized� the
TRSpec description roughly corresponds to the datapath shown in Figure ����

��� Step �	 Pipelining Transformation

The TRSpec processor description from the previous section can be pipelined by
splitting each rule into multiple sub�rules where each sub�rule describes the sub�
operation in a pipeline stage� As in Section ���� the processing of an instruction can be
broken down into separate fetch and execute sub�operations in a two�stage pipelined
design� The pipelined design needs bu�ers to hold partially executed instructions�
In a TRSpec description� the pipeline bu�ers are modeled as FIFOs of a �nite
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Proc�pc� rf� imem� dmem�

Loadi� where Loadi�rd�const� 
 imem�pc�
� Proc�pc��� rf�rd	
const�� imem� dmem�

Loadpc� where Loadpc�rd� 
 imem�pc�
� Proc�pc��� rf�rd	
pc�� imem� dmem�

Add� where Add�rd�r��r�� 
 imem�pc�
� Proc�pc��� rf�rd	
rf�r���rf�r���� imem� dmem�

Sub� where Sub�rd�r��r�� 
 imem�pc�
� Proc�pc��� rf�rd	
rf�r���rf�r���� imem� dmem�

Bz�Taken� if rf�rc�
� where Bz�rc�rt� 
 imem�pc�
� Proc�rf�rt�� rf� imem� dmem�

Bz�Not�Taken� if rf�rc���� where Bz�rc�rt� 
 imem�pc�
� Proc�pc��� rf� imem� dmem�

Load� where Load�rd�ra� 
 imem�pc�
� Proc�pc��� rf�rd	
dmem�rf�ra���� imem� dmem�

Store� where Store�ra�r� 
 imem�pc�
� Proc�pc��� rf� imem� dmem�rf�ra�	
rf�r���

Figure ���� Rules for a simple non�pipelined processor�

+1

ALU
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Program
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ROM File

Memory

�S� and S� are potential sites for pipeline bu�ers��

Figure ���� A simple processor datapath shown without its control paths�
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Type PROC� 
 Proc��PC� RF� BF� IMEM�DMEM�
Type BF 
 Fifo ITEMP
Type ITEMP 
 TLoadi�RNAME�VAL�

jj TAdd�RNAME�VAL�VAL�
jj TSub�RNAME�VAL�VAL�
jj TBz�VAL�PC�
jj TLoad�RNAME�ADDR�
jj TStore�ADDR�VAL�

Figure ���� Additional type de�nitions for the two�stage pipelined processor�

but unspeci�ed size� In the synthesis phase� TRAC replaces these FIFOs by simple
pipeline registers and �ow control logic� In the description phase� the FIFO�based
elastic pipeline abstraction allows the operations in di�erent stages to be described
independently without references to the operations in the other stages� A rule that
describes an operation in a particular pipeline stage typically dequeues from the up�
stream FIFO and enqueues into the down�stream FIFO�

To describe a two�stage Fetch�Execute pipeline� the type of the processor term is
rede�ned as PROC� in Figure ���� In contrast to PROC in Figure ���� a PROC��typed
term contains an additional BF�typed �eld� BF is a FIFO that holds decoded instruc�
tion templates whose operands have been fetched from the register �le� As discussed
in Section ���� the original Add rule from the ISA speci�cation may be replaced by
the following two rules� corresponding to the fetch and execute sub�operations� re�
spectively�

Add Fetch�
Proc��pc� rf� bf� imem� dmem�

if r���Target�bf� � r���Target�bf�
where Add�rd�r��r�� 
 imem�pc�

� Proc��pc��� rf� bfTAdd�rd�rf�r���rf�r���� imem� dmem�

Add Execute�
Proc��pc� rf� TAdd�rd�v��v��bf� imem� dmem�

� Proc��pc� rf�rd	
v��v��� bf� imem� dmem�

Splitting the e�ect of one rewrite rule into multiple rules destroys the atomicity of the
original rule and thus can cause new behaviors that may not conform to the original
speci�cation� Therefore� in addition to determining the appropriate division of work
among the pipeline stages� the architect must also resolve any newly created hazards�
For example� the fetch rule�s predicate expression has been extended to check if the
source register names� r� and r�� are in Target�bf�� �Target�bf� is the shorthand for the
set of target register names in bf�� This extra predicate condition stalls instruction
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fetching when a RAW �read�after�write� hazard exists�

The Bz�Taken rule and the Bz�Not�Taken rule in Figure ��� can also be split into
their fetch and execute sub�operations� Both Bz rules share the following instruction
fetch rule�

Bz Fetch�
Proc��pc� rf� bf� imem� dmem�

if rc��Target�bf� � rt��Target�bf�
where Bz�rc�rt� 
 imem�pc�

� Proc��pc��� rf� bfTBz�rf�rc��rf�rt��� imem� dmem�

The two execute rules for the Bz instruction are

Bz�Taken Execute�
Proc��pc� rf� TBz�vc�vt�bf� imem� dmem�

if vc 
 �
� Proc��vt� rf� �� imem� dmem�

and

Bz�Not�Taken Execute�
Proc��pc� rf� TBz�vc�vt�bf� imem� dmem�

if vc���
� Proc��pc� rf� bf� imem� dmem�

All of the rules in Figure ��� can be partitioned into separate fetch and execute
sub�rules to completely convey the operations of a two�stage pipelined processor�
The current partitioning places the pipeline bu�er �bf� at the position labeled S� in
Figure ���� Pipelines with di�erent number of stages and bu�er placements can also
be derived similarly�

A generic instruction fetch rule is

Proc��pc� rf� bf� imem� dmem�
if �Source�inst� � � Target�bf� �

where inst 
 imem�pc�
� Proc��pc��� rf� bfDecode�inst�� imem� dmem�

Source�inst� is the shorthand to extract the source register names from instruction
inst� Decode�inst� is the shorthand that maps inst to its corresponding instruction
template where the register operands have been fetched� For example� the expression
�Decode�Add�rd�r��r���� is the same as �TAdd�rd�rf�r���rf�r����� The execute�stage sub�
rules for all instructions are given in Figure ����

��� Step �	 Superscalar Transformation

This section describes the transformation from a pipelined microarchitecture to a
pipelined superscalar microarchitecture� The transformation produces a microarchi�
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Proc��pc� rf� bf� imem� dmem� where itemprest 
 bf

Loadi� where TLoadi�rd�v� 
 itemp
� Proc��pc� rf�rd	
v�� rest� imem� dmem�

Add� where TAdd�rd�v��v�� 
 itemp
� Proc��pc� rf�rd	
v��v��� rest� imem� dmem�

Sub� where TSub�rd�v��v�� 
 itemp
� Proc��pc� rf�rd	
v��v��� rest� imem� dmem�

Bz�Taken� if vc
� where TBz�vc�vt� 
 itemp
� Proc��vt� rf� �� imem� dmem�

Bz�Not�Taken� if vc ��� where TBz�vc�vt� 
 itemp
� Proc��pc� rf� rest� imem� dmem�

Load� where TLoad�rd�va� 
 itemp
� Proc��pc� rf�rd	
dmem�va��� rest� imem� dmem�

Store� where TStore�va�v� 
 itemp
� Proc��pc� rf� rest� imem� dmem�va	
v��

Figure ���� Rules for the execute stage of the two�stage pipelined processor�

tecture similar to the DEC Alpha ����� �DWA���� in that the microarchitecture
processes multiple instructions in each pipeline stage when possible� but does not
allow out�of�order execution� To derive a two�way superscalar processor description
from a pipelined processor description� one needs to compose two rules from the same
pipeline stage into a new composite rule that combines the e�ects of both rules� Given
that TRAC generates RTL descriptions where the entire e�ect of a rule is executed in
one clock cycle� the composite rule yields an RTL design that is capable of processing
two instructions per clock cycle�

	���� Derivation of Composite Rules

A TRS rule r on a set of terms T can be described by a function f whose domain D
and image I are subsets of T � Given a rule�

s if p � s�

the function f may be expressed as

f�s� � if ��s� then ��s� else s

where �� � represents the �ring condition derived from the left�hand�side pattern s
and the predicate expression p� and �� � represents the function that computes the
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new term� Given two rules r� and r�� the composite rule r��� can be described by the
function f��� where

f����s� � if ���s� then
if ������s�� then

������s��
else

s
else

s
� if ���s� � ������s�� then

������s��
else

s

Let D� and I� be the domain and image of f� and D� and I� be the domain and
image of f�� the domain D��� of f��� is the subset of D� that produces the restricted
image I� �D� using f�� By this de�nition of composition� adding r��� to a TRS that
already contains r� and r� does not introduce any new behaviors since all transitions
admitted by r��� can be simulated by consecutive applications of r� and r�� However�
r� and r� cannot be replaced by r��� because some behaviors could be eliminated�
Removing r��� may create a deadlock or a livelock�

Rule composition can also be described as a purely syntactic operation� Given
the following two rewrite rules�

s� if p� � s�� �r��
s� if p� � s�� �r��

one �rst derives a restricted instance of r� that is directly applicable to s�� such that

s�� if p�� � s��� �restricted instance of r��

This instance of r� can then be composed with r� as follows�

s� if �p� � p��� � s��� �r����
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	���� A Composite Rule Example

Consider the Add Fetch and Bz Fetch rules of the two�stage pipelined processor from
Section ����

Add Fetch�
Proc��pc� rf� bf� imem� dmem�

if r���Target�bf� � r���Target�bf�
where Add�rd�r��r�� 
 imem�pc�

� Proc��pc��� rf� bfTAdd�rd�rf�r���rf�r���� imem� dmem�

Bz Fetch�
Proc��pc� rf� bf� imem� dmem�

if rc��Target�bf� � rt��Target�bf�
where Bz�rc�rt� 
 imem�pc�

� Proc��pc��� rf� bfTBz�rf�rc��rf�rt��� imem� dmem�

One can rewrite the Bz Fetch rule as if it is being applied to the right�hand�side
expression of the Add Fetch rule� The restricted Bz Fetch rule appears as

Proc��pc��� rf� bfTAdd�rd�rf�r���rf�r���� imem� dmem�
if rc��Target�bfTAdd�rd�rf�r���rf�r����
� rt��Target�bfTAdd�rd�rf�r���rf�r����

where Bz�rc�rt� 
 imem�pc���
� Proc���pc������ rf�

�bfTAdd�rd�rf�r���rf�r����TBz�rf�rc��rf�rt���
imem� dmem�

This rule is more speci�c than the original Bz Fetch rule because bf is required to
contain an Add instruction template as the youngest entry� A more speci�c instance
of a TRS rule is guaranteed to be correct because it �res under fewer conditions� The
Add Fetch and Bz Fetch rules can be combined into a composite rule�

Proc��pc� rf� bf� imem� dmem�
if r���Target�bf� � r���Target�bf�
� rc��Target�bfTAdd�rd�rf�r���rf�r����
� rt��Target�bfTAdd�rd�rf�r���rf�r����

where Add�rd�r��r�� 
 imem�pc�
Bz�rc�rt� 
 imem�pc���

� Proc���pc������ rf�
�bfTAdd�rd�rf�r���rf�r����TBz�rf�rc��rf�rt���
imem� dmem�
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The predicate expression in the rule above can be simpli�ed as shown in the rule
below by interpreting the e�ect of enqueuing to an abstract FIFO term�

Proc��pc� rf� bf� imem� dmem�
if r���Target�bf� � r���Target�bf�
� rt��Target�bf� � rc��Target�bf�
� rc��rd � rt��rd

where Add�rd�r��r�� 
 imem�pc�
Bz�rc�rt� 
 imem�pc���

� Proc���pc������ rf�
�bfTAdd�rd�rf�r���rf�r����TBz�rf�rc��rf�rt���
imem� dmem�

In an implementation synthesized according to the procedures outlined in Chapter ��
the scheduler should give higher priority to a composite rule over its constituent rules
when they are enabled in the same clock cycle�

	���� Derivation of a Two�Way Superscalar Processor

This section presents the derivation of the composite rules for a two�way superscalar
processor description� The derivations are based on the two�stage pipelined processor
from Section ���� For each of the two pipeline stages� di�erent combinations of two
rules from the same stage are composed� In general� given a pipeline stage with
N rules� a superscalar transformation leads to an O�N s� increase in the number of
rules where s is the degree of superscalarity� Since superscalar transformation implies
an increase in hardware resources like register �le ports� ALUs and memory ports�
one may not want to compose all possible combinations of rules� For example� one
may not want to compose a memory load rule with another memory load rule if the
memory interface can only accept one operation per cycle�

This derivation assumes that there are no restrictions on hardware resources ex�
cept that the data memory can only service one operation� a read or a write� in
each clock cycle� The derivation also assumes the instruction memory can return two
consecutive instruction words on any address alignment�

The generic instruction fetch rule from the end of Section ��� can be composed
with itself to produce a two�way superscalar fetch rule�

Proc��pc� rf� bf� imem� dmem�
if Source�inst�� �Target�bf�
� Source�inst��� ��Target�bf�Target�inst��

where inst 
 imem�pc�
inst� 
 imem�pc���

� Proc���pc������ rf�
bfDecode�inst�Decode�inst��� imem� dmem�

The superscalar execute rules are derived by composing all legal combinations of
the rules in Figure ���� A composite execute rule examines both the �rst and second
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Proc��pc� rf� bf� imem� dmem� where TAdd�rd�v��v��itemprest 
 bf

Loadi� where TLoadi�rd��v� 
 itemp
� Proc��pc� rf�rd	
�v��v���rd�	
v��� rest� imem� dmem�

Add� where TAdd�rd��v���v��� 
 itemp
� Proc��pc� rf�rd	
�v��v���rd�	
�v���v����� rest� imem� dmem�

Sub� where TSub�rd��v���v��� 
 itemp
� Proc��pc� rf�rd	
�v��v���rd�	
�v���v����� rest� imem� dmem�

Bz�Taken� if vc
� where TBz�vc�vt� 
 itemp
� Proc��vt� rf�rd	
v��v��� �� imem� dmem�

Bz�Not�Taken� if vc��� where TBz�vc�vt� 
 itemp
� Proc��pc� rf�rd	
v��v��� rest� imem� dmem�

Load� where TLoad�rd��va� 
 itemp
� Proc��pc� rf�rd	
�v��v���rd�	
dmem�va��� rest� imem� dmem�

Store� where TStore�va�v� 
 itemp
� Proc��pc� rf�rd	
v��v��� rest� imem� dmem�va	
v��

Figure ���� Combining the Add Execute rule with other execute rules�

instruction templates in the pipeline bu�er bf� If the �rst and second instruction
templates satisfy the rule�s predicate expression� the rule is applied to process both
instruction templates simultaneously�

The table in Figure ��� gives the composition of the Add Execute rule with other
execute rules� �Similar composite rules can be derived for the Loadi Execute or Sub
Execute rules�� If the �rst instruction template in bf is an Add instruction template
then the second instruction template� when present� can always be executed con�
currently� In the composite rules� the expression a�i	
v�i�	
v�� denotes a sequential
update of location i and i� of array a� If i is the same as i� then a�i	
v�i�	
v�� has the
same e�ect as a�i�	
v���

The Bz�Taken Execute rule cannot be composed with any other execute rule� If
the �rst position of bf contains the instruction template of a taken branch� bf will
subsequently be cleared by the Bz�Taken Execute rule� Since every execute�stage rule
requires the pipeline bu�er to be not empty� none of the execute�stage rules can be
applicable immediately after the Bz�Taken Execute rule has been applied�

Executing the Bz�Not�Taken Execute rule produces no side�e�ects other than re�
moving the current Bz instruction template from the head of bf� Hence� as shown in
Figure ���� composing a Bz�Not�Taken Execute rule with any other rule results in a
composite rule that is nearly identical to the second rule in the composition�

The tables in Figures ��� and ��� give the composition of the Load Execute and the
Store Execute rules with other execute rules� Since the data memory only responds
to one memory operation per clock cycle� one cannot compose the Load Execute rule
or the Store Execute rule with another memory access rule�
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Proc��pc� rf� bf� imem� dmem� where TBz�vc�vt�itemprest 
 bf

Loadi� if vc��� where TLoadi�rd�v� 
 itemp
� Proc��pc� rf�rd	
v�� rest� imem� dmem�

Add� if vc��� where TAdd�rd�v��v�� 
 itemp
� Proc��pc� rf�rd	
v��v��� rest� imem� dmem�

Sub� if vc��� where TSub�rd�v��v�� 
 itemp
� Proc��pc� rf�rd	
v��v��� rest� imem� dmem�

Bz�Taken� if vc��� � vc�
� where TBz�vc��vt�� 
 itemp
� Proc��vt�� rf� �� imem� dmem�

Bz�Not�Taken� if vc��� � vc���� where TBz�vc��vt�� 
 itemp
� Proc��pc� rf� rest� imem� dmem�

Load� if vc��� where TLoad�rd�va� 
 itemp
� Proc��pc� rf�rd	
dmem�va��� rest� imem� dmem�

Store� if vc��� where TStore�va�v� 
 itemp
� Proc��pc� rf� rest� imem� dmem�va	
v��

Figure ���� Combining the Bz�Not�Taken Execute rule with other execute rules�

Proc��pc� rf� bf� imem� dmem� where TLoad�rd�va�itemprest 
 bf

Loadi� where TLoadi�rd��v� 
 itemp
� Proc��pc� rf�rd	
dmem�va��rd�	
v�� rest� imem� dmem�

Add� where TAdd�rd��v��v�� 
 itemp
� Proc��pc� rf�rd	
dmem�va��rd�	
�v��v���� rest� imem� dmem�

Sub� where TSub�rd��v��v�� 
 itemp
� Proc��pc� rf�rd	
dmem�va��rd�	
�v��v���� rest� imem� dmem�

Bz�Taken� if vc
� where TBz�vc�vt� 
 itemp
� Proc��vt� �rf�rd	
dmem�va���� �� imem� dmem�

Bz�Not�Taken� if vc��� where TBz�vc�vt� 
 itemp
� Proc��pc� �rf�rd	
dmem�va���� rest� imem� dmem�

Figure ���� Combining the Load Execute rule with other execute rules�
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Proc��pc� rf� bf� imem� dmem� where TStore�va�v�itemprest 
 bf

Loadi� where TLoadi�rd�v�� 
 itemp
� Proc��pc� rf�rd	
v��� rest� imem� dmem�va	
v��

Add� where TAdd�rd�v��v�� 
 itemp
� Proc��pc� rf�rd	
v��v��� rest� imem� dmem�va	
v��

Sub� where TSub�rd�v��v�� 
 itemp
� Proc��pc� rf�rd	
v��v��� rest� imem� dmem�va	
v��

Bz�Taken� if vc
� where TBz�vc�vt� 
 itemp
� Proc��vt� rf� �� imem� dmem�va	
v��

Bz�Not�Taken� if vc��� where TBz�vc�vt� 
 itemp
� Proc��pc� rf� rest� imem� dmem�va	
v��

Figure ���� Combining the Store Execute rule with other execute rules�

��� Synthesis and Analysis

The TRSpec processor descriptions presented in this chapter can be compiled into
synthesizable Verilog RTL descriptions using TRAC� The TRAC�generated RTL de�
scriptions can be further compiled� by commercial hardware compilers� for a number
of target technologies ranging from ASICs to FPGAs� In addition� the RTL descrip�
tions can also be targeted for the Synopsys GTECH Library� a technology�independent
logic representation� The GTECH netlist of a design can then be processed by the
Synopsys RTL Analyzer �Sync� to provide quantitative feedback about the circuit�s
size and delay�

	���� TRSpec to RTL

Input and Output�

As in the example from Section ���� realistically� the architectural�level descriptions
in this chapter need to be modi�ed to access external memory modules through in�
put�output ports� For the single�issue pipelined and non�pipelined processor descrip�
tions� modi�cations to include instruction and data memory interfaces are similar to
the presentation in Section ���� On the other hand� for a two�way superscalar proces�
sor description� the modi�cation needs to provide an instruction fetch interface that
can return two instructions at a time� It is sucient to have a single fetch interface
that can return two consecutive instructions on any address alignment because the
two�way superscalar fetch rule only references consecutive locations� pc and pc���

Synchronous Pipeline Synthesis�

In pipelined processor descriptions� the operation of the processors cannot depend
on the exact depth of the pipeline FIFOs� This allows TRAC to instantiate one�
deep FIFOs �i�e�� a single register� as pipeline bu�ers� Flow control logic is added to
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Figure ����� Synchronous pipeline with local feedback �ow control�

ensure a FIFO is not over�owed or under�owed by enqueue and dequeue operations�
A straightforward attempt might lead to the circuit shown in Figure ����� In this
naive mapping� the one�deep FIFO is full if its register holds valid data� the FIFO is
empty if its register holds a bubble� With only local �ow control between neighboring
stages� the overall pipeline would contain a bubble in every other stage during steady�
state execution� For example� if pipeline bu�er K and K�� are occupied and bu�er
K�� is empty in some clock cycle� the operation in stage K�� would be enabled to
advance at the clock edge� but the operation in stage K is held back because bu�er
K�� appears full during the clock cycle� The operation in stage K is not enabled
until the next clock cycle when bu�er K�� has been emptied�

It is important that TRAC creates a �ow control logic that includes a combina�
tional multi�stage feedback path that propagates from the last pipeline stage to the
�rst pipeline stage� The cascaded feedback scheme shown in Figure ���� allows stage
K to advance both when pipeline bu�er K�� is actually empty and when bu�er
K�� is going to be dequeued at the coming clock edge� This scheme allows the entire
pipeline to advance synchronously on each clock cycle� A stall in an intermediate
pipeline stage causes all up�stream stages to stall at once� A caveat of this scheme
is that this multi�stage feedback path could become the critical path� especially in
a deeply pipelined design� In which case� one may want to break the feedback path
at selected stages by using two�register�deep FIFOs with local �ow control� A cyclic
feedback path can also be broken by inserting two�register�deep FIFOs with local �ow
control�

	���� GTECH RTL Analysis

Five TRSpec descriptions are included in this analysis� The �rst three are the non�
pipelined processor� two�stage pipelined processor and two�stage two�way superscalar
processor� presented in Sections ���� ��� and ���� respectively� Two additional de�
scriptions describe a three�stage pipelined processor and its corresponding two�way
superscalar derivative� The three�stage pipelined processor corresponds to the data�
path in Figure ��� with pipeline bu�ers inserted at both positions S� and S�� The
three�stage pipelined processor description is derived from the two�stage pipelined
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Figure ����� Synchronous pipeline with combinational multi�stage feedback �ow con�
trol�

Unpipelined ��stage ��stage ��way ��stage ��stage ��way
area � � 	 area � � 	 area � � 	 area � � 	 area � � 	

Prog� Counter ��� � ��	 ��� � ���	 ��� � ��	 ��� � ���	 ��� � ��	
Reg� File ���� � ���	 ���� � ����	 ���� � ����	 ���� � ����	 ���� � ����	
Mem� Interface ��� � ����	 ��� � ����	 ��� � ����	 ��� � ���	 ��� � ���	
ALU ��� � ����	 ��� � ����	 ���� � ����	 ��� � ����	 ���� � ����	
Pipe� Bu�er�s	 � � ���	 ��� � ����	 ���� � ����	 ���� � ���	 ��� � ����	
Logic �� � ���	 ���� � ����	 ���� � ����	 ���� � ���	 ���� � ����	

Total �� ������	 ���� ������	 ���� ������	 ���� ������	 ��� ������	
Normalized Total ���� ���� ���� ��� ����

�Unit area � two�input NAND gate�

Figure ����� Circuit area distributions for �ve processors�

processor descriptions following the same methodology presented in Section ���� All
TRSpec descriptions have been derived manually starting from the non�pipelined
processor description and have been altered to reference external instruction and
data memories through I�O ports�

The �ve TRSpec processor descriptions are compiled to GTECH netlists for area
and timing analyses by the Synopsys RTL Analyzer� The outputs of the Synopsys RTL
Analyzer are tabulated in Figures ���� and ����� Figure ���� compares the amount of
logic area needed by the �ve designs� �One unit of area corresponds to the area needed
by a two�input NAND gate�� The total area increases ��� times going from a non�
pipelined implementation to a three�stage two�way superscalar pipeline� As expected�
both pipelining and superscalarity increase the pipeline bu�er requirements �from � to
����� and control logic requirements �from ��� to ������ Superscalarity also doubles
the ALU requirements and increases the register��le size because of the additional
read and write ports�

The two tables in Figure ���� break down the delay of each processor�s critical path
into contributions by di�erent parts of the processor� �The Synopsys RTL Analyzer

���



unpipelined ��stage ��stage� ��way
Stage � Stage � Stage � Stage �

Program Counter start start start

Instruction Fetch X X X
Operand Fetch 
Raw Hazard ��
PC increment ��
S� � start � start

���ALU �� �� ��
Write Back � � �

Total ���X ���X �� ���X ��
if X
�� �� �� �� � ��

�Unit delay � two�input NAND gate�

��stage ��stage� ��way
Stage � Stage � Stage � Stage � Stage � Stage �

Program Counter start start

Inst Fetch or PC Inc X X
S� � start � start

Instruction Decode �� ��
S� � start �� start

���ALU �� ��
Write Back � �

Total ��X �� �� ��X �� ��
if X
�� �� �� �� �� �� ��

�Unit delay � two�input NAND gate�

Figure ����� Critical path delays for �ve processors�
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reports the logic delay in units that correspond to the propagation delay of a two�
input NAND gate� The analysis does not consider load or fan�out�� For pipelined
processors� separate critical paths are given for each stage� �A combinational path is
assigned to a stage based on where the path starts�� When a critical path involves an
instruction fetch� X is used to represent the instruction memory lookup delay since
the actual delay will vary with the instruction memory size and implementation� The
critical path analysis does not consider the latencies of data memory operations since�
if data memory latencies ever become a factor in the critical path� one should modify
the synchronous data memory interface to spend more cycles rather than lengthening
the cycle time�

The information generated by the Synopsys RTL Analyzer is helpful in deciding
the e�ectiveness of various architectural features and modi�cations� Ideally� convert�
ing a non�pipelined microarchitecture to a p�stage pipelined microarchitecture should
increase the clock frequency by p�fold� but this is rarely achieved in practice due to
unbalanced partitioning and pipeline logic overhead� Assuming X is �� time units�
the two�stage pipelined processor only achieves a clock frequency that is ��� higher
than the non�pipelined version� The three�stage pipeline processor achieves a ���
improvement�

Overall� the peak performance of the two�stage two�way superscalar processor is
approximately twice that of the non�pipelined processor at approximately twice the
cost in terms of area� The three�stage two�way superscalar processor appears to have
the best performance�area trade�o� since it has nearly � times the performance of the
non�pipelined processors while consuming only ��� times more area�

A caveat in this analysis is that the results only give an indication of the processors�
peak performance� The e�ects of instruction mix on the di�erent microarchitectures
must be analyzed by simulating the TRAC�generated RTL descriptions with bench�
mark applications� The combined feedback from circuit analysis and simulation can
help steer the architect in an iterative exploration of a large number of architectural
options and trade�o�s�

��� Summary

This chapter describes how to generate a pipelined processor design from an ISA
speci�cation by source�to�source transformations in the TRSpec operation�centric
framework� Transformations to create superscalar designs are also possible� Cur�
rently� the transformations described in this chapter have to be performed manually�
An e�ort to semi�automate the process is underway �Lis��� Ros���� In the future� the
mechanics of the transformation would be automated� but human intervention would
still be required to guide these transformations at a high level� such as selecting the
degree of superscalarity and the positions of the pipeline stages�
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Chapter �

Conclusions

This thesis creates a new operation�centric hardware development framework that
employs an easier and more intuitive hardware design abstraction�


�� Summary of Work

Operation�Centric Hardware Description� This thesis presents the concepts
and advantages of operation�centric hardware description where the behavior of a
system is decomposed and described as a collection of operations� Typically� an
operation is de�ned by a predicate condition and an e�ect� An operation a�ects the
state of the system globally and atomically� This atomic semantics simpli�es the task
of hardware description by permitting the designer to formulate each operation as if
the system were otherwise static�

TRSpec Hardware Description Language� This thesis presents TRSpec� an
adaptation of Term Rewriting Systems �TRS� for operation�centric hardware descrip�
tion� This synthesizable TRS language includes extensions beyond the standard TRS
formalism to increase its compactness and expressiveness in hardware description�
On the other hand� in some areas� the generality of TRS has to be restricted with
the help of a type system to ensure a description�s synthesizability into a �nite�state
machine� Speci�cally� TRSpec disallows in�nite�size terms and also disallows rules
that can change the size of the terms�

Abstract Transition Systems� This thesis de�nes an Abstract Transition System
�ATS�� ATS is an operation�centric state machine abstraction� ATS is a convenient
intermediate representation when mapping TRSpec� or other source�level operation�
centric languages� to hardware implementations� ATS has all of the essential prop�
erties of an operation�centric framework but without the syntactic complications of
a source�level language� Generalized synthesis and optimization algorithms can be
developed in the ATS abstraction� independent of source language variations�
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Hardware Synthesis and Scheduling� This thesis develops the theories and al�
gorithms necessary to create an ecient hardware implementation from an operation�
centric description� In particular� this thesis explains how to implement an ATS as a
synchronous �nite state machine� The crux of the synthesis problem involves �nding
a valid composition of the ATS transitions in a coherent state transition system that
carries out as many ATS transitions concurrently as possible� This thesis presents
both a straightforward reference implementation and two optimized implementations�

Term Rewriting Architectural Compiler� The ideas in this thesis are realized
in the Term Rewriting Architectural Compiler �TRAC�� a TRSpec�to�Verilog com�
piler� Design exercises employing TRSpec and TRAC have shown that an operation�
centric hardware development framework o�ers a signi�cant reduction in design time
and e�ort when compared to traditional frameworks� without loss in implementation
quality�

Microarchitectural Transformations� This thesis investigates the application of
TRSpec and TRAC to the design of pipelined superscalar processors� The design
�ow starts from a basic instruction set architecture given in TRSpec and progres�
sively incorporates descriptions of pipelining and superscalar mechanisms as source�
to�source transformations�


�� Future Work

This thesis is a preliminary investigation into operation�centric frameworks for hard�
ware development� The results of this thesis provide a starting point for this research�
This section points out the weaknesses in this thesis and proposes possible resolutions
in follow�on research� This section also describes work stemming from applying the
technologies in this thesis�

����� Language Issues

The TRSpec language supports the essential aspects of operation�centric hardware
description� However� in many respects� TRSpec is a rudimentary language with�
out many of the common features in modern programming languages� Syntactically�
TRSpec borrows from the TRS notation� which is not suited for describing large or
modular designs� These and many other issues are being addressed by the develop�
ment of BlueSpec� a new operation�centric hardware description language �Aug����
Like TRSpec� BlueSpec is a strongly typed language supporting algebraic types�
BlueSpec is semantically similar to TRSpec� but it borrows from the syntax and fea�
tures of the Haskell �JHA���� functional language� The salient features of BlueSpec
are outlined below�

Compact Syntax� A TRSpec rule equates to a BlueSpec function of state�to�
state� A BlueSpec function also supports the use of pattern matching to specify the
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�ring condition of a rule� To reduce repetition� each pattern can have multiple 	right�
hand�side
 e�ect terms guarded by di�erent predicate expressions� Semantically�
these are di�erent rules that happen to have the same left�hand�side pattern� To
reduce verbosity� BlueSpec also uses a 	named
 record notation for product and
disjunct terms� Thus� a product pattern can constrain only speci�c �elds by name�
without mentioning the unconstrained �elds� A right�hand�side e�ect term can also
specify changes for only selected �elds without mentioning the una�ected �elds�

Complex Expressions� TRSpec� as presented in this thesis� only supports simple
arithmetic and logical expressions� The TRAC implementation of TRSpec actually
allows more complicated expressions like if�then�else statements and switch�case state�
ments on both scalar and algebraic types� BlueSpec further allows the full range of
expression constructs from the Haskell language� In particular� BlueSpec supports
the use of functions that can be compiled into pure combinational logic�

Generalized Abstract Types� Besides built�in arrays and FIFOs� BlueSpec al�
lows user�de�ned abstract types with an arbitrary list of combinational and state�
transforming interfaces� External library modules can be incorporated into aTRSpec
description as a custom abstract type�

Additional I�O Types� The simple I�O mechanisms of TRSpec are not enough
to meet all design scenarios eciently� BlueSpec supports additional I�O type classes
to give users additional options over the exact implementation of I�O interfaces� The
additional I�O type classes are useful when designing an I�O interface to meet a pre�
de�ned synchronous handshake� BlueSpec also provides I�O constructs for combining
modular BlueSpec designs�

����� Synthesis Issues

The synthesis algorithm in this thesis always maps the entire e�ect of an operation
�i�e�� a TRSpec rule� into a single clock cycle� The scheduling algorithm always
attempts to maximize hardware concurrency� These two simplifying policies are nec�
essarily accompanied by the assumption that any required hardware resources are
available� In practice� TRAC�s implementation of these policies� in conjunction with
good register�transfer�level �RTL� logic optimizations� results in reasonably ecient
implementations� Nevertheless� the synthesis and scheduling algorithms can be im�
proved in many dimensions� Some of the optimizations outlined below are already
part of the normal RTL compilation that takes place after TRAC� However� there is an
advantage to incorporate these optimizations into the front�end compilation because
front�end compilers like TRAC have better access to high�level semantics embedded
in the source descriptions� For example� TRAC performs its own RTL optimizations
before generating its output� TRAC can trace two RTL signals to their usage in the
source description� and if the two signals originate from two con�icting rules then
TRAC can conclude the signals are never used simultaneously� The same inference
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would be hard or impossible when the same design is passed to the back�end compiler
in a distilled RTL format�

Technology Library Mapping� TRAC can instantiate library modules that have
been declared explicitly as user�de�ned abstract types� but TRAC cannot map an
arbitrary TRSpec description to target a speci�c set of library macros� The RTL
descriptions generated by TRAC only assume three state primitives� registers� arrays
and FIFOs� The only combinational logic primitives used by TRAC are multiplexers�
The remaining combinational logics are expressed as Verilog expressions� Normally�
TRAC can defer technology�speci�c mappings to back�end RTL compilers like Syn�
opsys� However� unlike gate�array or standard�cell implementations� the quality of
FPGA synthesis is very sensitive to the use of vender�speci�c RTL coding guidelines
and library macros� It is important for TRAC to generate optimized FPGA imple�
mentations because a potential application of TRAC and TRSpec is to facilitate
rapid creation of hardware prototypes using recon�gurable technologies�

Mapping Operations to Multiple Clock Cycles� In many hardware applica�
tions� there are hard limits on the amount and the type of hardware resources avail�
able� In other cases� factors like power consumption and manufacturability place
greater emphasis on lower hardware utilization over absolute performance� Under
these assumptions� it is not optimal� sometimes even unrealistic� to require the e�ect
of an operation to always execute in one clock cycle� For example� an operation may
perform multiple reads and writes to the same memory array whereas the imple�
mentation technology does not permit multi�ported memory� Also� it may not make
sense to instantiate multiple �oating�point multipliers only because one of the opera�
tions performs multiple �oating�point multiplications� Finally� some operations� like
divide� simply cannot be reasonably carried out in a single clock cycle� Currently�
there is an e�ort to develop a new method where the e�ect of an operation can be
executed over multiple clock cycles to meet resource requirements �Ros���� The cur�
rent approach partitions a complex operation into multiple smaller operations that
are suitable for single�cycle mapping� The key aspect in this transformation is to add
appropriate interlocks such that the atomicity of the original operations are mim�
icked by the execution of the partitioned operations over multiple clock cycles� The
synthesis algorithms in this thesis are directly applicable to the transformed system�

Automatic Pipelining and Superscalar Transformations� Chapter � of this
thesis describes manual source�to�source transformations for creating superscalar and
pipelined processors� Follow�on e�orts are looking into automating these transfor�
mations� The steps to automate the pipelining transformation are related to the
partitioning discussed in the previous paragraph� For pipelining� a single TRSpec
rule is partitioned for execution over multiple clock cycles� In the context of pipelin�
ing� besides maintaining the atomic semantics of the original rules� there is added
attention to create sub�rules that can be executed in a pipelined fashion �Ros���� To
automate superscalar transformations� sub�rules in the same pipeline stage are iden�
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ti�ed and syntactically composed to form new superscalar rules �Lis���� In a related
e�ort� rule transformations are applied to the veri�cation of pipelined superscalar
processors� For example� using rule composition� it is possible to reduce a pipelined
processor to a more easily veri�ed non�pipelined equivalent by eliminating pipeline
bu�ers one stage at a time �Lis����

Power� Area and Timing�Aware Synthesis� The current implementation of
TRAC chie�y focuses on generating a correct RTL implementation for operation�
centrically speci�ed behaviors� The RTL implementations are optimized with a single�
minded goal to maximize hardware concurrency� In many applications� it is necessary
to optimize for other factors like power� area and timing� Currently� power� area and
timing analyses are available during the RTL compilation phase� The designer can
modify the source description according to the feedback from RTL synthesis� The
three improvements to TRAC discussed above �technology library mapping� multi�
cycle operations� and pipelining transformation� open up the possibility to automate
this design re�nement process� Incorporating technology�speci�c library mapping
into the front�end enables TRAC to estimate power� area and timing early on in the
synthesis� Thus� TRAC can adjust its optimization goals accordingly� To meet a
speci�c power or area budget� TRAC can partition an operation over multiple clock
cycles to reuse hardware resources� To meet a speci�c timing requirement� pipelining
transformation can be employed to break up the critical path�

����� Applications

This thesis presents several processor�related examples� Although TRSpec and
TRAC are good architectural development tools� their applications have a much larger
domain� The following paragraphs point out some of the applications currently being
explored�

Recon�gurable Computing� Given the current pace of development in recon�g�
urable computing� it is likely that some day all personal computers will be shipped
with a user�recon�gurable hardware alongside of the CPU� The high�level abstrac�
tion of the TRSpec framework lowers the e�ort and expertise required to develop
hardware applets for the recon�gurable coprocessing hardware� A programmer could
retarget part of a software application for hardware implementation using the same
level of time and e�ort as software development� Even today� when combined with
suitable recon�gurable technologies like the Annapolis Wildcard�TRSpec and TRAC
already can provide an environment where the recon�gurable hardware can be used
as software accelerators �see discussions in Section �����

Hardware Cache Coherence� Operation�centric descriptions based on TRS have
been applied to the study of memory consistency and cache coherence� In CACHET�
TRS is used to formally specify a dynamically adaptive cache coherence protocol for
distributed shared�memory systems �SAR��a�� The Commit�Reconcile and Fences
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�CRF� memory model uses TRS to capture the semantics of elemental memory oper�
ations in a novel memory model designed for modern out�of�order superscalar microar�
chitectures �SAR��b�� The properties of these formally speci�ed memory consistency
and coherence models can be veri�ed using theorem proving techniques as well as by
simulating against a reference TRS speci�cation� Recent e�orts have attempted to
couple synthesis and formal veri�cation to the same source description� The goal is
to capture architectural�level TRS models in TRSpec for both formal veri�cation
and automatic synthesis into memory controllers and cache�coherence engines�

Microarchitecture Research� With TRSpec and TRAC� a high�density �eld
programmable hardware platform becomes a powerful hardware prototyping test�
bench� Such a prototyping framework can enable VLSI�scale 	bread boarding
 such
that even a small research group can explore a variety of architectural ideas quickly
and spontaneously� Studying prototypes can expose subtle design and implementa�
tion issues that are too easily overlooked on paper or in a simulator� A prototype of a
highly concurrent system also delivers much higher execution rates than simulation�
A thorough investigation using a hardware prototype lends much greater credence to
experimental research of revolutionary ideas�

Teaching� A high�level operation�centric framework is also a powerful teaching aide�
In a lecture� an operation�centric TRSpec description gives an intuitive functional
explanation� An operation�centric description also allows digital�design issues to be
separated from architectural ones� The high�level architectural prototyping environ�
ment discussed in the previous paragraph can also be integrated into a computer
architecture course where an advanced hardware student can study a broad range of
architectural issues in a hands�on manner� In addition to the materials presented in
class� a student can acquire an even deeper understanding of a mechanism by tinkering
with its high�level description and study the e�ects on a simulator or a prototyping
platform� This kind of independent exercise will help students build stronger intu�
itions for solving architectural problems� On the other hand� the course�s emphasis
on mechanisms rather than implementation also makes it ideal for software students
who simply want to understand how to use the complex features of modern systems�


�� Concluding Remarks

In the short term� a high�level operation�centric hardware development framework
cannot completely replace current RTL�based design practices� Clearly� there is a
class of applications� such as microprocessors� that demands the highest possible per�
formance and has the economic incentives to justify the highest level of development
e�ort and time� Nevertheless� a steady industry�wide move toward a higher�level
design environment is inevitable� When the integrated�circuit design complexity sur�
passed one million gates in the early ���s� designers abandoned schematic capture
in favor of textual hardware description languages� An analogous evolution to a still
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higher�level design environment is bound to repeat when the complexity of integrated�
circuit designs exceeds the capacity of current design tools�

Ultimately� the goal of a high�level description is to provide an uncluttered design
representation that is easy for a designer to comprehend and reason about� Although
a concise notation is helpful� the utility of a 	high�level
 description framework has
to come from the elimination of some 	lower�level
 details� It is in this sense that
an operation�centric framework can o�er an advantage over traditional RTL design
frameworks� Any non�trivial hardware design consists of multiple concurrent threads
of computation in the form of concurrent �nite state machines� This concurrency
must be managed explicitly in traditional representations� In an operation�centric
description� parallelism and concurrency are implicit in the source�level descriptions�
only to be discovered and managed by an optimizing compiler�
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Appendix A

TRSpec Language Syntax

A�� Keywords

A���� Keywords in Type De
nitions

�Type�� start of an algebraic type de�nition
�IType�� start of an input port type de�nition
�OType�� start of an output port type de�nition
�TypeSyn�� start of a type synonym de�nition

�Bit�� declaring a built�in unsigned integer type
�Int�� declaring a built�in signed integer type
�Bool�� declaring a built�in Boolean type
�Array�� declaring a built�in abstract array type
�Fifo�� declaring a built�in abstract FIFO type

A���� Keywords in Rule and Source Term Declarations

�Rule�� start of a rule declaration
�Init�� start of a source term declaration
�if�� start of a predicate expression
�where�� start of a LHS or RHS where binding list

A�� TRS

TRS �� TypeDe�nitions Rules SourceTerm
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A�� Type Denitions

TypeDe�nitions �� TypeDe�nition

�� TypeDe�nition TypeDe�nitions

TypeDe�nition �� De�neBuiltInType

�� De�neAlgebraicType

�� De�neAbstractType

�� De�neIoType

�� De�neTypeSynonym

A���� Built�In Type

De�neBuiltInType �� Type TypeName � Bit�BitWidth�

�� Type TypeName � Int�BitWidth�

�� Type TypeName � Bool

A���� Algebraic Type

De�neAlgebraicType �� Type TypeName � AlgebraicType

AlgebraicType �� ProductType

�� SumType

Product Types

ProductType �� ConstructorName�TypeName�� ���� TypeNamek�
Note� where k � �

Sum Types

SumType �� Disjuncts

Disjuncts �� Disjunct

�� Disjunct �� Disjuncts

Disjunct �� ConstructorName�TypeName�� ���� TypeNamek�
Note� where k � �

A���� Abstract Type

De�neAbstractType �� Type TypeName � AbstractType

AbstractType �� Array �TypeName index� TypeNamedata
�� Fifo TypeName
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A���� I�O Type

De�neIoType �� IType TypeName � TypeName

�� OType TypeName � TypeName

A���� Type Synonym

De�neTypeSynonym �� TypeSyn TypeName � TypeName

A���	 Miscellaneous

BitWidth �� ���������� 

TypeName �� �A�Z��A�Z���� 
ConstructorName �� �A�Z��a�z�����

A�� Rules

Rules �� Rule

�� Rule Rules

Rule �� Rule RuleName LHS �� RHS

Note� The main pattern in LHS and the main expression in RHS

must have the same type

A���� Left Hand Side

LHS �� Pattern

�� Pattern PredicateClause

�� Pattern LhsWhereClause

�� Pattern PredicateClause LhsWhereClause

Pattern �� ��� �� VariableName �� NumericalConstant
�� ConstructorName�Pattern�� ���� Patternk�

Note� where k � �

PredicateClause �� if Expression

Note� Expression must have an integer type
LhsWhereClause �� where PatternMatches

PatternMatches �� PatternMatch

�� PatternMatch PatternMatches

PatternMatch �� Pattern � Expression

Note� Pattern and Expression must have the same type
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A���� Right Hand Side

RHS �� Expression

�� Expression RhsWhereClause

RhsWhereClause �� where Bindings

Bindings �� Binding

�� Binding Bindings

Binding �� VariableName � Expression

A���� Expressions

Expression �� ��� �� VariableName �� NumericalConstant
�� ConstructorName�Expression�� ���� Expressionk�
�� PrimitiveOp�Expression�� ���� Expressionk�

Note� In	x representation of arithmetic and logical
operations is supported as syntactic sugar

�� AbsInterface

PrimitiveOp �� Arithmetic �� Logical �� Relational
Arithmetic �� Add �� Sub �� Multiply �� Divide �� Mod �� Negate

Logical �� Not �� And �� Or
�� BitwiseNegate �� BitwiseAnd �� BitwiseOr �� BitwiseXor

Relational �� Equal �� NotEqual �� GreaterThan �� GreaterThanEqualTo
�� LessThan �� LessThanEqualTo

AbsInterface �� Expressionarray�read�Expression idx	

also as� Expressionarray�Expression idx�

�� Expressionarray�write�Expression idx
 Expressiondata	

also as� Expressionarray�Expression idx��Expressiondata�

�� Expressionfifo�first� 	

�� Expressionfifo�enq�Expression	

�� Expressionfifo�deq� 	

�� Expressionfifo�clear� 	

A���� Miscellaneous

RuleName �� 	�A�Za�z��� ������

VariableName �� �a�z��a�z���� 

A�� Source Term

SourceTerm �� Init Expression

�� Init Expression RhsWhereClause
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Appendix B

TRSpec Description of a MIPS

Processor

B�� Type Denitions

B���� Processor States

Type PROC � Proc�PC O�RF�BD�BE�BM�BW�IPORT�DPORT R�DPORT W�SHIFTER�

User Visible Registers

OType PC O � PC

Type PC � Bit���


Type RF � Array �RNAME
 VAL

Type RNAME � Reg	 �� Reg� �� Reg� �� Reg�

�� Reg� �� Reg� �� Reg� �� Reg�

�� Reg� �� Reg �� Reg�	 �� Reg��

�� Reg�� �� Reg�� �� Reg�� �� Reg��

�� Reg�� �� Reg�� �� Reg�� �� Reg�

�� Reg�	 �� Reg�� �� Reg�� �� Reg��

�� Reg�� �� Reg�� �� Reg�� �� Reg��

�� Reg�� �� Reg� �� Reg�	 �� Reg��

Type VAL � Bit���


Pipeline Stage Bu�ers

Type BD � Fifo BD TEMPLATE

Type BD TEMPLATE � BdTemp�PC�INST�

TypeSyn BE � BS

TypeSyn BM � BS

TypeSyn BW � BS
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ABSType BS � enq�BS TEMPLATE�

�� deq� �

�� clear� �

�� isdest�RNAME� BOOL

�� forward�RNAME� VAL

�� canforward�RNAME� BOOL

�� first� � BS TEMPLATE

�� notempty� � BOOL

�� notfull� � BOOL

Type BOOL � False �� True

Note� For readability a disjunct term without any subterms�

such as True� �� can be written as the constructor name alone

without being followed by parentheses�

Type BS TEMPLATE � BsTemp�PC�I TEMPLATE�

Type I TEMPLATE � Itemp�MINOROP�WBACK�READY�RD�VAL�VAL�VAL�

Type MINOROP � MAdd �� MAddu �� MAnd �� MSub

�� MSubu �� MNor �� MOr �� MXor

�� MSlt �� MSll �� MSra �� MSrl

�� MLoad �� MStore �� MWback �� MNop

�� MOnemore

TypeSyn WBACK � BOOL

TypeSyn READY � BOOL

Barrel Shifter

Type AMOUNT � Bit��


Type LEFT � Right �� Left

Type ARITH � Logical �� Arith

ABSType SHIFTER � shift�AMOUNT�LEFT�ARITH�VAL� VAL

Input and Output

IType IPORT � INST

Type DPORT R � DportR�RADDR�RDATA�

Type DPORT W � DportW�WADDR�WDATA�WVALID�

OType IADDR � PC

IType IDATA � INST

SOType RADDR � ADDR

IType RDATA � VAL

Type ADDR � Bit���


SOType WADDR � ADDR

SOType WDATA � VAL

SOType WVALID � BOOL

B���� Instruction Set Architecture

Type INST � Mips�OP�RD�RS�RT�SA�FUNC�
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Type OP � Special �� Bcond �� Jj �� Jal

�� Beq �� Bne �� Blez �� Bgtz

�� Addi �� Addiu �� Slti �� Sltiu

�� Andi �� Ori �� Xori �� Lui

�� Cop	 �� Cop� �� Cop� �� Cop�

�� Op�� �� Op�� �� Op�� �� Op��

�� Op�	 �� Op�� �� Op�� �� Op��

�� Op�� �� Op�� �� Op�� �� Op��

�� Lb �� Lh �� Lwl �� Lw

�� Lbu �� Lhu �� Lwr �� Op��

�� Sb �� Sh �� Swl �� Sw

�� Op�� �� Op�� �� Swr �� Op��

�� Lwc	 �� Lwc� �� Lwc� �� Lwc�

�� Op�� �� Op�� �� Op�� �� Op��

�� Swc	 �� Swc� �� Swc� �� Swc�

�� Op�� �� Op�� �� Op�� �� Op��

TypeSyn RD � RNAME

TypeSyn RS � RNAME

TypeSyn RT � RNAME

Type SA � Bit��


Type FUNC � Sll �� Func	� �� Srl �� Sra

�� Sllv �� Func	� �� Srlv �� Srav

�� Jr �� Jalr �� Func�� �� Func��

�� SysCall �� Break �� Func�� �� Func��

�� Mfhi �� Mthi �� Mflo �� Mtlo

�� Func�� �� Func�� �� Func�� �� Func��

�� Mult �� Multu �� Div �� Divu

�� Func�� �� Func�� �� Func�� �� Func��

�� Add �� Addu �� Sub �� Subu

�� And �� Or �� Xor �� Nor

�� Func�	 �� Func�� �� Slt �� Sltu

�� Func�� �� Func�� �� Func�� �� Func��

�� Func�	 �� Func�� �� Func�� �� Func��

�� Func�� �� Func�� �� Func�� �� Func��

�� Func�	 �� Func�� �� Func�� �� Func��

�� Func�� �� Func�� �� Func�� �� Func��

Type BCOND � Bltz �� Bgez �� Bcond	� �� Bcond	�

�� Bcond	� �� Bcond	� �� Bcond	� �� Bcond	�

�� Bcond�	 �� Bcond�� �� Bcond�� �� Rim��

�� Bcond�� �� Bcond�� �� Bcond�� �� Bcond��

�� Bltzal �� Bgezal �� Bcond�� �� Bcond��

�� Bcond�� �� Bcond�� �� Bcond�� �� Bcond��

�� Bcond�	 �� Bcond�� �� Bcond�� �� Rim��

�� Bcond�� �� Bcond�� �� Bcond�� �� Bcond��
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B�� Rules

B���� M� Macros

define��STALL�����be�isdest������ be�canforward����� ��

�bm�isdest������ bm�canforward����� ��

�bw�isdest������ bw�canforward��������

define��FORWARD����be�canforward����!

be�forward�����

�bm�canforward����!

bm�forward�����

�bw�canforward����!bw�forward�����rf���
�����

B���� Fetch Stage Rules

Rule "Instruction Fetch and Speculate"

Proc�pc�rf�bd�be�bm�bw�inst�rport�wport�shftr�

if bd�notfull� �

��# Proc�pc���rf�bd�enq�BdTemp�pc�inst���be�bm�bw�

inst�rport�wport�shftr�
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B���� Decode Stage Rules

I�Type Instructions

Rule "Decode Immediate"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if canhandle ��  STALL�rs�

�� bd�notempty� � �� be�notfull� �

where BdTemp�pc��inst� � bd�first� �

Mips�op�rs�rt�immh�immm�imml� � inst

imm�� � fimmh�immm�immlg
canhandle � �op��Addi� �� �op��Addiu� ��

�op��Slti� �� �op��Sltiu� ��

�op��Andi� �� �op��Ori� ��

�op��Xori�

��# Proc�pc�rf�bd�deq���be��bm�bw�iport�rport�wport�shftr�

where be� � be�enq�BsTemp�pc��itemp��

itemp � �rt��Reg	�!

Itemp�MNop�False�False����������

Itemp�mop�True�False�rt�vs�vimm���

vs � FORWARD�rs�

vimm � f�immh����
!���hffff����h				��imm������	
g
mop � switch�op�

case Addi� MAdd

case Addiu� MAdd

case Slti� MSlt

case Sltiu� MSlt

case Andi� MAnd

case Ori� MOr

case Xori� MXor

Rule "Instruction Decode Lui"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if bd�notempty� � �� be�notfull� �

where BdTemp�pc��inst� � bd�first� �

Mips�Lui�rd�rs�immh�immm�imml� � inst

imm�� � fimmh�immm�immlg
��# Proc�pc�rf�bd�deq���be��bm�bw�iport�rport�wport�shftr�

where be� � be�enq�BsTemp�pc��itemp��

itemp � �rd��Reg	�!

Itemp�MNop�False�False����������

Itemp�MWback�True�True�rd�fimm������	
����b	g�����

���



Rule "Instruction Decode Load"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if canhandle ��  STALL�base�

�� bd�notempty� � �� be�notfull� �

where BdTemp�pc��inst� � bd�first� �

Mips�op�base�rt�offh�offm�offl� � inst

offset � f�offh����
!����hffff�����h	�� offh�offm�offlg
canhandle � �op��Lw�

��# Proc�pc�rf�bd�deq���be��bm�bw�iport�rport�wport�shftr�

where be� � be�enq�BsTemp�pc��itemp��

itemp � �rt��Reg	�!

Itemp�MNop�False�False����������

Itemp�mop�True�False�rt�vbase�offset���

vbase � FORWARD�base�

mop � switch�op�

case Lw� MLoad

Rule "Instruction Decode Store"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if canhandle ��  �STALL�base� �� STALL�rt��

�� bd�notempty� � �� be�notfull� �

where BdTemp�pc��inst� � bd�first� �

Mips�op�base�rt�offh�offm�offl� � inst

offset � f�offh����
!����hffff�����h	��offh�offm�offlg
canhandle � �op��Sw�

��# Proc�pc�rf�bd�deq���be��bm�bw�iport�rport�wport�shftr�

where be� � be�enq�BsTemp�pc��

Itemp�mop�False�False���vbase�offset�vt���

vbase � FORWARD�base�

vt � FORWARD�rt�

mop � switch�op�

case Sw� MStore

Rule "Decode R�Compare Branch Taken"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if canhandle ��  �STALL�rs� �� STALL�rt�� �� taken

�� bd�notempty� �

where BdTemp�pc��inst� � bd�first� �

Mips�op�rs�rt�offh�offm�offl� � inst

offset � foffh�offm�offlg
canhandle � �op��Beq� �� �op��Bne�

��# Proc�target�rf�bd�clear���be�bm�bw�iport�rport�wport�shftr�

where vs � FORWARD�rs�

vt � FORWARD�rt�

voff � f�offh����
!����h�fff������h				����offset����	
����b		g
taken � switch�op�

case Beq��vs��vt�

case Bne��vs �vt�

target � pc�����h��voff
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Rule "Decode R�Compare Branch Not�Taken"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if canhandle ��  �STALL�rs� �� STALL�rt�� ��  taken

�� bd�notempty� �

where BdTemp�pc��inst� � bd�first� �

Mips�op�rs�rt�offh�offm�offl� � inst

offset � foffh�offm�offlg
canhandle � �op��Beq� �� �op��Bne�

��# Proc�pc�rf�bd�deq���be�bm�bw�iport�rport�wport�shftr�

where vs � FORWARD�rs�

vt � FORWARD�rt�

taken � switch�op�

case Beq��vs��vt�

case Bne��vs �vt�

Rule "Decode Compare�To�Zero Branch Taken"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if canhandle ��  STALL�rs� �� taken

�� bd�notempty� �

where BdTemp�pc��inst� � bd�first� �

Mips�op�rs���offh�offm�offl� � inst

offset � foffh�offm�offlg
canhandle � �op��Blez� �� �op��Bgtz�

��# Proc�target�rf�bd�clear���be�bm�bw�iport�rport�wport�shftr�

where vs � FORWARD�rs�

voff � f�offh����
!����h�fff������h				����offset����	
����b		g
taken � switch�op�

case Blez��vs������
� �� �vs��	�

case Bgtz�� vs������
� �� �vs �	�

target � pc�����h��voff

Rule "Decode Compare�To�Zero Branch Not�Taken"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if canhandle ��  STALL�rs� ��  taken

�� bd�notempty� �

where BdTemp�pc��inst� � bd�first� �

Mips�op�rs���offh�offm�offl� � inst

offset � foffh�offm�offlg
canhandle � �op��Blez� �� �op��Bgtz�

��# Proc�pc�rf�bd�deq���be�bm�bw�iport�rport�wport�shftr�

where vs � FORWARD�rs�

taken � switch�op�

case Blez��vs������
� �� �vs��	�

case Bgtz�� vs������
� �� �vs �	�
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Rule "Decode Bcond Branch Taken"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if  �STALL�rs�� �� taken

�� bd�notempty� �

where BdTemp�pc��inst� � bd�first� �

Mips�Bcond�rs�type�offh�offm�offl� � inst

offset � foffh�offm�offlg
canhandle � �type��Bltz� �� �type��Bgez�

��# Proc�target�rf�bd�clear���be�bm�bw�iport�rport�wport�shftr�

where vs � FORWARD�rs�

voff � f�offh����
!����h�fff������h				����offset����	
����b		g
taken � switch�type�

case Bltz��vs������
�

case Bgez�� vs������
�

target � pc�����h��voff

Rule "Decode Bcond Branch Not�Taken"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if  �STALL�rs�� ��  taken

�� bd�notempty� �

where BdTemp�pc��inst� � bd�first� �

Mips�Bcond�rs�type�offh�offm�offl� � inst

offset � foffh�offm�offlg
canhandle � �type��Bltz� �� �type��Bgez�

��# Proc�pc�rf�bd�deq���be�bm�bw�iport�rport�wport�shftr�

where vs � FORWARD�rs�

voff � f�offh����
!����h�fff������h				����offset����	
����b		g
taken � switch�type�

case Bltz��vs������
�

case Bgez�� vs������
�

Rule "Decode Bcond Branch�and�Link Taken"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if  �STALL�rs�� �� taken

�� bd�notempty� � �� be�notfull� �

where BdTemp�pc��inst� � bd�first� �

Mips�Bcond�rs�type�offh�offm�offl� � inst

offset � foffh�offm�offlg
canhandle � �type��Bltzal� �� �type��Bgezal�

��# Proc�target�rf�bd�clear���be��bm�bw�iport�rport�wport�shftr�

where vs � FORWARD�rs�

voff � f�offh����
!����h�fff������h				����offset����	
����b		g
taken � switch�type�

case Bltzal��vs������
�

case Bgezal�� vs������
�

be� � be�enq�BsTemp�pc��

Itemp�MWback�True�True�Reg���pc����������

target � pc�����h��voff
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Rule "Decode Bcond Branch�and�Link Not�Taken"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if  �STALL�rs�� ��  taken

�� bd�notempty� �

where BdTemp�pc��inst� � bd�first� �

Mips�Bcond�rs�type�offh�offm�offl� � inst

offset � foffh�offm�offlg
canhandle � �type��Bltzal� �� �type��Bgezal�

��# Proc�pc�rf�bd�deq���be�bm�bw�iport�rport�wport�shftr�

where vs � FORWARD�rs�

voff � f�offh����
!����h�fff������h				����offset����	
����b		g
taken � switch�type�

case Bltzal��vs������
�

case Bgezal�� vs������
�

J�Type Instructions

Rule "Instruction Decode J"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if bd�notempty� �

where BdTemp�pc��inst� � bd�first� �

Mips�Jj�off��off��off��off��off�� � inst

offset � foff��off��off��off��off�g
��# Proc�target�rf�bd�clear���be�bm�bw�iport�rport�wport�shftr�

where target � fpc�������
�offset����	
���b		g

Rule "Instruction Decode Jal"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if bd�notempty� � �� be�notfull� �

where BdTemp�pc��inst� � bd�first� �

Mips�Jal�off��off��off��off��off�� � inst

offset � foff��off��off��off��off�g
��# Proc�target�rf�bd�clear���be��bm�bw�iport�rport�wport�shftr�

where target � fpc�������
�offset����	
���b		g
be� � be�enq�BsTemp�pc��

Itemp�MWback�True�True�Reg���pc����������

���



R�Type Instructions

Rule "Instruction Decode Constant Shifts"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if �op��Special� �� canhandle ��  STALL�rt�

�� bd�notempty� � �� be�notfull� �

where BdTemp�pc��inst� � bd�first� �

Mips�op���rt�rd�sa�func� � inst

imm�� � frt�sa�funcg
canhandle � �func��Sll� �� �func��Sra� �� �func��Srl�

��# Proc�pc�rf�bd�deq���be��bm�bw�iport�rport�wport�shftr�

where be� � be�enq�BsTemp�pc��itemp��

itemp � �rd��Reg	�!

Itemp�MNop�False�False����������

Itemp�mop�True�False�rd�sa�vt���

vt � FORWARD�rt�

mop � switch�func�

case Sll� MSll

case Sra� MSra

case Srl� MSrl

���



Rule "Instruction Decode Triadic"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if �op��Special� �� canhandle ��  �STALL�rs� �� STALL�rt��

�� bd�notempty� � �� be�notfull� �

where BdTemp�pc��inst� � bd�first� �

Mips�op�rs�rt�rd���func� � inst

canhandle � �func��Add� �� �func��Addu�

�� �func��Sub� �� �func��Subu�

�� �func��And� �� �func��Nor�

�� �func��Or� �� �func��Xor�

�� �func��Slt� �� �func��Sltu�

�� �func��Sllv� �� �func��Srav�

�� �func��Srlv�

��# Proc�pc�rf�bd�deq���be��bm�bw�iport�rport�wport�shftr�

where be� � be�enq�BsTemp�pc��itemp��

itemp � �rd��Reg	�!

Itemp�MNop�False�False����������

Itemp�mop�True�False�rd�vs�vt���

vs � FORWARD�rs�

vt � FORWARD�rt�

mop � switch�func�

case Add� MAdd

case Addu� MAdd

case Sub� MSub

case Subu� MSub

case And� MAnd

case Nor� MNor

case Or� MOr

case Xor� MXor

case Slt� MSlt

case Sltu� MSlt

case Sllv� MSll

case Srav� MSra

case Srlv� MSrl

Rule "Decode Jr"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if  STALL�rs�

�� bd�notempty� �

where BdTemp�pc��inst� � bd�first� �

Mips�Special�rs�������Jr� � inst

��# Proc�vs�rf�bd�clear���be�bm�bw�iport�rport�wport�shftr�

where vs � FORWARD�rs�

���



Rule "Instruction Decode Jalr"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if  STALL�rs�

�� bd�notempty� � �� be�notfull� �

where BdTemp�pc��inst� � bd�first� �

Mips�Special�rs���rd���Jalr� � inst

��# Proc�vs�rf�bd�clear���be��bm�bw�iport�rport�wport�shftr�

where be� � be�enq�BsTemp�pc��itemp��

itemp � �rd��Reg	�!

Itemp�MNop�False�False����������

Itemp�MWback�True�True�rd�pc��������

vs � FORWARD�rs�

B���� Execute Stage Rules

Rule "Execute Stage Drop"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if be�notempty� �

�� ��template��Itemp�MNop���������������

where BsTemp�pc��template� � be�first� �

��# Proc�pc�rf�bd�be�deq���bm�bw�iport�rport�wport�shftr�

Rule "Execute Stage Pass"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if ��template��Itemp�MWback���������������

�� be�notempty� � �� bm�notfull� �

where BsTemp�pc��template� � be�first� �

��# Proc�pc�rf�bd�be�deq���bm��bw�iport�rport�wport�shftr�

where bm� � bm�enq�BsTemp�pc��template��

���



Rule "Execute ��to�� Function"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if canhandle

�� be�notempty� � �� bm�notfull� �

where BsTemp�pc��template� � be�first� �

Itemp�mop�fwd���dest�v��v���� � template

canhandle � �mop��MAdd� �� �mop��MSub�

�� �mop��MAnd� �� �mop��MNor�

�� �mop��MOr� �� �mop��MXor�

�� �mop��MSlt�

��# Proc�pc�rf�bd�be�deq���bm��bw�iport�rport�wport�shftr�

where bm� � bm�enq�BsTemp�pc��template���

template� � Itemp�MWback�fwd�True�dest�result�����

result � switch�mop�

case MAdd� v��v�

case MSub� v��v�

case MAnd� v��v�

case MNor� �$�v��v���

case MOr� v��v�

case MXor� v�%v�

case MSlt� �v�������
��v�������
�!�v��v���v�������


Rule "Execute Shift Function"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if canhandle

�� be�notempty� � �� bm�notfull� �

where BsTemp�pc��template� � be�first� �

Itemp�mop�fwd���dest�v��v���� � template

canhandle � �mop��MSll� �� �mop��MSra� �� �mop��MSrl�

��# Proc�pc�rf�bd�be�deq���bm��bw�iport�rport�wport�shftr�

where bm� � bm�enq�BsTemp�pc��template���

template� � Itemp�MWback�fwd�True�dest�result�����

result � shftr�shift�v����	
�left�arith�v��

left � switch�mop�

case MSll� Left

case MSra� Left

case MSrl� Right

arith � switch�mop�

case MSll� Logical

case MSra� Arith

case MSrl� Logical

���



Rule "Execute Address Calc"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if canhandle

�� be�notempty� � �� bm�notfull� �

where BsTemp�pc��template� � be�first� �

Itemp�mop�fwd���dest�base�offset�v� � template

canhandle � �mop��MLoad� �� �mop��MStore�

��# Proc�pc�rf�bd�be�deq���bm��bw�iport�rport�wport�shftr�

where bm� � bm�enq�BsTemp�pc��template���

template� � Itemp�mop�fwd�False�dest�addr���v�

addr � base�offset

B���� Memory Stage Rules

Rule "Memory Stage Pass"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if �template �Itemp�MLoad��������������

�� �template �Itemp�MStore��������������

�� bm�notempty� � �� bw�notfull� �

where BsTemp�pc��template� � bm�first� �

��# Proc�pc�rf�bd�be�bm�deq���bw��iport�rport�wport�shftr�

where bw� � bw�enq�BsTemp�pc��template��

Rule "Memory Stage Store"

Proc�pc�rf�bd�be�bm�bw�iport�rport���shftr�

if bm�notempty� �

where BsTemp�pc��template� � bm�first� �

Itemp�MStore�������addr���v� � template

��# Proc�pc�rf�bd�be�bm�deq���bw�iport�rport�DportW�addr�v�True��shftr�

Rule "Memory Stage Store Off"

Proc�pc�rf�bd�be�bm�bw�iport�rport�DportW��������shftr�

if  �bm�notempty�� �� Itemp�MStore���������������template�

where BsTemp�pc��template� � bm�first� �

��# Proc�pc�rf�bd�be�bm�bw�iport�rport�DportW�����False��shftr�

Rule "Memory Stage Load"

Proc�pc�rf�bd�be�bm�bw�iport�DportR���data��wport�shftr�

if bm�notempty� � �� bw�notfull� �

where BsTemp�pc��template� � bm�first� �

Itemp�MLoad�fwd���rd�addr����� � template

��# Proc�pc�rf�bd�be�bm�deq���bw��iport�DportR�addr����wport�shftr�

where bw� � bw�enq�BsTemp�pc��template���

template� � Itemp�MWback�fwd�True�rd�data�����

���



B���	 Write�Back Stage Rules

Rule "Write�Back Stage"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if bw�notempty� �

�� �template��Itemp�MWback��������������

where BsTemp�pc��template� � bw�first� �

Itemp�MWback�����rd�v����� � template

��# Proc�pc�rf�rd��v
�bd�be�bm�bw�deq���iport�rport�wport�shftr�

B�� Source Term

Init Proc�	���������������DportW�����False����

���
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