
Operation�Centric Hardware Description

and Synthesis

by

James C� Hoe

B�S�� University of California at Berkeley ������
M�S�� Massachusetts Institute of Technology ������

Submitted to
the Department of Electrical Engineering and Computer Science

in partial ful�llment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June �			

c� Massachusetts Institute of Technology �			� All rights reserved�

Author �
Department of Electrical Engineering and Computer Science

April �
� �			

Certi�ed by �
Arvind

Johnson Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by �
Arthur C� Smith

Chairman� Department Committee on Graduate Students

�

Operation�Centric Hardware Description and Synthesis
by

James C� Hoe

Submitted to the
Department of Electrical Engineering and Computer Science

on April ��� ����� in partial ful�llment of the
requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

In an operation�centric framework� the behavior of a system is decomposed and de�
scribed as a collection of operations� An operation is de�ned by a predicate condition
and an e�ect on the system�s state� An execution of the system corresponds to some
sequential interleaving of the operations such that each operation in the sequence pro�
duces a state that enables the next operation� An operation�s e�ect on the system is
global and atomic� In other words� an operation 	reads
 the state of the system in one
step� and� if enabled� the operation updates the state in the same step� This atomic
semantics simpli�es the task of hardware description by permitting the designer to
formulate each operation as if the system were otherwise static�

This thesis develops a method for hardware synthesis from an operation�centric
description� The crux of the synthesis problem is in �nding a synchronous state tran�
sition system that carries out multiple parallelizable operations per clock cycle and
yet maintains a behavior that is consistent with the atomic and sequential semantics
of the operations� The thesis �rst de�nes an Abstract Transition System �ATS�� an
operation�centric state machine abstraction� The thesis next develops the theories and
algorithms to synthesize an ecient synchronous digital circuit implementation of an
ATS� Finally� the thesis presents TRSpec� a source�level operation�centric hardware
description language based on the formalism of Term Rewriting Systems�

The results of this thesis show that an operation�centric framework o�ers a sig�
ni�cant improvement over traditional hardware design �ows� The TRSpec language
and synthesis algorithms developed in this thesis have been realized in the Term
Rewriting Architectural Compiler �TRAC�� This thesis presents the results of several
operation�centric design exercises using TRSpec and TRAC� In an example based
on a ���bit MIPS integer core� the operation�centric description can be developed
�ve times faster than a hand�coded structural Verilog description� Nevertheless� the
circuit implementation produced by the operation�centric framework is comparable
to the hand�coded design in terms of speed and area�

Thesis Supervisor� Arvind
Title� Johnson Professor of Computer Science and Engineering

�

�

Acknowledgments

First and foremost� I would like to thank Professor Arvind for supervising this re�
search� His insight and criticism added greatly to this thesis� Furthermore� his
guidance and support have been invaluable to my academic development over the
last eight years� I wish him the best of luck in the Sandburst venture�

I want to thank Professor Srinivas Devadas and Professor Martin Rinard for gen�
erously spending their time to advise me on this thesis� They have been both my
mentors and friends�

My fellow data�owers from the Computation Structures Group �CSG� have helped
me in so many ways� I want to thank Dr� Larry Rudolph who has always been a source
of good ideas� I will always treasure the company of Shail Aditya� Andy Shaw� Boon
Ang� Alejandro Caro� Derek Chiou� Xiaowei Shen� Jan Maessen� Mike Ehrlich and
Daniel Rosenband�� my long�time fellow CSG students� Daniel Rosenband provided
the hand�written Verilog descriptions in this thesis and generated many of the syn�
thesis results� Mieszko Lis reviewed many drafts of this thesis� I also want to thank
Dr� Andy Boughton for looking after everyone in the group� CSG and everyone as�
sociated with it have been a big part of my life for nearly a decade� I hope that� one
day� I will �nally come to know what exactly is a 	computation structure
�

I want to thank the Intel Corporation and the Intel Foundation for supporting the
research in this thesis by providing research grants and a fellowship� I also appreciate
the many useful exchanges with Dr� Timothy Kam and other members of Intel�s
Strategic CAD Laboratories�

I owe much to my family for a�ording me the luxury of 	just hanging around

as a graduate student for so many years� As always� I am indebted to my parents
for their love� support� and encouragement through the years� I am grateful for their
hard work and sacri�ces that have allowed me to be who I am today� Last but not
the least� I must thank my in�nitely patient wife for her love and support during
my studies at MIT� She encourages me when I am down� understands me when I am
upset� and tolerates all of my many quirks� As my most loyal reader� she has tirelessly
proofread every document I have produced at MIT�

I would like to �nish by telling a short story with me in it� It was the sum�
mer of ���� in Pasadena� California� I was attending an informal lecture given by
Richard Feynman to a class of SSSSP� high school students� Near the end of the
lecture� he challenged us with a puzzle to �nd the �aw in an odd but apparently
sound explanation for universal gravitation� As soon as the lecture ended� I charged
to the front of the room to check my answer with him� Instead of agreeing with me�
he gave me a knowing smirk and put both of his hands on my head� To my surprise�
he then grabbed my head� as one would with a basketball� and proceeded to shake
it in comic exaggeration� Dumbfounded� I heard him say in a playful voice� �Don�t
just ask me� Use your head to think about it� That is what it�s there for��
At that instant� I realized the point in learning is not so one can come up with the

�Names appear in the chronological order of their realized or pending graduation dates�
�Caltech�s Summer Secondary School Science Project

�

same answers as the answer key on a �nal exam� What could be the point in solving
a cooked up problem that has been solved hundreds of times by hundreds of people�
I acquired a whole new mindset where the end result of learning is not rote knowl�
edge but the ability to solve real�world problems that have not been conveniently
prepared from their right answers� For me� �nding answers to open questions is not
only the true point in learning� but it is also where the true act of learning begins�
Finding things out is indeed pleasurable �Fey���� Incidentally� for those of you who
are wondering� I did come up with the right answer on that day�

�

In memory of my grandfather�

Hoe Kwan�Wu� M�D�� ���� � ����

�

�

Contents

� Introduction ��
��� Operation�Centric Hardware Description � � � � � � � � � � � � � � � � ��
��� Limitations of Operation�Centric Frameworks � � � � � � � � � � � � � ��
��� Comparison to CFSM�based Frameworks � � � � � � � � � � � � � � � � ��
��� Comparison to Other High�Level Frameworks � � � � � � � � � � � � � ��
��� Thesis Contributions ��
��� Thesis Organization ��

� Operation�Centric Design Examples ��
��� Euclid�s Algorithm ��
��� A Simple Processor ��
��� A Pipelined Processor ��
��� Another Pipelined Processor ��

	 Hardware Synthesis and Scheduling 	�
��� Abstract Transition Systems ��

����� State Elements ��
����� State Transitions ��
����� Operational Semantics ��
����� Functional Interpretation ��

��� Reference Implementation of an ATS � � � � � � � � � � � � � � � � � � ��
����� State Storage ��
����� State Transition Logic ��
����� RTL Description ��
����� Correctness of a Synchronous Implementation � � � � � � � � � ��
����� Performance Considerations ��

��� Optimization I� Parallel Compositions � � � � � � � � � � � � � � � � � � ��
����� Con�ict�Free Transitions ��
����� Static Deduction of ��CF ��
����� Scheduling of ��CF Transitions � � � � � � � � � � � � � � � � � ��
����� Performance Gain ��

��� Optimization II� Sequential Compositions � � � � � � � � � � � � � � � � ��
����� Sequentially�Composible Transitions � � � � � � � � � � � � � � ��
����� Static Deduction of �SC ��
����� Scheduling of �SC Transitions � � � � � � � � � � � � � � � � � � ��

�

��� Summary ��

 TRSpec Hardware Description Language ��
��� Term Rewriting Systems ��
��� TRS for Hardware Description ��
��� Type System ��

����� Simple Types ��
����� Abstract Types ��

��� Rewrite Rules ��
����� Abstract Syntax ��
����� Type Restrictions ��
����� Semantics ��

��� Source Term ��
��� Input and Output ��
��� Mapping TRSpec to ATS ��

����� Terms to ATS State Elements � � � � � � � � � � � � � � � � � � ��
����� Rules to ATS Transitions ��
����� Local Rules ��

��� Summary ��

� Examples of TRSpec Descriptions and Synthesis �	
��� Euclid�s Algorithm ��

����� Design Capture ��
����� Debugging ��
����� Synthesis Results ��

��� A Simple Processor ��
����� Adaptation for Synthesis ��
����� Synthesis Results ��

��� MIPS R���� Processor ��
����� MIPS Integer Subset ��
����� Microarchitecture ��
����� Synthesis Results ��

��� Summary ��

 Microprocessor Design Exploration ��
��� Design Flow Overview ��
��� Step �� ISA Speci�cation ��
��� Step �� Pipelining Transformation ��
��� Step �� Superscalar Transformation ��

����� Derivation of Composite Rules � � � � � � � � � � � � � � � � � � ��
����� A Composite Rule Example ��
����� Derivation of a Two�Way Superscalar Processor � � � � � � � � ��

��� Synthesis and Analysis ���
����� TRSpec to RTL ���
����� GTECH RTL Analysis ���

��

��� Summary ���

� Conclusions ���
��� Summary of Work ���
��� Future Work ���

����� Language Issues ���
����� Synthesis Issues ���
����� Applications ���

��� Concluding Remarks ���

A TRSpec Language Syntax ���
A�� Keywords ���

A���� Keywords in Type De�nitions � � � � � � � � � � � � � � � � � � ���
A���� Keywords in Rule and Source Term Declarations � � � � � � � � ���

A�� TRS ���
A�� Type De�nitions ���

A���� Built�In Type ���
A���� Algebraic Type ���
A���� Abstract Type ���
A���� I�O Type ���
A���� Type Synonym ���
A���� Miscellaneous ���

A�� Rules ���
A���� Left Hand Side ���
A���� Right Hand Side ���
A���� Expressions ���
A���� Miscellaneous ���

A�� Source Term ���

B TRSpec Description of a MIPS Processor ���
B�� Type De�nitions ���

B���� Processor States ���
B���� Instruction Set Architecture ���

B�� Rules ���
B���� M� Macros ���
B���� Fetch Stage Rules ���
B���� Decode Stage Rules ���
B���� Execute Stage Rules ���
B���� Memory Stage Rules ���
B���� Write�Back Stage Rules ���

B�� Source Term ���

��

��

List of Figures

��� Next�state logic corresponding to �a� the Mod operation and �b� the
Flip operation� ��

��� Circuit for computing Gcd�a� b�� ��
��� TRS rules for a simple ISA� ��
��� A simple non�pipelined processor datapath� shown without control sig�

nals� ��

��� ATS summary� ��
��� Synchronous state elements� ��
��� A monolithic scheduler for an M �transition ATS� � � � � � � � � � � � ��
��� Circuits for merging two transitions� actions on the same register� � � ��
��� The GCD circuit from Example ���� ��
��� Scheduling con�ict�free rules� �a� ��CF graph �b� Corresponding con�

�ict graph and its connected components� � � � � � � � � � � � � � � � ��
��� Enumerated encoder table for Example ���� � � � � � � � � � � � � � � ��
��� Scheduling sequentially�composible rules� �a� Directed �SC graph �b�

Corresponding acyclic directed �SC graph �c� Corresponding con�ict
graph and its connected components� � � � � � � � � � � � � � � � � � � ��

��� Enumerated encoder table for Example ���� � � � � � � � � � � � � � � ��

��� Type de�nitions for a simple non�pipelined processor� � � � � � � � � � ��
��� TRSpec description of I�O ��
��� I�O interfaces synthesized for TOP� ��
��� A tree graph representing the GCD type structure from Example ���� ��

��� TRSpec description of Euclid�s Algorithm� � � � � � � � � � � � � � � ��
��� Scheme implementation of Euclid�s Algorithm� � � � � � � � � � � � � � ��
��� Excerpt from the hand�coded Verilog RTL description of Euclid�s Al�

gorithm� ��
��� Summary of GCD synthesis results� ��
��� Another TRSpec description of Euclid�s Algorithm� � � � � � � � � � ��
��� TRSpec type de�nitions for a processor with instruction and data

memory interfaces� ��
��� TRSpec rewrite rules for a processor with instruction and data mem�

ory interfaces� ��
��� A processor�s memory interfaces and their connections� � � � � � � � � ��

��

��� Summary of the processor synthesis results� � � � � � � � � � � � � � � ��
���� Hand�coded Verilog description of a simple processor� �Part �� � � � � ��
���� Hand�coded Verilog description of a simple processor� �Part �� � � � � ��
���� Block diagram of the �ve�stage pipelined MIPS processor core� � � � � ��
���� Summary of MIPS synthesis results� ��

��� Type de�nitions for a simple non�pipelined processor� � � � � � � � � � ��
��� Rules for a simple non�pipelined processor� � � � � � � � � � � � � � � � ��
��� A simple processor datapath shown without its control paths� � � � � ��
��� Additional type de�nitions for the two�stage pipelined processor� � � � ��
��� Rules for the execute stage of the two�stage pipelined processor� � � � ��
��� Combining the Add Execute rule with other execute rules� � � � � � � ���
��� Combining the Bz�Not�Taken Execute rule with other execute rules� � ���
��� Combining the Load Execute rule with other execute rules� � � � � � � ���
��� Combining the Store Execute rule with other execute rules� � � � � � � ���
���� Synchronous pipeline with local feedback �ow control� � � � � � � � � � ���
���� Synchronous pipeline with combinational multi�stage feedback �ow

control� ���
���� Circuit area distributions for �ve processors� � � � � � � � � � � � � � � ���
���� Critical path delays for �ve processors� � � � � � � � � � � � � � � � � � ���

��

Chapter �

Introduction

This thesis presents a method for hardware synthesis from an 	operation centric
 de�
scription� In an operation�centric description� the behavior of a system is decomposed
and described as a collection of operations� This operation�centric view of hardware
is new in synthesis but not in description� Most high�level hardware speci�cations
intended for human reading are given operation�centrically� A typical assembly pro�
grammer�s manual for a microprocessor is an example where the behavior of the pro�
cessor is broken down into per�instruction operations� Although informal� the writ�
ten material in most computer architecture textbooks also presents ideas and designs
operation�centrically� This thesis improves the usefulness of the operation�centric ap�
proach to hardware description by developing a formal description framework and by
enabling automatic synthesis of an ecient synchronous circuit implementation� The
results of this thesis show that an operation�centric hardware development framework
o�ers a signi�cant reduction in design time and e�ort� without loss in implementation
quality� when compared to traditional frameworks�

��� Operation�Centric Hardware Description

An operation is de�ned by a predicate condition and an e�ect� The interpretation
is that an operation�s e�ect on the system state can take place when the predicate
condition is satis�ed� Although an implementation may execute multiple operations
concurrently� the end result of an execution must correspond to some sequential in�
terleaving of the operations such that each operation in the sequence produces a state
that enables the next operation�

For an unambiguous interpretation� the e�ect of an operation is taken to be atomic�
In other words� an operation 	reads
 the entire state of the system in one step� and�
if the operation is enabled� the operation updates the state in the same step� If
several operations are enabled in a state� any one of the operations can be selected
to update the state in one step� and afterwards a new step begins with the updated
state� This atomic semantics simpli�es the task of hardware description by permitting
the designer to formulate each operation as if the system were otherwise static� The
designer does not have to worry about unexpected interactions with other concurrent

��

operations� For related reasons� the atomic semantics of operations also makes an
operational�centric description easier to interpret by a human� It is important to
re�emphasize that this sequential and atomic interpretation of a description does
not prevent a legal implementation from executing several operations concurrently�
provided the concurrent execution does not introduce new behaviors that are not
producible by sequential executions�

The instruction reorder bu�er �ROB� of a modern out�of�order microprocessor
exempli�es complexity and concurrency in hardware behavior�� Describing an ROB
poses a great challenge for traditional hardware description frameworks where concur�
rency needs to be managed explicitly� However� in an operation�centric framework�
the behavior of an ROB can be perspicuously described as a collection of atomic op�
erations including dispatch� complete� commit� etc� �AS���� For example� the dispatch
operation is speci�ed to take place if there is an instruction that has all of its operands
and is waiting to execute� and� furthermore� the execution unit needed by the instruc�
tion is available� The e�ect of the dispatch operation is to send the instruction to the
execution unit� The speci�cation of the dispatch operation need not include informa�
tion about how to resolve potential con�icts arising from the concurrent execution of
other operations�

��� Limitations of Operation�Centric Frameworks

Instead of marking the progress of time with an explicit global clock� the behavior of
an operation�centric description is interpreted as a sequence of operations executed
in atomic steps� This abstract model of time permits an unambiguous sequential
interpretation by the designer but at the same time enables a compiler to automat�
ically exploit parallelism by scheduling multiple parallelizable operations into the
same clock cycle in a synchronous implementation� Unfortunately� at times� this nor�
mally simplifying abstraction gets in the way of describing hardware designs whose
correctness criteria include a speci�c synchronous execution timing� For example� a
microprocessor often has to interface with the memory controller via a synchronous
bus protocol that assumes prede�ned latencies between the exchanges of bus signals�
As another example� suppose the description of the out�of�order processor above con�
tains a fully�pipelined multiplier unit with a latency of exactly four clock cycles� After
a dispatch operation launches a multiply instruction� a corresponding complete opera�
tion should be triggered exactly four cycles later� This kind of temporal relationships
between operations cannot be expressed directly in an operation�centric framework�
In more severe cases� glue logic expressed in a lower�level synchronous representation
becomes necessary� However� in many cases� this limitation can be avoided by us�
ing an asynchronous handshake between the interacting elements� For example� an
operation�centrically described processor can interface with a bus protocol where the
initiations of exchanges are demarcated by appropriate strobe signals� The multipli�
cation unit in the out�of�order processor can be out�tted with ready and done status

�Refer to �HP��� and �Joh��� for background information on the operation of an ROB�

��

signals that can be tested by the predicates of the dispatch and complete operations�

��� Comparison to CFSM�based Frameworks

Digital hardware designs inherently embody highly concurrent behaviors� The im�
plementation of any non�trivial design invariably consists of a collection of cooper�
ating �nite state machines �CFSM�� Hence� most hardware description frameworks�
whether schematic or textual� use CFSM as the underlying abstraction� In a CFSM
framework� a designer explicitly manages concurrency by scheduling the exact cycle�
by�cycle interactions between multiple concurrent state machines� It is easy to make a
mistake in coordinating interactions between two state machines because transitions
in di�erent state machines are not coupled semantically� It is also dicult to modify
one state machine without considering its interaction with the rest of the system�

The advantage of a CFSM framework lies in its resemblance to the underlying
circuit implementation� This makes automatic circuit synthesis simpler and more
ecient� The close correlation between description and implementation also gives
designers tighter control over lower�level implementation choices� On the other hand�
a CFSM description cannot be easily correlated to the functionality of the design�
Producing a CFSM�based description from a high�level design speci�cation requires
considerable time and expertise because the designer has to translate between two very
di�erent abstractions� The development of a CFSM�based description is also error�
prone due to its explicit concurrency model� The disadvantages of CFSM frameworks
can quickly outweigh their advantages as hardware design complexity increases�

��� Comparison to Other High�Level Frameworks

RTL Description and Synthesis� Synthesizing hardware from textual register�
transfer level �RTL� descriptions is currently the standard practice in the development
of digital integrated circuits� Many high�end integrated�circuit companies own pro�
prietary hardware description languages �HDLs� and synthesis tools to cater to their
applications and fabrication technologies� On the other hand� Verilog �TM��� and
VHDL� �Ins��� are two standardized HDLs that are supported by commercial tools
and are widely used in both industry and academia� The Synopsis Design Com�
piler �Synb� and Synplify �Synd� are commercial synthesis tools that compile the RTL
�a�k�a� structural� subsets of Verilog and VHDL� Synthesizable RTL descriptions rely
on the same synchronous CFSM abstraction as traditional schematic frameworks�
In comparison to schematic capture� the productivity gain of an RTL�based design
�ow comes from the relative compactness of textual descriptions and from automatic
logic optimizations by synthesis tools� The operation�centric synthesis framework in
this thesis outputs RTL descriptions and relies on commercial hardware compilers to
produce the �nal circuit implementations�

�VHSIC Hardware Description Language� where VHSIC stands for Very High Speed Integrated
Circuits�

��

Behavioral Description and Synthesis� The term behavioral description typi�
cally refers to describing hardware� or hardware�software systems� as multiple threads
of computation that communicate via message passing or a shared�memory paradigm�
The underlying multithreaded abstraction can be traced to Communicating Sequen�
tial Processes �Hoa���� The objective of behavioral synthesis is to infer and allocate
the necessary hardware resources and schedule their usage by the threads� Topics
relating to this style of high�level synthesis are discussed in �GDWL��� and �MLD����
The behavioral frameworks describe each hardware thread using high�level sequential
languages like C or behavioral Verilog� A comprehensive summary of early e�orts
can be found in �WC��� and �CW���� More recent e�orts are represented by Hard�
wareC �Sta���� Esterel �Ber���� ECL �LS���� SpecC �GZD����� and a hybrid C�Verilog
co�speci�cation framework by Thomas� et al� �TPPW���� Commercially� besides be�
havioral Verilog and VHDL� SystemC �LTG��� and Superlog �Co��� based on C�C��
and C�Verilog respectively� are two threaded behavioral languages that are currently
gaining acceptance� The multithreaded behavioral abstraction is an improvement
over the CFSM frameworks� Instead of synchronizing cycle�by�cycle� the threaded
abstraction allows hardware threads to synchronize at coarser granularity or only at
communication points� Nevertheless� a designer still needs to coordinate the interac�
tions between concurrent threads of computations explicitly�

Software Languages for Hardware Description and Synthesis� Both sequen�
tial and parallel programming languages have been used to capture functionalities for
hardware implementation� Transmogri�er�C is based on C plus additional hardware�
speci�c constructs �Gal���� The Programmable Active Memory �PAM� project uses
C�� syntax for RTL description �VBR����� These �rst two usages of software lan�
guages are strongly in�uenced by hardware description needs� Although these lan�
guages leverage the familiar syntax of C and C��� a description is typically illegal
or not meaningful as a C or C�� program� Semantically and syntactically correct
sequential C and Fortran programs have been automatically parallelized to target an
array of con�gurable structures in the RAW project �BRM����� The SpC project
attempts to synthesize full ANSI�compliant C programs and� in particular� addresses
C programs with pointers to variables �SM��� Mic���� Data�parallel C languages have
also been used to program an array of FPGAs in Splash � �GM��� and CLAy �GG����
These latter examples synthesize hardware from semantically correct programs and
thus are convenient tools for implementing algorithms� However� these program�based
descriptions are not suitable for describing microarchitectural mechanisms� In the
operation�centric framework of this thesis� both algorithms and microarchitectures
can be expressed in the TRSpec language for synthesis�

Processor�Speci�c High�level Description and Synthesis� High�level hard�
ware description and synthesis are employed in the development of application spe�
ci�c instruction set processors �ASIPs�� For example� the ADAS �PSH���� environ�
ment accepts an instruction set architecture �ISA� described in Prolog and emits
a VLSI implementation using a combination of tools in stages� During behavioral

��

synthesis� the Piper tool attempts to pipeline the microarchitecture while taking
into account factors like instruction issue frequencies� pipeline stage latencies� etc�
The whole ADAS development suite is driven at the front�end by ASIA �HHD���� a
system that automatically generates a custom ISA for a particular application pro�
gram� Other processor�speci�c high�level description and synthesis frameworks in�
clude Mimola �Mar���� Dagar �Raj���� nML �FPF���� and ISDL �HHD���� Although
not domain�speci�c to ASIP developments� the operation�centric framework in this
thesis can also be used to give concise speci�cations of ISA semantics and processor
microarchitectures� Furthermore� an operation�centric ISA speci�cation is amenable
to automatic synthesis and architectural transformations�

Other Representative Work� Hardware description frameworks with formal ba�
sis have been used in the context of formal design speci�cation and veri�cation� For
example� the speci�cation language of the HOL theorem proving system �SRI��� has
been used to describe a pipelined processor� and a methodology has been developed to
verify a pipelined processor description against its non�pipelined counterpart �Win����
The Hawk language� based on Haskell �JHA����� can be used to create executable
speci�cations of processor microarchitectures �MLC���� a Hawk pipelined processor
speci�cation can be reduced into a non�pipelined equivalent for veri�cation �ML����
The TRSpec language described in this thesis is based on the formalism of Term
Rewriting Systems �TRS�� Besides being synthesizable� a TRSpec description is also
amenable to formal veri�cation� In a closely related research� Marinescu and Ri�
nard address the problem of synthesizing a synchronous pipeline from a description
of loosely�coupled modules connected by queues �MR����

��� Thesis Contributions

The operation�centric view of hardware has existed in many forms of hardware spec�
i�cations� usually to convey high�level architectural concepts� This thesis creates a
new hardware development framework where an ecient circuit implementation can
be synthesized automatically from an operation�centric description� Speci�cally� this
thesis makes the following contributions�

� Identi�cation of key properties and advantages of operation�centric hardware
description frameworks

� Design of TRSpec� a source�level operation�centric hardware description lan�
guage based on the TRS formalism

� De�nition of an operation�centric state machine abstraction that serves as the
syntax�independent intermediate representation during hardware synthesis

� Formulation of the theories and algorithms necessary to create an ecient hard�
ware implementation from an operation�centric description

��

� Implementation of the Term Rewriting Architectural Compiler �TRAC�� a com�
piler for TRSpec

� Investigation of the e�ectiveness of TRSpec and TRAC in comparison to tra�
ditional RTL�based development �ows

� Preliminary investigation of pipelined superscalar processor development via
source�to�source transformations of TRSpec descriptions

In this early step towards the study of operation�centric hardware development frame�
works� several important and interesting points of research are not fully addressed�
These open issues are summarized in Section ���

��� Thesis Organization

Following this introductory chapter� the next chapter �rst provides a further introduc�
tion to operation�centric hardware descriptions using four design examples� Chapter �
then explains the synthesis of operation�centric hardware descriptions� The chapter
�rst develops a formal representation for operation�centric hardware description and
then describes the synthesis algorithms implemented in TRAC� Chapter � presents
TRSpec� the source�level TRS language accepted by TRAC� Chapter � presents the
results from applying TRAC to TRSpec descriptions� Chapter � presents the ap�
plication of TRSpec and TRAC to the design of a pipelined superscalar processor�
Chapter � concludes with a summary of this thesis and identi�es areas for continued
investigation�

��

Chapter �

Operation�Centric Design

Examples

Four design examples are explored to provide a concrete demonstration of operation�
centric hardware description� The �rst example develops a hardware implementa�
tion of Euclid�s Algorithm� The second example describes a simple instruction set
architecture �ISA�� The third and fourth examples describe two di�erent pipelined
implementations of the same ISA� In this chapter� the operation�centric descriptions
borrow the notation of Term Rewriting Systems �TRS� �BN��� Klo����

��� Euclid�s Algorithm

This example develops a �nite state machine �FSM� that computes the greatest com�
mon divisor �GCD� of two positive integers using Euclid�s Algorithm�� The FSM�s
state elements consist of two ���bit registers� a and b� The behavior of this FSM
can be captured operation�centrically using a TRS whose terms has the signature
Gcd�a�b� where the variables a and b correspond to the unsigned integer contents of
registers a and b� The FSM has two operations� Mod and Flip� The Mod operation
can be described by the rewrite rule�

Mod Rule�
Gcd�a�b� if �a�b� � �b ���� � Gcd�a�b�b�

In general� a rewrite rule has three components� a left�hand�side pattern term� a
right�hand�side rewrite term� and an optional predicate� In the Mod rule� the pat�
tern is Gcd�a�b�� the rewrite term is Gcd�a�b�b�� and the predicate is the expression
�a�b� � �b����� A rule can be applied if the pattern matches the current state value
and if the predicate is true� In the context of operations� the pattern and the pred�
icate describe the condition of an operation� i�e�� the Mod operation is enabled only

�Euclid�s Algorithm states Gcd�a� b	
 Gcd�b� �a mod b		 if b �
 �� This equality can be used
to repeatedly reduce the problem of computing Gcd�a� b	 to a simpler problem� For example�
Gcd��� 	
 Gcd�� �	
 Gcd��� �	
 ��

��

when �a � b���b �� ��� The right�hand�side rewrite term speci�es the new state value
after a rewrite� In describing the behavior of an FSM� the rewrite term conveys how
an operation updates the state elements� The e�ect of the Mod operation is to update
the register a by the value a� b�

The Flip operation can be described by the rewrite rule�

Flip Rule�
Gcd�a�b� if �a�b� � Gcd�b�a�

The e�ect of the Flip operation is to exchange the contents of registers a and b� This
operation is enabled only when �a � b��

Starting with two integers in registers a and b� an execution of the FSM computes
the GCD of these initial values� The execution of the FSM must correspond to some
sequential and atomic interleaving of the Mod operation and the Flip operation� The
sequence of operations stops when register b contains � because neither operation can
be enabled� The GCD of the initial values is in register a at the end of the sequence�
For example� starting with an initial state corresponding to the term Gcd������ the
sequence of operations that follows is

Gcd����� �F lip Gcd����� �Mod Gcd����� �Mod Gcd����� �F lip Gcd�����

This operation�centric description of an FSM is not only easy to understand� but
it also allows certain properties of the whole system to be proven by examining the
property of each operation individually� For example� it can be shown that if an
FSM correctly implements this two�operation system� then it maintains the invariant
that the GCD of the contents of registers a and b never changes� To show this� one
can make the argument that neither the Mod operation nor the Flip operation can
change the GCD of a and b�� Since an execution of a correctly implemented FSM
must correspond to some sequential and atomic interleaving of these two operations�
the GCD of a and b should never change from operation to operation�

In a TRS� the state of the system is represented by a collection of values� and a
rule rewrites values to values� Given a collective state value s� a TRS rule computes
a new value s � such that

s ��if ��s� then ��s� else s

where the � function captures the �ring condition and the � function captures the
e�ect of the rule� It is also possible to view a rule as a state�transformer in a state�
based system� In the state�transformer view� the applicability of a rule is determined
by computing the � function on the current state� and the next�state logic consists
of a set of actions that alter the contents of the state elements to match the value

�For the Mod operation� if �a � b	��b �
 �	 then �a mod b	
 ��a � b	 mod b	� and thus�
Gcd�a� b	
 Gcd�a mod b� b	
 Gcd��a � b	 mod b� b	
 Gcd�a � b� b	� For the Flip operation�
Gcd�a� b	
 Gcd�b� a	�

��

=0

π
Mod

δ
Mod,a

δ
Mod,a

π
Mod

ce

ce

b

a

�a�

π
Flip

δ
Flip,a

δ
Flip,bδ

Flip,a

δ
Flip,b

π
Flip

π
Flip

ce

ce

b

a

�b�

Figure ���� Next�state logic corresponding to �a� the Mod operation and �b� the Flip
operation�

of ��s�� The execution semantics of operations remains sequential and atomic in this
action�on�state interpretation�

The operations in this example can be restated in terms of actions� In the notation
below� �Mod is the predicate of the Mod operation� aMod�a is the action on register a
according to the Mod operation� etc�

�Mod � �a � b� � �b �� ��
aMod�a � set�a� b�

�F lip � �a � b�
aF lip�a � set�b�
aF lip�b � set�a�

If an operation is mapped to a synchronous state transition of the FSM� �Mod and
aMod�a map to the next�state logic in circuit �a� of Figure ���� The Flip operation
maps to the next�state logic in circuit �b� of Figure ����

��

δ
Flip,a

δ
Flip,b

Mod,a
δFlip,a

δ

Flip π
Mod

π

Flip

π
Mod

π

Flip
π

Flip,b
δ

Mod
π

Flip
π

=0
ce

ce

b

a

+

δ
Mod,a

Figure ���� Circuit for computing Gcd�a� b��

The �nal FSM implementation can be derived by combining the two circuits from
Figure ���� Both the Mod operation and the Flip operation a�ect register a� but the
two operations are never enabled in the same state� �Their predicates contradict��
Since the two operations are mutually exclusive� the latch enable for a is simply the
logical�OR of the two operations� predicates �i�e�� �Mod � �F lip� and the next�state
value of a is selected from either aMod�a or aF lip�a through a multiplexer� The next�
state value and latch enable of b is controlled by the Flip operation alone�

Figure ��� shows the merged circuit� The circuit behaves like circuit �a� of Fig�
ure ��� in a cycle when the condition �a � b���b �� ��� required by the Mod operation�
is satis�ed� In a cycle when the condition �a � b�� required by the Flip operation�
is satis�ed� the circuit behaves like circuit �b� of Figure ��� instead� Since the two
operations are mutually exclusive� the atomic semantics of operations is maintained
in this implementation automatically�

��� A Simple Processor

A simple ISA can be speci�ed operation�centrically as a TRS whose terms have the
signature Proc�pc� rf� imem� dmem�� The four �elds of a processor term correspond to
the values of the programmer�visible states of the ISA� The variable pc represents the
program counter register� The rf variable corresponds to the register �le� an array of
integer values� In an expression� rf�r� gives the value stored in location r of rf� and
rf�r	
v� gives the new value of the array after location r has been updated by the value
v� The imem variable is an array of instructions� The dmem variable corresponds to
the data memory� another array of integer values�

The behavior of the processor can be described by giving a rewrite rule for each in�
struction in the ISA� The following rule describes the execution of an Add instruction�

Add Rule�
Proc�pc� rf� imem� dmem� where Add�rd�r��r��
imem�pc�

� Proc�pc��� rf�rd	
�rf�r���rf�r����� imem� dmem�

This rule conveys the same level of information as one would �nd in a programmer�s

��

manual� The rule is enabled for a processor term whose current instruction� imem�pc��
is an Add instruction� �An Add instruction is represented by a term with the signature
Add�rd�r��r��� The rule uses a pattern�matching where statement to require imem�pc�
to match the pattern Add�rd�r��r���� Given a processor term that satis�es this con�
dition� the rule�s rewrite term speci�es that the processor term�s pc �eld should be
incremented by � and the destination register rd in rf should be updated with the
sum of rf�r�� and rf�r��� In the state�transformer view� the operation described by the
Add rule can be stated as

�Add � �imem�pc�
Add�rd�r��r���
aAdd�pc � set�pc���
aAdd�rf � a�set�rd�rf�r���rf�r���

Figure ��� gives the rewrite rules for all instructions in the ISA� The instructions
are move PC to register� load immediate� register�to�register addition and subtraction�
branch if zero� memory load and store� The complete TRS not only describes an ISA�
but it also constitutes an operation�centric description of an FSM that implements
the ISA� The datapath for the processor can be derived automatically and is depicted
in Figure ����

��� A Pipelined Processor

The ISA description from the previous example can be transformed into the descrip�
tion of a pipelined processor by adding FIFOs as pipeline bu�ers and by systematically
splitting every instruction operation into sub�operations local to the pipeline stages�

For example� a two�stage pipelined processor can be speci�ed as a TRS whose
terms have the signature Proc�pc� rf� bf� imem� dmem�� A FIFO bf is included as the
pipeline bu�er between the fetch stage and the execute stage� The FIFO is abstracted
to have a �nite but unspeci�ed size� Using a list�like syntax� a FIFO containing three
elements can be expressed as b�b�b�� The two main operations on a FIFO are
enqueue and dequeue� Enqueuing b to bf yields bfb while dequeuing from bbf leaves
bf� An empty FIFO is expressed as ����

Using a FIFO to separate pipeline stages provides the necessary isolation that
allows the operations in one stage to be described independently of the other stages�
Although this style of pipeline description re�ects a pipeline that is asynchronous and
elastic� it is possible to infer a legal implementation that is fully�synchronous and has
stages separated by simple registers�

The Add rule from the previous example can be split into two sub�rules that de�
scribe the operations in the fetch stage and the execute stage of the pipeline� The
fetch�stage sub�rule is

Fetch Rule�
Proc�pc� rf� bf� imem� dmem�

� Proc�pc��� rf� bfimem�pc�� imem� dmem�

��

Loadi Rule�
Proc�pc� rf� imem� dmem� where Loadi�rd�const�
imem�pc�

� Proc�pc��� rf�rd	
const�� imem� dmem�

Loadpc Rule�
Proc�pc� rf� imem� dmem� where Loadpc�rd�
imem�pc�

� Proc�pc��� rf�rd	
pc�� imem� dmem�

Add Rule�
Proc�pc� rf� imem� dmem� where Add�rd�r��r��
imem�pc�

� Proc�pc��� rf�rd	
�rf�r���rf�r����� imem� dmem�

Sub Rule�
Proc�pc� rf� imem� dmem� where Sub�rd�r��r��
imem�pc�

� Proc�pc��� rf�rd	
�rf�r���rf�r����� imem� dmem�

Bz Taken Rule�
Proc�pc� rf� imem� dmem� if �rf�rc�
�� where Bz�rc�ra�
imem�pc�

� Proc�rf�ra�� rf� imem� dmem�

Bz Not�Taken Rule�
Proc�pc� rf� imem� dmem� if �rf�rc� ���� where Bz�rc�ra�
imem�pc�

� Proc�pc��� rf� imem� dmem�

Load Rule�
Proc�pc� rf� imem� dmem� where Load�rd�ra�
imem�pc�

� Proc�pc��� rf�rd	
dmem�rf�ra���� imem� dmem�

Store Rule�
Proc�pc� rf� imem� dmem� where Store�ra�r�
imem�pc�

� Proc�pc��� rf� imem� dmem�rf�ra�	
rf�r���

Figure ���� TRS rules for a simple ISA�

��

+1

Register

File

(rf)

ALU

(+,-)

Program

ROM

Data

Memory

(dmem)

pc

(imem)

Figure ���� A simple non�pipelined processor datapath� shown without control signals�

The execute�stage sub�rule is

Add Execute Rule�
Proc�pc� rf� instbf� imem� dmem� where Add�rd�r��r��
inst

� Proc�pc� rf�rd	
�rf�r���rf�r����� bf� imem� dmem�

The Fetch rule fetches instructions from consecutive instruction memory locations
and enqueues them into bf� The Fetch rule is not concerned with what happens if a
branch is taken or if the pipeline encounters an exception� The Add Execute rule� on
the other hand� would process the next pending instruction in bf as long as it is an
Add instruction�

In this TRS� more than one rule can be enabled on a given state� The Fetch
rule is always ready to �re� and at the same time� the Add Execute rule� or other
execute�stage rules� may be ready to �re as well� Even though conceptually only
one rule should be �red in each step� an implementation of this processor description
must carry out the e�ect of both rules in the same clock cycle� Without concurrent
execution� the implementation does not behave like a pipeline� Nevertheless� the
implementation must also ensure that a concurrent execution of multiple operations
produces the same result as a sequential execution�

The Bz Taken rule and the Bz Not�Taken rule from the previous example can also
be split into separate fetch and execute rules� The execute�stage components of the
Bz Taken and Bz Not�Taken rules are

Bz Taken Execute Rule�
Proc�pc� rf� instbf� imem� dmem� if �rf�rc�
�� where Bz�rc�ra�
inst

� Proc�rf�ra�� rf� �� imem� dmem�

and

Bz Not�Taken Execute Rule�
Proc�pc� rf� instbf� imem� dmem� if �rf�rc� ���� where Bz�rc�ra�
inst

� Proc�pc� rf� bf� imem� dmem�

��

The Fetch rule performs a weak form of branch speculation by always incrementing
pc� Consequently� in the execute stage� if a branch is resolved to be taken� besides
setting pc to the branch target� all speculatively fetched instructions in bf need to be
discarded� This is indicated by setting bf to ��� in the Bz Taken Execute rule�

Although both the Fetch rule and the Bz Taken Execute rule can a�ect pc and bf�
the sequential semantics of rules allows the formulation of the Bz Taken Execute rule
to ignore the possibility of contentions or race conditions with the Fetch rule� In a
clock cycle where the processor state enables both rules� the description permits an
implementation to behave as if the two operations are executed sequentially� in either
order� This implementation choice determines whether one or two pipeline bubbles
are inserted after a taken branch� but it does not a�ect the processor�s ability to
correctly execute a program�

The operations in this example can also be restated in terms of actions�

�Fetch � notfull�bf�
aFetch�pc � set�pc���
aFetch�bf � enq�imem�pc��

�Add�Exec � ��rst�bf�
Add�rd�r��r����notempty�bf�
aAdd�Exec�rf � a�set�rd�rf�r���rf�r���
aAdd�Exec�bf � deq� �

�BzTaken�Exec � ��rst�bf�
Bz�rc�rt����rf�rc�
���notempty�bf�
aBzTaken�Exec�pc � set�rf�ra��
aBzTaken�Exec�bf � clear� �

�BzNotTaken�Exec � ��rst�bf�
Bz�rc�rt����rf�rc� �����notempty�bf�
aBzNotTaken�Exec�bf � deq� �

Null actions� represented as �� on a state element are omitted from the action lists
above� �The full action list for the Add Execute rule is h apc� arf � abf � aimem� admem i
where apc� aimem and admem are ��s�� Also notice� each operation�s � expression has
been augmented with an explicit test� notfull�bf� or notempty�bf�� depending on
how the operation accesses bf�

��� Another Pipelined Processor

This example demonstrates the versatility of operation�centric descriptions by deriv�
ing a variation of the pipelined processor� In the previous example� instruction decode
and register �le read are performed in the execute stage� The processor described in
this example performs instruction decode and register read in the fetch stage instead�

The new two�stage pipelined processor is speci�ed as a TRS whose terms have the
signature Proc�pc� rf� bf� imem� dmem�� Decoded instructions and their operand values

��

are stored as instruction templates in the pipeline bu�er bf� The instruction template
terms have the signatures� TLoadi�rd�v�� TAdd�rd�v��v��� TSub�rd�v��v��� TBz�vc�va��
TLoad�rd�va�� and TStore�va�v��

Below� the Add rule from Section ��� is split into two sub�rules such that instruc�
tion decode is included in the fetch�stage rule� The fetch�stage sub�rule is

Add Fetch Rule�
Proc�pc� rf� bf� imem� dmem�

if �r���Target�bf�� � �r���Target�bf�� where Add�rd�r��r��
imem�pc�
� Proc�pc��� rf� bfTAdd�rd�rf�r���rf�r���� imem� dmem�

The execute�stage sub�rule is

Add Execute Rule�
Proc�pc� rf� itempbf� imem� dmem� where TAdd�rd�v��v��
itemp

� Proc�pc� rf�rd	
�v��v���� bf� imem� dmem�

Splitting an operation into sub�operations destroys the atomicity of the original op�
eration and can cause new behaviors that are not part of the original description�
Thus� the sub�operations may need to resolve newly created hazards� In this case�
the Add Fetch rule�s predicate expression has been extended to check if the source
register names� r� and r�� are in Target�bf��� This extra condition stalls instruction
fetching when a RAW �read�after�write� hazard exists�

As another example� consider the Bz Taken rule and the Bz Not�Taken rule from
Section ���� Again� the rules can be split into their fetch and execute sub�operations�
Both Bz rules share the following instruction fetch rule�

Bz Fetch Rule�
Proc�pc� rf� bf� imem� dmem�

if �rc��Target�bf�� � �ra��Target�bf�� where Bz�rc�ra�
imem�pc�
� Proc�pc��� rf� bfTBz�rf�rc��rf�ra��� imem� dmem�

The two execute rules for the Bz instruction template are

Bz Taken Execute Rule�
Proc�pc� rf� itempbf� imem� dmem� if �vc
�� where TBz�vc�va�
itemp

� Proc�va� rf� �� imem� dmem�

and

Bz Not�Taken Execute Rule�
Proc�pc� rf� itempbf� imem� dmem� if �vc���� where TBz�vc�va�
itemp

� Proc�pc� rf� bf� imem� dmem�

As in the previous examples� the operations in this example can also be restated

�Target�bf� is a shorthand for the set of destination register names in bf� Let bf contain entries
i������in� �r��Target�bf�� stands for ��r�
Dest�i���������r �
Dest�in		� where Dest�itemp� extracts the
destination register name of an instruction template�

��

in terms of actions�

�Add�Fetch � �imem�pc�
Add�rd�r��r���
��r���Target�bf����r���Target�bf���notfull�bf�

aAdd�Fetch�pc � set�pc���
aAdd�Fetch�bf � enq�TAdd�rd�rf�r���rf�r����

�Add�Exec � ��rst�bf�
TAdd�rd�v��v����notempty�bf�
aAdd�Exec�rf � a�set�rd�v��v��
aAdd�Exec�bf � deq� �

�Bz�Fetch � �imem�pc�
Bz�rc�ra��
��rc��Target�bf����ra��Target�bf���notfull�bf�

aBz�Fetch�pc � set�pc���
aBz�Fetch�bf � enq�TBz�rf�rc��rf�ra���

�BzTaken�Exec � ��rst�bf�
TBz�vc�vt����vc
���notempty�bf�
aBzTaken�Exec�pc � set�va�
aBzTaken�Exec�bf � clear� �

�BzNotTaken�Exec � ��rst�bf�
TBz�vc�vt����vc�����notempty�bf�
aBzNotTaken�Exec�bf � deq� �

��

Chapter �

Hardware Synthesis and

Scheduling

Implementing an operation�centric description involves combining the atomic oper�
ations into a single coherent next�state logic for a state machine� For performance
reasons� an implementation should carry out multiple operations concurrently while
still maintaining a behavior that is consistent with a sequential execution of the atomic
operations� This chapter �rst presents the Abstract Transition System �ATS�� an ab�
stract state machine whose transitions are speci�ed operation�centrically� The chapter
next develops the procedure to synthesize an ATS into an ecient synchronous digital
implementation� A straightforward implementation that only executes one operation
per clock cycle is presented �rst� This is followed by two increasingly optimized
implementations that support the concurrent execution of operations�

��� Abstract Transition Systems

ATS is designed to be the intermediate target in the compilation of source�level
operation�centric hardware description languages� An ATS is de�ned by S� So and
X � S is a list of state elements� and So is a list of initial values for the elements in S�
X is a list of operation�centric transitions� The structure of an ATS is summarized
in Figure ����

����� State Elements

This thesis de�nes a restricted ATS where an element in S can only be a register�
an array� or a FIFO� For generality� the ATS abstraction can be extended with new
elements and variations on existing elements�

A register R can store an integer value up to a speci�ed maximum word size�
The value stored in R can be referenced in an expression using the side�e�ect�free
R�get� � query operator� For conciseness� R�get� � can be abbreviated simply as R in
an expression� R�s content can be set to value by the R�set�value� action operator�
Any number of queries are allowed in an atomic update step� but each register allows

��

AT S � h S� So� X i
S � hR�� ����RNR�A�� ����ANA�F�� ����FNF �O�� ����ONO � I�� ���� INI i
So � h vR�� ����vRNR �vA� � ����vANA�vF�� ����vFNF �vO�� ����vONO i
X � fT�� ����TM g
T � h �� � i
� � exp

� � h aR�� ����aRNR �aA� � ����aANA �aF�� ����aFNF �aO�� ����aONO �aI� � ����aINI i
a
R � � �� set�exp�
a
A � � �� a�set�expidx� expdata�
a
F � � �� enq�exp� �� deq� � �� en�deq�exp� �� clear� �

a
O � � �� set�exp�
a
I � �

exp � constant �� Primitive�Op�exp�� ���� expn�
�� R�get� � �� A�a�get�idx�
�� F��rst� � �� F�notfull� � �� F�notempty� �
�� O�get� � �� I�get� �

Figure ���� ATS summary�

at most one set action in each atomic update step� An atomic update step is de�ned
in Section ����� where the operational semantics of an ATS is de�ned�

An array A can store a speci�ed number of values� The value stored in the idx �th
entry of A can be referenced in an expression using the side�e�ect�free A�a�get�idx�
query operator� A�a�get�idx� can be abbreviated as A�idx �� The content of the idx �th
entry of A can be set to value using the A�a�set�idx �value� action operator� Out�of�
bound queries or actions on an array are not allowed� In this thesis� each array allows
at most one a�set action in each atomic update step� but any number of queries on
an array are allowed� In general� variations of the array elements can be de�ned to
allow multiple a�set actions or to limit the number of a�get queries�

A FIFO F stores a �nite but unspeci�ed number of values in a �rst�in� �rst�out
manner� The oldest value in F can be referenced in an expression using the side�e�ect�
free F��rst� � query operator� and can be removed by the F�deq� � action operator� A
new value can be added to F using the F�enq�value� action operator� F�en�deq�value�
is a compound action that enqueues a new value after dequeuing the oldest value� In
addition� the entire contents of F can be cleared using the F�clear� � action operator�
Under�owing or over�owing a FIFO by an enq or a deq action is not allowed� The
status of F can be queried using the side�e�ect�free F�notfull� � and F�notempty� �
query operators that return a Boolean status� Each FIFO allows at most one action
in each atomic update step� but any number of queries are allowed� Again� variations
of FIFO elements can be de�ned to support multiple actions per update step�

Input elements and output elements are register�like state elements� An input
element I is like a register without the set operator� I�get� � returns the value of an
external input port instead of the content of an actual register� An output element O

��

supports both set and get � and its content is visible outside of the ATS on an output
port� Input and output elements can be treated exactly like registers except when
the input and output ports are instantiated in the �nal phase of circuit synthesis
�described in Section �������

����� State Transitions

An element in X is a transition� A transition is a pair� h ��� i� � is a Boolean
value expression� In general� a value expression can contain arithmetic and logical
operations on scalar values� A value in an expression can be a constant or a value
queried from a state element� Given an ATS whose S has N elements� � is a list of
N actions� one for each state element� An action is speci�ed as an action operator
plus its arguments in terms of value expressions� A null action is represented by the
symbol ���� For all actions in �� the i�th action of � must be valid for the i�th state
element in S�

����� Operational Semantics

The initial value of the i�th state element �except for input elements� is taken from
the i�th element of So� From this initial state� the execution of an ATS takes place
as a sequence of state transitions in atomic update steps�

At the start of an atomic update step� all � expressions in X are evaluated using
the current contents of the state elements� In a given step� an applicable transition
is one whose � expression evaluates to true� All argument expressions to the actions
in ��s are also evaluated using the current state of S�

At the end of an atomic update step� one transition is selected nondeterministically
from the applicable transitions� S is then modi�ed according to the actions of the
selected transition� For each action in the selected �� the i�th action is applied to the
i�th state element in S� using the argument values evaluated at the beginning of the
step� If an illegal action or combination of actions is performed on a state element�
the system halts with an error� A valid ATS speci�cation never produces an error�

The atomic update step repeats until S is in a state where none of the transitions
are applicable� In this case� the system halts without an error� Alternatively� a
sequence of transitions can lead S to a state where selecting any applicable transition
leaves S unchanged� The system also halts without an error in this case� Some systems
may never halt� Due to nondeterminism� some systems could halt in di�erent states
from one execution to the next�

����� Functional Interpretation

ATS is de�ned in terms of state elements and actions with side�e�ects� In some
circumstances� it is convenient to have a functional interpretation of ATS where an
execution produces a sequence of S values� In the functional domain� the state of S
is represented by a collection of values� R is represented by an integer value� A is an
array of values� and F is an ordered list of values� The e�ect of a transition on state

��

s can be expressed as a function of � and � such that

� s� if ��s� then ��s� else s

where � is a function that computes a new S value based on the current S value�
Given a transition whose � is h aR����� aA� ���� aF� ��� i� its � in the functional domain is

��s�� let
h vR����� vA����� vF���� i�s

in
hApply�aR�� vR��� ���� Apply�aA�� vA��� ���� Apply�aF�� vF��� ��� i

Applying an action in the functional domain entails computing the new value of a
state element based on the old values of the state elements� Given a state element
whose current value is v � the state�s new value after receiving action a can be com�
puted by

Apply�a� v�� case a of
set�exp� � Eval�exp�
a�set�expidx� expdata� � v �Eval�expidx���Eval�expdata��
enq�exp� � v �Eval�exp�
deq� � � RestOf�v�
en�deq�exp� � RestOf�v��Eval�exp�
clear� � � empty list
� � v

where RestOf�list� is the remainder of list after the �rst element is removed�

Example 	�� �GCD�

This ATS corresponds to the TRS described in Section ���� The ATS describes the
computation of the greatest common divisor of two ���bit integers using Euclid�s
Algorithm� S is hRa� Rb i where Ra and Rb are ���bit registers� X consists of two
transition pairs� h ��� �� i and h ��� �� i where

�� � �Ra�Rb� � �Rb �� ��
�� � h set�Ra�Rb�� � i

�� � Ra�Rb
�� � h set�Rb�� set�Ra� i

The two transitions correspond to the Mod operation and the Flip operation from
Section ���� respectively� The initial values So�h �� � i initialize Ra and Rb for the
computation of Gcd��� ���

�

��

Example 	�� �A Simple Processor�

This ATS corresponds to the ISA described in Section ���� The programmer�visible
processor states are represented by S�hRPC �ARF �AIMEM �ADMEM i where RPC is a
���bit program counter register� ARF is a general purpose register �le of four ���
bit values� AIMEM is a ����entry array of ���bit instruction words� and ADMEM is a
����entry array of ���bit values�

X consists of transitions that correspond to the rewrite rules from Section ���� i�e��
each transition describes the execution of an instruction in the ISA� Let �� � and �
be the numerical values assigned to the instruction opcodes Loadi �Load Immediate��
Add �Triadic Register Add� and Bz �Branch if Zero�� Also� let the instruction word
stored in AIMEM be decoded as

opcode � bits �� down to �� of AIMEM �RPC �
rd � bits �� down to �� of AIMEM �RPC�
r� � bits �� down to �� of AIMEM �RPC�
r� � bits �� down to �� of AIMEM �RPC�
const � bits �� down to � of AIMEM �RPC�

��s and ��s of the transitions corresponding to the execution of Loadi� Add and Bz are

�Loadi � �opcode���
�Loadi � h set�RPC���� a�set�rd � const�� �� � i

�Add � �opcode���
�Add � h set�RPC���� a�set�rd � ARF �r� ��ARF �r� ��� �� � i

�BzTaken � �opcode��� � �ARF �r� ����
�BzTaken � h set�ARF �r� ��� �� �� � i

�BzNotTaken � �opcode��� � �ARF �r� �����
�BzNotTaken � h set�RPC���� �� �� � i

�

Example 	�	 �A Pipelined Processor�

This ATS corresponds to the two�stage pipelined processor from Section ���� S is
hRPC�ARF �FBF �AIMEM �ADMEM i� FBF is the pipeline stage FIFO for holding fetched
instruction words�

Separate transitions are used to describe the operations in the Fetch stage and the
Execute stage of the pipeline� � and � of the transition that correspond to instruction
fetch are

�Fetch � FBF �notfull� �
�Fetch � h set�RPC���� �� enq�AIMEM �RPC ��� �� � i

Again� let �� � and � be the numerical values assigned to the instruction opcodes
Loadi �Load Immediate�� Add �Triadic Register Add� and Bz �Branch if Zero�� and

��

let the instruction word returned by FBF ��rst� � be decoded as

opcode � bits �� down to �� of FBF ��rst� �
rd � bits �� down to �� of FBF ��rst� �
r� � bits �� down to �� of FBF ��rst� �
r� � bits �� down to �� of FBF ��rst� �
const � bits �� down to � of FBF ��rst� �

��s and ��s of the transitions that correspond to the execution of Loadi� Add and Bz
in the Execute stage are

�Loadi�Execute � FBF �notempty� � � �opcode���
�Loadi�Execute � h �� a�set�rd � const�� deq� �� �� � i

�Add�Execute � FBF �notempty� � � �opcode���
�Add�Execute � h �� a�set�rd � ARF �r� ��ARF �r� ��� deq� �� �� � i

�BzTaken�Execute � FBF �notempty� � � �opcode��� � �ARF �r� ����
�BzTaken�Execute � h set�ARF �r� ��� �� clear� �� �� � i

�BzNotTaken�Execute � FBF �notempty� � � �opcode��� � �ARF �r� �����
�BzNotTaken�Execute � h �� �� deq� �� �� � i

�

��� Reference Implementation of an ATS

One straightforward implementation of an ATS is a �nite state machine �FSM� that
performs one atomic update step per clock cycle� The elements of S� instantiated
as clock synchronous registers� arrays and FIFOs� are the state of the FSM� �The
hardware manifestations of the ATS state elements are shown in Figure ����� The
atomic transitions in X are combined to form the next�state logic of the FSM�

����� State Storage

The register primitive is rising�edge�triggered and has a clock enable� A register can
take on a new value on every clock edge� but the current value of the register can
fan out to many locations� This hardware usage paradigm is directly re�ected in the
de�nition of the R element of an ATS where only one set action is allowed in an atomic
update step� but any number of get queries are allowed� In general� the capability
of the storage primitives should match their respective ATS counterparts� When the
ATS state element models are extended or modi�ed� their hardware representations
need to be adjusted accordingly� and vice versa�

The array primitive supports combinational reads� that is� the read�data port
�RD� continuously outputs the value stored at the entry selected by the read�address

��

... ...

F
first

_full

_empty(clear enable) CE

(enq data) ED
(enq enable) EE

Clk

(deq enable) DE

A

RD

RD
RD

2

1

n

2

1

n(read addr) RA

(read addr) RA
(read addr) RA

(read data)
(read data)

(read data)

R Q

Clk

(write data) WD
(write enable) WED

LE

Clk

(write addr) WA

Figure ���� Synchronous state elements�

port �RA�� The construction of the reference implementation assumes that an ar�
ray primitive has as many read ports as necessary to support all a�get� � queries of
ATS transitions� After a register�transfer level �RTL� design is generated� the ac�
tual number of combinational read ports can be reduced by common subexpression
elimination� The array primitive only has one synchronous write port� allowing one
update per clock cycle� In general� the number of array write ports should match
the speci�ed capability of the ATS array element A� The data at the write�data port
�WD� is stored to the entry selected by the write�address port �WA� on a rising clock
edge if the write�enable �WE� is asserted�

A FIFO primitive has three output ports that output the oldest value ��rst�� a
Boolean 	not full
 status � full�� and a Boolean 	not empty
 status � empty�� The
FIFO primitive also has three synchronous interfaces that change the state of the
FIFO by enqueuing a new value� dequeuing the oldest value� and clearing the entire
FIFO� Each synchronous interface has an enable that must be asserted at the rising
clock edge for the state change to take e�ect� New entries should not be enqueued to
a FIFO if the FIFO is full� The exact size of the FIFO primitive does not have to be
speci�ed until the �nal design is simulated or synthesized�

����� State Transition Logic

The next�state logic can be derived from the transitions in X in three steps�

Step �� All value expressions in the ATS are mapped to combinational logic signals
on the current state of the state elements� In particular� this step creates a set of
signals� �T�������TM � that are the � signals of transitions T������TM of an M �transition
ATS� The logic mapping in this step assumes all required combinational resources are
available� RTL optimizations can be employed to simplify the combinational logic

��

Scheduler

2
π

2

π
M

φ
M

1 1
φπ

φ

Figure ���� A monolithic scheduler for an M �transition ATS�

LE

D
Q

latch enable
2
1

1
φ φ

2

φ

δ
2

1
δ

φ

Figure ���� Circuits for merging two transitions� actions on the same register�

and to share duplicated logic�

Step �� A scheduler is created to generate the set of arbitrated enable signals�
	T� �����	TM � based on �T�������TM � �The block diagram of a scheduler is shown in
Figure ����� The reference implementation�s scheduler asserts only one 	 signal in each
clock cycle� re�ecting the selection of one applicable transition� A priority encoder is
a valid scheduler for the reference implementation�

Step 	� One conceptually creates M independent versions of next�state logic� each
corresponding to one of the M transitions in the ATS� Next� the M sets of next�state
logic are merged� state�element by state�element� using the 	 signals for arbitration�
For example� a register may have N transitions that could a�ect it over time� �N 	M
because some transitions may not a�ect the register�� The register takes on a new
value if any of the N relevant transitions is enabled in a clock cycle� Thus� the
register�s latch enable is the logical�OR of the 	 signals of the N relevant transitions�
The new value of the register is selected from the N candidate next�state values
via a decoded multiplexer controlled by the 	 signals� Figure ��� illustrates the
merging circuit for a register that is a�ected by the set actions from two transitions�
This merging scheme assumes at most one transition�s action needs to be applied
to a particular register element in a clock cycle� Furthermore� all actions of the
same transition should be enabled everywhere in the same clock cycle to achieve the
appearance of an atomic transition� The algorithm for generating the RTL description
of a reference ATS implementation is given next�

��

����� RTL Description

Scheduler� Given an ATS with M transitions T������TM � a scheduler generates ar�
bitrated transition enable signals 	T� �����	TM where 	Ti is used to select the actions of
Ti� In any state s� a valid scheduler must� at least� ensure that

�� 	Ti � �Ti�s�
�� �T��s�
 ���
�TM �s� � 	T�
 ���
	TM

where �Ti�s� is the value of Ti�s � expression in state s� A priority encoder is a valid
scheduler that selects one applicable transition per clock cycle� Since ATS allows
nondeterminism in the selection� the priority encoder could use a static� round�robin
or randomized priority�

Register Update Logic� Each R in S can be implemented using a synchronous
register with clock enable �see Figure ����� For each R in S� the set of transitions
that update R is

fTxi j a
R
Txi

�set�expxi� g

where aRTxi is the action of Txi on R� The register�s latch enable signal �LE� is

LE � 	Tx�
 ���
	Txn

The register�s data input signal �D� is

D � 	Tx� �expx� � ��� � 	Txn �expxn

The data input expression corresponds to a pass�gate multiplexer where expxi is
enabled by 	Txi �

Array Update Logic� Each A in S can be implemented using a memory array
with a synchronous write port �see Figure ����� �Given an array implementation with
sucient independent write ports� this scheme can also be generalized to support an
ATS that allows multiple array writes in an atomic step�� For each A in S� the set of
transitions that write A is

fTxi j a
A
Txi

�a�set�idxxi� dataxi� g

The array�s write address �WA� and data �WD� are

WA � 	Tx� �idxx� � ��� � 	Txn �idxxn

WD � 	Tx� �datax� � ��� � 	Txn �dataxn

��

The array�s write enable signal �WE� is

WE � 	Tx�
 ���
	Txn

FIFO Update Logic� Each F in S can be implemented using a �rst�in� �rst�out
queue with synchronous enqueue� dequeue and clear interfaces �see Figure ����� For
each F� the inputs to the interfaces can be constructed as follows�

Enqueue Interface� The set of transitions that enqueues a new value into F is

fTxi j �aFTxi�enq�expxi��
�a
F
Txi

�en�deq�expxi�� g

Every transition Txi that enqueues into F is required to test F�notfull� � in its � ex�
pression� Hence� no 	Txi will be asserted if F is already full� F�s enqueue data �ED�
and enable �EE� signals are

ED � 	Tx� �expx� � ��� � 	Txn �expxn

EE � 	Tx�
 ���
	Txn

Dequeue Interface� The set of transitions that dequeues from F is

fTxi j �aFTxi�deq� ��
�a
F
Txi

�en�deq�expxi�� g

Every transition Txi which dequeues from F is required to test F�notempty� � in its �
expression� Similarly� no 	Txi will be asserted if F is empty� F�s dequeue enable �DE�
signal is

DE � 	Tx�
 ���
	Txn

Clear Interface� The set of transitions that clears the contents of F is

fTxi j a
F
Txi

�clear� � g

F�s clear enable �CE� is

CE � 	Tx�
 ���
	Txn

Input and Output Ports� Thus far� input�output elements� I�s and O�s� have been
treated as R�s� This is the only occasion where I and O elements require additional
handling� To support output� the output of each O register is wired to an external
output port of the same width� To support input� the net driven by the Q output of
an I register is rewired to an external input port of the same width� The I register
itself is only a placeholder structure that can be removed after its output connection
has been rewired�

��

=0

π
Flip

π
Mod

δ
Flip,b δ

Flip,a

δ
Flip,b

δ
Mod,a

ce

ce

b

a

+

δ
Mod,a

δ
Flip,a

Mod

φ
Flip φ

Mod

Flip

φ

φ

Flip
φ

Figure ���� The GCD circuit from Example ����

Example 	�
 �GCD�

A reference implementation of the ATS from Example ��� can be derived as follows�

Scheduler� The ATS consists of two transitions� For convenience� let the two tran�
sitions be named Mod and Flip� A two�way priority encoder suces as a simple
scheduler� The inputs to the priority encoder are

�Mod � �Ra�Rb� � �Rb �� ��
�F lip � Ra�Rb

The outputs of the priority enconder are 	Mod and 	F lip�

Register Update Logic� The ATS consists of two registers Ra and Rb� Ra is up�
dated by both transitions whereas Rb is only updated by the Flip transition� Thus�
the latch enables for the two registers are

LERa
� 	Mod
 	F lip

LERb
� 	F lip

The registers� data inputs are

DRa
� 	Mod��Ra�Rb� � 	F lip��Rb�

DRb
� Ra

Rb is only updated by one rule� and hence� multiplexing of its data input is not
required� The synthesized circuit is depicted in Figure ���� �The scheduler is not
shown��

�

��

����� Correctness of a Synchronous Implementation

An implementation is said to implement an ATS correctly if

�� The implementation�s sequence of state transitions corresponds to some execu�
tion of the ATS�

�� The implementation maintains liveness of state transitions�

Suppose for any T the next�state logic of the reference implementation produces the
same state changes as an application of �T� provided 	T is the only 	 signal asserted
at the clock edge� the correctness of the reference implementation can be argued from
the properties of the priority�encoder scheduler� First� the priority encoder main�
tains liveness because the encoder asserts a 	 signal whenever at least one � signal
is asserted� �In general� liveness is maintained by any scheduler that satis�es the
condition �T��s�
���
�TM �s�� 	T�
���
	TM �� Second� an implementation clock cycle
corresponds exactly to an atomic update step of the ATS because the priority en�
coder selects only one of the applicable transitions to update the state at each clock
edge� The sequence of state values constructed by sampling the reference implemen�
tation after every clock edge must correspond to some allowed sequence of ATS state
transitions�

A dimension of correctness that is not addressed in the requirements above is the
treatment of nondeterminism in an ATS� Unless the priority encoder in the reference
implementation has true randomization� the reference implementation is determin�
istic� that is� the implementation can only embody one of the behaviors allowed
by the ATS� Thus� an implementation can enter a livelock if the ATS depends on
nondeterminism to make progress� The reference implementation cannot guarantee
strong�fairness in the selection of transitions� that is� the reference implementation
cannot guarantee any one transition will always be selected eventually� regardless of
how many times the transition becomes applicable� However� using a round�robin
priority encoder as the scheduler is sucient to ensure weak�fairness� that is� if a
transition remains applicable over a bounded number of consecutive steps� it will be
selected at least once�

����� Performance Considerations

In a given atomic update step� if two simultaneously applicable transitions read and
write mutually disjoint parts of S� then the two transitions can be executed in any
order in two successive steps to produce the same �nal state� In this scenario� al�
though the ATS operational semantics prescribes a sequential execution in two atomic
update steps� a synchronous hardware implementation can exploit the underlying par�
allelism and execute the two transitions concurrently in one clock cycle� In the case
of the examples from Sections ��� and ��� where pipelined processors are described
operation�centrically by stages� it is necessary to execute transitions from di�erent
pipeline stages concurrently to achieve pipelined executions� In general� it is danger�
ous to let two arbitrary transitions execute in the same clock cycle because of possible

��

data dependence and structural con�icts� The next two sections� ��� and ���� formalize
the conditions for the concurrent execution of transitions and suggest implementa�
tions with more aggressive scheduling schemes that execute multiple transitions in
the same clock cycle�

��� Optimization I	 Parallel Compositions

In a multiple�transitions�per�cycle implementation� the state transition in each clock
cycle must correspond to a sequential execution of the ATS transitions in some order�
If two transitions Ta and Tb become applicable in the same clock cycle when S is in
state s� �Ta��Tb�s�� or �Tb��Ta�s�� must be true for an implementation to correctly
select both transitions for execution� Otherwise� executing both transitions would be
inconsistent with any sequential execution in two atomic update steps�

Given �Ta��Tb�s�� or �Tb��Ta�s��� there are two approaches to execute the actions
of Ta and Tb in the same clock cycle� The �rst approach cascades the combinational
logic from the two transitions� However� arbitrary cascading does not always improve
the overall performance since it may lead to a longer cycle time� In a more practical
approach� Ta and Tb are executed in the same clock cycle only if the correct �nal state
can be constructed from an independent evaluation of their combinational logic on
the same starting state�

����� Con�ict�Free Transitions

Based on the intuition above� this section develops a scheduling algorithm based
on the con�ict�free relationship ���CF �� ��CF is a symmetrical relationship that
imposes a stronger requirement than necessary for executing two transitions con�
currently� However� the symmetry of ��CF permits a straightforward implementa�
tion that concurrently executes multiple transitions if they are pairwise con�ict�free�
�Section ��� will present an improvement based on a more exact condition�� The
con�ict�free relationship and the parallel composition function PC are de�ned in
De�nition ��� and De�nition ����

De�nition 	�� �Con�ict�Free Relationship�

Two transitions Ta and Tb are said to be con�ict�free �Ta ��CF Tb� if

� s� �Ta�s� � �Tb�s� � �Tb��Ta�s�� � �Ta��Tb�s�� �
��Tb��Ta�s�� � �Ta��Tb�s�� � �PC�s��

where �PC is the functional equivalent of PC ��Ta� �Tb��
�

��

De�nition 	�� �Parallel Composition�

PC ��a� �b�� h pcR�aR� � bR��� ���� pcA�aA� � bA��� ���� pcF �aF� � bF��� ��� i

where �a�h a
R� � ���� aA� � ���� aF�� ��� i� �b�h b

R�� ���� bA�� ���� bF�� ��� i

pcR�a� b��case a� b of a� � � a

�� b � b

��� � unde	ned

pcA�a� b��case a� b of a� � � a

�� b � b

��� � unde	ned

pcF �a� b��case a� b of a� � � a

�� b � b

enq�exp�� deq� � � en�deq�exp�
deq� �� enq�exp� � en�deq�exp�
��� � unde	ned

�

The function PC computes a new � by composing two ��s that do not contain con�
�icting actions on the same state element� It can be shown that PC is commutative
and associative�

Suppose Ta and Tb become applicable in the same state s� Ta ��CF Tb implies that
the two transitions can be applied in either order in two successive steps to produce
the same �nal state s �� Ta ��CF Tb further implies that an implementation could
produce s � by applying the parallel composition of �Ta and �Tb to the same initial
state s� Theorem ��� extends this result to multiple pairwise con�ict�free transitions�

Theorem 	�� �Composition of ��CF Transitions�

Given a collection of n transitions that are applicable in state s� if all n transitions are
pairwise con�ict�free� then the following condition holds for any ordering of Tx� �����Txn �

�Tx� ��Tx� �s�� � ��� � �Txn ��Txn�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� �� �

��Txn ��Txn�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� �� � �PC�s��

�PC is the functional equivalent of the parallel composition of �Tx� ������Txn � in any
order�

Proof� Suppose Theorem ��� holds for n � K�

Part �� Given a collection of K�� transitions� T������TK���TK �TK��� that are all
applicable in state s and are pairwise con�ict�free� it follows from the induction hy�
pothesis that

�TxK ��TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ��

��

and also

�TxK��
��TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ��

In other words� �TxK �s
�� � �TxK��

�s �� where s � is �TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ��
It follows from the de�nition of ��CF that

�TxK��
��TxK �s

���

and hence

�TxK��
��TxK ��TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ���

Part �� It also follows from the induction hypothesis that

�TxK ��TxK�� �����Tx� ��Tx� ��Tx� �s����������Apply�PC ��Tx� ������TxK�� ��TxK ����s�

and

�TxK��
��TxK�� �����Tx� ��Tx� ��Tx� �s����������Apply�PC ��Tx� ������TxK�� ��TxK��

����s�

Following the de�nition of PC � �� one can conclude from the second statement above
that �� any state element e acted on by �TxK��

is not acted on by �TxK�� ������Tx�
and �� the state of e is the same after �TxK��

�s� as after �TxK��
�s �� where s � is

�TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ��

It is already shown from the �rst part of the proof that �TxK �s
�� � �TxK��

�s ��� It

follows from the de�nition of ��CF that �TxK��
��TxK �s

��� � �TxK ��TxK��
�s ���� Any

state element e acted on by �TxK��
is not acted on by �TxK and the state of e is the

same after �TxK��
��TxK �s

��� as after �TxK��
�s ��� and thus the same as after �xK��

�s��
Hence�

�xK��
��TxK ��TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ���

� �xK��
� �Apply�PC ��Tx� � ���� �TxK�� � �TxK ����s��

� �Apply�PC ��Tx� � ���� �TxK�� � �TxK ��TxK��
����s�

Therefore� the theorem holds for n � K�� if the theorem holds for n � K� The
theorem holds for K � � by the de�nition of ��CF � By induction� Theorem ��� holds
for any n greater or equal to ��

�

��

����� Static Deduction of ��CF

The scheduling algorithm given later in this section can work with a conservative
��CF test� that is� if the conservative test fails to identify a pair of transitions as
��CF � the algorithm might generate a less optimal but still correct implementation�

Analysis based on Domain and Range�

A static determination of ��CF can be made by comparing the domains and ranges
of two transitions� The domain of a transition is the set of state elements in S 	read

by the expressions in either � or �� The domain of a transition can be further sub�
classi�ed as ��domain and ��domain depending on whether the state element is read
by the ��expression or an expression in ��

The range of a transition is the set of state elements in S that are acted on by
�� For this analysis� the head and the tail of a FIFO are considered to be separate
elements� The functions to extract the domain and range of a transition are de�ned
below�

De�nition 	�	 �Domain of � and ��

De�exp� � case exp of
constant � f g
R�get� � � fR g
A�a�get�idx� � fA g De�idx�
F��rst� � � f Fhead g
F�notfull� � � f Ftail g
F�notempty� � � f Fhead g
Op�exp�� ���� expn� � De�exp�� ��� De�expn�

D���� � DR�aR�� ��� DA�aA�� ��� DF �aF�� ���
where ��h aR�� ���� aA� � ���� aF� � ��� i

DR�a� � case a of � � f g
set�exp� � De�exp�

DA�a� � case a of � � f g
a�set�idx �data� � De�idx� De�data�

DF �a� � case a of � � f g
enq�exp� � De�exp�
en�deq�exp� � De�exp�
deq� � � f g
clear� � � f g

�

��

De�nition 	�
 �Range of ��

R���� � RR�aR�� ��� RA�aA�� ��� RF �aF�� ���
where ��h aR�� ���� aA� � ���� aF� � ��� i

RR�aR� � case a
R of � � f g

set��� � fR g

RA�aA� � case a
A of � � f g

a�set��� �� � fA g

RF �aF� � case a
F of � � f g

enq��� � f Ftail g
deq� � � f Fhead g
en�deq��� � f Fhead� Ftail g
clear� � � f Fhead� Ftail g

�

UsingD� � and R� �� a sucient condition that ensures two transitions are con�ict�
free is given in Theorem ����

Theorem 	�� �Su�cient Condition for ��CF�

� �D��Ta�D��Ta�� � � R��Tb� � � � �D��Tb�D��Tb�� � � R��Ta� � �
� R��Ta� � � R��Tb� �

� �Ta ��CF Tb�
�

If the domain and range of two transitions do not overlap� then the two transitions
do not have any data dependence� Since their ranges do not overlap� a valid parallel
composition of �Ta and �Tb must exist�

Analysis based on Mutual Exclusion�

If two transitions never become applicable on the same state� then they are said to
be mutually exclusive�

De�nition 	�� �Mutually Exclusive Relationship�

Ta ��ME Tb if � s� ���Ta�s���Tb�s��
�

Two transitions that are ��ME satisfy the de�nition of ��CF trivially� An exact test
for ��ME requires determining the satis�ability of the expression ��Ta�s���Tb�s���
Fortunately� the � expression is usually a conjunction of relational constraints on the
current values of state elements� A conservative test that scans two � expressions for
contradicting constraints on any one state element works well in practice�

��

����� Scheduling of ��CF Transitions

Using Theorem ���� instead of selecting a single transition per clock cycle� a sched�
uler can select any number of applicable transitions that are pairwise con�ict�free� In
other words� in each clock cycle� the 	�s should satisfy the condition�

	Ta � 	Tb � Ta ��CF Tb

where 	T is the arbitrated transition enable signal for transition T� Given a set of
applicable transitions in a clock cycle� many di�erent subsets of pairwise con�ict�free
transitions could exist� Selecting the optimum subset requires evaluating the relative
importance of the transitions� Alternatively� an objective metric simply optimizes the
number of transitions executed in each clock cycle�

Partitioned Scheduler�

In a partitioned scheduler� transitions in X are �rst partitioned into as many disjoint
scheduling groups� P������Pk� as possible such that

�Ta � Pa� � �Tb � Pb� � Ta ��CF Tb

Transitions in di�erent scheduling groups are con�ict�free� and hence each scheduling
group can be scheduled independently of other groups� For a given scheduling group
containing Tx������Txn � 	Tx� �����	Txn can be generated from �Tx� �s�������Txn �s� using a
priority encoder� In the best case� a transition T is con�ict�free with every other
transition in X � In which case� T is in a scheduling group by itself� and 	T��T
without arbitration�

X can be partitioned into scheduling groups by �nding the connected components
of an undirected graph whose nodes are transitions T�� ���� TM and whose edges are
f �Ti� Tj� j ��Ti ��CF Tj� g� Each connected component is a scheduling group�

Example 	�� �Partitioned Scheduler�

The undirected graph �a� in Figure ��� depicts the con�ict�free relationships in an
ATS with six transitions� X�fT�� T�� T�� T�� T�� T� g� Each transition is represented
as a node in the graph� Two transitions are con�ict�free if their corresponding nodes
are connected� i�e��

�T� ��CF T��� �T� ��CF T��� �T� ��CF T��� �T� ��CF T���
�T� ��CF T��� �T� ��CF T��� �T� ��CF T���
�T� ��CF T��� �T� ��CF T��� �T� ��CF T���
�T� ��CF T���
�T� ��CF T��

Graph �b� in Figure ��� gives the corresponding con�ict graph where two nodes
are connected if they are not con�ict�free� The con�ict graph has three connected

��

T3

T2T1

T3

T1 T2

T6

T5 T4

T6

T5 T4

(a) (b)

Scheduling Group 1 Scheduling Group 2

Scheduling Group 3

Figure ���� Scheduling con�ict�free rules� �a� ��CF graph �b� Corresponding con�ict
graph and its connected components�

components� corresponding to the three ��CF scheduling groups� The 	 signals
corresponding to T�� T� and T� can be generated using a priority encoding of their
corresponding ��s� Scheduling group � also requires a scheduler to ensure 	� and 	�
are not asserted in the same clock cycle� However� 	T���T� without any arbitration�

�

Example 	� �Fully Partitioned Scheduling�

In Example ���� a two�way priority scheduler is instantiated for a two�transition ATS�
The two transitions� ��expressions are

�Mod � �Ra�Rb� � �Rb �� ��
�F lip � Ra�Rb

Notice� the two transitions� ��expressions have contradicting requirements on the
value of Ra� �F lip requires Ra�Rb� but �Mod requires Ra�Rb� Thus the two transi�
tions are ��ME and therefore ��CF � The transitions are each in its own scheduling
group� Hence� 	Mod��Mod and 	F lip��F lip without any arbitration�

�

Enumerated Scheduler�

Scheduling group � of graph �b� in Figure ��� contains three transitions fT�� T�� T� g
such that T� ��CF T� but both T� and T� are not ��CF with T�� Although the three
transitions cannot be scheduled independently of each other� T� and T� can be selected
together as long as T� is not selected in the same clock cycle� This selection is valid
because T� and T� are ��CF between themselves and every transition selected by the
other groups� In any given clock cycle� the scheduler for each group can independently
select multiple transitions that are pairwise con�ict�free within the scheduling group�

��

�T� �T� �T� 	T� 	T� 	T�
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

Figure ���� Enumerated encoder table for Example ����

For a scheduling group with transitions Tx� �����Txn � 	Tx� �����	Txn can be computed
by a �n�n lookup table indexed by �Tx� �s�������Txn �s�� The data value d������dn at the
table entry with index b������bn can be determined by �nding a clique in an undirected
graph whose nodes N and edges E are de�ned as follows�

N � fTxi j index bit bi is asserted g
E � f �Txi� Txj � j �Txi�N � � �Txj�N � � �Txi ��CF Txj � g

For each Txi that is in the clique� assert data bit di�

Example 	�� �Enumerated Encoder�

Scheduling group � from Example ��� can be scheduled by an enumerated encoder
�Figure ���� that allows T� and T� to execute concurrently�

�

����� Performance Gain

When X can be partitioned into scheduling groups� the partitioned scheduler is
smaller and faster than the monolithic encoder of the reference implementation from
Section ������ The partitioned scheduler also reduces wiring cost and delay since ��s
and 	�s of unrelated transitions are not brought together for arbitration�

The property of the parallel composition function� PC � ensures that transitions
are con�ict�free only if their actions on state elements do not con�ict� For example�
given a set of transitions that are all pairwise con�ict�free� each R in S can be updated
by at most one of those transitions at a time� Hence� the state update logic described
in Section ����� can be used without any modi�cation� Consequently� parallel com�
position of actions does not increase the combinational delay of the datapath� All
in all� the implementation in this section achieves better performance than the refer�
ence implementation by allowing more transitions to execute in a clock cycle without
increasing the cycle time�

��

��� Optimization II	 Sequential Compositions

Consider the following example where PC ��Ta��Tb� and its functional equivalent� �PC �
is well�de�ned for any choice of two transitions Ta and Tb from the following ATS�

S � hR�� R�� R� i
X � f h true� h set�R����� �� � i i

h true� h �� set�R����� � i i
h true� h �� �� set�R���� i i g

Although all transitions are always applicable� the ��CF scheduler proposed in the
previous section would not permit Ta and Tb to execute in the same clock cycle be�
cause� in general� �Ta��Tb�s�� �� �Tb��Ta�s��� It can be shown that� for all s� �PC�s� is
consistent with at least one order of sequential execution of Ta and Tb� Hence� their
concurrent execution can be allowed in an implementation� However� the concurrent
execution of all three transitions in a parallel composition does not always produce
a consistent new state due to circular data dependencies among the three transi�
tions� To capture these conditions� this section presents a more exact requirement for
concurrent execution based on the sequential composibility relationship�

����� Sequentially�Composible Transitions

De�nition 	� �Sequential Composibility�

Two transitions Ta and Tb are said to be sequentially composible �Ta �SC Tb�� if

� s� �Ta�s� � �Tb�s� � �Tb��Ta�s�� �
��Tb��Ta�s�� � �SC�s��

where �SC is the functional equivalent of SC ��Ta� �Tb��
�

De�nition 	�� �Sequential Composition�

SC ��a� �b�� h scR�aR� � bR��� ���� scA�aA� � bA��� ���� scF �aF� � bF��� ��� i

where �a�h aR� � ���� aA� � ���� aF�� ��� i� �b�h bR�� ���� bA�� ���� bF�� ��� i

scR�a� b��case a� b of
a� � � a

�� b � b

��� � b

��

scA�a� b��case a� b of
a� � � a

�� b � b

��� � unde	ned

scF �a� b��case a� b of
a� � � a

�� b � b

enq�exp�� deq� � � en�deq�exp�
deq� �� enq�exp� � en�deq�exp�
a� clear� � � clear� �
��� � unde	ned

�

The sequential composition function SC returns a new � by composing actions
on the same element from two ��s� scR� scA and scF are the same as pcR� pcA and
pcF except in two cases where SC allows two con�icting actions to be sequentialized�
First� scR�set�expa�� set�expb�� is set�expb� since the e�ect of the �rst action is over�
written by the second in a sequential application� Second� scF �a� clear� �� returns
clear� � since regardless of a� applying clear� � leaves the FIFO emptied�

The �SC relationship is a relaxation of��CF � In particular��SC is not symmetric�
Suppose Ta and Tb are applicable in state s� Ta �SC Tb only requires the concurrent
execution of Ta and Tb on s to correspond to �Tb��Ta�s��� but not �Ta��Tb�s��� Two �SC

transitions can also have con�icting actions that can be sequentialized� Theorem ���
extends this result to multiple transitions whose transitive closure on �SC is ordered�

Theorem 	�	 �Composition of �SC Transitions�

Given a sequence of n transitions� Tx������Txn � that are all applicable in state s� if
Txj �SC Txk for all j � k then

�Tx� ��Tx� �s�� � ��� �
�Txn ��Txn�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� �� �

��Txn ��Txn�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� �� � �SC�s��

where �SC is the functional equivalent of the nested sequential composition
SC � ��� SC �SC ��Tx� ��Tx� �� �Tx� �� ��� ��

Proof� The induction proof is similar to the proof of Theorem ���� Suppose Theo�
rem ��� holds for n � K�

Part �� Given a sequence of K�� transitions� Tx� �����TxK�� �TxK �TxK��
� that are all

applicable in state s and Txi �SC Txj for all i � j� it follows from the induction
hypothesis that

�TxK ��TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ��

��

and also

�TxK��
��TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ��

In other words� �TxK �s
�� � �TxK��

�s �� where s � is �TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ��
It follows from the de�nition of �SC that

�TxK��
��TxK �s

���

and hence

�TxK��
��TxK ��TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ���

Part �� It also follows from the induction hypothesis that

�TxK ��TxK�� �����Tx� ��Tx� ��Tx� �s����������Apply�SC ��Tx� ������TxK�� ��TxK ����s�

and

�TxK��
��TxK�� �����Tx� ��Tx� ��Tx� �s����������Apply�SC ��Tx� ������TxK�� ��TxK��

����s�

Following the de�nition of SC � �� one can conclude from the second statement above
that �� any state element e acted on by �TxK��

can ignore the actions by �TxK�� ������Tx�
and �� the state of e is the same after �TxK��

�s� as after �TxK��
�s �� where s � is

�TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ��

It is already shown from the �rst part of the proof that �TxK �s
�� � �TxK��

�s ��� It

follows from the de�nition of �SC that �TxK��
��TxK �s

��� � �Apply��TxK � �TxK��
���s ���

Any state element e acted on by �TxK��
can ignore the actions by �TxK and the state

of e is the same after �TxK��
��TxK �s

��� as after �TxK��
�s ��� and thus the same as after

�xK��
�s�� Hence�

�xK��
��TxK ��TxK�� � ��� �Tx� ��Tx� ��Tx� �s��� ��� ���

� �xK��
� �Apply�SC ��Tx� � ���� �TxK�� � �TxK ����s��

� �Apply�SC ��Tx� � ���� �TxK�� � �TxK � �TxK��
����s�

Therefore� the theorem holds for n � K�� if the theorem holds for n � K� The
theorem holds for K � � by the de�nition of �SC � By induction� Theorem ��� holds
for any n greater or equal to ��

�

��

����� Static Deduction of �SC

Using D� � and R� �� a sucient condition for two transitions to be sequentially
composible is given in Theorem ����

Theorem 	�
 �Su�cient Condition for �SC�

��D��Tb�D��Tb��� �R��Ta�� � �SC ��Ta� �Tb� is de	ned�
� Ta �SC Tb

�

����� Scheduling of �SC Transitions

Incorporating the results from Theorem ��� into the partitioned scheduler from Sec�
tion ����� allows additional transitions to execute in the same clock cycle� For each
con�ict�free scheduling group containing Tx� �����Txn � its scheduler generates the arbi�
trated transition enable signals 	Tx� �����	Txn � In every s� there must be an ordering of
all asserted 	�s� 	Ty� �����	Tym � such that Tyj �SC Tyk if j � k� However� to simplify
the state update logic� our algorithm further requires a statically chosen SC�ordering
Tz� �����Tzn for each scheduling group such that

� s� 	Tzj�	Tzk � Tzj �SC Tzk if j � k

Scheduler�

To construct the �SC scheduler for a con�ict�free scheduling group that contains
Tx� �����Txn � one �rst computes the group�s SC�ordering using a topological sort on a
directed graph whose nodes are Tx� �����Txn and whose edges ESCacyclic is the largest
subset of ESC such that the graph is acyclic� ESC is de�ned as

f �Txi� Txj� j �Txi �SC Txj �� ��Txi ��CF Txj� g

Next� one needs to �nd the connected components of an undirected graph whose
nodes are Tx�� ���� Txn and whose edges are

f �Txi� Txj� j ��Txi� Txj� �� ESCacyclic� � ��Txj � Txi� �� ESCacyclic� �
��Txi ��CF Txj � g

Each connected component forms a scheduling subgroup� Transitions in di�erent
scheduling subgroups are either con�ict�free or sequentially�composible� 	�s for the
transitions in a subgroup can be generated using a priority encoder� On each clock
cycle� the transitions Ty� �����Tym � selected collectively by all subgroup encoders of a
particular scheduling group� satisfy the conditions of Theorem ��� because the selected
transitions can always be ordered according to the static SC�ordering of the parent
scheduling group�

��

T4T5

T3

T2T1

(a)

T3

T2T1

(b)

T4T5

T3

T2T1

T4T5

(c)

Scheduling Group 1

Scheduling Group 2

Figure ���� Scheduling sequentially�composible rules� �a� Directed �SC graph �b�
Corresponding acyclic directed �SC graph �c� Corresponding con�ict graph and its
connected components�

Example 	�� �Sequentially Composed Implementation�

The directed graph �a� in Figure ��� depicts the sequential composibility relationships
in an ATS with �ve transitions� X�fT�� T�� T�� T�� T� g� A directed edge from Ta to
Tb implies Ta �SC Tb� i�e��

�T� �SC T��� �T� �SC T��� �T� �SC T���
�T� �SC T��� �T� �SC T���
�T� �SC T��� �T� �SC T���
�T� �SC T��

Graph �b� in Figure ��� shows the acyclic �SC graph when the edge from T� to T�
is removed� A topological sort of the acyclic �SC graph yields the SC�ordering of
T�� T�� T�� T� and T�� �The order of T� and T� can be reversed also�� Graph �c� in
Figure ��� gives the corresponding con�ict graph� The two connected components
of the con�ict graph are the two scheduling groups� 	T���T� without any arbitra�
tion� The remaining 	 signals can be generated using a priority encoding of their
corresponding ��s� More transitions can be executed concurrently if the enumerated
encoder in Figure ��� is used instead�

�

State Update Logic�

When sequentially�composible transitions are allowed in the same clock cycle� the
register update logic cannot assume that only one transition acts on a register in each
clock cycle� When multiple actions are enabled for a register� the register update
logic should ignore all except for the latest action with respect to the SC�ordering of
some scheduling group� �All transitions that update the same register are in the same

��

�T� �T� �T� �T� 	T� 	T� 	T� 	T�
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

Figure ���� Enumerated encoder table for Example ����

scheduling group� except for a transition that is mutually exclusive with the rest��
For each R in S� the set of transitions that update R is

fTxi j a
R
Txi

�set�expxi� g

The register�s latch enable signal is

LE � 	Tx�
 ���
	Txn

The register�s data input signal is

D � 	Tx� �
Tx� �expx� � ��� � 	Txn �
Txn �expxn

where
Txi � ��	Ty�
	Ty�
 ��� �� The expression
Txi
contains 	Tyi �s from the set of

transitions�

f Tyi j R � R��Tyi � �
Txi comes before Tyi in the SC�ordering �
��Txi ��ME Tyi� g

In essence� the register�s data input �D� is selected through a prioritized multiplexer
that gives higher priority to transitions later in the SC�ordering� The update logic
for arrays and FIFOs remain unchanged from Section ������

��

��� Summary

This chapter describes the procedure to synthesize an operation�centric description
given as an ATS into an ecient synchronous digital implementation� The chapter
�rst gives a straightforward implementation that executes one operation per clock
cycle� The chapter next develops the necessary theories and algorithms to construct
more optimized implementations that can carry out multiple operations concurrently
while still maintaining a behavior that is consistent with a sequential execution of the
atomic operations�

��

��

Chapter �

TRSpec Hardware Description

Language

The TRSpec language is an adaptation of Term Rewriting Systems �TRSs� �BN���
Klo��� for operation�centric hardware description� This synthesizable TRS language
includes extensions beyond the standard TRS formalism to facilitate hardware de�
scription� On the other hand� the generality of TRS has to be restricted in some areas
to ensure synthesizability� This chapter �rst introduces the basic concepts in the TRS
formalism� Next� the chapter presents the TRSpec language� The discussion begins
with TRSpec�s type system and then moves onto the topics of rewrite rules� initial�
ization and input�output� The concrete syntax of TRSpec is given separately in
Appendix A� This chapter concludes with a discussion on how to map a TRSpec
description to an ATS�

��� Term Rewriting Systems

TRSs have been used extensively to give operational semantics of programming lan�
guages� More recently� TRSs have become a powerful tool� in research and in class�
rooms� to concisely describe the operation of computer hardware� For example� TRSs
have made it possible to describe a processor with out�of�order and speculative execu�
tion in a page of text �AS���� Such hardware descriptions in TRSs are also amenable
to formal veri�cation techniques�

A TRS consists of a set of terms and a set of rewrite rules� The general structure
of a rewrite rule is

pat lhs if exppred � exprhs

A rule can be applied to rewrite a term s if the rule�s left�hand�side pattern pat lhs
matches s �or a subterm in s� and the predicate exppred evaluates to true� A successful
pattern match binds the variables in pat lhs to the corresponding subterms in s� When
a rule is applied� the new term is constructed by replacing the whole or part of s that
matched pat lhs with the resulting term from evaluating exprhs�

��

The e�ect of a rewrite is atomic� that is� the whole term is 	read
 in one step
and if the rule is applicable then a new term is returned in the same step� If several
rules are applicable� then any one of them is chosen nondeterministically and applied�
Afterwards� all rules are re�evaluated for applicability on the new term� Starting from
a source term� successive rounds of rewrites continue until the �nal term cannot be
rewritten using any rule� TRSs that describe hardware are sometimes nondetermin�
istic �
not con�uent� in the programming language parlance� and nonterminating�

In a functional interpretation� a rule can be thought of as the function�

� s� case s of
pat lhs � if exppred then

exprhs
else

s

��� � s

This function uses a pattern�matching case statement in which two patterns� pat lhs
and ������ are checked sequentially against s until the �rst successful match� If pat lhs
matches s� the variables in pat lhs are bound to the subterms in s� and the function
returns the evaluation of the consequent expression exprhs� If pat lhs fails to match s�
the wild�card pattern ����� always matches s successfully� and the function returns a
term identical to s�

��� TRS for Hardware Description

Chapter � uses the TRS notation to describe the behaviors of �nite state machines�
In those descriptions� the collective values of the state elements are symbolically
represented as terms� Each rewrite rule describes an atomic operation by specifying
when the operation could take place and what is the new value of the state elements
afterwards� In general� a TRS for hardware description has to be restricted to have
a �nite number of �nite�size terms� and the rewrite rules cannot change the size of
the terms� These restrictions guarantee that a TRS can be synthesized using a �nite
amount of hardware� These restrictions can be enforced by augmenting the TRS
formalism with a type system�

The rest of this chapter presents TRSpec� a strongly�typed TRS language for
operation�centric hardware description� TRSpec features built�in integers� common
arithmetic and logical operators� non�recursive algebraic types and two built�in ab�
stract datatypes� array and FIFO� User�de�ned abstract datatypes� with both se�
quential and combinational functionalities� can also be imported into a TRSpec

description by providing an interface declaration and a separate implementation de�
scription�

��

��� Type System

The TRSpec language is strongly typed� that is� every term has a type that is de�
�ned by the user� The allowed type classes in TRSpec are listed below�

TYPE �� STYPE
�� CPRODUCT
�� ABSTRACT
�� IOTYPE

CPRODUCT �� Cnk�TYPE�� ���� TYPEk� where k � �
ABSTRACT �� Array �STYPEidx� STYPE

�� Fifo STYPE
IOTYPE �� ITYPE

�� OTYPE

����� Simple Types

Simple types �STYPE� in TRSpec include built�in booleans� signed and unsigned
integers� as well as algebraic product and sum types� An integer type can be declared
to have an arbitrary word width� Each product type has a unique constructor name
and consists of one or more subtypes� A sum type� a disjoint union type� is made up
of two or more disjuncts� A disjunct is similar to a product except a disjunct may
have zero elements� A sum type with only zero�element disjuncts is an enumeration
type� Product and sum types can be composed to construct arbitrary algebraic type
structures� but recursive types are not allowed� Members of the STYPE class are
listed below�

STYPE �� Bool
�� Bit�N �
�� Int�N �
�� PRODUCT
�� SUM

PRODUCT �� Cnk�STYPE�� ���� STYPEk� where k � �
SUM �� DISJUNCT jj DISJUNCT

�� DISJUNCT jj SUM
DISJUNCT �� Cnk�STYPE�� ���� STYPEk� where k � �

Example
�� �Euclid�s Algorithm�

The terms in the TRS from Section ��� has the type declared as GCD below�

Type GCD
 Gcd�NUM� NUM�
Type NUM
 Bit����

A GCD term �ts the signature Gcd�a�b�� where a and b are unsigned ���bit integers�
�

��

Example
�� �Alternate Description of Euclid�s Algorithm�

This example gives an alternate description of Euclid�s Algorithm to illustrate some
modularity and type�related issues� The following TRS describes the computation of
the mod function via iterative subtraction�

Type VAL
 Mod�NUM�NUM� jj Val�NUM�
Type NUM
 Bit����

Mod Iterate Rule�
Mod�a�b� if a�b � Mod�a�b�b�

Mod Done Rule�
Mod�a�b� if a�b � Val�a�

Using this description of mod� Euclid�s Algorithm can be rewritten as follows�

Type GCD
 Gcd�VAL�VAL�

Flip � Mod Rule�
Gcd�Val�a�� Val�b�� if b��� � Gcd�Val�b�� Mod�a�b��

To �nd the greatest common divisor of two unsigned integers� Ca and Cb� the source
term should be Gcd�Val�Ca��Val�Cb��� The normal term is Gcd�Val�Cgcd��Val���� where
Cgcd is the greatest common divisor of Ca and Cb� The sequence of rewrites to �nd
the GCD of � and � is

Gcd�Val����Val���� � Gcd�Val����Mod������ � Gcd�Val����Val���� �
Gcd�Val����Mod������ � Gcd�Val����Mod������ � Gcd�Val����Mod������ �
Gcd�Val����Val����

�

����� Abstract Types

Abstract datatypes are de�ned by their interfaces� without information about its
internal operation or implementation� An interface can be classi�ed as performing
either a combinational operation or a state�transforming operation� TRSpec has
built�in abstract datatypes of arrays and FIFOs�

An array is used to model register �les� memories� etc� An array term has only
two operations� read and write� In a rule� if a is an array� a�idx� gives the value stored
in the idx�th location of a� and a�idx	
v�� a state�transforming 	write
� is an array
identical to a except location idx has been changed to the value v� TRSpec supports
arrays of STYPE entries indexed by enumeration�type or integer�type indices�

FIFOs provide the primary means of communication between di�erent modules
and pipeline stages� The two main state�transforming operations on FIFOs are en�
queue and dequeue� Enqueuing an element e to a FIFO q is written as q�enq�e�
while dequeuing the �rst element from q is written as q�deq� �� An additional state�
transforming interface q�clear� � clears the contents of q� The combinational query
interface q��rst� � returns the value of the oldest element in q� FIFOs are restricted to

��

Type PROC
 Proc�PC� RF� IMEM� DMEM�
Type PC
 Bit����
Type RF
 Array �RNAME� VAL
Type RNAME
 Reg�� � jj Reg�� � jj Reg�� � jj Reg�� �
Type VAL
 Bit����
Type IMEM
 Array �PC� INST
Type INST
 Loadi�RNAME� VAL�

jj Loadpc�RNAME�
jj Add�RNAME� RNAME� RNAME�
jj Sub�RNAME� RNAME� RNAME�
jj Bz�RNAME� RNAME�
jj Load�RNAME� RNAME�
jj Store�RNAME� RNAME�

Type DMEM
 Array �ADDR� VAL
Type ADDR
 Bit����

Figure ���� Type de�nitions for a simple non�pipelined processor�

have STYPE entries� In the description phase� a FIFO is abstracted to have a �nite
but unspeci�ed size� A TRSpec rule that uses a FIFO�s interfaces has an implied
predicate that tests whether the FIFO is not empty or not full� as appropriate�

TRSpec allows abstract types to be included in the construction of new product
types� but an abstract type cannot be included in the algebraic type hierarchy de�
scending from a sum type� Hence� TRSpec distinguishes between a complex product
type �CPRODUCT� versus a simple product type �PRODUCT�� depending on whether
or not its algebraic structure contains an abstract type� Complex product types can�
not be included in the disjunct of a sum type�

Example
�	 �Simple Processor�

The TRS in Section ��� describes a simple ISA whose programmer�visible states
consist of a program counter� a register �le� instruction memory and data memory�
The terms from that TRS have the types declared in Figure ���� A term that captures
the processor state has the type PROC� Instruction terms have the type INST�

�

Example
�
 �Pipelined Processor�

The TRS in Section ��� describes a two�stage pipelined processor� The processor
performs instruction fetch and decode in the �rst stage and instruction execute in the
second stage� A FIFO stores decoded instruction templates between the two pipeline

��

stages� A term that captures the state of this pipelined processor has the type�

Type PROC
 Proc�PC� RF� BF� IMEM� DMEM�

The type of the abstract FIFO �BF� and the type of the instruction templates �ITEMP�
are de�ned as

Type BF
 Fifo ITEMP
Type ITEMP
 TLoadi�RNAME� VAL�

jj TAdd�RNAME� VAL� VAL�
jj TSub�RNAME� VAL� VAL�
jj TBz�VAL� PC�
jj TLoad�RNAME� ADDR�
jj TStore�ADDR� VAL�

�

��� Rewrite Rules

����� Abstract Syntax

Syntactically� a TRSpec rewrite rule is composed of a left�hand�side pattern and
a right�hand�side expression� A rule can optionally include a predicate expression
and where bindings� The where bindings on the left�hand�side have pattern�matching
semantics� A failure in matching PATi to EXPlhs�i in the i�th left�hand�side binding
also deems the rule inapplicable to a term� The right�hand�side where bindings are
simple irrefutable variable assignments� The concrete TRSpec syntax is given in
Appendix A� The abstract syntax of a TRSpec rewrite rule is summarized below�
���� is the don�t�care symbol��

RULE �� LHS � RHS
LHS �� PATlhs �if EXPpred� �where PAT��EXPlhs��� ����PATn�EXPlhs�n�
PAT �� ��� �� variable �� numerical constant �� Cn�� � �� Cnk�PAT�� ����PATk�
RHS �� EXPrhs �where variable��EXPrhs��� ����variablen�EXPrhs�m�
EXP �� ��� �� variable �� numerical constant �� Cn�� � �� Cnk�EXP�� ����EXPk�

�� Primitive�Op �EXP�� ����EXPk�
Primitive�Op �� Arithmetic �� Logical �� Array�Access �� FIFO�Access

����� Type Restrictions

The type of PATlhs must be PRODUCT� CPRODUCT or SUM� In addition� each rule
must have PATlhs and EXPrhs of the same type� In Example ���� the Mod Done rule
rewrites a Mod term to a Val term� The Mod Done rule does not violate this type
discipline because both a Val term and a Mod term belong to the same sum type�

��

TRSpec�s non�recursive type system and the type disciplines on rewrite rules ensure
the size of every term is �nite and a rewrite does not change the size of the terms�

����� Semantics

In a functional interpretation� a TRSpec rewrite rule can be thought of as a function
of typeof�PATlhs��typeof�PATlhs�� The function returns a term identical to the
input term if the rule is not applicable� If the rule is applicable� the return value is a
new term based on the evaluation of the main right�hand�side expression EXPrhs� A
rule of the form�

pat lhs
if exppred where pat� � explhs��� ���� patn � explhs�n

� exprhs
where var � � exprhs��� ���� varm � exprhs�m

corresponds to the function�

� s� case s of
pat lhs �

case explhs�� of
pat� �

������
case explhs�n of

patn �
if exppred then

let
var � � exprhs��� ���� varm � exprhs�m

in
exprhs

else
s

��� � s

������
��� � s

��� � s

��

The previous function can be decomposed into its two components� � and �� where

� � � s� case s of
pat lhs �

case explhs�� of
pat� �

������
case explhs�n of

patn � exppred
��� � false

������
��� � false

��� � false

and

� � � s� let
pat lhs � s

pat� � explhs��� ���� patn � explhs�n
var � � exprhs��� ���� varm � exprhs�m

in
exprhs

The � function determines a rule�s applicability to a term and has the type signature
typeof�pat lhs��Bool� On the other hand� the � function� with the type signature
typeof�pat lhs��typeof�pat lhs�� determines the new term in case ��s� evaluates to
true� Using � and �� a rule can also be written as the function�

� s� if ��s� then ��s� else s

��� Source Term

A TRSpec description includes a source term to specify the initial state of a system�
The top�level type of the system is inferred from the type of the source term� which
must be PRODUCT� CPRODUCT or SUM� A source term can specify an initial value
for every subterm that is not an ABSTRACT type� A source term can include don�t�
care symbols to leave some subterms unconstrained� Unless otherwise speci�ed� the
initial contents of an abstract array term are unde�ned� An abstract FIFO term is
initially empty�

��� Input and Output

Traditionally� a TRS models a closed system� that is� it does not interact outside of the
modeled system� TRSpec augments the TRS formalism to allow users to assign I�O
semantics to STYPE terms� For example� the TRSpec fragment in Figure ��� can

��

Type TOP
 Top�CNTRI� NUMI� NUMI� NUMO� GCD�
IType CNTRI
 CNTR
Type CNTR
 Load� � jj Run� �
IType NUMI
 NUM
OType NUMO
 NUM

GCD Start Rule�
Top�Load� �� x� y� �� ��

� Top�Load� �� x� y� �� Gcd�Val�x��Val�y���
GCD Done Rule�

Top�Run� �� x� y� �� Gcd�Val�gcd�� Val�����
� Top�Run� �� x� y� gcd� Gcd�Val�gcd�� Val�����

Figure ���� TRSpec description of I�O

be combined with the TRSpec design from Example ��� to provide I�O capabilities�
When synthesized as hardware� this I�O wrapper description maps to a module with
the I�O ports shown in Figure ����

TOP is a collection of several I�O types along with GCD� NUMO is an output type
derived from NUM� An output type can be derived from any STYPE� and the output
type itself can be included in the construction of new CPRODUCT types� In the
implementation of a TRSpec description� the value of an output term is externally
visible�

On the other hand� NUMI is an input type derived from NUM� Like an output
type� an input type can also be derived from any STYPE and be included in the
construction of new CPRODUCT types� The value of an input term can only be
rewritten by an agent external to the system� The e�ect of an externally�triggered
rewrite appears spontaneously but atomically between the atomic e�ects of rewrite
rules� Rewrite rules inside the system are not allowed to change the value of an input
term� In the implementation of a TRSpec description� input interfaces are created
to control the values of the input terms�

Although the TRSpec compiler has some liberty in the exact implementation of
the input and output interfaces� as a rule of thumb� one should be able to connect
the output port from a correctly implemented module to the input port of another
correctly implemented module� as long as the ports are derived from the same type�

The GCD Start and GCD Done rules describe the input and output operations�
Given a TOP term� the GCD Start rule states that when the �rst subterm is Load� ��
the GCD subterm can be initialized using the second and third subterms� �The �rst
three subterms of a TOP term are all input terms�� The GCD Done rule states if the
�rst subterm is Run� � and the GCD subterm looks like Gcd�Val�a��Val���� then the

��

32
NUM1

CNTRL

32
NUM2

32
NUMO

Figure ���� I�O interfaces synthesized for TOP�

NUMO output subterm should be set to a to report the answer�

Using the symbol ���� to represent externally�triggered rewrites� a possible se�
quence of rewrites that computes the GCD of � and � is

���� �Top�Run���������Gcd�Val����Val�����
��Top�Load���������Gcd�Val����Val����� �Top�Load���������Gcd�Val����Val�����
��Top�Run���������Gcd�Val����Val����� �Top�Run���������Gcd�Val����Mod�������
�Top�Run���������Gcd�Val����Val����� �Top�Run���������Gcd�Val����Mod�������
�Top�Run���������Gcd�Val����Mod������� �Top�Run���������Gcd�Val����Mod�������
�Top�Run���������Gcd�Val����Val����� �Top�Run���������Gcd�Val����Val�����
�� ����

At the start of the sequence� the �rst external rewrite modi�es the �rst three subterms
of Top�Run� ��������Gcd�Val����Val����� to Top�Load� ��������Gcd�Val����Val������ Af�
terwards� the GCD Start rule is applied to set the GCD subterm to Gcd�Val����Val�����
Another external rewrite changes the �rst subterm from Load� � to Run� �� this disables
the GCD Start rule� Applications of the rules from Example ��� ultimately reduce
the GCD subterm from Gcd�Val����Val���� to Gcd�Val����Val����� At this point� the
GCD Done rule becomes enabled and rewrites the NUMO subterm from � to ��

Due to nondeterminism� many sequences are possible for the same external manip�
ulations of the input subterms� Therefore� I�O handshakes in a TRSpec description
must be asynchronous by design� For example� after the �rst external rewrite there is
no guarantee on how soon the GCD Start rule is applied� Hence� the external agents
should not trigger the second external rewrite until it has observed a transition to �
on the NUMO output� Also before the second external rewrite� the GCD Start rule
could be applied several more times� Moreover� the GCD rules from Example ���
could also start rewriting the GCD subterm� Nevertheless� regardless of the sequence
of events between the �rst and the second external rewrites� this TRS produces the
correct answer when the NUMO output term transitions out of ��

��
 Mapping TRSpec to ATS

The TRSpec type discipline requires each rewrite rule to have the same type on
both sides of �� Therefore� all terms reachable from the source term by rewriting
must have the same type� Given TRSpec�s non�recursive type system� the terms in

��

‘1,Mod,2’
Val

Mod

NUM

VAL

VAL

Tag

Tag

Val

NUM NUM

Mod

NUM NUM

NUM

GCD

Figure ���� A tree graph representing the GCD type structure from Example ����

a TRSpec TRS can always be encoded as the collective value of a �nite set of ATS
state elements�

����� Terms to ATS State Elements

The ATS state elements needed to represent all possible terms of the same type as
the source term can be conceptually organized in a tree graph according to the source
term�s algebraic type structure� In this tree� the ATS state elements� R� A and F�
appear at the leaves� For example� the tree graph of the algebraic type� GCD� from
Example ��� is shown in Figure ���� A product node� like the one labeled GCD� has a
child branch for each constituent subtype� A sum node� like the one labeled VAL� has
a branch for each disjunct� A sum node also has an extra branch where a dlog�de�bit
	tag register
 node records which one of the d disjuncts is active� A disjunct node�
like the one labeled Mod� has a child branch for each of its constituent subtypes� In
this case� the Mod disjunct node has two leaf children that are ���bit register nodes
corresponding to the ���bit integer type NUM�

A sum node has a branch for each of the disjuncts� but� at any time� only the
branch whose tag matches the content of the tag register holds meaningful data� For
example� the active subtree corresponding to the term Gcd�Val���� Mod������ is shaded
in Figure ���� As an optimization� registers on di�erent disjuncts of a sum node can
share the same physical register� In Figure ���� the registers aligned horizontally can
be allocated to the same physical register�

A unique name can be assigned to each ATS state element based on the path �also
known as projection� from the root to the corresponding leaf node� For example� the
name for the second �from the left� NUM register in Figure ��� is ���Mod� ��� Following
this naming scheme� the ATS state elements needed by a type can also be organized
as a set of name�state�element pairs where each pair h proj � e i speci�es an ATS state
element e and its name proj �

��

The storage elements �and their names� needed to represent all possible term in�
stances of GCD are given by the set�

f h ��� tag�� R��bit i�
h ���Mod� ��� R���bit i� h ���Mod� ��� R���bit i� h ���Val� ��� R���bit i�

h ��� tag�� R��bit i�
h ���Mod� ��� R���bit i� h ���Mod� ��� R���bit i� h ���Val� ��� R���bit i g

Every name�state�element pair in this set has a one�to�one correspondence with a
leaf node in the tree graph in Figure ����

����� Rules to ATS Transitions

With a nearly identical execution semantics as an ATS transition� a TRSpec rewrite
rule readily maps to an ATS transition� Using the functional interpretation of rules
presented in Section ������ the � and � functions for the Flip�Mod rule from Exam�
ple ��� are

� � � s� case s of
Gcd�Val�a��Val�b�� � b���
��� � false

and

� � � s� let
Gcd�Val�a��Val�b�� � s

in
Gcd�Val�b��Mod�a�b��

The � function of a rule maps to the � expression of an ATS transition� In an ATS�
the condition computed by ��s� is speci�ed as a logic expression that tests the con�
tents of the ATS state elements� The � expression implied by the pattern matching
and the predicate of the Flip�Mod rule is

�R��tag � Val� � �R��tag � Val� � �R��V al�� �� ��

The � function of a rule can be viewed as specifying actions on the ATS state ele�
ments� The � function of the Flip�Mod rule can be mapped to the following set of
state�element�action pairs� h e� action i� �Elements with null actions are omitted��

f hR��tag� set�Val� i� hR��Val��� set�b� i�
hR��tag� set�Mod� i� hR��Mod��� set�a� i� hR��Mod��� set�b� i g

The variables a and b in the Flip�Mod rule�s � function are bound to the subterms in
the input term s by pattern matching� In the ATS context� a and b are the contents
of the corresponding ATS storage elements� namely R��V al�� and R��V al���

Notice� the � expression of this transition requires R��tag�Val� Thus� the action

��

hR��tag� set�Val� i in the set above is redundant in any state that satis�es the tran�
sition�s predicate� The set action on R��tag can be replaced by a null action without
changing the semantics of the transition� In general� the predicate of a transition
restricts the possible starting values of the state when the transition is applied� A
compiler can eliminate an action from a transition if the compiler can statically detect
that the action has no e�ect on its state element anytime the transition�s predicate
is satis�ed�

In another example� the pipelined processor TRS from Example ��� requires the
following set of storage elements�

f h ���� RPC i� h ���� ARF i� h ���� FBF i� h ���� AIMEM i� h ���� ADMEM i g

The transition corresponding to the Fetch rule has the following actions�

f hRPC� set�RPC��� i� h FBF � enq�AIMEM �RPC �� i g

The transition corresponding to the Add Execute rule has the following actions�

f hARF � a�set�ARF �r���ARF ��r��� i� h FBF � deq� � i g

����� Local Rules

A local rule may be applicable to many di�erent parts of the top�level term� In these
cases� a local rule maps to multiple ATS transitions� It is as if a local rule is replaced
by multiple lifted instances of the rule� one for each possible application site� The ef�
fect of applying a particular lifted instance to the whole term is the same as applying
the original local rule to the corresponding local site� For example� the Mod Done
rule from Example ��� can be applied to both the �rst and second subterms of a GCD
term� The two lifted instances of the Mod Done rule are

Gcd�Mod�a�b��x� if a�b � Gcd�Val�a��x�

and

Gcd�x�Mod�a�b�� if a�b � Gcd�x�Val�a��

��� Summary

This chapter presents the TRSpec operation�centric hardware description language�
The TRSpec language is an adaptation of the TRS notation to enable concise and
precise descriptions of hardware behavior� The TRSpec language includes both
extensions and restrictions on the standard TRS formalism to increase its usefulness

��

in hardware descriptions� The concrete syntax of TRSpec is given in Appendix A�
This chapter also shows how to translate a TRSpec description to an equivalent
ATS�

��

Chapter �

Examples of TRSpec Descriptions

and Synthesis

The procedures for synthesizing operation�centric descriptions� described in Chap�
ter �� has been implemented in the Term Rewriting Architectural Compiler �TRAC��
TRAC accepts TRSpec descriptions and outputs synthesizable structural descrip�
tions in the Verilog Hardware Description Language �TM���� This chapter presents
the results from applying TRAC to TRSpec examples� To produce the �nal imple�
mentations� the TRAC�generated Verilog descriptions are further compiled by com�
mercial hardware compilers to target a number of implementation technologies� The
quality of TRAC�generated implementations is evaluated against reference implemen�
tations synthesized from hand�coded Verilog structural descriptions�

��� Euclid�s Algorithm

TRSpec and TRAC combine to form a high�level hardware development framework�
Staying within the TRS formalism� even someone without a digital design background
can capture an algorithm and produce a hardware implementation�

����� Design Capture

The TRSpec language o�ers a level of abstraction and conciseness that is comparable
to high�level programming languages� Example ��� gives a description of Euclid�s Al�
gorithm as a TRS� The description is reiterated in Figure ��� using concrete TRSpec
syntax� This TRSpec description compares favorably against a software implemen�
tation of the same algorithm in Scheme �shown in Figure ����� In both TRSpec and
Scheme� a designer�programmer can rely on the high�level language abstractions to
express the algorithm in a direct and intuitive way� Notice that both the TRSpec
and the Scheme descriptions are easy to understand even without comments�

In comparison� a hand�coded Verilog register�transfer level �RTL� description of
Euclid�s Algorithm �excerpt shown in Figure ���� cannot be created or understood by
someone who is not familiar with synchronous logic design� Besides the information

��

Type GCD � Gcd�VAL� VAL�
Type VAL � Mod�NUM� NUM� �� Val�NUM�
Type NUM � Bit����

Rule �Flip � Mod�

Gcd�Val�a	
 Val�b		 if b��� �� Gcd�Val�b	
 Mod�a
b		

Rule �Mod Iterate�

Mod�a
b	 if a�b �� Mod�a�b
b	

Rule �Mod Done�

Mod�a
b	 if a�b �� Val�a	

Figure ���� TRSpec description of Euclid�s Algorithm�

inherent to the algorithm� an RTL designer must also inject information about syn�
chronous hardware implementation� such as exactly how the algorithm is scheduled
over multiple clock cycles�

����� Debugging

As discussed in Section ���� the correctness of a TRSpec description can be es�
tablished by verifying the correctness of each rewrite rule independently� Each rule
only has to individually maintain the invariant that given any valid term� if enabled�
the rule must produce another valid term� TRAC guarantees that the synthesized
implementation behaves according to some valid sequence of atomic rewrites� thus
producing a corresponding sequence of valid states� In practice� TRAC also helps
designers uncover many mistakes by type checking the TRSpec sources�

Once the correctness of each individual rule is veri�ed� the remaining mistakes
are likely to be either due to unintended nondeterminism or missing rules� Executing
a TRS with unintended nondeterminism can result in a livelock where the rewrite
sequence repeats without making progress� On the other hand� the rewrite sequence
of a TRS with an incomplete set of rules can terminate prematurely� The TRAC
compiler can assist in debugging these two classes of errors by generating a simulatable
Verilog description� The simulatable description has the same state structure and
cycle�by�cycle behavior as the synthesizable description� However� the simulatable
description can be instrumented to print an on�screen warning� or halt the simulation�
whenever multiple rules are enabled in the same clock cycle� A designer can then verify
if the nondeterminism exists by design� Likewise� the simulatable Verilog description
can also issue a warning when none of the rules are enabled in a clock cycle� The
designer can examine the state of a stopped simulation and determine if new rules

��

�define �gcd a b	

�if �� b �	

a

�gcd b �iter�remainder a b				

�define �iter�remainder a b	

�if �� a b	

a

�iter�remainder �� a b	 b			

Figure ���� Scheme implementation of Euclid�s Algorithm�

are needed to complete the description�

����� Synthesis Results

The algorithmic description in Figure ��� needs to be combined with the TRSpec
description of a top�level I�O wrapper �similar to the example in Section ���� to form
a usable hardware module� TRAC can compile the combined TRSpec description
into a synthesizable Verilog RTL description in less than � seconds on a workstation
with a ��� MHz Pentium III processor� The TRAC�generated Verilog description can
then be compiled for implementation on a Xilinx XC����XL��� FPGA �Xila� using
the Xilinx Foundation ���i tools �Xilb�� For this example� the compilation time in the
Xilinx tools is about �� minutes�

The table in Figure ��� reports the circuit characteristics of the synthesized FPGA
implementation in terms of the number of �ip��ops� the overall FPGA resource uti�
lization� and the maximum clock frequency� The row labeled 	TRSpec
 in Fig�
ure ��� characterizes the implementation synthesized from the TRSpec description�
For comparison� an implementation is also synthesized from the hand�coded Verilog
RTL description �Figure ����� its circuit characteristics are reported in the row la�
beled 	Hand�coded RTL
� To account for the algorithmic di�erences between the two
designs� the last column of the table reports the number of clock cycles needed to
compute the GCD of ����������� and �������������

The results indicate that the implementation synthesized from the TRSpec de�
scription is much worse than the version synthesized from the hand�coded Verilog RTL
description� In comparison to the hand�coded RTL design� the TRAC�synthesized de�
sign requires �� additional bits of storage� has a longer critical path� and needs an
extra cycle for every remainder computed� This di�erence in circuit quality and

���������
����������� and ���������
������������ ������ ����� and ����� are prime
numbers�

��

module GCD �

Gcd
 Done
 Start
 �� Outputs

Clk
 Reset
 Mode
 A
 B �� Inputs

	�

� � � � � � � �

reg ������ x�

reg ������ y�

� � � � � � � �

always � �posedge Clk or negedge Reset	

begin

if ��Reset	 begin

x �� ��

y �� ��

end else if �newStart	 begin

x �� A�

y �� B�

end else if �x � y	 begin

x �� x � y�

y �� y�

end else begin

x �� y�

y �� x�

end

end

� � � � � � � �

endmodule

�Courtesy of D� L� Rosenband��

Figure ���� Excerpt from the hand�coded Verilog RTL description of Euclid�s Algo�
rithm�

��

FF Util� Freq� Elapse
Version �bit� ��� �MHz� �cyc�

TRSpec ��� �� ���� ���

Hand�coded RTL �� �� ���� ��

TRSpec �Optimized� �� �� ���� ��

Figure ���� Summary of GCD synthesis results�

performance is a consequence of the trade�o� between performance and ease of de�
velopment in a high�level design framework� In creating a hand�coded RTL descrip�
tion� a human designer needs to do extra work to inject some minimal amount of
implementation�related information� but� at the same time� the RTL designer can
also inject 	creative
 optimizations to achieve a smaller and simpler implementation�
TRAC does not have the same ingenuity� after all� TRAC can only synthesize what
has been described and cannot invent new mechanisms� For simple designs� a human
designer can almost always create a better circuit directly in a lower�level abstrac�
tion than relying on automatic synthesis from a high�level abstraction� However� as
the design complexity increases� the bene�t of low�level hand optimizations quickly
diminishes while the required e�ort increases dramatically� The advantage of high�
level design and synthesis becomes more prominent in larger designs where managing
complexity and concurrency becomes the dominant problem� This trend is already
evident in the development of a simple processor in the next section�

Although TRAC cannot match the ingenuity of a human designer� the TRSpec
language does not prevent a performance�conscious designer from adding source�
level optimizations to a description� With an understanding of how TRAC maps
a TRSpec description to its RTL implementation� a designer can in�uence the
synthesized outcome by making changes to the source�level description� Figure ���
gives another TRSpec description of Euclid�s Algorithm that has been formulated to
match the hand�coded RTL design� �The rules and type de�nitions in Figure ��� are
�rst shown in Section ��� and Example ����� The implementation of the optimized
TRSpec description shows a large improvement over the more literal algorithmic�
style description� The implementation synthesized from the optimized TRSpec de�
scription is characterized in the row labeled 	TRSpec �Optimized�
 in Figure ����
The source�level optimizations result in an implementation that is within ��� of the
hand�coded RTL design in terms of overall circuit size and ��� in terms of circuit
speed�

This design example serves to demonstrate the TRSpec design �ow for imple�
menting an algorithm in hardware and also to compare the TRAC�synthesized im�
plementations against traditional hand implementations� One caveat of this example
is that a software implementation of Euclid�s Algorithm on the latest microprocessor

��

Type GCD � Gcd�NUM
 NUM	

Type NUM � Bit����

Rule �Mod�

Gcd�a
b	 if �a�b	 �� �b���	 �� Gcd�a�b
b	

Rule �Flip�

Gcd�a
b	 if �a�b	 �� Gcd�b
a	

Figure ���� Another TRSpec description of Euclid�s Algorithm�

would� in fact� run faster than any FPGA implementation� provided the software im�
plementation can directly compute the mod function on the processor�s �oating�point
unit� For algorithm synthesis� the TRSpec framework is better suited for problems
with a high degree of �ne�grain concurrency and bit�level operations�

��� A Simple Processor

The rules and type de�nitions from Section ��� and Example ��� describe a simple
Instruction Set Architecture �ISA�� As an architectural description� it is convenient
to model the instruction memory and the data memory as abstract arrays internal to
the system� As is� the description can be synthesized to a processor with an internal
instruction ROM and an internal data RAM� However� in a realistic design� the
processor module should access external memory modules through input and output
ports�

����� Adaptation for Synthesis

A new processor description in concrete TRSpec syntax is given in Figures ��� and ��
�� The rules and type de�nitions are derived directly from the architectural�level ISA
description of Section ��� and Example ���� The new description synthesizes to a
processor with instruction and data memory interfaces shown in Figure ����

Instruction Memory Interface�

In the new de�nition of PROC� internal memory arrays have been replaced by I�O
subterms� �The semantics of I�O types is described in Section ����� PC O is an output
type derived from PC� The PC O subterm in a PROC term is the program counter� Its
value appears on a corresponding output port of the synthesized processor� INSTPORT
is an input type derived from INST� The value of the INSTPORT subterm in a PROC

term is taken from a corresponding input port of the synthesized processor� The

��

Type PROC � Proc�PC O
 RF
 INSTPORT
 RPORT
 WPORT	

OType PC O � PC

Type PC � Bit����

Type RF � Array �RNAME� VAL

Type RNAME � Reg�� 	 �� Reg�� 	 �� Reg�� 	 �� Reg�� 	

Type VAL � Bit����

IType INSTPORT � INST

Type INST � Loadi�RNAME
VAL	

�� Loadpc�RNAME	

�� Add�RNAME
RNAME
RNAME	

�� Sub�RNAME
RNAME
RNAME	

�� Bz�RNAME
RNAME	

�� Load�RNAME
RNAME	

�� Store�RNAME
RNAME	

Type RPORT � Rport�ADDR O
 VAL I
 BUSY	

OType ADDR O � ADDR

Type ADDR � Bit����

IType VAL I � VAL

Type BUSY � Busy� 	 �� NotBusy� 	

Type WPORT � Wport�ADDR O
 VAL O
 ENABLE O	

OType VAL O � VAL

OType ENABLE O � ENABLE

Type ENABLE � Enable� 	 �� Disable� 	

Figure ���� TRSpec type de�nitions for a processor with instruction and data mem�
ory interfaces�

��

Rule �Loadi�

Proc�pc
rf
inst
rport
wport	 where Loadi�rd
const	�inst

�� Proc�pc��
rf�rd��const�
inst
rport
wport	

Rule �Loadpc�

Proc�pc
rf
inst
rport
wport	 where Loadpc�rd	�inst

�� Proc�pc��
rf�rd��pc�
inst
rport
wport	

Rule �Add�

Proc�pc
rf
inst
rport
wport	 where Add�rd
r�
r�	�inst

�� Proc�pc��
rf�rd���rf�r���rf�r��	�
inst
rport
wport	

Rule �Sub�

Proc�pc
rf
inst
rport
wport	 where Sub�rd
r�
r�	�inst

�� Proc�pc��
rf�rd���rf�r���rf�r��	�
inst
rport
wport	

Rule �Bz�Taken�

Proc�pc
rf
inst
rport
wport	 if �rf�rc����	

where Bz�rc
ra	�inst

�� Proc�rf�ra�
rf
inst
rport
wport	

Rule �Bz�Not�Taken�

Proc�pc
rf
inst
rport
wport	 if �rf�rc����	

where Bz�rc
ra	�inst

�� Proc�pc��
rf
inst
rport
wport	

Rule �Load Start�

Proc�pc
rf
inst
Rport��
�
NotBusy� 		
wport	

where Load�rd
ra	�inst

�� Proc�pc
rf
inst
Rport�rf�ra�
�
Busy� 		
wport	

Rule �Load Finish�

Proc�pc
rf
inst
Rport��
val
Busy� 		
wport	

where Load�rd
ra	�inst

�� Proc�pc��
rf�rd��val�
inst
Rport��
val
NotBusy� 		
wport	

Rule �Store Enable�

Proc�pc
rf
inst
rport
wport	 where Store�ra
r	�inst

�� Proc�pc��
rf
inst
rport
Wport�rf�ra�
rf�r�
Enable� 			

Rule �Store Disable�

Proc�pc
rf
inst
rport
wport	 if Store��
�	��inst

�� Proc�pc
rf
inst
rport
Wport��
�
Disable� 			

Figure ���� TRSpec rewrite rules for a processor with instruction and data memory
interfaces�

��

W_ENABLE

W_ADDR

W_DATA

R_ADDR

R_DATA

PC

INSTPORT

16

16

16

16

16

PROCDMEM
WE

WA

RA

RD

RA

RD

WD

IMEM

25

Figure ���� A processor�s memory interfaces and their connections�

PC O output port and INSTPORT input port of the synthesized processor should be
connected to the external instruction memory module as shown in Figure ���� This
interface assumes an instruction memory module with combinational lookup�

The new rewrite rule for the execution of the Add instruction is

Rule �Add�

Proc�pc
 rf
 inst
 rport
 wport	 where Add�rd
r�
r�	�inst

�� Proc�pc��
 rf�rd���rf�r���rf�r��	�
 inst
 rport
 wport	

The external instruction memory is indexed by the current value of the PC O subterm�
and the rule looks to the INSTPORT subterm for the instruction returned by the
external instruction memory� Besides this di�erence in instruction lookup� the rule is
otherwise identical to the original Add rule from Section ����

Data Memory Interfaces�

In the new de�nition of PROC� the internal data memory array has also been replaced
by read and write interfaces to an external memory module� The data read�port term�
RPORT� is a product term consisting of an output ADDR subterm� an input VAL sub�
term� and a BUSY status subterm� Their connections to the external memory module
are shown in Figure ���� To execute a Load instruction� the following two rules are
needed to manipulate the memory read interface in two steps�

Rule �Load Start�

Proc�pc
 rf
 inst
 Rport��
�
NotBusy� 		
 wport	

where Load�rd
ra	�inst

�� Proc�pc
 rf
 inst
 Rport�rf�ra�
�
Busy� 		
 wport	

Rule �Load Finish�

Proc�pc
 rf
 inst
 Rport��
val
Busy� 		
 wport	

where Load�rd
ra	�inst

�� Proc�pc��
 rf�rd��val�
 inst
 Rport��
val
NotBusy� 		
 wport	

��

FF Util� Freq�
Version �bit� ��� �MHz�

TRSpec ��� �� � ����

Hand�coded RTL ��� �� � ����

Figure ���� Summary of the processor synthesis results�

When the current instruction is a Load instruction� the Load Start rule sets the ADDR
subterm to the load address and sets the BUSY status subterm to Busy� 	� In the
second step� the Load Finish rule completes the Load instruction by updating the
register �le with the returned load value and by resetting the BUSY status term to
NotBusy� 	�

The data write�port term� WPORT� is a product term consisting of an output ADDR
subterm� an output VAL subterm� and an output ENABLE status term� The following
two rules are needed to control this synchronous write interface�

Rule �Store Enable�

Proc�pc
 rf
 inst
 rport
 wport	 where Store�ra
r	�inst

�� Proc�pc��
 rf
 inst
 rport
 Wport�rf�ra�
rf�r�
Enable� 			

Rule �Store Disable�

Proc�pc
 rf
 inst
 rport
 wport	 if Store��
�	��inst

�� Proc�pc
 rf
 inst
 rport
 Wport��
�
Disable� 			

When the current instruction is a Store instruction� the Store Enable rule sets the
current store address and store data in the write�port term� Furthermore� the Store
Enable rule enables the write interface by setting the ENABLE subterm to Enable� 	�
The Store Disable rule resets the ENABLE subterm to Disable� 	 after a store operation
is completed�

����� Synthesis Results

In this example� the TRSpec framework not only o�ers the ease of a high�level
design �ow but also produces a �nal implementation that is comparable to a hand�
crafted e�ort� A synthesizable Verilog RTL description of the processor can be gen�
erated by TRAC from the description in Figures ��� and ���� The TRAC�generated
RTL description is further compiled for implementation in a Xilinx XC����XL���
FPGA �Xila� using the Xilinx Foundation ���i tools �Xilb�� The row labeled 	TRSpec

in Figure ��� characterizes the FPGA implementation in terms of the number of
�ip��ops� the overall resource utilization� and the maximum clock frequency� As a
reference� a hand�coded Verilog RTL description of the same processor �included in

��

Figure ���� and ����� is also synthesized in this study� The row labeled 	Hand�coded
RTL
 characterizes the implementation synthesized from the hand�coded Verilog de�
scription� The data indicate that the TRSpec description results in an FPGA im�
plementation that is similar in size and speed to the result of the hand�coded Verilog
description� This similarity should not be surprising because� after all� both de�
scriptions are describing the same processor ISA� albeit under very di�erent design
methodologies� In the manual Verilog design �ow� a human designer has interpreted
the ISA to create an RTL circuit description� but unlike in the simple GCD circuit of
the previous section� it is hard for the designer to depart too far from the speci�cation
in a design with even modest complexity� Thus� if TRAC can correctly and eciently
interpret the operation�centric ISA description� one should expect TRAC to generate
an RTL description that resembles the human designed circuit�

What is not apparent from the circuit characterizations is the di�erence in devel�
opment time and e�ort� The TRSpec and the hand�coded Verilog descriptions are
comparable in length� However� the TRSpec description can be translated in a literal
fashion from an ISA manual� Whereas� although the hand�coded Verilog description
is relatively simple� it has a much weaker correlation to the ISA speci�cation� The
hand�coded RTL description also includes circuit implementation information that
the RTL designer has to improvise� Whereas� in a TRSpec design �ow� the designer
can rely on TRAC to supply the implementation�related information� The TRSpec
framework permits a natural and intuitive decomposition of hardware behavior into
atomic operations with a sequential interpretation� It is TRAC�s responsibility to
identify operations that can be implemented as concurrent hardware and to insert
interlocks between operations that need to be sequentialized� In a traditional design
framework� a similar type of analysis and translation must be performed manually by
the designer� This not only creates more work for the designer but also creates more
opportunity for error�

��� MIPS R���� Processor

Appendix B gives the TRSpec description of a �ve�stage pipelined integer processor
core based on the MIPS R���� ISA �as described in �Kan����� The description cor�
responds to the elastic pipeline illustrated in Figure ����� The stages of the elastic
pipeline are separated by abstract FIFOs� which have a �nite but unspeci�ed size�
During synthesis� TRAC converts such an asynchronous elastic pipeline description
into a synchronous pipeline by instantiating a special FIFO implementation that
consists of a single stage of register and �ow�control logic� Further information on
creating a pipelined description is discussed in Section ���� The conversion from an
asynchronous pipeline description to a synchronous implementation is described in
Section ������

��

module PROC �

WriteData� WriteAddr� WriteEnable�

ReadAddr� ReadData�

InstAddr� Inst�

CLK� �RST

��

output����	
 WriteData�

output����	
 WriteAddr�

output WriteEnable�

output����	
 ReadAddr�

input����	
 ReadData�

output����	
 InstAddr�

input����	
 Inst�

input CLK�

input �RST�

reg����	
 pc�

reg����	
 regFile�	��
�

wire���	
 op�

wire���	
 rd�

wire���	
 r��

wire���	
 r��

wire����	
 rdv�

wire����	
 r�v�

wire����	
 r�v�

wire����	
 immediate�

�Courtesy of D� L� Rosenband��

Figure ����� Hand�coded Verilog description of a simple processor� �Part ��

��

assign op�Inst�����	
�

assign rd�Inst�����
�

assign r��Inst����
�

assign r��Inst���	
�

assign immediate������Inst���
���Inst�����
��

assign rdv�regFile�rd
�

assign r�v�regFile�r�
�

assign r�v�regFile�r�
�

assign WriteData�r�v� �� store data out�

assign WriteAddr�rdv� �� store address out�

assign WriteEnable��op�����

assign ReadAddr�r�v�

assign InstAddr�pc�

always��posedge CLK� begin

case �op�

	� regFile�rd
��immediate�

�� regFile�rd
��pc�

�� regFile�rd
��regFile�r�
�regFile�r�
�

�� regFile�rd
��regFile�r�
�regFile�r�
�

�� regFile�rd
��ReadData�

endcase

end

always��posedge CLK� begin

if ��RST� begin

if ��op���� �� �rdv��	�� begin

pc��r�v�

end else begin

pc��pc���

end

end else begin

pc��	�

end

end

endmodule

�Courtesy of D� L� Rosenband��

Figure ����� Hand�coded Verilog description of a simple processor� �Part ��

��

Logic
Decode

PC

ALU Barrel
Shifter

BE

BD

BW

BM

Write Back
Register File

Instruction
Memory
Interface

Data
Memory
Interface

Execute Stage

Memory Stage

Writeback Stage

Decode Stage

Fetch Stage

Bypass

Bypass

Jump Target

Clear

+4

Figure ����� Block diagram of the �ve�stage pipelined MIPS processor core�

��

����� MIPS Integer Subset

The TRSpec description in Appendix B implements all MIPS R���� instructions
except�

�� Integer multiple and divide instructions �MFHI� MTHI� MFLO� MTLO� MULT�
MULTU� DIV� DIVU�

�� Half�word� byte and non�aligned load and store instructions �LB� LH� LWL�
LBU� LHU� LWR� SB� SH� SWL� SWR�

�� Privileged instructions �SYSCALL� BREAK�

�� Coprocessor related instructions

The integer core description also does not support exception handling� privileged
mode or memory management� The semantics of the memory load and branch�jump
instructions has been altered to eliminate delay slots� In other words� the result of a
load instruction is immediately available to the next instruction� and the e�ect of a
branch�jump instruction takes place immediately�

����� Microarchitecture

The description corresponds to an implementation of the MIPS ISA in a �ve�stage
pipelined Harvard microarchitecture� The description speci�es separate external in�
struction and data memory interfaces that are similar to the scheme in Section ����
The rewrite rules imply a register �le usage that requires two combinational read
ports and one synchronous write port�

Fetch Stage� A single rule describes the sequential instruction fetch using the in�
struction fetch interface�

Decode Stage� Separate rules specify the decoding of the di�erent instruction sub�
classes� When a read�after�write hazard is detected� the decode�stage rules attempt
to bypass completed data from the execute� memory and write�back stages� If read�
after�write hazards cannot be resolved by bypassing� the decode�stage rules stop �ring�
Branch or jump instructions are also carried out by decode�stage rules� After a control
�ow instruction� one bubble is inserted into the pipeline before the execution can
restart at the correct jump target�

Execute Stage� Execute�stage rules describe the execution of various ALU instruc�
tions� Separate execute�stage rules also describe memory address calculations for load
and store instructions� The type de�nition of the MIPS processor term includes a
user�de�ned abstract type SHIFTER� The SHIFTER abstract type encapsulates a barrel
shifter implemented in Verilog� The execute�stage rules access the SHIFTER term�s
interface to compute arithmetic and logical shifts of integer operands�

��

CBA tc�a LSI ��K
area speed area speed

version �cell� �MHz� �cell� �MHz�

TRSpec ���� ���� ����� ����

Hand�coded RTL ���� ���� ����� ����

Figure ����� Summary of MIPS synthesis results�

Memory Stage� Load and store instructions are executed� Other instructions
simply pass through this stage�

Write�Back Stage� All register updates are performed in the write�back stage�

����� Synthesis Results

The TRSpec description of the MIPS core can be compiled by TRAC into a syn�
thesizable Verilog RTL description� The synthesizable Verilog description can then
be compiled by the Synopsys Design Compiler �Synb� to target both the Synop�
sys CBA �Syna� and LSI Logic ��K �LSI� gate�array libraries� For comparison� a
hand�coded Verilog RTL description of the same MIPS microarchitecture is also com�
piled for the same technology libraries� Figure ���� summarizes the pre�layout area
and speed estimates reported by the Synopsys Design Compiler� The row labeled
	TRSpec
 characterizes the implementation synthesizes from the TRSpec descrip�
tion� The row labeled 	Hand�coded RTL
 characterizes the implementation synthe�
sized from the hand�coded Verilog description�

As is the case for the simple processor in the previous section� the results from
synthesizing the TRSpec description and the hand�coded Verilog description are in
good agreement� especially in terms of cycle time�� The implementation synthesized
from the hand�coded Verilog RTL description is �� to �� percent smaller than the
implementation synthesized from the TRSpec description� The TRSpec and the
hand�coded Verilog descriptions are similar in length ���� vs� ��� lines of source
code�� but the TRSpec description is developed in less than one day �eight hours��
whereas the hand�coded Verilog description requires nearly �ve days to complete�

�Both Synopsys synthesis runs are con�gured for high�e�ort on minimizing cycle time�

��

��� Summary

This chapter presents the results from applying TRAC to synthesize TRSpec descrip�
tions� The designs are targeted for implementation technologies that include Xilinx
FPGAs and ASIC gate�array libraries� The quality of TRAC�generated implemen�
tations is evaluated against reference implementations synthesized from hand�coded
Verilog RTL descriptions�

As part of this study� several examples have also been targeted for the Wild�
card Recon�gurable Computing Engine from Annapolis Micro Systems �Ann�� The
Wildcard hardware contains a single Xilinx Vertex XCV����� FPGA packaged in a
PCMCIA form�factor� �Higher capacity devices are available on PCI cards�� The
Wildcard hardware can be plugged into standard expansion slots of personal comput�
ers� and FPGA con�gurations can be created and uploaded onto the Wildcard FPGA
from the main processor� The FPGA con�guration can include memory�mapped
I�O and DMA functionalities so a software application on the main processor can
interface with the hardware application on the FPGA interactively� Such a �exible
recon�gurable hardware platform perfectly complements the ability to rapidly create
hardware designs in the TRSpec framework�

In one scenario� algorithmic descriptions in TRSpec� like Euclid�s Algorithm
from Section ���� can be synthesized for the Wildcard FPGA� This e�ectively creates
a hardware�software co�processing environment where an application running on the
processor can launch hardware�assisted computations on the FPGA hardware� In this
usage� TRSpec provides the means for an application developer to retarget suitable
parts of an application for hardware acceleration� expending only comparable time
and e�ort as software development�

In another usage� an architect can create simulatable and synthesizable hardware
prototypes from architectural descriptions in TRSpec� For example� the TRSpec
description of the MIPS processor from Section ��� can be synthesized for execution
on the Wildcard FPGA� In this context� the Wildcard FPGA becomes a hardware
emulator where actual MIPS binaries can be executed� New mechanisms and ideas can
be quickly added to the FPGA�emulated prototype by making high�level modi�cations
to the architectural�level TRSpec description�

��

��

Chapter �

Microprocessor Design Exploration

This chapter demonstrates the application of operation�centric hardware description
and synthesis in microprocessor design� A high�level TRSpec description of an in�
struction set architecture �ISA� is amenable to transformations that produce descrip�
tions of pipelined and superscalar processors� This ability to rapidly create derivative
designs enables a feedback�driven iterative approach to custom microprocessor devel�
opment�

��� Design Flow Overview

In this design �ow� an architect starts by formulating a high�level ISA speci�cation
as a TRS� The goal at this stage is to de�ne an ISA precisely without injecting imple�
mentation details� For example� the rewrite rules from Section ��� and the type def�
initions from Example ���� together� constitute an ISA speci�cation in the TRSpec
language� Interpreting the speci�cation as is� TRAC synthesizes the register�transfer
level �RTL� implementation of a single�issue� non�pipelined processor�

Based on this ISA description� the architect can further derive TRSpec descrip�
tions of pipelined processors by introducing pipeline bu�ers �as described in Sec�
tions ��� and ����� The TRSpec framework simpli�es the insertion of pipeline stages
by allowing the architect to create elastic pipelines where pipeline stages are sepa�
rated by FIFOs� The operations in one pipeline stage can be described independently
of the operations in the other stages� During synthesis� TRAC maps an asynchronous
elastic pipeline description onto a synchronous pipeline where the stages are separated
by simple pipeline registers�

A pipelined processor description in TRSpec can be further transformed into a
superscalar description by adding new rules derived from composing existing rules
from the same pipeline stage� A composite rule� when applied� has the same e�ect as
the sequential in�order execution of its constituent rules� The predicate of a composite
rule is only enabled in a state where the full sequence of rules can be applied� Thus�
the correctness of the expanded description is guaranteed because adding composite
rules cannot introduce any new behavior�

Both pipelining and superscalar design derivations are performed as source�to�

��

Type PROC
 Proc�PC� RF� IMEM� DMEM�
Type PC
 Bit����
Type RF
 Array �RNAME� VAL
Type RNAME
 Reg�� � jj Reg�� � jj Reg�� � jj Reg�� �
Type VAL
 Bit����
Type IMEM
 Array �PC� INST
Type INST
 Loadi�RNAME�VAL�

jj Loadpc�RNAME�
jj Add�RNAME�RNAME�RNAME�
jj Sub�RNAME�RNAME�RNAME�
jj Bz�RNAME�RNAME�
jj Load�RNAME�RNAME�
jj Store�RNAME�RNAME�

Type DMEM
 Array �ADDR� VAL
Type ADDR
 Bit����

Figure ���� Type de�nitions for a simple non�pipelined processor�

source transformations in the TRSpec language� The derived designs can be com�
piled into Verilog RTL descriptions using TRAC� For design feedback� the generated
Verilog descriptions can be simulated and evaluated using commercial tools like the
Cadence Arma NC Verilog Simulator �Cad� and the Synopsys RTL Analyzer �Sync��

��� Step �	 ISA Specication

Figures ��� and ��� repeat the rules and type de�nitions of a simple ISA� already
presented in Section ��� and Example ���� The type de�nitions in Figure ��� have
been altered to increase the processor data width from �� to �� bits� For conciseness�
the rules in Figure ��� are given in an abbreviated format where all rules share
a common left�hand�side pattern� given once at the top� When synthesized� the
TRSpec description roughly corresponds to the datapath shown in Figure ����

��� Step �	 Pipelining Transformation

The TRSpec processor description from the previous section can be pipelined by
splitting each rule into multiple sub�rules where each sub�rule describes the sub�
operation in a pipeline stage� As in Section ���� the processing of an instruction can be
broken down into separate fetch and execute sub�operations in a two�stage pipelined
design� The pipelined design needs bu�ers to hold partially executed instructions�
In a TRSpec description� the pipeline bu�ers are modeled as FIFOs of a �nite

��

Proc�pc� rf� imem� dmem�

Loadi� where Loadi�rd�const�
 imem�pc�
� Proc�pc��� rf�rd	
const�� imem� dmem�

Loadpc� where Loadpc�rd�
 imem�pc�
� Proc�pc��� rf�rd	
pc�� imem� dmem�

Add� where Add�rd�r��r��
 imem�pc�
� Proc�pc��� rf�rd	
rf�r���rf�r���� imem� dmem�

Sub� where Sub�rd�r��r��
 imem�pc�
� Proc�pc��� rf�rd	
rf�r���rf�r���� imem� dmem�

Bz�Taken� if rf�rc�
� where Bz�rc�rt�
 imem�pc�
� Proc�rf�rt�� rf� imem� dmem�

Bz�Not�Taken� if rf�rc���� where Bz�rc�rt�
 imem�pc�
� Proc�pc��� rf� imem� dmem�

Load� where Load�rd�ra�
 imem�pc�
� Proc�pc��� rf�rd	
dmem�rf�ra���� imem� dmem�

Store� where Store�ra�r�
 imem�pc�
� Proc�pc��� rf� imem� dmem�rf�ra�	
rf�r���

Figure ���� Rules for a simple non�pipelined processor�

+1

ALU

PC

S0 S1

(+,-)

Program

Data

(IMEM)

Register

(RF)

(DMEM)

ROM File

Memory

�S� and S� are potential sites for pipeline bu�ers��

Figure ���� A simple processor datapath shown without its control paths�

��

Type PROC�
 Proc��PC� RF� BF� IMEM�DMEM�
Type BF
 Fifo ITEMP
Type ITEMP
 TLoadi�RNAME�VAL�

jj TAdd�RNAME�VAL�VAL�
jj TSub�RNAME�VAL�VAL�
jj TBz�VAL�PC�
jj TLoad�RNAME�ADDR�
jj TStore�ADDR�VAL�

Figure ���� Additional type de�nitions for the two�stage pipelined processor�

but unspeci�ed size� In the synthesis phase� TRAC replaces these FIFOs by simple
pipeline registers and �ow control logic� In the description phase� the FIFO�based
elastic pipeline abstraction allows the operations in di�erent stages to be described
independently without references to the operations in the other stages� A rule that
describes an operation in a particular pipeline stage typically dequeues from the up�
stream FIFO and enqueues into the down�stream FIFO�

To describe a two�stage Fetch�Execute pipeline� the type of the processor term is
rede�ned as PROC� in Figure ���� In contrast to PROC in Figure ���� a PROC��typed
term contains an additional BF�typed �eld� BF is a FIFO that holds decoded instruc�
tion templates whose operands have been fetched from the register �le� As discussed
in Section ���� the original Add rule from the ISA speci�cation may be replaced by
the following two rules� corresponding to the fetch and execute sub�operations� re�
spectively�

Add Fetch�
Proc��pc� rf� bf� imem� dmem�

if r���Target�bf� � r���Target�bf�
where Add�rd�r��r��
 imem�pc�

� Proc��pc��� rf� bfTAdd�rd�rf�r���rf�r���� imem� dmem�

Add Execute�
Proc��pc� rf� TAdd�rd�v��v��bf� imem� dmem�

� Proc��pc� rf�rd	
v��v��� bf� imem� dmem�

Splitting the e�ect of one rewrite rule into multiple rules destroys the atomicity of the
original rule and thus can cause new behaviors that may not conform to the original
speci�cation� Therefore� in addition to determining the appropriate division of work
among the pipeline stages� the architect must also resolve any newly created hazards�
For example� the fetch rule�s predicate expression has been extended to check if the
source register names� r� and r�� are in Target�bf�� �Target�bf� is the shorthand for the
set of target register names in bf�� This extra predicate condition stalls instruction

��

fetching when a RAW �read�after�write� hazard exists�

The Bz�Taken rule and the Bz�Not�Taken rule in Figure ��� can also be split into
their fetch and execute sub�operations� Both Bz rules share the following instruction
fetch rule�

Bz Fetch�
Proc��pc� rf� bf� imem� dmem�

if rc��Target�bf� � rt��Target�bf�
where Bz�rc�rt�
 imem�pc�

� Proc��pc��� rf� bfTBz�rf�rc��rf�rt��� imem� dmem�

The two execute rules for the Bz instruction are

Bz�Taken Execute�
Proc��pc� rf� TBz�vc�vt�bf� imem� dmem�

if vc
 �
� Proc��vt� rf� �� imem� dmem�

and

Bz�Not�Taken Execute�
Proc��pc� rf� TBz�vc�vt�bf� imem� dmem�

if vc���
� Proc��pc� rf� bf� imem� dmem�

All of the rules in Figure ��� can be partitioned into separate fetch and execute
sub�rules to completely convey the operations of a two�stage pipelined processor�
The current partitioning places the pipeline bu�er �bf� at the position labeled S� in
Figure ���� Pipelines with di�erent number of stages and bu�er placements can also
be derived similarly�

A generic instruction fetch rule is

Proc��pc� rf� bf� imem� dmem�
if �Source�inst� � � Target�bf� �

where inst
 imem�pc�
� Proc��pc��� rf� bfDecode�inst�� imem� dmem�

Source�inst� is the shorthand to extract the source register names from instruction
inst� Decode�inst� is the shorthand that maps inst to its corresponding instruction
template where the register operands have been fetched� For example� the expression
�Decode�Add�rd�r��r���� is the same as �TAdd�rd�rf�r���rf�r����� The execute�stage sub�
rules for all instructions are given in Figure ����

��� Step �	 Superscalar Transformation

This section describes the transformation from a pipelined microarchitecture to a
pipelined superscalar microarchitecture� The transformation produces a microarchi�

��

Proc��pc� rf� bf� imem� dmem� where itemprest
 bf

Loadi� where TLoadi�rd�v�
 itemp
� Proc��pc� rf�rd	
v�� rest� imem� dmem�

Add� where TAdd�rd�v��v��
 itemp
� Proc��pc� rf�rd	
v��v��� rest� imem� dmem�

Sub� where TSub�rd�v��v��
 itemp
� Proc��pc� rf�rd	
v��v��� rest� imem� dmem�

Bz�Taken� if vc
� where TBz�vc�vt�
 itemp
� Proc��vt� rf� �� imem� dmem�

Bz�Not�Taken� if vc ��� where TBz�vc�vt�
 itemp
� Proc��pc� rf� rest� imem� dmem�

Load� where TLoad�rd�va�
 itemp
� Proc��pc� rf�rd	
dmem�va��� rest� imem� dmem�

Store� where TStore�va�v�
 itemp
� Proc��pc� rf� rest� imem� dmem�va	
v��

Figure ���� Rules for the execute stage of the two�stage pipelined processor�

tecture similar to the DEC Alpha ����� �DWA���� in that the microarchitecture
processes multiple instructions in each pipeline stage when possible� but does not
allow out�of�order execution� To derive a two�way superscalar processor description
from a pipelined processor description� one needs to compose two rules from the same
pipeline stage into a new composite rule that combines the e�ects of both rules� Given
that TRAC generates RTL descriptions where the entire e�ect of a rule is executed in
one clock cycle� the composite rule yields an RTL design that is capable of processing
two instructions per clock cycle�

	���� Derivation of Composite Rules

A TRS rule r on a set of terms T can be described by a function f whose domain D
and image I are subsets of T � Given a rule�

s if p � s�

the function f may be expressed as

f�s� � if ��s� then ��s� else s

where �� � represents the �ring condition derived from the left�hand�side pattern s
and the predicate expression p� and �� � represents the function that computes the

��

new term� Given two rules r� and r�� the composite rule r��� can be described by the
function f��� where

f����s� � if ���s� then
if ������s�� then

������s��
else

s
else

s
� if ���s� � ������s�� then

������s��
else

s

Let D� and I� be the domain and image of f� and D� and I� be the domain and
image of f�� the domain D��� of f��� is the subset of D� that produces the restricted
image I� �D� using f�� By this de�nition of composition� adding r��� to a TRS that
already contains r� and r� does not introduce any new behaviors since all transitions
admitted by r��� can be simulated by consecutive applications of r� and r�� However�
r� and r� cannot be replaced by r��� because some behaviors could be eliminated�
Removing r��� may create a deadlock or a livelock�

Rule composition can also be described as a purely syntactic operation� Given
the following two rewrite rules�

s� if p� � s�� �r��
s� if p� � s�� �r��

one �rst derives a restricted instance of r� that is directly applicable to s�� such that

s�� if p�� � s��� �restricted instance of r��

This instance of r� can then be composed with r� as follows�

s� if �p� � p��� � s��� �r����

��

	���� A Composite Rule Example

Consider the Add Fetch and Bz Fetch rules of the two�stage pipelined processor from
Section ����

Add Fetch�
Proc��pc� rf� bf� imem� dmem�

if r���Target�bf� � r���Target�bf�
where Add�rd�r��r��
 imem�pc�

� Proc��pc��� rf� bfTAdd�rd�rf�r���rf�r���� imem� dmem�

Bz Fetch�
Proc��pc� rf� bf� imem� dmem�

if rc��Target�bf� � rt��Target�bf�
where Bz�rc�rt�
 imem�pc�

� Proc��pc��� rf� bfTBz�rf�rc��rf�rt��� imem� dmem�

One can rewrite the Bz Fetch rule as if it is being applied to the right�hand�side
expression of the Add Fetch rule� The restricted Bz Fetch rule appears as

Proc��pc��� rf� bfTAdd�rd�rf�r���rf�r���� imem� dmem�
if rc��Target�bfTAdd�rd�rf�r���rf�r����
� rt��Target�bfTAdd�rd�rf�r���rf�r����

where Bz�rc�rt�
 imem�pc���
� Proc���pc������ rf�

�bfTAdd�rd�rf�r���rf�r����TBz�rf�rc��rf�rt���
imem� dmem�

This rule is more speci�c than the original Bz Fetch rule because bf is required to
contain an Add instruction template as the youngest entry� A more speci�c instance
of a TRS rule is guaranteed to be correct because it �res under fewer conditions� The
Add Fetch and Bz Fetch rules can be combined into a composite rule�

Proc��pc� rf� bf� imem� dmem�
if r���Target�bf� � r���Target�bf�
� rc��Target�bfTAdd�rd�rf�r���rf�r����
� rt��Target�bfTAdd�rd�rf�r���rf�r����

where Add�rd�r��r��
 imem�pc�
Bz�rc�rt�
 imem�pc���

� Proc���pc������ rf�
�bfTAdd�rd�rf�r���rf�r����TBz�rf�rc��rf�rt���
imem� dmem�

��

The predicate expression in the rule above can be simpli�ed as shown in the rule
below by interpreting the e�ect of enqueuing to an abstract FIFO term�

Proc��pc� rf� bf� imem� dmem�
if r���Target�bf� � r���Target�bf�
� rt��Target�bf� � rc��Target�bf�
� rc��rd � rt��rd

where Add�rd�r��r��
 imem�pc�
Bz�rc�rt�
 imem�pc���

� Proc���pc������ rf�
�bfTAdd�rd�rf�r���rf�r����TBz�rf�rc��rf�rt���
imem� dmem�

In an implementation synthesized according to the procedures outlined in Chapter ��
the scheduler should give higher priority to a composite rule over its constituent rules
when they are enabled in the same clock cycle�

	���� Derivation of a Two�Way Superscalar Processor

This section presents the derivation of the composite rules for a two�way superscalar
processor description� The derivations are based on the two�stage pipelined processor
from Section ���� For each of the two pipeline stages� di�erent combinations of two
rules from the same stage are composed� In general� given a pipeline stage with
N rules� a superscalar transformation leads to an O�N s� increase in the number of
rules where s is the degree of superscalarity� Since superscalar transformation implies
an increase in hardware resources like register �le ports� ALUs and memory ports�
one may not want to compose all possible combinations of rules� For example� one
may not want to compose a memory load rule with another memory load rule if the
memory interface can only accept one operation per cycle�

This derivation assumes that there are no restrictions on hardware resources ex�
cept that the data memory can only service one operation� a read or a write� in
each clock cycle� The derivation also assumes the instruction memory can return two
consecutive instruction words on any address alignment�

The generic instruction fetch rule from the end of Section ��� can be composed
with itself to produce a two�way superscalar fetch rule�

Proc��pc� rf� bf� imem� dmem�
if Source�inst�� �Target�bf�
� Source�inst��� ��Target�bf�Target�inst��

where inst
 imem�pc�
inst�
 imem�pc���

� Proc���pc������ rf�
bfDecode�inst�Decode�inst��� imem� dmem�

The superscalar execute rules are derived by composing all legal combinations of
the rules in Figure ���� A composite execute rule examines both the �rst and second

��

Proc��pc� rf� bf� imem� dmem� where TAdd�rd�v��v��itemprest
 bf

Loadi� where TLoadi�rd��v�
 itemp
� Proc��pc� rf�rd	
�v��v���rd�	
v��� rest� imem� dmem�

Add� where TAdd�rd��v���v���
 itemp
� Proc��pc� rf�rd	
�v��v���rd�	
�v���v����� rest� imem� dmem�

Sub� where TSub�rd��v���v���
 itemp
� Proc��pc� rf�rd	
�v��v���rd�	
�v���v����� rest� imem� dmem�

Bz�Taken� if vc
� where TBz�vc�vt�
 itemp
� Proc��vt� rf�rd	
v��v��� �� imem� dmem�

Bz�Not�Taken� if vc��� where TBz�vc�vt�
 itemp
� Proc��pc� rf�rd	
v��v��� rest� imem� dmem�

Load� where TLoad�rd��va�
 itemp
� Proc��pc� rf�rd	
�v��v���rd�	
dmem�va��� rest� imem� dmem�

Store� where TStore�va�v�
 itemp
� Proc��pc� rf�rd	
v��v��� rest� imem� dmem�va	
v��

Figure ���� Combining the Add Execute rule with other execute rules�

instruction templates in the pipeline bu�er bf� If the �rst and second instruction
templates satisfy the rule�s predicate expression� the rule is applied to process both
instruction templates simultaneously�

The table in Figure ��� gives the composition of the Add Execute rule with other
execute rules� �Similar composite rules can be derived for the Loadi Execute or Sub
Execute rules�� If the �rst instruction template in bf is an Add instruction template
then the second instruction template� when present� can always be executed con�
currently� In the composite rules� the expression a�i	
v�i�	
v�� denotes a sequential
update of location i and i� of array a� If i is the same as i� then a�i	
v�i�	
v�� has the
same e�ect as a�i�	
v���

The Bz�Taken Execute rule cannot be composed with any other execute rule� If
the �rst position of bf contains the instruction template of a taken branch� bf will
subsequently be cleared by the Bz�Taken Execute rule� Since every execute�stage rule
requires the pipeline bu�er to be not empty� none of the execute�stage rules can be
applicable immediately after the Bz�Taken Execute rule has been applied�

Executing the Bz�Not�Taken Execute rule produces no side�e�ects other than re�
moving the current Bz instruction template from the head of bf� Hence� as shown in
Figure ���� composing a Bz�Not�Taken Execute rule with any other rule results in a
composite rule that is nearly identical to the second rule in the composition�

The tables in Figures ��� and ��� give the composition of the Load Execute and the
Store Execute rules with other execute rules� Since the data memory only responds
to one memory operation per clock cycle� one cannot compose the Load Execute rule
or the Store Execute rule with another memory access rule�

���

Proc��pc� rf� bf� imem� dmem� where TBz�vc�vt�itemprest
 bf

Loadi� if vc��� where TLoadi�rd�v�
 itemp
� Proc��pc� rf�rd	
v�� rest� imem� dmem�

Add� if vc��� where TAdd�rd�v��v��
 itemp
� Proc��pc� rf�rd	
v��v��� rest� imem� dmem�

Sub� if vc��� where TSub�rd�v��v��
 itemp
� Proc��pc� rf�rd	
v��v��� rest� imem� dmem�

Bz�Taken� if vc��� � vc�
� where TBz�vc��vt��
 itemp
� Proc��vt�� rf� �� imem� dmem�

Bz�Not�Taken� if vc��� � vc���� where TBz�vc��vt��
 itemp
� Proc��pc� rf� rest� imem� dmem�

Load� if vc��� where TLoad�rd�va�
 itemp
� Proc��pc� rf�rd	
dmem�va��� rest� imem� dmem�

Store� if vc��� where TStore�va�v�
 itemp
� Proc��pc� rf� rest� imem� dmem�va	
v��

Figure ���� Combining the Bz�Not�Taken Execute rule with other execute rules�

Proc��pc� rf� bf� imem� dmem� where TLoad�rd�va�itemprest
 bf

Loadi� where TLoadi�rd��v�
 itemp
� Proc��pc� rf�rd	
dmem�va��rd�	
v�� rest� imem� dmem�

Add� where TAdd�rd��v��v��
 itemp
� Proc��pc� rf�rd	
dmem�va��rd�	
�v��v���� rest� imem� dmem�

Sub� where TSub�rd��v��v��
 itemp
� Proc��pc� rf�rd	
dmem�va��rd�	
�v��v���� rest� imem� dmem�

Bz�Taken� if vc
� where TBz�vc�vt�
 itemp
� Proc��vt� �rf�rd	
dmem�va���� �� imem� dmem�

Bz�Not�Taken� if vc��� where TBz�vc�vt�
 itemp
� Proc��pc� �rf�rd	
dmem�va���� rest� imem� dmem�

Figure ���� Combining the Load Execute rule with other execute rules�

���

Proc��pc� rf� bf� imem� dmem� where TStore�va�v�itemprest
 bf

Loadi� where TLoadi�rd�v��
 itemp
� Proc��pc� rf�rd	
v��� rest� imem� dmem�va	
v��

Add� where TAdd�rd�v��v��
 itemp
� Proc��pc� rf�rd	
v��v��� rest� imem� dmem�va	
v��

Sub� where TSub�rd�v��v��
 itemp
� Proc��pc� rf�rd	
v��v��� rest� imem� dmem�va	
v��

Bz�Taken� if vc
� where TBz�vc�vt�
 itemp
� Proc��vt� rf� �� imem� dmem�va	
v��

Bz�Not�Taken� if vc��� where TBz�vc�vt�
 itemp
� Proc��pc� rf� rest� imem� dmem�va	
v��

Figure ���� Combining the Store Execute rule with other execute rules�

��� Synthesis and Analysis

The TRSpec processor descriptions presented in this chapter can be compiled into
synthesizable Verilog RTL descriptions using TRAC� The TRAC�generated RTL de�
scriptions can be further compiled� by commercial hardware compilers� for a number
of target technologies ranging from ASICs to FPGAs� In addition� the RTL descrip�
tions can also be targeted for the Synopsys GTECH Library� a technology�independent
logic representation� The GTECH netlist of a design can then be processed by the
Synopsys RTL Analyzer �Sync� to provide quantitative feedback about the circuit�s
size and delay�

	���� TRSpec to RTL

Input and Output�

As in the example from Section ���� realistically� the architectural�level descriptions
in this chapter need to be modi�ed to access external memory modules through in�
put�output ports� For the single�issue pipelined and non�pipelined processor descrip�
tions� modi�cations to include instruction and data memory interfaces are similar to
the presentation in Section ���� On the other hand� for a two�way superscalar proces�
sor description� the modi�cation needs to provide an instruction fetch interface that
can return two instructions at a time� It is sucient to have a single fetch interface
that can return two consecutive instructions on any address alignment because the
two�way superscalar fetch rule only references consecutive locations� pc and pc���

Synchronous Pipeline Synthesis�

In pipelined processor descriptions� the operation of the processors cannot depend
on the exact depth of the pipeline FIFOs� This allows TRAC to instantiate one�
deep FIFOs �i�e�� a single register� as pipeline bu�ers� Flow control logic is added to

���

_full? _full? _full?

empty? empty? empty?enq enq enq

Logic Logic Logic

1-deep FIFO

deq deq deq

Stage K Stage K+1 Stage K+2

Figure ����� Synchronous pipeline with local feedback �ow control�

ensure a FIFO is not over�owed or under�owed by enqueue and dequeue operations�
A straightforward attempt might lead to the circuit shown in Figure ����� In this
naive mapping� the one�deep FIFO is full if its register holds valid data� the FIFO is
empty if its register holds a bubble� With only local �ow control between neighboring
stages� the overall pipeline would contain a bubble in every other stage during steady�
state execution� For example� if pipeline bu�er K and K�� are occupied and bu�er
K�� is empty in some clock cycle� the operation in stage K�� would be enabled to
advance at the clock edge� but the operation in stage K is held back because bu�er
K�� appears full during the clock cycle� The operation in stage K is not enabled
until the next clock cycle when bu�er K�� has been emptied�

It is important that TRAC creates a �ow control logic that includes a combina�
tional multi�stage feedback path that propagates from the last pipeline stage to the
�rst pipeline stage� The cascaded feedback scheme shown in Figure ���� allows stage
K to advance both when pipeline bu�er K�� is actually empty and when bu�er
K�� is going to be dequeued at the coming clock edge� This scheme allows the entire
pipeline to advance synchronously on each clock cycle� A stall in an intermediate
pipeline stage causes all up�stream stages to stall at once� A caveat of this scheme
is that this multi�stage feedback path could become the critical path� especially in
a deeply pipelined design� In which case� one may want to break the feedback path
at selected stages by using two�register�deep FIFOs with local �ow control� A cyclic
feedback path can also be broken by inserting two�register�deep FIFOs with local �ow
control�

	���� GTECH RTL Analysis

Five TRSpec descriptions are included in this analysis� The �rst three are the non�
pipelined processor� two�stage pipelined processor and two�stage two�way superscalar
processor� presented in Sections ���� ��� and ���� respectively� Two additional de�
scriptions describe a three�stage pipelined processor and its corresponding two�way
superscalar derivative� The three�stage pipelined processor corresponds to the data�
path in Figure ��� with pipeline bu�ers inserted at both positions S� and S�� The
three�stage pipelined processor description is derived from the two�stage pipelined

���

empty? empty? empty?enq enqenq

Logic Logic Logic

1-deep FIFO

deq deq deq

_full?_full?_full?

Stage K+1Stage K Stage K+2

Figure ����� Synchronous pipeline with combinational multi�stage feedback �ow con�
trol�

Unpipelined ��stage ��stage ��way ��stage ��stage ��way
area � � 	 area � � 	 area � � 	 area � � 	 area � � 	

Prog� Counter ��� � ��	 ��� � ���	 ��� � ��	 ��� � ���	 ��� � ��	
Reg� File ���� � ���	 ���� � ����	 ���� � ����	 ���� � ����	 ���� � ����	
Mem� Interface ��� � ����	 ��� � ����	 ��� � ����	 ��� � ���	 ��� � ���	
ALU ��� � ����	 ��� � ����	 ���� � ����	 ��� � ����	 ���� � ����	
Pipe� Bu�er�s	 � � ���	 ��� � ����	 ���� � ����	 ���� � ���	 ��� � ����	
Logic �� � ���	 ���� � ����	 ���� � ����	 ���� � ���	 ���� � ����	

Total �� ������	 ���� ������	 ���� ������	 ���� ������	 ��� ������	
Normalized Total ���� ���� ���� ��� ����

�Unit area � two�input NAND gate�

Figure ����� Circuit area distributions for �ve processors�

processor descriptions following the same methodology presented in Section ���� All
TRSpec descriptions have been derived manually starting from the non�pipelined
processor description and have been altered to reference external instruction and
data memories through I�O ports�

The �ve TRSpec processor descriptions are compiled to GTECH netlists for area
and timing analyses by the Synopsys RTL Analyzer� The outputs of the Synopsys RTL
Analyzer are tabulated in Figures ���� and ����� Figure ���� compares the amount of
logic area needed by the �ve designs� �One unit of area corresponds to the area needed
by a two�input NAND gate�� The total area increases ��� times going from a non�
pipelined implementation to a three�stage two�way superscalar pipeline� As expected�
both pipelining and superscalarity increase the pipeline bu�er requirements �from � to
����� and control logic requirements �from ��� to ������ Superscalarity also doubles
the ALU requirements and increases the register��le size because of the additional
read and write ports�

The two tables in Figure ���� break down the delay of each processor�s critical path
into contributions by di�erent parts of the processor� �The Synopsys RTL Analyzer

���

unpipelined ��stage ��stage� ��way
Stage � Stage � Stage � Stage �

Program Counter start start start

Instruction Fetch X X X
Operand Fetch
Raw Hazard ��
PC increment ��
S� � start � start

���ALU �� �� ��
Write Back � � �

Total ���X ���X �� ���X ��
if X
�� �� �� �� � ��

�Unit delay � two�input NAND gate�

��stage ��stage� ��way
Stage � Stage � Stage � Stage � Stage � Stage �

Program Counter start start

Inst Fetch or PC Inc X X
S� � start � start

Instruction Decode �� ��
S� � start �� start

���ALU �� ��
Write Back � �

Total ��X �� �� ��X �� ��
if X
�� �� �� �� �� �� ��

�Unit delay � two�input NAND gate�

Figure ����� Critical path delays for �ve processors�

���

reports the logic delay in units that correspond to the propagation delay of a two�
input NAND gate� The analysis does not consider load or fan�out�� For pipelined
processors� separate critical paths are given for each stage� �A combinational path is
assigned to a stage based on where the path starts�� When a critical path involves an
instruction fetch� X is used to represent the instruction memory lookup delay since
the actual delay will vary with the instruction memory size and implementation� The
critical path analysis does not consider the latencies of data memory operations since�
if data memory latencies ever become a factor in the critical path� one should modify
the synchronous data memory interface to spend more cycles rather than lengthening
the cycle time�

The information generated by the Synopsys RTL Analyzer is helpful in deciding
the e�ectiveness of various architectural features and modi�cations� Ideally� convert�
ing a non�pipelined microarchitecture to a p�stage pipelined microarchitecture should
increase the clock frequency by p�fold� but this is rarely achieved in practice due to
unbalanced partitioning and pipeline logic overhead� Assuming X is �� time units�
the two�stage pipelined processor only achieves a clock frequency that is ��� higher
than the non�pipelined version� The three�stage pipeline processor achieves a ���
improvement�

Overall� the peak performance of the two�stage two�way superscalar processor is
approximately twice that of the non�pipelined processor at approximately twice the
cost in terms of area� The three�stage two�way superscalar processor appears to have
the best performance�area trade�o� since it has nearly � times the performance of the
non�pipelined processors while consuming only ��� times more area�

A caveat in this analysis is that the results only give an indication of the processors�
peak performance� The e�ects of instruction mix on the di�erent microarchitectures
must be analyzed by simulating the TRAC�generated RTL descriptions with bench�
mark applications� The combined feedback from circuit analysis and simulation can
help steer the architect in an iterative exploration of a large number of architectural
options and trade�o�s�

��� Summary

This chapter describes how to generate a pipelined processor design from an ISA
speci�cation by source�to�source transformations in the TRSpec operation�centric
framework� Transformations to create superscalar designs are also possible� Cur�
rently� the transformations described in this chapter have to be performed manually�
An e�ort to semi�automate the process is underway �Lis��� Ros���� In the future� the
mechanics of the transformation would be automated� but human intervention would
still be required to guide these transformations at a high level� such as selecting the
degree of superscalarity and the positions of the pipeline stages�

���

Chapter �

Conclusions

This thesis creates a new operation�centric hardware development framework that
employs an easier and more intuitive hardware design abstraction�

�� Summary of Work

Operation�Centric Hardware Description� This thesis presents the concepts
and advantages of operation�centric hardware description where the behavior of a
system is decomposed and described as a collection of operations� Typically� an
operation is de�ned by a predicate condition and an e�ect� An operation a�ects the
state of the system globally and atomically� This atomic semantics simpli�es the task
of hardware description by permitting the designer to formulate each operation as if
the system were otherwise static�

TRSpec Hardware Description Language� This thesis presents TRSpec� an
adaptation of Term Rewriting Systems �TRS� for operation�centric hardware descrip�
tion� This synthesizable TRS language includes extensions beyond the standard TRS
formalism to increase its compactness and expressiveness in hardware description�
On the other hand� in some areas� the generality of TRS has to be restricted with
the help of a type system to ensure a description�s synthesizability into a �nite�state
machine� Speci�cally� TRSpec disallows in�nite�size terms and also disallows rules
that can change the size of the terms�

Abstract Transition Systems� This thesis de�nes an Abstract Transition System
�ATS�� ATS is an operation�centric state machine abstraction� ATS is a convenient
intermediate representation when mapping TRSpec� or other source�level operation�
centric languages� to hardware implementations� ATS has all of the essential prop�
erties of an operation�centric framework but without the syntactic complications of
a source�level language� Generalized synthesis and optimization algorithms can be
developed in the ATS abstraction� independent of source language variations�

���

Hardware Synthesis and Scheduling� This thesis develops the theories and al�
gorithms necessary to create an ecient hardware implementation from an operation�
centric description� In particular� this thesis explains how to implement an ATS as a
synchronous �nite state machine� The crux of the synthesis problem involves �nding
a valid composition of the ATS transitions in a coherent state transition system that
carries out as many ATS transitions concurrently as possible� This thesis presents
both a straightforward reference implementation and two optimized implementations�

Term Rewriting Architectural Compiler� The ideas in this thesis are realized
in the Term Rewriting Architectural Compiler �TRAC�� a TRSpec�to�Verilog com�
piler� Design exercises employing TRSpec and TRAC have shown that an operation�
centric hardware development framework o�ers a signi�cant reduction in design time
and e�ort when compared to traditional frameworks� without loss in implementation
quality�

Microarchitectural Transformations� This thesis investigates the application of
TRSpec and TRAC to the design of pipelined superscalar processors� The design
�ow starts from a basic instruction set architecture given in TRSpec and progres�
sively incorporates descriptions of pipelining and superscalar mechanisms as source�
to�source transformations�

�� Future Work

This thesis is a preliminary investigation into operation�centric frameworks for hard�
ware development� The results of this thesis provide a starting point for this research�
This section points out the weaknesses in this thesis and proposes possible resolutions
in follow�on research� This section also describes work stemming from applying the
technologies in this thesis�

����� Language Issues

The TRSpec language supports the essential aspects of operation�centric hardware
description� However� in many respects� TRSpec is a rudimentary language with�
out many of the common features in modern programming languages� Syntactically�
TRSpec borrows from the TRS notation� which is not suited for describing large or
modular designs� These and many other issues are being addressed by the develop�
ment of BlueSpec� a new operation�centric hardware description language �Aug����
Like TRSpec� BlueSpec is a strongly typed language supporting algebraic types�
BlueSpec is semantically similar to TRSpec� but it borrows from the syntax and fea�
tures of the Haskell �JHA���� functional language� The salient features of BlueSpec
are outlined below�

Compact Syntax� A TRSpec rule equates to a BlueSpec function of state�to�
state� A BlueSpec function also supports the use of pattern matching to specify the

���

�ring condition of a rule� To reduce repetition� each pattern can have multiple 	right�
hand�side
 e�ect terms guarded by di�erent predicate expressions� Semantically�
these are di�erent rules that happen to have the same left�hand�side pattern� To
reduce verbosity� BlueSpec also uses a 	named
 record notation for product and
disjunct terms� Thus� a product pattern can constrain only speci�c �elds by name�
without mentioning the unconstrained �elds� A right�hand�side e�ect term can also
specify changes for only selected �elds without mentioning the una�ected �elds�

Complex Expressions� TRSpec� as presented in this thesis� only supports simple
arithmetic and logical expressions� The TRAC implementation of TRSpec actually
allows more complicated expressions like if�then�else statements and switch�case state�
ments on both scalar and algebraic types� BlueSpec further allows the full range of
expression constructs from the Haskell language� In particular� BlueSpec supports
the use of functions that can be compiled into pure combinational logic�

Generalized Abstract Types� Besides built�in arrays and FIFOs� BlueSpec al�
lows user�de�ned abstract types with an arbitrary list of combinational and state�
transforming interfaces� External library modules can be incorporated into aTRSpec
description as a custom abstract type�

Additional I�O Types� The simple I�O mechanisms of TRSpec are not enough
to meet all design scenarios eciently� BlueSpec supports additional I�O type classes
to give users additional options over the exact implementation of I�O interfaces� The
additional I�O type classes are useful when designing an I�O interface to meet a pre�
de�ned synchronous handshake� BlueSpec also provides I�O constructs for combining
modular BlueSpec designs�

����� Synthesis Issues

The synthesis algorithm in this thesis always maps the entire e�ect of an operation
�i�e�� a TRSpec rule� into a single clock cycle� The scheduling algorithm always
attempts to maximize hardware concurrency� These two simplifying policies are nec�
essarily accompanied by the assumption that any required hardware resources are
available� In practice� TRAC�s implementation of these policies� in conjunction with
good register�transfer�level �RTL� logic optimizations� results in reasonably ecient
implementations� Nevertheless� the synthesis and scheduling algorithms can be im�
proved in many dimensions� Some of the optimizations outlined below are already
part of the normal RTL compilation that takes place after TRAC� However� there is an
advantage to incorporate these optimizations into the front�end compilation because
front�end compilers like TRAC have better access to high�level semantics embedded
in the source descriptions� For example� TRAC performs its own RTL optimizations
before generating its output� TRAC can trace two RTL signals to their usage in the
source description� and if the two signals originate from two con�icting rules then
TRAC can conclude the signals are never used simultaneously� The same inference

���

would be hard or impossible when the same design is passed to the back�end compiler
in a distilled RTL format�

Technology Library Mapping� TRAC can instantiate library modules that have
been declared explicitly as user�de�ned abstract types� but TRAC cannot map an
arbitrary TRSpec description to target a speci�c set of library macros� The RTL
descriptions generated by TRAC only assume three state primitives� registers� arrays
and FIFOs� The only combinational logic primitives used by TRAC are multiplexers�
The remaining combinational logics are expressed as Verilog expressions� Normally�
TRAC can defer technology�speci�c mappings to back�end RTL compilers like Syn�
opsys� However� unlike gate�array or standard�cell implementations� the quality of
FPGA synthesis is very sensitive to the use of vender�speci�c RTL coding guidelines
and library macros� It is important for TRAC to generate optimized FPGA imple�
mentations because a potential application of TRAC and TRSpec is to facilitate
rapid creation of hardware prototypes using recon�gurable technologies�

Mapping Operations to Multiple Clock Cycles� In many hardware applica�
tions� there are hard limits on the amount and the type of hardware resources avail�
able� In other cases� factors like power consumption and manufacturability place
greater emphasis on lower hardware utilization over absolute performance� Under
these assumptions� it is not optimal� sometimes even unrealistic� to require the e�ect
of an operation to always execute in one clock cycle� For example� an operation may
perform multiple reads and writes to the same memory array whereas the imple�
mentation technology does not permit multi�ported memory� Also� it may not make
sense to instantiate multiple �oating�point multipliers only because one of the opera�
tions performs multiple �oating�point multiplications� Finally� some operations� like
divide� simply cannot be reasonably carried out in a single clock cycle� Currently�
there is an e�ort to develop a new method where the e�ect of an operation can be
executed over multiple clock cycles to meet resource requirements �Ros���� The cur�
rent approach partitions a complex operation into multiple smaller operations that
are suitable for single�cycle mapping� The key aspect in this transformation is to add
appropriate interlocks such that the atomicity of the original operations are mim�
icked by the execution of the partitioned operations over multiple clock cycles� The
synthesis algorithms in this thesis are directly applicable to the transformed system�

Automatic Pipelining and Superscalar Transformations� Chapter � of this
thesis describes manual source�to�source transformations for creating superscalar and
pipelined processors� Follow�on e�orts are looking into automating these transfor�
mations� The steps to automate the pipelining transformation are related to the
partitioning discussed in the previous paragraph� For pipelining� a single TRSpec
rule is partitioned for execution over multiple clock cycles� In the context of pipelin�
ing� besides maintaining the atomic semantics of the original rules� there is added
attention to create sub�rules that can be executed in a pipelined fashion �Ros���� To
automate superscalar transformations� sub�rules in the same pipeline stage are iden�

���

ti�ed and syntactically composed to form new superscalar rules �Lis���� In a related
e�ort� rule transformations are applied to the veri�cation of pipelined superscalar
processors� For example� using rule composition� it is possible to reduce a pipelined
processor to a more easily veri�ed non�pipelined equivalent by eliminating pipeline
bu�ers one stage at a time �Lis����

Power� Area and Timing�Aware Synthesis� The current implementation of
TRAC chie�y focuses on generating a correct RTL implementation for operation�
centrically speci�ed behaviors� The RTL implementations are optimized with a single�
minded goal to maximize hardware concurrency� In many applications� it is necessary
to optimize for other factors like power� area and timing� Currently� power� area and
timing analyses are available during the RTL compilation phase� The designer can
modify the source description according to the feedback from RTL synthesis� The
three improvements to TRAC discussed above �technology library mapping� multi�
cycle operations� and pipelining transformation� open up the possibility to automate
this design re�nement process� Incorporating technology�speci�c library mapping
into the front�end enables TRAC to estimate power� area and timing early on in the
synthesis� Thus� TRAC can adjust its optimization goals accordingly� To meet a
speci�c power or area budget� TRAC can partition an operation over multiple clock
cycles to reuse hardware resources� To meet a speci�c timing requirement� pipelining
transformation can be employed to break up the critical path�

����� Applications

This thesis presents several processor�related examples� Although TRSpec and
TRAC are good architectural development tools� their applications have a much larger
domain� The following paragraphs point out some of the applications currently being
explored�

Recon�gurable Computing� Given the current pace of development in recon�g�
urable computing� it is likely that some day all personal computers will be shipped
with a user�recon�gurable hardware alongside of the CPU� The high�level abstrac�
tion of the TRSpec framework lowers the e�ort and expertise required to develop
hardware applets for the recon�gurable coprocessing hardware� A programmer could
retarget part of a software application for hardware implementation using the same
level of time and e�ort as software development� Even today� when combined with
suitable recon�gurable technologies like the Annapolis Wildcard�TRSpec and TRAC
already can provide an environment where the recon�gurable hardware can be used
as software accelerators �see discussions in Section �����

Hardware Cache Coherence� Operation�centric descriptions based on TRS have
been applied to the study of memory consistency and cache coherence� In CACHET�
TRS is used to formally specify a dynamically adaptive cache coherence protocol for
distributed shared�memory systems �SAR��a�� The Commit�Reconcile and Fences

���

�CRF� memory model uses TRS to capture the semantics of elemental memory oper�
ations in a novel memory model designed for modern out�of�order superscalar microar�
chitectures �SAR��b�� The properties of these formally speci�ed memory consistency
and coherence models can be veri�ed using theorem proving techniques as well as by
simulating against a reference TRS speci�cation� Recent e�orts have attempted to
couple synthesis and formal veri�cation to the same source description� The goal is
to capture architectural�level TRS models in TRSpec for both formal veri�cation
and automatic synthesis into memory controllers and cache�coherence engines�

Microarchitecture Research� With TRSpec and TRAC� a high�density �eld
programmable hardware platform becomes a powerful hardware prototyping test�
bench� Such a prototyping framework can enable VLSI�scale 	bread boarding
 such
that even a small research group can explore a variety of architectural ideas quickly
and spontaneously� Studying prototypes can expose subtle design and implementa�
tion issues that are too easily overlooked on paper or in a simulator� A prototype of a
highly concurrent system also delivers much higher execution rates than simulation�
A thorough investigation using a hardware prototype lends much greater credence to
experimental research of revolutionary ideas�

Teaching� A high�level operation�centric framework is also a powerful teaching aide�
In a lecture� an operation�centric TRSpec description gives an intuitive functional
explanation� An operation�centric description also allows digital�design issues to be
separated from architectural ones� The high�level architectural prototyping environ�
ment discussed in the previous paragraph can also be integrated into a computer
architecture course where an advanced hardware student can study a broad range of
architectural issues in a hands�on manner� In addition to the materials presented in
class� a student can acquire an even deeper understanding of a mechanism by tinkering
with its high�level description and study the e�ects on a simulator or a prototyping
platform� This kind of independent exercise will help students build stronger intu�
itions for solving architectural problems� On the other hand� the course�s emphasis
on mechanisms rather than implementation also makes it ideal for software students
who simply want to understand how to use the complex features of modern systems�

�� Concluding Remarks

In the short term� a high�level operation�centric hardware development framework
cannot completely replace current RTL�based design practices� Clearly� there is a
class of applications� such as microprocessors� that demands the highest possible per�
formance and has the economic incentives to justify the highest level of development
e�ort and time� Nevertheless� a steady industry�wide move toward a higher�level
design environment is inevitable� When the integrated�circuit design complexity sur�
passed one million gates in the early ���s� designers abandoned schematic capture
in favor of textual hardware description languages� An analogous evolution to a still

���

higher�level design environment is bound to repeat when the complexity of integrated�
circuit designs exceeds the capacity of current design tools�

Ultimately� the goal of a high�level description is to provide an uncluttered design
representation that is easy for a designer to comprehend and reason about� Although
a concise notation is helpful� the utility of a 	high�level
 description framework has
to come from the elimination of some 	lower�level
 details� It is in this sense that
an operation�centric framework can o�er an advantage over traditional RTL design
frameworks� Any non�trivial hardware design consists of multiple concurrent threads
of computation in the form of concurrent �nite state machines� This concurrency
must be managed explicitly in traditional representations� In an operation�centric
description� parallelism and concurrency are implicit in the source�level descriptions�
only to be discovered and managed by an optimizing compiler�

���

���

Appendix A

TRSpec Language Syntax

A�� Keywords

A���� Keywords in Type De
nitions

�Type�� start of an algebraic type de�nition
�IType�� start of an input port type de�nition
�OType�� start of an output port type de�nition
�TypeSyn�� start of a type synonym de�nition

�Bit�� declaring a built�in unsigned integer type
�Int�� declaring a built�in signed integer type
�Bool�� declaring a built�in Boolean type
�Array�� declaring a built�in abstract array type
�Fifo�� declaring a built�in abstract FIFO type

A���� Keywords in Rule and Source Term Declarations

�Rule�� start of a rule declaration
�Init�� start of a source term declaration
�if�� start of a predicate expression
�where�� start of a LHS or RHS where binding list

A�� TRS

TRS �� TypeDe�nitions Rules SourceTerm

���

A�� Type Denitions

TypeDe�nitions �� TypeDe�nition

�� TypeDe�nition TypeDe�nitions

TypeDe�nition �� De�neBuiltInType

�� De�neAlgebraicType

�� De�neAbstractType

�� De�neIoType

�� De�neTypeSynonym

A���� Built�In Type

De�neBuiltInType �� Type TypeName � Bit�BitWidth�

�� Type TypeName � Int�BitWidth�

�� Type TypeName � Bool

A���� Algebraic Type

De�neAlgebraicType �� Type TypeName � AlgebraicType

AlgebraicType �� ProductType

�� SumType

Product Types

ProductType �� ConstructorName�TypeName�� ���� TypeNamek�
Note� where k � �

Sum Types

SumType �� Disjuncts

Disjuncts �� Disjunct

�� Disjunct �� Disjuncts

Disjunct �� ConstructorName�TypeName�� ���� TypeNamek�
Note� where k � �

A���� Abstract Type

De�neAbstractType �� Type TypeName � AbstractType

AbstractType �� Array �TypeName index� TypeNamedata
�� Fifo TypeName

���

A���� I�O Type

De�neIoType �� IType TypeName � TypeName

�� OType TypeName � TypeName

A���� Type Synonym

De�neTypeSynonym �� TypeSyn TypeName � TypeName

A���	 Miscellaneous

BitWidth �� ����������

TypeName �� �A�Z��A�Z����
ConstructorName �� �A�Z��a�z�����

A�� Rules

Rules �� Rule

�� Rule Rules

Rule �� Rule RuleName LHS �� RHS

Note� The main pattern in LHS and the main expression in RHS

must have the same type

A���� Left Hand Side

LHS �� Pattern

�� Pattern PredicateClause

�� Pattern LhsWhereClause

�� Pattern PredicateClause LhsWhereClause

Pattern �� ��� �� VariableName �� NumericalConstant
�� ConstructorName�Pattern�� ���� Patternk�

Note� where k � �

PredicateClause �� if Expression

Note� Expression must have an integer type
LhsWhereClause �� where PatternMatches

PatternMatches �� PatternMatch

�� PatternMatch PatternMatches

PatternMatch �� Pattern � Expression

Note� Pattern and Expression must have the same type

���

A���� Right Hand Side

RHS �� Expression

�� Expression RhsWhereClause

RhsWhereClause �� where Bindings

Bindings �� Binding

�� Binding Bindings

Binding �� VariableName � Expression

A���� Expressions

Expression �� ��� �� VariableName �� NumericalConstant
�� ConstructorName�Expression�� ���� Expressionk�
�� PrimitiveOp�Expression�� ���� Expressionk�

Note� In	x representation of arithmetic and logical
operations is supported as syntactic sugar

�� AbsInterface

PrimitiveOp �� Arithmetic �� Logical �� Relational
Arithmetic �� Add �� Sub �� Multiply �� Divide �� Mod �� Negate

Logical �� Not �� And �� Or
�� BitwiseNegate �� BitwiseAnd �� BitwiseOr �� BitwiseXor

Relational �� Equal �� NotEqual �� GreaterThan �� GreaterThanEqualTo
�� LessThan �� LessThanEqualTo

AbsInterface �� Expressionarray�read�Expression idx	

also as� Expressionarray�Expression idx�

�� Expressionarray�write�Expression idx
 Expressiondata	

also as� Expressionarray�Expression idx��Expressiondata�

�� Expressionfifo�first� 	

�� Expressionfifo�enq�Expression	

�� Expressionfifo�deq� 	

�� Expressionfifo�clear� 	

A���� Miscellaneous

RuleName �� 	�A�Za�z��� ������

VariableName �� �a�z��a�z����

A�� Source Term

SourceTerm �� Init Expression

�� Init Expression RhsWhereClause

���

Appendix B

TRSpec Description of a MIPS

Processor

B�� Type Denitions

B���� Processor States

Type PROC � Proc�PC O�RF�BD�BE�BM�BW�IPORT�DPORT R�DPORT W�SHIFTER�

User Visible Registers

OType PC O � PC

Type PC � Bit���

Type RF � Array �RNAME
 VAL

Type RNAME � Reg	 �� Reg� �� Reg� �� Reg�

�� Reg� �� Reg� �� Reg� �� Reg�

�� Reg� �� Reg �� Reg�	 �� Reg��

�� Reg�� �� Reg�� �� Reg�� �� Reg��

�� Reg�� �� Reg�� �� Reg�� �� Reg�

�� Reg�	 �� Reg�� �� Reg�� �� Reg��

�� Reg�� �� Reg�� �� Reg�� �� Reg��

�� Reg�� �� Reg� �� Reg�	 �� Reg��

Type VAL � Bit���

Pipeline Stage Bu�ers

Type BD � Fifo BD TEMPLATE

Type BD TEMPLATE � BdTemp�PC�INST�

TypeSyn BE � BS

TypeSyn BM � BS

TypeSyn BW � BS

���

ABSType BS � enq�BS TEMPLATE�

�� deq� �

�� clear� �

�� isdest�RNAME� BOOL

�� forward�RNAME� VAL

�� canforward�RNAME� BOOL

�� first� � BS TEMPLATE

�� notempty� � BOOL

�� notfull� � BOOL

Type BOOL � False �� True

Note� For readability a disjunct term without any subterms�

such as True� �� can be written as the constructor name alone

without being followed by parentheses�

Type BS TEMPLATE � BsTemp�PC�I TEMPLATE�

Type I TEMPLATE � Itemp�MINOROP�WBACK�READY�RD�VAL�VAL�VAL�

Type MINOROP � MAdd �� MAddu �� MAnd �� MSub

�� MSubu �� MNor �� MOr �� MXor

�� MSlt �� MSll �� MSra �� MSrl

�� MLoad �� MStore �� MWback �� MNop

�� MOnemore

TypeSyn WBACK � BOOL

TypeSyn READY � BOOL

Barrel Shifter

Type AMOUNT � Bit��

Type LEFT � Right �� Left

Type ARITH � Logical �� Arith

ABSType SHIFTER � shift�AMOUNT�LEFT�ARITH�VAL� VAL

Input and Output

IType IPORT � INST

Type DPORT R � DportR�RADDR�RDATA�

Type DPORT W � DportW�WADDR�WDATA�WVALID�

OType IADDR � PC

IType IDATA � INST

SOType RADDR � ADDR

IType RDATA � VAL

Type ADDR � Bit���

SOType WADDR � ADDR

SOType WDATA � VAL

SOType WVALID � BOOL

B���� Instruction Set Architecture

Type INST � Mips�OP�RD�RS�RT�SA�FUNC�

���

Type OP � Special �� Bcond �� Jj �� Jal

�� Beq �� Bne �� Blez �� Bgtz

�� Addi �� Addiu �� Slti �� Sltiu

�� Andi �� Ori �� Xori �� Lui

�� Cop	 �� Cop� �� Cop� �� Cop�

�� Op�� �� Op�� �� Op�� �� Op��

�� Op�	 �� Op�� �� Op�� �� Op��

�� Op�� �� Op�� �� Op�� �� Op��

�� Lb �� Lh �� Lwl �� Lw

�� Lbu �� Lhu �� Lwr �� Op��

�� Sb �� Sh �� Swl �� Sw

�� Op�� �� Op�� �� Swr �� Op��

�� Lwc	 �� Lwc� �� Lwc� �� Lwc�

�� Op�� �� Op�� �� Op�� �� Op��

�� Swc	 �� Swc� �� Swc� �� Swc�

�� Op�� �� Op�� �� Op�� �� Op��

TypeSyn RD � RNAME

TypeSyn RS � RNAME

TypeSyn RT � RNAME

Type SA � Bit��

Type FUNC � Sll �� Func	� �� Srl �� Sra

�� Sllv �� Func	� �� Srlv �� Srav

�� Jr �� Jalr �� Func�� �� Func��

�� SysCall �� Break �� Func�� �� Func��

�� Mfhi �� Mthi �� Mflo �� Mtlo

�� Func�� �� Func�� �� Func�� �� Func��

�� Mult �� Multu �� Div �� Divu

�� Func�� �� Func�� �� Func�� �� Func��

�� Add �� Addu �� Sub �� Subu

�� And �� Or �� Xor �� Nor

�� Func�	 �� Func�� �� Slt �� Sltu

�� Func�� �� Func�� �� Func�� �� Func��

�� Func�	 �� Func�� �� Func�� �� Func��

�� Func�� �� Func�� �� Func�� �� Func��

�� Func�	 �� Func�� �� Func�� �� Func��

�� Func�� �� Func�� �� Func�� �� Func��

Type BCOND � Bltz �� Bgez �� Bcond	� �� Bcond	�

�� Bcond	� �� Bcond	� �� Bcond	� �� Bcond	�

�� Bcond�	 �� Bcond�� �� Bcond�� �� Rim��

�� Bcond�� �� Bcond�� �� Bcond�� �� Bcond��

�� Bltzal �� Bgezal �� Bcond�� �� Bcond��

�� Bcond�� �� Bcond�� �� Bcond�� �� Bcond��

�� Bcond�	 �� Bcond�� �� Bcond�� �� Rim��

�� Bcond�� �� Bcond�� �� Bcond�� �� Bcond��

���

B�� Rules

B���� M� Macros

define��STALL�����be�isdest������ be�canforward����� ��

�bm�isdest������ bm�canforward����� ��

�bw�isdest������ bw�canforward��������

define��FORWARD����be�canforward����!

be�forward�����

�bm�canforward����!

bm�forward�����

�bw�canforward����!bw�forward�����rf���
�����

B���� Fetch Stage Rules

Rule "Instruction Fetch and Speculate"

Proc�pc�rf�bd�be�bm�bw�inst�rport�wport�shftr�

if bd�notfull� �

��# Proc�pc���rf�bd�enq�BdTemp�pc�inst���be�bm�bw�

inst�rport�wport�shftr�

���

B���� Decode Stage Rules

I�Type Instructions

Rule "Decode Immediate"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if canhandle �� STALL�rs�

�� bd�notempty� � �� be�notfull� �

where BdTemp�pc��inst� � bd�first� �

Mips�op�rs�rt�immh�immm�imml� � inst

imm�� � fimmh�immm�immlg
canhandle � �op��Addi� �� �op��Addiu� ��

�op��Slti� �� �op��Sltiu� ��

�op��Andi� �� �op��Ori� ��

�op��Xori�

��# Proc�pc�rf�bd�deq���be��bm�bw�iport�rport�wport�shftr�

where be� � be�enq�BsTemp�pc��itemp��

itemp � �rt��Reg	�!

Itemp�MNop�False�False����������

Itemp�mop�True�False�rt�vs�vimm���

vs � FORWARD�rs�

vimm � f�immh����
!���hffff����h				��imm������	
g
mop � switch�op�

case Addi� MAdd

case Addiu� MAdd

case Slti� MSlt

case Sltiu� MSlt

case Andi� MAnd

case Ori� MOr

case Xori� MXor

Rule "Instruction Decode Lui"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if bd�notempty� � �� be�notfull� �

where BdTemp�pc��inst� � bd�first� �

Mips�Lui�rd�rs�immh�immm�imml� � inst

imm�� � fimmh�immm�immlg
��# Proc�pc�rf�bd�deq���be��bm�bw�iport�rport�wport�shftr�

where be� � be�enq�BsTemp�pc��itemp��

itemp � �rd��Reg	�!

Itemp�MNop�False�False����������

Itemp�MWback�True�True�rd�fimm������	
����b	g�����

���

Rule "Instruction Decode Load"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if canhandle �� STALL�base�

�� bd�notempty� � �� be�notfull� �

where BdTemp�pc��inst� � bd�first� �

Mips�op�base�rt�offh�offm�offl� � inst

offset � f�offh����
!����hffff�����h	�� offh�offm�offlg
canhandle � �op��Lw�

��# Proc�pc�rf�bd�deq���be��bm�bw�iport�rport�wport�shftr�

where be� � be�enq�BsTemp�pc��itemp��

itemp � �rt��Reg	�!

Itemp�MNop�False�False����������

Itemp�mop�True�False�rt�vbase�offset���

vbase � FORWARD�base�

mop � switch�op�

case Lw� MLoad

Rule "Instruction Decode Store"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if canhandle �� �STALL�base� �� STALL�rt��

�� bd�notempty� � �� be�notfull� �

where BdTemp�pc��inst� � bd�first� �

Mips�op�base�rt�offh�offm�offl� � inst

offset � f�offh����
!����hffff�����h	��offh�offm�offlg
canhandle � �op��Sw�

��# Proc�pc�rf�bd�deq���be��bm�bw�iport�rport�wport�shftr�

where be� � be�enq�BsTemp�pc��

Itemp�mop�False�False���vbase�offset�vt���

vbase � FORWARD�base�

vt � FORWARD�rt�

mop � switch�op�

case Sw� MStore

Rule "Decode R�Compare Branch Taken"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if canhandle �� �STALL�rs� �� STALL�rt�� �� taken

�� bd�notempty� �

where BdTemp�pc��inst� � bd�first� �

Mips�op�rs�rt�offh�offm�offl� � inst

offset � foffh�offm�offlg
canhandle � �op��Beq� �� �op��Bne�

��# Proc�target�rf�bd�clear���be�bm�bw�iport�rport�wport�shftr�

where vs � FORWARD�rs�

vt � FORWARD�rt�

voff � f�offh����
!����h�fff������h				����offset����	
����b		g
taken � switch�op�

case Beq��vs��vt�

case Bne��vs �vt�

target � pc�����h��voff

���

Rule "Decode R�Compare Branch Not�Taken"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if canhandle �� �STALL�rs� �� STALL�rt�� �� taken

�� bd�notempty� �

where BdTemp�pc��inst� � bd�first� �

Mips�op�rs�rt�offh�offm�offl� � inst

offset � foffh�offm�offlg
canhandle � �op��Beq� �� �op��Bne�

��# Proc�pc�rf�bd�deq���be�bm�bw�iport�rport�wport�shftr�

where vs � FORWARD�rs�

vt � FORWARD�rt�

taken � switch�op�

case Beq��vs��vt�

case Bne��vs �vt�

Rule "Decode Compare�To�Zero Branch Taken"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if canhandle �� STALL�rs� �� taken

�� bd�notempty� �

where BdTemp�pc��inst� � bd�first� �

Mips�op�rs���offh�offm�offl� � inst

offset � foffh�offm�offlg
canhandle � �op��Blez� �� �op��Bgtz�

��# Proc�target�rf�bd�clear���be�bm�bw�iport�rport�wport�shftr�

where vs � FORWARD�rs�

voff � f�offh����
!����h�fff������h				����offset����	
����b		g
taken � switch�op�

case Blez��vs������
� �� �vs��	�

case Bgtz�� vs������
� �� �vs �	�

target � pc�����h��voff

Rule "Decode Compare�To�Zero Branch Not�Taken"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if canhandle �� STALL�rs� �� taken

�� bd�notempty� �

where BdTemp�pc��inst� � bd�first� �

Mips�op�rs���offh�offm�offl� � inst

offset � foffh�offm�offlg
canhandle � �op��Blez� �� �op��Bgtz�

��# Proc�pc�rf�bd�deq���be�bm�bw�iport�rport�wport�shftr�

where vs � FORWARD�rs�

taken � switch�op�

case Blez��vs������
� �� �vs��	�

case Bgtz�� vs������
� �� �vs �	�

���

Rule "Decode Bcond Branch Taken"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if �STALL�rs�� �� taken

�� bd�notempty� �

where BdTemp�pc��inst� � bd�first� �

Mips�Bcond�rs�type�offh�offm�offl� � inst

offset � foffh�offm�offlg
canhandle � �type��Bltz� �� �type��Bgez�

��# Proc�target�rf�bd�clear���be�bm�bw�iport�rport�wport�shftr�

where vs � FORWARD�rs�

voff � f�offh����
!����h�fff������h				����offset����	
����b		g
taken � switch�type�

case Bltz��vs������
�

case Bgez�� vs������
�

target � pc�����h��voff

Rule "Decode Bcond Branch Not�Taken"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if �STALL�rs�� �� taken

�� bd�notempty� �

where BdTemp�pc��inst� � bd�first� �

Mips�Bcond�rs�type�offh�offm�offl� � inst

offset � foffh�offm�offlg
canhandle � �type��Bltz� �� �type��Bgez�

��# Proc�pc�rf�bd�deq���be�bm�bw�iport�rport�wport�shftr�

where vs � FORWARD�rs�

voff � f�offh����
!����h�fff������h				����offset����	
����b		g
taken � switch�type�

case Bltz��vs������
�

case Bgez�� vs������
�

Rule "Decode Bcond Branch�and�Link Taken"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if �STALL�rs�� �� taken

�� bd�notempty� � �� be�notfull� �

where BdTemp�pc��inst� � bd�first� �

Mips�Bcond�rs�type�offh�offm�offl� � inst

offset � foffh�offm�offlg
canhandle � �type��Bltzal� �� �type��Bgezal�

��# Proc�target�rf�bd�clear���be��bm�bw�iport�rport�wport�shftr�

where vs � FORWARD�rs�

voff � f�offh����
!����h�fff������h				����offset����	
����b		g
taken � switch�type�

case Bltzal��vs������
�

case Bgezal�� vs������
�

be� � be�enq�BsTemp�pc��

Itemp�MWback�True�True�Reg���pc����������

target � pc�����h��voff

���

Rule "Decode Bcond Branch�and�Link Not�Taken"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if �STALL�rs�� �� taken

�� bd�notempty� �

where BdTemp�pc��inst� � bd�first� �

Mips�Bcond�rs�type�offh�offm�offl� � inst

offset � foffh�offm�offlg
canhandle � �type��Bltzal� �� �type��Bgezal�

��# Proc�pc�rf�bd�deq���be�bm�bw�iport�rport�wport�shftr�

where vs � FORWARD�rs�

voff � f�offh����
!����h�fff������h				����offset����	
����b		g
taken � switch�type�

case Bltzal��vs������
�

case Bgezal�� vs������
�

J�Type Instructions

Rule "Instruction Decode J"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if bd�notempty� �

where BdTemp�pc��inst� � bd�first� �

Mips�Jj�off��off��off��off��off�� � inst

offset � foff��off��off��off��off�g
��# Proc�target�rf�bd�clear���be�bm�bw�iport�rport�wport�shftr�

where target � fpc�������
�offset����	
���b		g

Rule "Instruction Decode Jal"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if bd�notempty� � �� be�notfull� �

where BdTemp�pc��inst� � bd�first� �

Mips�Jal�off��off��off��off��off�� � inst

offset � foff��off��off��off��off�g
��# Proc�target�rf�bd�clear���be��bm�bw�iport�rport�wport�shftr�

where target � fpc�������
�offset����	
���b		g
be� � be�enq�BsTemp�pc��

Itemp�MWback�True�True�Reg���pc����������

���

R�Type Instructions

Rule "Instruction Decode Constant Shifts"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if �op��Special� �� canhandle �� STALL�rt�

�� bd�notempty� � �� be�notfull� �

where BdTemp�pc��inst� � bd�first� �

Mips�op���rt�rd�sa�func� � inst

imm�� � frt�sa�funcg
canhandle � �func��Sll� �� �func��Sra� �� �func��Srl�

��# Proc�pc�rf�bd�deq���be��bm�bw�iport�rport�wport�shftr�

where be� � be�enq�BsTemp�pc��itemp��

itemp � �rd��Reg	�!

Itemp�MNop�False�False����������

Itemp�mop�True�False�rd�sa�vt���

vt � FORWARD�rt�

mop � switch�func�

case Sll� MSll

case Sra� MSra

case Srl� MSrl

���

Rule "Instruction Decode Triadic"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if �op��Special� �� canhandle �� �STALL�rs� �� STALL�rt��

�� bd�notempty� � �� be�notfull� �

where BdTemp�pc��inst� � bd�first� �

Mips�op�rs�rt�rd���func� � inst

canhandle � �func��Add� �� �func��Addu�

�� �func��Sub� �� �func��Subu�

�� �func��And� �� �func��Nor�

�� �func��Or� �� �func��Xor�

�� �func��Slt� �� �func��Sltu�

�� �func��Sllv� �� �func��Srav�

�� �func��Srlv�

��# Proc�pc�rf�bd�deq���be��bm�bw�iport�rport�wport�shftr�

where be� � be�enq�BsTemp�pc��itemp��

itemp � �rd��Reg	�!

Itemp�MNop�False�False����������

Itemp�mop�True�False�rd�vs�vt���

vs � FORWARD�rs�

vt � FORWARD�rt�

mop � switch�func�

case Add� MAdd

case Addu� MAdd

case Sub� MSub

case Subu� MSub

case And� MAnd

case Nor� MNor

case Or� MOr

case Xor� MXor

case Slt� MSlt

case Sltu� MSlt

case Sllv� MSll

case Srav� MSra

case Srlv� MSrl

Rule "Decode Jr"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if STALL�rs�

�� bd�notempty� �

where BdTemp�pc��inst� � bd�first� �

Mips�Special�rs�������Jr� � inst

��# Proc�vs�rf�bd�clear���be�bm�bw�iport�rport�wport�shftr�

where vs � FORWARD�rs�

���

Rule "Instruction Decode Jalr"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if STALL�rs�

�� bd�notempty� � �� be�notfull� �

where BdTemp�pc��inst� � bd�first� �

Mips�Special�rs���rd���Jalr� � inst

��# Proc�vs�rf�bd�clear���be��bm�bw�iport�rport�wport�shftr�

where be� � be�enq�BsTemp�pc��itemp��

itemp � �rd��Reg	�!

Itemp�MNop�False�False����������

Itemp�MWback�True�True�rd�pc��������

vs � FORWARD�rs�

B���� Execute Stage Rules

Rule "Execute Stage Drop"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if be�notempty� �

�� ��template��Itemp�MNop���������������

where BsTemp�pc��template� � be�first� �

��# Proc�pc�rf�bd�be�deq���bm�bw�iport�rport�wport�shftr�

Rule "Execute Stage Pass"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if ��template��Itemp�MWback���������������

�� be�notempty� � �� bm�notfull� �

where BsTemp�pc��template� � be�first� �

��# Proc�pc�rf�bd�be�deq���bm��bw�iport�rport�wport�shftr�

where bm� � bm�enq�BsTemp�pc��template��

���

Rule "Execute ��to�� Function"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if canhandle

�� be�notempty� � �� bm�notfull� �

where BsTemp�pc��template� � be�first� �

Itemp�mop�fwd���dest�v��v���� � template

canhandle � �mop��MAdd� �� �mop��MSub�

�� �mop��MAnd� �� �mop��MNor�

�� �mop��MOr� �� �mop��MXor�

�� �mop��MSlt�

��# Proc�pc�rf�bd�be�deq���bm��bw�iport�rport�wport�shftr�

where bm� � bm�enq�BsTemp�pc��template���

template� � Itemp�MWback�fwd�True�dest�result�����

result � switch�mop�

case MAdd� v��v�

case MSub� v��v�

case MAnd� v��v�

case MNor� �$�v��v���

case MOr� v��v�

case MXor� v�%v�

case MSlt� �v�������
��v�������
�!�v��v���v�������

Rule "Execute Shift Function"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if canhandle

�� be�notempty� � �� bm�notfull� �

where BsTemp�pc��template� � be�first� �

Itemp�mop�fwd���dest�v��v���� � template

canhandle � �mop��MSll� �� �mop��MSra� �� �mop��MSrl�

��# Proc�pc�rf�bd�be�deq���bm��bw�iport�rport�wport�shftr�

where bm� � bm�enq�BsTemp�pc��template���

template� � Itemp�MWback�fwd�True�dest�result�����

result � shftr�shift�v����	
�left�arith�v��

left � switch�mop�

case MSll� Left

case MSra� Left

case MSrl� Right

arith � switch�mop�

case MSll� Logical

case MSra� Arith

case MSrl� Logical

���

Rule "Execute Address Calc"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if canhandle

�� be�notempty� � �� bm�notfull� �

where BsTemp�pc��template� � be�first� �

Itemp�mop�fwd���dest�base�offset�v� � template

canhandle � �mop��MLoad� �� �mop��MStore�

��# Proc�pc�rf�bd�be�deq���bm��bw�iport�rport�wport�shftr�

where bm� � bm�enq�BsTemp�pc��template���

template� � Itemp�mop�fwd�False�dest�addr���v�

addr � base�offset

B���� Memory Stage Rules

Rule "Memory Stage Pass"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if �template �Itemp�MLoad��������������

�� �template �Itemp�MStore��������������

�� bm�notempty� � �� bw�notfull� �

where BsTemp�pc��template� � bm�first� �

��# Proc�pc�rf�bd�be�bm�deq���bw��iport�rport�wport�shftr�

where bw� � bw�enq�BsTemp�pc��template��

Rule "Memory Stage Store"

Proc�pc�rf�bd�be�bm�bw�iport�rport���shftr�

if bm�notempty� �

where BsTemp�pc��template� � bm�first� �

Itemp�MStore�������addr���v� � template

��# Proc�pc�rf�bd�be�bm�deq���bw�iport�rport�DportW�addr�v�True��shftr�

Rule "Memory Stage Store Off"

Proc�pc�rf�bd�be�bm�bw�iport�rport�DportW��������shftr�

if �bm�notempty�� �� Itemp�MStore���������������template�

where BsTemp�pc��template� � bm�first� �

��# Proc�pc�rf�bd�be�bm�bw�iport�rport�DportW�����False��shftr�

Rule "Memory Stage Load"

Proc�pc�rf�bd�be�bm�bw�iport�DportR���data��wport�shftr�

if bm�notempty� � �� bw�notfull� �

where BsTemp�pc��template� � bm�first� �

Itemp�MLoad�fwd���rd�addr����� � template

��# Proc�pc�rf�bd�be�bm�deq���bw��iport�DportR�addr����wport�shftr�

where bw� � bw�enq�BsTemp�pc��template���

template� � Itemp�MWback�fwd�True�rd�data�����

���

B���	 Write�Back Stage Rules

Rule "Write�Back Stage"

Proc�pc�rf�bd�be�bm�bw�iport�rport�wport�shftr�

if bw�notempty� �

�� �template��Itemp�MWback��������������

where BsTemp�pc��template� � bw�first� �

Itemp�MWback�����rd�v����� � template

��# Proc�pc�rf�rd��v
�bd�be�bm�bw�deq���iport�rport�wport�shftr�

B�� Source Term

Init Proc�	���������������DportW�����False����

���

���

Bibliography

�Ann� Annapolis Micro Systems� Inc� A family of recon�gurable computing
engines� http���www�annapmicro�com�

�AS��� Arvind and X� Shen� Using term rewriting systems to design and ver�
ify processors� IEEE Micro Special Issue on Modeling and Validation of
Microprocessors� May �����

�Aug��� L� Augustsson� BlueSpec language de�nition� Working Draft� March �����

�Ber��� G� Berry� The foundations of Esterel� In Proof� Language and Interaction�
Essays in Honour of Robin Milner� MIT Press� �����

�BN��� F� Baader and T� Nipkow� Term Rewriting and All That� Cambridge
University Press� �����

�BRM���� J� Babb� M� Rinard� C� A� Moritz� W� Lee� M� Frank� R� Barua� and
S� Amarasinghe� Parallelizing applications into silicon� In Proceedings
of the �th IEEE Symposium on Field�Programmable Custom Computing
Machines �FCCM����� Napa Valley� CA� April �����

�Cad� Cadence Design Systems� Inc� Arma NC Verilog simulator�
http���www�cadence�com�datasheets�arma nc verilog sim�html�

�Co�� Co�Design Automation� Inc� Superlog� http���www�co�design�com�
superlog�

�CW��� R� Camposano and W� Wolf� editors� High�level VLSI Synthesis� Kluwer
Academic Publishers� �����

�DWA���� D� W� Dobberpuhl� R� T� Witek� R� Allmon� R� Anglin� D� Bertucci�
S� Britton� L� Chao� R� A� Conrad� D� E� Dever� B� Gieseke� S� M� N�
Hassoun� G� W� Hoeppner� K� Kuchler� M� Ladd� B� M� Leary� L� Madden�
E� J� McLellan� D� R� Meyer� J� Montanaro� D� A� Priore� V� Rajagopalan�
S� Samudrala� and S� Santhanam� A ����MHz ���bit dual�issue CMOS
microprocessor� Digital Technical Journal� ����� �����

�Fey��� R� P� Feynman� The pleasure of 	nding things out � the best short works
of Richard P� Feynman� Perseus Books� �����

���

�FPF��� A� Fauth� J� Van Praet� and M� Freericks� Describing instruction set
processors using nML� In Proceedings of European Design and Test Con�
ference �ED�TC����� Paris� France� March �����

�Gal��� D� Galloway� The Transmogri�er C hardware description language and
compiler for FPGAs� In Proceedings of IEEE Workshop on FPGAs for
Custom Computing Machines �FCCM����� Napa Valley� CA� April �����

�GDWL��� D� Gajski� N� Dutt� A� Wu� and S� Lin� High�level Synthesis� Introduction
to Chip and System Design� Kluwer Academic Publishers� �����

�GG��� M� Gokhale and E� Gomersall� High level compilation for �ne grained FP�
GAs� In Proceedings of the IEEE Symposium on FPGA�based for Custom
Computing Machines �FCCM����� Napa Valley� CA� April �����

�GM��� M� Gokhale and R� Minnich� FPGA computing in a data parallel C� In
Proceedings of IEEE Workshop on FPGAs for Custom Computing Ma�
chines �FCCM����� Napa Valley� CA� April �����

�GZD���� D� D� Gajski� J� Zhu� R� D!omer� A� Gerslauer� and S� Zhao� SpecC Spec�
i	cation Language and Methodology� Kluwer Academic Publishers� �����

�HHD��� I� J� Huang� B� Holmer� and A� Despain� ASIA� Automatic synthesis of
instruction�set architectures� In Proceedings of the �nd Workshop on Syn�
thesis and System Integration of Mixed Technologies �SASIMI����� Nara�
Japan� October �����

�HHD��� G� Hadjiyiannis� S� Hanono� and S� Devadas� ISDL� An instruction
set description language for retargetbility� In Proceedings of the ��th
ACM�IEEE Design Automation Conference �DAC����� Anaheim� CA�
June �����

�Hoa��� C� A� R� Hoare� Communicating Sequential Processes� Prentice�Hall In�
ternational� �����

�HP��� J� L� Hennessy and D� A� Patterson� Computer Architecture� A Quanti�
tative Approach� Morgan Kaufmann� �nd edition� �����

�Ins��� The Institute of Electrical Electronics Engineers� Inc�� New York� IEEE
Standard VHDL Language Reference Manual� �����

�JHA���� S� P� Jones� J� Hughes� L� Augustsson� D� Barton� B� Boutel� W� B�
J� Fasel� K� Hammond� R� Hinze� P� Hudak� T� Johnsson� M� Jones�
J� Launchbury� E� Meijer� J� Peterson� A� Reid� C� Runciman� and
P� Wadler� Haskell ��� A Non�strict� Purely Functional Language� �����
http���www�haskell�org�

�Joh��� M� Johnson� Superscalar Microprocessor Design� Prentice Hall� �����

���

�Kan��� G� Kane� MIPS R���� RISC Architecture� Prentice Hall� �����

�Klo��� J� W� Klop� Term Rewriting System� volume � of Handbook of Logic in
Computer Science� Oxford University Press� �����

�Lis��� M� Lis� Superscalar processors via automatic microarchitecture transfor�
mations� Master�s thesis� Massachusetts Institute of Technology� Cam�
bridge� MA� June �����

�LS��� L� Lavagno and E� Sentovich� ECL� A speci�cation environment for
system�level design� In Proceedings of the ��th ACM�IEEE Design Au�
tomation Conference �DAC����� New Orleans� LA� June �����

�LSI� LSI Logic Corporation� ASIC products� http���www�lsilogic�com�
products�asic�index�html�

�LTG��� S� Liao� S� Tjinag� and R� Gupta� An ecient implementation of reactivity
for modeling hardware in the Scenic design environment� In Proceedings
of the ��th ACM�IEEE Design Automation Conference �DAC����� Ana�
heim� CA� June �����

�Mar��� P� Marwedel� The Mimola design system� Tools for the design of digital
processors� In Proceedings of the ��st ACM�IEEE Design Automation
Conference �DAC����� Albuquerque� New Mexico� �����

�Mic��� G� De Micheli� Hardware synthesis from C�C�� models� In Proceedings of
Design� Automation and Test in Europe �DATE����� Munich� Germany�
March �����

�ML��� J� Matthews and J� Launchbury� Elementary microarchitecture algebra� In
Proceedings of Conference on Computer�Aided Veri	cation� Trento� Italy�
July �����

�MLC��� J� Matthews� J� Launchbury� and B� Cook� Microprocessor speci�cation in
Hawk� In Proceedings of the ���� International Conference on Computer
Languages� Chicago� IL� �����

�MLD��� P� Michel� U� Lauther� and P� Duzy� editors� The Synthesis Approach to
Digital System Design� Kluwer Academic Publishers� �����

�MR��� M� Marinescu and M� Rinard� A synthesis algorithm for modular design
of pipelined circuits� In Proceedings of X IFIP International Conference
on VLSI �VLSI ���� Lisbon� Portugal� November �����

�PSH���� I� Pyo� C� Su� I� Huang� K� Pan� Y� Koh� C� Tsui� H� Chen� G� Cheng�
S� Liu� S� Wu� � and A� M� Despain� Application�driven design automation
for microprocessor design� In Proceedings of the ��th ACM�IEEE Design
Automation Conference �DAC����� Anaheim� CA� June �����

���

�Raj��� V� K� Raj� DAGAR� An automatic pipelined microarchitecture synthe�
sis system� In Proceedings of the International Conference on Computer
Design �ICCD����� Boston� MA� October �����

�Ros��� D� L� Rosenband� Synthesis of multi�cycle operation�centric descriptions�
PhD Dissertation Proposal� Massachusetts Institute of Technology� June
�����

�SAR��a� X� Shen� Arvind� and L� Rudolph� CACHET� An adaptive cache coher�
ence protocol for distributed shared�memory systems� In Proceedings of
the ��th ACM SIGARCH International Conference on Supercomputing�
Rhodes� Greece� June �����

�SAR��b� X� Shen� Arvind� and L� Rudolph� Commit�reconcile " fences �CRF�� A
new memory model for architects and compiler writers� In Proceedings of
the ��th International Symposium on Computer Architecture �ISCA�����
Atlanta� Georgia� May �����

�SM��� L� S#em#eria and G� De Micheli� SpC� Synthesis of pointers in C� application
of pointer analysis to the behavioral synthesis from C� In Proceedings of
International Conference on Computer�Aided Design �ICCAD����� San
Jose� CA� November �����

�SRI��� SRI International� University of Cambridge� The HOL System Tutorial�
Version �� July �����

�Sta��� Stanford University� HardwareC � A Language for Hardware Design� De�
cember �����

�Syna� Synopsys� Inc� CBA libraries datasheet� http���www�synopsys�com�
products�siarc�cba lib one�html�

�Synb� Synopsys� Inc� HDL Compiler for Verilog Reference Manual�

�Sync� Synopsys� Inc� RTL Analyzer Reference Manual�

�Synd� Synplicity� Inc� Synplify User�s Guide� Version ����

�TM��� D� E� Thomas and P� R� Moorby� The Verilog Hardware Description
Language� Kluwer Academic Publishers� �rd edition� �����

�TPPW��� D� E� Thomas� J� M� Paul� S� N� Pe�ers� and S� J� Weber� Peer�based
multithreaded executable co�speci�cation� In Proceedings of International
Workshop on Hardware�Software Co�Design� San Diego� CA� May �����

�VBR���� J� Vuillemin� P� Bertin� D� Roncin� M� Shand� H� Touati� and P� Bou�
card� Programmable active memories� Recon�gurable systems come of
age� IEEE Transactions on VLSI� ����� March �����

���

�WC��� R� A� Walker and R� Camposano� editors� A Survey of High�Level Syn�
thesis Systems� Kluwer Academic Publishers� �����

�Win��� P� J� Windley� Verifying pipelined microprocessors� In Proceedings of
the ���� IFIP Conference on Hardware Description Languages and their
Applications �CHDL����� Tokyo� Japan� �����

�Xila� Xilinx� Inc� The Programmable Logic Data Book�

�Xilb� Xilinx� Inc� Xilinx foundation series� http���www�xilinx�com�products�
found�htm�

���

