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Preface

While preparing and teaching ‘Introduction to Geodesy I and II’ to un-
dergraduate students at Stuttgart University, we noticed a gap which
motivated the writing of the present book: Almost every topic that we
taught required some skills in algebra, and in particular, computer alge-
bra! From positioning to transformation problems inherent in geodesy
and geoinformatics, knowledge of algebra and application of computer
algebra software were required. In preparing this book therefore, we
have attempted to put together basic concepts of abstract algebra which
underpin the techniques for solving algebraic problems. Algebraic com-
putational algorithms useful for solving problems which require exact
solutions to nonlinear systems of equations are presented and tested on
various problems. Though the present book focuses mainly on the two
fields, the concepts and techniques presented herein are nonetheless ap-
plicable to other fields where algebraic computational problems might
be encountered. In Engineering for example, network densification and
robotics apply resection and intersection techniques which require al-
gebraic solutions.

Solution of nonlinear systems of equations is an indispensable task
in almost all geosciences such as geodesy, geoinformatics, geophysics
(just to mention but a few) as well as robotics. These equations which
require exact solutions underpin the operations of ranging, resection,
intersection and other techniques that are normally used. Examples of
problems that require exact solutions include;

• three-dimensional resection problem for determining positions and
orientation of sensors, e.g., camera, theodolites, robots, scanners
etc.,



VIII Preface

• coordinate transformation to match shapes and sizes of points in
different systems,

• mapping from topography to reference ellipsoid and,
• analytical determination of refraction angles in GPS meteorology.

The difficulty in solving explicitly these nonlinear systems of equations
has led practitioners and researchers to adopt approximate numeri-
cal procedures; which often have to do with linearization, approximate
starting values, iterations and sometimes require alot of computational
time. In-order to offer solutions to the challenges posed by nonlinear
systems of equations, this book provides in a pioneering work, the appli-
cation of ring and polynomial theories, Groebner basis, polynomial re-
sultants, Gauss-Jacobi combinatorial and Procrustes algorithms. Users
faced with algebraic computational problems are thus provided with
algebraic tools that are not only a MUST, but essential and have been
out of reach. For these users, most algebraic books at their disposal
have unfortunately been written in mathematical formulations suitable
to mathematicians. We strive to simplify the algebraic notions and pro-
vide examples where necessary to enhance easier understanding.

For those in mathematical fields such as applied algebra, symbolic
computations and application of mathematics to geosciences etc., the
book provides some practical examples of application of mathemati-
cal concepts. Several geodetic and geoinformatics problems are solved
in the book using methods of abstract algebra and multidimensional
scaling. These examples might be of interest to some mathematicians.

Chapter 1 introduces the book and provides a general outlook on
the main challenges that call for algebraic computational approaches.
It is a motivation for those who would wish to perform analytical solu-
tions. Chapter 2 presents the basic concepts of ring theory relevant for
those readers who are unfamiliar with abstract algebra and therefore
prepare them for latter chapters which require knowledge of ring ax-
ioms. Number concept from operational point of view is presented. It is
illustrated how the various sets of natural numbers N, integers Z, quo-
tients Q, real numbers R, complex numbers C and quaternions H are
vital for daily operations. The chapter then presents the concept of ring
theory. Chapter 3 looks at the basics of polynomial theory; the main
object used by the algebraic algorithms that will be discussed in the
book. The basics of polynomials are recaptured for readers who wish to
refreshen their memory on the basics of algebraic operations. Starting
with the definition of polynomials, Chap. 3 expounds on the concept
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of polynomial rings thus linking it to the number ring theory presented
in Chap. 2. Indeed, the theorem developed in the chapter enables the
solution of nonlinear systems of equations that can be converted into
(algebraic) polynomials.

Having presented the basics in Chaps. 2 and 3, Chaps. 4, 5, 6 and
7 present algorithms which offer algebraic solutions to nonlinear sys-
tems of equations. They present theories of the procedures starting
with the basic concepts and showing how they are developed to algo-
rithms for solving different problems. Chapters 4, 5 and 6 are based
on polynomial ring theory and offer an in-depth look at the basics of
Groebner basis, polynomial resultants and Gauss-Jacobi combinatorial
algorithms. Using these algorithms, users can develop their own codes
to solve problems requiring exact solutions.

In Chap. 7, the Global Positioning System (GPS) and the Local Po-
sitioning Systems (LPS) that form the operational basis are presented.
The concepts of local datum choice of types E∗ and F∗ are elaborated
and the relationship between Local Reference Frame F∗ and the global
reference frame F•, together with the resulting observational equations
are presented. The test network “Stuttgart Central” in Germany that
we use to test the algorithms of Chaps. 4, 5 and 6 is also presented
in this chapter. Chapter 8 deviates from the polynomial approaches
to present a linear algebraic (analytical) approach of Procrustes that
has found application in fields such as medicine for gene recognition
and sociology for crime mapping. The chapter presents only the partial
Procrustes algorithm. The technique is presented as an efficient tool
for solving algebraically the three-dimensional orientation problem and
the determination of vertical deflection.

From Chaps. 9 to 15, various computational problems of algebraic
nature are solved. Chapter 9 looks at the ranging problem and considers
both the GPS pseudo-range observations and ranging within the LPS
systems, e.g., using EDMs. The chapter presents a complete algebraic
solution starting with the simple planar case to the three-dimensional
ranging in both closed and overdetermined forms. Critical conditions
where the solutions fail are also presented. Chapter 10 considers the
Gauss ellipsoidal coordinates and applies the algebraic technique of
Groebner basis to map topographic points onto the reference ellipsoid.
The example based on the baltic sea level project is presented. Chapters
11 and 12 consider the problems of resection and intersection respec-
tively.
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Chapter 13 discusses a modern and relatively new area in geodesy;
the GPS meteorology. The chapter presents the theory of GPS mete-
orology and discusses both the space borne and ground based types
of GPS meteorology. The ability of applying the algebraic techniques
to derive refraction angles from GPS signals is presented. Chapter 14
presents an algebraic deterministic version to outlier problem thus devi-
ating from the statistical approaches that have been widely publicized.
Chapter 15 introduces the 7-parameter datum transformation problem
commonly encountered in practice and presents the general Procrustes
algorithm. Since this is an extension of the partial Procrustes algorithm
presented in Chap. 8, it is referred to as Procrustes algorithm II. The
chapter further presents an algebraic solution of the transformation
problem using Groebner basis and Gauss-Jacobi combinatorial algo-
rithms. The book is completed in Chap. 16 by presenting an overview
of modern computer algebra systems that may be of use to geodesists
and geoinformatists.

Many thanks to Prof. B. Buchberger for his positive comments on
our Groebner basis solutions, Prof. D. Manocha who discussed the re-
sultant approach, Prof. D. Cox who also provided much insight in his
two books on rings, fields and algebraic geometry and Prof. W. Keller of
Stuttgart University Germany, whose door was always open for discus-
sions. We sincerely thank Dr. J. Skidmore for granting us permission
to use the Procrustes ‘magic bed’ and related materials from Myth-
web.com. Thanks to Dr. J. Smith (editor of Survey Review), Dr. S.
J. Gordon and Dr. D. D. Lichti for granting us permission to use the
scanner resection figures appearing in Chap. 12. We are also grate-
ful to Chapman and Hall Press for granting us permission to use Fig.
8.2 where malarial parasites are identified using Procrustes. Special
thanks to Prof. I. L. Dryden for permitting us to refer to his work and
all the help. Many thanks to Ms F. Wild for preparing Figs. 11.7 and
12.7. We acknowledge your efforts and valuable time. Special thanks to
Prof. A. Kleusberg of Stuttgart University Germany, Prof. T. Tsuda
of Radio Center for Space and Atmosphere, Kyoto University Japan,
Dr. J. Wickert of GeoForschungsZentrum Potsdam (GFZ) Germany
and Dr. A. Steiner of the Institute of Meteorology and Geophysics,
University of Graz, Austria for the support in terms of literature and
discussions on Chap. 13. The data used in Chap. 13 were provided by
GeoForschungsZentrum Potsdam (GFZ). For these, the authors express
their utmost appreciation.
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The first author also wishes to express his utmost sincere thanks to
Prof. S. Takemoto and Prof. Y. Fukuda of Department of Geophysics,
Kyoto University Japan for hosting him during the period of September
2002 to September 2004. In particular Chap. 13 was prepared under
the supervision and guidance of Prof. Y. Fukuda: Your ideas, sugges-
tions and motivation enriched the book. For these, we say “arigato
gozaimashita” – Japanese equivalent to thank you very much. The first
author’s stay at Kyoto University was supported by Japan Society of
Promotion of Science (JSPS): The author is very grateful for this sup-
port. The first author is grateful to his wife Mrs. Naomi Awange and
his two daughters Lucy and Ruth who always brightened him up with
their cheerful faces. Your support, especially family time that I de-
nied you in-order to prepare this book is greatly acknowledged. Naomi,
thanks for carefully reading the book and correcting typographical er-
rors. However, the authors take full responsibility of any typographical
error. Last but not least, the second author wants to thank his wife
Ulrike Grafarend, his daughter Birgit and his son Jens for all support
over these many years they were following him at various places around
the Globe.

Kyoto (Japan) and Stuttgart (Germany) Joseph L. Awange
September 2004 Erik W. Grafarend
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1

Introduction

Since the advent of the Global Navigation Satellite System (GNSS),
and particularly Global Positioning System (GPS), the fields within
geosciences such as geodesy, geoinformatics, geophysics, hydrology etc.,
have undergone tremendous changes. GPS satellites have revolutionized
operations in these fields and the entire world in ways that its inventors
never fathomed. The initial goal of GPS satellites was to provide the
capability for the US army to position from space. This way, they could
be able to know the positions of their submarines without necessarily
relying on fixed ground targets which were liable to enemy attack.
Slowly, but surely, the civilian community, led by geodesists, begun to
device methods of exploiting the potentials of this system. The initial
focus of research was on the improvement of positioning accuracies since
civilians were only accessible to the coarse acquisition C/A-code of the
GPS signal. This code is less precise as compared to the P-code used by
the US army and its allies. The other source of error in positioning was
the Selective Availability (SA). However, in May 2000, the then United
States of America’s president Bill Clinton officially discontinued the
selective availability.

As research on GPS progressed, so were new discoveries of its uses.
For example, previous research focussed on modelling or eliminating at-
mospheric effects such as refraction and multipath on the transmitted
signals. In the last decade, however, Melbourne et al. [248] suggested
that this negative effect of the atmosphere on GPS signals could be
inverted to remote sense the atmosphere for vertical profiles of tem-
perature and pressure. This gave birth to the new field of GPS meteo-
rology which is currently an active area of research. GPS meteorology
has now propelled environmental and atmospheric studies with the en-



2 1 Introduction

hancement of weather prediction and forecasting. This new technique is
presented in Chap. 13, where the algebraic computations involved are
solved. One would be forgiven to say that the world will soon be unable
to operate without GPS satellites. This, however, will not be an un-
derstatement either. GPS satellites have influenced our lives such that
almost every operation is increasingly becoming GPS dependent! From
the use of mobile phones, fertilizer regulation in farming, fish tracking
in fisheries, vehicle navigation etc., the word is GPS. These numerous
advantages of GPS satellites have led the European countries to prepare
GALILEO satellites which are the equivalent of GPS, scheduled to be
operational around 2008 [335, p. 24]. The Russian based Globalnaya
Navigationnaya Sputnikovaya Sistema (or simply Global Navigation
Satellite System) GLONASS are still operational albeit with financial
constraints.

The direct impact of using these satellites is the requirement that
operations be almost entirely three-dimensional. The major challenge
posed by this requirement is that of integrating the satellite system,
which operates globally to the traditional techniques that operate lo-
cally. In geodesy and geoinformatics for example, satellite positioning
has necessitated the transformation of coordinates from local systems
to GPS global system (World Geodetic System WGS-84). This prob-
lem, and others involving GPS satellites such as those discussed in this
book have one thing in common: They require the solution of nonlinear
equations that relate the unknowns to the measured values.

In daily operations, nonlinear equations are encountered in several
applications, thus necessitating the need for developing efficient and re-
liable computational tools. In cases where the number of observations
n and the number of unknowns m are equal, i.e., n = m, the unknown
parameters may be obtained by solving explicitly (in a closed form)
nonlinear systems of equations. Because of the difficulty in obtaining
reliable closed form procedures, approximate numerical methods have
been adopted in practice. Such procedures depend on some approxi-
mate starting values, linearization and iterations. In some cases, the
numerical methods used are unstable or the iterations fail to converge
depending on the initial “guess” [269, pp. 340–342]. The other short-
coming of the approximate numerical procedures has been pointed out
by Cox et al. [95, pp. 28–32]; who in their book have illustrated that
systems of equations with exact solutions become vulnerable to small
errors introduced during the process of establishing the roots. In case of
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extending the partial solution to the complete solutions of the system,
errors may accumulate and thus become so large. If the partial solution
was derived by iterative procedures then the errors incurred during the
root-finding may blow up during the extension of the partial solution
to the complete solution (back substitution). There exists therefore a
strong need for unified procedures that can be applied in general to
offer exact solutions to nonlinear systems of equations.

In some applications, explicit formulae rather than numerical solu-
tions are desirable. In such cases, explicit procedures are usually em-
ployed. The resulting explicit formulae often consists of univariate poly-
nomials relating the unknown parameters (unknown variables) to the
known variables (observations). By inserting numeric values into these
explicit formulae, solutions can immediately be computed for the un-
known variables. In-order to understand the foregoing discussion, let
us consider a case where students have been asked to integrate the
function f(x) = x5 with respect to x. In this case, the power of x,
i.e., 5 is definite and the integration can easily be performed. Assume
now that for a specific purpose, the power of x can be varied taking on
different values say n = 1, 2, 3, .... In such a case, it is not prudent to
integrate x raised to each power, but to seek a general explicit formula
by integrating ∫

xndx, (1.1)

to give
xn+1

n + 1
. (1.2)

One thereafter needs only to insert a given value of n in (1.2) to obtain
a solution. In practice, several problems require explicit formulae as
they are performed repeatedly.

Besides the requirement of exact solutions by some applications,
there also exist the problem of exact solutions of overdetermined sys-
tems (i.e., where many observations than unknown exist). In reality,
field observations often result in more data being collected than is re-
quired to determine the unknown parameters. Exact solution to the
overdetermined problems is just but one of the challenges. In some ap-
plications, such as the 7-parameter datum transformation discussed in
Chap. 15, where coordinates have to be transformed from local (na-
tional) systems to GPS (global) system and vice versa, handling of
stochasticities of these systems still pose a serious challenge to users.
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Approximate numerical procedures which are applied in practice do
not offer tangible solution to this problem. Other than the stochastic-
ity issues, numerical methods employed to solve the 7-parameter datum
transformation problem require some initial starting values, lineariza-
tion and iterations as already mentioned. In Photogrammetry, where
the rotation angles are very small, the initial starting values are often
set to zero. This, unfortunately, may not be the case for other applica-
tions in geosciences. In Chaps. 8 and 15 we present powerful analytical
and algebraic techniques developed from the fields of multidimensional
scaling and abstract algebra to solve the problem. In particular, the
Procrustes algorithm, which enjoys wide use in fields such as medicine
and sociology is straightforward and easy to program. The advantages
of these techniques are; the non-requirements of the conditions that
underpin approximate numerical solutions, and their capability to take
into consideration weights of the systems involved.

Solution of unknown parameters from nonlinear observational equa-
tions are only meaningful if the observations themselves are pure and
uncontaminated by gross errors (outliers). This raises the issue of out-
lier detection and management. Traditionally, statistical procedures
have been put forward for detecting outliers in observational data sam-
ple. Once detected, observations that are contaminated with outliers
are isolated and the remaining pure observations used to estimate un-
known parameters. Huber [191] and Hampel et al [172] however point
out the dangers that exist in such approach. These are; false rejection of
the otherwise good observations, and false retention of contaminated
observations. To circumvent these dangers, robust estimation proce-
dures were proposed in 1964 by the father of robust statistics, P. J.
Huber [189] to manage outliers without necessarily rejecting outlying
observations. Since then, as we shall see in Chap. 14, several contri-
butions to outlier management using robust techniques have been put
forward. Chapter 14 deviates from the statistical approaches to present
the non deterministic outlier diagnosis based on algebraic approaches
which enjoy the advantages already discussed.

On the instrumentation front, there has been tremendous improve-
ment in computer technology. Today, laptops are made with large stor-
age capacity with high memory thus enabling faster computations.
Problems can now be solved using algebraic methods that would have
been impossible to solve by hand. The advances in computer technol-
ogy has also propelled development of precise and accurate measuring
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devices. With the improvement in computer technology and the man-
ufacture of precise and accurate measuring devices, modern challenges
facing those in fields of geosciences and engineering include:

• Handling in an efficient and manageable way the nonlinear systems
of equations that relate observations to unknowns. In GPS mete-
orology for example, more than 1000 satellite occultations are ob-
tained on daily basis, from which bending angles of the signals are
to be computed. In practice, the nonlinear system of equations for
bending angles is often solved using Newton’s method iteratively.
An explicit formula could be derived from the nonlinear system of
equations as presented in Chap. 13.

• Obtaining a unified closed form solution (e.g., Awange et al. [36])
for different problems. For a particular problem, several procedures
are often put forward in an attempt to offer exact solution. The
GPS pseudo-range problem for example, has attracted several exact
solution procedures as evidenced in the works of [47, 150, 198, 199,
221, 296]. It is desirable in such a case to have a unified solution
approach which can easily be applied to all problems in general.

• Controlling approximate numerical algorithms that are widely used.
• Obtaining computational procedures that are time saving.
• Having computational procedures that do not peg their operations

on approximate starting values, linearization or iterations.
• Take advantage of the large storage capacity and fast speed of mod-

ern computers to solve problems which have hitherto evaded solu-
tion.

• Prove the validity of theorems and formulae that are in use which
were derived based on trial and error basis.

• Perform rigorous analysis of the nonlinearity effects on most models
that are in operation but assume or ignore nonlinearity.

These challenges and many others had existed before, and earlier
researchers had acknowledged the fact and realized the need for ad-
dressing them through developing explicit solutions. Merritt [249] had,
for example, listed the advantages of explicit solutions as;

1. provision of satisfaction to the users (photogrammetrists and math-
ematicians) of the methods,

2. provision of data tools for checking the iterative methods,
3. desired by geodesists whose task of control network densification

does not favour iterative procedures,
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4. provision of solace and,
5. the requirement of explicit solutions rather than iterative by some

applications.

Even though such advantages had been noted, their actual realization
was out of reach as the equations involved were large and required
more than a paper and a pen to solve. Besides, another drawback
was that these exact solutions were like rare jewel. The reason for this
was partly because the methods required extensive computations and
partly because the resulting symbolic expressions were too large and
required computers with large storage capacity. Until recently, comput-
ers that were available could hardly handle large computations due to
lack of faster Central Processing Unit (CPU), shortage of Random Ac-
cess Memory (RAM) and limited hard disk storage capacity. The other
setback was that some of the methods, especially those from algebraic
fields, were formulated based on theoretical concepts that were hard to
realize or comprehend without the help of computers. For a long time
therefore, these setbacks hampered progress of explicit procedures. The
painstaking efforts to obtain exact solution discouraged practitioners
to the extent that the use of numerical approaches were the order of the
day. Most of these numerical approaches had no independent methods
for validation, while other problems evaded numerical solutions and
required closed form solutions.

The answer to these modern challenges, lies in the application of
algebraic computational techniques. Algebra has been widely applied
in fields such as robotics for kinematic modelling of robots, engineer-
ing for offset surface construction in solid modelling, computer science
for automated theorem proving, Computer Aided Design (CAD) etc.
The well known application of algebra in geodesy could perhaps be the
use of Legendre polynomials in spherical harmonic expansion studies.
More recent application of algebra in geodesy is evidenced in the works
of Biagi and Sanso [63], Awange [11] and Lannes and Durand [214].
The latter proposes a new approach to differential GPS based on al-
gebraic graph theory. The present book examines algebraic computa-
tional problems inherent in geodesy and geoinformatics which require
algebraic solutions. Powerful tools for solving such problems are pre-
sented with numerous examples given on their applicability in practice.
We focus on nonlinear systems of equations whose exact (algebraic) so-
lutions have been a thorn in the flesh to users, and provide several
examples that are encountered in practice.
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Basics of Ring Theory

2.1 Some Applications to Geodesy and Geoinformatics

This chapter presents the concepts of ring theory from a geodetic and
geoinformatics perspective. The presentation is such that the mathe-
matical formulations are augmented with examples from the two fields.
Ring theory forms the basis upon which polynomial rings operate. As
we shall see later, exact solution of nonlinear systems of equations are
pinned to the operations on polynomial rings. In Chap. 3, polynomi-
als will be discussed in detail. In-order to understand the concept of
polynomial rings, one needs first to be familiar with the basics of ring
theory. This chapter is therefore a preparation for the understanding
of the polynomial rings presented in Chap. 3. Ring of numbers which is
presented in Sect. 2.2 plays a significant role in daily operations. They
permit operations addition, subtraction, multiplication and division of
numbers. For those engaged in data collection, ring of numbers play
the following role;

• they specify the number of sets of observations to be collected,
• they specify the number of observations or measurements per set,
• they enable manipulation of these measurements to determine the

unknown parameters.

We start by presenting ring of numbers. Elementary introduction of
the sets of natural numbers, integers, rational numbers, real numbers,
complex numbers and quaternions are first given before defining the
ring. We strive to be as simple as possible so as to make the concepts
clear to readers with less or no knowledge of rings.
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2.2 Numbers from Operational Perspective

When undertaking operations such as measurements of angles, dis-
tances, gravity, photo coordinates, digitizing of points etc., numbers are
often used. Measured values are normally assigned numbers. A mea-
sured distance for example can be assigned a value of 100 m to indicate
the length. Numbers, e.g., 1, 2, ..., also find use as;

• counters to indicate the frequency of taking measurements,
• counters indicating the number of points to be observed or,
• passwords to;

– the processing hardware (e.g. computers),
– softwares (such as those of Geographical Information Systems

(GIS) packages) and,
– accessing pin numbers in the bank!

In all these cases, one operates on a set of natural numbers

N = {0, 1, 2, ....}, (2.1)

with 0 added. The number 0 was invented by the Babylonians in the
third century B.C.E, re-invented by the Mayans in the fourth century
B.C.E and in India in the fifth century [193, p. 69]. The set N in (2.1)
is closed under;

• addition, in which case the sum of two numbers is also a natural
number (e.g., 3 + 6 = 9) and,

• multiplication, in which case the product of two numbers is a natural
number (e.g., 3 × 6 = 18).

Subtraction, i.e., the difference of two natural numbers is however not
necessarily a natural number (e.g. 3 − 6 = −3). To circumvent the
failure of the natural numbers to be closed under subtraction, negative
numbers were introduced and added in front of natural numbers. For
a natural number n for example, −n is written. This expanded set

Z = {−2,−1, 0, 1, 2, ....}, (2.2)

is the set of integers. The letter Z is adopted from the first letter of the
German word for integers “Zahl”. The set Z is said to have:

• an “additive identity” number 0 which when added to any integer
n preserves the “identity” of n, e.g., 0 + 13 = 13,
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• “additive inverse” −n which when added to an integer n results in
an identity 0, e.g., −13 + 13 = 0. The number −13 is an additive
inverse of 13.

The set Z with the properties “addition” and “additive inverse” en-
ables one to manipulate numbers by being able to add and subtract.
This is particularly helpful when handling measured values. It allows
for instance the solution of equations of type y +m = 0, where m is an
integer. In-order to allow them to divide numbers as is the case with dis-
tance ratio observations, “multiplicative identity” and “inverse” have
to be specified as:

• “multiplicative identity” is the integer 1 which when multiplied with
any integer n preserves the “identity” of n, e.g., 1 × 13 = 13,

• “multiplicative inverse” is an integer m such that its multiplication
with an integer n results in an identity 1, e.g., m × n = 1.

For a non-zero integer n, therefore, a multiplicative inverse
1

n
has to be

specified. The multiplicative inverse of 5 for example is
1

5
. This leads

to an expanded set comprising of both integers and their multiplicative
inverses as

Q = {−2,−1

2
,−1, 0, 1, 2,

1

2
, ....}, (2.3)

where a new number has been created for each number except −1, 0, 1.
Except for 0, which is a special case, the set Q is closed under “additive”
and “multiplicative inverses” but not “addition” and “multiplication”.
This is circumvented by incorporating all products of integers and mul-

tiplicative inverses m × 1

n
=

m

n
, which are ratios of integers resulting

into a set of rational numbers Q. Q is the first letter of Quotient and
is closed since:

• For every rational number, there exist an additive inverse which is

also a rational number, e.g., − 1

13
+

1

13
= 0.

• Every rational number except 0 has a multiplicative inverse which

is also a rational number, e.g., 13 × 1

13
= 1.

• The set of rational numbers is closed under addition and multipli-

cation, e.g.,
1

3
+

1

3
=

2

3
and

1

3
× 1

3
=

1

9
.

The set Q is suitable as it permits addition, subtraction, multiplication
and division. It therefore enables the solution of equations of the form
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ny − m = 0, {m, n} being arbitrary integers, with n �= 0. This set is
however not large enough as it leaves out the square root of numbers
and thus cannot measure the Pythagorean length. In geodesy, as well as
geoinformatics, the computation of distances from station coordinates
by Pythagoras demands the use of square root of numbers. The set
of quotient Q is thus enlarged to the set of real numbers R, where
the positive real numbers are the ones required to measure distances as
shall be seen in Chaps. 9, 11 and 12. Negative real numbers are included
to provide additive inverses. The set R also possesses multiplicative
inverses. This set enables the solution of equations of the form y2−3 =
0 ⇒ y = ±√

3, which is neither integer nor rational. The set R is
however not large enough to provide a solution to an equation of the
form y2+1 = 0. It therefore gives way to the set C of complex numbers,
where i2 = −1.

The set C can be expanded further into a set H of quaternions which
was discovered by W. R. Hamilton on the 16th of October 1843, hav-
ing worked on the problem for 13 years (see Note 2.1 on p. 11). Even
as he discovered the quaternions, it occurred to him that indeed Eu-
ler had known of the existence of the four square identity in 1748 and
that quaternion multiplication had been used by Rodrigues in 1840 to
compute the product of rotations in R3 [301]. Indeed as we shall see in
Chap. 6, Gauss knew of quaternions even before Hamilton, but unfor-
tunately, he never published his work. In geodesy and geoinformatics,
quaternions have been used to solve the three-dimensional resection
problem by [156]. They have also found use in the solution of the sim-
ilarity transformation problem discussed in Chap. 15 as evidenced in
the works of [295, 311, 312, 352]. Quaternion is defined as the matrix[

(a + di) (b + ci)
(−b + ci) (a − di)

]
|{a, b, c, d} ∈ R, (2.4)

which is expressed in terms of unit matrices 1, i, j, k as⎡
⎢⎢⎣
[

a + di b + ci
−b + ci a − di

]
= a

[
1 0
0 1

]
+ b

[
0 1
−1 0

]
+ c

[
0 i
i 0

]
+ d

[
i 0
0 −i

]

a1 + bi + cj + dk,
(2.5)

where 1, i, j,k are quaternions of norm 1 that satisfy



2.2 Numbers from Operational Perspective 11⎡
⎢⎢⎣

i2 = j2 = k2 = −1
ij = k = −ji
jk = i = −kj
ki = j = −ik.

(2.6)

The norm of the quaternions is the determinant of the matrix (2.4) and
gives

det

[
(a + di) (b + ci)
(−b + ci) (a − di)

]
= a2 + b2 + c2 + d2, (2.7)

which is a four square identity. This matrix definition is due to Cay-
ley, while Hamilton wrote the rule i2 = j2 = k2 = ijk = −1 that
define quaternion multiplication from which he derived the four square
identity [301, p. 156].

We complete this section by defining algebraic integers as

Definition 2.1 (Algebraic). A number n ∈ C is algebraic if

anαn + an−1α
n−1 + ... + a1α + a0 = 0, (2.8)

and it takes on the degree n if it satisfies no such equation of lower
degree and a0, a1, ..., an ∈ Z.

We shall see in Chap. 3 that Definition (2.1) satisfies the definition of
a univariate polynomial.

Note 2.1 (Hamilton’s Letter). How can one dream about such a “quater-
nion algebra” H ? W. R. Hamilton (16th October 1843) invented
quaternion numbers as outlined in a letter (1865) to his son A. H. Hamil-
ton for the following reason:

“If I may be allowed to speak of myself in connection with the subject, I
might do so in a way which would bring you in, by referring to an ante-
quaternionic time, when you were a mere child, but had caught from me
the conception of a vector, as represented by a triplet ; and indeed I happen
to be able to put the finger of memory upon the year and month –October,
1843– when having recently returned from visits to Cork and Parsonstown,
connected with a meeting of the British Association, the desire to discover
the laws of the multiplication referred to regained with me a certain strength
and earnestness, which had for years been dormant, but was then on the
point of being gratified, and was occasionally talked of with you. Every
morning in the early part of the above cited month, on my coming down
to breakfast, your (then) little brother William Edwin, and yourself, used
to ask me, “well, Papa, can you multiply triplets”? Whereto I was always
obliged to reply, with a sad shake of the head: “No, I can only add and
subtract them.”
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But on the 16th day of the same month – which happened to be a Monday,
and a Council day of the Royal Irish Academy – I was walking in to attend
and preside, and your mother was walking with me, along the Royal Canal,
to which she had perhaps driven; and although she talked with me now
and then, yet an under-current of thought was going on in my mind, which
gave at last a result, whereof it is not too much to say that I felt at once
the importance. An electric circuit seemed to close; and a spark flashed
forth. The herald (as I foresaw, immediately) of many long years to come
of definitely directed thought and work, by myself if spared, and at all
events on the part of others, if should even be allowed to live long enough
distinetly to communicate the discovery. Nor could I resist the impulse
– unphilosophical as it may have been – to cut with a knife on a stone
of Brougham Bridge, as we passed it, the fundamental formula with the
symbols, i, j, k; namely

i2 = j2 = k2 = ijk = −1,

which contains the solution of the problem, but of course, as an inscription,
has long since mouldered away. A more durable notice remains, however, on
the Council Books of the Academy for that day (October 16th, 1843), which
records the fact, that I then asked for and obtained base to read a paper
on quaternion, at the First General Meeting of the Session: which reading
took place accordingly, on Monday the 13th of the November following.”

2.3 Number Rings

In everyday lives of geodesists and geoinformatists, rings are used al-
beit without being noticed: A silent tool without which perhaps they
might find the going tough. In the preceding section, the sets of in-
tegers Z, rational numbers Q, real numbers R and complex numbers
C were introduced as being closed under addition and multiplication.
Loosely speaking, a system of numbers that is closed under addition
and multiplication is a ring. A more precise definition of a ring based
on linear algebra will be given later.

It suffices at this point to think of the sets Z, Q, R and C, upon which
we manipulate numbers, as being a collection of numbers that can be
added, multiplied, have additive identity 0 and multiplicative identity
1. In addition, every number in these sets has an additive inverse thus
forming a ring. Measurements of distances, angles, directions, photo
coordinates, gravity etc., comprise the set R of real numbers. This
set as we saw earlier is closed under addition and multiplication. Its
elements were seen to possess additive and multiplicative identities,
and also additive inverses, thus qualifying to be a ring.
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In algebra books, one often encounters the term field which seems
somewhat confusing with the term ring. In the brief outline of the
number ring above, whereas the sets Z, Q, R and C qualified as rings,
the set N of natural numbers failed as it lacked additive inverse. The
sets Q, R and C also have an additional property that every number
n �= 0 in the ring has a multiplicative inverse. A ring in which every
n �= 0 has a multiplicative inverse is called a field. The set Z therefore
is not a field as it does not have multiplicative inverse. In this book,
the terms ring and field will be used interchangeably to refer to the sets
Q, R and C which qualify both as rings and as fields.

A curious reader will note that the term number ring was selected as
the heading for this section and used in the discussion. This is because
we have several other types of rings that do not use numbers as objects.
In our examples, we used numbers to clarify closeness under addition
and multiplication. We will see later in Chap. 3 that polynomials, which
are objects and not numbers, also qualify as rings. For daily measure-
ments and manipulation of observations, number rings and polynomial
rings suffices. Other forms of rings such as fruit rings, modular arith-
metic rings and congruence rings are elaborately presented in algebra
books such as [193] and [246]. In-order to give a precise definition of a
ring, we begin by considering the definition of linear algebra. Detailed
treatment of linear algebra is presented in [55, 56, 251, 314].

Definition 2.2 (Linear algebra). Algebra can be defined as a set S
of elements and a finite set M of operations. In linear algebra the ele-
ments of the set S are vectors over the field R of real numbers, while the
set M is basically made up of two elements of internal relation namely
“additive” and “multiplicative”. An additional definition of the exter-
nal relation expounds on the term linear algebra as follows: A linear
algebra over the field of real numbers R consists of a set R of objects,
two internal relation elements (either “additive” or “multiplicative”)
and one external relation as follows:

(opera)1 =: α : R × R → R
(opera)2 =: β : R × R → R or R × R → R
(opera)3 =: γ : R × R → R.

The three cases are outlined as follows:
* With respect to the internal relation α (“join”), R as a linear space in
a vector space over R, an Abelian group written “additively” or “mul-
tiplicatively”:
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a,b, c ∈ R

Axiom “Additively” “Multiplicatively”
written Abelian group written Abelian group

α(a,b) =: a + b α(a,b) =: a ◦ b
1 Associativity G1+ : (a + b) + c = G1◦ : (a ◦ b) ◦ c =

= a + (b + c) = a ◦ (b ◦ c)
(additive assoc.) (multiplicative assoc.)

2 Identity G2+ : a + 0 = a G2◦ : a ◦ 1 = a
(additive identity, (multiplicative identity
neutral element) neutral element)

3 Inverse G3+ : a + (−a) = 0 G3◦ : a ◦ a−1 = 1
(additive inverse) (multiplicative inverse)

4 Commutativity G4+ : a + b = b + a G4◦ : a ◦ b = b ◦ a
(additive commutativity, (multiplicative comm.,

Abelian axiom) Abelian axiom)

with the triplet of axioms {G1+, G2+, G3+} or {G1◦, G2◦, G3◦}
constituting the set of group axioms and {G4+, G4◦} the Abelian ax-
ioms. Examples of groups include:

1. The group of integer Z under addition.
2. The group of non-zero rational number Q under multiplication.
3. The set of rotation about the origin in the Euclidean plane under

the operation of composite function.

* With respect to the external relation β the following compatibility
conditions are satisfied

a,b ∈ R, t, u ∈ R

β(t,a) =: t × a

1 distr. D1+ : t × (a + b) = (a + b) × t = D1◦ : t × (a ◦ b) = (a ◦ b) × t
= t × a + t × b = a × t + b × t = (t × a) ◦ b = a ◦ (b × t)

1st additive distributivity 1st multiplicative distributivity
2 distr. D2+ : (t + u) × a = a × (t + u) = D2◦ : (t ◦ u) × a = a × (t ◦ u)

= t × a + u × a = a × t + a × u = t ◦ (u × a) = (a × t) ◦ u
2nd additive distributivity 2nd multiplicative distributivity

D3 : 1 × a = a × 1 = a (left and right identity)
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* With respect to the internal relation γ (“meet”) the following con-
ditions are satisfied

a,b, c ∈ R, t ∈ R

γ(a,b) =: a ∗ b

Axiom Comments

1 Ass. G1∗ : (a ∗ b) ∗ c = a ∗ (b ∗ c) Associativity w.r.t
internal multiplication

1 dist. D1 ∗ +; a ∗ (b + c) = a ∗ b + a ∗ c Left and Right
(a + b) ∗ c = a ∗ c + b ∗ c additive dist. w.r.t

internal multiplication

1 dist. D1 ∗ ◦; a ∗ (b ◦ c) = (a ∗ b) ◦ c left and right
(a ◦ b) ∗ c = a ◦ (b ∗ c) multiplicative dist. w.r.t

internal multiplication

2 dist. D2 ∗ ×; t × (a ∗ b) = (t × a) ∗ b left and right dist.
(a ∗ b) × t = a ∗ (b × t) of internal and external

multiplication

Definition 2.3 (Ring). A sub-algebra is called a ring with identity if
the following two conditions encompassing (seven conditions) hold:
(a) The set R is an Abelian group with respect to addition, i.e. four
conditions {G1+, G2+, G3+, G4+} of Abelian group hold.
(b) The set R is a semi-group with respect to multiplication; that is,
{G1∗, G2∗} holds. In other words, the set R comprises a monoid (i.e.
a set with two operations, associativity and identity with respect to mul-
tiplication (∗)). The last condition is the left and right additive distribu-
tivity with respect to internal multiplication {D1 ∗ +} which connects
the Abelian group and the monoid. In total the four conditions forming
the Abelian group (a) and the three forming the semi-group in (b) add
up to form seven conditions enclosed in a ring in Fig. 2.1.

Condition G2∗ makes R a “ring with identity”, while the inclusion
of G3∗ makes the ring be known as the “division ring” if every non-
zero element of the ring has a multiplicative inverse. The ring becomes
a “commutative ring” If it has the commutative multiplicative G4∗.
Examples of rings include:
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Fig. 2.1. Ring

• Field k of real numbers R, complex numbers C and rational numbers
Q. In particular, a ring becomes a field if every non zero element of
the ring has a multiplicative inverse as already discussed.

• Integers Z.
• The set H of quaternions that are non commutative.
• Polynomial function P in n variables over a ring R expressed as

P = R[x1, . . ., xn].

For the solution of algebraic computational problems in geodesy and
geoinformatics, it suffices to consider a ring as being commutative and
to include identity element.

2.4 Concluding Remarks

The concept of numbers and ring of numbers have been presented from
a geodetic and geoinformatics perspective. In the next chapter, the
number ring will provide the framework for discussing polynomial rings,
the main algebraic tool that permits the solution of nonlinear systems of
equations. The basics of ring algebra discussed provides fundamentals
required to understand the materials that will be presented in latter
chapters. For more detailed coverage of rings, we refer to [213].
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Basics of Polynomial Theory

3.1 Polynomial Equations

In geodesy and geoinformatics, most observations are related to un-
knowns parameters through equations of algebraic (polynomial) type.
In cases where the observations are not of polynomial type, as exempli-
fied by the GPS meteorology problem of Chap. 13, they are converted
via Theorem 3.1 on p. 20 into polynomials. The unknown parameters
are then be obtained by solving the resulting polynomial equations.
Such solutions are only possible through application of operations ad-
dition and multiplication on polynomials which form elements of poly-
nomial rings. This chapter discusses polynomials and the properties
that characterize them. Starting from the definitions of monomials,
basic polynomial aspects that are relevant for daily operations are pre-
sented. A monomial is defined as

Definition 3.1 (Monomial). A monomial is a multivariate product
of the form xα1

1 xα2

2 . . .xαn
n , (α1, . . ., αn) ∈ Zn

+ in the variables x1, . . ., xn.

In Definition 3.1 above, the set Zn
+ comprises positive elements of the

set of integers (2.2) that we saw in Chap. 2, p. 8.

Example 3.1 (Monomial). Consider the system of equations for solving
distances in the three-dimensional resection problem given as (see e.g.,
(11.44) on p. 180)⎡

⎢⎢⎣
x2

1 + 2a12x1x2 + x2
2 + ao = 0

x2
2 + 2b23x2x3 + x2

3 + bo = 0
x2

3 + 2c31x3x1 + x2
1 + co = 0

where x1 ∈ R+, x2 ∈ R+, x3 ∈ R+.
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The variables {x1, x2, x3} are unknowns while the other terms are
known constants. The products of variables

{
x2

1, x1x2, x
2
2, x2x3, x

2
3, x3x1

}
are monomials in {x1, x2, x3}.
Summation of monomials form polynomials defined as

Definition 3.2 (Polynomial). A polynomial f ∈ k [x1, . . . , xn] in
variables x1, . . . , xn with coefficients in the field k is a finite linear
combination of monomials with pairwise different terms expressed as

f =
∑
α

aαxα, aα ∈ k, xα = (xα1 , . . ., xαn), α = (α1, . . ., αn), (3.1)

where aα are coefficients in the field k, e.g., R or C and xα the mono-
mials.

Example 3.2 (Polynomials). Equations⎡
⎣x2

1 + 2a12x1x2 + x2
2 + ao = 0

x2
2 + 2b23x2x3 + x2

3 + bo = 0
x2

3 + 2c31x3x1 + x2
1 + co = 0,

in Example 3.1 are multivariate polynomials. The first expression is a
multivariate polynomial in two variables {x1, x2} and a linear combi-
nation of monomials

{
x2

1, x1x2, x
2
2

}
. The second expression is a multi-

variate polynomial in two variables {x2, x3} and a linear combination
of the monomials

{
x2

2, x2x3, x
2
3

}
, while the third expression is a multi-

variate polynomial in two variables {x3, x1} and a linear combination
of the monomials

{
x2

3, x3x1, x
2
1

}
.

In Example 3.2, the coefficients of the polynomials are elements of
the set Z. In general, the coefficients can take on any sets Q, R, C of
number rings or other rings such as modular arithmetic rings. These
coefficients can be added, subtracted, multiplied or divided, and as such
play a key role in determining the solutions of polynomial equations.
The definition of the set to which the coefficients belong determines
whether a polynomial equation is solvable or not. Consider the following
example:

Example 3.3. Given an equation 9w2 − 1 = 0 with the coefficients in
the integral domain, obtain the integer solutions. Since the coefficient
9 ∈ Z, the equation does not have a solution. If instead the coefficient

9 ∈ Q, then the solution w = ±1

3
exist.
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From Definition 2.1 of algebraic, polynomials become algebraic once
(3.1) is equated to 0. The fundamental problem of algebra can thus be
stated as the solution of equations of form (3.1) equated to 0.

3.2 Polynomial Rings

In Sect. 2.3 of Chap. 2, the theory of rings was introduced with respect
to numbers. Apart from the number rings, polynomials are objects
that also satisfy ring axioms leading to “polynomial rings” upon which
operations “addition” and “multiplication” are implemented.

3.2.1 Polynomial Objects as Rings

Polynomial rings are defined as

Definition 3.3 (Polynomial ring). Consider a ring R say of real
numbers R. Given a variable x /∈ R, a univariate polynomial f(x) is
formed (see Definition 3.2 on p. 18) by assigning coefficients ai ∈ R
to the variable and obtaining summation over finite number of distinct
integers. Thus

f(x) =
∑
α

cαxα, cα ∈ R, α ≥ 0

is said to be a univariate polynomial over R . If two polynomials are
given such that f1(x) =

∑
i

cix
i and f2(x) =

∑
j

djx
j , then two binary

operations “addition” and “multiplication” can be defined on these poly-
nomials such that:
(a) Addition: f1(x) + f2(x) =

∑
k

ekx
k, ek = ck + dk, ek ∈ R

(b) Multiplication: f1(x).f2(x) =
∑
k

gkx
k, gk =

∑
i+j=k

cidj , gk ∈ R .

A collection of polynomials with these “additive” and “multiplicative”
rules form a commutative ring with zero element and identity 1. A uni-
variate polynomial f(x) obtained by assigning elements ci belonging to
the ring R to the variable x is called a polynomial ring and is expressed
as f(x) = R[x]. In general the entire collection of all polynomials in
x1, . . . , xn, with coefficients in the field k that satisfy the definition of
a ring above are called a polynomial rings.

Designated P, polynomial rings are represented by n unknown variables
xi over k expressed as P := k [x1, . . ., xn] . Its elements are polynomials
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known as univariate when n = 1 and multivariate otherwise. The dis-
tinction between a polynomial ring and a polynomial is that the latter
is the sum of a finite set of monomials (see e.g., Definition 3.1 on p. 17)
and is an element of the former.

Example 3.4. Equations⎡
⎣x2

1 + 2a12x1x2 + x2
2 + ao = 0

x2
2 + 2b23x2x3 + x2

3 + bo = 0
x2

3 + 2c31x3x1 + x2
1 + co = 0

of Example 3.1 are said to be polynomials in three variables [x1, x2, x3]
forming elements of the polynomial ring P over the field of real numbers
R expressed as P := R [x1, x2, x3].

Polynomials that we use in solving unknown parameters in vari-
ous problems, as we shall see later, form elements of polynomial rings.
Polynomial rings provide means and tools upon which to manipulate
the polynomial equations. They can either be added, subtracted, mul-
tiplied or divided. These operations on polynomial rings form the basis
of solving systems of equations algebraically as will be made clear in the
chapters ahead. Next, we state the theorem that enables the solution
of nonlinear systems of equations in geodesy and geoinformatics.

Theorem 3.1. Given n algebraic (polynomial) observational equations,
where n is the dimension of the observation space Y of order l in m un-
known variables , and m is the dimension of the parameter space X, the
application of least squares solution (LESS) to the algebraic observation
equations gives (2l − 1) as the order of the set of nonlinear algebraic
normal equations. There exists m normal equations of the polynomial
order (2l − 1) to be solved.

Proof. Given nonlinear algebraic equations fi ∈ k{ξ1, . . . , ξm} ex-
pressed as ⎡

⎢⎢⎢⎢⎢⎢⎣

f1 ∈ k{ξ1, . . . , ξm}
f2 ∈ k{ξ1, . . . , ξm}

.

.

.
fn ∈ k{ξ1, . . . , ξm},

(3.2)

with the order considered as l, we write the objective function to be
minimized as
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‖f‖2 = f2
1 + . . . . + f2

n | ∀fi ∈ k{ξ1, . . . , ξm}, (3.3)

and obtain the partial derivatives (first derivatives of 3.3) with respect
to the unknown variables {ξ1, . . . , ξm}. The order of (3.3) which is
l2 then reduces to (2l − 1) upon differentiating the objective function
with respect to the variables ξ1, . . . , ξm. Thus resulting in m normal
equations of the polynomial order (2l − 1).
��

Example 3.5 (Pseudo-ranging problem). For pseudo-ranging or distance
equations, the order of the polynomials in the algebraic observational
equations is l = 2. If we take the “pseudo-ranges squared” or “distances
squared”, a necessary procedure in-order to make the observation equa-
tions “algebraic” or “polynomial”, and implement least squares solution
(LESS), the objective function which is of order l = 4 reduces by one
to order l = 3 upon differentiating once. The normal equations are of
order l = 3 as expected.

The significance of Theorem 3.1 is that all observational equations of
interest are successfully converted to “algebraic” or “polynomial” equa-
tions. This implies that problems requiring exact algebraic solutions
must first have their equations converted into algebraic. This will be
made clear in Chap. 13 where trigonometric nonlinear system on equa-
tions are first converted into algebraic.

3.2.2 Operations “Addition” and “Multiplication”

Definition 3.3 implies that a polynomial ring qualifies as a ring based
on the applications of operations “addition” and “multiplication” on
its coefficients. In this case, the axioms that follow the Abelian group
with respect to “addition” and the semi group with respect to “mul-
tiplication” readily follow. Of importance in manipulating polynomial
rings using operations “addition” and “multiplication” is the concept
of division of polynomials defined as

Definition 3.4 (Polynomial division). Consider the polynomial ring
k[x] whose elements are polynomials f(x) and g(x). There exists unique
polynomials p(x) and r(x) also elements of polynomial ring k[x] such
that

f(x) = g(x)p(x) + r(x),

with either r(x) = 0 or degree of r(x) is less than the degree of g(x).
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For univariate polynomials, as in Definition 3.4, the Euclidean al-
gorithm employs operations “addition” and “multiplication” to factor
polynomials in-order to reduce them to satisfy the definition of division
algorithm.

3.3 Factoring Polynomials

In-order to understand the factorization of polynomials, it is essential
to revisit some of the properties of prime numbers of integers. This is
due to the fact that polynomials behave much like integers. Whereas
for integers, any integer n > 1 is either prime (i.e., can only be fac-
tored by 1 and n itself) or a product of prime numbers, a polynomial
f(x) ∈ k[x] is either irreducible in k[x] or factors as a product of ir-
reducible polynomials in the field k[x]. The polynomial f(x) has to
be of positive degree. Factorization of polynomials play an important
role as it enables solution of polynomial roots as will be seen in the
next section. Indeed, the Groebner basis algorithm presented in Chap.
4 makes use of the factorization of polynomials. In general, computer
algebra systems discussed in Chap. 16 offers possibilities of factoring
polynomials.

3.4 Polynomial Roots

More often than not, the most encountered interaction with polynomi-
als is perhaps the solution of its roots. Finding the roots of polynomials
is essential for most computations that we undertake in practice. As an
example, consider a simple planar ranging case where distances have
been measured from two known stations to an unknown station (see
e.g, Fig. 4.1 on p. 30). In such a case, the measured distances are nor-
mally related to the coordinates of the unknown station by multivariate
polynomial equations. If for instance a station P1, whose coordinates
are {x1, y1} is occupied, the distance s1 can be measured to an un-
known station P0. The coordinates {x0, y0} of this unknown station
are desired and have to be determined from distance measurements.
The relationship between the measured distance and the coordinates is
given by

s1 =
√

(x1 − x0)2 + (y1 − y0)2. (3.4)

Applying Theorem 3.1, a necessary step to convert (3.4) into polyno-
mial, (3.4) is squared to give a multivariate quadratic polynomial
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s2
1 = (x1 − x0)

2 + (y1 − y0)
2. (3.5)

Equation (3.5) has two unknowns thus necessitating a second distance
measurement to be taken. Measuring this second distance s2 from sta-
tion P2, whose coordinates {x2, y2} are known, to the unknown station
P0 leads to a second multivariate quadratic polynomial equation

s2
2 = (x2 − x0)

2 + (y2 − y0)
2. (3.6)

The intersection of the two equations (3.5) and (3.6) results in two
quadratic equations ax2

0 + bx0 + c = 0 and dy2
0 + ey0 + f = 0 whose

roots give the desired coordinates x0, y0 of the unknown station P0. In
Sect. 4.1, we will expound further on the derivation of these multivariate
quadratic polynomial equations.

In Sect. 3.6, we will discuss the types of polynomials with real coef-
ficients. Suffice to mention at this point that polynomials, as defined in
Definition 3.2 with the coefficients in the field k, has a solution ξ such
that on replacing the variable xα, one obtains

anξn + an−1ξ
n−1 + ... + a1ξ + a0 = 0. (3.7)

From high school algebra, we learnt that if ξ is a solution of a
polynomial f(x), also called the root of f(x), then (x − ξ) divides
the polynomial f(x). This fact enables the solution of the remaining
roots of the polynomial as we already know. The division of f(x) by
(x− ξ) obeys the division rule discussed in Sect. 3.2.2. In a case where
f(x) = 0 has many solutions (i.e., multiple roots ξ1, ξ2, ..., ξm), then
(x − ξ1), (x − ξ2), ..., (x − ξm) all divide f(x) in the field k.

In general, a polynomial of degree n will have n roots that are
either real or complex. If one is operating in the real domain, i.e., the
polynomial coefficients are real, the complex roots normally results in a
pair of conjugate roots. Polynomial coefficients play a significant role in
the determination of the roots. A slight change in the coefficients would
significantly alter the solutions. For ill-conditioned polynomials, such
a change in the coefficients can lead to disastrous results. Methods of
determining polynomial roots have been elaborately presented by [269].
We should point out that for polynomials of degree n in the field of
real numbers R however, the solutions exist only for polynomials up to
degree 4. Above this, Niels Henrick Abel (1802-1829) proved through
his impossibility theorem that the roots are insolvable, while Evariste
Galois (1811-1832) gave a more concrete proof that for every integer n
greater than 4, there can not be a formula for the roots of a general
nth degree polynomial in terms of coefficients.
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3.5 Minimal Polynomials

In Sect. 2.3, we presented the number rings concept and extended the
sets from that of natural numbers N to the complex number C in-order
to cater for expanded operations. For polynomials, roots may fail to
exist in one set say Q but exist in another set R as we saw in Sect.
2.2. The polynomial y2 − 12 = 0, for example, has no roots in Q[y]
but the roots ±12 exist in R. The expansion of the set from Q to R

is also called field extension of k. It may occur however that in the
polynomial ring k[x], the solution ξ satisfy not only the polynomial
p(x) but also another polynomial h(x), where p(x) and h(x) are both
elements of k[x]. In case several polynomials in k[x] have ξ as a root,
and the polynomials are multiples of a polynomial of least degree that
also contains ξ as root, this polynomial of least degree is termed the
minimal polynomial.

In dealing with Groebner basis in Chap. 4 for example, it will be
seen that several polynomials in the field k[x] contain the same root
ξ. This property will be used to reduce several multivariate polyno-
mials to univariate polynomials whose solutions fulfill the multivariate
polynomials.

3.6 Polynomials with Real Coefficients

In this section we revisit the various types of univariate polynomials
with the coefficients in the field R of reals, which we often use to manip-
ulate measurements. We recapture the basic high school mathematics
of inferring the roots of polynomials from the coefficients.

3.6.1 Quadratic Polynomials

In Sect. 3.4 we introduced the quadratic equations and demonstrated
their association with distance measurements. In general, the simplest
polynomial is the linear polynomial cx + d = 0 which is solved for x
by simply multiplying both sides of the equation by the inverse of c,
provided that c �= 0 holds. The solution thus becomes x = −c−1d. Lin-
ear polynomials, i.e., polynomials of degree 1 find use in manipulating
levelling and gravimetric observations. In these cases, they are manip-
ulated in vector space through the solution of linear algebraic equation
Ax + y = 0 to give the solution x = (A′A−1)A′y, provided that A′A
is regular.
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Polynomials of degree 2 are known as quadratic polynomials. For
univariate cases, they take the form ax2 + bx + c = 0. For simple cases
such as x2 +2x = 0, the solution can be obtained by factorization, e.g.,
x(x + 2) leading to x = 0 or x = −2. The general solution of quadratic
equations of the form ax2 + bx + c = 0 with real coefficients {a, b, c} is
given by the quadratic formulae

x =
−b ±√

b2 − 4ac

2a
, (3.8)

or

x =
2c

−b ±√
b2 − 4ac

. (3.9)

Press [269] discourages the use of (3.8) or (3.9) in the determination
of the two roots for cases where a or c (or both) are small since this
leads to inaccurate solutions. The main reason cited is that when either
the coefficient a or c (or both) is small, one of the roots involves the
subtraction b from a very nearly equal value. They instead propose the
formular

q = −1

2
[b + sgn(b)

√
b2 − 4ac], (3.10)

where the two roots are then given by

x1 =
q

a
, x2 =

c

q
. (3.11)

In computer algebra software of Matlab and Mathematica discussed in
detail in Chap. 16, the roots of a quadratic polynomial are obtained
via

• Matlab: x = roots ([a b c]), where [a b c] is a vector containing the
coefficients in the field R of reals. The quadratic equation can also be
solved using the solve command, e.g., solve(′ax2 + bx + c = 0′,′ x′),
where x indicates the variable to be solved.

• Mathematica: x = Root[f, k], where f is the quadratic equation and
k the kth root. The quadratic equation can also be solved using the
solve command, e.g., Solve[ax2 + bx + c == 0, x].

In general, every quadratic polynomial has exactly two real or two
complex roots. From the coefficients, if b2 − 4ac > 0, the roots are real
but if b2 − 4ac < 0 the roots are a pair of non real complex numbers.
The case where b2 − 4ac = 0 gives real and identical roots and is also
known as the bifurcation point upon which the roots change sign.
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3.6.2 Cubic Polynomials

These are polynomials of degree 3 and take the form ax3 + bx2 + cx +
d = 0. Like quadratic polynomials, simple cases can also be solved
via factorization e.g., x3 − 2x = 0 is factored as x(x2 − 2) to give the
solutions x = 0, x = −√

2 or x = +
√

2. Another approach would be
to reduce the cubic polynomial such that the polynomials of degree 2
are eliminated to give a simplified version of the form y3 + ey + f = 0
known as a reduced cubic polynomial. The simplified version can then
be solved for the roots via Cardano’s formula as

y =
3

√
−f

2
+
√

T +
3

√
−f

2
−
√

T , (3.12)

where T = (
e

3
)3 + (

f

2
)2. Once one real root say ξ1 has been obtained,

the polynomial y3 + ey + f = 0 is divided by (y − ξ1) and the resulting
quadratic polynomial solved for the remaining roots. An alternative
approach is presented by [269] who proceed as follows: Let {a, b, c} be
the real coefficients of a cubic polynomial. Compute⎡

⎢⎢⎢⎣
K ≡ a2 − 3b

g

L ≡ 2a3 − gab + 27c

54
.

(3.13)

If K and L are real, and L < K, then the cubic polynomial has three
real roots computed by⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 = −2
√

Kcos(
Θ

3
) − a

3

x2 = −2
√

Kcos(
Θ + 2π

3
) − a

3

x3 = −2
√

Kcos(
Θ − 2π

3
) − a

3
,

(3.14)

where

Θ = cos−1(
L√
K3

)1.

1The origin of the equation is traced by the authors to chapter VI of François
Viète’s treatise “De emendatione” Published in 1615
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Using computer algebra software of Matlab and Mathematica the roots
of a cubic polynomial are obtained via

• Matlab: x = roots ([a b c d]), where [a b c d] is a vector containing
the coefficients in the field R of reals. The quadratic equation can
also be solved using the solve command, e.g., solve(′ax3+bx2+cx+
d = 0′,′ x′).

• Mathematica: x = Root[f, k], where f is the cubic equation, and k,
the kth root. The quadratic equation can also be solved using the
solve command, e.g., Solve[ax3 + bx2 + cx + d == 0, x].

In general, if ξ1, ξ2, ξ3 are the roots of a cubic polynomial, the discrim-
inant D can de defined as

D = (ξ1 − ξ2)
2(ξ1 − ξ3)

2(ξ2 − ξ3)
2, (3.15)

and computed from the coefficients a, b, c, d to infer on the nature of
the roots. Considering a = 1, [193, p. 156, Exercise 10.17] gives the
formula of the discriminant D from the coefficients b, c, d as

D = 18bcd − 4b3d + b2c2 − 4c3 − 27d2. (3.16)

If D > 0 then the roots of the cubic polynomial are real and distinct. If
D < 0, then one of the roots is real and the remaining two are non real
complex conjugate. In a case where D = 0, multiple roots all which are
real are given. In case the coefficients b, c, d are all positive, then all the
three roots will be negative, while if b, d are negative and c positive, all
the roots will be positive.

3.6.3 Quartic Polynomials

Quartic polynomials are those of degree 4. In a case where one root ξ1

exist for a polynomial p(x) = 0, the division algorithm can be applied
to obtain the factor (x− ξ1)f(x). Here, f(x) is a cubic polynomial that
can be solved as discussed in Sect. 3.6.2 to give at least one real root.
The quartic polynomial ax4 + bx3 + cx2 + dx + e = 0 therefore has at
least two real roots. The following conditions may apply for a quartic
polynomial:

• p(x) has four real roots.
• p(x) has two real roots and two complex conjugate roots.
• p(x) has no real roots.



28 3 Basics of Polynomial Theory

The solution of a quartic polynomial proceeds via substitution approach
in-order to reduce it. Considering a case where a = 1, the quartic
polynomial x4 + bx3 + cx2 + dx + e = 0 is reduced by substituting
x = z + a, with a ∈ R, to Z4 + CZ2 + EZ + F = 0 which is solved
for g(Z) = 0. The solutions of g(Z) = 0 satisfies those of p(x) = 0
(see Sect. 3.5). Z4 + CZ2 + EZ + F = 0 is called the reduced quartic
polynomial which can be solved as discussed by [193, pp. 159-166].

Solution of the roots of quartic polynomials using Computer algebra
software of Matlab and Mathematica is as follows:

• Matlab: x = roots ([a b c d e]) , where [a b c d e] is a vector contain-
ing the coefficients in the field R of reals. The quadratic equation
can also be solved using the solve command, e.g., solve(′ax4 +bx3 +
cx2 + dx + e = 0′,′ x′)

• Mathematica: x = Root[f, k], where f is the quartic equation and
k the kth root. The quadratic equation can also be solved using the
solve command, e.g., Solve[ax4 + bx3 + cx2 + dx + e == 0, x].

In general, if ξ1, ξ2, ξ3, ξ4 are the roots of a quartic polynomial, the
discriminant D can de defined as

D = (ξ1 − ξ2)
2(ξ1 − ξ3)

2(ξ1 − ξ4)
2(ξ2 − ξ3)

2(ξ2 − ξ4)
2(ξ3 − ξ4)

2, (3.17)

and computed from the coefficients b, c, d, e to infer on the nature of
the roots. Considering a = 1, [193, p. 171] gives the formula of the
discriminant D from the coefficients b, c, d, e as

D =

⎡
⎢⎢⎢⎢⎣

18bcd3 + 18b3cde − 80bc2de − 6b2d2e + 144cd2e

+144b2ce2 − 128c2e2 − 192bde2 + b2c2d2 − 4b3d3 − 4c3d2

−4b2c3e + 16c4e − 27d4 − 27b4e2 + 256e3.
(3.18)

If D > 0 then all the roots of the quartic polynomial are real and
distinct or all the four roots are pairs of non real complex conjugates.
If D < 0, then two roots are real and distinct while the other two are
complex conjugates. For a case where D = 0, at least two of the roots
coincide.

3.7 Concluding Remarks

What we have presented is just a nutshell of the topic “polynomials”.
Several books, e.g., [49, 246, 270, 353] are dedicated specifically to it.
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Groebner Basis

“There are no good, general methods for solving systems of more
than one nonlinear equation. Furthermore, it is not hard to see
why (very likely) there never will be any good, general meth-
ods:...” W. H. Press et al.

4.1 The Origin

This chapter presents you the reader with one of the most powerful
computer algebra tools, besides the polynomial resultants (discussed
in the next chapter), for solving nonlinear systems of equations which
you may encounter. The basic tools that you will require to develop
your own algorithms for solving problems requiring closed form (exact)
solutions are presented. This powerful tool is the “Gröbner basis” writ-
ten in English as Groebner basis. It was first suggested by W. Groebner
in 1949 and developed by his student B. Buchberger in 1965. In 1964,
H. Hironaka (1931-) had independently used the same tool in connec-
tion with his work on resolution of singularities in algebraic geometry
and named it standard basis [217, p. 187]. B. Buchberger decided to
honour his thesis supervisor W. Groebner (1899-1980) by naming the
standard basis for Ideals in polynomial rings k [x1, . . ., xn] as Groebner
basis [78]. In this book, as in modern books, we will adopt the term
Groebner basis and present the subject in the simplest form that can
easily be understood from geodetic as well as geoinformatics perspec-
tive.

As a recipe, consider that most problems in nature, here in geodesy,
geoinformatics, machine vision, robotics, surveying etc., can be mod-
elled by nonlinear systems of equations. Let us consider a simple case
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of planar distance measurements in Fig. 4.1. Equations relating these
measured distances to the coordinates of an unknown station were al-
ready presented in Sect. 3.4.

P0

P1

P2

d1

d2

Fig. 4.1. Planar distance observations

In that section, we did relate the measured distances {si, i = 1, 2}
to the coordinates of the unknown station by (3.5) and (3.6). We stated
that the intersection of these two equations lead to univariate polyno-
mials whose solution give the desired position of an unknown station.
We did not however give any explanation on how the univariate poly-
nomials are derived from the set of multivariate quadratic polynomials
(3.5) and (3.6). The derivation of the univariate polynomials from sys-
tems of nonlinear equations form one of the major tasks of Groebner
basis. Let us denote the distance {si, i = 1, 2} by {di, i = 1, 2} and
re-write (3.5) and (3.6) respectively as

d2
1 = (x1 − x0)

2 + (y1 − y0)
2 (4.1)

and
d2

2 = (x2 − x0)
2 + (y2 − y0)

2. (4.2)

The task confronting us now is to obtain from these two nonlin-
ear equations the coordinates {x0, y0} of the unknown station P0. In
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case (4.1) and (4.2) were linear, the solution for {x0, y0} would have
been much easier. One could simply solve them using either matrix
inversion, graphically, Gauss-Jordan or Gauss elimination techniques.
Unfortunately they are nonlinear and can not be solved using the pro-
cedures above. Groebner basis and polynomial resultant approaches are
algebraic techniques that are proposed to offer solutions to nonlinear
systems of equations such as (4.1) and (4.2).

4.2 Basics of Groebner Basis

Groebner basis is the greatest common divisors of a multivariate system
of equations. Its direct application is the elimination of variables in
nonlinear systems of equations. Let us start by the problem of finding
the greatest common divisors in Example 4.1:

Example 4.1 (Greatest common divisors (gcd)). Given the numbers 12,
20, and 18, find their greatest common divisor. We proceed by writing
the factors as

12 = 22.31.50

20 = 22.30.51

20 = 21.32.50

⎤
⎦→ 21.30.50 = 2, (4.3)

leading to 2 as the greatest common divisor of 12, 20 and 18. Next, let
us consider the case of univariate polynomials f1, f2 ∈ k[x] in (4.4).

f1 = 3x4 − 3x3 + 8x2 + 2x − 5
f2 = 5x4 − 4x2 − 9x + 21

]
→ Euclidean algorithm = f ∈ k[x].

(4.4)
Equation (4.4) employs the Euclidean algorithm which obtains one uni-
variate polynomial as the gcd of the two univariate polynomials f1 and
f2. If on the other hand expressions in (4.4) were not univariate but
multivariate, e.g., g1, g2 ∈ k[x, y] as in equation (4.5), then one applies
the Buchberger algorithm which is discussed in Sect. 4.3.

g1 = xy + x − y − 1
g2 = xy − x − y + 1

]
→ Buchberger algorithm = Groebner basis.

(4.5)
Groebner basis therefore, is the greatest common divisors of a multi-
variate system of polynomial equations {g1, g2}.

Groebner basis as stated earlier is useful for eliminating variables
in nonlinear systems of equations. Gauss elimination technique on the
other hand is applicable for linear cases as shown in Example 4.2.
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Example 4.2 (Gauss elimination technique). Solve the linear system of
equations ⎡

⎣ −x + y + 2z = 2
3x − y + z = 6

−x + 3y + 4z = 4.
(4.6)

The first step is to eliminate x in the second and third expressions
of (4.6). This is achieved by multiplying the first expression by 3 and
adding to the second expression to give the second expression of (4.7).
The third expression of (4.7) is obtained by subtracting the first ex-
pression from the third expression in (4.6).⎡

⎣−x + y + 2z = 2
2y + 7z = 12
2y + 2z = 2.

(4.7)

The second step is to eliminate y in the second and third expressions of
(4.7). This is achieved by subtracting the second expression from the
third expression in (4.7) to give (4.8).⎡

⎣−x + y + 2z = 2
2y + 7z = 12
−5z = −10.

(4.8)

The solution of z = 2 in (4.8) can now be substituted back into the
second equation 2y + 7z = 12 to give the value of y = −1, which
together with the value of z = 2 are substituted into the first equation
to give the value of x = 1 to complete the Gauss elimination technique.

In many applications however, equations relating unknown variables
to the measured (observed) quantities are normally nonlinear and often
consist of many variables (multivariate). In such cases, the Gauss elim-
ination technique for the univariate polynomial equations employed in
Example 4.2 gives way to Groebner basis as illustrated in Examples
4.3 and 4.4. In general, the Groebner basis algorithm reduces a sys-
tem of multivariate polynomial equations. This is done by employing
operations “addition” and “multiplication” on a polynomial ring (see
Sect. 3.2.2) to give more simplified expressions. Given a system of poly-
nomial equations which are to be solved explicitly for unknowns, e.g.,
(4.1) and (4.2), Groebner basis algorithm is applied to reduce the set
of polynomials into another set (e.g., from a system F (x, y, z) to an-
other system G(x, y, Z)) of polynomials with suitable properties that
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allow solution. If F (x, y, z) is a set of nonlinear system of polynomial
equations, Groebner basis eliminates variables in a manner similar to
Gauss elimination technique for linear cases to reduce it to G(x, y, z).
With Lexicographic ordering of the monomials (see Definition A.2 in
Appendix A-1 on p. 303), one expression in G(x, y, z) always turns
out to be a univariate polynomial. Its roots are easily obtained using
algebraic software of Matlab, Mathematica or Maple, and can be sub-
stituted in the other elements of the set G(x, y, z) to obtain a complete
solution which also satisfy the original set F (x, y, z). Examples 4.3 and
4.4 elaborate on the application of Groebner basis.

Example 4.3 (Groebner basis computation). Let us consider a simple
example from [81]. Consider a set F (x, y) = {f1, f2} to have as its
elements [

f1 = xy − 2y
f2 = 2y2 − x2,

(4.9)

where {f1, f2} ∈ I are the generators of the Ideal I (see definition of
Ideal on p. 34). We now seek a simplified set of generators of this Ideal
using Buchberger algorithm. By employing operations “addition” and
“multiplication”, the Groebner basis algorithm (also called Buchberger
algorithm) reduces the system of nonlinear equations (4.9) into another
set G of F as

G := {−2x2 + x3,−2y + xy,−x2 + 2y2}. (4.10)

In Mathematica software, using the lexicographic order x > y, i.e.,
x comes before y, the Groebner basis could simply be computed by
entering the command

GroebnerBasis[F, {x, y}]. (4.11)

The set G in (4.10) contains one univariate polynomial −2x2 + x3,
which can easily be solved using roots command in Matlab for solutions
{x = 0, x = 0, x = 2} and substituted in any of the remaining elements
of the set G to solve for y. The solutions of G, i.e., the roots {x =
0, x = 0, x = 2}) and those of y satisfy polynomials in F . This can be
easily tested by substituting these solutions into (4.9) to give 0.

Let us consider as a second example an optimization problem.

Example 4.4 (Minimum and maximization problem). Find the mini-
mum and maximum of f(x, y, z) = x3+2xyz−z2, such that g(x, y, z) =
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x2 + y2 + z2 − 1. First, we obtain the partial derivatives of f −L g = 0
with respect to {x, y, z, L}, where L is the lagrangean multiplier as

∂f

∂{x, y, z, L} := F =

⎡
⎢⎢⎣

3x2 + 2yz − 2xL = 0
2xz − 2yL = 0
2xy − 2z − 2zL = 0
x2 + y2 + z2 − 1 = 0.

(4.12)

Groebner basis is invoked in Mathematica by

GroebnerBasis[{F}, {x, y, L, z}],
which leads to

G =

⎡
⎢⎢⎣

L − 1.5x − 1.5yz − 43.7z6 − 62.2z4 − 17.5z2 = 0
x2 + y2 + z2 − 1 = 0
y2z − 1.8z5 + 2.8z3 − z = 0
z7 − 1.5z5 + 0.6z3 − 0.04z = 0.

(4.13)

The solution of z in (4.13) can then be substituted into the third equa-
tion y2z − 1.8z5 + 2.8z3 − z = 0 to give the value of y. The obtained
values of z and y are then substituted into the second equation to give
the value of x, and thus complete the Groebner basis solution. Later in
the chapter, we will introduce the reduced Groebner basis which can be
used to obtain directly the last expression of (4.13), i.e., the univariate
polynomial in z.

The theory behind the operation of Groebner basis is however not
so simple. In the remainder of this chapter, we will try to present in
a simplified form the algorithm behind the computation of Groebner
bases. In Chap. 3, we learnt that polynomials are elements of a ring and
that they satisfy the ring axioms of addition and subtraction. The com-
putation of Groebner basis is achieved by the capability to manipulate
the polynomials to generate Ideals defined as

Definition 4.1 (Ideal). An Ideal is generated by a family of genera-
tors as consisting of the set of linear combinations of these generators
with polynomial coefficients. Let f1, . . ., fs and c1, . . ., cs be polynomials
in k [x1, . . ., xn], then

< f1, . . ., fs > =
s∑

i=1

cifi. (4.14)

In (4.14), < f1, . . . ., fs > is an Ideal and if a subset I ⊂ k [x1, . . ., xn]
is an Ideal, it must satisfy the following conditions [94, p. 29];
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• 0 ∈ I,
• If f, g ∈ I, then f + g ∈ I (i.e., I is an additive subgroup of the

additive group of the field k),
• If f ∈ I and c ∈ k [x1, . . ., xn], then cf ∈ I (i.e., I is closed under

multiplication ring element).

Example 4.5 (Ideal). Equations (4.1) and (4.2) are expressed alge-
braically as [

f1 := (x1 − x0)
2 + (y1 − y0)

2 − d2
1

f2 := (x2 − x0)
2 + (y2 − y0)

2 − d2
2,

(4.15)

where polynomials {f1, f2} belong to the polynomial ring R[x0, y0]. If
the polynomials [

c1 := 4x0 + 6
c2 := x0 + y0

(4.16)

also belong to the same polynomial ring R[x0, y0], an Ideal is generated
by a linear combination

I :=

⎡
⎣ < f1, f2 >= c1f1 + c2f2

= (4x0 + 6)f1 + (x0 + y0)f2.
(4.17)

In this case, {f1, f2} are said to be generators of the Ideal I.

Definition (4.1) of an Ideal can be presented in terms of polynomial
equations f1, . . ., fs ∈ k [x1, . . ., xn]. This is done by expressing the
system of polynomial equations as⎡

⎢⎢⎢⎢⎣
f1 = 0
f2 = 0

.

.
fs = 0,

(4.18)

and using them to derive others by multiplying each individual equation
fi by another polynomial ci ∈ k [x1, . . ., xn] and summing to get c1f1 +
c2f2 + . . . + csfs = 0 (cf., 4.14). The Ideal < f1, . . ., fs > thus consists
of a system of equations f1 = f2 = . . . = fs = 0, thus indicating that
if f1, . . ., fs ∈ k [x1, . . ., xn], then < f1, . . ., fs > is an Ideal generated
by f1, . . ., fs, i.e., being the basis of the Ideal I.

In this case, a collection of these nonlinear algebraic equations form-
ing Ideals are referred to as the set of polynomials generating the Ideal
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and forms the elements of this Ideal. Perhaps a curious reader may be-
gin to wonder why the term Ideal is used. To quench this curiosity we
refer to [256, p. 220] and quote from [55, p. 59] who wrote:

“On the origin of the term Ideal, the concept is attributed to
Dedekind who introduced it as a set theoretical version of Kum-
mer’s “Ideal number” to circumvent the failure of unique factor-
ization in certain natural extension of the domain Z. The rele-
vance of Ideal in the theory of polynomial rings was highlighted
by Hilbert Basis Theorem. The systematic development of Ideal
theory; in more general rings is largely due to E. Noether . In
the older literature, the term “module” is sometimes used for
“Ideal” (cf., [230]). The term “ring” seems to be due to D.
Hilbert ; Kronecker used the term “order” for ring”.

Example 4.6 (Ideal). Consider example (4.3) with polynomials in R [x, y].
The Ideal I =< xy − 2y, 2y2 − x2 >.

The generators of an Ideal can be computed using the division al-
gorithm defined as (cf., Definition 3.4 of polynomial division on p. 21)

Definition 4.2 (Division algorithm). Fix a monomial order of poly-
nomials say x > y for polynomials F = (h1, . . ., hs). Then every
f ∈ k [x, y] can be written in the form f = a1h1 +a2h2 + . . . +ashs +r,
where ai, r ∈ k [x, y] and either r = 0 or a linear combination with
coefficients in k of monomials, none of which is divisible by any of
LT (f1), . . ., LT (fs) (see Definition A.5 on p. 305 for leading term LT).

Example 4.7 (Division algorithm in a univariate case). Divide the poly-
nomial f = x3 + 2x2 + x + 5 by h = x2 − 2. We proceed as follows:⎡

⎢⎢⎢⎢⎢⎢⎣

x + 2
x2 − 2 | x3 + 2x2 + x + 5

x3 − 2x
2x2 + 3x + 5

2x2 − 4
3x + 1,

(4.19)

implying
x3 + 2x2 + x + 5 = (x + 2)(x2 − 2) + (3x + 1), with a = (x + 2) and
r = (3x + 1).
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The division algorithm given in definition (4.2) fits well to the case of
univariate polynomials as the remainder r can uniquely be determined.
For multivariate polynomials, the remainder may not be uniquely de-
termined as this depends on the order of the divisors. The division of
the polynomial F by {f1, f2} where f1 comes before f2 may not neces-
sarily give the same remainder as the division of F by {f2, f1} in whose
case the order has been changed. This problem is overcome if we pass
over to Groebner basis where the existence of every Ideal is assured by
the Hilbert Basis Theorem [94, pp. 47–61]. The Hilbert Basis Theorem
assures that every Ideal I ⊂ k [x1, . . ., xn] has a finite generating set,
that is I =< g1, . . ., gs > for some {g1, . . ., gs} ∈ I. The finite gen-
erating set G in Hilbert Basis Theorem is what is known as a basis.
Suppose every non-zero polynomial is written in decreasing order of its
monomials:

n∑
i=1

dixi, di �= 0, xi > xi+1, (4.20)

if we let the system of generators of the Ideal be in a set G, a polynomial
f is reduced with respect to G if no leading monomial of an element
of G (LM (G )) divides the leading monomial of f (LM(f )). The
polynomial f is said to be completely reduced with respect to G if no
monomials of f is divisible by the leading monomial of an element of
G [102, pp. 96–97].

The basis G, which completely reduces the polynomial f and
uniquely determines the remainder r is also known as the Groebner
basis and is defined as follows:

Definition 4.3 (Groebner basis). A system of generators G of an
Ideal I is called a Groebner basis (with respect to the order <) if ev-
ery reduction of f ∈ I to a reduced polynomial (with respect to G
) always gives zero as a remainder. This definition is a special case
of a more general definition given as: Fix a monomial order and let
G = {g1, . . . ., gt} ⊂ k [x1, . . . ., xn] . Given f ∈ k [x1, . . . ., xn] , then f
reduces to zero Modulo G, written as

f →G 0, (4.21)

if f can be written in the form (cf., 4.18 on p. 35)

f = a1g1 + . . . + atgt (4.22)

such that whenever aigi �= 0, we have multideg(f)≥ multideg(aigi ) (see
Definition A.5 on p. 305 for leading term LT, LM and Multideg).
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Following the Definition 4.3, the reader can revisit Examples (4.3) and
(4.4) which present the Groebner basis G of the original system F of
equations.

Groebner basis has become a household name in algebraic manip-
ulations and finds application in fields such as mathematics and en-
gineering for solving partial differential equations e.g., [222, p. 432].
It has found use as a tool for discovering and proving theorems to
solving systems of polynomial equations as elaborated in publications
by [82]. Groebner basis also give a solution to the Ideal membership
problem. By reducing a given polynomial f with respect to the Groeb-
ner basis G, f is said to be a member of the Ideal if zero remain-
der is obtained. This implies that if G = {g1, . . ., gs} is a Groebner
basis of an Ideal I ⊂ k [x1, . . ., xn] and f ∈ k [x1, . . . . , xn] a poly-
nomial, f ∈ I if and only if the remainder on division of f by G
is zero. Groebner bases can also be used to show the equivalence of
polynomial equations. Two sets of polynomial equations will generate
the same Ideal if and only if their Groebner bases are equal with re-
spect to any term ordering, e.g., the solutions of (4.10) satisfy those of
(4.9). This property is important in that the solutions of the Groebner
basis will satisfy the original system formed by the generating set of
nonlinear equations. It implies that a system of polynomial equations
f1(x1, . . . , xn) = 0, . . . , fs(x1, . . . , xn) = 0 will have the same solu-
tions with a system arising from any Groebner basis of f1, . . . , fs with
respect to any term ordering. This is the main property of Groebner
basis that is used to solve systems of polynomial equations as will be
explained in the next section.

4.3 Buchberger Algorithm

The B. Buchberger algorithm is the algorithm that computes Groeb-
ner bases from given systems of polynomial equations by cancelling
the leading terms of these polynomials. With the lexicographic order-
ing chosen, one of the elements of the resulting Groebner basis is often
a univariate polynomial whose roots can be obtained using Matlab’s
“roots” command. Given polynomials g1, . . . . , gs ∈ I, the algorithm
seeks to derive the Groebner basis of this Ideal. Systems of equations
g1 = 0, . . . . , gs = 0 to be solved in practice are normally formed by
these same polynomials which here generate the Ideal. The algorithm
computes the Groebner basis by making use of pairs of polynomials
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from the original polynomials g1, . . . . , gs ∈ I and computes the sub-
traction polynomial known as the S − polynomial defined [94, p. 81]
as:

Definition 4.4 (S–polynomial1). Let f, g ∈ k [x1, . . . xn] be two
non-zero polynomials. If multideg (f) = α and multideg (g) = β, then
let γ = γ1, . . ., γn, where γi = max {αi, βi} for each i. xγ is called
the Least Common Multiple (LCM) of LM(f) and LM(g) expressed as
xγ = LCM {LM(f), LM(g)}. The S − polynomial of f and g is given
as

S(f, g) =
xγ

LT (f)
f − xγ

LT (g)
g. (4.23)

Expression (4.23) gives S as a linear combination of the monomials

xγ

LT (f)
,

xγ

LT (g)
,

with polynomial coefficients f and g and thus belongs to the Ideal
generated by f and g (e.g., Definition (4.1) for Ideal on p. 34).

Example 4.8 (S–Polynomial). Consider two polynomials in variables
{x, y, z} as [

g1 = x2 + 2a12xy + y2 + aoo

g2 = y2 + 2b23yz − +z2 + boo.
(4.24)

with the lexicographic ordering defined as x > y > z, the S– polynomial
S(g1, g2) is computed as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

LM(g1) = x2, LM(g2) = y2, LT (g1) = x2, LT (g2) = y2

LCM(LM(g1), LM(g2)) = x2y2

S =
x2y2

x2
(x2 + 2a12xy + y2 + aoo) − x2y2

y2
(y2 + 2b23yz + x2

3 + boo)

= y2x2 + 2a12xy3 + y4 + aooy
2 − x2y2 − 2b23x

2yx3 − x2x2
3 − boox

2)

= −boox
2 − 2b23x

2yx3 − x2x2
3 + 2a12xy3 + y4 + aooy

2

(4.25)

1For the terms appearing in this definition, refer to Appendix A-1, Definition
A.5 on p. 305
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Definition 4.5 (Groebner basis in terms of S– polynomial). A
basis G is Groebner basis if and only if for every pair of polynomials f
and g of G, S(f, g) reduces to zero with respect to G. More generally a
basis G = {g1, . . ., gs} for an Ideal I is a Groebner basis if and only if
S(f, g) →G 0, i �= j.

The implication of Definition (4.5) is the following: Given two polyno-
mials f, g ∈ G such that LCM{LM(f), LM(g)} = LM(f).LM(g),
the leading monomials of f and g are relatively prime leading to
S(f, g) →G 0. The concept of prime integer is documented in [192,
pp. 1–17].

Example 4.9 (Computation of Groebner basis from the S−polynomials).
By completing the example given by [102, pp. 101–102], we illustrate
how the Buchberger algorithm works. Let us consider the Ideal gener-
ated by the polynomial equations⎡

⎣g1 = x3yz − xz2

g2 = xy2z − xyz
g3 = x2y2 − z,

(4.26)

with the lexicographic ordering x > y > z adopted. The S–polynomials
to be formed are S(g1, g2), S(g2, g3) and S(g1, g3). We consider first
S(g2, g3) and show that the result is used to suppress g1. Conse-
quently any pair S(g1, gi) (e.g., S(g1, g2) and S(g1, g3)) containing g1

will not be considered. With LT (g2) = xy2z and LT (g3) = x2y2 the
LCM(g2, g3) = x2y2z. The S–polynomials is then computed as⎡

⎢⎢⎢⎢⎢⎢⎣

S(g2, g3) =
x2y2z

xy2z
g2 − x2y2z

x2y2
g3

= (x2y2z − x2yz) − (x2y2z − z2)

= −x2yz + z2.

(4.27)

One immediately notes that the leading term of the resulting polyno-
mial LT(S(g2, g3)) is not divisible by any of the leading terms of the
elements of G. The remainder upon the division of S(g2, g3) by the
polynomials in G is not zero (i.e., when reduced with respect to G).
The set G therefore is not a Groebner basis. The resulting polynomial
is denoted g4, and its negative (to make calculations more reliable)
added to the initial set of G leading to
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⎢⎢⎣

g1 = x3yz − xz2

g2 = xy2z − xyz
g3 = x2y2 − z
g4 = x2yz − z2.

(4.28)

The S–polynomials to be formed are now S(g1, g2), S(g1, g3), S(g1, g4),
S(g2, g4) and S(g3, g4). In the set of G, one can write g1 = xg4 leading,
without any change, to the suppression of g1 leaving only S(g2, g4) and
S(g3, g4) to be considered. Then[

S(g2, g4) = xg2 − yg4

= −x2yz + yz2,
(4.29)

is reduced by adding g4 to give g5 = yz2 − z2, a non zero value. The
set G, which is still not a Groebner basis now becomes⎡

⎢⎢⎣
g2 = xy2z − xyz,
g3 = x2y2 − z,
g4 = x2yz − z2,
g5 = yz2 − z2.

(4.30)

The S–polynomials to be considered are now S(g3, g4), S(g2, g5), S(g3, g5)
and S(g4, g5). We have [

S(g3, g4) = zg3 − yg4

= yz2 − z2,
(4.31)

which upon subtraction from g5 reduces to zero. Further,⎡
⎣S(g2, g5) = zg2 − xyg5

= −xyz2 + xyz2

= 0
(4.32)

and [
S(g4, g5) = zg4 − x2yg5

= x2z2 − z3,
(4.33)

which is added to G as g6 giving⎡
⎢⎢⎢⎢⎣

g2 = xy2z − xyz,
g3 = x2y2 − z,
g4 = x2yz − z2,
g5 = yz2 − z2,
g6 = x2y2 − z3.

(4.34)
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The S polynomials to be formed next are S(g3, g5), S(g2, g6), S(g3, g6),
S(g4, g6) and S(g5, g6). We now complete the example by illustrating
that all these S − polynomials reduce to zero as follows:⎡

⎢⎢⎢⎢⎣
S(g3, g5) = z2g3 − x2yg5 = x2yz2 − z3 − zg4 = 0
S(g2, g6) = xzg2 − y2g6 = −x2y2z2 + y2z3 + y2g4 = 0
S(g3, g6) = z2g3 − y2g6 = y2z3 − z3 − (yz − z)g5 = 0
S(g4, g6) = zg4 − yg6 = yz3 − z3 − zg5 = 0
S(g5, g6) = x2g5 − yg6 = −x2z2 + yz3 + g6 − zg5 = 0,

(4.35)

comprising the Groebner basis of the original set in (4.26).
The importance of S–polynomials is that they lead to the cancella-

tion of the leading terms of the polynomial pairs involved. In so doing,
polynomial variables are systematically eliminated according to the or-
dering chosen. For example if the lexicographic ordering x > y > z is
chosen, x will be eliminated first, followed by y and the final expression
may consist only of the variable z. Cox et al [95, p. 15] has indicated
the advantage of lexicographic ordering as being the ability to produce
Groebner basis with systematic elimination of variables. Graded lexi-
cographic ordering (see Definition A.3 of Appendix A-1 on p. 304), on
the other hand has the advantage of minimizing the amount of compu-
tational space needed to produce the Groebner basis.

Buchberger algorithm is therefore a generalization of the Gauss
elimination procedure for linear systems of equations as shown in Exam-
ples 4.2, 4.3 and 4.4. If we now put our system of polynomial equations
to be solved in a set G, S–pair combinations can be formed from the
set of G as illustrated in Examples 4.5 and 4.9. The theorem, known
as the Buchberger’s S–pair polynomial criterion, gives the criterion for
deciding whether a given basis is a Groebner basis or not. It suffices to
compute all the S–polynomials and check whether they reduce to zero.
Should one of the polynomials not reduce to zero, then the basis fails to
be a Groebner basis. Since the reduction is a linear combination of the
elements of G, it can be added to the set G without changing the Ideal
generated. Buchberger [80] gives an optimization criterion that reduces
the number of the S–polynomials already considered in the algorithm.
The criterion states that if there is an element h of G such that the
leading monomial of h, i.e., LM(h, divides the LCM(f, g ∈ G), and if
S(f, h) , S(h, g) have already been considered, then there is no need of
considering S(f, g) as this reduces to zero.

The essential observation in using Groebner bases to solve systems
of polynomial equations is that the variety (simultaneous solution of



4.3 Buchberger Algorithm 43

systems of polynomial equations) does not depend on the original sys-
tem of the polynomials F := {f1, . . ., fs}, but instead on the Ideal I
generated by F . This therefore means that the variety V = V (I). One
makes use of the special generating set (Groebner basis) instead of the
actual system F . Since the Ideal is generated by F , the solutions ob-
tained by solving the affine variety of this Ideal satisfies the original
system F of equations as already stated. Buchberger [79] proved that
V (I) is void, and thus giving a test as to whether a system of poly-
nomial F can be solved. The solution can be obtained if and only if
the computed Groebner basis of Ideal I has 1 as its element. Buch-
berger [79] further gives the criterion for deciding if V (I) is finite. If
the system has been proved to be solvable and finite then [337, theo-
rem 8.4.4, p. 192] gives a theorem for deciding whether the system has
finitely or infinitely many solutions. The Theorem states that if G is
a Groebner basis, then a solvable system of polynomial equations has
finitely many solutions if and only if for every xi, 1 ≤ i ≤ n, there is a
polynomial gi ∈ G such that LM(gi) is a pure power of xi. The process
of addition of the remainder after the reduction by the S–polynomials,
and thus expanding the generating set is shown by [79], [95, p. 88]
and [102, p. 101] to terminate.

The Buchberger algorithm thus makes use of the subtraction poly-
nomials known as the S–polynomials in Definition (4.4) to eliminate the
leading terms of a pair of polynomials. In so doing, and if lexicographic
ordering is chosen, the process ends up with one of the computed S–
polynomials being a univariate polynomial which can be solved and
substituted back in the other S–polynomials using the extension theo-
rem [95, pp. 25–26] to obtain the other variables.

4.3.1 Mathematica Computation of Groebner Basis

Groebner basis can be computed using algebraic softwares of Mathe-
matica Versions 2 onwards. The Groebner basis command is executed
by writing

In[1] := GroebnerBasis[{polynomials}, {variables}], (4.36)

where In[1]:= is the Mathematica prompt which computes the Groeb-
ner basis for the Ideal generated by the polynomials with respect to
the monomial order specified by monomial order options.

Example 4.10 (Mathematica computation of Groebner basis). In Exam-
ple (4.3) on p. 33, the systems of polynomial equations were given as
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f1 = xy − 2y
f2 = 2y2 − x2.

Groebner basis is computed by

In[1] := GroebnerBasis[{f1, f2}, {x, y}], (4.37)

leading to the values in (4.10).

With this approach, one gets too many elements of Groebner basis
which may not be relevant. In a case where the solution of a specific
variable is desired, one can avoid computing the undesired variables,
and alleviate the need for back-substitution by simply computing the
reduced Groebner basis. In this case (4.36) modifies to

In[1] := GroebnerBasis[{polynomials}, {variables}, {options}],
(4.38)

with the variables to be eliminated specified in the options part.

Example 4.11 (Mathematica computation of reduced Groebner basis).
In Example 4.10, one would compute the reduced Groebner basis using
(4.38) as

In[1] := GroebnerBasis[{f1, f2}, {x, y}, {y}], (4.39)

which will return only −2x2 + x3. This univariate polynomial is solved
for x using the roots command in Matlab (see e.g., [174, p. 146]) by

roots( [1 −2 0 0] ). (4.40)

The values of the row vector in (4.40) are the coefficients of the cubic
polynomial x3 − 2x2 + 0x + 0 = 0 obtained from (4.39) (see Sect. 3.6.2
for solutions of cubic polynomials).

The values of y from Example 4.3 can equally be computed from (4.39)
by replacing y in the option part with x and thus removing the need for
back substitution. We leave it for the reader to compute the values of
y from Example 4.3 and also those of z in Example 4.4 using reduced
Groebner basis (4.38) as an exercise. The reader should confirm that
the solution of y leads to y3 − 2y with the roots y = 0 or y = ±1.4142.
From experience, we recommend the use of reduced Groebner basis
for applications in geodesy and geoinformatics. This will; fasten the
computations, save on computer space, and alleviates the need for back-
substitution.
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4.3.2 Maple Computation of Groebner Basis

In Maple Version 5 the command is accessed by typing > with (grob-
ner); (where > is the Maple prompt and the semicolon ends the Maple
command). Once the Groebner basis package has been loaded, the ex-
ecution command then becomes > gbasis (polynomials, variables, ter-
morder) which computes the Groebner basis for the ideal generated
by the polynomials with respect to the monomial ordering specified by
termorder and variables in the executable command.

4.4 Concluding Remarks

Using the Groebner basis, most systems of nonlinear equations that
are encountered in geodesy and geoinformatics can be solved. All that
is required of the user is to write algorithms that can easily be run in
Mathematica or Maple using the steps discussed. In latter chapters, we
will demonstrate how algorithms using Groebner basis can be written
for various tasks. Application of the technique in geodesy can be found
in the works of [11, 12, 14, 21, 24, 28, 30]. Several publications exist on
the subject, e.g., [55, 56, 82, 92, 94, 95, 102, 217, 266, 304, 320, 337]. For
readers who may be interested in exploring the subject further, these
literature and similar others are worth reading. The Groebner bases
approach presented in this chapter adds to the treasures of methods
that are useful for solving nonlinear algebraic systems of equations in
geodesy, geoinformatics, machine vision, robotics and surveying.

Finally, we begun the chapter by a quote from [269]. We think that
indeed, systems of more than one nonlinear equations are solvable, and
the answer lies in commutative algebra!
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Polynomial Resultants

5.1 Resultants: An Alternative to Groebner Basis

Besides Groebner basis approach discussed in Chap. 4, the other pow-
erful algebraic tools for solving nonlinear systems of equations are the
polynomial resultants approaches. While Groebner basis may require
large storage capacity during its computations, polynomial resultants
approaches presented herein offers remedy to users who may not be
lucky to have computers with large storage capacities. This chapter
presents polynomial resultants approaches starting from the resultants
of two polynomials, known as the “Sylvester resultants”, to the re-
sultants of more than two polynomials in several variables known as
“multipolynomial resultants”. In normal matrix operations in linear al-
gebra, one is often faced with the task of computing determinants.
Their applications to least squares approach are well known.

For polynomial resultants approaches discussed herein, the ability
to compute determinants of matrices is the essential requirement. We
will look at how they are formed and applied to solve nonlinear systems
of equations. Indeed [291] had already used the resultant technique to
the R2 → R2 mapping of gravitation lens. Such mapping describes the
light rays which run from a deflector plane (lens) to an observer. For
simple lenses such as point masses in galactic fields, [291] observed the
global mapping to be an algebraic expression whose inversion led to
the problem of solving a polynomial in two variables. Further use of
polynomial resultants in geodesy is exemplified in the works of [226,
pp. 72–76] and [19, 25, 31].
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5.2 Sylvester Resultants

Sylvester resultants approach is useful for solving explicitly nonlinear
systems of equations with two polynomials in two variables. Problems
in this category could be those of two dimensional nature such as planar
ranging, planar resection etc., as shall be seen in subsequent chapters.
Polynomial resultants approach is based on homogeneous polynomials
defined as

Definition 5.1 (Homogeneous polynomial). If monomials of a
polynomial p with non zero coefficients have the same total degree, the
polynomial p is said to be homogeneous.

Example 5.1 (Homogeneous polynomial equation). A homogeneous poly-
nomial equation of total degree 2 is s = x2+y2+z2+xy+xz+yz, since
the monomials {x2, y2, z2, xy, xz, yz} all have the sum of their powers
(total degree) being 2.

To set the ball rolling, let us examine next the resultant of two univari-
ate polynomials s, t ∈ k[x] of positive degree as[

s = k0x
i + . . . . + ki, k0 �= 0, i > 0

t = l0x
j + . . . . + lj , l0 �= 0, j > 0.

(5.1)

The resultant of s and t, denoted Res(s, t), is the (i + j) × (i + j)
determinant

Res (s, t) = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k0 k1 k2 . . . ki 0 0 0 0 0
0 k0 k1 k2 . . . ki 0 0 0 0
0 0 k0 k1 k2 . . . ki 0 0 0
0 0 0 k0 k1 k2 . . . ki 0 0
0 0 0 0 k0 k1 k2 . . . ki 0
0 0 0 0 0 k0 k1 k2 . . . ki

l0 l1 l2 . . . lj 0 0 0 0 0
0 l0 l1 l2 . . . lj 0 0 0 0
0 0 l0 l1 l2 . . . lj 0 0 0
0 0 0 l0 l1 l2 . . . lj 0 0
0 0 0 0 l0 l1 l2 . . . lj 0
0 0 0 0 0 l0 l1 l2 . . . lj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.2)

where the coefficients of the first polynomial s in (5.1) occupy j rows,
while those of the second polynomial t occupy i rows. The empty spaces
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are occupied by zeros as shown above such that a square matrix is
obtained. This resultant is known as the Sylvester resultant and has
the following properties [95, §3.5] and [305];

1. Res(s, t) is a polynomial in k0, . . . , ki, l0, . . . , lj with integer coef-
ficients.

2. Res(s, t) = 0 if and only if s(x) and t(x) have a common factor in
k[x].

3. There exist a polynomial q, r ∈ k[x] such that qs + rt = Res(s, t).

Sylvester resultants can be used to solve systems of polynomial equa-
tions in two variables as shown in Example (5.2).

Example 5.2 (Sylvester resultants solution of systems of nonlinear equa-
tions). Consider the system of equations given in [305, p. 72] as[

p := xy − 1 = 0
q := x2 + y2 − 4 = 0.

(5.3)

In-order to eliminate one variable e.g., x, the variable y is hidden, i.e.,
the variable say y is considered as a constant (polynomial of degree
zero). We then have the Sylvester resultant from (5.2) as

Res (s, t, x) = det

⎡
⎣y −1 0

0 y −1
1 0 y2 − 4

⎤
⎦ = y4 − 4y2 + 1, (5.4)

which can be readily solved for the variable y and substituted back in
any of the equations in (5.3) to obtain the values of the variable x.
Alternatively, the procedure can be applied to derive x directly. Hiding
x, one obtains with (5.2)

Res (s, t, y) = det

⎡
⎣x −1 0

0 x −1
1 0 x2 − 4

⎤
⎦ = x4 − 4x2 + 1. (5.5)

The roots of the univariate polynomials (5.4) and (5.5) are then ob-
tained using the Matlab’s root command as

{x, y} = roots([ 1 0 −4 0 1] ) = ±1.9319 or ± 0.5176. (5.6)

In (5.6), the row vector [ 1 0 −4 0 1] are the coefficients of the quartic
polynomials in either (5.4) or (5.5). Zeros are the coefficients of the
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variables {x3, y3} and {x, y}. The solutions in (5.6) satisfy the polyno-
mials in (5.4) and (5.5). They also satisfy the original nonlinear system
of equations (5.3). In (5.4) and (5.5), the determinant can readily be
obtained from MATLAB software by typing det(A), where A is the
matrix whose determinant is desired.

For two polynomials in two variables, the construction of resultants is
relatively simpler and algorithms for the execution are incorporated in
computer algebra systems. Resultants of more than 2 polynomials of
multiple variables are however complicated. For their construction, we
turn to the multipolynomial resultants.

5.3 Multipolynomial Resultants

Whereas the resultant of two polynomials in two variables is well known
and algorithms for computing it well incorporated into computer alge-
bra packages such as Maple, multipolynomial resultants, i.e., the re-
sultant of more than two polynomials still remain an active area of
research. This section therefore extends on the use of Sylvester resul-
tants to resultants of more than two polynomials of multiple variables,
known as multipolynomial resultants.

The need for multipolynomial resultants method in geodesy and
geoinformatics is due to the fact that many problems encountered re-
quire the solution of more than two polynomials of multiple variables.
This is true since we are living in a three-dimensional world. We shall
therefore understand the term multipolynomial resultants to mean re-
sultants of more than two polynomials. We treat it as a tool besides
Groebner bases, and perhaps more powerful to eliminate variables in
systems of polynomial equations. In defining it, [237] writes:

“Elimination theory, a branch of classical algebraic geometry,
deals with conditions for common solutions of a system of poly-
nomial equations. Its main result is the construction of a single
resultant polynomial of n homogeneous polynomial equations in
n unknowns, such that the vanishing of the resultant is a nec-
essary and sufficient condition for the given system to have a
non-trivial solution. We refer to this resultant as the multipoly-
nomial resultant and use it in the algorithm presented in the
paper”.
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In the formation of the design matrix whose determinants are
needed, several approaches can be used as discussed in [233, 234, 235,
236, 237] who applies the eigenvalue-eigenvector approach, [83] who
uses characteristic polynomial approach, and [303, 305] who proposes a
more compact approach for solving the resultants of a ternary quadric
using the Jacobian determinant approach. In this book, two approaches
are presented; first the approach based on F. Macaulay [229] formu-
lation (the pioneer of resultants approach) and then a more modern
approach based on B. Sturmfels’ [305] formulation.

5.3.1 F. Macaulay Formulation:

With n polynomials, the construction of the matrix whose entries are
the coefficients of the polynomials f1, . . . , fn can be done in five steps
as follows:

Step 1: The given polynomials f1 = 0, . . . , fn = 0 are considered to
be homogeneous equations in the variables x1, . . . , xn and if not,
they are homogenized. Let the degree of the polynomial fi be di.
The first step involves the determination of the critical degree given
by [43] as

d = 1 +
∑

(di − 1). (5.7)

Step 2: Once the critical degree has been established, the given mono-
mials of the polynomial equations are multiplied with each other
to generate a set X. The elements of this set consists of monomials
whose total degree equals the critical degree. Thus if we are given
polynomial equations f1 = 0, . . . , fn = 0, each monomial of f1 is
multiplied by those of f2, . . . , fn, those of f2 are multiplied by those
of f3, . . . , fn until those of fn−1 are multiplied by those of fn. The
set X of monomials generated in this form is

Xd = {xd | d = α1 + α2 + . . . + αn}, (5.8)

with the variable xd = xα1

1 . . . xαn
n .

Step 3: The set X containing monomials each of total degree d is now
partitioned according to the following criteria [83, p. 54]
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⎢⎢⎢⎢⎢⎢⎣

Xd
1 = {xα ∈ Xd | α1 ≥ d1}

Xd
2 = {xα ∈ Xd | α2 ≥ d2 and α1 < d1}

. . .

. . .

. . .
Xd

n = {xα ∈ Xd | αn ≥ dn and αi < di, for i = 1, . . . , n − 1}.
(5.9)

The resulting sets of Xd
i are disjoint and every element of Xd is con-

tained in exactly one of them.

Step 4: From the resulting subsets Xd
i ⊂ Xd, a set of polynomials Fi

which are homogeneous in n variables are defined as

Fi =
Xd

i

xdi

i

fi. (5.10)

From (5.10), a square matrix A is now formed with the row elements
being the coefficients of the monomials of the polynomials Fi |i=1, . . . ,n

and the columns corresponding to the N monomials of the set Xd. The
formed square matrix A is of the order(

d + n − 1
d

)
×
(

d + n − 1
d

)
,

and is such that for a given polynomial Fi in (5.10), the row of the
square matrix A is made up of the symbolic coefficients of each poly-
nomial. The square matrix A has a special property that the non trivial
solution of the homogeneous equations Fi which also form the solution
of the original equations fi are in its null space. This implies that the
matrix must be singular or its determinant, det(A), must be zero. For
the determinant to vanish, therefore, the original equations fi and their
homogenized counterparts Fi must have the same non trivial solutions.

Step 5: After computing the determinant of the square matrix A
above, [229] suggests the computation of extraneous factor in-order
to obtain the resultant. Cox et al. [95, Proposition 4.6, p. 99] ex-
plains the extraneous factors to be integer polynomials in the coef-
ficients of F̄0, . . . ,F̄n−1, where F̄i = Fi(x0, . . . , xn−1, 0). It is related
to the determinant via

determinant = Res(F1, . . . , Fn).Ext, (5.11)
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with the determinant computed as in step 4, Res(F1, . . . , Fn) being
the multipolynomial resultant and Ext the extraneous factor. This
expression was established as early as 1902 by F. Macaulay [229]
and this procedure of resultant formulation thus named after him.
Macaulay [229] determines the extraneous factor from the sub-
matrix of the N ×N square matrix A and calls it a factor of minor
obtained by deleting rows and columns of the N ×N matrix A. A
monomial xα of total degree d is said to be reduced if xdi

i divides
xα for exactly one i. The extraneous factor is obtained by comput-
ing the determinant of the sub-matrix of the coefficient matrix A,
obtained by deleting rows and columns corresponding to reduced
monomials xα.

For our purpose, it suffices to solve for the unknown variable hidden
in the coefficients of the polynomials fi by obtaining the determinant
of the N × N square matrix A and equating it to zero neglecting the
extraneous factor. This is because the extraneous factor is an integer
polynomial and as such not related to the variable in the determinant
of A. The existence of the non-trivial solutions provides the necessary
and sufficient conditions for the vanishing of the determinant.

5.3.2 B. Sturmfels’ Formulation

Given three homogeneous equations of degree 2 as

F1 := a11x
2 + a12y

2 + a13z
2 + a14xy + a15xz + a16yz = 0

F2 := a21x
2 + a22y

2 + a23z
2 + a24xy + a25xz + a26yz = 0

F3 := a31x
2 + a32y

2 + a33z
2 + a34xy + a35xz + a36yz = 0,

(5.12)

the Jacobian determinant is computed by

J = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F1

∂x

∂F1

∂y

∂F1

∂z

∂F2

∂x

∂F2

∂y

∂F2

∂z

∂F3

∂x

∂F3

∂y

∂F3

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.13)

resulting in a cubic polynomial in the coefficients {x, y, z}. Since the
determinant polynomial J in (5.13) is a cubic polynomial, its partial
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derivatives will be quadratic polynomials in variables {x, y, z} and are
written in the form

∂J

∂x
:= b11x

2 + b12y
2 + b13z

2 + b14xy + b15xz + b16yz = 0

∂J

∂y
:= b21x

2 + b22y
2 + b23z

2 + b24xy + b25xz + b26yz = 0

∂J

∂z
:= b31x

2 + b32y
2 + b33z

2 + b34xy + b35xz + b36yz = 0.

(5.14)

The coefficients bij in (5.14) are cubic polynomials in aij of (5.12).
The final step in computing the resultant of the initial system (5.12)
involves the computation of the determinant of a 6×6 matrix given by

Res222(F1, F2, F3) = det

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

b11 b12 b13 b14 b15 b16

b21 b22 b23 b24 b25 b26

b31 b32 b33 b34 b35 b36

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5.15)

The resultant (5.15) vanishes if and only if (5.12) have a common so-
lution {x, y, z}, where {x, y, z} are complex numbers or real numbers
not all equal zero. The subscripts on the left-hand-side of (5.15) indi-
cate the degree of the polynomials in (5.12) whose determinants are
sought.

5.4 Concluding Remarks

With modern computers, polynomial resultants approaches discussed
can easily be used to develop algorithms for solving systems of nonlinear
equations. Compared to Groebner basis, it has the advantage of not
computing extra parameters thus requiring less of computer’s space.
Its shortcoming, however, lies in the formation of the design matrix
which become more complicated and cumbersome as the number of
polynomials and variables increases. Unless Groebner basis fails, we
recommend it for solving geodetic and geoinformatics nonlinear systems
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of equations. On the other hand, polynomial resultants approach comes
in handy when computer’s space is limited or when the practitioner has
time. With modern computer storage capacity, though, most problems
requiring algebraic solutions in the fields above can easily be handled by
Groebner basis without the fear of computer breakdown. Publications
on the subject include: [19, 25, 31, 43, 83, 84, 85, 95, 104, 118, 119,
163, 209, 228, 229, 230, 231, 233, 234, 235, 236, 237, 285, 238, 239, 240,
241, 253, 303, 305, 326, 327].

Besides Groebner bases and polynomial resultants techniques, there
exists another approach for eliminating variables developed by W.
WU [340] using the ideas proposed by [280]. This approach is based
on Ritt’s characteristic set construction and was successfully applied
to automated geometric theorem by Wu. This algorithm is referred as
the Ritt-Wu’s algorithm [241].
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Gauss-Jacobi Combinatorial Algorithm

“Pauca des Matura” –a few but ripe – C. F. Gauss

6.1 Estimating Unknown Parameters

In geodesy and geoinformatics, field observations are normally collected
with the aim of estimating parameters. In geodynamics for example,
GPS and gravity measurements are undertaken with the aim of de-
termining crustal deformation. With improvement in instrumentation,
more observations are often collected than the unknowns. Let us con-
sider a simple case of measuring structural deformation. For deformable
surfaces, such as mining areas, or structures (e.g., bridges), several ob-
servable points are normally marked on the surface of the body. These
points would then be observed from a network of points set up on a
non-deformable stable surface. Measurements taken are distances, an-
gles or directions which are normally more than the unknown positions
of the points marked on the deformable surface leading to redundant
observations.

Procedures that are often used to estimate the unknowns from the
measured values will depend on the nature of the equations relating
the observations to the unknowns. If these equations are linear, then
the task is much simpler. In such cases, any procedure that can invert
the normal equation matrix such as least squares, linear Gauss-Markov
model etc., would suffice. Procedures for estimating parameters in lin-
ear models have been documented in [200]. Press et al. [269] present
algorithms for solving linear systems of equations. If the equations re-
lating the observations to the unknowns are nonlinear, they have first
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to be linearized and the unknown parameters estimated iteratively us-
ing numerical methods. The operations of these numerical methods
require some approximate starting values. At each iteration step, the
preceding estimated values of the unknowns are improved. The iter-
ation steps are repeated until the difference between two consecutive
estimates of the unknowns satisfies a specified threshold. Procedures
for solving nonlinear problems such as the Steepest-descent, Newton’s,
Newton-Rapson and Gauss-Newton’s have been discussed in [269, 308].
In particular, [308] recommends the Gauss-Newton’s method as it ex-
ploits the structure of the objective function (sum of squares) that is
to be minimized. In [310], the manifestation of the nonlinearity of a
function during the various stages of adjustment is considered. While
extending the work of [207] on nonlinear adjustment with respect to
geometric interpretation, [147, 148] have presented the necessary and
sufficient conditions for least squares adjustment of nonlinear Gauss-
Markov model, and provided the geometrical interpretation of these
conditions. Another geometrical approach include the work of [67],
while non geometrically treatment of nonlinear problems have been
presented by [53, 210, 245, 267, 283, 287].

6.2 Combinatorial Approach: The Origin

Presented in this chapter is an alternative approach to traditional it-
erative numerical procedures for solving overdetermined problems, i.e.,
where more observations than unknown exist. This approach, which we
call the Gauss-Jacobi combinatorial has the following advantages:

1. From the start, the objective is known.
2. It does not require linearization.
3. The need for iteration does not exist.
4. The variance-covariance matrices of all parameters are considered.
5. It can be exploited for outlier diagnosis.

The combinatorial approach traces its roots to the work of C.
F. Gauss which was published posthumously (see Appendix A-2).
Whereas the procedures presented in Chaps. 4 and 5 solve nonlinear
systems of equations where the number of observations n and unknowns
m are equal, i.e., n = m, Gauss-Jacobi combinatorial solves the case
where n > m. In Fig. 4.1 on p. 30 for example, two distance mea-
surements from known stations P1 and P2 were used to determine the
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position of unknown station P0. Let us assume that instead of the two
known stations, a third distance was measured from point P3 as de-
picted in Fig. 6.1. In such a case, there exist three possibilities (combi-

P1

P2

P3

P0

Fig. 6.1. Combinatorial possibilities for determining unknown station P0

nations) for determining the position of the unknown station P0. Recall
that for Fig. 4.1 on p. 30, two nonlinear distance equations were writ-
ten (e.g., 4.1 and 4.2). For Fig. 6.1, systems of distance equations could
be written for combinations {P1P0P2}, {P1P0P3} and {P2P0P3}. For
combination {P1P0P2} for example, one writes

d2
1 = (x1 − x0)

2 + (y1 − y0)
2 (6.1)

and
d2

2 = (x2 − x0)
2 + (y2 − y0)

2. (6.2)

Equations (6.1) and (6.2) lead to solutions {x0, y0}1,2 as position of the
unknown station P0, where the subscripts indicate the combinations
used. Combination {P1P0P3} gives

d2
1 = (x1 − x0)

2 + (y1 − y0)
2 (6.3)

and
d2

3 = (x3 − x0)
2 + (y3 − y0)

2, (6.4)
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leading to solutions {x0, y0}1,3 as the position of the unknown station
P0. The last combination {P2P0P3} has

d2
2 = (x2 − x0)

2 + (y2 − y0)
2 (6.5)

and
d2

3 = (x3 − x0)
2 + (y3 − y0)

2, (6.6)

as its system of equations leading to solutions {x0, y0}2,3. The solutions
{x0, y0}1,2, {x0, y0}1,3 and {x0, y0}2,3 from these combinations are how-
ever not the same due to unavoidable effects of random errors. It is in
attempting to harmonize these solutions to give the correct position of
point P0 that C. F. Gauss proposed the combinatorial approach. He
believed that plotting these three combinatorial solutions resulted in
an error figure with the shape of a triangle. He suggested the use of
weighted arithmetic mean to obtain the final position of point P0. In
this regard the weights were obtained from the products of squared dis-
tances P0P1, P0P2 and P0P3 (from unknown station to known stations)
and the square of the perpendicular distances from the sides of the er-
ror triangle to the unknown station. According to [256, pp. 272–273],
the motto in Gauss seal read “pauca des matura” meaning few but ripe.
This belief led him not to publish most of his important contributions.
For instance, [256, pp. 272–273] writes

“Although not all his results were recorded in the diary (many
were set down only in letters to friends), several entries would
have each given fame to their author if published. Gauss knew
about the quaternions before Hamilton...”.

Unfortunately, the combinatorial method, like many of his works, was
later to be published after his death (see e.g., Appendix A-2). Sev-
eral years later, the method was independently developed by C. G. I.
Jacobi [194] who used the square of the determinants as the weights
in determining the unknown parameters from the arithmetic mean.
Werkmeister [332] later established the relationship between the area
of the error figure formed from the combinatorial solutions and the
standard error of the determined point. In this book, the term com-
binatorial is adopted since the algorithm uses combinations to get all
the finite solutions from which the optimum value is obtained. The
optimum value is obtained by minimizing the sum of square of errors
of pseudo-observations formed from the combinatorial solutions. For
combinatorial optimization techniques, we refer to [113]. We will refer
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to this combinatorial approach as the Gauss-Jacobi combinatorial al-
gorithm in appreciation of the work done by both C. F. Gauss and C.
G. I. Jacobi.

In the approaches of C. F. Gauss and later C. G. I. Jacobi, one dif-
ficulty however remained unsolved. This was the question of how the
various nonlinear systems of equations, e.g., (6.1 and 6.2), (6.3 and 6.4)
or (6.5 and 6.6) could be solved explicitly! The only option they had
was to linearize these equations, which in essence was a negation of
what they were trying to avoid in the first place. Had they been aware
of algebraic techniques that we saw in Chaps. 4 and 5, they could have
succeeded in providing a complete algebraic solution to the overdeter-
mined problem. In this chapter, we will complete what was started
by these two gentlemen and provide a complete algebraic algorithm
which we name in their honour. This algorithm is designed to provide
a solution to the nonlinear Gauss-Markov model. First we define both
the linear and nonlinear Gauss-Markov model and then formulate the
Gauss-Jacobi combinatorial algorithm in Sect. 6.4.

6.3 Linear and Nonlinear Gauss-Markov Models

Linear and nonlinear Gauss-Markov models are commonly used for pa-
rameter estimation. Koch [200] presents various models for estimating
parameters in linear models, while [149] divide the models into non-
stochastic, stochastic and mixed models. We limit ourselves in this book
to the simple or special Gauss Markov model with full rank. For readers
who want extensive coverage of parameter estimation models, we refer
to the books of [149, 200]. The use of the Gauss-Jacobi combinatorial
approach proposed as an alternative solution to the nonlinear Gauss-
Markov model will require only the special linear Gauss-Markov model
during optimization. We start by defining the linear Gauss-Markov
model as follows:

Definition 6.1 (Special linear Gauss-Markov model). Given a
real n × 1 random vector y ∈ Rn of observations, a real m × 1 vector
ξ ∈ Rm of unknown fixed parameters over a real n×m coefficient ma-
trix A ∈ Rn×m, a real n × n positive definite dispersion matrix Σ, the
functional model

Aξ = E{y}, E{y} ∈ R(A), rkA = m,Σ = D{y}, rkΣ = n (6.7)
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is called special linear Gauss-Markov model with full rank.

The unknown vector ξ of fixed parameters in the special linear Gauss-
Markov model (6.7) is normally estimated by Best Linear Uniformly
Unbiased Estimation BLUUE, defined in [149, p. 93] as

Definition 6.2 (Best Linear Uniformly Unbiased Estimation
BLUUE). An m × 1 vector ξ̂ = Ly + κ is V − BLUUE for ξ (Best
Linear Uniformly Unbiased Estimation) respectively the (V − Norm)
in (6.7) when on one hand it is uniformly unbiased in the sense of

E{ξ̂} = E{Ly + κ} = ξ for all ξ ∈ Rm, (6.8)

and on the other hand in comparison to all other linear uniformly unbi-
ased estimators give the minimum variance and therefore the minimum
mean estimation error in the sense of

trD{ξ̂} = E{(ξ̂ − ξ)′(ξ̂ − ξ)} =
= σ2LΣL = ‖L‖2

V = min
L

, (6.9)

where L is a real m × n matrix and κ an m × 1 vector.

Using (6.9) to estimate the unknown fixed parameters’ vector ξ in (6.7)
leads to

ξ̂ = (A′Σ−1A)−1A′Σ−1y, (6.10)

with its regular dispersion matrix

D{ξ̂} = (A′Σ−1A)−1. (6.11)

Equations (6.10) and (6.11) are the two main equations that are ap-
plied during the combinatorial optimization. The dispersion matrix
(variance-covariance matrix) Σ is unknown and is obtained by means
of estimators of type MINQUE, BIQUUE or BIQE as in [129, 271, 272,
273, 274, 275, 286]. In Definition 6.1, we used the term ‘special’. This
implies the case where the matrix A has full rank and A′Σ−1A is in-
vertible, i.e., regular. In the event that A′Σ−1A is not regular (i.e., A
has a rank deficiency), the rank deficiency can be overcome by proce-
dures such as those presented by [149, pp. 107–165], [200, pp. 181–197]
and [77, 145, 146, 247, 250, 264] among others.
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Definition 6.3 (Nonlinear Gauss-Markov model). The model

E{y} = y − e = A(ξ), D{y} = Σ, (6.12)

with a real n×1 random vector y ∈ Rn of observations, a real m×1 vec-
tor ξ ∈ Rm of unknown fixed parameters, n×1 vector e of random errors
(with zero mean and dispersion matrix Σ), A being an injective func-
tion from an open domain into n−dimensional space Rn(m < n) and
E the “expectation” operator is said to be a nonlinear Gauss-Markov
model.

While the solution of the linear Gauss-Markov model by Best Linear
Uniformly Unbiased Estimator (BLUUE) is straight forward, the so-
lution of the nonlinear Gauss-Markov model is not straight forward
owing to the nonlinearity of the injective function (or map function) A
that maps Rm to Rn. The difference between the linear and nonlinear
Gauss-Markov models therefore lies on the injective function A. For
the linear Gauss-Markov model, the injective function A is linear and
thus satisfies the algebraic axiom discussed in Chap. 2, i.e.,

A(αξ1 + βξ2) = αA(ξ1) + βA(ξ2), α, β ∈ R, ξ1, ξ2 ∈ Rm. (6.13)

The m–dimensional manifold traced by A(.) for varying values of ξ

is flat. For the nonlinear Gauss-Markov model on the other hand,
A(.) is a nonlinear vector function that maps Rm to Rn tracing an
m–dimensional manifold that is curved. The immediate problem that
presents itself is that of obtaining a global minimum. Procedures that
are useful for determining global minimum and maximum can be found
in [269, pp. 387–448].

In geodesy and geoinformatics, many nonlinear functions are nor-
mally assumed to be moderately nonlinear thus permitting linearization
by Taylor series expansion and then applying the linear model (Defini-
tion 6.1, Eqs. 6.10 and 6.11) to estimate the unknown fixed parameters
and their dispersions [200, pp. 155–156]. Whereas this may often hold,
the effect of nonlinearity of these models may still be significant on the
estimated parameters. In such cases, the Gauss-Jacobi combinatorial
algorithm presented in Sect. 6.4 can be used as we will demonstrate in
the chapters ahead.
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6.4 Gauss-Jacobi Combinatorial Formulation

The C. F. Gauss and C. G. I Jacobi [194] combinatorial Lemma is
stated as follows:

Lemma 6.1 (Gauss-Jacobi combinatorial). Given n algebraic ob-
servation equations in m unknowns, i.e.,

a1x + b1y − y1 = 0
a2x + b2y − y2 = 0
a3x + b3y − y3 = 0,

. . . .

(6.14)

for the determination of the unknowns x and y, there exist no set of
solutions {x, y}i,j from any combinatorial pair in (6.14) that satisfy
the entire system of equations. This is because the solutions obtained
from each combinatorial pair of equations differ from the others due
to the unavoidable random measuring errors. If the solutions from the
pair of the combinatorial equations are designated x1,2, x2,3, . . . and
y1,2, y2,3, . . . with the subscripts indicating the combinatorial pairs, then
the combined solutions are the sum of the weighted arithmetic mean�

�
�
�x =

π1,2x1,2 + π2,3x2,3 + . . . .

π1,2 + π2,3 + . . . .
, y =

π1,2y1,2 + π2,3y2,3 + . . . .

π1,2 + π2,3 + . . . .
, (6.15)

with {π1,2, π2,3, . . .} being the weights of the combinatorial solutions
given by the square of the determinants as

π1,2 = (a1b2 − a2b1)
2

π2,3 = (a2b3 − a3b2)
2

. . . .
(6.16)

The results are identical to those of least squares solution.

The proof of Lemma 6.1 is given in [188] and [328, pp. 46–47]. For
nonlinear cases however, the results of the combinatorial optimization
may not coincide with those of least squares as will be seen in the
coming chapters. This could be attributed to the remaining traces of
nonlinearity following linearization of the nonlinear equations in the
least squares approach or the generation of weight matrix by the com-
binatorial approach. We will later see that the combinatorial approach
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permits linearization only for generation of the weight matrix during
optimization process.

Levelling is one of the fundamental tasks carried out in engineering,
geodynamics, geodesy and geoinformatics for the purpose of determin-
ing heights of stations. In carrying out levelling, one starts from a point
whose height is known and measures height differences along a levelling
route to a closing point whose height is also known. In case where the
starting point is also the closing point, one talks of loop levelling. The
heights of the known stations are with respect to the mean sea level as
a reference. In Example 6.1, we use loop levelling network to illustrate
Lemma 6.1 of the Gauss-Jacobi combinatorial approach.

Example 6.1 (Levelling network). Consider a levelling network with
four-points in Fig. 6.2 below.

P1 P2

P3

y1

y2

y3

P4
y4

y6

y5

Fig. 6.2. Levelling Network

Let the known height of point P1 be given as h1. The heights h2 and
h3 of points P2 and P3 respectively are unknown. The task at hand is
to carry out loop levelling from point P1 to determine these unknown
heights. Given three stations with two of them being unknowns, there
exist (

3
2

)
=

3!

2!(3 − 2)!
= 3

number of combinatorial routes that can be used to obtain the heights
of points P2 and P3. If station P4 is set out for convenience along the
loop, the levelling routes are {P1 −P2 −P4 −P1}, {P2 −P3 −P4 −P2},
and {P3 − P1 − P4 − P3}. These combinatorials sum up to the outer
loop P1−P2−P3−P1. The observation equations formed by the height
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difference measurements are written as

x2 − h1 = y1

x3 − h1 = y2

x3 − x2 = y3

x4 − h1 = y4

x4 − x2 = y5

x4 − x3 = y6,

(6.17)

which can be expressed in the form of the special linear Gauss-Markov
model (6.7) on p. 61 as

E

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

y1 + h1

y2 + h1

y3

y4 + h1

y5

y6

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
−1 1 0
0 0 1
−1 0 1
0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
⎡
⎣x2

x3

x4

⎤
⎦ , (6.18)

where y1, y2, . . . . , y6 are the observed height differences and x2, x3, x4

the unknown heights of points P2, P3, P4 respectively. Let the disper-
sion matrix D{y} = Σ be chosen such that the correlation matrix is
unit (i.e., Σ = I3 = Σ−1 positive definite, rkΣ−1 = 3 = n), the de-
composition matrix Y and the normal equation matrix A′Σ−1A are
given respectively by

Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1 + h1 0 0
0 0 y2 + h1

0 y3 0
−(y4 + h1) 0 y2 + h1

y5 −y5 0
0 y6 −y6

⎤
⎥⎥⎥⎥⎥⎥⎦

, A′Σ−1A =

⎡
⎣ 3 −1 −1
−1 3 −1
−1 −1 3

⎤
⎦ . (6.19)

The columns of Y correspond to the vectors of observations y1, y2

and y3 formed from the combinatorial levelling routes. We compute
the heights of points P2 and P3 using (6.10) for each combinatorial
levelling routes as follows:

• Combinatorials route(1):=P1 − P2 − P4 − P1. Equations (6.19) and
(6.10) leads to the partial solutions
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ξ̂route(1) =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 +
h1

2
− y5

2
− y4

2

y1

2
− y4

2

y1

2
− h1

2
+

y5

2
− y4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.20)

• Combinatorials route(2):=P2 − P3 − P4 − P2 gives

ξ̂route(2) =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y5

2
− y3

2

y3

2
− y6

2

y6

2
− y5

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (6.21)

• Combinatorials route(3):=P3 − P1 − P4 − P3 gives

ξ̂route(3) =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y4

2
− y2

2

y4

2
+

y6

2
− h1

2
− y2

h1

2
− y2

2
− y6

2
+ y4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.22)

The heights of the stations x2, x3, x4 are then given by the summation
of the combinatorial solutions

⎡
⎣x2

x3

x4

⎤
⎦ = ξ̂l = ξ̂route(1) + ξ̂route(2) + ξ̂route(3) =

1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 +
h1

2
− y3

2
− y2

2

y1

2
+

y3

2
− h1

2
− y2

y1

2
− y2

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6.23)
If one avoids the combinatorial routes and carries out levelling along
the outer route P1−P2−P3−P1, the heights could be obtained directly
using (6.10) as
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⎡
⎣ x2

x3

x4

⎤
⎦ = ξ̂l = (A′Σ−1A)−1A′Σ−1

⎡
⎢⎢⎢⎢⎢⎢⎣

y1 + h1

−(y2 + h1)
y3

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

=
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1 +
h1

2
−

y3

2
−

y2

2

y1

2
+

y3

2
−

h1

2
− y2

y1

2
−

y2

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(6.24)

In which case the results are identical to (6.23). For linear cases
therefore, the results of Gauss-Jacobi combinatorial algorithm gives
solution (6.23) which is identical to that of least squares approach in
(6.24), thus validating the postulations of Lemma 6.1.
��

6.5 Combinatorial Solution of Nonlinear Gauss-Markov
Model

The Gauss-Jacobi combinatorial Lemma 6.1 on p. 64 and the levelling
example were based on a linear case. In case of nonlinear systems of
equations, such as (6.1 and 6.2), (6.3 and 6.4) or (6.5 and 6.6), the
nonlinear Gauss-Markov model (6.12) is solved in two steps:

• Step 1: Combinatorial minimal subsets of observations are con-
structed and rigorously solved by means of either Groebner basis
or polynomial resultants.

• Step 2: The combinatorial solution points obtained from step 1,
which are now linear, are reduced to their final adjusted values by
means of Best Linear Uniformly Unbiased Estimator (BLUUE).
The dispersion matrix of the real valued random vector of pseudo-
observations from Step 1 are generated via the nonlinear error prop-
agation law also known as the nonlinear variance-covariance prop-
agation.

Construction of Minimal Combinatorial Subsets

Since n > m we construct minimal combinatorial subsets comprising
m equations solvable in closed form using either Groebner basis or
polynomial resultants. We begin by giving the following elementary
definitions:

Definition 6.4 (Permutation). Let us consider that a set S with el-
ements {i, j, k} ∈ S is given, the arrangement resulting from placing
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{i, j, k} ∈ S in some sequence is known as permutation. If we choose
any of the elements say i first, then each of the remaining elements j, k
can be put in the second position, while the third position is occupied
by the unused letter either j or k. For the set S, the following permu-
tations can be made: [

ijk ikj jik
jki kij kji.

(6.25)

From (6.25) there exist three ways of filling the first position, two ways
of filling the second position and one way of filling the third position.
Thus the number of permutations is given by 3× 2× 1 = 6. In general,
for n different elements, the number of permutation is equal to n×. . . ×
3 × 2 × 1 = n!

Definition 6.5 (Combination). If for n elements only m elements
are used for permutation, then we have a combination of the mth order.
If we follow the definition above, then the first position can be filled in n
ways, the second in {n−1} ways and the mth in {n−(m−1)} ways. In
(6.25), the combinations are identical and contain the same elements
in different sequences. If the arrangement is to be neglected, then we
have for n elements, a combination of mth order being given by

Ck =

(
n
m

)
=

n!

m!(n − m)!
=

n(n − 1) . . . (n − m + 1)

m × . . . × 3 × 2 × 1
. (6.26)

Given n nonlinear equations to be solved, we first form Ck minimal
combinatorial subsets each consisting of m elements (where m is the
number of the unknown elements). Each minimal combinatorial subset
Ck is then solved using either of the algebraic procedures discussed in
Chaps. 4 and 5.

Example 6.2 (Combinatorial). In Fig.6.1 for example, n = 3 and m =
2, which with (6.26) leads to three combinations given by (6.1 and
6.2), (6.3 and 6.4) and (6.5 and 6.6). Groebner basis or polynomial
resultants approach is then applied to each combinatorial pair to give
the combinatorial solutions {x0, y0}1,2, {x0, y0}1,3 and {x0, y0}2,3.

Optimization of Combinatorial Solutions

Once the combinatorial minimal subsets have been solved using either
Groebner basis or polynomial resultants, the resulting sets of solutions
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are considered as pseudo-observations. For each combinatorial, the ob-
tained minimal subset solutions are used to generate the dispersion ma-
trix via the nonlinear error propagation law/variance-covariance prop-
agation e.g., [149, pp. 469–471] as follows:

From the nonlinear observation equations that have been converted
into its algebraic (polynomial) via Theorem 3.1 on p. 20, the combinato-
rial minimal subsets consist of polynomials f1, . . . , fm ∈ k[x1, . . . , xm],
with {x1, . . . , xm} being the unknown variables (fixed parameters) to
be determined. The variables {y1, . . . , yn} are the known values com-
prising the pseudo-observations obtained following closed form solu-
tions of the minimum combinatorial subsets. We write the polynomials
as ⎡

⎢⎢⎢⎢⎢⎢⎣

f1 := g(x1, . . . , xm, y1, . . . , yn) = 0
f2 := g(x1, . . . , xm, y1, . . . , yn) = 0

.

.

.
fm := g(x1, . . . , xm, y1, . . . , yn) = 0,

(6.27)

which are expressed in matrix form as

f := g(x,y) = 0. (6.28)

In (6.28) the unknown variables {x1, . . . , xm} are placed in a vec-
tor x and the known variables {y1, . . . , yn} in y. Error propagation
is then performed from pseudo-observations {y1, . . . , yn} to param-
eters {x1, . . . , xm} which are to be explicitly determined. They are
characterized by the first moments, the expectations E{x} = µx and
E{y} = µy, as well as the second moments , the variance-covariance
matrices/dispersion matrices D{x} = Σx and D{y} = Σy. From [149,
pp. 470–471], we have up to nonlinear terms

D{x} = J−1
x JyΣyJ

′
y(J

−1
x )′, (6.29)

with Jx,Jy being the partial derivatives of (6.28) with respect to x,y
respectively at the Taylor points (µx, µy). The approximate values of
unknown parameters {x1, . . . , xm} ∈ x appearing in the Jacobi ma-
trices Jx,Jy are obtained either from Groebner basis or polynomial
resultants solution of the nonlinear system of equations (6.27).

Given Ji = J−1
xi

Jyi
from the ith combination and Jj = J−1

xj
Jyj

from

the jth combination, the correlation between the ith and jth combina-
tions is given by
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Σij = JjΣyjyi
J

′

i. (6.30)

The sub-matrices variance-covariance matrix for the individual com-
binatorials Σ1,Σ2,Σ3, . . . ,Σk (where k is the number of combinations)
obtained via (6.29) and the correlations between combinatorials ob-
tained from (6.30) form the variance-covariance/dispersion matrix

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Σ1 Σ12 . . . Σ1k

Σ21 Σ2 . . . Σ2k

. Σ3

. .

. .
Σk1 . . . Σk

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.31)

for the entire k combinations. This will be made clear by Example 6.4.
The obtained dispersion matrix Σ is then used in the linear Gauss-
Markov model (6.10) to obtain the estimates ξ̂ of the unknown pa-
rameters ξ. The combinatorial solutions are considered as pseudo-
observations and placed in the vector y of observations, while the design
matrix A comprises of integer values 1 which are the coefficients of the
unknowns as in (6.34). The procedure thus optimizes the combinatorial
solutions by the use of BLUUE. Consider the following example.

Example 6.3. From Fig. 6.1 on p. 59, three possible combinations each
containing two nonlinear equations necessary for solving the two un-
knowns are given and solved as discussed in Example 6.2 on p. 69.
Let the combinatorial solutions {x0, y0}1,2, {x0, y0}1,3 and {x0, y0}2,3

be given in the vectors zI(y1, y2), zII(y1, y3) and zIII(y2, y3) respec-
tively. If the solutions are placed in a vector zJ = [zI zII zIII ]

′

, the
adjustment model is then defined as

E{zJ} = I6×3ξ3×1, D{zJ} from variance/covariance propagation.
(6.32)

Let

ξn = LzJ subject to zJ :=

⎡
⎣ zI

zII

zIII

⎤
⎦ ∈ R6×1, (6.33)

such that the postulations trD{ξn} = min, i.e., “best,” and E{ξn} = ξ

for all ξn ∈ Rm i.e., “uniformly unbiased” holds. We then have from
(6.31), (6.32) and (6.33) the result

ξ̂ = (I
′

3×6ΣzJ
I6×3)I

′

3×6Σ
−1
zJ

zJ (6.34)
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L̂ = arg{trD{ξn} = tr LΣyL
′

= min | UUE}
The dispersion matrix D{ξ̂} of the estimates ξ̂ is obtained via (6.11).
The shift from arithmetic weighted mean to the use of linear Gauss
Markov model is necessitated as we do not readily have the weights
of the minimal combinatorial subsets but instead have their dispersion
matrices obtained via error propagation/variance-covariance propaga-
tion. If the equivalence Theorem of [149, pp. 339–341] is applied, an
adjustment using linear Gauss Markov model instead of weighted arith-
metic mean in Lemma 6.1 is permissible.

Example 6.4 (Error propagation for planar ranging problem). For the
unknown station P0(X0, Y0) ∈ E2 of the planar ranging problem in Fig.
6.1 on p. 59, let distances S1 and S2 be measured to two known sta-
tions P1(X1, Y1) ∈ E2 and P2(X2, Y2) ∈ E2 respectively. The distance
equations are expressed as[

S2
1 = (X1 − X0)

2 + (Y1 − Y0)
2

S2
2 = (X2 − X0)

2 + (Y2 − Y0)
2,

(6.35)

which are written algebraically as[
f1 := (X1 − X0)

2 + (Y1 − Y0)
2 − S2

1 = 0
f2 := (X2 − X0)

2 + (Y2 − Y0)
2 − S2

2 = 0.
(6.36)

On taking total differential of (6.36), we have⎡
⎢⎢⎢⎢⎣

df1 := 2(X1 − X0)dX1 − 2(X1 − X0)dX + 2(Y1 − Y0)dY1−
−2(Y1 − Y0)dY − 2S1dS1 = 0

df2 := 2(X2 − X0)dX2 − 2(X2 − X0)dX + 2(Y2 − Y0)dY2−
−2(Y2 − Y0)dY − 2S2dS2 = 0.

(6.37)

Arranging (6.37) with the unknown terms {X0, Y0} = {x1, x2} ∈ x on
the left-hand-side and the known terms

{X1, Y1, X2, Y2, S1, S2} = {y1, y2, y3, y4, y5, y6} ∈ y,

on the right-hand-side leads to

Jx

[
dX0

dY0

]
= Jy

⎡
⎢⎢⎢⎢⎢⎢⎣

dS1

dX1

dY1

dS2

dX2

dY2

⎤
⎥⎥⎥⎥⎥⎥⎦

, (6.38)
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with

Jx =

⎡
⎢⎢⎢⎣

∂f1

∂X0

∂f1

∂Y0

∂f2

∂X0

∂f2

∂Y0

⎤
⎥⎥⎥⎦ =

[−2(X1 − X0) −2(Y1 − Y0)
−2(X2 − X0) −2(Y2 − Y0)

]
, (6.39)

and⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jy =

⎡
⎢⎢⎢⎣

∂f1

∂S1

∂f1

∂X1

∂f1

∂Y1
0 0 0

0 0
∂f2

∂S2

∂f2

∂X2

∂f2

∂Y2

⎤
⎥⎥⎥⎦ =

=

[
2S1 −2(X1 − X0) −2(Y1 − Y0) 0 0 0
0 0 0 2S2 −2(X2 − X0) −2(Y2 − Y0)

]
.

(6.40)
If we consider that

D{x} = Σx =

[
σ2

X0
σX0Y0

σY0X0
σ2

Y0

]

D{y} = Σy =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ2
S1

σS1X1
σS1Y1

σS1X2
σS1S2

σS1Y2

σX1S1
σ2

X1
σX1Y1

σX1S2
σX1X2

σX1Y2

σY1S1
σY1X1

σ2
Y1

σY1S2
σY1X2

σY1Y2

σS2S1
σS2X1

σS2Y1
σ2

S2
σS2X2

σS2Y2

σX2S1
σX2X1

σX2Y1
σX2S2

σ2
X2

σX2Y2

σY2S1
σY2X1

σY2Y1
σY2S2

σY2X2
σ2

Y2

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(6.41)

we obtain with (6.38), (6.39) and (6.40) the dispersion (6.29) of the
unknown variables {X0, Y0} = {x1, x2} ∈ x.

The Gauss-Jacobi Combinatorial Program

The Gauss-Jacobi combinatorial program operates in three phases. In
the first phase, one forms minimal combinations of the nonlinear equa-
tions using (6.26) on p. 69. Using either Groebner basis or polynomial
resultants, the desired combinatorial solutions are obtained. The com-
binatorial results form pseudo-observations, which are within the solu-
tion space of the desired values. This first phase in essence projects a
nonlinear case into a linear case.
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Once the first phase is successfully carried out with the solu-
tions of the various subsets forming pseudo-observations, the nonlin-
ear variance-covariance/error propagation is carried out in the second
phase to obtain the weight matrix . This requires that the stochastic-
ity of the initial observational sample be known in-order to propagate
them to the pseudo-observations.

The final phase entails the adjustment step, which is performed to
obtain the barycentric values. Since the pseudo-observations are linearly
independent, the special linear Gauss-Markov model (see Definition 6.1
on p. 61) is employed.

Stepwise, the Gauss-Jacobi combinatorial algorithm proceeds as fol-
lows:

• Step 1: Given an overdetermined system with n observations in
m unknowns, using (6.26), form minimal combinations from the n
observations that comprise m equations in m unknowns.

• Step 2: Solve each set of m equations from step 1 above for the
m unknowns using either Groebner basis or polynomial resultant
algebraic techniques.

• Step 3: Perform the nonlinear error/variance-covariance propaga-
tion to obtain the variance-covariance matrix of the combinatorial
solutions obtained in Step 2.

• Step 4: Using the pseudo-observations of step 2, and the variance-
covariance matrix from step 3, adjust the pseudo-observations via
the special linear Gauss-Markov model to obtain the adjusted posi-
tion of the unknown station.

Figure 6.3 summarizes the operations of the Gauss-Jacobi combinato-
rial algorithm which employs Groebner basis or polynomial resultants
as computing engines to solve nonlinear systems of equations (e.g.,
Fig.6.4).
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Fig. 6.3. Gauss-Jacobi combinatorial algorithm

Fig. 6.4. Combinatorial computing engine

6.6 Concluding Remarks

In Chaps. 4 and 5, Groebner basis and polynomial resultants algorithms
were presented for solving in exact form the nonlinear systems of equa-
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tions. It was demonstrated in this chapter how they play a leading role
in overcoming the major difficulty that was faced by C. F. Gauss and C.
G. I. Jacobi. The key to success is to use these algebraic techniques as
the computing engine of the Gauss-Jacobi combinatorial algorithm. In
so doing, an alternative procedure to linearized and iterative numerical
procedures that peg their operations on approximate starting values
was presented. Such algebraic technique for solving overdetermined
problems requires neither approximate starting values nor lineariza-
tion (except for the generation of the weight matrix). With modern
computing technology, the combinatorial formation and computational
time for geodetic or geoinformatics’ algebraic computational problems
is immaterial. In the chapters ahead, the power of this technique will
be demonstrated. Fig. 6.5 gives a summary of the algebraic algorithms
and show when each procedure can be applied. Further materials on
the topic are presented in [167, 168].

Fig. 6.5. Algebraic solution approach
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Local versus Global Positioning Systems

7.1 Positioning Systems

In daily operations, geodesists and geoinformatists have at their dis-
posal two operating systems namely:

• Global Positioning System; in this system, the practitioner operates
at a global scale with positions referred to the global reference frame
(e.g., World Geodetic System WGS-84). The tools employed com-
prise mainly satellites with global positioning capabilities. These
satellites include; the US based Global Positioning System (GPS),
Russian based Globalnaya Navigationnaya Sputnikovaya Sistema
(or simply Global Navigation Satellite System) GLONASS and the
proposed European Union’s proposed Global Navigation Satellite
System GALILEO which will be operational around 2008 [335]. Un-
like GPS satellites which were designed for the US army, GALILEO
satellites will be civilian owned. Information on GALILEO can be
obtained from its web page.1

Apart from positioning satellites, low flying satellites have been
launched for various missions. These satellites, which work together
with GPS satellites, include among others:
– The twin satellites Gravity Recovery and Climate Experiment

(GRACE) which were launched in March 2002. They are ex-
pected to make detailed measurements of the Earth’s gravity field
leading to discoveries about gravity and Earth’s natural systems.
GRACE satellites will also be used for atmospheric studies.

1http://europa.eu.int/comm/dgs/energy transport/galileo/index en.htm
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– The German Low Earth Orbiting (LEO) satellite Challenging
Minisatellite Payload (CHAMP) for geophysical research and ap-
plications. CHAMP satellite was launched on July 15, 2000 and
similar to GRACE satellites, it is currently offering data for grav-
ity and atmospheric study.

– The Gravity field and steady-state Ocean Circulation Explorer
(GOCE) which is dedicated to measuring the Earth’s gravity
field and modelling the geoid with extremely high accuracy and
spatial resolution.

• Local Positioning Systems (LPS); which are applicable at national
levels. The main positioning tools include; total stations, theodo-
lites, EDMs, photogrammetric cameras, laser scanners etc. Positions
in these systems are referred to the local level reference frames. With
these systems, for example, engineers have possibilities of setting
horizontal and vertical networks for constructions. Those in geody-
namics use them together with GPS for deformation monitoring.

The present chapter discusses these two systems in detail. In partic-
ular, for the LPS, the issue of local datum choice is addressed. The test
network of “Stuttgart Central” which is applied to test the algorithms
of Chaps. 4–6 is also presented.

7.2 Global Positioning System (GPS)

Global Positioning System (GPS) are satellites that were primarily
designed for use of US military in the early 60’s, with a secondary role of
civilian navigation. The oscillators aboard the GPS satellites generate
a fundamental frequency f0 of 10.23 MHz. Two carrier signals in the L
band denoted L1 and L2 are generated by integer multiplication of the
fundamental frequency f0. These carriers are modulated by codes to
provide satellite clock readings measured by GPS receivers. Two types
of codes; the coarse acquisition C/A and precise acquisition P/A are
emitted. C/A code in the L1 carrier is less precise and is often reserved
for civilian use, while the P/A code is reserved for the use of US military
and its allies. It is coded on both L1 and L2 [186]. The design comprises
three segments namely; the space segment, user segment and the control
segment. The space segment was designed such that the constellation
consisted of 24 satellites (with a spare of four) orbiting at a height of
about 20,200 km. The orbits are inclined at an angle of 55◦ from the
equator with an orbiting period of about 12 hours. The user segment
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consists of a receiver that tracks signals from at least four satellites in-
order to position (see e.g., discussion on Chap. 9). The control segment
consist 5 ground stations with the master station located at the Air
force base in Colorado. The master station measures satellite signals
which are incorporated in the orbital models for each satellite. The
models compute ephemerids and satellite clock correction parameters
which are transmitted to the satellites. The satellites then transmit the
orbital data to the receivers.

The results of the three-dimensional positioning using GPS satellites
are the three-dimensional geodetic coordinates {λ, φ, h} of a receiver
station. These coordinates comprise the geodetic longitude λ, geodetic
latitude φ and geodetic height h. When positioning with GPS, the
outcome is the geocentric position for an individual receiver or the
relative positions between co-observing receivers.

The global reference frame F• upon which the GPS observations are
based is defined by the base vectors F1• , F2• , F3• , with the origin being
the center of mass. The fundamental vector is defined by the base vec-
tor F3• and coincides with the mean axis of rotation of the Earth and
points to the direction of the Conventional International Origin (CIO).
F1• is oriented such that the plane formed by F1• and F3• points to
the direction of Greenwich in England. F2• completes the right handed
system by being perpendicular to F1• and F3• . The geocentric Carte-
sian coordinates of a positional vector X is given by

X = F1•X + F2•Y + F3•Z, (7.1)

where {X, Y, Z} are the components of the vector X in the system
F1• , F2• , F3• |o.

7.3 Local Positioning Systems (LPS)

Grafarend [133] defines a local level system as a three-dimensional ref-
erence frame at the hand of an experimenter in an engineering network.
When one is positioning using a theodolite or a total Station, one first
centers the instrument. When the instrument is properly centered and
ready for operation, the vertical axis of the instrument at this moment
coincides with the direction of the local gravity vector at that particu-
lar point, hence the term direction of local gravity vector . The vertical
axis at the theodolite station however points in the direction opposite
to that of the gravity vector (i.e., to the zenith). The instrument can
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now be used to measure observations of the type horizontal directions
Ti, angles, vertical directions Bi or the spatial distances Si. The triplet
{Si, Ti, Bi} are measured in the local level reference frame and are used
to form the spherical coordinates of a point. These systems as opposed
to GPS are only used within the local networks and are referred to as
the Local Positioning Systems (LPS). When one is operating in these
systems, one is faced with two datum choices upon which to operate.
The next section elaborates on these datum choices.

7.3.1 Local Datum Choice in an LPS 3-D Network

When measuring directions in the LPS system, one has two options,
namely;

• orienting the theodolite to a station whose azimuth is known or,
• orienting the theodolite to an arbitrary station whose azimuth is

unknown.

When the first option is adopted, one operates in the local level refer-
ence frame of type E∗ discussed in (a) below. Should the second ap-
proach be chosen, then one operates in the local level reference frame
of type F∗ discussed in (b).

(a) Local level reference frame of type E∗:
The origin of the E∗ system is a point P whose coordinates

X =

⎡
⎣X

Y
Z

⎤
⎦

P

=

⎡
⎣0

0
0

⎤
⎦ (7.2)

are defined by base vectors E1∗ , E2∗ , E3∗ of type south, east, verti-
cal. E3∗ points to the direction opposite to that of the local gravity
vector Γ at point P . E1∗ points south, while E2∗ completes the
system by pointing east. The datum spherical coordinates of the
direction point Pi in the local level reference frame E∗ are�

�

�

�

P −→ X∗ = Y ∗ = Z∗ = 0

PPi −→
⎡
⎣X∗

Y ∗

Z∗

⎤
⎦

E∗

= Si

⎡
⎣ cos Ai cos Bi

sinAi cos Bi

sinBi

⎤
⎦ ,

(7.3)

with azimuths Ai, vertical directions Bi, and spatial distances Si.
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(b) Local level reference frame of type F∗:
This system is defined by the base vectors F1∗ , F2∗ , F3∗ , with F1∗

within the local horizontal plane spanned by the base vectors E1∗

and E2∗ directed from P to Pi in vacuo. The angle between the base
vectors E1∗ and F1∗ is the “unknown orientation parameter” Σ in
the horizontal plane. E1∗ , E2∗ , E3∗ are related to F1∗ ,F2∗ ,F3∗ by a
“Karussel-Transformation” as follows⎡

⎣F1∗ = E1∗ cos Σ + E2∗ sinΣ
F2∗ = −E1∗ sin Σ + E2∗ cos Σ
F3∗ = E3∗ ,

(7.4)

or

[F1∗ , F2∗ , F3∗ ] = [E1∗ , E2∗ , E3∗ ]

⎡
⎣ cos Σ − sinΣ 0

sin Σ cos Σ 0
0 0 1

⎤
⎦ . (7.5)

From (7.5), one notes that the local level reference frame of type F∗

is related to the local level reference frame of type E∗ by

[E1∗ , E2∗ , E3∗ ] = [F1∗ , F2∗ , F3∗ ] RT
3 (Σ). (7.6)

The datum spherical coordinates of point Pi in the local level ref-
erence frame F∗ are given as�

�

�

�

P → X∗ = Y ∗ = Z∗ = 0

PPi →
⎡
⎣X∗

Y ∗

Z∗

⎤
⎦

F∗

= Si

⎡
⎣ cos Ti cos Bi

sin Ti cos Bi

sinBi

⎤
⎦ ,

(7.7)

where Ti and Bi are the horizontal and vertical directions respec-
tively, while Si are the spatial distances.

The local cartesian coordinates of a point whose positional vector is x
in the F∗ system is given by

x = F1∗x + F2∗y + F3∗z, (7.8)

where {x, y, z} are the components of the vector x in the system
{F1∗ , F2∗ , F3∗ |P } .

In the chapters ahead, the local level reference frame of type F∗ will
be adopted. This system arbitrarily defines the horizontal directions
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such that the orientation to the system E∗, i.e., Σ, is treated as un-
known besides the unknown positions. In case of the three-dimensional
orientation problem, it is determined alongside the direction {ΛΓ , ΦΓ }
of the local gravity vector Γ. For position determination using three-
dimensional resection method, it is determined alongside unknown co-
ordinates {X, Y, Z}. This will become clear in Chaps. 11 and 15.

7.3.2 Relationship between Global and Local Level
Reference Frames

In positioning within the LPS framework, one is interested not only in
the geometrical position {X, Y, Z}, but also in the physical quantities
{ΛΓ , ΦΓ } which define the direction of the local gravity vector Γ at the
instrument station. This direction {ΛΓ , ΦΓ } of the local gravity vector
Γ together with the unknown orientation Σ relate LPS and GPS sys-
tems. They are obtained by solving the three-dimensional orientation
problem. This is achieved by transforming coordinates from the local
level reference frame to the global reference frame (e.g., ITRF97). It is
conventionally solved by a means of a 3 x 3 rotation matrix, which is
represented by a triplet {ΛΓ , ΦΓ , ΣΓ } of orientation parameters called
the astronomical longitude ΛΓ , astronomical latitude ΦΓ , and the “ori-
entation unknown” ΣΓ in the horizontal plane. With respect to the
local gravity vector Γ, the triplets {ΛΓ , ΦΓ , Γ = ‖Γ‖} are its spheri-
cal coordinates, in particular {ΛΓ , ΦΓ } its direction parameters. The
three-dimensional orientation problem therefore determines;

(i) the 3 x 3 rotation matrix and,
(ii) the triplet {ΛΓ , ΦΓ , ΣΓ } of orientation parameters from GPS/LPS

measurements.

After the astronomical longitude ΛΓ and astronomical latitude ΦΓ are
determined via (i) and (ii) above- no astronomical observations are
needed anymore - the vertical deflections with respect to a well-chosen
reference frame, e.g., the ellipsoidal normal vector field can be obtained
as discussed in Sect. 8.4 of Chap. 8. The three-dimensional orientation
problem is formulated by relating the local level reference frame F∗ to
the global reference frame F• as follows:

[F1∗ , F2∗ , F3∗ ] = [F1• , F2• , F3• ]RE (ΛΓ , ΦΓ , ΣΓ ) , (7.9)

where the Euler rotation matrix RE is parameterized by



7.3 Local Positioning Systems (LPS) 83	



�
�RE (ΛΓ , ΦΓ , ΣΓ ) := R3 (ΣΓ )R2

(
π
2 − ΦΓ

)
R3(ΛΓ ), (7.10)

i.e., the three-dimensional orientation parameters; astronomical longi-
tude ΛΓ , astronomical latitude ΦΓ , and the orientation unknown Σ in
the horizontal plane. In terms of;

(a) Cartesian coordinates {x, y, z} of the station point and {xi, yi, zi}
target points in the local level reference frame F,∗ and,

(b) Cartesian coordinates {X, Y, Z} of the station point and target
points {Xi, Yi, Zi} in the global reference frame F•,

one writes ⎡
⎣xi − x

yi − y
zi − z

⎤
⎦

F∗

= RE(ΛΓ , ΦΓ , ΣΓ )

⎡
⎣Xi − X

Yi − Y
Zi − Z

⎤
⎦

F•,

(7.11)

with ⎡
⎣xi − x

yi − y
zi − z

⎤
⎦

F∗

= Si

⎡
⎣ cos Ti cosBi

sin Ti cos Bi

sinBi

⎤
⎦ ,∀i ∈ {1, 2, . . . , n}. (7.12)

Equation (7.11) contains the orientation parameters RE(ΛΓ , ΦΓ , ΣΓ )
relating the local level reference frame F∗ to the global reference frame
F•. These orientation parameters have been solved by:

1. Determining the direction (ΛΓ , ΦΓ ) of the local gravity vector Γ at
the origin of the network and the orientation unknown Σ in the
horizontal plane from stellar astronomical observations.

2. Solving the three-dimensional resection problem as discussed in
Chap. 11. In the approach proposed by [156], directional measure-
ments are performed to the neighbouring 3 points in the global ref-
erence frame and used to derive distances by solving the Grunert’s
equations. From these derived distances, a closed form solution of
the six unknowns {X, Y, Z, ΛΓ , ΦΓ , ΣΓ } by means of the Hamilton-
quaternion procedure is performed.

3. Using the simple Procrustes algorithm as discussed in Chap. 8 to de-
termine the three-dimensional orientation parameters {ΛΓ , ΦΓ , ΣΓ }
and the deflection of the vertical for a point whose geometrical po-
sitional quantities {X, Y, Z} are known.



84 7 Local versus Global Positioning Systems

4. By first determining the geometrical values {X, Y, Z} of the un-
known station using resection approach as discussed in Chap. 11.
Once these geometrical values have been determined, they are
substituted back in (7.11) to obtain the Euler rotation matrix
RE(ΛΓ , ΦΓ , ΣΓ ). The Euler rotation angles can then be deduced
via an inverse map presented in Lemma 15.1 on p. 264 of Chap. 15.

7.3.3 Observation Equations

Let us now have a look at the equations that we often encounter
when positioning with a stationary theodolite. Elaborate exposition
of three-dimensional observations is given by [128]. Stationed at the
point P0 ∈ E3, and with the theodolite properly centered, one sights
the target points Pi ∈ E3, where i = 1,2,3,.....,n. There exist three types
of measurements that will be taken from P0 ∈ E3 to Pi ∈ E3 in the
LPS system (i.e., local level reference frame F∗). These are:

• Horizontal directions Ti whose equation is given by

Ti = arctan

(
∆yi

∆xi

)
F∗

− ΣΓ (P0), (7.13)

where ΣΓ (P0) is the unknown orientation in the horizontal plane
after setting the zero reading of the theodolite in the direction P →
Pi.

• Vertical directions Bi given by

Bi = arctan

⎛
⎝ ∆zi√

∆x2
i + ∆y2

i

⎞
⎠

F∗.

(7.14)

• Spatial distances Si, i.e.,

Si =
√

∆x2
i + ∆y2

i + ∆z2
i |∗F, (7.15)

and ∆xi = (xi − x), ∆yi = (yi − y), ∆zi = (zi − z) denote the
coordinate difference in the local level reference frame F∗.

The relationship between the local level reference frame F∗ and the
global reference frame F• is then given by (e.g., 7.11)⎡

⎣∆xi

∆yi

∆zi

⎤
⎦

F∗

= RE(ΛΓ , ΦΓ , 0)

⎡
⎣∆Xi

∆Yi

∆Zi

⎤
⎦

F•,

(7.16)
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with

RE(ΛΓ , ΦΓ , 0) =

⎡
⎣ sinΦΓ cos ΛΓ sin ΦΓ sinΛΓ − cos ΦΓ

− sin ΛΓ cos ΛΓ 0
cos ΦΓ cos ΛΓ cos ΦΓ sinΛΓ sin ΦΓ

⎤
⎦ . (7.17)

Observations in (7.13), (7.14) and (7.15) are now expressed in the global
reference frame as

Ti = arctan

{
− sin ΛΓ ∆Xi + cos ΛΓ ∆Yi

sin ΦΓ cos ΛΓ ∆Xi + sin ΦΓ sin ΛΓ ∆Yi − cos ΦΓ ∆Zi

}
− ΣΓ (P ),

(7.18)

and

Bi = arctan

{
cos ΦΓ cos ΛΓ ∆Xi + cos ΦΓ sin ΛΓ ∆Yi + sin ΦΓ ∆Zi√

(sin ΦΓ cos ΛΓ ∆Xi + sin ΦΓ sin ΛΓ ∆Yi − cos ΦΓ ∆Zi)2 + D2

}
,

(7.19)

where D2 = (cos ΛΓ ∆Yi − sin ΛΓ ∆Xi)
2, ∆Xi = (Xi − X), ∆Yi =

(Yi − Y ), ∆Zi = (Zi − Z) in the global reference frame F• and
{ΣΓ (P0), ΛΓ (P0), ΦΓ (P0)} are the three unknown orientation parame-
ters at the unknown theodolite station P0.

7.4 Test Network Stuttgart Central

Observations

The following experiment was performed at the center of Stuttgart on
one of the pillars of Stuttgart University’s building along Kepler Strasse
11 as depicted by Fig. 7.1. The test network “Stuttgart Central” con-
sisted of 8 GPS points listed in Table 7.1. A theodolite was stationed at
pillar K1 whose astronomical longitude ΛΓ as well as astronomic lat-
itude ΦΓ were known from previous astrogeodetic observations made
by the Department of Geodesy and Geoinformatics, Stuttgart Univer-
sity. Since theodolite observations of type horizontal directions Ti as
well as vertical directions Bi from the pillar K1 to the target points
i, i = 1, 2, . . . , 6, 7, were only partially available, the horizontal and
vertical directions were simulated from the given values of {ΛΓ , ΦΓ }
as well as the Cartesian coordinates of the station point {X, Y, Z}



86 7 Local versus Global Positioning Systems

Haußmannstr. (1324.238 m)

Schloßplatz (566.864 m)

Dach FH (269.231 m)

Dach LVM (400.584 m)

Liederhalle (430.529 m)

Lindenmuseum (364.980 m)

Eduardpfeiffer
(542.261 m)

K1

Fig. 7.1. Graph of the Test network “Stuttgart Central”

and target points {Xi, Yi, Zi} using (7.18) and (7.19). The relation-
ship between the observations of type horizontal directions Ti, vertical
directions Bi, values of {ΛΓ , ΦΓ } and the Cartesian coordinates of the
station point {X, Y, Z} and target points {Xi, Yi, Zi} enabled genera-
tion of the observation data sets in Table 7.3. Such a procedure had also
an advantage in that we had full control of the algorithms that will be
tested later in the book. In detail, the directional parameters {ΛΓ , ΦΓ }
of the local gravity vector were adopted from the astrogeodetic ob-
servations φΓ = 48◦46

′

54
′′

.9 and ΛΓ = 9◦10
′

29
′′

.8 reported by [212,
p. 46] with a root-mean-square error σΛ = σΦ = 10′′. Table 7.1 con-
tains the {X, Y, Z} coordinates obtained from a GPS survey of the test
network Stuttgart Central, in particular with root-mean-square errors
(σX , σY , σZ) neglecting the covariances (σXY , σY Z , σZX). The spheri-
cal coordinates of the relative position vector, namely of the coordinate
differences {xi − x, yi − y, zi − z}, are called horizontal directions Ti,
vertical directions Bi and spatial distances Si and are given in Ta-
ble 7.2. The standard deviations/root-mean-square errors were fixed
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to σT = 6“, σB = 6′′. Such root mean square errors can be obtained
on the basis of a proper refraction model. Since the horizontal and
vertical directions of Table 7.2 were simulated, with zero noise level,
we used a random generator randn in Matlab e.g., [174, p. 84, p. 144]
to produce additional observational data sets within the framework of
the given root-mean-square errors. For each observable of type Ti and
Bi, 30 randomly simulated data were obtained and the mean taken.
Let us refer to the observational data sets {Ti, Bi} , i = 1, 2, . . . , 6, 7, of
Table 7.3 which were enriched by the root-mean-square errors of the in-
dividual randomly generated observations as well as by the differences
∆Ti := Ti−Ti(generated), ∆Bi := Bi−Bi(generated). Such differences
(∆Ti, ∆Bi) indicate the difference between the ideal values of Table 7.2
and those randomly generated.

Observations are thus designed such that by observing the other
seven GPS stations, the orientation of the local level reference frame F∗

whose origin is station K1, to the global reference frame F• is obtained.
The direction of Schlossplatz was chosen as the zero direction of the
theodolite leading to the determination of the third component ΣΓ

of the three-dimensional orientation parameters. To each of the GPS
target points i, the observations of type horizontal directions Ti and the
vertical directions Bi are measured. The spatial distances S2

i (X,Xi) =
‖Xi − X‖ are readily obtained from the observation of type horizontal
directions Ti and vertical directions Bi. The following symbols have
been used: σX , σY , σZ are the standard errors of the GPS Cartesian
coordinates. Covariances σXY , σY Z , σZX are neglected. σT , σB are
the standard deviation of horizontal and vertical directions respectively
after an adjustment, ∆T , ∆B are the magnitude of the noise on the
horizontal and vertical directions, respectively.

7.5 Concluding Remarks

What is presented here is just a nutshell of GPS. For more exposition of
its operations and techniques, we refer to related publications, e.g., [101,
161, 186, 218, 244, 294, 302, 341]. For LPS systems, more insight can
be found in [139, 144] and [278, p. 28]. In particular, for cases where the
theodolite moves from point to point, i.e., moving horizontal triad, [127,
130, 133] presents interesting materials.
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Table 7.1. GPS Coordinates in the global reference frame F
•(X, Y, Z), (Xi, Yi, Zi),

i = 1, 2, . . . , 7

Station2 X(m) Y (m) Z(m)
σX

mm
σX

mm
σX

mm

Dach K1 4157066.1116 671429.6655 4774879.3704 1.07 1.06 1.09
1 4157246.5346 671877.0281 4774581.6314 0.76 0.76 0.76
2 4156749.5977 672711.4554 4774981.5459 1.77 1.59 1.61
3 4156748.6829 671171.9385 4775235.5483 1.93 1.84 1.87
4 4157066.8851 671064.9381 4774865.8238 1.38 1.29 1.38
5 4157266.6181 671099.1577 4774689.8536 1.29 1.28 1.34
6 4157307.5147 671171.7006 4774690.5691 0.20 0.10 0.30
7 4157244.9515 671338.5915 4774699.9070 2.80 1.50 3.10

Table 7.2. Ideal spherical coordinates of the relative position vector in the local
level reference frame F

∗: Spatial distances, horizontal directions, vertical directions

Station Observed Distances Horizontal Vertical
from K1 (m) directions(gon) directions(gon)

Schlossplatz (1) 566.8635 52.320062 -6.705164
Haussmanstr. (2) 1324.2380 107.160333 0.271038
Eduardpfeiffer (3) 542.2609 224.582723 4.036011
Lindenmuseum (4) 364.9797 293.965493 -8.398004

Liederhalle (5) 430.5286 336.851237 -6.941728
Dach LVM (6) 400.5837 347.702846 -1.921509
Dach FH (7) 269.2309 370.832476 -6.686951

Table 7.3. Randomly generated spherical coordinates of the relative position vec-
tor: horizontal directions Ti and vertical directions Bi, i = 1, 2, . . . , 6, 7, root-mean-
square errors of individual observations, differences ∆Ti := Ti − Ti(generated),
∆Bi := Bi − Bi(generated) with respect to (Ti, Bi) ideal data of Table 7.2

St. H/dir.(gon) V/dir.(gon) σT (gon) σB(gon) ∆T (gon) ∆B(gon)

1 0.000000 -6.705138 0.0025794 0.0024898 -0.000228 -0.000039
2 54.840342 0.271005 0.0028756 0.0027171 -0.000298 0.000033
3 172.262141 4.035491 0.0023303 0.0022050 0.000293 0.000520
4 241.644854 -8.398175 0.0025255 0.0024874 0.000350 0.000171
5 284.531189 -6.942558 0.0020781 0.0022399 -0.000024 0.000830
6 295.382909 -1.921008 0.0029555 0.0024234 0.000278 -0.000275
7 318.512158 -6.687226 0.0026747 0.0024193 -0.000352 0.000500
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Partial Procrustes and the Orientation
Problem

“It seems very strange that up to now Procrustes analysis has
not been widely applied in geodetic literature. With this tech-
nique linearization problems of non linear equations system and
iterative procedures of computation could be avoided, in general,
with significant time saving and less analytical difficulties” F.
Crosilla.

8.1 Motivation

This chapter presents the minimization approach known as “Pro-
crustes” which falls within the multidimensional scaling techniques dis-
cussed in Sect. 8.2.2. Procrustes analysis is the technique of matching
one configuration into another in-order to produce a measure of match.
In adjustment terms, the partial Procrustes problem is formulated as
the least squares problem of transforming a given matrix A into another
matrix B by an orthogonal transformation matrix T such that the sum
of squares of the residual matrix E = A−BT is minimum. This tech-
nique has been widely applied in shape and factor analysis. It has also
been used for multidimensional rotation and also in scaling of different
matrix configurations. In geodesy and geoinformatics, data analysis
often require scaling, rotation and translation operations of different
matrix configurations. Photogrammetrists, for example, have to deter-
mine the orientation of the camera during aerial photogrammetry and
transform photo coordinates into ground coordinates. This is achieved
by employing scaling, translation and rotation operations. These op-
erations are also applicable to remote sensing and Geographical Infor-
mation System (GIS) where map coordinates have to be transformed
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to those of the digitizing table. In case of robotics, the orientation of
the robotic arm has to be determined, while for machine and computer
visions, the orientation of the Charge-Coupled Device (CCD) cameras
has to be established. In practice, positioning with satellites, partic-
ularly the Global Navigation Satellite Systems (GNSS) such us GPS
and GLONASS has been on rise. The anticipated GALILEO satellites
will further increase the use of satellites in positioning. This has neces-
sitated the transformation of coordinates from the Global Positioning
System (WGS 84) into local geodetic systems and vice versa.

A classical problem in geodesy and geoinformatics that would ben-
efit from this technique is transformation, and in particular the 7–
parameter datum transformation problem. The traditional approach of
solving this problem, for instance, has been to linearize the nonlinear
equations and then apply least squares method iteratively. With the
proposed Procrustes approach, all that is required of the user is to in-
sert the coordinates of one system (e.g., local coordinate system) in
say, the matrix A, and those of the other system (e.g., GPS in WGS-
84) into the matrix B. Using Procrustes analysis technique presented
in this chapter, and later in Chap. 15, the desired scale, rotation and
translation parameters can be obtained directly.

Although long applied in other fields such as; sociology, to map
crime versus cities, and also in medicine as we will see in Sect. 8.2.3,
Procrustes method is relatively new to the fields of geodesy and geoin-
formatics. Its first entry into geodesy can be traced back to the work
of [97, 98] where the method was used in the creation of the criterion
matrix used for deformation analysis. Further applications include the
works of [13, 137, 138] who applies it to compute the three-dimension
orientation parameters, deflection of the vertical, and 7-parameter da-
tum transformation.

Recent application of the approach in geoinformatics can be found in
the works of [100] who employs it to solve the photogrammetric block
adjustment by independent models, [57] who applies it for size and
shape three-dimensional object reconstructions, and [58] who uses the
technique to update cadastral maps. At the beginning of the Chapter,
we quoted F. Crosilla [99], the father of Procrustes in geodesy and
geoinformatics. He wonders why such an amazing technique has not
been widely applied in geodesy.

In this chapter, the partial, also called simple Procrustes algorithm
which is sufficient for solving only the rotation elements is presented.
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It will be demonstrated how the approach solves the three-dimensional
orientation and the vertical deflection (direction of local gravity vec-
tor) problems. In Chap. 15, the general Procrustes algorithm will be
presented and used to solve the 7-parameter similarity transformation
problem which is often encountered in practice.

8.2 Procrustes: Origin and Applications

8.2.1 Procrustes and the Magic Bed

The origin of the name, and perhaps the concept is traced back to
Greece. Somewhere in Attica in Greece lived a robber whose name was
Procrustes. His house was so well positioned besides the road such that
he was frequented by visitors who had to spend the night. In his house,
Procrustes also known as Damastes kept a special bed: So special was
the bed such that the visitors were required to fit in it. Unfortunately for
Procrustes, neither were all his visitors of the same height nor length of
the magic bed. All the same, the visitors were somehow forced in some
“magic” way to fit into the magic bed. This was not done by adjusting
the bed, but to the contrary its occupants! Procrustes devised ways to
fit his quests onto his bed. Guests who were shorter for the bed were
stretched by hammering or racking their bodies to fit the bed, while
those who were longer had their legs chopped off! In both cases, the
victims died. As fate would have it, Procrustes was himself adjusted to
fit his own bed by Theseus, a young Attic hero whose mission was to
eliminate robbers. The Encyclopedia of Greek Mythology writes1:

“Procrustes (proh-KRUS-teez). A host who adjusted his guests
to their bed. Procrustes, whose name means “he who stretches”,
was arguably the most interesting of Theseus’s challenges on
the way to becoming a hero. He kept a house by the side of
the road where he offered hospitality to passing strangers, who
were invited in for a pleasant meal and a night’s rest in his very
special bed (see Fig. 8.11). Procrustes described it as having the
unique property that its length exactly matched whomsoever
lay down upon it. What Procrustes didn’t volunteer was the
method by which this “one-size-fits-all” was achieved, namely
as soon as the guest lay down Procrustes went to work upon

1http://www.mythweb.com/encyc/gallery/procrustes c.html c©Mythweb.com
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him, stretching him on the rack if he was too short for the bed
and chopping off his legs if he was too long. Theseus turned the
tables on Procrustes, fatally adjusting him to fit his own bed.”

Fig. 8.1. Procrustes and his “magical” bed c©Mythweb.com

This magic bed of Procrustes has become a saying for arbitrarily -
and perhaps ruthlessly - forcing someone or something to fit into an
unnatural scheme or pattern.

8.2.2 Multidimensional Scaling

Multidimensional scaling (MDS) is a method that represents measure-
ments of similarity (or dissimilarity) among pairs of objects such as
distances between points of low-dimensional multidimensional space.
Let us consider for example that data consists of intelligence tests and
that one desires to see the correlation between the tests. MDS can be
used to represent these data in a plane such that the correlation can be
studied. The more closer the points are (i.e., the shorter the distances
between the points), the more correlated they are. MDS thus gives
an advantage of graphical visualization of hidden adherent properties
between objects. MDS has been described by [70] as:

• An approach for representing similarity and dissimilarity data as
exemplified by distances of low dimensional space. This is done in-
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order to make this data accessible for visual inspection and explo-
ration.

• An approach for testing if and how certain criteria by which one
distinguishes among different objects of interest are mirrored in a
corresponding empirical differences of this object (i.e., correlated).

• A data analytic approach that allows one to discover the three-
dimensions that underlie judgements of dissimilarity and similarity.

• A psychological model that explains judgements of dissimilarity in
terms of a rule that mimics a particular type of distance function.

Procrustes approach therefore is a procedure that is applied to realize
the goals of MDS. In other words, it is a tool of MDS concerned with
the fitting of one configuration into another as close as possible.

8.2.3 Applications of Procrustes in Medicine

As a motivational urge to embrace this long overdue powerful tool,
this section presents briefly two areas where Procrustes procedure has
found practical application. These are:

• Procrustes application software for gene recognition [120].
• Identification of malarial parasites [105].

The technique has also been applied in various fields ranging from bi-
ology, psychology, to structural analysis etc.

Gene Recognition

Gene recognition started as a statistical analysis and splicing sites.
The statistical procedures however could not deal with other types of
genes such as eukaryotic (i.e., a single-celled or multicellular organ-
ism whose cells contain a distinct membrane-bound nucleus). To solve
this problem, researchers in the field developed PROCRUSTES soft-
ware, which uses similarity-based approach to gene recognition [120].
This was achieved using spliced alignment technique. The software is
reported by Human Genome News2 to be able to identify with remark-
able accuracy human version of genes that are in other forms of life.
The human genes are broken into smaller segments known as exons.
Searching for exons is analogous to following a magazine article that

2July-September 1996; 8:(1)
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appears in, say, pp. 5, 23, 84, and 93, with almost identical advertise-
ment and other articles appearing between. The software is applied to
construct all these pages that contain the required article and auto-
matically combine them into a best fitting set. The technique is said to
work best when a “target protein” from the nonhuman sample guides
the search, thus ensuring an accuracy that approaches 100%. In this
technique, if a genomic sequence and a set of candidate exons are given,
the algorithm explores all possible exon assemblies and finds a chain
with the best fit to relate target protein. Instead of trying to identify
the correct exons by statistical means (which predicts the correlation
between the predicted and the actual gene to 70%, with just 40-50%
exons predicted correctly), PROCRUSTES considers all possible chain
with the maximum global similarity to the target protein. The proce-
dure predicts a correlation of about 99% between the predicted and
the actual gene [120]. The tool is useful in pinpointing elusive human
version of cancer-causing gene!

Identification of Malaria Parasites

Dryden [105] applies Procrustes to identify proteins by comparing
the electrophoretic gel images (Fig. 8.23). The gels are obtained from
strains of parasite which carry malaria. The procedure uses Procrustes
matching and affine shape registration to match the gels. It applies
some biological material to the left corner of the two images of gels A
and B in Fig. 8.2. The material is then separated down the gel accord-
ing to molecular weight (with the highest on top) and across the gel
according to isoelectric point (with the highest on the right of the gel).
Gel image is then used to identify strains of parasites using pattern of
spots marked by (+). Dark spots appearing on the gels indicate the
composition of protein and are marked by some expert in both gels A
and B. Ten spots are marked in each gel and then classified as either
invariant or variant spots.

The invariant spots are considered to be present for all parasites.
The arrangement of the variant spots is of particular interest as it helps
in the identification of malarial parasite. The field problem sighted
by [105] however is that gels are prone to deformation such as transla-
tion, scaling, rotation, affine transformation and smooth-linear bending .
Gel images therefore need to be registered by matching each image us-

3 c©Chapman and Hall Press
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ing a set of transformation to alleviate the deformations above [105].
This is achieved through the use of Procrustes analysis.

Fig. 8.2. The electrophoretic gels from gel A and gel B. Ten invariant spots have
been marked by (+) in white above c©Chapman and Hall Press

8.3 Partial Procrustes Solution

8.3.1 Conventional Formulation

Procrustes being a technique of matching one configuration into an-
other and producing a measure of match, seeks the isotropic dilatation
and the rigid translation, reflection and rotation needed to best match
one configuration to another [93, p. 92]. In this chapter, the term par-
tial shall be used to mean optimal rotation in-order to avoid con-
fusion since the term is used differently by different authors. For ex-
ample, [165, 166] considers a case where the configuration matrix has
several unknown elements in the minimization of the Frobenius norm as
the partial Procrustes problem. Dryden [105] on the other hand uses the
term partial Procrustes to refer to minimization of the Frobenius norm
only over the translation and rotation. The general Procrustes solution
is used as the minimization over the full set of similarity transforma-
tion as shall be seen in Chap. 15. In the solution of partial Procrustes
problem, we refer to Table 8.1 for some matrix properties which will
be of use.
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The Procrustes problem is concerned with fitting a configuration
B into A as close as possible. The simplest Procrustes case is one in
which both configurations have the same dimensionality and the same
number of points, which can be brought into a 1 − 1 correspondence
by substantive considerations [70, p. 339]. Let us consider the case
where both A and B are of the same dimension. The partial Procrustes
problem is then formulated as

A = BT (8.1)

The rotation matrix T in (8.1) is then solved by measuring the distances
between corresponding points in both configurations, square these val-
ues, and add them to obtain the sum of squares ‖A − BT‖2 which is
then minimized. One proceeds via Frobenius norm as follows:

min
‖X − YT‖ :=

√
tr(X

′ − T
′

Y
′

)(X − YT)

T
′

T = I.
(8.2)

In-order to obtain T in (8.2), the following properties of a matrix in
Table (8.1) are essential.

Table 8.1. Matrix properties for procrustes analysis

(a) trA =
n∑

i=1

aii Definition of trace function

(b) trA = trA′ Invariant under transpose
(c) trABC = trCAB = trBCA Invariant under ‘cyclic’ permutation

(d) trA
′

B = tr (A
′

B)
′

= trB
′

A = trAB
′

Combining properties (b) and (c)
(e) tr (A + B) = trA + trB Summation rule

Using (8.2) and the properties of Table 8.1, one writes⎡
⎢⎢⎢⎢⎢⎣

‖A − BT‖2 := tr(A
′ − T

′

B
′

)(A − BT)

T
′

T = I

= tr(A
′

A − 2A
′

BT + T
′

B
′

BT)

= trA
′

A − 2trA
′

BT + trB
′

B

trT
′

B
′

BT = trTT
′

B
′

B = trB
′

B.

(8.3)

The simplification trT
′

B
′

BT = trB
′

B in (8.3) is obtained by using the
property of invariance of the trace function under cyclic permutation
(i.e., property (c) in Table 8.1). Since tr(A

′

A) and tr(B
′

B) are not
dependent on T, we note from (8.3) that
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‖A − BT‖2 = min ⇔ tr(A
′

BT) = max

T
′

T = TT
′

= Ik.
(8.4)

If UΣV
′

is the singular value decomposition of A
′

B and C = A
′

B,
then we have ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
′

B = UΣV
′

if C = UΣV
′

, U,V
′ ∈ SO(3)

Σ = Diag(σ1, . . . , σk)then

tr(CT) ≤
k∑

i=1
σk,

with
k = 3.

(8.5)

The proof for (8.5) is given by [243, p. 34] as follows: Substituting for
C from its singular value decomposition and with the property (c) in
Table 8.1, one writes⎡

⎢⎢⎢⎢⎢⎢⎢⎣

tr(CT) = tr(UΣV
′

T) = tr(ΣV
′

TU)
taking

R = (ij)1 ≤ i, j ≤ k = V
′

TU orthogonal and |rii| ≤ 1
then

tr(ΣV
′

TU) =
k∑

i=1
σirii ≤

k∑
i=1

σi.

(8.6)

From (8.5) and (8.6), one notes that

tr(A
′

BT) = max ⇔ tr(A
′

BT) ≤
k∑

i=1

γi, (8.7)

subject to the singular value decomposition

A
′

B = UΣV
′

, U,V ∈ SO(3) and orthogonal.
(8.8)

Finally, the maximum value is obtained as

max(trA
′

BT) =
k∑

i=1

γi ⇔ T = VU
′

. (8.9)

Thus the solution of the rotation matrix by Procrustes method is

T = VU
′

. (8.10)
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8.3.2 Partial Derivative Formulation

This approach is attributed to P. H. Schonemann [288] as well as [289].
Proceeding from the Frobenius norm in (8.2) and using (8.1) leads to

d1 = tr A
′

A − 2tr A
′

BT, +T
′

B
′

BT, (8.11)

while the condition that T
′

T = I leads to

d2 = Λ(T
′

T − I). (8.12)

where Λ is the m x m unknown matrix of Lagrange multipliers. Equa-
tions (8.11) and (8.12) are added to give

d = d1 + d2. (8.13)

The derivative of (8.13) are obtained with respect to T as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂d

∂T
=

∂d1

∂T
+

∂d2

∂T

=
∂
(
tr A

′

A − 2tr A
′

BT + tr T
′

B
′

BT
)

∂T
+

∂
(
ΛT

′

T − ΛI
)

∂T

= −2B
′

A + B
′

BT + B
′

BT + TΛ + TΛ
′

=
(
B

′

B + B
′

B
)
T − 2B

′

A + T
(
Λ + Λ

′

)
.

(8.14)
From (8.14), let

B
′

B = B∗, B
′

A = C and
(
Λ + Λ

′

)
= 2Λ∗. (8.15)

For an extremum value of d, we set
∂d

∂T
= 0 such that

[
2C = 2B∗T + 2TΛ∗

C = B∗T + TΛ∗,
(8.16)

leading to both B∗ and Λ∗ being symmetric. Hence

Λ∗ = T
′

C − T
′

B
′

T. (8.17)

But B∗ → symmetric and thus T
′

B∗T is also symmetric. T
′

C is
therefore symmetric or
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⎢⎢⎢⎢⎢⎣

T
′

C = C
′

T
from the side condition

T
′

T = TT
′

= I3

we have that

C = TC
′

T.

(8.18)

From (8.8), we had C = A
′

B = UΣV
′

by SVD. In the present case
we note that C = B

′

A, thus C = B
′

A = VΣU
′

. From (8.18) we have⎡
⎢⎢⎢⎢⎢⎣

with U
′

U = UU
′

= V
′

V = VV
′

= I3

C = TC
′

T

VΣU
′

= TUΣV
′

T
V = TU

or T = VU
′

,

(8.19)

which is identical to (8.10).

8.4 Practical Applications

8.4.1 Three-dimensional Orientation Problem

The transformation of coordinates from the local level reference frame
to the global terrestrial reference frame (e.g., ITRF97) is a key, con-
temporary problem. In carrying out coordinate transformations, some
of the sought parameters are those of orientation. Orientations are nor-
mally sought for; theodolites, cameras, and CCD sensors, etc. Proce-
dures for solving explicitly the three-dimensional orientation problems
in geoinformatics are presented in the works of [293, 311, 312, 352].
In geodesy, attempts to find closed form solution to the orientation
problem have been carried out by [13, 137, 156] who proved that the
three-dimensional orientation problem could be solved in a closed form
through the integration of GPS and LPS systems.

The orientation problem is formulated by expressing (7.11) in Chap.
7 relating the two configurations, i.e., the local level reference frame and
the global reference frame, with the left-hand-side in terms of spherical
coordinates, as
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⎢⎢⎢⎢⎢⎣

si

⎡
⎣ cos Ti cos Bi

sinTi cos Bi

sinBi

⎤
⎦

F∗

= R(ΛΓ , ΦΓ , Σi
Γ )

⎡
⎣Xi − X

Yi − Y
Zi − Z

⎤
⎦

F•

with

si =

√
(Xi − X)•

2
+ (Yi − Y )•

2
+ (Zi − Z)•

2
.

(8.20)

In (8.20), X, Y, Z, Xi, Yi, Zi ∀i ∈ N are GPS coordinates in the global
reference frame F•, while the spherical coordinates Ti, Bi ∀i ∈ N are
used to derive the left-hand-side of (8.20) in the local level reference
frame F∗. The orientation problem (8.20) is conventionally solved by
means of a 3 x 3 rotation matrix R, which is represented by the triplet
{ΛΓ , ΦΓ , ΣΓ } of orientation parameters called the astronomical longi-
tude ΛΓ , astronomical latitude ΦΓ , and the “orientation unknown” ΣΓ

in the horizontal plane. With respect to the local gravity vector Γ, the
triplet {ΛΓ , ΦΓ , Γ = ‖Γ‖} are its spherical coordinates, in particular
{ΛΓ , ΦΓ } are its direction parameters. Here we solve the problem of
determining;

(a) the 3 x 3 rotation matrix R and,
(b) the triplet {ΛΓ , ΦΓ , ΣΓ } of orientation parameters from GPS/LPS

measurements by means of the partial Procrustes algorithm.

Procrustes Solution of the Orientation Problem

Consider coordinates to be given in two configurations with the same
three-dimensional space in the local level reference frame F∗ and global
reference frame F•. For such a three-dimensional space, where i = 3
(i.e., 3 target points), the relationship in (8.20) between the two systems
is expressed as⎡

⎣x1 − x x2 − x x3 − x
y1 − y y2 − y y3 − y
z1 − z z2 − z z3 − z

⎤
⎦

F∗

= R

⎡
⎣X1 − X X2 − X X3 − X

Y1 − Y Y2 − Y Y3 − Y
Z1 − Z Z2 − Z Z3 − Z

⎤
⎦

F•

.

(8.21)
For n target points, (8.21) becomes⎡
⎣x1 − x x2 − x . . . xn − x

y1 − y y2 − y . . . yn − y
z1 − z z2 − z . . . zn − z

⎤
⎦

F∗

= R

⎡
⎣X1 − X X2 − X . . . Xn − X

Y1 − Y Y2 − Y . . . Yn − Y
Z1 − Z Z2 − Z . . . Zn − Z

⎤
⎦

F•

3 x n 3 x 3 3 x n,
(8.22)
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with their respective dimensions given below them. The transpose of
(8.22) is expressed as⎡
⎢⎢⎢⎢⎢⎢⎣

x1 − x y1 − y z1 − z
x2 − x

.

.

.

y2 − y
.
.
.

z2 − z
.
.
.

xn − x yn − y zn − z

⎤
⎥⎥⎥⎥⎥⎥⎦

F∗

=

⎡
⎢⎢⎢⎢⎢⎢⎣

X1 − X Y1 − Y Z1 − Z
X2 − X

.

.

.

Y2 − Y
.
.
.

Z2 − Z
.
.
.

Xn − X Yn − Y Zn − Z

⎤
⎥⎥⎥⎥⎥⎥⎦

F•

R
′

.

n x 3 n x 3 3 x 3
(8.23)

Equation (8.23) contains the relative position vectors of correspond-
ing points in two reference frames. Let us indicate the matrix on the
left-hand-side by A, the one on the right-hand-side by B, and denote
the rotation matrix R

′

by T. The partial Procrustes problem is now
concerned with fitting the configuration of B into A as close as possible.
The problem reduces to that of determination of the rotation matrix
T. The operations involved in the solution of the orientation problem,
therefore, are:

• Solution of T∗ = VU
′

.
• Obtaining the rotation elements from R = (T∗)

′

.

The rotation matrix T∗ is the best possible matrix out of the set of
all orthogonal matrices T which are obtained by imposing the restric-
tion TT

′

= T
′

T = I. The matrix T could otherwise be any matrix,
which means, geometrically, that T is some linear transformation which
in general may not preserve the shape of B. A summary of the com-
putational procedure for the three-dimensional orientation parameters
based on Example 8.1 is given in Fig. 8.3.

Example 8.1 (Computation of the three-dimensional orientation prob-
lem). The partial Procrustes approach discussed in Sect. 8.2 is applied
to the Test network of Stuttgart Central presented in Sect. 7.4. 8 GPS
stations are used to determine the three-dimensional orientation pa-
rameters {ΛΓ , ΦΓ , ΣΓ }. From the observations of Table 7.3 on p. 88,
the matrix A in (8.1) is computed in terms of the spherical coordinates
using (8.20). The Matrix B is obtained by subtracting the coordinates
of station K1 from those of other stations in Table 7.1. The rotation
matrix T is then computed using partial Procrustes algorithm, i.e.,
(8.1) to (8.10). For this network, the computed three-dimensional ori-
entation parameters {ΛΓ , φΓ , ΣΓ } gave the values φΓ = 48o46

′

54
′′

.3
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and ΛΓ = 9o10
′

30
′′

.1, which when compared to φΓ = 48o46
′

54
′′

.9
and ΛΓ = 9o10

′

29
′′

.8 in [212, p. 46] deviates by ∆ΛΓ = −0
′′

.3 and
∆ΦΓ = 0

′′

.6.

Fig. 8.3. Flow chart for computing three-dimensional orientation parameters
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8.4.2 Determination of Vertical Deflection

As soon as we have determined the astronomical longitude ΛΓ and as-
tronomical latitude ΦΓ , the deflection of the vertical can be computed
with respect to a well chosen reference frame, e.g., the ellipsoidal normal
vector field. Traditionally, orientation parameters {ΛΓ , ΦΓ } have been
obtained from stellar observations and related to geodetic coordinates
{λ, φ} to obtain the deflection of the vertical. Through the integration
of GPS and LPS systems however, the astronomical observations of
type {ΛΓ , ΦΓ } are obtained from the three-dimensional orientation so-
lutions as discussed in Sect. 8.4.1. The approach alleviates the tiresome
and expensive night stellar observation. Such pioneering approach in
geodesy can be traced to the works of [13, 46, 137, 156].

To determine the vertical deflection, the reference direction is pa-
rameterized in terms of “surface normal”; ellipsoidal longitude λ and
ellipsoidal latitude φ. These are then subtracted from the local vertical
parameterized in terms of astronomical longitude ΛΓ and astronomical
latitude ΦΓ as

ΛΓ − λ
ΦΓ − φ,

(8.24)

to access the vertical deflections. In such a procedure, the topographical
surface which is embedded into a three-dimensional Euclidean space R3

is mapped point-wise into a reference ellipsoid of revolution through the
procedure discussed in Chap. 10. Indeed as outlined in Solution 10.5 on
p. 159 for instance, those direction parameters {Λ, Φ} are conveniently
computed from GPS Cartesian coordinates {X, Y, Z} of the station
point with respect to the global reference frame {F1• , F2• , F3•} . The
deflection of the vertical is then computed from (8.24) as

δΛΓ := ΛΓ − λ, δΦΓ := ΦΓ − φ
η := δΛΓ cos Φ, ξ := δΦΓ .

(8.25)

Equation (8.25) are simple representation of the east vertical deflection
η and the north vertical deflection ξ. The results in Table (3.1) of [137]
document the precise determination of the orientation parameters of
type astronomic longitude ΛΓ , astronomic latitude ΦΓ , horizontal ori-
entation unknown ΣΓ in the range of fraction of seconds of arc as
well as vertical deflection {ξ, η} in the same range exclusively from
GPS-LPS observations.
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8.5 Concluding Remarks

The partial Procrustes algorithm presented in this chapter provides
a powerful tool for solving rotation and orientation related prob-
lems in general. The approach is straight forward and does not re-
quire linearization, which bog down least squares and other tech-
niques commonly used. In Chap. 15, it shall be demonstrated how
the general Procrustes approach determines scale and translation pa-
rameters of transformation, in addition to the rotation elements. For
complete exposition of Procrustes approach, we refer to the works
of [65, 69, 70, 76, 89, 90, 93, 97, 98, 105, 121, 122, 126, 160, 165, 166,
242, 243, 268, 288, 289, 307, 323].
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Positioning by Ranging

9.1 Applications of Distances

Throughout history, position determination has been one of the fun-
damental task undertaken by man on daily basis. Each day, one has
to know where one is, and where one is going. To mountaineers, pi-
lots, sailors etc., the knowledge of position is of great importance. The
traditional way of locating one’s position has been the use of maps or
campus to determine directions. In modern times, the entry into the
game by Global Navigation Satellite Systems GNSS that comprise the
Global Positioning System (GPS), Russian based GLONASS and the
proposed European’s GALILEO have revolutionized the art of posi-
tioning.

In the new field of GPS meteorology for example, as well as geodesy,
robotics and geoinformatics etc., distances (ranges) play a key role
in determining unknown parameters. In the recently developed Spa-
tial Reference System1 designed to check and control the accuracy of
three-dimensional coordinate measuring machines and tooling equip-
ments, coordinates of the edges of the instrument are computed from
distances of the bars. This signifies that industrial application of dis-
tances is fast gaining momentum just as in geosciences. In GPS meteo-
rology that we will discuss in Chap. 13 for example, distances traveled
by GPS satellites signals through the atmosphere are measured and
related do the would be distances in vacuo (i.e., in the absence of the
atmosphere). Since these signals traverse the atmosphere, they enable
accurate global remote sensing of the atmosphere to retrieve vertical
profiles of temperature, pressure and water vapour .

1Metronom US., Inc., Ann Arbor: http://www.metronomus.com
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Apart from distances being used to determine the user’s position
and its application in GPS meteorology, they find use in quick station
search in engineering and cadastral surveying operations. Ranging, to-
gether with resection and intersection techniques (see e.g., Chaps. 11
and 12) are useful in densifying geodetic networks as illustrated by Fig.
9.1. Densification is vital for extending network control in areas where
GPS receivers fail, e.g., in tunnels and forests (see Fig. 9.1). Distances
are also used in photogrammetry to determine the perspective center
coordinates from measured photo and the ground coordinates. Another
area of application is in robotics.

Measured distances (ranges) are normally related to the desired pa-
rameters via nonlinear systems of equations that require explicit/exact
solutions. Approximate numerical procedures used for solving such non-
linear distance equations are normally iterative in nature, and often
require linearization of the nonlinear equations. Where closed form so-
lutions exist, they require differencing and substitution steps which are
laborious and time consuming. The desire therefore is to have proce-
dures that can offer direct solutions without linearization, iterations or
substitutional steps.

In this chapter, direct procedures for solving nonlinear systems of
equations for distances without linearization, iteration, forward and
backward substitutions are presented. In particular, the advantages of
fast computers with large storage capacities, and computer algebraic
software of Mathematica, Maple and Matlab are exploited by the alge-
braic based approaches. These methods which were presented in Chaps.
4, 5 and 6 directly deliver the position of unknown station from dis-
tance measurements. They do so by eliminating variables appearing in
the nonlinear systems of equations resulting in univariate polynomials
that are solvable using Matlab’s “roots” command.

The improvements made on measuring instruments has led to Elec-
tromagnetic Distance Measuring (EDM) equipments that measure dis-
tances to higher accuracies. By measuring distances from an unknown
station to two known stations, two nonlinear distance equations, whose
geometrical properties have been studied by [147, 148] are formed. They
have to be solved for the planar position of the unknown station. If dis-
tances are measured from an unknown station to three known stations
instead, three nonlinear distance equations have to be solved for the un-
known position. In Chaps. 4 and 6, planar distances were encountered
in Figs. 4.1 and 6.1 respectively, where they were used to illustrate the
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concepts that were discussed. The position {x0, y0} of the unknown
station P0 was related to the measured distances by (4.1) and (4.2) on
p. 30.

The term ranging is broadly used in this chapter to incorporate
the GPS pseudo-range measurements. For Local Positioning Systems
(e.g., using EDMs), distances can be measured directly. For Global
Positioning System (GPS) however, distances are not directly measured
owing to satellites and receivers’ clock uncertainties.

Fig. 9.1. Point densification in forest and inside a tunnel

9.2 Ranging by Global Positioning System (GPS)

9.2.1 The Pseudo-ranging Four-Points Problem

If one has access to a hand held GPS receiver, a mobile phone or a
watch fitted with a GPS receiver, one needs only to press the button
to know the position where one is standing. Basically, the operations
involve distance measurements to GPS satellites whose properties were
discussed in Sect. 7.2. The receiver measures the travel time of the
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signal transmitted from the satellites. This distance is calculated from
the relationship

distance = velocity × time,

where velocity is given by the speed of light in vacuum. The distances
Si are then related to the position of the unknown station {X0, Y0, Z0}
by

Si =
√

(Xi − X0)2 + (Y i − Y0)2 + (Zi − Z0)2, (9.1)

where {Xi, Y i, Zi} are the position of the satellite i. Geometrically,

Fig. 9.2. Pseudo-ranging geometry

the three unknowns {X0, Y0, Z0} are obtained from the intersection of
three spherical cones given by the pseudo-ranging equations. Distance
measurements to only one satellite puts the user’s position anywhere
within the sphere formed by distance S1 in Fig. 9.2. Measurements to
two satellites narrow the position to the intersection of the two spheres
S1 and S2. 9.2. A third satellite is therefore required to definitely fix the
user’s position. This is achieved by the intersection of the third sphere
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S3 with the other two. If direct distance measurements to the satel-
lites were possible, (9.1) would have sufficed to provide the user’s loca-
tion. Distance measurements to satellites as already stated are however
not direct owing to the satellites and receivers’ clock biases. Satellites’
clock biases can be modelled while the receivers’ clock biases have to
be determined as an unknowns. For GPS positioning therefore, in addi-
tion to position determination from measured distances, the receiver’s
clock bias has to be added in the observation equations as unknown.
Since distances to the satellites in (9.1) are derived from the trans-
mitted signals that are affected by both satellites and receivers’ clock
uncertainties, they are normally referred to as pseudo-ranges. What one
measures therefore are not the actual distances (ranges) but pseudo-
ranges. Pseudo-range measurements lead to GPS pseudo-ranging four-
points problem (“pseudo 4P4”), which is the problem of determining
the four unknowns. The unknowns comprise the three components of
receiver position {X0, Y0, Z0} and the stationary receiver range bias.
Minimum observations required to obtain receiver position and range
bias are pseudo-range observations to four satellites as depicted in Fig.
9.3. Besides pseudo-range observations, phase measurements are often

Fig. 9.3. Point positioning using GPS satellites

used where accurate results are desired.
Four pseudo-range equations are formed from (9.1) and expressed

algebraically as
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⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x1 − a0)
2 + (x2 − b0)

2 + (x3 − c0)
2 − (x4 − d0)

2 = 0
(x1 − a1)

2 + (x2 − b1)
2 + (x3 − c1)

2 − (x4 − d1)
2 = 0

(x1 − a2)
2 + (x2 − b2)

2 + (x3 − c2)
2 − (x4 − d2)

2 = 0
(x1 − a3)

2 + (x2 − b3)
2 + (x3 − c3)

2 − (x4 − d3)
2 = 0

where x1, x2, x3, x4 ∈
(a0, b0, c0) = (x0, y0, z0) ∼ P 0

(a1, b1, c1) = (x1, y1, z1) ∼ P 1

(a2, b2, c2) = (x2, y2, z2) ∼ P 2

(a3, b3, c3) = (x3, y3, z3) ∼ P 3.

(9.2)

In (9.2),
{
P 0, P 1, P 2, P 3

}
are the positions of the four GPS satellites

whose signals are tracked by the receiver at an unknown station P0. The
satellites’ positions are given by the coordinates {xi, yi, zi|i = 0, 1, 2, 3},
where i indicating a particular satellite number. The measured pseudo-
ranges to these satellites from a stationary receiver at P0 are given
by {d0, d1, d2, d3}. The parameters {a0, b0, c0} , {a1, b1, c1} , {a2, b2, c2} ,
{a3, b3, c3} , {d0, d1, d2, d3} are known elements of the spherical cone
that intersect at P0 to give the unknown coordinates {x1, x2, x3} of the
receiver and the stationary receiver range bias x4. Several procedures
have been put forward to obtain exact solution of (9.2), e.g., [47, 150,
198, 199, 221, 296]. In what follows, we present alternative solutions to
(9.2) based on algebraic approaches of Groebner bases and polynomial
resultants discussed in Chaps. 4 and 5 respectively. Equation (9.2) is
expanded and arranged in the lexicographic order {x1 > x2 > x3 > x4}
as

⎡
⎢⎢⎣

x2

1 − 2a0x1 + x2

2 − 2b0x2 + x2

3 − 2c0x3 − x2

4 + 2d0x4 + a2

0 + b2

0 + c2

0 − d2

0 = 0
x2

1 − 2a1x1 + x2

2 − 2b1x2 + x2

3 − 2c1x3 − x2

4 + 2d1x4 + a2

1 + b2

1 + c2

1 − d2

1 = 0
x2

1 − 2a2x1 + x2

2 − 2b2x2 + x2

3 − 2c2x3 − x2

4 + 2d2x4 + a2

2 + b2

2 + c2

2 − d2

2 = 0
x2

1 − 2a3x1 + x2

2 − 2b3x2 + x2

3 − 2c3x3 − x2

4 + 2d3x4 + a2

3 + b2

3 + c2

3 − d2

3 = 0,
(9.3)

where the unknown variables to be determined are {x1, x2, x3, x4}.
The other terms are known constants. Equation (9.3) is written with
the linear terms on the right-hand-side and the nonlinear terms on the
left-hand-side as

⎡
⎢⎢⎣

x2

1 + x2

2 + x2

3 − x2

4 = 2a0x1 + 2b0x2 + 2c0x3 − 2d0x4 + d2

0 − a2

0 − b2

0 − c2

0

x2

1 + x2

2 + x2

3 − x2

4 = 2a1x1 + 2b1x2 + 2c1x3 − 2d1x4 + d2

1 − a2

1 − b2

1 − c2

1

x2

1 + x2

2 + x2

3 − x2

4 = 2a2x1 + 2b2x2 + 2c2x3 − 2d2x4 + d2

2 − a2

2 − b2

2 − c2

2

x2

1 + x2

2 + x2

3 − x2

4 = 2a3x1 + 2b3x2 + 2c3x3 − 2d3x4 + d2

3 − a2

3 − b2

3 − c2

3.

(9.4)
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Subtracting the last expression (9.4iv) from the first three expres-
sions (9.4i), (9.4ii), and (9.4iii) leads to⎡

⎣a03x1 + b03x2 + c03x3 + d30x4 + e03 = 0
a13x1 + b13x2 + c13x3 + d31x4 + e13 = 0
a23x1 + b23x2 + c3x3 + d32x4 + e23 = 0,

(9.5)

where⎡
⎢⎢⎢⎢⎢⎢⎣

a03 = 2(a0 − a3), b03 = 2(b0 − b3), c03 = 2(c0 − c3), d30 = 2(d3 − d0),
a13 = 2(a1 − a3), b13 = 2(b1 − b3), c13 = 2(c1 − c3), d31 = 2(d3 − d1),
a23 = 2(a2 − a3), b23 = 2(b2 − b3), c23 = 2(c2 − c3), d32 = 2(d3 − d2),
e03 = (d2

0 − a2
0 − b2

0 − c2
0) − (d2

3 − a2
3 − b2

3 − c2
3),

e13 = (d2
1 − a2

1 − b2
1 − c2

1) − (d2
3 − a2

3 − b2
3 − c2

3),
e23 = (d2

2 − a2
2 − b2

2 − c2
2) − (d2

3 − a2
3 − b2

3 − c2
3).

We note immediately that (9.5) comprises three equations which are
linear with four unknowns leading to an underdetermined system of
equations. This is circumvented by treating one variable, say x4, as a
constant thereby leading to a system of three equations in three un-
knowns. We then apply either Groebner basis or polynomial resultants
techniques to solve the linear system of equation for x1 = g(x4), x2 =
g(x4), x3 = g(x4), where g(x4) is a linear function.

Sturmfels’ Approach

The Sturmfels’ [305] approach discussed in Sect. 5.3.2 is applied to solve
(9.5). Depending on which variable one wants, (9.5) is rewritten such
that this particular variable is hidden (i.e., is treated as a constant). If
our interest is to solve x1 = g(x4) for instance, (9.5) is first homogenized
using x5 (see Definition 5.1 on p. 48) and then written by hiding x1 as⎡

⎣f1 := (a03x1 + d30x4 + e03)x5 + b03x2 + c03x3

f2 := (a13x1 + d31x4 + e13)x5 + b13x2 + c13x3

f3 := (a23x1 + d32x4 + e13)x5 + b23x2 + c23x3.
(9.6)

The Jacobian determinant of (9.6) then becomes
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Jx1
= det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1

∂x2

∂f1

∂x3

∂f1

∂x5

∂f2

∂x2

∂f2

∂x3

∂f2

∂x5

∂f3

∂x2

∂f3

∂x3

∂f3

∂x5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= det

⎡
⎣ b03 c03 (a03x1 + d30x4 + e03)

b13 c13 (a13x1 + d31x4 + e13)
b23 c23 (a23x1 + d32x4 + e23)

⎤
⎦ .

(9.7)
The determinant obtained in (9.7) gives the expression for x1 = g(x4) as

�

�

�

�

x1 = −(e03b13c23 + d32x4b03c13 + d30x4b13c23 − d30x4c13b23 −
d31x4b03c23 − e03c13b23 − e13b03c23 + e13c03b23 + e23b03c13 +
d31x4c03b23−d32x4c03b13−e23c03b13)/(a23c13b03+a13b23c03−
a13c23b03 − a23b13c03 − a03c13b23 + a03c23b13).

For x2 = g(x4), we have⎡
⎣f4 := (b03x2 + d30x4 + e03)x5 + a03x1 + c03x3

f5 := (b13x2 + d31x4 + e13)x5 + a13x1 + c13x3

f6 := (b23x2 + d32x4 + e23)x5 + a23x1 + c23x3,
(9.8)

whose Jacobian determinant is given by

Jx2
= det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f4

∂x1

∂f4

∂x3

∂f4

∂x5

∂f5

∂x1

∂f5

∂x3

∂f5

∂x5

∂f6

∂x1

∂f6

∂x3

∂f6

∂x5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= det

⎡
⎣a03 c03 (b03x2 + d30x4 + e03)

a13 c13 (b13x2 + d31x4 + e13)
a23 c23 (b23x2 + d32x4 + e23)

⎤
⎦.

(9.9)
The determinant obtained in (9.9) gives the expression for x2 = g(x4) as

�

�

�

�

x2 = −(a23c13d30x4 +a03c23d31x4 +a03c23e13−a23c03d31x4−
a03c13d32x4 − a03c13e23 + a13c03d32x4 − a13c23d30x4 −
a13c23e03 − a23c03e13 + a23c13e03 + a13c03e23)/(a23c13b03 +
a13b23c03 − a13c23b03 − a23b13c03 − a03c13b23 + a03c23b13).

Finally x3 = g(x4) leads to
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⎣f7 := (c03x3 + d30x4 + e03)x5 + a03x1 + b03x2

f8 := (c13x3 + d31x4 + e13)x5 + a13x1 + b13x2

f9 := (c23x3 + d32x4 + e23)x5 + a23x1 + b23x2,
(9.10)

whose Jacobian determinant is given by

Jx3
= det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f7

∂x1

∂f7

∂x2

∂f7

∂x5

∂f8

∂x1

∂f8

∂x2

∂f8

∂x5

∂f9

∂x1

∂f9

∂x2

∂f9

∂x5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= det

⎡
⎣a03 b03 (c03x3 + d30x4 + e03)

a13 b13 (c13x3 + d31x4 + e13)
a23 b23 (c23x3 + d32x4 + e23)

⎤
⎦.

(9.11)
The determinant obtained in (9.7) gives the expression for x3 = g(x4) as



�

�

�

x3 = −(a23b03d31x4 +a03b13d32x4 +a03b13e23−a23b13d30x4−
a03b23d31x4 − a03b23e13 + a13b23d30x4 − a13b03d32x4 −
a13b03e23 − a23b13e03 + a23b03e13 + a13b23e03)/(a23b03c13 +
a13b23c03 − a13b03c23 − a23b13c03 − a03b23c13 + a03b13c23).

On substituting the obtained expressions of x1 = g(x4), x2 = g(x4)
and x3 = g(x4) in (9.3i), we obtain a quadratic function in x4. The
structure of the quadratic equation is given in [11, Box 3-12, p. 54].

Groebner Basis Approach

Using (4.36) on p. 43, the Groebner basis of (9.5) is computed as

GroebnerBasis

⎡
⎣ {a03x1 + b03x2 + c03x3 + d30x4 + e03,

a13x1 + b13x2 + c13x3 + d31x4 + e13,
a23x1 + b23x2 + c3x3 + d32x4 + e23}, {x1, x2, x3, x4}

⎤
⎦ ,

(9.12)
leading to Solution 9.1.

Solution 9.1. [Computed Groebner basis for GPS pseudo-ranging equa-
tions.]
g1 := (−a23)b13e03 + a13b23e03 + a23b03e13 − a03b23e13 − a13b03e23 +
a03b13e23 − a23b13c03x3 + a13b23c03x3 + a23b03c13x3 − a03b23c13x3 −
a13b03c23x3 + a03b13c23x3 − a23b13d30x4 + a13b23d30x4 + a23b03d31x4 −
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a03b23d31x4 − a13b03d32x4 + a03b13d32x4.

g2 := (−a23)e13 + a13e23 − a23b13x2 + a13b23x2 − a23c13x3 + a13c23x3 −
a23d31x4 + a13d32x4.
g3 := (−a23)e03 + a03e23 − a23b03x2 + a03b23x2 − a23c03x3 + a03c23x3 −
a23d30x4 + a03d32x4.
g4 := (−a13)e03 + a03e13 − a13b03x2 + a03b13x2 − a13c03x3 + a03c13x3 −
a13d30x4 + a03d31x4.
g5 := e23 + a23x1 + b23x2 + c23x3 + d32x4.
g6 := e13 + a13x1 + b13x2 + c13x3 + d31x4.
g7 := e03 + a03x1 + b03x2 + c03x3 + d30x4.

From Solution 9.1, one notes that g1 is a polynomial in the variables
x3 and x4. With g1 expressed as x3 = g(x4), it is substituted in g2

to obtain x2 = g(x4), which together with x3 = g(x4) are substituted
in g5 to give x1 = g(x4). On substituting the obtained expressions of
x1 = g(x4), x2 = g(x4) and x3 = g(x4) in (9.3i), a quadratic equation
in x4 (i.e., h2x

2
4 + h1x4 + h0 = 0) is obtained. The coefficients are

as given in [11, Box 3-14, p. 55]. The desired variables x1 = g(x4),
x2 = g(x4) and x3 = g(x4) could also be obtained directly using the
reduced Groebner basis (4.38) on p. 44. If one desired x3 = g(x4) for
example, (9.12) could be formulated as

GroebnerBasis

⎡
⎢⎢⎣

{a03x1 + b03x2 + c03x3 + d30x4 + e03,
a13x1 + b13x2 + c13x3 + d31x4 + e13,

a23x1 + b23x2 + c3x3 + d32x4 + e23}, {x1, x2, x3, x4},
{x1, x2, x4}

⎤
⎥⎥⎦ ,

(9.13)
giving only the value of g1 in Solution 9.1. This is repeated for x1 =
g(x4) and x2 = g(x4). The algorithms for solving the unknown value x4

of the receiver range bias from the quadratic equation {h2x
2
4 + h1x4 +

h0 = 0} and the respective stationary receiver coordinates are;

• Awange-Grafarend Groebner basis algorithm and,
• Awange-Grafarend Multipolynomial resultants algorithm.

They can be accessed in the GPS toolbox2 and are discussed in detail
in [21]. The distinction between the polynomial resultants method and
the approach proposed by [150] is that the former does not have to

2http://www.ngs.noaa.gov/gps-toolbox/awange.htm
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invert the coefficient matrix. It instead uses the necessary and sufficient
conditions requiring the determinant to vanish if the four equations
have a nontrivial solution. With the coefficients h1, h2 and h3, the value
of x4 could also be solved from (3.8) or (3.9) on p. 25. Let us consider
the example in [150, 198].

Example 9.1 (Ranging to four satellites). From the coordinates of four
GPS satellites given in Table 9.1, we apply the Awange-Grafarend algo-
rithms listed above to compute coordinates of a stationary GPS receiver
and the receiver range bias term. The computed coefficients using either

Table 9.1. Geocentric coordinates of four GPS satellites and the pseudo-range
observations

i xi = ai yi = bi zi = ci di

0 1.483230866e+7 -2.046671589e+7 -7.42863475e+6 2.4310764064e+7
1 -1.579985405e+7 -1.330112917e+7 1.713383824e+7 2.2914600784e+7
2 1.98481891e+6 -1.186767296e+7 2.371692013e+7 2.0628809405e+7
3 -1.248027319e+7 -2.338256053e+7 3.27847268e+6 2.3422377972e+7

of the algorithms are:⎡
⎣h2 = −9.104704113943708e − 1

h1 = 5.233385578536521e7
h0 = −5.233405293375e9.

Once these coefficients have been computed, the algorithms proceed to
solve the roots x4 of the quadratic equation {h2x

2
4 + h1x4 + h0 = 0}

giving the stationary receiver range bias term. The admissible value
of the stationary receiver range bias term is then substituted in the
expressions x1 = g(x4), x2 = g(x4), x3 = g(x4) in Solution 9.1 to give
the values of stationary receiver coordinates {x1 = X, x2 = Y, x3 = Z}
respectively. With x−

4 =-57479918.164 m or x+
4 =-100.0006 m, the com-

plete pair of solutions with units in meters are�
�

�
�

X = −2892123.412, Y = 7568784.349, Z = −7209505.102
∣∣x−

4

or X = 1111590.460, Y = −4348258.631, Z = 4527351.820
∣∣x+

4

The results indicate that the solution space is non unique. In-order to
decide on the admissible solution from the pair above, we compute the
norm (radial distance from the center of the Earth) of the positional
vector {X, Y, Z} ∣∣x−

4 and {X, Y, Z} ∣∣x+
4 using
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norm =
√

(X2 + Y 2 + Z2).

If the receiver coordinates are in the global reference frame (see Sect.
7.2), the norm of the positional vector of the receiver station will ap-
proximate the value of the Earth’s radius. The norm of the other solu-
tion pair will be in space. The computed norms are[{X, Y, Z} ∣∣x−

4 = 10845636.826 m
{X, Y, Z} ∣∣x+

4 = 6374943.214 m,

thus clearly giving the second solution {X, Y, Z} ∣∣x+
4 as the admissible

solution of the receiver position.

9.2.2 Ranging to more than Four GPS Satellites

In Sect. 9.2.1, we have looked at the case where ranging can be per-
formed to only four satellites (minimum case). In this section, we will
extend the concept to the case where more than four GPS satellites are
in view as is usually the case in practice. Using Gauss-Jacobi combina-
torial approach, it is demonstrated how one can obtain the stationary
receiver position and range bias without reverting to iterative and lin-
earization procedures such as Newton’s or least squares approach.

The common features with the non-algebraic approaches in solving
nonlinear problems are that they all have to do with some starting
values, linearization of the observation equations and iterations as we
have pointed out before. Although the issue of approximate starting
values has been addressed in the works of [345, 346], the algebraic ap-
proach of Gauss-Jacobi combinatorial enjoys the advantage that all the
requirements of non-algebraic approaches listed above are immaterial.
The nonlinear problem is solved in an exact form with linearization
permitted only during the formation of the variance-covariance matrix
to generate the weight matrix of the pseudo-observations (see also [22]).
The fact to note is that one has to be able to solve in a closed (exact)
form nonlinear systems of equations, a condition already presented in
Sect. 9.2.

Let us consider next the example of [302]. The algorithm is used
to solve without linearization or iteration the overdetermined pseudo-
range problem. The results are then compared to those of linearized
least squares solutions.

Example 9.2 (Ranging to more than four satellites). Pseudo-ranges di

are measured to six satellites whose coordinates {xi, yi, zi} are given
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in Table 9.2. From the data in Table 9.2 and using (6.26) on p. 69,
15 possible combinations listed in Table 9.3 are obtained. The Posi-
tion Dilution of Precision (PDOP) are computed as suggested in [186]
and presented in Table 9.3. From the computed PDOP, it is noticed
that the 10th combination had a poor geometry, a fact validated by
the plot of the PDOP values versus the combination numbers in Fig.
9.4. Using Gauss-Jacobi combinatorial algorithm, this weaker geome-
try is accounted for during the adjustment process. Variance-covariance
matrix computed through nonlinear error propagation for that respec-
tive set is used. Groebner basis or polynomial resultants are used as
computing engine (see Fig. 6.4 on p. 75) to compute the minimal com-
binatorial set as discussed in Sect. 6.5. The computed coefficients are
presented in Table 9.4.

From the computed coefficients in Table 9.4, the 10th combination
is once again identified as having significantly different values from the
rest. This fact highlights the power of the Gauss-Jacobi combinatorial
algorithm in identifying poor geometry. Using the coefficients of Ta-
ble 9.4, the solution of receiver position {X, Y, Z} and the range bias
{cdt} for each minimal combinatorial set is carried out as discussed in
Sect. 9.2. The results are presented in Table 9.5. The final adjusted
position is obtained using linear Gauss-Markov model (6.10) on p. 62.
The random pseudo-observation values of Table 9.5 are placed in the
vector of observation y and the dispersion matrix Σ obtained by non-
linear error propagation using (6.31) on p. 71. The coefficients of the
unknowns {X, Y, Z, cdt} form the design matrix A. The dispersion of
the estimated parameters are then obtained from (6.11).

Figure 9.8 gives the plot of the scatter of the 15 combinatorial solu-
tions (shown by points) around the adjusted value (indicated by a star).
Figure 9.9 is a magnification of Fig. 9.8 for the scatter of 14 solutions
(shown by points) that are very close to the adjusted value (indicated
by a star). The outlying point in Fig. 9.8 is ignored.
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Table 9.2. Geocentric coordinates of six GPS satellites and pseudo-range observa-
tions
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Fig. 9.4. A plot of PDOP for respective combinations

PRN xi = ai yi = bi zi = ci di

23 14177553.47 -18814768.09 12243866.38 21119278.32
9 15097199.81 -4636088.67 21326706.55 22527064.18
5 23460342.33 -9433518.58 8174941.25 23674159.88
1 -8206488.95 -18217989.14 17605231.99 20951647.38
21 1399988.07 -17563734.90 19705591.18 20155401.42
17 6995655.48 -23537808.26 -9927906.48 24222110.91

Table 9.3. Possible combinations and the computed PDOP

Combination Number Combination Computed PDOP

1 23-9-5-1 4.8
2 23-9-5-21 8.6
3 23-9-5-17 4.0
4 23-9-1-21 6.5
5 23-9-1-17 3.3
6 23-9-21-17 3.6
7 23-5-1-21 6.6
8 23-5-1-17 6.6
9 23-5-21-17 4.8
10 23-1-21-17 137.8
11 9-5-1-21 5.6
12 9-5-1-17 14.0
13 9-5-21-17 6.6
14 9-1-21-17 5.2
15 5-1-21-17 6.6
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Table 9.4. Computed coefficients of the combinations

C/No. c2 c1 c0

1 -0.914220949236445 52374122.9848733 49022682.3125
2 -0.934176403102736 50396827.4998945 7915541824.84375
3 -0.921130625833683 51741826.0147786 343282824.25
4 -0.865060899130107 54950460.2842167 -10201105114.5
5 -0.922335616484969 51877166.0451888 280298481.625
6 -0.919296962706157 51562232.9601199 1354267366.4375
7 -0.894980063579044 53302005.6927825 -3642644147.5625
8 -0.917233949644576 52194946.1124139 132408747.46875
9 -0.925853049262193 51140847.6331213 3726719112.1875
10 3369.83293928593 -1792713339.80277 6251615074927.06
11 -0.877892756651551 54023883.5656926 -6514735288.13762
12 -0.942581538318523 50793361.5303674 784684294.241371
13 -0.908215141659006 52246642.0794924 -2499054749.05572
14 -0.883364070549387 53566554.3869961 -5481411035.37882
15 -0.866750765656126 54380648.2092251 -7320871488.80859

Table 9.5. Computed combinatorial solution points in a polyhedron

C/No. X(m) Y (m) Z(m) cdt(m)

1 596925.3485 -4847817.3618 4088206.7822 -0.9360
2 596790.3124 -4847765.7637 4088115.7092 -157.0638
3 596920.4198 -4847815.4785 4088203.4581 -6.6345
4 596972.8261 -4847933.4365 4088412.0909 185.6424
5 596924.2118 -4847814.5827 4088201.8667 -5.4031
6 596859.9715 -4847829.7585 4088228.8277 -26.2647
7 596973.5779 -4847762.4719 4088399.8670 68.3398
8 596924.2341 -4847818.6302 4088202.3205 -2.5368
9 596858.7650 -4847764.5341 4088221.8468 -72.8716
10 596951.5275 -4852779.5675 4088758.6420 3510.4002
11 597004.7562 -4847965.2225 4088300.6135 120.5901
12 596915.8657 -4847799.7045 4088195.5770 -15.4486
13 596948.5619 -4847912.9549 4088252.1599 47.8319
14 597013.7194 -4847974.1452 4088269.3206 102.3292
15 597013.1300 -4848019.6766 4088273.9565 134.6230

9.2.3 Least Squares versus Gauss-Jacobi Combinatorial

Let us now compare the least squares solution and the Gauss-Jacobi
combinatorial approach. Using the combinatorial approach, the sta-
tionary receiver position and range bias are computed as discussed in
Sect. 9.2.2. For the least squares approach, the nonlinear observation
equations (9.2) are first linearized using Taylor series expansion for the
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6 satellites in Table 9.2. This linearization process generates the Jacobi
matrix required by the approach. After linearization, the desired values
are estimated iteratively using linear models. As approximate starting
values for the iterations, let us assign the stationary receiver position
and the stationary receiver range bias zero values. Let us also set a
convergence limit of 1 × 10−8, as the difference between values of two
successive iterations. With these settings, 6 iterations are required for
the threshold condition above to be achieved. In the second case, the
values of the combinatorial algorithm are used as approximate starting
values for least squares solution. This time round, only two iterations
were required to achieve convergence. For users who prefer least squares
approach, Gauss-Jacobi combinatorial algorithm can therefore be used
to offer quick approximate starting values that lead to faster conver-
gence.

From (9.2) on p. 110, and the results of both procedures, residuals
are computed, squared and used to compute the error norm from

norm =

√√√√{ 6∑
i=1

(
di − [

√
(X̂ − ai)2 + (Ŷ − bi)2 + (Ẑ − ci)2 − x̂4]

)2
}

.

(9.14)
In (9.14), {X̂, Ŷ , Ẑ, x̂4} are the computed values of the stationary re-
ceiver position and range bias. The entities {ai, bi, ci} | ∀i = {1, . . ., 6}
are the coordinates of the six satellites in Table 9.2 and {di} | ∀i =
{1, . . ., 6} the measured pseudo-ranges.

Table 9.6 compares the results from the Gauss-Jacobi combinato-
rial algorithm and those obtained from least squares approach. Table
9.7 presents the root-mean-square-errors. In Table 9.8, we present the
computed residuals, their sum of squares and the computed error norm
from (9.14). The computed error norm are identical for both proce-
dures. Further comparison of the two procedures will be given in Chap.
15 where they are used to compute the 7-parameter datum transfor-
mation problem.

Table 9.6. Computed stationary receiver position and range bias

X (m) Y (m) Z (m) cdt(m)

Combinatorial approach 596929.6542 -4847851.5021 4088226.7858 -15.5098

Least squares 596929.6535 -4847851.5526 4088226.7957 -15.5181

Difference 0.0007 0.0505 -0.0098 0.0083
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Table 9.7. Computed root-mean-square errors

σX (m) σY (m) σZ (m) σcdt (m)

Combinatorial Approach 6.4968 11.0141 5.4789 8.8071

Least Squares 34.3769 58.2787 28.9909 46.6018

Table 9.8. Computed residuals, squares of residuals and error norm

PRN Combinatorial approach (m) Least squares (m)

23 -16.6260 -16.6545
9 -1.3122 -1.3106
5 2.2215 2.2189
1 -16.4369 -16.4675
21 26.8623 26.8311
17 5.4074 5.3825

Sum of squares 1304.0713 1304.0680
Error norm 36.1119 36.1119

9.3 Ranging by Local Positioning Systems (LPS)

As opposed to GPS ranging where the targets being observed are satel-
lites in space and in motion, Local Positioning Systems’ targets are
fixed on the surface of the Earth as illustrated in Fig. 9.1 on p. 107.
We present both planar and three-dimensional ranging within the LPS
system. Planar ranging can be used for quick point search during en-
gineering and cadastral surveying.

9.3.1 Planar Ranging

Conventional Approach

Consider two distances {S1, S2} measured from an unknown station
P0 ∈ E2 to two known stations P1 ∈ E2 and P2 ∈ E2 as shown in
Fig. 9.7. The two dimensional distance ranging problem involves the
determination of the planar coordinates {X0, Y0}p0

of the unknown
station P0 ∈ E2 given;

• the observed distances {S1, S2},
• the planar coordinates {X1, Y1}P1

of station P1 ∈ E2 and {X2, Y2}P2

of stations P2 ∈ E2.

The nonlinear distance equations relating the given values above with
the coordinates of unknown station are expressed (see e.g., (4.1) and
(4.2) on p. 30) as
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(X1 − X0)

2 + (Y1 − Y0)
2 = S2

1

(X2 − X0)
2 + (Y2 − Y0)

2 = S2
2 ,

(9.15)

which on expanding leads to⎡
⎣ X2

1 + Y 2
1 − 2X1X0 − 2Y1Y0 + X2

0 + Y 2
0 = S2

1

X2
2 + Y 2

2 − 2X2X0 − 2Y2Y0 + X2
0 + Y 2

0 = S2
2 .

(9.16)

The conventional analytic approach solves (9.16) by subtracting the
first expression, i.e., (9.16i) from the second one, and expressing one
unknown in terms of the other. This leads to

Y0 = −
{

X1 − X2

Y1 − Y2

}
X0 +

S2
2 − S2

1 + X2
1 − X2

2 + Y 2
1 − Y 2

2

2(Y1 − Y2)
, (9.17)

which is substituted for Y0 in the first expression of (9.16) to give

⎡
⎢⎢⎢⎢⎣

X2

1 + Y 2

1 − 2X1X0 − 2Y1

{
−

{
X1 − X2

Y1 − Y2

}
X0 +

S2

2 − S2

1 + X2

1 − X2

2 + Y 2

1 − Y 2

2

2(Y1 − Y2)

}

+X2

0 +

{
−

{
X1 − X2

Y1 − Y2

}
X0 +

S2

2 − S2

1 + X2

1 − X2

2 + Y 2

1 − Y 2

2

2(Y1 − Y2)

}2

− S2

1 = 0.

(9.18)
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On expanding and factorizing (9.18) leads to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 + a2)X2
0 + (2ab − 2X1 − 2Y1a)X0 + b2 − 2Y1b + X2

1 + Y 2
1 − S2

1 = 0,

with

a = −
{

X1 − X2

Y1 − Y2

}

and

b =
S2

2 − S2
1 + X2

1 − X2
2 + Y 2

1 − Y 2
2

2(Y1 − Y2)
.

(9.19)
The quadratic equation (9.19) is solved for X0 using the quadratic
formulae (3.8) or (3.9) on p. 25 and substituted back in (9.17) to give
the values of Y0.

Sylvester Resultants Approach

Whereas the conventional analytical approach presented above involves
differencing, e.g., (9.17), and substitution as in (9.18), the Sylvester
resultants technique discussed in Sect. 5.2 solves (9.16) directly. In-
order to achieve this, (9.16) is first expressed in algebraic form as

⎡
⎣ g1 := X2

1 + Y 2
1 − 2X1X0 − 2Y1Y0 + X2

0 + Y 2
0 − S2

1 = 0

g2 := X2
2 + Y 2

2 − 2X2X0 − 2Y2Y0 + X2
0 + Y 2

0 − S2
2 = 0.

(9.20)

Next, the hide variable technique is applied. By hiding the variable Y0

(i.e., considering it as a constant), the coefficient matrix of the variable
X0 is formed as shown in Example 5.2 on p. 49. In (9.20), we note that
the polynomials g1 and g2 are both of degree 2 and thus both i and j
(e.g., (5.1) on p. 48) are equal to 2 resulting into a (4× 4) matrix. The
coefficient matrix of the variable X0 formed by hiding the variable Y0

(i.e., considering the coefficients of X0 to be polynomials in Y0 ) is
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AX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2X1 (Y 2

0 − 2Y1Y0 + X2

1 + Y 2

1 − S2

1) 0

0 1 −2X1 (Y 2

0 − 2Y1Y0 + X2

1 + Y 2

1 − S2

1)

1 −2X2 (Y 2

0 − 2Y2Y0 + X2

2 + Y 2

2 − S2

2) 0

0 1 −2X2 (Y 2

0 − 2Y2Y0 + X2

2 + Y 2

2 − S2

2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(9.21)

while that of the variable Y0 formed by hiding X0 (i.e., considering
the coefficients of Y0 to be polynomials in X0 ) is

AY =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2Y1 (X2

0 − 2X1X0 + X2

1 + Y 2

1 − S2

1) 0

0 1 −2Y1 (X2

0 − 2X1X0 + X2

1 + Y 2

1 − S2

1)

1 −2Y2 (X2

0 − 2X2X0 + X2

2 + Y 2

2 − S2

2) 0

0 1 −2Y2 (X2

0 − 2X2X0 + X2

2 + Y 2

2 − S2

2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(9.22)

Sylvester resultants are now obtained from the determinants of the
coefficient matrices (9.21) and (9.22) respectively as⎡

⎣Res(g1, g2, X0) = det(AX)

Res(g1, g2, Y0) = det(AY ),
(9.23)

where Res(g1, g2, X0) and Res(g1, g2, Y0) are the Sylvester resultants of
algebraic equations in (9.20), with respect to the variables X0 and Y0 as
in (9.21) and (9.22) respectively. From (9.23) we obtain two quadratic
equations (9.24) for solving the variables X0 and Y0 which are the
planar coordinates of the unknown station P0. The coefficients of the
quadratic equations are given in Solution 9.2.

Solution 9.2 (Sylvester resultants solution of planar coordi-
nates {X0, Y0}). �

�

�

�
a2Y

2
0 + a1Y0 + a0 = 0

b2X
2
0 + b1X0 + b0 = 0

(9.24)

with the coefficients:
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a2 = (4Y 2
2 + 4X2

1 − 8Y1Y2 + 4X2
2 + 4Y 2

1 − 8X2X1).

a1 = (−4X2
2Y1 − 4S2

1Y2 − 4X2
1Y2 + 8X1X2Y1 + 4Y1S

2
1 + 4Y1Y

2
2 +

8X2X1Y2 − 4Y 3
2 + 4Y 2

1 Y2 − 4Y2X
2
2 − 4Y1S

2
2 − 4Y 3

1 − 4Y1X
2
1 + 4Y2S

2
2).

a0 = (X4
2 +Y 4

2 +S4
2−4X2X1Y

2
2 +4X2X1S

2
2−4X1X2Y

2
1 +4X1X2S

2
1 +

2X2
2Y 2

2 −2X2
2S2

2−2Y 2
2 S2

2−4X1X
3
2+6X2

2X2
1+2X2

2Y 2
1 −2X2

2S2
1+2X2

1Y 2
2 −

2X2
1S2

2−2Y 2
1 Y 2

2 +2Y 2
1 S2

2 +2S2
1Y 2

2 −2S2
1S2

2−4X2X
3
1 +2X2

1Y 2
1 −2X2

1S2
1−

2Y 2
1 S2

1 + X4
1 + Y 4

1 + S4
1).

b2 = (−8Y1Y2 + 4X2
1 + 4Y 2

2 − 8X2X1 + 4X2
2 + 4Y 2

1 ).

b1 = (−4X3
1+4X2S

2
2+8Y2Y1X2−4X2Y

2
2 −4X1Y

2
2 −4X1S

2
2+4X1X

2
2−

4X2S
2
1 + 8Y1Y2X1 − 4X2Y

2
1 + 4X2X

2
1 − 4X1Y

2
1 + 4X1S

2
1 − 4X3

2 ).

b0 = (4Y2Y1S
2
2 −4Y2X

2
2Y1−2Y 2

1 S2
1 +X4

2 +Y 4
2 +S4

2 +X4
1 +Y 4

1 +S4
1 −

4Y1Y
3
2 + 4Y1S

2
1Y2 − 4Y1X

2
1Y2 + 2X2

2Y 2
2 − 2X2

2S2
2 − 2Y 2

2 S2
2 − 2X2

2X2
1 +

2X2
2Y 2

1 +2X2
2S2

1 +2X2
1Y 2

2 +2X2
1S2

2 +6Y 2
1 Y 2

2 −2Y 2
1 S2

2−2S2
1Y 2

2 −2S2
1S2

2 +
2X2

1Y 2
1 − 2X2

1S2
1 − 4Y 3

1 Y2).

Reduced Groebner Basis Approach

Reduced Groebner basis (4.38) on p. 44 solves (9.20) directly through[
GroebnerBasis[{g1, g2}, {X0, Y0}, {X0}]
GroebnerBasis[{g1, g2}, {X0, Y0}, {Y0}]. (9.25)

The first expression of (9.25) ensures that one gets a quadratic equation
only in Y0 with X0 eliminated, while the second expression ensures a
quadratic equation only in X0 with Y0 eliminated. Solution 9.3 presents
the results of (9.25).

Solution 9.3 (Reduced Groebner basis solution of planar co-
ordinates {X0, Y0}). �

�

�

�
e2Y

2
0 + e1Y0 + e0 = 0

f2X
2
0 + f1X0 + f0 = 0

(9.26)

with the coefficients: e2 = (4X2
1 − 8X1X2 − 8Y1Y2 +4X2

2 +4Y 2
2 +4Y 2

1 ).
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e1 = (−4X2
1Y1 +4S2

1Y1 − 4Y 3
1 − 4X2

2Y2 − 4X2
1Y2 +4Y 2

1 Y2 +4Y1Y
2
2 −

4Y 3
2 + 4S2

2Y2 − 4S2
2Y1 − 4S2

1Y2 − 4X2
2Y1 + 8X1X2Y1 + 8X1X2Y2).

e0 = (S4
2 + 2X2

1Y 2
2 + 4S2

1X1X2 + 4S2
2X1X2 − 2S2

2X2
2 − 2Y 2

1 Y 2
2 +

S4
1 − 2S2

1X2
1 + X4

2 + 2S2
1Y 2

2 − 2S2
1S2

2 + X4
1 + Y 4

1 + 2X2
2Y 2

1 − 4X1X2Y
2
2 +

6X2
1X2

2−2S2
2X2

1−2S2
2Y 2

2 +2X2
1Y 2

1 −2S2
1X2

2 +2S2
2Y 2

1 −2S2
1Y 2

1 +2X2
2Y 2

2 −
4X1X

3
2 − 4X1X2Y

2
1 + Y 4

2 − 4X3
1X2).

f2 = (4X2
1 − 8X1X2 − 8Y1Y2 + 4X2

2 + 4Y 2
2 + 4Y 2

1 ).

f1 = (−4X2Y
2
1 − 4X1Y

2
1 + 4X2

1X2 − 4S2
2X1 − 4X2Y

2
2 − 4X3

1 +
8X1Y1Y2+4S2

1X1+8X2Y1Y2+4X1X
2
2−4X3

2−4X1Y
2
2 +4S2

2X2−4S2
1X2).

f0 = (S4
2 + 2X2

1Y 2
2 − 4X2

2Y1Y2 − 2S2
2X2

2 + 6Y 2
1 Y 2

2 + 4S2
1Y1Y2 + S4

1 −
4X2

1Y1Y2 − 2S2
1X2

1 + ...X4
2 − 2S2

1Y 2
2 − 2S2

1S2
2 + 4S2

2Y1Y2 + X4
1 + Y 4

1 +
2X2

2Y 2
1 −2X2

1X2
2 +2S2

2X2
1−4Y 3

1 Y2−2S2
2Y 2

2 +2X2
1Y 2

1 +2S2
1X2

2−2S2
2Y 2

1 −
2S2

1Y 2
1 + 2X2

2Y 2
2 − 4Y1Y

3
2 + Y 4

2 ).

With the given values of known stations and measured distances as
listed on p. 122, all that is required of the practitioner, therefore, is
to compute the coefficients {a2, a1, a0, b2, b1, b0} using the Sylvester re-
sultants Solution 9.2 or {e2, e1, e0, f2, f1, f0} using the reduced Groeb-
ner basis Solution 9.3. Once the coefficients have been computed, the
Matlab’s roots command is applied to solve the univariate polynomials
(9.26) or (9.26) for the position of the unknown station. The admissible
position from the computed pair of solution is chosen with the help of
prior information e.g., from existing maps.

Example 9.3 (Ranging to two known planar stations). Consider the Ex-
ample of [195, p. 240] where two distances {S1 = 294.330m, S2 =
506.420 m} have been measured from an unknown station P0 ∈ E2 to
two known stations P1 ∈ E2 and P2 ∈ E2 (e.g., Fig. 9.7). The Cartesian
planar coordinates of the two known stations P1 and P2 are given as
{X1 = 328.760 m, Y1 = 1207.850 m}P1

and {X2 = 925.040 m, Y2 =
954.330 m}P2

respectively. The planar ranging problem now involves
determining the planar coordinates {X0, Y0}p0

of the unknown station
P0 ∈ E2. Using the given values of known stations and measured dis-
tances in either Solution 9.2 or 9.3, the coefficients {a2, a1, a0, b2, b1, b0}
of the quadratic equation (9.24) or {e2, e1, e0, f2, f1, f0} of (9.26) are
computed. Using these coefficients and applying Matlab’s roots com-
mand (see e.g., (4.40) in Example 4.11 on p. 44) leads to
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X0 = {1336.940, 927.797}m
Y0 = {593.271, 419.316}m

In a four step procedure, [195, p. 240] obtained the values {X0(m) =
927.90} and {Y0(m) = 419.42}. The algebraic approaches are however
direct and fast (i.e., avoids forward and backwards substitutions).

Geometrically, the algebraic curves given by (9.15) would result in a
conic intersection of two circles with the centers {X1, Y1} and {X2, Y2}
and radiuses S1 and S2 respectively. The applied polynomial approaches
decompose these complicated geometries to those of Figs. 9.8 and 9.9
which represent univariate polynomials and are simpler to solve. Figs.
9.8 and 9.9 indicate the solutions of (9.26) for the Example presented
above. The intersection of the quadratic curves with the zero line are
the solution points. In Solution 9.4, we present the critical configuration
of the planar ranging problem. The computed determinants, (9.32) and
(9.33) indicate the critical configuration (where solution ceases to exist)
to be cases when points P0(X, Y ), P1(X1, Y1) and P2(X2, Y2) all lie on

a straight line with gradient −c

b
and intercept −a

b
.

900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400
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-2
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10 Solution of Y from Quadratic Equation e
2
Y2+e

1
Y+e

0
=0

Y(m)

f(
Y

)

Fig. 9.8. Solution of the Y coordinates
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2
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1
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X(m)

f(
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)

Fig. 9.9. Solution of the X coordinates

Solution 9.4 (Critical configuration of the planar ranging prob-
lem).[

f1(X, Y ; X1, Y1, S1) = (X1 − X)2 + (Y1 − Y )2 − S2
1

f2(X, Y ; X2, Y2, S2) = (X2 − X)2 + (Y2 − Y )2 − S2
2

(9.27)

⎡
⎢⎢⎢⎣

∂f1

∂X
= −2(X1 − X),

∂f2

∂X
= −2(X2 − X)

∂f1

∂Y
= −2(Y1 − Y ),

∂f2

∂Y
= −2(Y2 − Y ),

(9.28)

⎡
⎢⎢⎢⎢⎣

D =

∣∣∣∣ ∂fi

∂Xj

∣∣∣∣ = 4

∣∣∣∣X1 − X X2 − X
Y1 − Y Y2 − Y

∣∣∣∣
D ⇔

∣∣∣∣X1 − X X2 − X
Y1 − Y Y2 − Y

∣∣∣∣ =

∣∣∣∣∣∣
X Y 1
X1 Y1 1
X2 Y2 1

∣∣∣∣∣∣ = 0,
(9.29)

⎡
⎣ 1

4D = (X1 − X)(Y2 − Y ) − (X2 − X)(Y1 − Y )
= X1Y2 − X1Y − XY2 + XY − X2Y1 + X2Y + XY1 − XY

= X(Y1 − Y2) + Y (X2 − X1) + X1Y2 − X2Y1,
(9.30)

thus
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∣∣∣∣∣∣
X Y 1
X1 Y1 1
X2 Y2 1

∣∣∣∣∣∣ = 2 × Area of triangle P (X, Y ), P1(X1, Y1), andP2(X2, Y2)

(9.31)

D =

∣∣∣∣∣∣
X Y 1
X1 Y1 1
X2 Y2 1

∣∣∣∣∣∣
⎡
⎣a

b
c

⎤
⎦ = 0, (9.32)

results in a system of homogeneous equations

⎡
⎣aX + bY + c = 0

aX1 + bY1 + c = 0
aX2 + bY2 + c = 0.

(9.33)

Planar Ranging to more than Two Known Stations

In-order to solve the overdetermined two-dimensional ranging problem,
the combinatorial algorithm is applied. In the first step, combinatorials
are formed using (6.26) on p. 69 and solved in a closed form using
either (9.24) or (9.26). In the second step, the dispersion matrix Σ
is obtained from (6.31) on p. 71. Finally the pseudo-observations are
adjusted using linear Gauss-Markov model (see e.g., Definition 6.1 on p.
61) in the third step, with the unknown parameters estimated via Best
Linear Uniformly Unbiased Estimator BLUUE (6.10). The dispersion
of the estimated parameters are then obtained using (6.11) on p. 62.

Example 9.4 (Planar ranging to more than two known stations). Let us
consider the example of [195, pp. 240–241] which is also solved in [29].
In this example, the coordinates of station N are to be determined from
distance observations to four stations P1, P2, P3 and P4 [195, Fig. 6.4.4,
p. 229]. In preparation for adjustment, the distances are corrected and
reduced geometrically to Gauss-Krueger projection and are as given in
Table 9.9. Using Gauss-Jacobi combinatorial algorithm, the coordinates
of station N are computed and compared to those of least squares
in [195, p. 242]. From (6.26), six combinations in the minimal sense are
formed and solved for {x, y}N for position of station N using either
(9.24) or (9.26). The combinatorial solutions are presented in Table
9.10.

The adjusted position of the unknown station N is now obtained
either by;
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Table 9.9. Distance observations to unknown station N

Pt. Easting Northing si

No. x[m] y[m] [m]

1 48177.62 6531.28 611.023
2 49600.15 7185.19 1529.482
3 49830.93 5670.69 1323.884
4 47863.91 5077.24 1206.524

Table 9.10. Position of station N computed for various combinatorials

Combinatorial combinatorial x y
No. points [m] [m]

1 1-2 48565.2783 6058.9770
2 1-3 48565.2636 6058.9649
3 1-4 48565.2701 6058.9702
4 2-3 48565.2697 6058.9849
5 2-4 48565.3402 6058.9201
6 2-5 48565.2661 6058.9731

(a) simply taking the arithmetic mean of the combinatorial solutions
in columns 3 and 4 of Table 9.10 (an approach which does not take
into account full information in terms of the variance-covariance
matrix) or,

(b) using special linear Gauss-Markov model through the estimation
by the Best Linear Uniformly Unbiased Estimator BLUUE in
(6.10). The dispersion of the estimated parameters are subsequently
obtained using (6.11).

The results are presented in Table 9.11 and plotted in Fig. 9.10. In
Table 9.11, we present the coordinates {x, y} of station N obtained
using the least squares approach in [195], Gauss-Jacobi combinatorial
(BLUUE) and the Gauss-Jacobi combinatorial (arithmetic mean) in
columns 2 and 3, with their respective standard deviations {σx, σy} in
columns 4 and 5. In columns 6 and 7, the deviations {∆x, ∆y} of the
computed coordinates of station N using Gauss-Jacobi combinatorial
from the least squares’ values of [195] are presented. The deviations
of the exact solutions of each combination (columns 3 and 4 of Table
9.10) from the adjusted values of Best Linear Uniformly Unbiased
Estimator BLUUE (i.e., second and third columns of Table 9.11) are
plotted in Fig. 9.11.
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Table 9.11. Position of station N after adjustments
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Fig. 9.10. Plot of the position of N from various approaches

From the results in Table 9.11 and Fig. 9.10, we note that when full
information of the observations is taken into account via the nonlin-
ear error/variance-covariance propagation, the results of Gauss-Jacobi
combinatorial algorithm and least squares from [195] are in the same
range. In addition to giving the adjusted position, Gauss-Jacobi al-
gorithm can accurately pinpoint a poor combinatorial geometry (e.g.,
combination 5). This is taken care of through weighting. Fig. 9.10 shows
the combinatorial scatter denoted by {◦} and the Gauss-Jacobi combi-
natorial adjusted value by {∗}. Least squares estimation from [195] is
denoted by {•} and the arithmetic mean by {+}. One notes that the
estimates from Gauss-Jacobi’s BLUUE {∗} and least squares solution
almost coincide. In the Figure, both estimates are enclosed by {�} for
clarity purpose. Figure 9.11 indicates the deviations of the combina-
torial scatter from the BLUUE adjusted position of N . These results

Approach x(m) y(m) σx(m) σy(m) ∆x(m) ∆y(m)

Least Squares 48565.2700 6058.9750 0.006 0.006 - -
Gauss-Jacobi (BLUUE) 48565.2709 6058.9750 0.0032 0.0034 -0.0009 0.0000
Gauss-Jacobi (Mean) 48565.2813 6058.9650 - - -0.01133 0.0100
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Fig. 9.11. Deviations of the combinatorial scatter from the BLUUE adjusted posi-
tion of N

indicate the capability of the Gauss-Jacobi combinatorial algorithm to
solve in a closed form the overdetermined planar ranging problems.

9.3.2 Three-dimensional Ranging

Closed Form Three-dimensional Ranging

Three-dimensional ranging problem differs from the planar ranging
in terms of the number of unknowns to be determined. In the pla-
nar case, the interest is to obtain from the measured distances the
two-dimensional coordinates {x0, y0} of the unknown station P . For
the three-dimensional ranging, the coordinates {X, Y, Z} have to be
derived from the measured distances. Since three coordinates are in-
volved, distances must be measured to at least three known stations
for the solution to be determined. If the stations observed are more
than three, the case is an overdetermined one. The main task involved
is the determination of the unknown position of a station given dis-
tance measurements from unknown station P ∈ E3, to three known
stations Pi ∈ E3 | i = 1, 2, 3. In general, the three-dimensional closed
form ranging problem can be formulated as follows: Given distance
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measurements from an unknown station P ∈ E3 to a minimum of three
known stations Pi ∈ E3 | i = 1, 2, 3, determine the position {X, Y, Z}
of the unknown station P ∈ E3 (see e.g., Fig. 9.12).

P2

P3

S3

P

S2

S31

ψ12
ψ23

P1

S1

S12
S23

Fig. 9.12. Tetrahedron: three-dimensional distance and space angle observations

From the three nonlinear Pythagoras distance observation equations
(9.34) in Solution 9.5, two equations with three unknowns are derived.
Equation (9.34) is expanded in the form given by (9.35) and differenced
to give (9.36) with the quadratic terms

{
X2, Y 2, Z2

}
eliminated. Col-

lecting all the known terms of (9.36) to the right-hand-side and those
relating to the unknowns (i.e., a and b) on the left-hand-side leads
to (9.38). The solution of the unknown terms {X, Y, Z} now involves
solving (9.37), which has two equations with three unknowns. Equation
(9.37) is similar to (9.4) on p. 110 which was considered in the case of
GPS pseudo-range. Four approaches are considered for solving (9.37),
where more unknowns than equations are solved. Similar to the case of
GPS pseudo-ranging that we considered, the underdetermined system
(9.37) is overcome by determining two of the unknowns in terms of the
third unknown (e.g., X = g(Z), Y = g(Z)).

Solution 9.5 (Differencing of the nonlinear distance equations).⎡
⎣S2

1 = (X1 − X)2 + (Y1 − Y )2 + (Z1 − Z)2

S2
2 = (X2 − X)2 + (Y2 − Y )2 + (Z2 − Z)2

S2
3 = (X3 − X)2 + (Y3 − Y )2 + (Z3 − Z)2

(9.34)

⎡
⎣S2

1 = X2
1 + Y 2

1 + Z2
1 + X2 + Y 2 + Z2 − 2X1X − 2Y1Y − 2Z1Z

S2
2 = X2

2 + Y 2
2 + Z2

2 + X2 + Y 2 + Z2 − 2X2X − 2Y2Y − 2Z2Z
S2

3 = X2
3 + Y 2

3 + Z2
3 + X2 + Y 2 + Z2 − 2X3X − 2Y3Y − 2Z3Z

(9.35)
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differencing above

[
S2

1 − S2
2 = X2

1 − X2
2 + Y 2

1 − Y 2
2 + Z2

1 − Z2
2 + a

S2
2 − S2

3 = X2
2 − X2

3 + Y 2
2 − Y 2

3 + Z2
2 − Z2

3 + b,
(9.36)

where

[
a = 2X(X2 − X1) + 2Y (Y2 − Y1) + 2Z(Z2 − Z1)
b = 2X(X3 − X2) + 2Y (Y3 − Y2) + 2Z(Z3 − Z2).

(9.37)

Making a and b the subject of the formula in (9.36) leads to

[
a = S2

1 − S2
2 − X2

1 + X2
2 − Y 2

1 + Y 2
2 − Z2

1 + Z2
2

b = S2
2 − S2

3 − X2
2 + X2

3 − Y 2
2 + Y 2

3 − Z2
2 + Z2

3 .
(9.38)

Conventional Approaches

Solution by Elimination Approach-1

In the elimination approach presented in Solution 9.6, (9.37) is ex-
pressed in the form (9.39); with two equations and two unknowns
{X, Y }. In this equation, Z is treated as a constant. By first elimi-
nating Y, X is obtained in terms of Z and substituted in either of the
two expressions of (9.39) to give the value of Y . The values of {X, Y }
are depicted in (9.40) with the coefficients {c, d, e, f} given by (9.41).
The values of {X, Y } in (9.40) are substituted in the first expression
of (9.34) to give the quadratic equation (9.42) in terms of Z as the
unknown. The quadratic formula (3.8) on p. 25 is then applied to ob-
tain the two solutions of Z (see the second expression of (9.42)). The
coefficients {g, h, i} are given in (9.43). Once we solve (9.42) for Z, we
substitute in (9.40) to obtain the corresponding pair of solutions for
{X, Y }.

Solution 9.6 (Solution by elimination).[
2X(X2 − X1) + 2Y (Y2 − Y1) = a − 2Z(Z2 − Z1)
2X(X3 − X2) + 2Y (Y3 − Y2) = b − 2Z(Z3 − Z2)

(9.39)

[
X = c − dZ
Y = e − fZ

(9.40)
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⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c =
a(Y3 − Y2) − b(Y2 − Y1)

2 {(X2 − X1)(Y3 − Y2) − (X3 − X2)(Y2 − Y1)}

d =
{(Z2 − Z1)(Y3 − Y2) − (Z3 − Z2)(Y2 − Y1)}Z

{(X2 − X1)(Y3 − Y2) − (X3 − X2)(Y2 − Y1)}

e =
a(X3 − X2) − b(X2 − X1)

2 {(Y2 − Y1)(X3 − X2) − (Y3 − Y2)(X2 − X1)}

f =
{(Z2 − Z1)(X3 − X2) − (Z3 − Z2)(X2 − X1)}Z

{(Y2 − Y1)(X3 − X2) − (Y3 − Y2)(X2 − X1)}

(9.41)

substituting 9.40 in 9.34i

⎡
⎢⎢⎣

gZ2 + hZ + i = 0

Z1,2 =
−h ±

√
h2 − 4gi

2g
,

(9.42)

where

⎡
⎣g = d2 + f2 + 1

h = 2(dX1 + fY1 − Z1 − cd − ef)
i = X2

1 + Y 2
1 + Z2

1 − 2X1c − 2Y1e − S2
1 + c2 + e2.

(9.43)

Solution by Elimination Approach-2

The second approach presented in Solution 9.7 involves first expressing
(9.37) in the form (9.44) which can also be expressed in matrix form
as in (9.45). We now seek the matrix solution of {Y, Z} in terms of
the unknown element X as expressed by (9.46), which is written in a
simpler form in (9.47). The elements of (9.47) are as given by (9.48).
The solution of (9.46) for {Y, Z} in terms of X is given by (9.49), (9.50)
and (9.51). The coefficients of (9.51) are given by (9.52). Substituting
the obtained values of {Y, Z} in terms of X in the first expression of
(9.34) leads to quadratic equation (9.53) in terms of X as an unknown.
Applying the quadratic formula (3.8) on p. 25, two solutions for X are
obtained as in the second expression of (9.53). These are then substi-
tuted back in (9.51) to obtain the values of {Y, Z}. The coefficients
{l, m, n} in (9.53) are given by (9.54).
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A pair of solutions {X1, Y1, Z1} and {X2, Y2, Z2} are obtained. For
GPS pseudo-ranging in Sect. 9.2, we saw that the admissible solution
could easily be chosen from the pair of solutions. The desired solution
was easily chosen as one set of solution was in space while the other
set was on the Earth’s surface. The solution could therefore be dis-
tinguished by computing the radial distances (positional norms). The
admissible solution from the pair of the three-dimensional LPS ranging
techniques is however difficult to isolate and must be obtained with the
help of prior information, e.g., from an existing map.

Solution 9.7 (Solution by matrix approach).[
2Y (Y2 − Y1) + 2Z(Z2 − Z1) = a − 2X(X2 − X1)
2Y (Y3 − Y2) + 2Z(Z3 − Z2) = b − 2X(X3 − X2)

(9.44)

[
Y2 − Y1 Z2 − Z1

Y3 − Y2 Z3 − Z2

] [
Y
Z

]
=

1

2

{[
a
b

]
− 2

[
X2 − X1

X3 − X2

]
X

}
(9.45)

[
Y
Z

]
=

1

2
d

[
Z3 − Z2 −(Z2 − Z1)

−(Y3 − Y2) (Y2 − Y1)

]{[
a
b

]
− 2

[
X2 − X1

X3 − X2

]
X,

}
(9.46)

with

d = {(Y2 − Y1)(Z3 − Z2) − (Y3 − Y2)(Z2 − Z1)}−1 .[
Y
Z

]
= {a11a22 − a12a21}−1

[
a22 −a12

−a21 a11

]{[
b1

b2

]
+

[
c1

c2

]
X,

}
(9.47)

where

[
a11 = Y2 − Y1, a12 = Z2 − Z1, a21 = Y3 − Y2, a22 = Z3 − Z2

c1 = −(X2 − X1), c2 = −(X3 − X2) , b1 = 1
2a, b2 = 1

2b.
(9.48)[

Y = {a11a22 − a12a21}−1 {a22(b1 + c1X) − a12(b2 + c2X)}
Z = {a11a22 − a12a21}−1 {a11(b2 + c2X) − a21(b1 + c1X)} (9.49)

[
Y = e [{a22b1 − a12b2} + {a22c1 − a12c2}X]
Z = e [{a11b2 − a21b1} + {a11c2 − a21c1}X]

(9.50)

[
Y = e(f + gX)
Z = e(h + iX)

(9.51)

[
e = (a11a22 − a12a21)

−1, f = a22b1 − a12b2, g = a22c1 − a12c2

h = a11b2 − a21b1, i = a11c2 − a21c1, k = X2
1 + Y 2

1 + Z2
1 .

(9.52)
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substituting (9.51) in (9.34i)

⎡
⎢⎢⎣

lX2 + mX + n = 0

X1,2 =
−m ±√

m2 − 4ln

2l
,

(9.53)

where

⎡
⎣ l = e2i2 + e2g2 + 1

m = 2(e2fg + e2hi − X1 − egY1 − eiZ1)
n = k − S2

1
− 2Y1ef + e2f2 − 2Z1eh + e2h2.

(9.54)

Groebner Basis Approach

Equation (9.37) is expressed in algebraic form (9.55) in Solution 9.8
with the coefficients as in (9.56). Groebner basis of (9.55) is then ob-
tained in (9.57) using (4.36) on p. 43. The obtain Groebner basis so-
lution of the three-dimensional ranging problem is presented in (9.58).
The first expression of (9.58) is solved for Y = g1(Z), and the output
presented in (9.59). This value is substituted in the second expression
of (9.58) to give X = g2(Z) in (9.60). The obtained values of Y and
X are substituted in the first expression of (9.34) to give a quadratic
equation in Z. Once this quadratic equation has been solved for Z us-
ing (3.8) on p. 25, the values Y and X are obtained from (9.59) and
(9.60) respectively. Instead of solving for Y = g1(Z) and substituting
in the second expression of (9.58) to give X = g2(Z), direct solution
of X = g(Z) in (9.61) could be obtained by computing the reduced
Groebner basis (4.38) on p. 44. Similarly we could obtain Y = g(Z)
alone by replacing Y with X in the option part of the reduced Groebner
basis.

Solution 9.8 (Groebner basis solution).

a02X + b02Y + c02Z + f02 = 0
a12X + b12Y + c12Z + f12 = 0

(9.55)
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⎢⎢⎢⎢⎢⎢⎢⎢⎣

a02 = 2(X1 − X2), b02 = 2(Y1 − Y2), c02 = 2(Z1 − Z2)

a12 = 2(X2 − X3), b12 = 2(Y2 − Y3), c12 = 2(Z2 − Z3)

f02 = (S2
1 − X2

1 − Y 2
1 − Z2

1 ) − (S2
2 − X2

2 − Y 2
2 − Z2

2 )

f12 = (S2
2 − X2

2 − Y 2
2 − Z2

2 ) − (S2
3 − X2

3 − Y 2
3 − Z2

3 ).

(9.56)

GroebnerBasis[{a02X+b02Y +c02Z+f02, a12X+b12Y +c12Z+f12}, {X, Y }] (9.57)

⎡
⎢⎢⎢⎢⎣

g1 = a02b12Y − a12b02Y − a12c02Z + a02c12Z + a02f12 − a12f02

g2 = a12X + b12Y + c12Z + f12

g3 = a02X + b02Y + c02Z + f02.
(9.58)

Y =
{(a12c02 − a02c12)Z + a12f02 − a02f12}

(a02b12 − a12b02)
(9.59)

X =
−(b12Y + c12Z + f12)

a12
, (9.60)

or

X =
{(b02c12 − b12c02)Z + b02f12 − b12f02}

(a02b12 − a12b02)
. (9.61)

Polynomial Resultants Approach

The problem is solved in four steps as illustrated in Solution 9.9. In
the first step, we solve for the first variable X in (9.55) by hiding it
as a constant and homogenizing the equation using a variable W as in
(9.62). In the second step, the Sylvester resultants discussed in Sect.
5.2 on p. 48 or the Jacobian determinant is obtained as in (9.63). The
resulting determinant (9.64) is solved for X = g(Z) and presented in
(9.65). The procedure is repeated in steps three and four from (9.66)
to (9.69) to solve for Y = g(Z). The obtained values of X = g(Z)
and Y = g(Z) are substituted in the first expression of (9.34) to give
a quadratic equation in Z. Once this quadratic has been solved for
Z, the values of X and Y are then obtained from (9.65) and (9.69)
respectively.
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Solution 9.9 (Polynomial resultants solution). Step 1: Solve for
X in terms of Z

f1 := (a02X + c02Z + f02)W + b02Y
f2 := (a12X + c12Z + f12)W + b12Y

(9.62)

Step 2: Obtain the Sylvester resultant

JX = det

⎡
⎢⎢⎢⎣

∂f1

∂Y

∂f1

∂W

∂f2

∂Y

∂f2

∂W

⎤
⎥⎥⎥⎦ = det

[
b02 (a02X + c02Z + f02)
b12 (a12X + c12Z + f12)

]
(9.63)

JX = b02a12X + b02c12Z + b02f12 − b12a02X − b12c02Z − b12f02 (9.64)

from (9.64)

X =
{(b12c02 − b02c12)Z + b12f02 − b02f12}

(b02a12 − b12a02)
(9.65)

Step 3: Solve for Y in terms of Z

f3 := (b02Y + c02Z + f02)W + b02X
f4 := (b12Y + c12Z + f12)W + a12X

(9.66)

Step 4: Obtain the Sylvester resultant

JY = det

⎡
⎢⎢⎢⎣

∂f3

∂X

∂f3

∂W

∂f4

∂X

∂f4

∂W

⎤
⎥⎥⎥⎦ = det

[
a02 (b02Y + c02Z + f02)
a12 (b12Y + c12Z + f12)

]
(9.67)

JY = a02b12Y + a02c12Z + a02f12 − a12b02Y − a12c02Z − a12f02 (9.68)

from (9.68)

Y =
{(a12c02 − a02c12)Z + a12f02 − a02f12}

(a02b12 − a12b02)
(9.69)

Example 9.5 (Three-dimensional ranging to three known stations). Con-
sider distance measurements of Fig. 9.12 as S1 = 1324.2380 m, S2 =
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542.2609m and S3 = 430.5286 m, the position of P is obtained us-
ing either of the procedures above as X = 4157066.1116m, Y =
671429.6655m and = 4774879.3704 m. Figures 9.13, 9.14 and 9.15 in-
dicate the solutions of {X, Y, Z} respectively. The stars (intersection of
the quadratic curves with the zero line) are the solution points. The
critical configuration of the three-dimensional ranging problem is pre-
sented in Solution 9.10. Equations (9.75) and (9.76) indicate the critical
configuration to be the case where points P (X, Y, Z), P1(X1, Y1, Z1),
P2(X2, Y2, Z2), and P3(X3, Y3, Z3) all lie on a plane.
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)

Fig. 9.13. Solution of the X coordinates
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Fig. 9.14. Solution of the Y coordinates
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Fig. 9.15. Solution of the Z coordinates

Solution 9.10 (Critical configuration of three-dimensional rang-
ing).
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⎣f1(X, Y, Z; X1, Y1, Z1, S1) = (X1 − X)2 + (Y1 − Y )2 + (Z1 − Z)2 − S2

1

f2(X, Y, Z; X2, Y2, Z2, S2) = (X2 − X)2 + (Y2 − Y )2 + (Z2 − Z)2 − S2
2

f3(X, Y, Z; X3, Y3, Z3, S3) = (X3 − X)2 + (Y3 − Y )2 + (Z3 − Z)2 − S2
3 .

(9.70)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1

∂X
= −2(X1 − X),

∂f2

∂X
= −2(X2 − X),

∂f3

∂X
= −2(X3 − X)

∂f1

∂Y
= −2(Y1 − Y ),

∂f2

∂Y
= −2(Y2 − Y ),

∂f3

∂Y
= −2(Y3 − Y )

∂f1

∂Z
= −2(Z1 − Z),

∂f2

∂Z
= −2(Z2 − Z),

∂f3

∂Zv
= −2(Z3 − Z).

(9.71)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

D =

∣∣∣∣ ∂fi

∂Xj

∣∣∣∣ = −8

∣∣∣∣∣∣
X1 − X Y1 − Y Z1 − Z
X2 − X Y2 − Y Z1 − Z
X3 − X Y3 − Y Z1 − Z

∣∣∣∣∣∣
D ⇔

∣∣∣∣∣∣
X1 − X Y1 − Y Z1 − Z
X2 − X Y2 − Y Z1 − Z
X3 − X Y3 − Y Z1 − Z

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
X Y Z 1
X1 Y1 Z1 1
X2 Y2 Z2 1
X3 Y3 Z3 1

∣∣∣∣∣∣∣∣
= 0.

(9.72)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
8D = {−Z1Y3 + Y1Z3 − Y2Z3 + Y3Z2 − Y1Z2 + Y2Z1}X

+ {−Z1X2 − X1Z3 + Z1X3 + X1Z2 − X3Z2 + X2Z3}Y

+ {Y1X2 − Y1X3 + Y3X1 − X2Y3 − X1Y2 + Y2X3}Z

+X1Y2Z3 − X1Y3Z2 − X3Y2Z1 + X2Y3Z1 − X2Y1Z3 + X3Y1Z2,
(9.73)

thus

∣∣∣∣∣∣∣∣
X Y Z 1
X1 Y1 Z1 1
X2 Y2 Z2 1
X3 Y3 Z3 1

∣∣∣∣∣∣∣∣
, (9.74)

describes six times volume of the tetrahedron formed by the points
P (X, Y, Z), P1(X1, Y1, Z1), P2(X2, Y2, Z2), and P3(X3, Y3, Z3) . There-
fore
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D =

∣∣∣∣∣∣∣∣
X Y Z 1
X1 Y1 Z1 1
X2 Y2 Z2 1
X3 Y3 Z3 1

∣∣∣∣∣∣∣∣

⎡
⎢⎢⎣

a
b
c
d

⎤
⎥⎥⎦ = 0, (9.75)

results in a system of homogeneous equations

⎡
⎢⎢⎣

aX + bY + cZ + d = 0
aX1 + bY1 + cY1 + d = 0
aX2 + bY2 + cZ2 + d = 0
aX3 + bY3 + cZ3 + d = 0.

(9.76)

Three-dimensional Ranging to more than Three Known
Stations

The Gauss-Jacobi combinatorial algorithm is here applied to solve the
overdetermined three-dimensional ranging problem. An example based
on the test network Stuttgart Central in Fig. 7.1 is considered.

Example 9.6 (Three-dimensional ranging to more than three known sta-
tions). From the test network Stuttgart Central in Fig. 7.1 of Sect. 7.4,
the three-dimensional coordinates {X, Y, Z} of the unknown station
K1 are desired. One proceeds in three steps as follows:

Step 1 (combinatorial solution):
From Fig. 7.1 on p. 86 and using (6.26) on p. 69, 35 combinatorial
subsets are formed whose systems of nonlinear distance equations
are solved for the position {X, Y, Z} of the unknown station K1 in
closed form. Use is made of either Groebner basis derived equations
(9.59) and (9.60) or polynomial resultants derived (9.65) and (9.69).
35 different positions X, Y, Z|K1 of the same station K1, totalling
to 105 (35×3) values of X, Y, Z are obtained and treated as pseudo-
observations.

Step 2 (determination of the dispersion matrix Σ):
The variance-covariance matrix is computed for each of the combi-
natorial set j = 1, . . . , 35 using error propagation. The closed form
observational equations are written algebraically as⎡

⎣ f1 := (X1 − X)2 + (Y1 − Y )2 + (Z1 − Z)2 − S2
1

f2 := (X2 − X)2 + (Y2 − Y )2 + (Z2 − Z)2 − S2
2

f3 := (X3 − X)2 + (Y3 − Y )2 + (Z3 − Z)2 − S2
3 ,

(9.77)
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where Sj
i |i ∈ {1, 2, 3} | j = 1 are the distances between known GPS

stations Pi ∈ E3 |i ∈ {1, 2, 3} and the unknown station K1 ∈ E3 for
first combination set j = 1. Equation (9.77) is used to obtain the
dispersion matrix Σ in (6.31) as discussed in Example 6.4 on p. 72.

Step 3 (rigorous adjustment of the combinatorial solution points in a
polyhedron):
For each of the 35 computed coordinates of point K1 in step 2, we
write the observation equations as⎡

⎢⎣Xj = X + εj
X |, j ∈ {1, 2, 3, 4, 5, 6, 7, . . . , 35}

Y j = Y + εj
Y |j ∈ {1, 2, 3, 4, 5, 6, 7, . . . , 35}

Zj = Z + εj
Z |, j ∈ {1, 2, 3, 4, 5, 6, 7, . . . , 35}.

(9.78)

The values {Xj , Y j , Zj} are treated as pseudo-observation and
placed in the vector of observation y, while the coefficients of the
unknown positions {X, Y, Z} are placed in the design matrix A. The
vector ξ comprise the unknowns {X, Y, Z}. The solutions are ob-
tained via (6.10) and the root-mean-square errors of the estimated
parameters through (6.11). In the experiment above, the computed
position of station K1 is given in Table 9.12. The deviations of the
combinatorial solutions from the true (measured) GPS value are
given in Table 9.13. Figure 9.16 indicates the plot of the combina-
torial scatter {•} around the adjusted values {∗}.

Table 9.12. Position of station K1 computed by Gauss-Jacobi combinatorial algo-
rithm

X(m) Y (m) Z(m) σX σY σZ

4157066.1121 671429.6694 4774879.3697 0.00005 0.00001 0.00005

Table 9.13. Deviation of the computed position of K1 in Table (9.12) from the real
measured GPS values

∆X(m) ∆Y (m) ∆Z(m)

-0.0005 -0.0039 0.0007
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Fig. 9.16. Scatter of combinatorial solutions

9.4 Concluding Remarks

In cases where positions are required from distance measurements such
as point location in engineering and cadastral surveying, the algorithms
presented in this chapter are handy. Users need only to insert measured
distances and the coordinates of known stations in these algorithms to
obtain their positions. In essence, one does not need to re-invent the
wheel by going back to the Mathematica software! Additional literature
on the topic are [1, 48, 86, 171, 208, 279].



10

From Geocentric Cartesian to Ellipsoidal
Coordinates

10.1 Mapping Topographical Points onto Reference
Ellipsoid

The projection of points from the topographical surface to their equiv-
alent on the reference ellipsoid remains one of the fundamental tasks
undertaken in geodesy and geoinformatics. This is because the reference
ellipsoid of revolution is the mathematical representation of the geoid.
Geoid is the surface that approximates mean sea level, and provides
vertical datum for heights. It is of prime importance in engineering
and geosciences in general. From it, geophysicists can infer on pro-
cesses taking place below and above the Earth such as earthquakes
and rise in sea level. Hydrologists need it to infer on water table, while
engineers need it for height determination during roads and structural
constructions.

Measurements are normally related to the geoid for computation via
its mathematical form, the reference ellipsoid of revolution. There ex-
ist two ways of projecting points from a topographical surface onto the
reference ellipsoid of revolution. One approach projects a point P onto
the geoid pg and then finally onto the reference ellipsoid of revolution
p. This type of projection is called the Pizetti’s projection. The other
approach directly projects a topographical point P through the ellip-
soidal normal onto a point p on the reference ellipsoid of revolution. The
distance between the topographical point P and the ellipsoidal point p
gives the geometrical height H above the ellipsoid. The topographical
position of point P would therefore be referred by the ellipsoidal height
H and the geographical coordinates L, B. In this case, the geographical
coordinate L is the longitude and B the latitude. The set of coordinates
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{L, B, H} defining the point P are called geodetic or ellipsoidal coordi-
nates. This second projection is called the Helmert’s projection which
will be considered in this chapter. The two projections are discussed in
detail in [184, pp. 178–184].

The forward transformation from ellipsoid to Cartesian coordinates,
i.e., {L, B, H} → {X, Y, Z}, is demonstrated by Solutions 10.1 and
10.2. The challenge is the inverse transformation which projects topo-
graphical points to the ellipsoid. One way of achieving this projection is
by first converting topographical Cartesian coordinates into ellipsoidal
cartesian coordinates. Once this is done, the ellipsoidal Cartesian co-
ordinates are then converted to their equivalent geodetic coordinates.
The problem is formulated as follows: Given topographical coordinates
{X, Y, Z} of a point P , obtain the geodetic coordinates {L, B, H}. This
problem is a one-to-one mapping of[ {X, Y, Z} −→ {L, B, H}

Topography Ellipsoid
(10.1)

Table 10.1 outlines the existing methods by other authors to con-
vert Cartesian coordinates {X, Y, Z} to Gauss ellipsoidal coordinates
{L, B, H} in (10.1). The target of this chapter is to invert alge-
braically {X, Y, Z} → {L, B, H} by means of minimum distance map-
ping through the map in (10.2) as[ {X, Y, Z} −→ {x1, x2, x3} −→ {L, B, H}

Topography Ellipsoid Ellipsoid.
(10.2)

Grafarend [134] already constructed surface normal coordinates
with respect to the international reference ellipsoid . In this chapter,
we will be interested with setting up an algebraic minimum distance
mapping to relate a point on the Earth’s topographical surface uniquely
(one-to-one) to a point on the international reference ellipsoid. The so-
lution to such an optimization problem generates projective ellipsoidal
heights and the standard transformation of the Gauss ellipsoidal coor-
dinates {L, B, H} to geocentric Cartesian coordinates {X, Y, Z}. The
inverse transformation of geocentric Cartesian coordinates {X, Y, Z}
to Gauss ellipsoidal coordinates {L, B, H} is here solved algebraically
and examples presented.
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Table 10.1. Characteristics of inverse transformation Cartesian coordinates to
Gauss ellipsoidal coordinates

Author Publication Characteristic
year

Awange et al. [36] in press closed (similar to [11])
Bartelme N, Meissl P [51] 1975 iterative
Benning W [60] 1974 closed
Benning W [61] 1987 iterative first point curve
Borkowski KM [71] 1987 iterative
Borkowski KM [72] 1989 iterative
Bowring BR [73] 1976 approximate “closed”
Bowring BR [74] 1985 approximate
Croceto N [96] 1993 iterative
Fitzgibbon A et al. [110] 1999 iterative
Fotiou A [112] 1998 approximate “closed”
Fröhlich H, Hansen HH [115] 1976 closed
Fukushima T [116] 1999 “fast” iterative
Gander W et al. [117] 1994 iterative
Grafarend EW [135] 2001 closed
Grafarend EW, Lohse P [141] 1991 closed form 4th order equation

reduced to 3rd order
Grafarend EW et al. [159] 1995 closed form
Heck B [181] 1987 iterative
Heikkinen M [182] 1982 closed
Heiskannen WA, Moritz H [184] 1976 iterative
Hirvonen R, Moritz H [185] 1963 iterative
Hofman-Wellenhof B et al. [186] 2001 Identical to Bowring [73]
Lapaine M [215] 1990 algebraic equations of higher order
Lin KC, Wang J [223] 1995 iterative
Loskowski P [227] 1991 “simply iterative”
Ozone MI [261] 1985 3rd order equation
Paul MK [262] 1973 iterative
Penev P [263] 1978 Angular variable 3rd order equation
Pick M [265] 1985 approximate “closed”
Sjöberg LE [297] 1999 iterative
Soler T, Hothem LD [298] 1989 iterative “closed” Jacobi

ellipsoidal coordinates
Sünkel H [306] 1976 series expansion
Torge W [313] 1991 iterative
Vaniceck P, Krakiwski E [318] 1982 higher order algebraic equation
Vincenty T [321] 1978 Iterative
Vincenty T [322] 1980 approximate “closed”
You RJ [349] 2000 iterative
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Solution 10.1 (Forward transformation of Gauss ellipsoidal co-
ordinates).

X(L, B, H) = e1

[
a√

1 − e2 sin2 B
+ H(L, B)

]
cos B cos L +

e2

[
a√

1 − e2 sin2 B
+ H(L, B)

]
cos B sinL +

e2

[
a(1 − e2)√
1 − e2 sin2 B

+ H(L, B)

]
sinB, (10.3)

⎡
⎣X

Y
Z

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

[
a√

1−e2 sin2 B
+ H(L, B)

]
cos B cos L[

a√
1−e2 sin2 B

+ H(L, B)

]
cos B sinL[

a(1−e2)√
1−e2 sin2 B

+ H(L, B)

]
sin B

⎤
⎥⎥⎥⎥⎥⎥⎦

, (10.4)

with {(L(X, Y, Z), B(X, Y, Z), H(X, Y, Z)} as unknowns.

Solution 10.2 (Forward transformation of Gauss complex el-
lipsoidal coordinates). Consider

X + iY =

[
a√

1 − e2 sin2 B
+ H(L, B)

]
cos B(cos L + i sinL), (10.5)

and

Z =

[
a(1 − e2)√
1 − e2 sin2 B

+ H(L, B)

]
sin B, (10.6)

then

X =

[
X + iY Z
−Z X − iY

]
∈ C2×2 (10.7)

10.2 Mapping Geometry

In [134], Gauss surface normal coordinates with respect to the inter-
national reference ellipsoid E2

a,a,b are introduced and called {l, b}. The
Gauss surface normal longitude is represented by l (geodetic longitude)
and the Gauss surface normal latitude by b (geodetic latitude). Such
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a coordinate system build up the proper platform for introducing sur-
face normal coordinates {L, B, H} for mapping the Earth’s topograph-
ical surface T2 with respect to the international reference ellipsoid. In
particular, the minimum distance mapping which maps a topographic
point P ∈ T2 onto a nearest point p ∈ E2

a,a,b on the international refer-
ence ellipsoid is implemented. Such mapping, initiated by C. F. Gauss,
is isozenithal since {l = L, b = B} : The orthogonal projection of
P ∈ T2 onto p ∈ E2

a,a,b as the nearest point is along the surface normal

of E2
a,a,b. The minimum distance from point p to P , i.e., pP is called

accordingly ellipsoidal height H (“geodetic height”) complemented by
surface normal longitude l = L and surface normal latitude b = B.

In-order to gain a unique solution of minimum distance mapping,
the assumption that the Earth’s topographical surface is starshaped
has to be made. Figure 10.1 illustrates a topographical surface which is
starshaped, while Fig. 10.2 illustrates that which is not. With respect to
these figures, the notion of a starshaped compact (closed and bounded)
topographical surface may be obvious.

Definition 10.1 (Starshaped surface). A region M ∈ R3 is star-
shaped with respect to a point P ∈ R3, if the straight line which con-
nects an arbitrary point Q ∈ M with P lies in M . We call a surface
starshaped, if it forms the boundary of a starshaped region.

It is understood that the shape of a star guarantees that the mini-
mum distance mapping of topographical surfaces in R3 onto the average
sphere S2

R (“Bjerhammer sphere”) is one-to-one. If the minimum dis-
tance mapping would not be one-to-one, it might happen that a point
on the average sphere S2

R has more than one image on the topograph-
ical surface. Here the condition of starshaped has to be relaxed if the
topographic surface T2 ⊂ R3 is mapped onto the international refer-
ence ellipsoid E2

a,a,b, an ellipsoid of revolution of semi-major axis a and
semi-minor axis b. If any surface normal to the ellipsoid of revolution
E2

a,a,b intersects the topographical surface only once, the topographical
surface is ellipsoidal starshaped . Indeed this condition is not met by
any arbitrary topographical surface like the Earth’s. Instead we shall
assume that we have properly regularized the Earth’s topographical
surface to meet our requirement. Otherwise the Gauss ellipsoidal coor-
dinates {L, B, H} would break down! Figures 10.3 and 10.4 gives a bet-
ter insight into the notion of ellipsoidal starshaped and anti-ellipsoidal
starshaped .
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Fig. 10.1. Minimum distance mapping, starshaped topographic surface (orthogonal
projection of P ∈ T

2 onto p ∈ S
2

R )

Fig. 10.2. Minimum distance mapping, non-starshaped topographic surface (or-
thogonal projection of P ∈ T

2 onto p ∈ S
2

R )
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Fig. 10.3. Minimum distance mapping, ellipsoidal starshaped topographic surface
(orthogonal projection of P ∈ T

2 onto p ∈ E
2

a,a,b )

Fig. 10.4. Minimum distance mapping, a topographic surface T
2 which is not el-

lipsoidal starshaped (orthogonal projection of P ∈ T
2 onto p ∈ E

2

a,a,b )

10.3 Minimum Distance Mapping

In-order to relate a point P on the Earth’s topographic surface to a
point on the international reference ellipsoid E2

a,a,b, a bundle of half
straight lines so called projection lines which depart from P and in-
tersect E2

a,a,b either not at all or in two points are used. There is one
projection line which is at minimum distance relating P to p. Figure
10.5 is an illustration of such a minimum distance mapping. Let us
formulate such an optimization problem by means of the Lagrangean
£(x1, x2, x3, x4) in Solution 10.3.



154 10 From Geocentric Cartesian to Ellipsoidal Coordinates

Fig. 10.5. Minimum distance mapping of a point P on the Earth’s topographic
surface to a point p on the international reference ellipsoid E

2

a,a,b

Solution 10.3 (Constraint minimum distance mapping in terms
of Cartesian coordinates).

£(x1, x2, x3, x4) :=
1

2
‖X − x‖2 +

1

2
x4

[
b2(x2

1 + x2
2) + ax2

3 − a2b2
]

=
1

2
{(X − x1)

2 + (Y − x2)
2 + (Z − x3)

2

+x4

[
b2(x2

1 + x2
2) + ax2

3 − a2b2
]}

=
min

(x1, x2, x3, x4)
(10.8)

x ∈ X := {x ∈ R3|x
2
1 + x2

2

a2
+

x2
3

b2
= 1} =: E2

a,a,b (10.9)

In the first case, the Euclidean distance between points P and p in
terms of Cartesian coordinates of P (X, Y, Z) and of p(x1, x2, x3) is
represented. The Cartesian coordinates (x1, x2, x3) of the projection
point P are unknown. The constraint that the point p is an element of
the ellipsoid of revolution

E2
a,a,b := {x ∈ R3|b2(x2

1 + x2
2) + a2x3

2 − a2b2 = 0, R+ � a > b ∈ R+}
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is substituted into the Lagrangean by means of the Lagrange multiplier
x4, which is unknown too. {(x∧

1 , x∧
2 , x∧

3 , x∧
4 ) = arg{£(x1, x2, x3, x4) =

min} is the argument of the minimum of the constrained Lagrangean
£(x1, x2, x3, x4). The result of the minimization procedure is presented
by Lemma 10.1. Equation (10.10) provides the necessary conditions to
constitute an extremum: The normal equations are of bilinear type.
Products of the unknowns for instance x1x4, x2x4, x3x4 and squares
of the unknowns, for instance x2

1, x
2
2, x

2
3 appear. Finally the matrix of

second derivatives H3 in (10.12) which is positive definite constitutes
the sufficient condition to obtain a minimum. Fortunately the matrix
of second derivatives H3 is diagonal. Using (10.11i–10.11iv), together
with (10.14) leads to (10.15), which are the eigenvalues of the Hesse
matrix H3. These values are Λ1 = Λ2 = X\x∧

1 , Λ3 = Z\x∧
3 and must

be positive.

Lemma 10.1 (Constrained minimum distance mapping). The
functional £(x1, x2, x3, x4) is minimal, if the conditions (10.10) and
(10.12) hold.

∂£

∂xi
((x∧

1 , x∧
2 , x∧

3 , x∧
4 )) = 0 ∀ i=1,2,3,4. (10.10)

On taking partial derivatives with respect to xi, we have⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(i)
∂£

∂(x∧
1 )

= −(X − x∧
1 ) + b2x∧

1 x∧
4 = 0

(ii)
∂£

∂(x∧
2 )

= −(Y − x∧
2 ) + b2x∧

2 x∧
4 = 0

(iii)
∂£

∂(x∧
3 )

= −(Z − x∧
3 ) + a2x∧

3 x∧
4 = 0

(iv)
∂£

∂(x∧
4 )

=
1

2
[b2(x∧2

1 + x∧2
2 )] + a2x∧2

3 − a2b2 = 0

(10.11)

∂2£

∂xi∂xj
(x∧

1 , x∧
2 , x∧

3 , x∧
4 )) > 0 ∀ i,j ∈ {1,2,3}. (10.12)

H3 :=

[
∂2£

∂xi∂xj
(x∧)

]
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=

⎡
⎣1 + b2x∧

4 0
0 1 + b2x∧

4 0
0 0 1 + a2x∧

4

⎤
⎦ ∈ R3×3 (10.13)

“eigenvalues”

|H3 − ΛI3| = 0 ⇐⇒ (10.14)⎡
⎢⎢⎢⎢⎣

Λ1 = Λ2 := 1 + b2x∧
4 =

X

x∧
1

=
Y

x∧
2

Λ3 := 1 + a2x∧
4 =

Z

x∧
3

(10.15)

In Sects. 10.3.1 and 10.3.2, we present algebraic solutions of the normal
equations (10.11).

10.3.1 Grafarend-Lohse’s Mapping of T2
−→ E2

a,a,b

Two approaches are proposed by [141] for mapping T2 −→ E2
a,a,b. The

first approach which is presented in Solution 10.4 is based on substitu-
tion technique. The second approach is based on degenerate conics and
will not be treated in this book. Instead, we refer the reader to [141]. Let
us start with the algorithm that solves the normal equations (10.11) in
a closed form. Solution 10.4 outlines the first and second forward steps
of reduction which lead to a univariate polynomial equation (10.20)
of fourth order (quartic polynomial) in terms of the Lagrangean multi-
plier . First, the solution of the quartic polynomial is implemented. One
then continues to determine with the backward step the Cartesian co-
ordinates (x1, x2, x3) of the point p ∈ E2

a,a,b by means of the minimum

distance mapping of the point P ∈ T2 to p ∈ E2
a,a,b.

Solution 10.4 (Grafarend-Lohse MDM solution).

First forward step

Solve (i), (ii), (iii) for x1, x2, x3 respectively.

⎡
⎢⎢⎢⎢⎢⎣

(i) x∧
1 (1 + b2x∧

4 ) = X ⇒ x∧
1 =

X

1 + b2x∧
4

(ii) x∧
2 (1 + b2x∧

4 ) = Y ⇒ x∧
2 =

Y

1 + b2x∧
4

(iii) x∧
3 (1 + a2x∧

4 ) = Z ⇒ x∧
3 =

Z

1 + a2x∧
4

.

(10.16)
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Second forward step

Substitute (x∧
1 , x∧

2 , x∧
3 , x∧

4 ) in (10.11iv)

x∧2
1 + x∧2

2 =
1

(1 + b2x∧
4 )2

(X2 + Y 2) (10.17)

x∧2
3 =

1

(1 + a2x∧
4 )2

Z2 (10.18)

⎡
⎢⎢⎣

b2(x∧2
1 + x∧2

2 ) + a2x∧2
3 − a2b2 = 0 ⇔

⇔ b2 X2 + Y 2

(1 + b2x∧
4 )2

+ a2 Z2

(1 + a2x∧
4 )2

− a2b2 = 0.

(10.19)

Multiply (10.19) by (1 + a2x4)
2(1 + b2x4)

2 leads to the quartic polyno-
mial (10.20).

(10.19i)

[
b2(1 + a2x4)

2(X2 + Y 2) + a2(1 + b2x4)
2Z2

−a2b2(1 + a2x4)
2(1 + b2x4)

2 = 0

⇐⇒ (1 + 2a2x4 + a4x2
4)b

2(X2 + Y 2) + (1 + 2b2x4 + b4x2
4)a

2Z2

−a2b2(1 + 2a2x4 + a4x2
4)(1 + 2b2x4 + b4x2

4) = 0

(10.19ii)

⎡
⎢⎢⎢⎢⎣
−x4

4a
6b6 − 2x3

4a
4b4(a2 + b2)

+x2
4a

2b2[a2(X2 + Y 3) + b2Z2 − 4a2b2 − a4 − b4]+

2x4a
2b2(X2 + Y 2 + Z2) + b2(X2 + Y 2) + a2Z2 − a2b2 = 0

⎡
⎢⎢⎢⎣

x4
4 + 2x3

4

a2 + b2

a2b2
+ x2

4

4a2b2 + a4 + b4 − a2(X2 + Y 2) − b2Z2

a4b4

−2x4
X2 + Y 2 + Z2

a4b4
− b2(X2 + Y 2) + a2Z2 − a2b2

a6b6
= 0

(10.20)

Backward step
Substitute x∧

4 into x∧
1 (x∧

4 ), x∧
2 (x∧

4 ), x∧
3 (x∧

4 )

x∧
1 = (1 + b2x∧

4 )−1X, x∧
2 = (1 + b2x∧

4 )−1Y, x∧
3 = (1 + a2x∧

4 )−1Z
(10.21)
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Test

Λ1 = Λ2 = 1 + b2x∧
4 > 0, Λ3 = 1 + a2x∧

4 > 0 (10.22)

if Λ1 = Λ2 > 0 and Λ3 > 0 then end.

10.3.2 Groebner Basis’ Mapping of T2
−→ E2

a,a,b

Without the various forward and backward reduction steps, we could
automatically generate an equivalent algorithm for solving the normal
equations (10.11i)–(10.11iv) in a closed form by means of Groebner ba-
sis approach. Let us write the Ideal of the polynomials in lexicographic
order “x1 > x2 > x3 > x4” (read: x1 before x2 before x3 before x4) as

Ideal I :=<

⎧⎪⎪⎨
⎪⎪⎩

x1 + b2x1x4 − X,
x2 + b2x2x4 − Y,
x3 + a2x3x4 − Z,

b2x2
1 + b2x2

2 − a2x2
3 − a2b2

⎫⎪⎪⎬
⎪⎪⎭ > . (10.23)

Expressing the generators of Ideal (10.23) as⎡
⎢⎢⎣

f1 := x1 + b2x1x4 − X,
f2 := x2 + b2x2x4 − Y,
f3 := x3 + a2x3x4 − Z,
f4 := b2x2

1 + b2x2
2 − a2x2

3 − a2b2,

(10.24)

the Groebner basis of these generators, characteristic for the minimum
distance mapping problem, are computed using (4.36) on p. 43 as

GroebnerBasis[{f1, f2, f3, f4}, {x1, x2, x3, x4}]. (10.25)

Groebner basis computation (10.25) leads to 14 elements presented in
Solution 10.5 interpreted as follows: The first expression is a univariate
polynomial of order four (quartic) in the Lagrange multiplier, i.e.,⎡
⎢⎢⎢⎢⎢⎢⎢⎣

	



�
�c4x

4
4 + c3x

3
4 + c2x

2
4 + c1x4 + co = 0

c4 = a6b6

c3 = (2a6b4 + 2a4b6)
c2 = (a6b2 + 4a4b4 + a2b6 − a4b2X2 − a4b2Y 2 − a2b4Z2)
c1 = (2a4b2 + 2a2b4 − 2a2b2X2 − 2a2b2Y 2 − 2a2b2Z2)
co = (a2b2 − b2X2 − b2Y 2 − a2Z2),

(10.26)



10.3 Minimum Distance Mapping 159

and is identical to (10.19ii). With the admissible values x4 substituted
in linear equations (4),(8),(12) of the computed Groebner basis, i.e.,⎡

⎣ (1 + a2x4)x3 − Z
(1 + b2x4)x2 − Y
(1 + b2x4)x1 − X,

(10.27)

the values (x1, x2, x3) = (x, y, z) are finally produced.

Solution 10.5 ( Groebner basis MDM solution).

(1)

⎡
⎣ a2b2x4

4 + (2a6b4 + 2a4b6)x3

4 + (a6b2 + 4a4b4 + a2b6 − a4b2X2 − a4b2Y 2−
a2b4Z2)x2

4 + +(2a4b2 + 2a2b4 − 2a2b2X2 − 2a2b2Y 2 − 2a2b2Z2)x4

+(a2b2 − b2X2 − b2Y 2 − a2Z2).

(2)

⎡
⎣ (a4Z − 2a2b2Z + b4Z)x3 − a6b6x3

4 − (2a6b4 + a4b6)x2

4

−(a6b2 + 2a4b4 − a4b2X2 − a4b2Y 2 − a2b4Z2)x4

−a2b4 + a2b2X2 + a2b2Y 2 + 2a2b2Z2 − b4Z2.

(3)

⎡
⎣ (2b2Z + b4x4Z − a2Z)x3 + a4b6x3

4 + (2a4b4 + a2b6)x2

4

+(a4b2 + 2a2b4 − a2b2X2 − a2b2Y 2 − b4Z2)x4

+a2b2 − b2X2 − b2Y 2 − 2b2Z2.

(4) (1 + a2x4)x3 − Z

(5)
[

(a4 − 2a2b2 + b4)x2

3 + (2a2b2Z − 2b4Z)x3

−a4b6x2

4 − 2a4b4x4 − a4b2 + a2b2X2 + a2b2Y 2 + b4Z2).

(6)
⎡
⎣ (2b2 − a2 + b4x4)x

2

3 − a2Zx3 + a4b6x3

4 + (2a4b4 + 2a2b6)x2

4

+ + (a4b2 + 4a2b4 − a2b2X2 − a2b2Y 2 − b4Z2)x4

+2a2b2 − 2b2X − 2bY 2 − 2b2Z2.

(7)
[

(X2 + Y 2)x2 + a2b4Y x2

4 + Y (a2b2 − b2x2

3 − b2Zx3)x4

+Y x2

3 − Y 3 − Y Zx3 − Y X2.

(8) (1 + b2x4)x2 − Y

(9) a2x3 − b2x3 + b2Z)x2 − a2x3Y

(10) Y x1 − Xx2

(11) Xx1 + a2b4x2

4 + (a2b2 + b2x2

3 − b2Zx3)x4 + x2

3 − Zx3 + Y x2 − X2 − Y 2.

(12) (1 + b2x4)x1 − X

(13) (a2x3 − b2x3 + b2Z)x1 − a2Xx3

(14) x2

1 + a2b4x2

4 + (2a2b2 + b2x2

3 − b2Zx3)x4 + 2x2

3 − 2Zx3 + x2

2 − X2 − Y 2.
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Once the ellipsoidal Cartesian coordinates {x1, x2, x3} have been
computed using either Solutions 10.4 or 10.5, they are transformed into
their equivalent Gauss ellipsoidal coordinates {L, B, H} using (10.28),
(10.29) and (10.30) in Solution 10.6.

Solution 10.6 (Coordinates transformation from Cartesian to
Gauss ellipsoidal).

{X, Y, Z} ∈ T2 {x1, x2, x3} ∈ E2
a,a,b to {L, B, H}

“Pythagoras in three dimension”

H :=
√

(X − x1)2 + (Y − x2)2 + (Z − x3)2 (10.28)

“convert {x1, x2, x3} and {X, Y, Z}
to {L, B}”

tanL =
Y − x2

X − x1
=

Y − y

X − x
(10.29)

tanB =
Z − x3√

(X − x1)2 + (Y − x2)2
=

Z − x3√
(X − x)2 + (Y − y)2

(10.30)

Example 10.1 (Example from [141]). Given are the geometric parame-
ters of the ellipsoid of revolution; semi-major axis a = 6378137.000m
and first numerical eccentricity e2 = 0.00669437999013 from which the
semi-minor axis b is to be computed. The input data are Cartesian
coordinates of 8 points on the surface of the Earth presented in Ta-
ble 10.2. Using these data, the coefficients of the univariate polynomial

Table 10.2. Cartesian coordinates of topographic points

Point X(m) Y (m) Z(m)

1 3980192.960 0 4967325.285
2 0 0 6356852.314
3 0 0 -6357252.314
4 4423689.486 529842.355 4555616.169
5 4157619.145 664852.698 4775310.888
6 -2125699.324 6012793.226 -91773.648
7 5069470.828 3878707.846 -55331.828
8 213750.930 5641092.098 2977743.624
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(10.26) are computed and used in the Matlab’s roots command, e.g.,
(4.40) on p. 44 as x4 = roots

[
c4 c3 c2 c1 c0

]
. The obtained roots are

then substituted in (10.27) to give the values of {x3, x2, x1} of the ellip-
soidal Cartesian coordinates. The computed results presented in Table
10.3 are identical to those obtained by [141, Table 4, p. 108]. Once the
ellipsoidal Cartesian coordinates have been derived, the ellipsoidal co-
ordinates (ellipsoidal longitude L, ellipsoidal latitude B and height H)
can be computed using (10.28), (10.29) and (10.30) in Solution 10.6.

Table 10.3. Computed ellipsoidal cartesian coordinates and the Lagrange factor

Point x1(m) x2(m) x3(m) x4(m
−2)

1 3980099.549 0.000 4967207.921 5.808116e-019
2 0.000 0.000 6356752.314 3.867016e-019
3 0.000 0.000 -6356752.314 1.933512e-018
4 4420299.446 529436.317 4552101.519 1.897940e-017
5 4157391.441 664816.285 4775047.592 1.355437e-018
6 -2125695.991 6012783.798 -91773.503 3.880221e-020
7 5065341.132 3875548.170 -55286.450 2.017617e-017
8 213453.298 5633237.315 2973569.442 3.450687e-017

Example 10.2 (Case study: Baltic sea level project). Let us adopt the
world geodetic datum 2000 with the semi-major axis a=6378136.602 m
and semi-minor axis b=6356751.860 m from [136]. Here we take ad-
vantage of given Cartesian coordinates of 21 points of the topographic
surface of the Earth presented in Table 10.4. Using these data, the co-
efficients of (10.26) are computed and used to solve for x4. With the
admissible values of x4 substituted in (10.27), the values of the ellip-
soidal Cartesian coordinates (x1, x2, x3) = (x, y, z) are produced and
are as presented in Table 10.5. They are finally converted by means
of Solution 10.6 to (L, B, H) in Table 10.6. Figure 10.6 depicts the
mapping of topographical points onto the reference ellipsoid.
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Fig. 10.6. Baltic sea level project topographic points mapped on to the interna-
tional reference ellipsoid E

2

a,a,b

Table 10.4. Baltic sea level project: Cartesian coordinates of topographic points

Station X(m) Y (m) Z(m)
Borkum (Ger) 3770667.9989 446076.4896 5107686.2085
Degerby (Fin) 2994064.9360 1112559.0570 5502241.3760

Furuoegrund (Swe) 2527022.8721 981957.2890 5753940.9920
Hamina (Fin) 2795471.2067 1435427.7930 5531682.2031
Hanko (Fin) 2959210.9709 1254679.1202 5490594.4410

Helgoland (Ger) 3706044.9443 513713.2151 5148193.4472
Helsinki (Fin) 2885137.3909 1342710.2301 5509039.1190
Kemi (Fin) 2397071.5771 1093330.3129 5789108.4470

Klagshamn (Swe) 3527585.7675 807513.8946 5234549.7020
Klaipeda (Lit) 3353590.2428 1302063.0141 5249159.4123
List/Sylt (Ger) 3625339.9221 537853.8704 5202539.0255

Molas (Lit) 3358793.3811 1294907.4149 5247584.4010
Mntyluoto (Fin) 2831096.7193 1113102.7637 5587165.0458

Raahe (Fin) 2494035.0244 1131370.9936 5740955.4096
Ratan (Swe) 2620087.6160 1000008.2649 5709322.5771

Spikarna (Swe) 2828573.4638 893623.7288 5627447.0693
Stockholm (Swe) 3101008.8620 1013021.0372 5462373.3830

Ustka (Pol) 3545014.3300 1073939.7720 5174949.9470
Vaasa (Fin) 2691307.2541 1063691.5238 5664806.3799
Visby (Swe) 3249304.4375 1073624.8912 5364363.0732

OElands N. U. (Swe) 3295551.5710 1012564.9063 5348113.6687
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Table 10.5. Computed ellipsoidal Cartesian coordinates (x1, x2, x3) = (x, y, z) and
Lagrange multiplier x4

Station x1(m) x2(m) x3(m) x4(m
−2)

Borkum (Ger) 3770641.3815 446073.3407 5107649.9100 1.746947e-019
Degerby (Fin) 2994054.5862 1112555.2111 5502222.2279 8.554612e-020

Furuoegrund (Swe) 2527009.7166 981952.1770 5753910.8356 1.288336e-019
Hamina (Fin) 2795463.7019 1435423.9394 5531667.2524 6.643801e-020
Hanko (Fin) 2959199.2560 1254674.1532 5490572.5584 9.797001e-020

Helgoland (Ger) 3706019.4100 513709.6757 5148157.7376 1.705084e-019
Helsinki (Fin) 2885126.2764 1342705.0575 5509017.7534 9.533532e-020
Kemi (Fin) 2397061.6153 1093325.7692 5789084.2263 1.028464e-019

Klagshamn (Swe) 3527564.6083 807509.0510 5234518.0924 1.484413e-019
Klaipeda (Lit) 3353562.2593 1302052.1493 5249115.3164 2.065021e-019
List/Sylt (Ger) 3625314.3442 537850.0757 5202502.0726 1.746017e-019

Molas (Lit) 3358777.7367 1294901.3835 5247559.7944 1.152676e-019
Mntyluoto (Fin) 2831087.1439 1113098.9988 5587146.0214 8.370165e-020

Raahe (Fin) 2494026.5401 1131367.1449 5740935.7483 8.418639e-020
Ratan (Swe) 2620078.1000 1000004.6329 5709301.7015 8.988111e-020

Spikarna (Swe) 2828561.2473 893619.8693 5627422.6007 1.068837e-019
Stockholm (Swe) 3100991.6259 1013015.4066 5462342.8173 1.375524e-019

Ustka (Pol) 3544995.3045 1073934.0083 5174921.9867 1.328158e-019
Vaasa (Fin) 2691299.0138 1063688.2670 5664788.9183 7.577249e-020
Visby (Swe) 3249290.3945 1073620.2512 5364339.7330 1.069551e-019

OElands N. U. (Swe) 3295535.1675 1012559.8663 5348086.8692 1.231803e-019

Table 10.6. Baltic sea level project: Geodetic coordinates computed from ellip-
soidal Cartesian coordinates in closed form

Station Longitude L Latitude B Ellipsoidal height H
◦ ′ ′′ ◦ ′ ′′ m

Borkum (Ger) 6 44 48.5914 53 33 27.4808 45.122
Degerby (Fin) 20 23 4.0906 60 1 52.8558 22.103

Furuoegrund (Swe) 21 14 6.9490 64 55 10.2131 33.296
Hamina (Fin) 27 10 47.0690 60 33 52.9819 17.167
Hanko (Fin) 22 58 35.4445 59 49 21.6459 25.313

Helgoland (Ger) 7 53 30.3480 54 10 29.3979 44.042
Helsinki (Fin) 24 57 24.2446 60 9 13.2416 24.633
Kemi (Fin) 24 31 5.6737 65 40 27.7029 26.581

Klagshamn (Swe) 12 53 37.1597 55 31 20.3311 38.345
Klaipeda (Lit) 21 13 9.0156 55 45 16.5952 53.344
List/Sylt (Ger) 8 26 19.7594 55 1 3.0992 45.101

Molas (Lit) 21 4 58.8931 55 43 47.2453 29.776
Mntyluoto (Fin) 21 27 47.7777 61 35 39.3552 21.628

Raahe (Fin) 24 24 1.8197 64 38 46.8352 21.757
Ratan (Swe) 20 53 25.2392 63 59 29.5936 23.228

Spikarna (Swe) 17 31 57.9060 62 21 48.7645 27.620
Stockholm (Swe) 18 5 27.2528 59 19 20.4054 35.539

Ustka (Pol) 16 51 13.8751 54 35 15.6866 34.307
Vaasa (Fin) 21 33 55.9146 63 5 42.8394 19.581
Visby (Swe) 18 17 3.9292 57 38 21.3487 27.632

OElands N. U. (Swe) 17 4 46.8542 57 22 3.4508 31.823
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10.4 Concluding Remarks

The chapter has presented a new and direct algebraic approach to the
mapping problem that has attracted alot of research as evidenced in
Table 10.1. All that is required is for the user to apply equations (10.26)
and (10.27).
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Positioning by Resection Methods

11.1 Resection Problem and its Importance

In Chap. 9, ranging method for positioning was presented where dis-
tances were measured to known targets. In this chapter, an alternative
positioning technique which uses direction measurements as opposed
to distances is presented. This positioning approach is known as the
resection. Unlike in ranging where measured distances are affected by
atmospheric refraction, resection methods have the advantage that the
measurements are angles or directions which are not affected by refrac-
tion.

Resection methods find use in densification of GPS networks. In
Fig. 9.1 for example, if the station inside the tunnel or forest is a GPS
station, a GPS receiver can not be used due to signal blockage. In such
a case, horizontal and vertical directions are measured to three known
GPS stations using a theodolite or total station operating in the local
positioning systems (LPS). These angular measurements are converted
into global reference frame’s equivalent using (7.18) and (7.19). The
coordinates of the unknown tunnel or forest station is finally computed
using resection techniques that we will discuss later in the chapter.
A more recent application of resection is demonstrated by [123] who
applies it to find the position and orientation of scanner head in object
space (Fig. 11.11). The scanner is then used to monitor deformation of a
steep hillside in Fig. 11.21 which was inaccessible. The only permissible
deformation monitoring method was through remote sensing scanning
technique.

To understand the resection problem, consider Fig. 11.3.

1Courtesy of Survey Review: Gordon and Lichti (2004)
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Fig. 11.1. Position and orientation of scanner head
c©Survey Review: Gordon and Lichti (2004)

Fig. 11.2. Slope and Lower Walkway at Kings Park
c©Survey Review: Gordon and Lichti (2004)

The planar (two-dimensional) resection problem is formulated as
follows: Given horizontal direction measurements Ti from unknown
station P0 ∈ E2 to three known stations Pi|i = 1, 2, 3 ∈ E2 in Fig.
11.3, determine the position {x0, y0} and orientation {σ} of P0. For
the three-dimensional resection, the unknown position {X0, Y0, Z0} of
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point P0 ∈ E3 and the orientation unknown Σ have to be determined.
In this case therefore, in addition to horizontal directions Ti, vertical
directions Bi have to be measured. In photogrammetry, image coordi-
nates on the photographs are used instead of direction measurements.

P1

P2

P3

P0

Fig. 11.3. Planar resection

Equations relating unknowns and the measurements are nonlin-
ear and the solution has been by linearized numerical iterative tech-
niques. This has been mainly due to the difficulty of solving in closed
form the underlying nonlinear systems of equations. Procedures for
solving planar nonlinear resection are reported by [68] to exceed 500!
Several procedures put forward as early as 1900 concentrated on the
solution of the overdetermined version as evidenced in the works
of [173, 282, 331, 332, 333]. Most of these works were based on the
graphical approaches. Procedures to solve closed form planar resection
were put forward by [75] and later by [12, 32, 64, 156, 195].

The search towards the solution of the three-dimensional resection
problem traces its origin to the work of a German mathematician J. A.
Grunert [162] whose publication appeared in the year 1841. Grunert
(1841) solved the three-dimensional resection problem – what was then
known as the “Pothenot’s” problem – in a closed form by solving an
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algebraic equation of degree four. The problem had hitherto been solved
by iterative means mainly in photogrammetry and computer vision.
Procedures developed later for solving the three-dimensional resection
problem revolved around improvements of the approach of [162] with
the aim of searching for optimal means of distances determination.
Whereas [162] solved the problem by substitution approach in three
steps, more recent desire has been to solve the distance equations in
less steps as exemplified in the works of [107, 109, 156, 224, 225, 249].
In [176, 177, 255], extensive review of these procedures are presented.
Other solutions of three-dimensional resection include the works of [11,
24, 25, 123] among others. The closed form solution of overdetermined
three-dimensional resection is presented in [26] and elaborate literature
on the subject presented in [11].

In this chapter, Grunert’s distance equations for three-dimensional
resection problem are solved using the algebraic techniques of Groeb-
ner basis and polynomial resultants. The resulting quartic polynomial
is solved for the unknown distances and the admissible solution sub-
stituted in any equation of the original system of polynomial equa-
tions to determine the remaining two distances. Once distances have
been obtained, the position {X0, Y0, Z0} are computed using the rang-
ing techniques discussed in Chap. 9. The three-dimensional orientation
unknown Σ is thereafter solved using partial Procrustes algorithm of
Chap. 8.

11.2 Geodetic Resection

11.2.1 Planar Resection

For planar resection, if the horizontal directions are oriented arbitrarily,
the unknown orientation in the horizontal plane σ has to be determined
in addition to position {x, y} of the observing unknown station. The
coordinates Xi, Yi | i ∈ {1, 2, 3} of the known target stations Pi ∈
E2 | i ∈ {1, 2, 3} are given in a particular reference frame. Horizontal
directions Ti | i ∈ {1, 2, 3} are observed from an unknown station to
the three known target stations. The task at hand as already stated
in Sect. 11.1 is to determine the unknowns {x, y, σ}. The observation
equation is formulated as

tan(Ti + σ) =
yi − y

xi − x
| ∀i = 1, 2, 3. (11.1)
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Next, we present three approaches which can be used to solve (11.1)
namely; conventional analytical solution, Groebner basis and Sylvester
resultants methods.

Conventional Analytical Solution

Using trigonometric additions theorem as suggested by [75], (11.1) is
expressed as

tan Ti + tan σ

1 − tan Ti tan σ
=

yi − y

xi − x
| ∀i = 1, 2, 3, (11.2)

leading to

(tan Ti + tan σ)(xi − x) = (1 − tan Ti tan σ)(yi − y). (11.3)

Expanding (11.3) gives

y(tan Ti tan σ) − yi(tan Ti tan σ) − y + yi = xitan Ti + xitan σ − xtan Ti − xtan σ.
(11.4)

Equation (11.4) leads to a nonlinear system of equations in the
unknowns {x, y, σ} as

⎡
⎣ y(tanT1tan σ) − y1(tanT1tan σ) − y + y1 = x1tanT1 + x1tan σ − xtanT1 − xtan σ

y(tanT2tan σ) − y2(tanT2tan σ) − y + y2 = x2tanT2 + x2tan σ − xtanT2 − xtan σ
y(tanT3tan σ) − y3(tanT3tan σ) − y + y3 = x3tanT3 + x3tan σ − xtanT3 − xtan σ,

(11.5)

which is solved in three steps for σ and then substituted in the first
two equations of (11.5) to obtain the unknowns {x, y}. The procedure
is performed stepwise as follows:

Step 1 (elimination): In this step, the variable y and the term xtan σ
are eliminated from the three equations by subtracting the second
and third expressions of (11.5) from the first. This results in⎡
⎢⎢⎢⎢⎣

ytanσ(tanT1 − tanT2) = (tanT2 − tanT1)x + (x1 − x2 + y1tanT1

−y2tanT2)tanσ + x1tanT1 − x2tanT2 − y1 + y2

ytanσ(tanT1 − tanT3) = (tanT3 − tanT1)x + (x1 − x3 + y1tanT1

−y3tanT3)tanσ + x1tanT1 − x3tanT3 − y1 + y3.
(11.6)



170 11 Positioning by Resection Methods

Step 2 (division): The first expression of (11.6) is divided by (tanT1−
tanT2) and the second expression by (tanT1 − tanT3). This is done
in-order to make ytan σ appearing on the left-hand-side of both
equations the subject of the formula. The net results are:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ytanσ = −x +
x1 − x2 + y1tanT1 − y2tanT2

tanT1 − tanT2
tanσ

+
x1tanT1 − x2tanT2 − y1 + y2

tanT1 − tanT2

ytanσ = −x +
x1 − x3 + y1tanT1 − y3tanT3

tanT1 − tanT3
tanσ

+
x1tanT1 − x3tanT3 − y1 + y3

tanT1 − tanT3
.

(11.7)

Step 3 (elimination): In (11.7), we note that ytan σ and x appear in
both expressions. They are eliminated by subtracting the second
expression from the first. On re-arranging the resulting expression
leads to tanσ on the left-hand-side as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

tan σ =
N

D

N =
x1tanT1 − x2tanT2 − y1 + y2

tanT1 − tanT2

+
x3tanT3 − x1tanT1 − y3 + y1

tanT1 − tanT3

D =
x1 − x3 + y1tanT1 − y3tanT3

tanT1 − tanT3

+
x2 − x1 + y2tanT2 − y1tanT1

tanT1 − tanT2

(11.8)

Step 4 (solution of {x, y}): Once we have solved for σ in (11.8), the
first and the second expressions of (11.5) are re-written in the final
step with x, y on the left-hand-side as[

a11y + a12x = b11

a21y + a22x = b22,
(11.9)

where; ⎡
⎢⎢⎢⎢⎢⎢⎣

a11 = (tanT1tanσ − 1),
a12 = (tanT1 + tanσ),
a21 = (tanT2tanσ − 1),
a22 = (tanT2 + tanσ),
b11 = y1tanT1tanσ − y1 + x1tanT1 + x1tanσ,
b22 = y2tanT2tanσ − y2 + x2tanσ + x2tanT2.
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In matrix form, (11.9) is expressed as[
a11 a12

a21 a22

] [
y
x

]
=

[
b11

b22

]
, (11.10)

giving the solutions as[
y
x

]
= (a11a22 − a21a12)

−1

[
a22 −a12

−a21 a11

] [
b11

b22

]
(11.11)

or �
�

�
�

y = (a11a22 − a21a12)
−1(a22b11 − b22a12)

x = (a11a22 − a21a12)
−1(a11b22 − b11a21)

, (11.12)

which completes the conventional analytic solution.

Groebner Basis Approach

Denoting a = tan T1, b = tan T2, c = tan T3, and d = tan σ, (11.5) is
simplified in lexicographic order y > x > d as⎡
⎣f1 := −y + ady + ax + xd − y1ad − x1d − x1a + y1 = 0

f2 := −y + bdy + bx + xd − y2bd − x2d − x2b + y2 = 0
f3 := −y + cdy + cx + xd − y3cd − x3d − x3c + y3 = 0.

(11.13)

The reduced Groebner basis (4.38) on p. 44 is then computed as⎡
⎣GroebnerBasis [{f1, f2, f3}, {x, y, d}, {x, y}]

GroebnerBasis [{f1, f2, f3}, {x, y, d}, {y}]
GroebnerBasis [{f1, f2, f3}, {x, y, d}, {x}].

(11.14)

The first expression of (11.14) gives a linear equation in the variable
d allowing the computation of the unknown orientation parameter σ.
The second and the third expressions respectively give linear equations
in x and y in the variable d. The computed reduced Groebner basis re-
arranged with the unknown terms on the left-hand-side are presented
in Solution 11.1.
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Solution 11.1 (Reduced Groebner basis computation of planar
resection). ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d =
N1

D1

x = − N2

(−cd2 + a − c + ad2)

y = − N3

(b − c + bd2 − cd2)
,

(11.15)

where⎡
⎢⎢⎢⎢⎣

N1 = −(abX1 − acX1 + aY2 − abX2 + bcX2 − aY3 + acX3

−bcX3 − bY1 + cY1 − cY2 + bY3)

D1 = (bX1 − aX2 + aX3 − bX3 + abY1 − acY1 − cX1 − abY2

+bcY2 + cX2 + acY3 − bcY3),

N2 =

[
(−adY1 − cdY1 + acd2Y1 − Y3 − aX1 − dX1 + acdX1 + cd2X1

+cX3 + dX3 − acdX3 − ad2X3 + Y1 + adY3 + cdY3 − acd2Y3)

and

N3 =

[
(−bcX2 − bdX2 − cdX2 − d2X2 + bcX3 + bdX3 + cdX3 + d2X3

+cY2 + dY2 − bcdY2 − bd2Y2 − bY3 − dY3 + bcdY3 + cd2Y3).

Once d has been computed from the first expression of (11.15), it is
inserted into the second and third expressions to solve the unknowns
{x, y} respectively. The unknown orientation in the horizontal plane is
then computed via σ = tan−1d.

Sturmfels’ Resultant Approach

Let z be a homogenizing variable for (11.13). In-order to solve for the
variable d in (11.13), we hide d by making it a polynomial of degree
zero (i.e., treating it as a constant) as⎡

⎣g1 := −y + ady + ax + dx + (−y1ad − x1d − x1a + y1)z= 0
g2 := −y + bdy + bx + dx + (−y2bd − x2d − x2b + y2)z= 0
g3 := −y + cdy + cx + dx + (−y3cd − x3d − x3c + y3)z= 0,

(11.16)
which is expressed in the form (5.12) as
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Jd = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂g1

∂x

∂g1

∂y

∂g1

∂z

∂g2

∂x

∂g2

∂y

∂g2

∂z

∂g3

∂x

∂g3

∂y

∂g3

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= det

⎡
⎣ (a + d) (ad − 1) (y1 − y1ad − x1d − x1a)

(b + d) (bd − 1) (y2 − y2bd − x2d − x2b)
(c + d) (cd − 1) (y3 − y3cd − x3d − x3c)

⎤
⎦ .

(11.17)

Equation (11.17) leads to

	
 ��e3d
3 + e2d

2 + e1d + e0 = 0 ,

with
e3 = ax3 − bx3 − ay2b − ax2 + cx2 − cx1 + cy2b + ay3c − cy1a + bx1 + by1a − by3c

e2 = cy1 − ax2b + ay2 + ax3c − by1 − ay3 + bx1a + by3 + cx2b − cy2 − cx1a − bx3c

e1 = ax3 − bx3 − ay2b − ax2 + cx2 − cx1 + cy2b + ay3c − cy1a + bx1 + by1a − by3c

e0 = cy1 − ax2b + ay2 + ax3c − by1 − ay3 + bx1a + by3 + cx2b − cy2 − cx1a − bx3c.
(11.18)

The value of d is then solved from (11.18) using Matlab’s roots com-
mand (see 4.40 on p. 44). Comparing the expressions for d in (11.15)
and (11.18), we note that the reduced Groebner basis in Solution 11.1
gave a linear function while the Sturmfels’ approach results in a cu-
bic polynomial. Both expressions however lead to the same numerical
results. The advantage of reduced Groebner basis over the Sturmfels’
approach, however, is that the solution is uniquely determined. Sturm-
fels’ approach requires prior information to choose the admissible value
of d from the three solutions. Once this value has been selected, the
coordinates {x, y} are then solved in terms of d as follows:

1. Hiding x and solving in terms of d from (f1, f2) of (11.13) gives[
h1 := (ad − 1)y + (ax + dx − y1ad − x1d − x1a + y1)z= 0
h2 := (bd − 1)y + (bx + dx − y2bd − x2d − x2b + y2)z= 0.

(11.19)
Applying (5.12) leads to
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Jx = det

⎡
⎢⎢⎢⎣

∂h1

∂y

∂h1

∂z

∂h2

∂y

∂h2

∂z

⎤
⎥⎥⎥⎦ = det

[
(ad − 1) (ax + dx − y1ad − x1d − x1a + y1)
(bd − 1) (bx + dx − y2bd − x2d − x2b + y2)

]
.

(11.20)

The Jacobian determinant of (11.20) is

[
x = −(y1 + ady2 − ad2y2b − ad2x2 − adx2b + x1abd − y2 + y2bd + x2d
+x2b + y1ad2b − y1ad − y1bd − x1d − x1a + x1d

2b)/(a + ad2 − b − d2b).
(11.21)

2. Hiding y and solving in terms of d from (f2, f3) of (11.13) gives[
k1 := (b + d)x + (bdy − y − y2bd − x2d − x2b + y2)z= 0
k2 := (c + d)x + (cdy − y − y3cd − x3d − x3c + y3)z= 0,

(11.22)
whose Jacobian determinant

Jy = det

⎡
⎢⎢⎣

∂k1

∂x

∂k1

∂z

∂k2

∂x

∂k2

∂z

⎤
⎥⎥⎦ = det

[
(b + d) (bdy − y − y2bd − x2d − x2b + y2)
(c + d) (cdy − y − y3cd − x3d − x3c + y3)

]
.

(11.23)

leads to

[
y = −(−y2d + by3 − by3cd − bx3d − bx3c + x2bc + dy3 − y3cd

2 − x3d
2

−dx3c + y2bdc + y2bd
2 − y2c + x2d

2 + x2bd + x2dc)/(−bd2 − b + cd2 + c)
(11.24)

Once d has been computed from ((11.18), it is used in (11.21) and
(11.24) to obtain x and y respectively. The unknown orientation in the
horizontal plane can now be computed via σ = tan−1d.

Example 11.1. Let us consider the Example given by [195, p. 234] with
our axis defined such that the Easting refer to the Y −axis and the Nor-
thing refer to the X−axis. The input data are given in Table 11.1 for
the coordinates of three known stations A, B and M which are denoted
by P1, P2 and P3 respectively in Fig. 11.3. Table 11.2 gives directional
observations Ti | i ∈ {1, 2, 3} from the observing unknown station
P ∈ E2 (whose unknown x, y coordinates and orientation parameter σ
are sought) to three known stations Pi ∈ E2 | i ∈ {1, 2, 3} whose coordi-
nates Xi, Yi | i ∈ {1, 2, 3} are given in Table 11.1. The obtained results
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from either reduced Groebner basis or Sturmfels’ resultant algebraic
approaches are presented in Table 11.3. They are identical to those
of [195, p. 234] once we interchange the axes. If Sturmfels’ solution is
adopted in (11.18), two complex and one real values of d are obtained.
The real value, which is identical to that obtained from reduced Groeb-
ner basis solution (11.15) is used to solve for σ from σ = tan−1d.

Table 11.1. Coordinates of known stations Pi ∈ E
2 | i ∈ {1, 2, 3}

Station Easting Northing
Y (m) X(m)

P1 46867.94 5537.00
P2 51293.86 6365.89
P3 49666.56 4448.58

Table 11.2. Directions measured from unknown station P ∈ E
2 to known stations

Pi ∈ E
2 | i ∈ {1, 2, 3}

Station Horizontal directions
◦ ′ ′′

P1 60 07 50
P2 265 18 22
P3 326 33 59

Table 11.3. Position and orientation of station P ∈ E
2.

Station Easting Northing Orientation unknown
Y (m) X(m) ◦ ′ ′′

P 48613.3384 6361.1690
σ 4 35 34.7

11.2.2 Three-dimensional Resection

Exact Solution

Closed form solution of three-dimensional resection problem concerns
itself with the determination of position and orientation of a point P
connected by angular observations of type horizontal directions Ti and
vertical directions Bi to three known stations P1, P2, P3 (see e.g., Fig.
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9.12 on p. 134). From these angular measurements, distances are de-
rived by solving equations known as Grunert’s equations. Once the
distances have been established, the unknown position P is determined
using ranging techniques that we discussed in Sect. 9.3.2 of Chap. 9.
The closed form solution of the three-dimensional resection problem
is completed by solving the unknown orientation parameters that re-
late the global reference frame F• to the local level reference frame of
type F∗. As we have already pointed out in Sect. 11.1, several proce-
dures have been suggested for solving Grunert’s equations. This section
presents three alternative algebraic methods for solving explicitly the
three-dimensional resection problem namely; Groebner basis, polyno-
mial resultants and Grafarend-Lohse-Schaffrin methods.

Solution of Grunert’s Distance Equations

We begin in Solution 11.2 by deriving Grunert’s distance equations.
These equations relate;

(i) known distances Sij , i, j = 1, 2, 3 |i �= j computed from known sta-
tions,

(ii) unknown distances Si, i = 1, 2, 3 between the unknown station
P ∈ E3, and three known stations Pi ∈ E3 | i ∈ {1, 2, 3} and

(iii) the spatial angles ψij , i, j = 1, 2, 3 |i �= j derived from measured
horizontal directions Ti and vertical directions Bi in the local level
reference frame F.∗

In Solution 11.2, multiplying (7.11) on p. 83 by (11.25) leads to (11.26).
After manipulations of (11.27),(11.28) and (11.29), space angles ψij can
be written in terms of spherical coordinates {Ti, Bi} , {Tj , Bj} of points
Pi and Pj with respect to a theodolite orthogonal Euclidean frame F∗

as in (11.30). The Grunert’s equations for the three unknown distances
S1, S2, S3 are then written in terms of known distances S12, S23, S31 and
space angles ψ12, ψ23, ψ31 (illustrated in Fig. 9.12, p. 134) as in (11.32).

Solution of (11.32) was first proposed by J. A. Grunert [162]. Pro-
cedures that were later developed sought to optimize the solution of
(11.32) in terms of computational steps. In particular, the interest was
to reduce the order of the univariate polynomial that resulted following
the solution of (11.32). Such procedures were encountered in Sect. 11.1.
In what follows, we present algebraic solution of (11.32).
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Solution 11.2 (Derivation of Grunert’s distance equations).

(−2) [cos Tj cos Bj , sinTj cos Bj , sinBj ]Sj (11.25)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−2)[cosTjcosBj , sinTjcosBj , sinBj ]SiSj

⎡
⎣ cosTicosBi

sinTicosBi

sinBi

⎤
⎦ =

(−2)[(Xj − X), (Yj − Y ), (Zj − Z)]

⎡
⎣Xi − X

Yi − Y
Zi − Z

⎤
⎦

(11.26)

(Xj − X)(Xi − X) = XjXi − XjX − XiX + X2

(Xi − Xj)(Xi − Xj) = X2
i − 2XiXj + X2

j

(Xi − X)(Xi − X) = X2
i − 2XiX + X2

(Xj − X)(Xj − X) = X2
j − 2XjX + X2

⎤
⎥⎥⎦⇒

⇒ (Xi − Xj)
2 − (Xi − X)2 − (Xj − X)2 = −2(Xj − X)(Xi − X)

(11.27)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−2)[cosTjcosBj , sinTjcosBj , sinBj ]SiSj

⎡
⎣ cosTicosBi

sinTicosBi

sinBi

⎤
⎦ =

⎧⎨
⎩

(Xi − Xj)
2 + (Yi − Yj)

2 + (Zi − Zj)
2−

−(Xi − X)2 − (Yi − Y )2 − (Zi − Z)2−
−(Xj − X)2 − (Yj − Y )2 − (Zj − Z)2

⎫⎬
⎭

(11.28)

⎡
⎢⎢⎣
−2 {sinBj sinBi + cosBj cos Bi cos(Tj − Ti)}SiSj =

=

⎧⎨
⎩

(Xi − Xj)
2 + (Yi − Yj)

2 + (Zi − Zj)
2 −

− (Xi − X)2 − (Yi − Y )2 − (Zi − Z)2 −
− (Xj − X)2 − (Yj − Y )2 − (Zj − Z)2

⎫⎬
⎭ (11.29)

cos ψij = cos Bi cos Bj cos(Tj − Ti) + sin Bi sinBj (11.30)[−2 cos ψijSiSj = S2
ij − S2

i − S2
j

S2
ij = S2

i + S2
j − 2SiSj cos ψij

(11.31)

⎡
⎣S2

12 = S2
1 + S2

2 − 2S1S2 cos ψ12

S2
23 = S2

2 + S2
3 − 2S2S3 cos ψ23

S2
31 = S2

3 + S2
1 − 2S3S1 cos ψ31

(11.32)
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Groebner Basis Solution of Grunert’s Equations

In-order to quicken our understanding of the application of Groebner
basis to solve Grunert’s distance equations (11.32), let us consider a
simple case of a regular tetrahedron. A regular tetrahedron presents a
unique case where all the distances and spatial angles of Fig. 9.12 on
p. 134 are equal. Instead of computing Groebner basis using 4.36 on
p. 43, we will demonstrate by a hand computation how Groebner basis
can be computed. Later, we will apply (4.36) to solve the general case
of (11.32). We begin by expressing (11.32) in algebraic form⎡

⎣x2
1 − 2a12x1x2 + x2

2 − a0 = 0
x2

2 − 2b23x2x3 + x2
3 − b0 = 0

x2
1 − 2c31x1x3 + x2

3 − c0 = 0,
(11.33)

where the unknown distances {S1, S2, S3} that appear in (11.32) are de-
noted by {x1, x2, x3}. The distances between known stations {S12, S23,
S31} are denoted by {ao, bo, co}, while the constants {a12, b23, c31} repre-
sent {cos ψ12, cos ψ23, cos ψ31} respectively. Equation (11.33) therefore
has only the distances {x1, x2, x3} as unknowns. These are the distances
relating the unknown station P0 to the known stations Pi|{i=1,2,3}.
Grafarend [156] demonstrated that for each of the quadratic equation
in (11.33), there exists an elliptical cylinder in the planes {x1, x2} ,
{x2, x3} and {x3, x1} for the first, second and third equations respec-
tively. These cylinders are constrained to their first quadrant since the
distances are positive thus {x1 ∈ R+} , {x2 ∈ R+} and {x3 ∈ R+}. For
a regular tetrahedron, the distances x1 = x2 = x3 joining the unknown
station P ∈ E3 to three known stations Pi ∈ E3|{i=1,2,3} are all equal
to the distances S12 = S23 = S31 between the known stations. Let us
give these distances a value +

√
d. The spatial angles are also equal

(i.e., ψ12 = ψ23 = ψ31 = 60◦). In Solution 11.3, a hand computation of
Groebner basis of (11.33) is carried out and used to find the Grunert’s
distances for the regular tetrahedron (i.e., show that the desired solu-
tions for {x1, x2, x3} ∈ R+ are x1 = x2 = x3 = +

√
d.)

Solution 11.3 (Hand computation of Groebner basis of (11.32)
for a regular tetrahedron). For a regular tetrahedron, where ψij =
60◦, and a0 = b0 = c0 = d, (11.33) is re-written in lexicographic order
x1 > x2 > x3 as ⎡

⎣x2
1 − x1x2 + x2

2 − d = 0
x2

2 − x2x3 + x2
3 − d = 0

x2
1 − x1x3 + x2

3 − d = 0,
(11.34)
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giving rise to the Ideal I (e.g., 4.14 on p. 34) as

I =
〈
x2

1 − x1x2 + x2
2 − d, x2

2 − x2x3 + x2
3 − d, x2

1 − x1x3 + x2
3 − d

〉
⊂ R [x1, x2, x3] ,

(11.35)
whose generators G are⎡

⎣g1 = x2
1 − x1x2 + x2

2 − d
g2 = x2

1 − x1x3 + x2
3 − d

g3 = x2
2 − x2x3 + x2

3 − d.
(11.36)

Desired now are the Groebner basis (simplified structure) of the gen-
erators (11.36) of the Ideal I in (11.35). Using (4.23) on p. 39, the S
pair polynomials (g1, g2), (g1, g3), (g2, g3) are computed from the gener-
ators (11.36). From B. Buchberger’s third criterion explained in Chap.
4, we notice that LM(g2) = x2

1 divides the LCM(g1, g3) = x2
1x

2
2. One

therefore suppresses (g1, g3) and considers only (g1, g2), (g2, g3) instead.
S(g1, g2) gives

S(g1, g2) = −x1x2 + x1x3 + x2
2 − x2

3, (11.37)

which is reduced with respect to G by subtracting g3 to obtain

−x1x2 + x1x3 − 2x2
3 + x2x3 + d. (11.38)

Equation (11.38) does not reduce to zero and is added to the original
list G of the generating set of the Ideal I as g4. The S–polynomial
pairs to be considered next are S(g2, g3), S(g2, g4) and S(g3, g4) from
the new generating set G = {g2, g3, g4}. Since LM(g2) and LM(g3) are
relatively prime, S(g2, g3) reduces to zero modulo G (S(g2, g3) →G 0).
The S pair polynomials remaining for consideration are (g2, g4) and
(g3, g4). S(g2, g4) gives

S(g2, g4) = x2
1x3 + x1d − 2x1x

2
3 + x2x

2
3
− x2d, (11.39)

which is reduced with respect to G by subtracting x3g2 to give

x1d − x1x
2
3 + x2x

2
3 − x2d − x3

3 + x3d, (11.40)

Equation (11.40) does not reduce to zero and is added to the list G of
the generating set of the Ideal I as g5. The S–polynomial pair to be con-
sidered next is S(g3, g4) from the new generating set G = {g2, g3, g4, g5}
. S(g3, g4) gives
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S(g3, g4) = −x1x
2
3 + x1d + 2x2x

2
3 − x2

2x3 − x2d, (11.41)

which is reduced with respect to G by subtracting g5 and adding x3g3

to give
2x3

3 − 2x3d. (11.42)

Equation (11.42) is a univariate polynomial and completes the solution
of the set G of Groebner basis summarized as

G :=

⎡
⎢⎢⎢⎢⎣

g2 = x2
1 − x1x3 + x2

3 − d
g3 = x2

2 − x2x3 + x2
3 − d

g4 = −x1x2 + x1x3 − 2x2
3 + x2x3 + d

g5 = x1d − x1x
2
3 + x2x

2
3 − x2d − x3

3 + x3d
g6 = 2x3

3 − 2x3d.

(11.43)

From the computed Groebner basis in (11.43), one notes that the el-
ement g6 = 2x3

3 − 2x3d is a cubic polynomial in x3 and readily gives

the values of x3 =
{

0 ,±√
d
}

. The solutions to the Grunert’s distance

equations (11.33) for a regular tetrahedron are then deduced as fol-
lows: Since S3 = x3 ∈ R+, the value of S3 = +

√
d. This is substituted

back in g3 = x2
2 − x2x3 + x2

3 − d and g2 = x2
1 − x1x3 + x2

3 − d to

give x2 =
{

0 , +
√

d
}

and x1 =
{

0 , +
√

d
}

respectively. This completes

the solution of Grunert’s distance equations (11.33) for the unknown
distances x1 = x2 = x3 = +

√
d as we had initially assumed.

Having demonstrated a hand computation of Groebner basis of the
Grunert’s distance equations (11.32) for a regular tetrahedron, let us
consider next the general case. The geometry of the three-dimensional
resection problem in practice is hardly a regular tetrahedron. Beginning
by expressing (11.32) algebraically as⎡

⎣g1 := x2
1 + x2

2 + a12x1x2 + a0 = 0
g2 := x2

2 + x2
3 + b23x2x3 + b0 = 0

g3 := x2
3 + x2

1 + c31x3x1 + c0 = 0,
(11.44)

where⎡
⎣S1 = x1 ∈ R+, S2 = x2 ∈ R+, S3 = x3 ∈ R+,
−2 cos ψ12 = a12,−2 cos ψ23 = b23,−2 cos ψ31 = c31,
−S2

12 = a0,−S2
23 = b0,−S2

31 = c0,
(11.45)

one forms the Ideal
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I =< x2
1+x2

2+a12x1x2+a0, x
2
2+x2

3+b23x2x3+b0, x
2
3+x2

1+c31x3x1+c0 > .
(11.46)

We then seek the Groebner basis of the generators of the Ideal (11.46).
Following lexicographic ordering {x1 > x2 > x3}, (4.36) on p. 43 is
applied as

GroebnerBasis[{g1, g2, g3}, {x1, x2, x3}], (11.47)

giving the Groebner basis of the Ideal (11.46) expressed in [24, Boxes 3-
3a and 3-3b]. Distances can also be derived from (11.44) using reduced
Groebner basis. We leave it as an exercise for the reader to try and solve
the unknown distances {x1, x2, x3} in (11.44) using reduced Groebner
basis (4.38) on p. 44.

Polynomial resultants’ solution of Grunert’s distance
equations

Besides the use of Groebner bases approach demonstrated above, poly-
nomial resultants techniques can also be used to solve Grunert’s equa-
tions for distances. We illustrate the solution of the problem using F.
Macaulay formulation of Sect. 5.3.1 and B. Sturmfels’ formulation pre-
sented in Sect. 5.3.2. We start by expressing (11.44) as⎡

⎣R1 := x2
1 + x2

2 + a12x1x2 + a0 = 0
R2 := x2

2 + x2
3 + b23x2x3 + b0 = 0

R3 := x2
1 + x2

3 + c31x1x3 + c0 = 0.
(11.48)

Clearly, (11.48) is not homogeneous (see Definition 5.1 on p. 48). It is
therefore homogenized by introducing the fourth variable x4 and treat-
ing the variable which is to be solved, say x1, as a constant (i.e., hiding
it by giving it degree zero). The resulting homogenized polynomial is⎡

⎣R11 := x2
2 + a12x1x2x4 + (a0 + x2

1)x
2
4 = 0

R21 := x2
2 + x2

3 + b23x2x3 + b0x
2
4 = 0

R31 := x2
3 + c31x1x3x4 + (x2

1 + c0)x
2
4 = 0,

(11.49)

which is simplified as⎡
⎣R11 := x2

2 + a1x2x4 + a2x
2
4 = 0

R21 := x2
2 + x2

3 + b1x2x3 + b2x
2
4 = 0

R31 := x2
3 + c1x3x4 + c2x

2
4 = 0,

(11.50)

with the coefficients denoted as a1 = a12x1, a2 = (a0 + x2
1), b1 =

b23, b2 = b0, c1 = c31x1, c2 = (c0 + x2
1).
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Approach 1 (F. Macaulay Formulation):

The first step involves the determination of the total degree of (11.50)
using (5.7) on p. 51 which gives d = 4. In the second step, one for-
mulates the general set comprising the monomials of degree 4 in three
variables by multiplying the monomials of (11.50) by each other. These
monomials form the elements of the set Xd (e.g., 5.8 on p. 51) as

Xd =

⎧⎨
⎩

x4
2, x3

2x4, x2
2x

2
3, x3

2x3, x2
2x

2
4, x2

2x3x4, x2x
3
3

x2x
3
4, x2x

2
3x4, x2x3x

2
4, x2

3x
2
4, x3x

3
4, x4

4, x4
3, x3

3x4

⎫⎬
⎭ , (11.51)

which is now partitioned in step 3 according to (5.9) on p. 52 as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xd
i = {xα | αi ≥ di andαj < dj ,∀j < i}

X4
2 = {x4

2, x3
2x4, x2

2x
2
3, x3

2x3, x2
2x

2
4, x2

2x3x4}

X4
3 = {x2x

2
3x4, x2

3x
2
4, x2x

3
3, x4

3, x3
3x4}

X4
4 = {x2x

3
4, x2x3x

2
4, x3x

3
4, x4

4}.

(11.52)

In the fourth step, the polynomials Fi are formed using the sets in
(11.52) according to (5.10) on p. 52 giving rise to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1 :=
X4

2

x2
2

f1 = {x2
2f1, x2x4f1, x2

3f1, x2x3f1, x2
4f1, x3x4f1}

F2 :=
X4

3

x2
3

f2 = {x2x4f2, x2
4f2, x2x3f2, x2

3f2, x3x4f2}

F3 :=
X4

4

x2
4

f3 = {x2x4f3, x2x3f3, x3x4f3, x2
4f3}.

(11.53)

Finally, the matrix A of dimension (15× 15) is formed as discussed on
p. 52. Its rows are the coefficients of the fi in (11.53) and the columns
are the monomials
{c1 = x4

2, c2 = x3
2x3, c3 = x3

2x4, c4 = x2
2x

2
3, c5 = x2

2x3x4, c6 = x2
2x

2
4,

c7 = x2x
3
3 , c8 = x2x

2
3x4, c9 = x2x3x

2
4, c10 = x2x

3
4, c11 = x4

3, c12 = x3
3x4,

c13 = x2
3x

2
4, c14 = x3x

3
4 and c15 = x4

4},
elements of the sets formed in (11.52). The matrix A is
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

x2
2f1 1 0 a1 0 0 a2 0 0 0 0 0 0 0 0 0

x2
3f1 0 0 0 1 0 0 0 a1 0 0 0 0 a2 0 0

x2x3f1 0 1 0 0 a1 0 0 0 a2 0 0 0 0 0 0
x2

4f1 0 0 0 0 0 1 0 0 0 a1 0 0 0 0 a2

x3x4f1 0 0 0 0 1 0 0 0 a1 0 0 0 0 a2 0
x2x4f1 0 0 1 0 0 a1 0 0 0 a2 0 0 0 0 0
x2x4f2 0 0 1 0 b1 0 0 1 0 b2 0 0 0 0 0
x2

4f2 0 0 0 0 0 1 0 0 b1 0 0 0 1 0 b2

x2
3f2 0 0 0 1 0 0 b1 0 0 0 1 0 b2 0 0

x3x4f2 0 0 0 0 1 0 0 b1 0 0 0 1 0 b2 0
x2x3f2 0 1 0 b1 0 0 1 0 b2 0 0 0 0 0 0
x2x3f3 0 0 0 0 0 0 1 c1 c2 0 0 0 0 0 0
x3x4f3 0 0 0 0 0 0 0 0 0 0 0 1 c1 c2 0
x2

4f3 0 0 0 0 0 0 0 0 0 0 0 0 1 c1 c2

x2x4f3 0 0 0 0 0 0 0 1 c1 c2 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The determinant of this matrix is a univariate polynomial of degree 8 in
the variable x1 given in [25, Box 3-1]. Its roots can be obtained using
Matlab’s roots command. Once these roots have been obtained, the
admissible solution is substituted in the third expression of (11.48) on
p. 181 to obtain the value of x3 ∈ R.+ The obtained value of x3 ∈ R+

is in turn substituted in the second expression of (11.48) to obtain the
last variable x2 ∈ R.+ The admissible values of distances are deduced
with the help of prior information.

Approach 2 (B. Sturmfels’ Formulation):

From (11.50) on p. 181, the determinant of the Jacobi matrix is com-
puted as

J = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂R11

∂x2

∂R11

∂x3

∂R11

∂x4

∂R21

∂x2

∂R21

∂x3

∂R21

∂x4

∂R31

∂x2

∂R31

∂x3

∂R31

∂x4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11.54)

respectively

J = det

⎡
⎣2x2 + a1x4 0 2a2x4 + a1x2

2x2 + b1x3 2x3 + b1x2 2b2x4

0 2x3 + c1x4 2c2x4 + c1x3

⎤
⎦ , (11.55)
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which gives a cubic polynomial in x2, x3, x4 as

J = 8x2x3c2x4 + 4x2c1x
2
3 + 4b1x

2
2c2x4 + 2b1x

2
2c1x3 − 8x2b2x4x3 −

4x2b2x2
4c1 + 4a1x

2
4x3c2 + 2a1x4c1x

2
3 + 2a1x

2
4b1x2c2 + 2a1x4b1x2c1x3 −

4a1x
2
4b2x3−2a1x

3
4b2c1+8x2a2x4x3+4x2a2x

2
4c1+4a1x

2
2x3+2a1x

2
2c1x4+

4b1x
2
3a2x4 + 2b1x3a2x

2
4c1 + 2b1x

2
3a1x2,

whose partial derivatives with respect to x2, x3, x4 can be written in
the form (5.14) on p. 54. The coefficients bij and aij are given as in [25].
The computation of the resultant of the matrix using (5.15) on p. 54
leads to a univariate polynomial in x1 of degree eight, e.g., [25, Box
3-2].

Fischler and Bolles [109, pp. 386-387, Fig. 5] have demonstrated
that because every term in (11.32) is either a constant or of degree 2,
for every real positive solution, there exist a geometrically isomorphic
negative solution. Thus there are at most four positive solutions to
(11.32). This is because (11.32) has eight solutions according to [91,
p. 415] who states that for n independent polynomial equations in n
unknowns, there can be no more solution than the product of their
respective degrees. Since each equation of (11.32) is of degree 2 there
can only be up to eight solutions.

Finally, in comparing the polynomial resultants approach to Groeb-
ner basis method, the latter in most cases is slow and there is always a
risk of the computer breaking down during computations. Besides, the
Groebner basis approach computes unwanted intermediary elements
which occupy more space and thus lead to storage problems. The overall
speed of computation is said to be proportional to twice exponential the
number of variables [235, 236, 237, 239]. This has led to various stud-
ies advocating for the use of the alternate method; the resultant and
specifically multipolynomial resultant approach. Groebner bases can be
made faster by computing the reduced Groebner bases as explained in
Chap. 4. Polynomial resultants on the other hand involve computing
with larger matrices which may require alot of work. For linear systems
and ternary quadrics, Sturmfels’ approach offers a remedy through the
application of the Jacobi determinants. Once the distances have been
computed, they are subjected to the ranging techniques (Chap. 9) to
compute positions. Finally, the three-dimensional orientation parame-
ters are computed from (8.10) on p. 97.
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Grafarend-Lohse-Schaffrin Approach

In this approach, [156] begin by first setting up rigorous projective equa-
tions of resection problem in three-dimensional Euclidean space. They
classify the equations as six dimensional algebraic system of nonlinear
equations of cubic type. In the second part, a three step procedure
is adopted for solving the Grunert’s distance equations. The nonlin-
ear system of distance equations are projected into linear equations
by means of the technique of degenerate quadrics called the stencil
method. The stencil method gives the solution of Grunert’s equation
(11.44) as ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2
1 = S2

1 = − a00

1 + 2a12p + p2

x2
2 = S2

2 = − b00p
2

p2 + 2b23pq + q2

x2
3 = S2

3 = − c00

1 + 2c31q + q2
.

(11.56)

The solution for p and q are as discussed in [156]. Once the distances
have been solved from (11.56), the three orientation parameters and
the cartesian coordinates of the unknown stations are solved from a
6 × 6 system of linear equations. The linear system of equations are
formed using the normalized Hamilton-quaternion (see e.g., p. 10). For
a complete discussion on the approach and a numerical example, we
refer to papers by [156]. Lohse [225] extends the approach by proposing
an alternative solution of the Grunert’s distance equations.

Example 11.2 (Three-dimensional resection given three known stations).
In-order to position station K1 (see Fig. 7.1 on p. 86) by resection
method, horizontal directions Ti and vertical directions Bi are measured
to three known stations Haussmanstr., Eduardpfeiffer, and Liederhalle.
The computation is performed in three steps as follows:

• In the first step, the spatial distances are computed. This involves
solving the Grunert’s distance equations.

• The second step is the computation of the GPS Cartesian coor-
dinates {X, Y, Z} of the unknown station K1 ∈ E3 in the global
reference frame using the algebraic ranging techniques of Chap. 9.

• The three-dimensional orientation parameters are computed in the
final step using the partial Procrustes approach (see Chap. 8).
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Using the computed univariate polynomials in [24, Boxes 3-3a and 3-
3b] or [25, Box 3-2], and the observations in Tables 7.1 and 7.3 on p. 88,
the distances Si = xi ∈ R,+ i = {1, 2, 3} ∈ Z3

+ between the unknown
station K1 ∈ E3 and the known stations Pi ∈ E3 are determined. For
control purposes, these distances are as expressed in Fig. 7.1. The un-
known station K1 is located on top of one of the University’s building at
Kepler Strasse 11. Points {P1, P2, P3} of the tetrahedron {PP1P2P3} in
Fig. 9.12 correspond to the chosen known GPS stations Haussmannstr.,
Eduardpfeiffer, and Liederhalle. The distance from K1 to Haussman-
nstr. is designated S1 = x1 ∈ R,+ K1 to Eduardpfeiffer S2 = x2 ∈ R,+

while that of K1 to Liederhalle is designated S3 = x3 ∈ R.+ The
distances between the known stations {S12, S23, S31} ∈ R+ are com-
puted from their respective GPS coordinates as indicated in Solution
11.4. Their corresponding space angles ψ12, ψ23, ψ31 are computed from
(11.30) on p. 177.

In-order to control the computations, the Cartesian GPS coordi-
nates of station K1 are also known. Solution 11.4 gives the unknowns
distances {x1, x2, x3} ∈ R+ computed using Groebner basis. The uni-
variate polynomial in x3 has eight roots, four of which are complex and
four real. Of the four real roots two are positive and two are negative.
The desired distance x3 ∈ R+ is thus chosen amongst the two posi-
tive roots with the help of prior information and substituted in [24,
g11 in Box 3-3b] to give two solutions of x1, one of which is positive.
Finally the obtained values of {x1, x3} ∈ R+ are substituted in [24,
g5 in Box 3-3b] to obtain the remaining indeterminate x2. Using this
procedure, we have in Solution 11.4 that S3 = {430.5286, 153.7112}.
Since S3 = x3 ∈ R,+ from prior information (e.g., Fig. 7.1), we choose
S3 = 430.5286, leading to S1 = 1324.2381, and S2 = 542.2608. These
values compare well with their real values depicted in Fig. 7.1 on p. 86.

Solution 11.4 (Computation of distances for test network
Stuttgart Central).
Using the entries of Table 7.1 on p. 88, inter-station distances are com-
puted by Pythagoras Sij =

√
(Xj − Xi)2 + (Yj − Yi)2 + (Zj − Zi)2,

and spatial angles obtained from (11.30). The values are⎡
⎣S12 = 1560.3302m

S23 = 755.8681m
S31 = 1718.1090m

and

⎡
⎣ψ12 = 1.843620

ψ23 = 1.768989
ψ31 = 2.664537
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and are substituted in (11.45) on p. 180 to compute the terms a12, b23,
c31, a0, b0, c0 which are needed to determine the coefficients of the
Groebner basis element g1 in [24, Box 3-3a]. Expressing the univariate
polynomial g1 as A8x

8
3 + A6x

6
3 + A4x

4
3 + A2x

2
3 + A0 = 0, the computed

coefficients are: ⎡
⎢⎢⎢⎢⎣

A0 = 4.833922266706213e + 023
A2 = −2.306847176510587e + 019
A4 = 1.104429253262719e + 014
A6 = −3.083017244255380e + 005
A8 = 4.323368172460818e − 004.

The solutions to the univariate polynomial equation are then obtained
using Matlab’s roots command (e.g., 4.40 on p. 44) as[

c = [A8 A7 A6 A5 A4 A3 A2 A1 A0]
x3 = roots(c),

where A7, A5, A3, A1 are all zero. The obtained values of x3 are:

x3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−20757.2530734872 + 8626.43262759353i
−20757.2530734872 − 8626.43262759353i
20757.2530734872 + 8626.4326275935i
20757.2530734872 − 8626.4326275935i
430.528578109464
−430.528578109464
153.711222705295
−153.711222705295.

Alternatively, the polynomial resultants techniques can be used to solve
the Grunert’s distance equations. They proceed as follows:

(a) The F. Macaulay formulation discussed in Sect. 5.3.1 solves for the
determinant of the matrix A leading to a univariate polynomial in
x1. The solution of the obtained univariate polynomial equation ex-
pressed in [25, Box 3-1] leads to similar results as those of Groebner
basis, i.e.,
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⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

det(A) = A8x
8
1 + A6x

6
1 + A4x

4
1 + A2x

2
1 + A0

A0 = −4.8715498798062226, A2 = 4.7481554715870820

A4 = −113109755605017
A8 = −0.000432336817247789, A6 = 435283.472057364

x1 = −22456.4891074245 + 1735.29702574406i
−22456.4891074245 − 1735.29702574406i
22456.4891074245 + 1735.29702574406i
22456.4891074245 − 1735.29702574406i
1580.10924379877
−1580.10924379877
1324.23808451944
−1324.23808451944

x3 = 430.528578109536,−2783.30427366986
x2 = 542.260767703823, −711.800947103387.

(b) The B. Sturmfels formulation discussed in Sect. 5.3.2 solves the
determinant of a 6 × 6 matrix leading to a univariate polynomial
in x1. The solution of the obtained univariate polynomial equation
expressed in [25, Box 3-2] gives identical results as those of Groebner
basis, i.e.,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

det(A) = A8x
8
1 + A6x

6
1 + A4x

4
1 + A2x

2
1 + A0

A0 = −1.9486199519224927, A2 = 1.8992621886348321

A4 = −452439022420067
A8 = −0.00172934726897456, A6 = 1741133.88822977

x1 = −22456.4891075064 + 1735.29702538544i
−22456.4891075064 − 1735.29702538544i
22456.4891075064 + 1735.29702538544i
22456.4891075064 − 1735.29702538544i
1580.10924379877
−1580.10924379877
1324.23808451944
−1324.23808451944

x3 = 430.528578109535,−2783.30427366986
x2 = 542.260767703824, −711.800947103388.

The computed distances from F. Macaulay and B. Sturmfels’ ap-
proaches above tally. The required solutions {x1, x2, x3} obtained from
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Groebner basis computation and those of multipolynomial resultants
are the same {i.e, 1324.2381 m, 542.2608 m, 430.5286 m} respectively.
The computed distances are then used to determine the position of
K1 using ranging techniques discussed in Sect. 9.3.2. The unknown
orientation elements are computed from (8.10) on p. 97.

3d-resection to more than Three Known Stations

In the preceding section, only three known stations were required to
solve in a closed form the three-dimension resection problem for the
position and orientation of the unknown station K1. If superfluous
observations are available, due to the availability of several known sta-
tions, as in the case of the test network Stuttgart Central, closed form
three-dimensional resection procedures give way to Gauss-Jacobi com-
binatorial approach. We illustrate this by means of Example 11.3.

Example 11.3 (Three-dimensional resection given more than three known
stations). From the test network Stuttgart Central in Fig. 7.1 of Sect.
7.4, the three-dimensional coordinates {X, Y, Z} of the unknown sta-
tion K1 are sought. Using observations in Tables 7.2 and 7.3 on p. 88,
the algorithm is applied in four steps as follows:

Step 1 (combinatorial solution):
From Fig. 7.1, 35 minimal combinatorials are formed using (6.26) on
p. 69. The systems of nonlinear Grunert’s distance equations (11.32)
for each of the 35 combinatorials is solved in a closed form to give
the distances linking the unknown station K1 to the 7 known sta-
tions. Use is made of either Groebner basis or polynomial resultants
approaches as already discussed in Sect. 11.2.2. Each combinatorial
minimal subset results in 3 distances, thus giving rise to a total of
105 (3×35) which are used in the next steps as pseudo-observations.

Step 2 (error propagation to determine the dispersion matrix Σ):
The variance-covariance matrix is computed for each of the combi-
natorial set j = 1, . . . , 35 using error propagation. Equation (11.32)
on p. 177 is applied to obtain the dispersion matrix Σ using (6.31)
as discussed in Example 6.4 on p. 72.

Step 3 (rigorous adjustment of the combinatorial solution points):
The 105 combinatorial distances from step 1 are finally adjusted
using the linear Gauss-Markov model (6.7) on p. 61. Each of the
105 pseudo-observations is expressed as
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Sj
i = Si + εj

i |i ∈ {1, 2, 3, 4, 5, 6, 7}, j ∈ {1, 2, 3, 4, 5, 6, 7, . . . , 35},
and placed in the vector of observation y. The coefficients of the
unknown distances Si are placed in the design matrix A. The vec-
tor ξ comprises the unknowns Si. The solutions are obtained via
(6.10) and the root-mean-square errors of the estimated param-
eters through (6.11) on p. 62. The results of the adjusted dis-
tances, root-mean-square-errors and the deviations in distances
are presented in Table 11.4. These deviations are obtained by
subtracting the combinatorial derived distance Si from its ideal
value S in Table 7.2 on p. 88. The adjusted distances in Ta-
ble 11.4 were: K1-Haussmanstr.(S1) , K1-Eduardpfeiffer (S2), K1-
Lindenmuseum (S3) , K1-Liederhalle (S4), K1-Dach LVM (S5) ,
K1-Dach FH (S6) and K1-Haussmanstr.(S7).

Table 11.4. Gauss-Jacobi combinatorial derived distances

Distance Value Root mean square Deviation
(m) (m) ∆(m)

S1 1324.2337 0.0006 0.0042
S2 542.2598 0.0006 0.0011
S3 364.9832 0.0006 -0.0035
S4 430.5350 0.0008 -0.0063
S5 400.5904 0.0007 -0.0067
S6 269.2346 0.0010 -0.0037
S7 566.8608 0.0005 0.0027

Step 4 (determination of position by ranging method):
The derived distances in Table 11.4 are then used as in Example
9.6 on p. 144 to determine the position of K1.

Example 11.4 (Comparison between exact and overdetermined 3d-resection
solutions).
In this example, we are interested in comparing the solutions of the
position of station K1 obtained from;

• closed form procedures of either Groebner basis or polynomial re-
sultants,

• closed form solution of Gauss-Jacobi combinatorial for the overde-
termined 3d-resection to the 7-stations.

To achieve this, 11 sets of experiments were carried out. For each exper-
iment, the position of K1 was determined using Groebner basis and the
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obtained values subtracted from the known position in Table 7.1 on p.
88. The experiments were then repeated for the Gauss-Jacobi combina-
torial approach. In Table 11.5, the deviation of the positions computed
using Gauss-Jacobi combinatorial approach from the real values, for
the 11 sets of experiments are presented. In Figs. 11.4, 11.5 and 11.6,
the plot of the deviations of the X, Y, Z coordinates respectively are
presented.

Table 11.5. Deviation of position of station K1 from the real value in Table 7.1
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Fig. 11.4. Deviations of X − Coordinates of station K1

Set No. ∆X(m) ∆Y (m) ∆Z(m)

1 -0.0026 0.0013 -0.0001
2 -0.0034 -0.0001 0.0009
3 0.0016 0.0005 0.0028
4 0.0076 0.0007 0.0016
5 0.0027 0.0020 0.0005
6 -0.0011 0.0004 0.0020
7 0.0027 -0.0000 0.0005
8 0.0014 0.0012 -0.0016
9 0.0010 0.0006 0.0005
10 -0.0005 -0.0039 0.0007
11 0.0016 0.0001 -0.0001
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Fig. 11.5. Deviations of Y − Coordinates
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Fig. 11.6. Deviations of Z − Coordinates

From the plots of Figs. 11.4, 11.5 and 11.4, it is clearly seen that closed
form solutions with more than three known stations yield better results.
For less accurate results such as that of locating a station in cadastral
and engineering surveys, Groebner basis and polynomial resultants are
useful. For more accurate results, resecting to more than three known
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stations would be desirable. In this case, one could apply the Gauss-
Jacobi combinatorial algorithm.

11.3 Photogrammetric Resection

Similar to the case of the scanner resection in Fig. 11.1 on p. 166, pho-
togrammetric resection concerns itself with the determination of the
position and orientation of the aerial camera during photography (see
e.g., Fig. 11.7). At least three scene objects are required to achieve
three-dimensional resection. The coordinates of the perspective cen-
ter of the camera and the orientation which comprises the elements of
exterior orientation are solved by three-dimensional photogrammetric
resection. Once the coordinates and the orientation of the camera have
been established, they are used in the intersection step (see Sect. 12.3)
to compute coordinates of the pass points. Besides, they also find use
in transformation procedures where coordinates in the photo plane are
transformed to ground system and vice versa. The three-dimensional
photogrammetric resection is formulated as follows: Given image coor-
dinates of at least three points {pi, pj}, respectively, i �= j (e.g., in Fig.
11.7), determine the position {X0, Y0, Z0} and orientation {ω, φ, κ} of
the perspective center p. In practice, using stereoplotters etc., the bun-
dle of rays projected from the perspective center to the ground are nor-
mally translated and rotated until there exist a match between points
on the photograph and their corresponding points on the ground. The
mathematical relationship between the points {ξi, ηi, f} on the pho-
tographs and their corresponding ground points {Xi, Yi, Zi} are related
by⎡
⎢⎢⎢⎢⎣

ξi = ξ0 − f
r11(Xi − X0) + r21(Yi − Y0) + r31(Zi − Z0)

r13(Xi − X0) + r23(Yi − Y0) + r33(Zi − Z0)

ηi = η0 − f
r12(Xi − X0) + r22(Yi − Y0) + r32(Zi − Z0)

r13(Xi − X0) + r23(Yi − Y0) + r33(Zi − Z0)
,

(11.57)

where f is the focal length, {ξ0, η0} the perspective center coordinates
on the photo plane and rij the elements of the rotation matrix (see
Sect. 15.2.1 p. 262 for details)

R =

⎡
⎣ r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤
⎦ |ω,φ,κ. (11.58)
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Fig. 11.7. Photogrammetric three-dimensional resection

The solution of (11.57) for the unknown position {X0, Y0, Z0} and ori-
entation {ω, φ, κ} is often achieved by;

• first linearizing about approximate values of the unknowns,
• application of least squares approach to the linearized observations,
• iterating to convergence.

In what follows, we present algebraic solutions of (11.57) based on
the Grafarend-Shan Möbius and Groebner basis/polynomial resultant
approaches.

11.3.1 Grafarend-Shan Möbius Photogrammetric Resection

In this approach of [152], the measured image coordinates {xi, yi, f} of
point pi and {xj , yj , f} of point pj are converted into space angles by

cos ψij =
xixj + yiyj + f2√

x2
i + y2

i + f2
√

x2
j + y2

j + f2
. (11.59)
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Equation (11.59) is the photogrammetric equivalent of (11.30) on p.
177 for geodetic resection. The Grafarend-Shan algorithm operates in
five steps as follows:

Step 1: The space angles ψij relating angles to image coordinates of
at least four known stations are computed from (11.59).

Step 2: The distances xi − xj from the given cartesian coordinates of
points pi and pj are computed using

sij =
√

((xi − xj)2 + (yi − yj)2 + (zi − zj)2)|{i �= j}. (11.60)

Step 3: Using the distances from (11.60) and the space angles from
(11.59) in step 1, Grunert’s distance equations (11.32) are solved
using the Grafarend-Lohse-Schaffrin procedure discussed in Sect.
11.2.2.

Step 4: Once the distances have been obtained in step 3, they are used
to compute the perspective center coordinates using the Ansermet’s
algorithm [8].

Step 5: The orientation is computed by solving (15.3) on p. 262.

11.3.2 Algebraic Photogrammetric Resection

The algebraic algorithms of Groebner basis or polynomial resultants
operate in five steps as follows:

Step 1: The space angles ψij relating the angles to the image coordi-
nates of at least four known stations are computed from (11.59).

Step 2: The distances xi − xj from the given cartesian coordinates of
points pi and pj are computed from (11.60).

Step 3: Using the distances from step 2 and the space angles from
step 1, Grunert’s distance equations in (11.32) are solved using
procedures of Sect. 11.2.2.

Step 4: Once distances have been solved in step 3, they are used
to compute the perspective center coordinates using ranging tech-
niques of Chap. 9.

Step 5: The three-dimensional orientation parameters are computed
from (8.10) on p. 97.

Example 11.5 (Three-dimensional photogrammetric resection). In this
example, we will use data of two photographs adopted from [336]. From
these data, we are interested in computing algebraically the perspective
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center coordinates of the two photographs. The image coordinates of
photographs 1010 and 1020 are given in Tables 11.6 and 11.7 respec-
tively. The corresponding ground coordinates are as given in Table 11.8.
Table 11.10 gives for control purposes the known coordinates of the pro-
jection center adopted from [336]. We use four image coordinates (No.
1,2,3,5) to compute algebraically the perspective center coordinates.
From these image coordinates, combinatorials are formed using (6.26)
on p. 69 and are as given in Table 11.9. For each combination, dis-
tances are solved using reduced Groebner basis (4.38) on p. 44. Once
the distances have been computed for each combination, the perspec-
tive center coordinates are computed using the ranging techniques of
Chap. 9. The mean values are then obtained. The results are summa-
rized in Table 11.9. A comparison between the Groebner basis derived
results and those of Table 11.10 is presented in Table 11.11. Instead
of the mean value which does not take weights into consideration, the
Gauss-Jacobi combinatorial techniques that we have studied can be
used to obtain refined solutions. For photo 1020, the first combination
1-2-3 gave complex values for the distances S2 and S3. For computation
of the perspective center in this Example, the real part was adopted.

Table 11.6. Image coordinates in Photo 1010: f = 153000.000[µm]

Point No. x(µm) y(µm)

100201 1 18996.171 -64147.679
100301 2 113471.749 -73694.266
200201 3 16504.609 16331.646
200301 4 128830.826 21085.172
300201 5 13716.588 106386.802
300301 6 120577.473 128214.823

Table 11.7. Image coordinates in Photo 1020: f = 153000.000[µm]

Point No. x(µm) y(µm)

100201 1 -74705.936 -71895.580
100301 2 5436.953 -78524.687
200201 3 -87764.035 7895.436
200301 4 3212.790 10311.144
300201 5 -84849.923 94110.338
300301 6 802.388 106585.613
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Table 11.8. Ground coordinates

Point X(m) Y(m) Z(m)

100201 -460.000 -920.000 -153.000
100301 460.000 -920.000 0.000
200201 -460.000 0.000 0.000
200301 460.000 0.000 153.000
300201 -460.000 920.000 -153.000
300301 460.000 920.000 0.000

Table 11.9. Algebraic computed perspective center coordinates

Photo 1010

Combination S1(m) S2(m) S3(m) X(m) Y (m) Z(m)

1-2-3 1918.043 2008.407 1530.000 -459.999 0.000 1530.000
1-2-5 1918.043 2008.407 1918.043 -459.999 0.000 1530.000
1-3-5 1918.043 1530.000 1918.043 -459.292 0.000 1530.000
2-3-5 2008.407 1530.000 1918.043 -459.999 0.000 1530.000

mean -459.822 0.000 1530.000

Photo 1020

Combination S1(m) S2(m) S3(m) X(m) Y (m) Z(m)

1-2-3 2127.273 1785.301 1785.301i 460.001 0.001 1529.999
1-2-5 2127.273 1785.301 2127.273 460.001 0.000 1530.000
1-3-5 2127.273 1785.301 2127.272 460.036 0.002 1529.978
2-3-5 1785.301 1785.301 2127.273 459.999 0.000 1530.000

mean 460.009 0.000 1529.994

Table 11.10. Ground coordinates of the projection centers

Photo X(m) Y(m) Z(m)

1010 -460.000 0.000 1530.000
1020 460.000 0.000 1530.000

Table 11.11. Deviation of the computed mean from the real value

Photo ∆X(m) ∆Y (m) ∆Z(m)

1010 -0.178 0.000 0.000
1020 -0.009 0.000 0.006

11.4 Concluding Remarks

As evident in the chapter, the problem of resection is still vital in
geodesy and geoinformatics. The algebraic algorithms of Groebner ba-
sis, polynomial resultants and the Gauss-Jacobi combinatorial are use-
ful where exact solutions are required. They may be used to control the
numeric methods used in practice. Instead of the forward and backward
steps, straight forward algebraic approaches presented save on compu-
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tational time. Further references are [8, 54, 124, 125, 131, 140, 187, 197,
317].
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Positioning by Intersection Methods

12.1 Intersection Problem and its Importance

The similarity between resection methods presented in the previous
chapter and intersection methods discussed herein is their application
of angular observations. The distinction between the two however, is
that for resection, the unknown station is occupied while for intersec-
tion, the unknown station is observed. Resection uses measuring devices
(e.g., theodolite, total station, camera etc.) which occupy the unknown
station. Angular (direction) observations are then measured to three or
more known stations as we saw in the preceding chapter. Intersection
approach on the contrary measures angular (direction) observations to
the unknown station; with the measuring device occupying each of the
three or more known stations. It has the advantage of being able to po-
sition an unknown station which can not be physically occupied. Such
cases are encountered for instance during engineering constructions or
cadastral surveying. During civil engineering construction for example,
it may occur that a station can not be occupied because of swampi-
ness or risk of sinking ground. In such a case, intersection approach
can be used. The method is also widely applicable in photogrammetry.
In aero-triangulation process, simultaneous resection and intersection
are carried out where common rays from two or more overlapping pho-
tographs intersect at a common ground point (see e.g., Fig. 9.1).

The applicability of the method has further been enhanced by
the Global Positioning System (GPS), which the authors also refer
to as GPS: Global Problem Solver. With the entry of GPS system,
classical geodetic and photogrammetric positioning techniques have
reached a new horizon. Geodetic and photogrammetric directional ob-
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servations (machine vision, total stations) have to be analyzed in a
three-dimensional Euclidean space. The challenge has forced position-
ing techniques such as resection and intersection to operate three-
dimensionally. As already pointed out in Chap. 11, closed form solutions
of the three-dimensional resection problem exist in a great number. On
the contrary, closed form solutions of three-dimensional intersection
problem are very rare. For instance [151, 152] solved the two P4P or the
combined three-dimensional resection-intersection problem in terms of
Möbius barycentric coordinates in a closed form. One reason for the rare
existence of the closed form solutions of the three-dimensional intersec-
tion problem is the nonlinearity of directional observation equations,
partially caused by the external orientation parameters. One target of
this chapter, therefore, is to address the problem of orientation param-
eters.

The key to overcome the problem of nonlinearity caused by orienta-
tion parameters is taken from the Baarda Doctrine. Baarda [38, 42] pro-
posed to use dimensionless quantities in geodetic and photogrammet-
ric networks: Angles in a three-dimensional Weitzenböck space, shortly
called space angles as well as distance ratios are the dimensionless
structure elements which are equivalent under the action of the seven
parameter conformal group, also called similarity transformation.

12.2 Geodetic Intersection

12.2.1 Planar Intersection

The planar intersection problem is formulated as follows: Given direc-
tions or angular measurements from two known stations P1 and P2 to
an unknown station P0, determine the position {X0, Y0}. The solution
to the problem depends on whether angles or directions are used as
discussed in the next section.

Conventional Solution

Closed form solution of planar intersection in terms of angles has a long
tradition. Let us consult Fig. 12.1 on p. 206 where we introduce the
angles ψ12 and ψ21 in the planar triangle ∆ : P0P1P2, with P0, P1, P2

being the nodes. The Cartesian coordinates {X1, Y1} and {X2, Y2} of
the points P1 and P2 are given while {X0, Y0} of the point P0 are un-
known. The angles ψ12 = α and ψ21 = β are derived from direction
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observations by differencing horizontal directions. ψ12 = T10 − T12 or
ψ21 = T20 −T21 are examples of observed horizontal directions T10 and
T12 from P1 to P0 and P1 to P2 or T21 and T20 from P2 to P1 and P2 to
P0 respectively. By means of taking differences we map direction obser-
vations to angles and eliminate orientation unknowns. The solution of
the two-dimensional intersection problem in terms of angles, a classical
procedure in analytical surveying, is given by (12.1) and (12.2) as

X0 = s12
cos α sin β

sin(α + β)
(12.1)

Y0 = s12
sinα sin β

sin(α + β)
. (12.2)

Note: The Euclidean distance between the nodal points is given by

s12 =
√

(X2 − X1)2 + (Y2 − Y1)2.

In deriving (12.1) and (12.2), use was made of angular observations. In
case directions are adopted, measured values from known stations P1

and P2 to unknown station P0 are designated T10 and T20 respectively.
If the theodolite horizontal circle reading from point P1 to P0 is set to
zero, then the measured angle α is equal to the directional measurement
T12 from point P1 to P2. Likewise if the direction from P2 to P1 is set
to zero, the measured angle β is equal to the directional measurement
T20 from point P2 to P0. In this way, we make use of both the angles
and directions thus introducing two more unknowns, i.e., the unknown
orientation σ1 and σ2 in addition to the unknown coordinates {X0, Y0}
of point P0. This leads to four observation equations in four unknowns,
written as: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

tan(T12 + σ1) =

{
Y2 − Y1

X2 − X1

}

tan(T10 + σ1) =

{
Y0 − Y1

X0 − X1

}

tan(T21 + σ2) =

{
Y1 − Y2

X1 − X2

}

tan(T20 + σ2) =

{
Y0 − Y2

X0 − X2

}
,

(12.3)
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where {X1, Y1, X2, Y2} are coordinates of the two known stations
{P1, P2}, while {T12, T10, T21, T20} are the measured horizontal direc-
tions and {X0, Y0, σ1, σ2} are the desired position and orientation of
the unknown station P0. In (12.3), the first and the third expressions
contain the orientation elements σ1 and σ2 as the only unknowns. They
are solved by obtaining the inverse of the tangents as⎡

⎢⎢⎣
σ1 = tan−1

{
Y2 − Y1

X2 − X1

}
− T12

σ2 = tan−1

{
Y1 − Y2

X1 − X2

}
− T21.

(12.4)

Once the unknown orientation elements have been solved in (12.4),
they are substituted in the second and fourth expressions of (12.3) to
form simultaneous equation whose solution give the values {X0, Y0}.
Next, let us see how (12.3) can be solved using reduced Groebner basis
(4.38) on p. 44.

Reduced Groebner Basis Solution

The left-hand-sides of (12.3) are expanded using additions theorem

tan(α + β) =
tanα + tan β

1 − tanα tanβ
, (12.5)

to give: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

tan T12 + tan σ1

1 − tan T12tan σ1
=

{
Y2 − Y1

X2 − X1

}

tan T10 + tan σ1

1 − tan T10 tan σ1
=

{
Y0 − Y1

X0 − X1

}

tan T21 + tan σ2

1 − tan T21 tan σ2
=

{
Y1 − Y2

X1 − X2

}

tan T20 + tan σ2

1 − tan T20 tan σ2
=

{
Y0 − Y2

X0 − X2

}
.

(12.6)

Expanding (12.6) and re-arranging gives trigonometric algebraic ex-
pressions
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⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(X2 − X1 + Y2tanT12 − Y1tanT12)tan σ1 + X2tanT12 − X1tanT12 + Y1 − Y2 = 0

X0tanT10 + X0tan σ1 + Y0tanT10tan σ1 − Y0 − X1tan σ1 − Y1tanT10tanσ1

−X1tanT10 + Y1 = 0

(X1 − X2 + Y1tanT21 − Y2tanT21)tan σ2 + X1tanT21 − X2tanT21 + Y2 − Y1 = 0

X0tanT20 + X0tan σ2 + Y0tanT20tan σ2 − Y0 − X2tan σ2 − Y2tanT20tan σ2

−X2tanT20 + Y2 = 0.
(12.7)

Denoting ⎡
⎢⎢⎣

a1 = tanT12, a2 = tanT21

b = tanT10

c = tanT20

d1 = tanσ1, d2 = tanσ2,

(12.8)

and substituting in (12.7) leads to four algebraic equations which are
arranged in the lexicographic order {X0 > Y0 > d2 > d1} as⎡
⎢⎢⎣

f1 = d1X2 − d1X1 + d1Y2a1 − d1Y1a1 + X2a1 − X1a1 + Y1 − Y2 = 0
f2 = X0b + X0d1 − Y0 + Y0bd1 − X1d1 − Y1bd1 − X1b + Y1 = 0
f3 = d2X1 − d2X2 + d2Y1a2 − d2Y2a2 + X1a2 − X2a2 + Y2 − Y1 = 0
f4 = X0c + X0d2 − Y0 + Y0cd2 − X2d2 − Y2cd2 − X2c + Y2 = 0.

(12.9)
Using reduced Groebner basis (4.38) on p. 44, (12.9) is solved as⎡
⎢⎢⎣

GroebnerBasis [{f1, f2, f3, f4} , {X0, Y0, d2, d1} , {X0, Y0, d2}]
GroebnerBasis [{f1, f2, f3, f4} , {X0, Y0, d1, d2} , {X0, Y0, d1}]
GroebnerBasis [{f1, f2, f3, f4} , {d2, d1, Y0, X0} , {Y0, d2, d1}]
GroebnerBasis [{f1, f2, f3, f4} , {d2, d1, X0, Y0} , {X0, d2, d1}] .

(12.10)
The first and second expressions of (12.10) give linear equations relating
the tangents d1 and d2 of the unknown orientations σ1 and σ2 and the
coordinates {X1, Y1, X2, Y2} of the known stations P1 andP2. The third
and fourth expressions give linear equations relating the coordinates X0

and Y0 of unknown station P0, coordinates {X1, Y1, X2, Y2} of known
stations P1 and P2, and the orientation terms d1 and d2. The computed
reduced Groebner basis (linear functions) are
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⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 =
(−a1X1 + a1X2 + Y1 − Y2)

(X1 − X2 + a1Y1 − a1Y2)

d2 =
(−a2X1 + a2X2 + Y1 − Y2)

(X1 − X2 + a2Y1 − a2Y2)

X0 =

⎧⎪⎪⎨
⎪⎪⎩

−(Y1 − Y2 − d1X1 + d2X2 − bX1 + cX2 − bd1Y1 + bcY1 − cd2Y1

+bd1Y2 − bcY2 + cd2Y2 − cd1Y2 + cd1Y1 + a2cd1d2Y2 + a2cd1X2−
a2cd1X1 + cd1d2X2 − bd1d2X2 + bcd2X2 + a2bcX2 − a2cd1d2Y1−
bcd1X2 − a2bcX1 − bcd1d2Y2 + bcd1d2Y1 + a2bcd2Y2 − a2bcd2Y1)

⎫⎪⎪⎬
⎪⎪⎭

d1 + bcd1 − d2 − bcd2 + bd1d2 + b − c − cd1d2

Y0 =

⎧⎨
⎩

−(a2bX1 − a2bd2Y2 + cd1X2 − a2d1X2 + bcX2 − a2bX2 − cd1X1+
a2d1X1 − bcd1Y1 − bcX1 − a2d1d2Y2 − bY1 − bd1d2Y1 + bcd2Y2+
cd1d2Y2 + a2d1d2Y1 + d2Y1 + cY1 + a2bd2Y1 − d1Y1)

⎫⎬
⎭

d1 + bcd1 − d2 − bcd2 + bd1d2 + b − c − cd1d2

(12.11)

Example 12.1 (Planar intersection problem). Consider the example of
[195, p. 292]. In this example, planar Cartesian coordinates of two
known stations F := P1 and E := P2 are given as

{X1 = 2490.50 m, Y1 = 2480.79 m}P1

{X2 = 780.67 m, Y2 = 7394.05 m}P2
.

The adjusted angles from points F := P1 and E := P2 to the unknown
station G := P0 ∈ E2 are 117◦ 11

′

20.7
′′

and 27◦ 35
′

47.9
′′

respectively.
Using these angles and Fig. 12.1 on p. 206 one writes the directions
as: T10 = 0◦ 00

′

00.0
′′

, T12 = 117◦ 11
′

20.7
′′

, T21 = 0◦ 00
′

00.0
′′

and
T20 = 27◦ 35

′

47.9
′′

. These directions are used in (12.8) to compute
the constants {a1, a2, b, c} which are then inserted in the first two ex-
pressions of (12.11) to give the values of d1 and d2, which are used in
the fourth expression of (12.8). This leads to the two unknown orien-
tation parameters σ1 and σ2 as; 351◦ 59

′

56.3
′′

and 289◦ 11
′

17.0
′′

re-
spectively. The planar coordinates {X0, Y0} p0 of the unknown station
G := P0 ∈ E2 are then computed from the third and fourth expres-
sions of (12.11) as; {X0 = 6629.0952 m, Y0 = 1899.0728 m}P1

, which
compare well with those of [195, p. 292].

Example 12.2 (Planar intersection problem). Let us consider another
example of [195, p. 292] where the planar Cartesian coordinates of two
known stations E := P1 and D := P2 are given as

{X1 = 780.67 m, Y1 = 7394.05 m}P1

{X2 = 5044.25 m, Y2 = 7752.70 m}P2
.
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The adjusted angles from points E := P1 and D := P2 to the un-
known station G := P0 ∈ E2 are 480 01

′

25.3
′′

and 1000 20
′

27.8
′′

respectively. Using these angles and Fig. 12.1 as in the previous
example, one writes the directions as: T10 = 0◦ 00

′

00.0
′′

, T12 =
48◦ 01

′

25.3
′′

, T21 = 0◦ 00
′

00.0
′′

and T20 = 100◦ 20
′

27.8
′′

. These
directions are used in (12.8) to compute {a1, a2, b, c}, which are in-
serted in the first two expressions of (12.11) to give the values of
d1 and d2. These values of d1 and d2 are inserted in the fourth ex-
pression of (12.8) to give the two unknown orientation parameters σ1

and σ2 as 316◦ 47
′

04.8
′′

and 04◦ 48
′

30.1
′′

respectively. The planar
coordinates {X0, Y0} p0 of the unknown station G := P0 ∈ E2 are
then computed from the third and fourth expressions of (12.11) as;
{X0 = 6629.1007 m, Y0 = 1899.0635 m}P1

, which compare well with
those of [195, p. 292].

12.2.2 Three-dimensional Intersection

Closed Form Solution

In the case of three-dimensional intersection problem, the triple of three
points {P1, P2, P3} in Fig. 12.1 are given by their three-dimensional
Cartesian coordinates {X1, Y1, Z1}, {X2, Y2, Z2}, {X3, Y3, Z3}, but the
coordinates {X0, Y0, Z0} of point P0 are unknown. The dimensionless
quantities {ψ12, ψ23, ψ31} are space angles; ψ12 = ∠P0P1P2, ψ23 =
∠P0P2P3, ψ31 = ∠P1P3P0. This problem is formulated as follows; Given
horizontal directions Ti and vertical directions Bi measured from three
known stations to an unknown station, determine the position of the
unknown station P0. These directional measurements are transformed
into space angles {ψ12, ψ23, ψ31} using (11.30) on p. 177 (see e.g., Fig.
12.1). Equation (11.30) is the analytic version of a map of directions to
space coordinates. Indeed, the map eliminates the external orientation
parameters. The space angles are then used to obtain the unknown dis-
tances {x1 = Si, x2 = S2, x3 = S3}. These distances relate the unknown
station P0 ∈ E3 to three known stations Pi ∈ E3 | i = {1, 2, 3} in the
first step. The nonlinear system of equations relating the unknown dis-
tances {x1 = Si, x2 = S2, x3 = S3} to the space angles {ψ12, ψ23, ψ31}
are given as ⎡

⎣x2
2 = x2

1 + S2
12 − 2S12 cos(ψ12)x1

x2
3 = x2

2 + S2
23 − 2S23 cos(ψ23)x2

x2
1 = x2

3 + S2
31 − 2S31 cos(ψ31)x3.

(12.12)
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In the second step, the computed distances from step 1 are used in
the three-dimensional ranging techniques of Chap. 9 to solve for the
unknown position P0 ∈ E3.

Fig. 12.1. 3d-intersection

Conventional Solution

Equation (12.12) is solved by first adding (12.12)i, (12.12)ii and (12.12)iii
to eliminate the squared terms. The resulting expression

S2
12+S2

23+S2
31−2x1S12 cos(ψ12)−2x2S23 cos(ψ23)−2x3S31 cos(ψ31) = 0

(12.13)
is linear in x1, x2 and x3. The variable x1 in (12.13) is then expressed
in terms of x2 and x3 as

x1 =
S2

12 + S2
23 + S2

31 − 2x2S23 cos(ψ23) − 2x3S31 cos(ψ31)

2S12 cos(ψ12)
, (12.14)

and substituted in (12.12)i to give an expression in x2 and x3 only.
The resulting expression in x2 and x3 is solved simultaneously with
(12.12)ii to give values of x2 and x3. On the other hand, if (12.13)
is now written such that x3 is expressed in terms of x2 and x1 and
substituted in (12.12)iii, an expression in x2 and x1 will be given which
together with (12.12)i can be solved for the values of x2 and x1.

The setback with this approach is that one variable, in this case
x2, is determined twice with different values being given; which clearly
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is undesirable. A direct solution to the problem based on algebraic
approaches of either Groebner basis or polynomial resultants alleviates
the problem.

Reduced Groebner Basis Solution

Reduced Groebner basis (4.38) on p. 44 is performed in two steps as
follows:

• Step 1 (derivation of distances):
Equation (12.12) is re-written algebraically as⎡

⎣f1 := x2
1 + b1x1 − x2

2 + a0 = 0
f2 := x2

2 + b2x2 − x2
3 + b0 = 0

f3 := x2
3 + b3x3 − x2

1 + c0 = 0,
(12.15)

with b1 = −2S12 cos(ψ12), b2 = −2S23 cos(ψ23), b3 = −2S31 cos(ψ31)
and a0 = S2

12, b0 = S2
23, c0 = S2

31. The reduced Groebner basis of
(12.15) is then computed as⎡

⎣GroebnerBasis[{f1, f2, f3}, {x1, x2, x3}, {x2, x3}]
GroebnerBasis[{f1, f2, f3}, {x1, x2, x3}, {x1, x3}]
GroebnerBasis[{f1, f2, f3}, {x1, x2, x3}, {x2, x3}],

(12.16)

which leads to three quartic polynomials for determining the un-
known distances {x1 = Si, x2 = S2, x3 = S3};⎡

⎣x1 := d4x
4
1 + d3x

3
1 + d2x

2
1 + d1x1 + d0 = 0

x2 := e4x
4
2 + e3x

3
2 + e2x

2
2 + e1x2 + e0 = 0

x3 := f4x
4
3 + f3x

3
3 + f2x

2
3 + f1x3 + f0 = 0.

(12.17)

The coefficients of (12.17) are as given in [30, Appendix].
• Step 2 (position determination):

In this step, the computed distances from (12.17) are used to deter-
mine the unknown position P0 ∈ E3 as discussed in Sect. 9.3.2.
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Sturmfels’ Resultants Solution

Algorithm presented in Sect. 5.3.2 proceeds in two steps as follows:

• Step 1 (derivation of distances):
Following (5.12) on p. 53, (12.15) is homogenized using the variable
x4 and re-written for the solutions of x1, x2 and x3 in (12.18), (12.19)
and (12.20) respectively as
– Solving for x1 by treating it as a constant (polynomial of degree

zero) ⎡
⎣g1 := (x2

1 + b1x1 + a0)x
2
4 − x2

2 = 0
g2 := x2

2 + b2x2x4 − x2
3 + b0x

2
4 = 0

g3 := x2
3 + b3x3x4 + (c0 − x2

1)x
2
4 = 0.

(12.18)

– Solving for x2 by treating it as a constant (polynomial of degree
zero) ⎡

⎣h1 := x2
1 + b1x1x4 + (a0 − x2

2)x
2
4 = 0

h2 := (x2
2 + b2x2 + b0)x

2
4 − x2

3 = 0
h3 := x2

3 + b3x3x4 − x2
1 + c0x

2
4 = 0.

(12.19)

– Solving for x3 by treating it as a constant (polynomial of degree
zero) ⎡

⎣k1 := x2
1 + b1x1x4 − x2

2 + a0x
2
4 = 0

k2 := x2
2 + b2x2x4 + (b0 − x2

3)x
2
4 = 0

k3 := (x2
3 + b3x3 + c0)x

2
4 − x2

1 = 0.
(12.20)

From (12.18), (12.19) and (12.20), expressing a1 = (x2
1 + b1x1 + a0)

and a2 = (c0−x2
1) in (12.18), a3 = (x2

2+b2x2+b0) and c2 = (a0−x2
2)

in (12.19), and finally c3 = (b0 − x2
3) and c1 = (x2

3 + b3x3 + c0) in
(12.20), one forms the Jacobian determinant matrices with (5.13)
on p. 53 respectively as

Jx1 = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂g1

∂x2

∂g1

∂x3

∂g1

∂x4

∂g2

∂x2

∂g2

∂x3

∂g2

∂x4

∂g3

∂x2

∂g3

∂x3

∂g3

∂x4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= det

⎡
⎢⎢⎢⎢⎣

−2x2 0 2a1x4

2x2 + b2x4 −2x3 b2x2 + 2b0x4

0 2x3 + b3x4 b3x3 + 2a2x4

⎤
⎥⎥⎥⎥⎦ ,

(12.21)
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Jx2 = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂h1

∂x1

∂h1

∂x3

∂h1

∂x4

∂h2

∂x1

∂h2

∂x3

∂h2

∂x4

∂h3

∂x1

∂h3

∂x3

∂h3

∂x4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= det

⎡
⎢⎢⎢⎢⎣

2x1 + b1x4 0 b1x1 + 2c2x4

0 −2x3 2a3x4

−2x1 2x3 + b3x4 b3x3 + 2c0x4

⎤
⎥⎥⎥⎥⎦ ,

(12.22)
and

Jx3 = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂k1

∂x1

∂k1

∂x2

∂k1

∂x4

∂k2

∂x1

∂k2

∂x2

∂k2

∂x4

∂k3

∂x1

∂k3

∂x2

∂k3

∂x4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= det

⎡
⎢⎢⎢⎢⎣

2x1 + b1x4 −2x2 b1x1 + 2a0x4

0 2x2 + b2x4 b2x2 + 2c3x4

−2x1 0 2c1x4

⎤
⎥⎥⎥⎥⎦ .

(12.23)

The resulting determinants are cubic polynomials:

Jx1 = 4x2b3x
2
3 + 8x2x3a2x4 + 4b2x

2
2x3 + 2b2x

2
2b3x4 + 8x2b0x4x3 +

4x2b0x
2
4b3 + 8a1x4x2x3 + 4a1x

2
4x2b3 + 4a1x

2
4b2x3 + 2a1x

3
4b2b3.

Jx2 = −4x1b3x
2
3−8x1x3c0x4−8x1a3x4x3−4x1a3x

2
4b3−2b1x4b3x

2
3−

4b1x
2
4x3c0 − 4b1x

2
4a3x3 − 2b1x

3
4a3b3 − 4x2

1x3b1 − 8x1x3c2x4.

Jx3 = 8c1x4x1x2 + 4c1x
2
4x1b2 + 4c1x

2
4b1x2 + 2c1x

3
4b1b2 + 4x1b2x

2
2 +

8x1x2c3x4 + 4b1x
2
1x2 + 2b1x

2
1b2x4 + 8x1a0x4x2 + 4x1a0x

2
4b2.

Making use of (5.14) and (5.15) on p. 54 lead to⎡
⎣x1 := d4x

4
1 + d3x

3
1 + d2x

2
1 + d1x1 + d0 = 0

x2 := e4x
4
2 + e3x

3
2 + e2x

2
2 + e1x2 + e0 = 0

x3 := f4x
4
3 + f3x

3
3 + f2x

2
3 + f1x3 + f0 = 0.

(12.24)

The coefficients of (12.24) are given in [31, Appendix].
• Step 2 (position determination):

In this step, the computed distances from (12.24) are used to deter-
mine the unknown position P0 ∈ E3 as discussed in Sect. 9.3.2.

Example 12.3 (3d-intersection from three known stations). Using the
computed quartic polynomials (12.17) or (12.24), the distances Si =
xi ∈ R,+ i = {1, 2, 3} ∈ Z3

+ between an unknown station K1 ∈ E3

and known stations Pi ∈ E3 for the test network Stuttgart Central in
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Fig. 7.1 on p. 86 are determined. Points P1, P2, P3 of the tetrahedron
{P0P1P2P3} in Fig. 12.1 correspond to the chosen known GPS sta-
tions Schlossplatz, Liederhalle, and Eduardpfeiffer (see Fig. 7.1). The
distance from K1 to Schlossplatz. is designated S1 = x1 ∈ R,+ K1
to Liederhalle S2 = x2 ∈ R,+ while that of K1 to Eduardpfeiffer is
designated S3 = x3 ∈ R.+ The distances between the known stations
{S12, S23, S31} ∈ R+ are computed from their respective GPS coordi-
nates in Table 7.1 on p. 88. Using the horizontal directions Ti and ver-
tical directions Bi from Table 7.3 on p. 88, space angles {ψ12, ψ23, ψ31}
are computed using (11.30) on p. 177 and presented in Table 12.1. From
(12.17), we see that S1 = x1, S2 = x2 and S3 = x3 each has four roots.
The solutions are real as depicted in Figs. 12.2, 12.3 and 12.4. The de-
sired distances are selected with the help of prior information (e.g., from
Fig. 7.1) as S1 = 566.8635, S2 = 430.5286, and S3 = 542.2609. These
values compare well with their real values in Fig. 7.1. Once the distances
have been established, they are used to determine the coordinates of the
unknown station K1 in step 2 via ranging techniques. In this example,
the computed Cartesian coordinates of K1 are X = 4157066.1116 m,
Y = 671429.6655m and Z = 4774879.3704m; which tallies with the
GPS coordinates in Table 7.1.

Table 12.1. Space angles

Observation Space angle
from (gon)

K1-Schlossplatz-Liederhalle ψ12 35.84592
K1-Liederhalle-Eduardpfeiffer ψ23 49.66335
K1-Eduardpfeiffer-Schlossplatz ψ31 14.19472

Intersection to more than Three Known Stations

The formulation of the overdetermined three-dimension intersection
problem is as follows; given space angles from more than three known
stations, i.e., P1, P2, P3, ..., Pn, determine the unknown position P0 ∈
E3. In this case, the observations will comprise horizontal directions Ti

and vertical directions Bi from P1 to P0, P2 to P0, P3 to P0,...,Pn to
P0, with the unknowns being {X, Y, Z}.
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Example 12.4 (Three-dimensional intersection from more than three
known stations). For the test network Stuttgart Central in Fig. 7.1,
the three-dimensional coordinates {X, Y, Z} of the unknown station
K1 are desired. Using all the observation data of Table 7.2 on p. 88,
one proceeds to compute the position of K1 in four steps as follows:

Step 1 (combinatorial solution):
From Fig. (7.1) on p. 86, and using (6.26) on p. 69, 35 minimal com-
binatorials are formed whose nonlinear systems of equations (12.12)
are solved for the distances {Si|i = 1, 2, 3} to the unknown station
K1 in closed form using either (12.17) or (12.24). Each combinato-
rial minimal subset results in 3 distances thus giving rise to a total
of (3× 35) 105 distances which we consider in the subsequent steps
as pseudo-observations.

Step 2 (error propagation to determine the dispersion matrix Σ):
The variance-covariance matrix is computed for each of the combi-
natorial set j = 1, . . . , 35 using error propagation. Equation (12.12)
is used to obtain the dispersion matrix Σ in (6.31) as discussed in
Example 6.4 on p. 72.

Step 3 (rigorous adjustment of the combinatorial solution points in a
polyhedron):
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Once the 105 combinatorial solution points in a polyhedron have
been obtained in step 1, they are finally adjusted using the linear
Gauss-Markov model (6.7) on p. 61 with the dispersion matrix Σ
obtained via the nonlinear error propagation law in step 2.

Step 4 (position determination by ranging):
The position is then determined from values of steps 1 to 3 as in
Example 9.6 on p. 144.

Using the data of Table 7.2, space angles for the network are computed
and used to determine the position of the unknown station K1. Figure
12.5 presents the deviation of the computed scatter of the distance
Haussmanstr.-K1 around its adjusted value. The plot of deviations of
the adjusted distances from those derived from GPS coordinates are
presented in Fig. 12.6. The numbers in the X-axis of Fig. 12.6 represent
distances as follows; Haussmanstr.-K1 (1), Schlossplatz-K1 (2), Dach
FH-K1 (3), Dach LVM-K1 (4), Liederhalle-K1 (5), Lindenmuseum-K1
(6) and Eduardpfeiffer-K1 (7).
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12.3 Photogrammetric Intersection

In Chap. 11, the exterior elements of orientation were determined as
discussed in Sect. 11.3. Using these exterior elements, we demonstrate
in this section how they are applied to determine algebraically the
ground coordinates of unknown station. The problem of photogram-
metric intersection is formulated as follows: Given the position and
orientation of two or more photographs, let the conjugate image rays
from the photographs intersect at a common ground point (e.g., Fig.
12.7). Determine the ground coordinates of the unknown station P . Let
us examine two possible ways of solving this problem algebraically.

Grafarend-Shan Möbius Approach

Let us assume that the Cartesian coordinates {Xl, Yl, Zl} and {Xr, Yr, Zr},
respectively, for the left perspective center Pl and the right perspective
center Pr in Fig. 12.7 have been obtained from the photogrammetric
resection approach in Sect. 11.3. The perspective center equations are⎡

⎣X − Xl

Y − Yl

Z − Zl

⎤
⎦ = slRl

⎡
⎣ xl

yl

−fl

⎤
⎦ , (12.25)
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and ⎡
⎣X − Xr

Y − Yr

Z − Zr

⎤
⎦ = srRr

⎡
⎣ xr

yr

−fr

⎤
⎦ . (12.26)

In (12.25) and (12.26), fl and fr are the left and right focal lengths
and R the rotation matrix. The distance ratios sl and sr are given
respectively by

sl :=
‖−−→PPl‖
‖−→ppl‖ =

√
(X − Xl)2 + (Y − Yl)2 + (Z − Zl)2√

x2
l + y2

l + z2
l

, (12.27)

and

sr :=
‖−−→PPr‖
‖−→ppr‖ =

√
(X − Xr)2 + (Y − Yr)2 + (Z − Zr)2√

x2
r + y2

r + z2
r

. (12.28)

Equations (12.25) and (12.26) could be expanded into the 7-parameter
similarity transformation equation⎡

⎣ X
Y
Z

⎤
⎦ = slRl

⎡
⎣ xl

yl

−fl

⎤
⎦+

⎡
⎣ Xl

Yl

Zl

⎤
⎦

= srRr

⎡
⎣ xr

yr

−fr

⎤
⎦+

⎡
⎣ Xr

Yr

Zr

⎤
⎦ .

(12.29)
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Grafarend and Shan [152] propose a three-step solution approach based
on Möbius coordinates as follows:

• In the first step, the ratio of distances {sl, sr} between the perspec-
tive centers and the unknown intersected point are determined from
a linear system of equations. The area elements of the left and right
images are employed to form the linear system of equations.

• In the second step, the computed distance ratios are used to compute
the Möbius coordinates.

• These coordinates are converted to the three-dimensional cartesian
coordinates {X, Y, Z} in the third step.

Commutative Algebraic Approaches

Whereas the Grafarend-Shan approach discussed in Sect. 12.3 solves
the intersection of rays from two photographs, the algebraic approaches
solves the intersection of rays from three photographs. Consider the
case in Fig. 9.1, the unknown station is intersected from three pho-
tographs. The distances {S1, S2, S3} to the unknown stations are de-
termined using either using (12.17) or (12.24). The coordinates of the
unknown stations are determined from procedures of Sect. 9.3.2.

12.4 Concluding Remarks

The techniques presented in this chapter could provide direct ap-
proaches for obtaining positions from direction (angular) measurements
to stations that can not be physically occupied. Intersection techniques
discussed could be useful in structural deformation monitoring in indus-
tries. For surfaces or structures that are harmful when physical contact
is made, intersection techniques come in handy. the methods can also
be used for quick station search during cadastral and engineering sur-
veying operations. These methods can be augmented with resection
and ranging techniques to offer a wide range of possibilities. Further
reference are [14, 27, 37, 132, 142, 152].
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GPS Meteorology in Environmental
Monitoring

13.1 Satellite Environmental Monitoring

In 1997, the Kyoto protocol to the United Nation’s framework con-
vention on climate change spelt out measures that were to be taken
to reduce the greenhouse gas emission that has contributed to global
warming . Global warming is just but one of the many challenges fac-
ing our environment today. The rapid increase in desertification on one
hand and flooding on the other hand are environmental issues that are
increasingly becoming of concern. For instance, the torrential rains that
caused havoc and destroyed properties in USA in 1993 is estimated to
have totalled to $15 billion, 50 people died and thousands of people
were evacuated, some for months [216]. Today, the threat from torren-
tial rains and flooding still remains real as was seen in 1997 El’nino
rains that swept roads and bridges in Kenya, the 2000 Mozambique
flood disaster, 2002 Germany flood disaster or the Hurricane Isabel in
the US coast1. The melting of polar ice thus raising the sea level is
creating fear of submerssion of beaches and cities surrounded by the
oceans and those already below sea level. In-order to be able to predict
and model these occurrences so as to minimize damages such as those
indicated by [216], atmospheric studies have to be undertaken with the
aim of improving on mechanism for providing reliable, accurate and
timely data. These data are useful in Numerical Weather Prediction
(NWP) models for weather forecasting and climatic models for moni-
toring climatic changes. Besides, accurate and reliable information on
weather is essential for other applications such as agriculture, flight
navigation, etc.

1BBC 19th Sept. 2003 online report: http://news.bbc.co.uk/
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Data for NWP and climatic models are normally collected using bal-
loon filled radiosondes, satellites (polar and geostationary) and other
sources e.g., flight data from aeroplanes. Whereas [232, p. 94] points out
that about 9500 surface based stations and 7000 merchant ships exist
that send up weather balloons, [335] noted that most of these data cover
the northern hemisphere, with the southern hemisphere (mainly Africa
and South America) lacking adequate data due to financial constraints.
Lack of radiosonde data is also noted in the oceanic areas hence lead-
ing to shortage of adequate data for NWP and climatic models. These
models require precise and accurate data for estimating initial starting
values in-order to give accurate and reliable weather forecast, and to
be of use for climate monitoring. The shortage of radiosonde data is
complemented with the polar and geostationary satellite data. Polar
satellites include for instance the US owned National Ocean and At-
mospheric Administration NOAA-14 and NOAA-15, while the geosta-
tionary satellites include US based Geostationary Operational Environ-
mental Satellite (GEOS) and Europe owned METEOrological SATellite
(METEOSAT).

Polar and geostationary satellites (e.g., NOAA, GOES and ME-
TEOSAT) used for temperature and water vapour profile measure-
ments have their own limitations however. In high altitude winter condi-
tions for instance, use of passive Infra Red (IR) is difficult due to very
cold temperatures, common near surface thermal inversion, and high
percentage of ice cloud that play a role in limiting the IR sounding [248].
In volcanic areas, low flying remote sensing satellites are also affected
by the presence of dust and aerosol. Large-scale volcanic eruption nor-
mally injects large amount of aerosols into the lower stratosphere and
thus limiting the IR observation of the stratosphere and lower regions.
In-order therefore to enhance global weather and climatic prediction,
current systems have to be complemented by a system that will provide
global coverage and whose signals will be able to penetrate clouds and
dust to remote sense the atmosphere. Such system, already proposed
as early as 1965 by Fischbach [108], and which is currently an active
area of research, is the new field of GPS-Meteorology . It involves
the use of GPS satellites to obtain atmospheric profiles of temperature,
pressure and water vapour/humidity.

As we saw in Chap. 7, Global Positioning System (GPS) satellites
were primarily designed to be used by the US military. their main
task was to obtain the position of any point on Earth from space. The
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signals emitted by GPS satellites traverse the ionosphere and neutral
atmosphere to be received by ground based GPS receivers. One of the
major obstacles to positioning or navigating with GPS is the signal de-
lay caused by atmospheric refraction. Over the years, research efforts
have been dedicated to modelling atmospheric refraction in-order to
improve on positioning accuracy. In the last decade however, [248] sug-
gested that this negative effect of the atmosphere on GPS signals could
be inverted to remote sense the atmosphere using space borne tech-
niques. Melbourne [248], proposed that Low Earth Orbiting Satellites
LEO be fitted with GPS receivers and be used to track the signals of
rising or setting GPS satellites (occulting satellites). The signal delay
could then be measured and used to infer on the atmospheric profiles
of temperature, pressure, water vapour and geopotential heights.

This new technology of GPS atmospheric remote sensing has the
advantages of;

(a) being global,
(b) stable owing to the stable GPS oscillators and
(c) having radio frequencies that can penetrate clouds and dusts.

The new technology therefore plays a major role in complementing
the existing techniques, e.g., radiosondes. Atmospheric profiles from
GPS remote sensing have been tested in NWP models and preliminary
results so far are promising [180]. Indeed, [205] have already demon-
strated using the data of the pilot project GPS/MET that the accu-
racy of global and regional analysis of weather prediction can signifi-
cantly be improved. Also motivating are the results of [300] who showed
that high accuracy of measurements and vertical resolution around the
tropopause would be relevant to monitor climatic changes in the next
decades. Several atmospheric sounding missions have been launched,
e.g., the CHAllenging Minisatellite Payload mission (CHAMP), Grav-
ity Recovery And Climate Experiment (GRACE) and SAC-C. Con-
stellation Observing System for Meteorology, Ionosphere and Climate
(COSMIC) mission that will provide up to 3000 occultation data daily
is proposed to be launched by University Corporation of Atmospheric
Research UCAR in 2005 [9]. EQUatorial Atmosphere Research Satel-
lite (EQUARS) mission that will provide equatorial coverage is also
proposed to be launched in 2005 [316]. Currently, studies are being un-
dertaken at Jet Propulsion Laboratory (JPL) on possibilities of having
future atmospheric sounding missions that will have satellites of the
sizes of a laptop with GPS receivers of the sizes of a credit card [351].
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Plans are also underway to have the European owned EUropean orga-
nization for the exploitation of METeorological SATellites (EUMET-
SAT) and American NOAA owned National Polar Orbiting Environ-
mental Satellite System (NPOESS) installed with GPS occultation re-
ceivers GRAS (GNSS Receiver for Atmospheric Sounding) and GP-
SOS (GPS Occultation Sensor) [335]. The planned satellite missions
together with the proposed GALILEO satellites scheduled to be oper-
ational by 2010 [335] and the Russian GLONASS promises a brighter
future for environmental monitoring. Indeed, that these atmospheric
sounding missions promise to provide daily global coverage of thou-
sands of remotely sensed data which will be vital for weather, climatic
and atmospheric sciences studies will be a revolution in the history of
environmental studies.

Space borne GPS meteorology which we discuss in detail in Sect.
13.2.1 is just but one part of this new technique. The other compo-
nent is the ground based GPS meteorology which will be discussed
in detail in Sect. 13.2.2. Collection of articles on this new technique
has been presented for instance in [10]. In ground based GPS meteo-
rology, a dense GPS network is used to measure precisely GPS path
delays caused by the ionosphere and the neutral troposphere traversed
by the GPS signals. These path delays are then converted into Total
Electronic Contents (TEC) and Integrated Precipitate Water Vapour
IPWV. Conversion to IPWV requires prior information of surface pres-
sure or estimates along the GPS ray path. These create a continuous,
accurate, all weather, real time lower and upper atmospheric data with
a variety of opportunities for atmospheric research [330].

Clearly, GPS meteorology promises to be a real boost to atmo-
spheric studies with expected improvements on weather forecasting and
climatic change monitoring, which directly impact on our day to day
lives. In [18], the possible use of IPWV for flood prediction is proposed,
while [44] have outlined the potential of water vapour for meteorolog-
ical forecasting. For environmental monitoring, GPS meteorology will
further play the following roles:

1. Precisely derive vertical temperature and pressure profiles: These
will be useful in the following ways [248]:
(a)By combining them with other observations of ozone densities

and dynamic models, our understanding of conditions which lead
to the formation of polar stratosphere clouds will be improved.
We will also be able to understand how particles in which het-
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erogeneous chemical reactions lead to ozone loss are believed to
occur.

(b)The precise measured temperature will enable the monitoring
of global warming and the effect of greenhouse gases. This is
made possible as the change in surface temperatures caused by
an increase in the greenhouse gas densities is generally predicted
to be the largest and therefore most apparent at high latitudes.
Precise temperature can be used to map the structure of the
stratosphere, particularly in the polar region where temperature
is believed to be an important factor in the minimum levels of
ozone observed in spring.

(c)Accurate high vertical resolution temperature reconstruction in
the upper troposphere will increase our understanding on the
conditions which cirrus clouds form. The cirrus clouds will gen-
erate for instance a positive feed back effect if global warming
displaces a given cloud layer to a higher and colder region. The
colder cloud will then emit less radiation forcing the troposphere
to warm in-order to compensate for the decrease.

(d)Accurate temperature retrievals from GPS meteorological mea-
surements combined with high horizontal resolution tempera-
tures derived from the nadir-viewing microwave radiometers will
provide a powerful data set for climate studies of the Earth’s
lower atmosphere. This can be achieved by using the derived
profiles to monitor trends in the upper troposphere and lower
stratosphere where the GPS meteorological techniques yield its
most accurate results.

(e)The measured pressure is expected to contribute to the moni-
toring of global warming. This is because pressure versus geo-
metrical height is potentially an interesting diagnostic of tropo-
sphere’s climatic change since the height of any pressure surface
is a function of the integrated temperature below.

(f) The temperature in the upper troposphere/tropopause influ-
ences the amount of energy radiated to space. Accurate measure-
ments of temperature in this region over a long period of time
will provide data for global warming and climatologic studies.

2. Derive water vapour: Precise analysis of the water vapour will con-
tribute to the data required by hydrologists to enhance the predic-
tion of local torrential rain that normally cause damage and havoc
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(see e.g., [18]). Besides, the knowledge of water vapour density in
the lower troposphere will be useful in;
• providing data that will be directly assimilated into meteorolog-

ical models to enhance predictability and forecasting of weather,
• applicable for creation of distribution of water vapour via tomo-

graphic techniques (e.g., [111]),
• applied to correct the wet delay component in both Synthetic

Aperture Radar (SAR) and GPS positioning thus benefiting ap-
plications requiring precise positioning such as deformation mon-
itoring,

• beneficial to low altitude aircraft navigation, since limitation in
the mitigation of tropospheric delay is a major source of posi-
tioning error,

• global warming monitoring by determining the latent heat sus-
pended in the atmosphere where water vapour comprise one of
the greenhouse gases,

• the radiative forcing due to vapour and cloud inferred from hu-
midity,

• improved inputs for weather forecasting, climate and hydrology.
Water vapour will be essential for short term (0-24hrs) fore-
casting of precipitation. Currently, lack of atmospheric water
vapour is the major source of error in short term weather fore-
casting [175].

3. Contribute towards climatic studies: By comparing the observed
temperatures against the predicted model values, a method for de-
tecting and characterizing stratospheric climatic variations as well
as a means for evaluating the performance of model behaviour
at stratospheric altitudes will be developed and the existing ones
tested.

4. Enhance geodynamic studies: The study of the gravitation effects of
the atmospheric pressure, water vapour and other phenomenons will
contribute towards the determination of high-resolution local geoid,
which is vital for monitoring crustal deformation. The transient
drift that occurs per week in estimate of crustal deformation from
GPS measurement will be corrected.

5. Enhance disaster mitigation measures: Its information will con-
tribute to the much-needed information required to improve fore-
casting of catastrophic weather around the world.
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6. With abundance of GPS remote sensing data, accuracy better than
1 -2K in temperature given by GPS meteorological missions (e.g.,
CHAMP, GRACE etc.) will be realized.

In-order to fully realize the potential of the GPS atmospheric remote
sensing listed above, estimated profiles have to be of high quality. Al-
ready, comparative results with the existing models such as European
Centre for Medium Weather Forecast (ECMWF) and National Centre
for Environmental Prediction (NCEP) are promising as seen from the
works of [281, 335] with respect to GPS/MET and CHAMP missions,
respectively.

13.2 GPS Remote Sensing

13.2.1 Space Borne GPS Meteorology

Radio occultation with GPS takes place when a transmitting GPS satel-
lite, setting or rising behind the Earth’s limb, is viewed by a LEO satel-
lite as illustrated in Fig. 13.12. GPS satellites send navigation signals,
which passes through successively deeper layer of the Earth’s atmo-
sphere and are received by LEO satellites. These signals are bent and
retarded causing a delay in the arrival at the Leo (see Fig.13.12). Figure
13.3 indicates the occultation geometry where the signal is sent from
GPS to the LEO satellite passing through dispersive layers of the iono-
sphere and atmosphere remote sensing them. As the signal is bent, the
total bending angle α, an impact parameter a and a tangent radius
rt define the ray passing through the atmosphere. Refraction angle is
accurately measured and related to atmospheric parameters of tem-
perature, pressure and water vapour via the refractive index. Use is
made of radio waves where the LEO receiver measures, at the required
sampling rate, the dual band carrier phase, the C/A and P-code group
delay and the signal strength made by the flight receiver [248]. The
data is then processed to remove errors arising from short time oscil-
lator and instabilities in; satellites and receivers. This is achieved by
using at least one ground station and one satellite that is not being oc-
culted. Once the observations have been corrected for possible sources
of errors, the resulting Doppler shift is used to determine the refraction
angle α (see Fig. 13.3).

2source: http://geodaf.mt.asi.it/html/GPSAtmo/space.html
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Fig. 13.1. GPS Radio occultation

The variation of α with a during an occultation depends primarily
on the vertical profile of atmospheric refractive index, which is deter-
mined globally by Fermat’s principle of least time and locally by Snell’s
law

nsinφ = constant, (13.1)

where φ denotes the angle between the gradient of refraction and the
ray path. Doppler shift is determined by projecting spacecraft veloci-
ties onto the ray paths at the transmitter and receiver, so that atmo-
spheric bending contributes to its measured value. Data from several
GPS transmitters and post-processing ground stations are used to es-
tablish the precise positions and velocities of the GPS transmitters and
LEO satellites. These derived positions and velocities are used to calcu-
late the Doppler shift expected in the absence of atmospheric bending
(i.e., were the signal to travel in vacuo). By subtracting the expected
shift from the measured shift, one obtains the excess Doppler shift. As-
suming local symmetry and with Snell’s law, the excess Doppler shift
together with satellites’ positions and velocities are used to compute the
values of the bending angles α with respect to the impact parameters
a. In Sect. 13.3, we will present an algebraic approach for computing
bending angles and impact parameters. Once computed, these bending
(refraction) angles are related to the refractive index by
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α(a) = 2a

∫ r=∞

r=r0

1√
n2r2 − a2

dIn(n)

dr
dr, (13.2)

which is inverted using Abel’s transformation to give the desired re-
fractive index

n(r0) = exp

[
1

π

∫ a=∞

a=a0

α(a)√
a2 − a2

0

da

]
. (13.3)

Rather than the refractive index in (13.3), refractivity is used as

N = (n−1)106 = 77.6
P

T
+3.73×105 Pw

T 2
−40.3×106 ne

f2
+1.4w. (13.4)

In (13.4), P denotes the atmospheric pressure in {mbar}, T the at-
mospheric temperature in K, Pw the water vapour in {mbar}, ne the
electron number density per cubic meter {number of electron/m3}, f
the transmitter frequency in Hz and w the liquid water content in g/m3.
Three main contributors to refractivity are:

• The dry neutral atmosphere (called the dry component, i.e., the first
component on the right-hand-side of (13.4)).

• Water vapour (also called the wet or moist components, i.e., the
second component on the right-hand-side of (13.4))

• The free electrons in the ionosphere (i.e., the third component on
the right-hand-side of (13.4)).

If the atmospheric temperature T and pressure P are provided from
external source, e.g., from models and synoptic meteorological data over
tropical oceanic regions, then the vertical water vapour density may be
recovered from satellite remote sensing data [248]. The refraction effects
on the signals in the ionosphere must be corrected using signals at two
frequencies at which these effects are substantially different.

13.2.2 Ground based GPS meteorology

Whereas GPS receivers are onboard low flying (LEO) satellites (e.g.,
CHAMP, GRACE etc.) in space borne GPS remote sensing, they are
fixed on ground stations in the case of ground-based GPS meteorology.
These receivers track the transmitted signals which have traversed the
atmosphere as indicated in Fig.13.23. As the signals travel through

3Source: http://apollo.lsc.vsc.edu/classes/remote/lecture notes/gps/theory/
theoryhtml.htm
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the atmosphere from the satellites to the ground based receivers, they
are delayed by the troposphere. The tropospheric delay comprise the
hydrostatic and the wet parts as seen in (13.4). The contribution of
hydrostatic part which can be modeled and eliminated very accurately
using surface pressure data or three-dimensional numerical models is
about 90% [87, 103]. The wet delay however is highly variable with little
correlation to surface meteorological measurements. Assuming that the
wet delay can be accurately derived from GPS data, and that reliable
surface temperature data are available, the wet delay can be converted
into the estimation of the total atmospheric water vapour Pw present
along the GPS ray path as already suggested by [59]. This atmospheric
water vapour Pw is termed precipitable water in GPS meteorology.

The precipitable water as opposed to the vertical profile is estimated
with a correction made for the fact that the radio beams normally are
slanted from the zenith. The phase delay along the zenith direction is
called the “zenith delay” and is related to the atmospheric refractivity
by:

zenithDelay = 106

∞∫
antenna

N(z)dz, (13.5)

where the integral is in the zenith direction. Substituting (13.4) in
(13.5) leads to the calculation of the zenith wet delay which is related to
the total amount of water vapour along the zenith direction. The zenith
delay is considered to be constant over a certain time interval. It is the
average of the individual slant ray path delays that are projected to the
zenith using the mapping functions (e.g., [257]) which are dependent on
the receiver to satellite elevation angle, altitude and time of the year.

The significant application of GPS satellites in ground based GPS
meteorology is the determination of the slant water. If one could con-
dense all the water vapour along the ray path of a GPS signal (i.e.,
from the GPS satellite to the ground receiver), the column of the liq-
uid water after condensation is termed slant water. By converting the
GPS derived tropospheric delay during data processing, slant water
is obtained. By using several receivers to track several satellites (e.g.,
Fig.13.23), a three-dimensional distribution of water vapour and its
time variation can be quantified. In Japan, there exist (by 2004) more
than 1200 GPS receivers within the framework of GPS Earth Observing
NETwork (GEONET) with a spatial resolution of 12-25km dedicated
to GPS meteorology (see e.g., [10, 315]). These dense network of GPS
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receivers are capable of delivering information on water vapour that
are useful as already stated in Sect. 13.1.

Fig. 13.2. Water vapour from ground based GPS receivers

13.3 Refraction (Bending) Angles

In space borne GPS meteorology, the measured quantities are normally
the excess path delay of the signal. It is obtained by measuring the ex-
cess phase of the signal owing to atmospheric refraction during the
traveling period. The determination of the refraction angle α from the
measured excess phase therefore marks the beginning of the compu-
tational process to retrieve the atmospheric profiles of temperature,
pressure, water vapour and geopotential heights. The unknown refrac-
tion angle α is related to the measured excess phase by a system of two
nonlinear trigonometric equations;

1. an equation relating the doppler shift at the Low Earth Orbiting
(LEO) satellite (e.g., CHAMP, GRACE etc.) expressed as the dif-
ference in the projected velocities of the two moving satellites on
the ray path tangent on one hand, and the doppler shift expressed
as the sum of the atmosphere free propagation term and a term due
to atmosphere on the other hand,
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2. an equation that makes use of Snell’s law in a spherically layered
medium [299, p. 59].

Equations formed from (1) and (2) are nonlinear e.g., (13.6) and have
been solved using iterative numerical methods such as Newton’s (see
e.g., [170, 211, 299, 335]. In-order to solve the trigonometric nonlin-
ear system of equations (13.6), Newton’s approach assumes the re-
fractive angles to be small enough such that the relationship between
the doppler shift and the bending angles formed from (1) and (2)
are linear. The linearity assumption of the relationship between the
doppler shift and refraction angles introduces some small nonlinearity
errors. Vorob’ev and Krasil’nikova [325] have pointed out that neglect-
ing the nonlinearity in (13.6) causes an error of 2% when the beam
perigee is close to the Earth’s ground and decrease with the altitude
of the perigee. The extent of these errors in the dry part of the at-
mosphere, i.e., the upper troposphere and lower stratosphere, particu-
larly the height 5-30 km, whose bending angle data are directly used to
compute the atmospheric profiles or directly assimilated in Numerical
Weather Prediction Models (NWPM) (e.g., [180]) is however not pre-
cisely stated. The effects of nonlinearity error on the impact parameters
to which the refraction bending angles are related is also not known.

In an attempt to circumvent the nonlinearity of (13.6), [325] expand
it into series of V/c, where V is the velocity of the artificial satellite and
c the velocity of light in vacuum. This corrects for relativistic effects and
introduce the concept of perturbation. The angle between the relative
position vectors of the two satellites and the tangent velocity vector
at GPS is expressed in quadratic terms of the corresponding angle at
LEO (also expanded to the second order). The refraction angle is then
obtained by making use of its infinitesimal values that are less than
10−2. Though the approach attempts to provide an analytic (direct)
solution to nonlinear system of equations for bending angles, it is still
nevertheless “quasi-nonlinear” and as such does not offer a complete,
exact solution to the problem. The fact that there existed no direct
(exact) solution to the nonlinear system of bending angle’s equations
of space borne GPS meteorology had already been pointed out by [335].

Motivated by Wickert’s [335] observation, we will demonstrate in
the next sections how the algebraic techniques of Sylvester resultant
and reduced Groebner basis offer direct solution to bending angles’
nonlinear system of equations (13.6).
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13.3.1 Transformation of Trigonometric Equations to
Algebraic

The system of nonlinear trigonometric equations for determining the
refraction angles comprises of two equations given as

[
vLcos(βL − φL) − vGcos(φG + βG) =

dLi

dt
+ vLcos(βL − ψL) − vGcos(ψG + βG)

rGsinφG = rLsinφL,
(13.6)

where vL, vG are the projected LEO and GPS satellite velocities in
the occultation plane, rL, rG the radius of tangent points at LEO and

GPS respectively, and
dLi

dt
, the doppler shift. The angles in (13.6) are

as shown in Fig. 13.3.

Fig. 13.3. Geometry of space borne GPS meteorology

Let us denote[
x = sinφG, y = sinφL, a1 = vLcosβL, a2 = vLsinβL

a3 = −vGcosβG, a4 = vGsinβG, a5 = rG, a6 = −rL,
(13.7)

where the signs of the velocities change depending on the directions of
the satellites. Using;

• Theorem 3.1 on p. 20,
• the trigonometric addition formulae,
• and (13.7),

(13.6) simplifies to[
a1cosφL + a2y + a3cosφG + a4x = a
a5x + a6y = 0.

(13.8)
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In (13.8), the right-hand-side of the first expression of (13.6) has been
substituted with a. In-order to eliminate the trigonometric terms cosφL

and cosφG appearing in (13.8), they are taken to the right-hand-side
and the resulting expression squared as

(a2y + a4x − a)2 = (−a1cosφL − a3cosφG)2. (13.9)

The squared trigonometric values cos2φG and cos2φL from (13.9) are
then replaced by variables {x, y} from (13.7). This is done following
the application of trigonometric Pythagorean theorem of a unit circle
{cos2φG + sin2φG = 1} and {cos2φL + sin2φL = 1} which convert the
cosine terms into sines. The resulting expression has only trigonomet-
ric product {2a1a3cosφLcosφG} on the right-hand-side. Squaring both
sides of the resulting expression and replacing the squared trigonomet-
ric values cos2φG and cos2φL, with {x, y} from (13.7) completes the
conversion of (13.6) into algebraic

[
d1x

4 + d2x
3 + d3x

3y + d4x
2 + d5x

2y2 + d6x
2y + d7x + d8xy3 + d9xy2 + d00 = 0

a5x + a6y = 0,
(13.10)

where d00 = d10xy+d11y
4+d12y

3+d13y
2+d14y+d15. The coefficients

d1, ..., d15 are:

d1 = b2
4 d9 = 2b1b5 + 2b2b3

d2 = 2b4b5 d10 = 2b3b6 + 2b5b2

d3 = 2b4b3 d11 = b2
1

d4 = 2b6b4 + b2
5 + b2

7 d12 = 2b1b2

d5 = 2b1b4 + b2
3 − b2

7 d13 = 2b1b6 + b2
2 + b2

7

d6 = 2b3b5 + 2b2b4 d14 = 2b2b6

d7 = 2b6b5 d15 = b2
6 − b2

7,
d8 = 2b1b3

with
b1 = a2

1 + a2
2

b2 = −2aa2

b3 = 2a2a4

b4 = (a2
3 + a2

4)
b5 = −2aa4

b6 = a2 − a2
1 − a2

3

b7 = 2a1a3.
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The algebraic equation (13.10) indicates that the solution of the non-
linear bending angle equation (13.6) is given by the intersection of a
quartic polynomial (e.g., p. 27) and a straight line (see e.g., Fig. 13.4).
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Fig. 13.4. Algebraic curves for the solution of nonlinear system of bending angle
equations

13.3.2 Algebraic Determination of Bending Angles

Application of Groebner Basis

Denoting the nonlinear system of algebraic (polynomial) equations
(13.10) by

[
f1 := d1x

4 + d2x
3 + d3x

3y + d4x
2 + d5x

2y2 + d6x
2y + d7x + d8xy3 + d9xy2 + d00

f2 := a5x + a6y,
(13.11)

reduced Groebner basis (4.38) on p. 44 is computed for x and y as[
GroebnerBasis[{f1, f2}, {x, y}, {y}]
GroebnerBasis[{f1, f2}, {x, y}, {x}]. (13.12)

The terms {f1, f2} in (13.12) indicate the polynomials in (13.11), {x, y}
the variables with lexicographic ordering x comes before y, and {y},
{x} the variables to be eliminated. The first expression of (13.12),
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i.e., GroebnerBasis[{f1, f2}, {x, y}, {y}] gives a quartic polynomial in
x (the first expression of 13.13), while the second expression gives a
quartic polynomial in y (the second expression of 13.13). The results
of (13.12) are: [

h4x
4 + h3x

3 + h2x
2 + h1x + h0 = 0

g4y
4 + g3y

3 + g2y
2 + g1y + g0 = 0,

(13.13)

with the coefficients as

h4 = (a4
6d1 + a4

5d11 − a5a
3
6d3 + a2

5a
2
6d5 − a3

5a6d8)
h3 = (−a3

5a6d12 + a4
6d2 − a5a

3
6d6 + a2

5a
2
6d9)

h2 = (−a5a
3
6d10 + a2

5a
2
6d13 + a4

6d4)
h1 = (−a5a

3
6d14 + a4

6d7)
h0 = a4

6d15,

and
g4 = (a4

6d1 + a4
5d11 − a5a

3
6d3 + a2

5a
2
6d5 − a3

5a6d8)
g3 = (a4

5d12 − a5a
3
6d2 + a2

5a
2
6d6 − a3

5a6d9)
g2 = (−a3

5a6d10 + a4
5d13 + a2

5a
2
6d4)

g1 = (a4
5d14 − a3

5a6d7)
g0 = a4

5d15.

Four solutions are obtained from (13.13) for both x and y using Mat-
lab’s roots command (e.g., 4.40 on p. 44) as x = roots([h4 h3 h2 h1 h0 ])
and y = roots([g4 g3 g2 g1 g0 ]). From (13.7) and the roots of (13.13),
the required solutions can now be obtained from[

φG = sin−1x,
φL = sin−1y.

(13.14)

The desired bending angle α in Fig. 13.3 is then obtained by first
computing δG and δL as [

δG = φG − ψG

δL = φL − ψL,
(13.15)

leading to [
α = δG + δL

p = 1
2(rLsinφL + rGsinφG),

(13.16)

where α(p) is the bending angle and p the impact parameter.
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Sylvester Resultants Solution

The quartic polynomials (13.13) can also be obtained using Sylvester
resultants technique as follows:

• Step 1: From the nonlinear system of equations (13.10), hide y by
treating it as a constant (i.e., polynomial of degree zero). Using (5.1)
and (5.2) on p. 48, one computes the resultant of a 5 × 5 matrix

Res (f1, f2, y) = det

⎡
⎢⎢⎢⎢⎣

a5 a6y 0 0 0
0 a5 a6y 0 0
0 0 a5 a6y 0
0 0 0 a5 a6y
d1 d2 + d3y b53 b54 b55

⎤
⎥⎥⎥⎥⎦ , (13.17)

with b53 = d4 + d5y
2 + d6y, b54 = d7 + d8y

3 + d9y
2 + d10y and

b55 = d00. The solution of (13.17) leads to the first expression of
(13.13).

• Step 2: Now hide x by treating it as a constant (i.e., polynomial of
degree zero) and compute the resultant of a 5 × 5 matrix as

Res (f1, f2, x) = det

⎡
⎢⎢⎢⎢⎣

a6 a5x 0 0 0
0 a6 a5x 0 0
0 0 a6 a5x 0
0 0 0 a6 a5x

d11 d12 + d8x c53 c54 c55

⎤
⎥⎥⎥⎥⎦ , (13.18)

with c53 = d13 + d5x
2 + d9x, c54 = d14 + d3x

3 + d6x
2 + d10x and

c55 = d15 + d1x
4 + d2x

3 + d4x
2 + d7x. The solution of (13.18) leads

to the second expression of (13.13) from which the bending angles
and the impact parameters can be solved as already discussed.

In summary, the algebraic solution of refraction angles in space borne
GPS meteorology proceeds in five steps as follows:

Step 1 (coefficients computation):
Using (13.7), compute the coefficients {h4 h3 h2 h1 h0} and
{g4 g3 g2 g1 g0} of the quartic polynomials in (13.13).

Step 2 (solution of variables {x, y}):
Using the coefficients {hi, gi}|i = 1, 2, 3, 4 computed from step 1,
obtain the roots of the univariate polynomials in (13.13) for {x, y}.

Step 3 (determine the angles {φG, φL}):
With the admissible values of {x, y} from step 2, compute the angles
{φG, φL} using (13.14).
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Step 4 (obtain the angles {δG, δL}):
Using the values of {φG, φL} from step 3, compute the angles
{δG, δL} using (13.15).

Step 5 (determine the angle α and the impact parameter p):
Finally, the bending angle α and the impact parameter p are com-
puted using the values of {φG, φL} from step 4 in (13.16).

13.4 Algebraic Analysis of some CHAMP Data

Let us now apply the algebraic algorithm outlined in steps 1 to 5 to
assess the effect of neglecting nonlinearity (i.e., nonlinearity error) in
using Newton’s iterative approach, which assumes (13.6) to be linear.
In-order carry out the analysis, bending angles from CHAMP satellite
level 2 data for two satellite occultations were computed and compared
to those obtained from iterative approach in [299]. The occultations
were chosen at different times of the day and years. Occultation number
133 of 3rd May 2002 occurred past mid-day at 13:48:36. For this period
of the day, the solar radiation is maximum and so is the ionospheric
noise. In contrast, occultation number 3 of 14th May 2001 occurred
past mid-night at 00:39:58.00. For this period, the solar radiation is
minimum and the effect of ionospheric noise is also minimum.

The excess phase length data are smoothed using polyfit function
of Matlab software and the resulting doppler shift values for L1 and
L2 used together with (13.7), (13.13) and (13.14) to obtain the angles
φG and φL. These angles were then used in (13.16) to compute the
refraction angle α and the impact parameter p (also denoted in this
analysis as a). Let us examine in detail the computation of occultation
number 133 of 3rd May 2002 which occurred during the maximum so-
lar radiation period. The results of occultation number 3 of 14th May
2001 will thereafter be briefly presented. For occultation number 133
of 3rd May 2002, which occurred from the time 13:48:36 to 13:49:51.98,
the bending angles were computed using both algebraic and the clas-
sical Newton’s (e.g., [299]) algorithms. Since the algebraic procedure
leads to four solutions of (13.13), a criteria for choosing the admissible
solution had to be developed. This was done by using the bending an-
gles from the classical Newton’s approach as prior information. Time
t = 24.66 sec was randomly chosen and its solutions from both al-
gebraic and classical Newton’s methods for the L1 signal compared.
Figures (13.5) and (13.7) show the plot of the four solutions for x and
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y computed from (13.13) respectively. These solutions are converted
into angular values {δG, δL} using (13.14) and (13.15) respectively and
plotted in Figs. 13.6 and 13.8. From the values of Figs. 13.6 and 13.8,
the smallest values (encircled) were found to be close to those of the
classical Newton’s solution. The algebraic algorithm was then set to
select the smallest value amongst the four solutions. Though Newton’s
approach converged after three iterations, a fixed value of 20 was set for
this analysis. The threshold was set such that the difference between
two consecutive solutions were smaller than 1 × 10−6.
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For the entire occultation, the bending angles {α = δG + δL} for
both L1 and L2 signals were computed using algebraic algorithm and
are plotted in Fig. 13.9. A magnifications of Fig. 13.9 above the height
30 km is plotted in Figs. 13.10 to show the effect of the residual iono-
spheric errors on bending angles.

Since bending angle’s data above 40 km are augmented with model
values and those below 5 km are highly influenced by the presence of
water vapour (see e.g., Figs. 13.9 and 13.10), we will restricted our anal-
ysis to the region between 5-40 km. Data in this region are normally
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Fig. 13.9. Bending angles for L1 and L2 from algebraic algorithm
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Fig. 13.10. Magnification of the bending angles in Fig. 13.9 above 6380 km

used directly to derive the atmospheric profiles required for Numerical
Weather Prediction (NWP) models . In-order to assess the effect of non-
linearity assumptions, we subtract the results of the classical Newton’s
approach from those of algebraic approach. This is performed for both
the bending angles α and the impact parameter p. The computations
were carried out separately for both L1 and L2 signals. In-order to com-
pare the results, the computed differences are plotted in Figs. 13.11,
13.12, 13.13 and 13.14. In these Figures, the vertical axes are fixed while
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the horizontal axes indicate the range of the computed differences. In
Figures 13.11 and 13.12, the computed differences in bending angles due
to nonlinearity assumption for L1 are in the range ±6× 10−5(degrees)
with the maximum absolute value of 5.14× 10−5(degree). For L2, they
are in the range ±5×10−5(degrees), with the maximum absolute value
of 4.85× 10−5(degree). The effects of nonlinearity error on the impact
parameters for L1 are in the range ±1.5 m with the maximum abso-
lute value of 1.444 m, while those of L2 are in the range ±2 m with
the maximum absolute value of 1.534 m. The large differences in the
impact parameters are due to the large distances of the GPS satellites
(rG > 20, 000 km). They are used in the second equation of (13.16)
to compute the impact parameters to which the bending angles are
related. Any small difference in the computed bending angles due to
nonlinearity therefore contributes significantly to the large differences
in the impact parameters. For this particular occultation therefore, the
bending angles of L1 and L2 signals could probably be related to impact
parameters that are off by up to ±2 m.
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Fig. 13.11. Differences in bending angles from L1 due to nonlinearity for occultation
133 of 3rd May 2002.

In-order to assess the overall effect of nonlinearity on the bending
angles, both bending angles from algebraic and Newton’s procedures
have to be related to the same impact parameters. In this analysis, the
bending angles of L2 from algebraic approach and those of L1 and L2
from Newton’s approach are all matched through interpolation to the
impact parameters P1 of L1 from algebraic approach. The resulting
total bending angles from both algebraic and iterative procedures are
then obtained by the linear correction method of [325] as
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Fig. 13.12. Differences in bending angles from L2 due to nonlinearity for occultation
133 of 3rd May 2002.
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Fig. 13.13. Differences in impact parameters from L1 due to nonlinearity for oc-
cultation 133 of 3rd May 2002.
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Fig. 13.14. Differences in impact parameters from L2 due to nonlinearity for oc-
cultation 133 of 3rd May 2002.
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α(a) =
f2
1 α1(a) − f2

2 α2(a)

f2
1 − f2

2

, (13.19)

where f1, f2 are the frequencies of L1 and L2 signals respectively and,
α1(a) and α2(a) the bending angles from L1 and L2 signals respec-
tively. The resulting bending angles α(a)i from the Newton’s approach
and α(a)a from algebraic approach using (13.19) are plotted in Fig.
13.15. The deviation �α = α(a)a − α(a)i obtained are plotted in Fig.
13.16 which indicates the nonlinearity error to increase with decreas-
ing atmospheric height. From 40km to 15km, the deviation is within
±2 × 10−4(degrees) but increases to ±7 × 10−4(degrees) for the re-
gion below 15km with the maximum absolute deviation of 0.00069◦ for
this particular occultation. This maximum absolute error is less than
1%. Vorob’ev and Krasil’nikova [325] pointed out that the error due
to nonlinearity increases downwards to a maximum of about 2% when
the beam perigee is close to the Earth’s ground. The large difference
in computed bending angles with decrease in height is expected as the
region below 5km is affected by the presence of water vapour, and as
seen from Fig. 13.9, the bending angles due to L2 are highly nonlinear.
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Fig. 13.15. Bending angles from iterative and algebraic algorithms matched to the
same impact parameters for occultation 133 of 3rd May 2002.
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Fig. 13.16. Differences of computed bending angles due to nonlinearity for occul-
tation 133 of 3rd May 2002.

The algebraic approach was next used to compute the bending an-
gles of occultation number 3 of 14th May 2001 which occurred past
mid-night at 00:39:58.00. For this period, as stated earlier, the solar
radiation is minimum and the effect of ionospheric noise is also mini-
mum. The results from this occultation show the differences in bending
angles from the algebraic and Newton’s methods to be smaller (see Fig.
13.17) compared to those of solar maximum period. The maximum ab-
solute difference value for bending angles was 0.00001◦. For the com-
puted impact parameters, the differences were in the range ±5 cm for
L1 signal (Fig. 13.18) and ±6 cm for L2 (Fig. 13.19). The maximum
absolute values were 4 cm and 5 cm respectively. In comparison to the
results of occultation 133 of 3rd May 2002, the results of occultation
3 of 14th May 2001 indicate the effect of ionospheric noise during low
solar radiation period to be less. The ionospheric noise could therefore
increase the errors due to nonlinearity. In [33], further analysis of non-
linear bending angles have shown that there could exist other factors
that influence the nonlinearity error other than the ionospheric noise.
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Fig. 13.17. Differences in bending angles due to nonlinearity for occultation number
3 of 14th May 2001.
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Fig. 13.18. Differences in impact parameters from L1 due to nonlinearity for oc-
cultation number 3 of 14th May 2001
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Fig. 13.19. Differences in impact parameters from L2 due to nonlinearity for oc-
cultation number 3 of 14th May 2001
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13.5 Concluding Remarks

The new concept of GPS meteorology and its application to environ-
mental monitoring is still new and an active area of research. The data
that has been collected so far have unearthed several atmospheric prop-
erties that were hitherto difficult to fathom. The new technique clearly
promises to contribute significantly and enormously to environmental
and atmospheric studies. When the life span of the various missions
(e.g., CHAMP, GRACE) will have reached, thousands of data will have
been collected which will help unravel some of the hidden and compli-
cated atmospheric and environmental phenomenon. Satellite missions
such as EQUARS will contribute valuable equatorial data that have
long been elusive due to poor radiosonde coverage. From the analysis
of water vapour trapped in the atmosphere and the tropopause tem-
perature, global warming studies will be enhanced a great deal.

We have also successfully presented an independent algebraic al-
gorithm for solving the system of nonlinear bending angles for space
borne GPS meteorology and shown that nonlinearity correction should
be taken into account if the accuracy of the desired profiles are to be
achieved to 1%. In particular, it has been highlighted how the nonlin-
earity errors in bending angles contribute to errors in the impact pa-
rameters to which the bending angles are related. Occultation number
133 of 3rd May 2002 which occurred past noon and occultation number
3 of 14th May 2001 which occurred past mid-night indicated the signifi-
cance of ionospheric noise on nonlinearity error. When ionospheric noise
is minimum, e.g., during mid-night, the computed differences in bend-
ing angles between the two procedures are almost negligible. During
maximum solar radiation in the afternoons with increased ionospheric
noise, the computed differences in bending angles between algebraic
and classical Newton’s methods increases.

The proposed algebraic method could therefore be used to control
the results of the classical Newton’s method especially when the iono-
spheric noise is suspected to be great, e.g., for occultations that oc-
cur during maximum solar radiation periods. The hurdle that must be
overcome however is to concretely identify the criteria for selecting the
admissible solution amongst the four algebraic solutions. In this analy-
sis, the smallest values amongst the four algebraic solutions turned out
to be the admissible in comparison with values of the classical Newton’s
approach. Whether this applies in general is still subject to investiga-
tion. In terms of computing time, the algebraic approach would prob-
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ably have an advantage over the classical Newton’s iterative procedure
in cases where thousands of occultations are to be processed. For single
occultations however, the classical Newton’ s approach generally con-
verges after few iterations and as such, the advantage of the algebraic
approach in light of modern computers may not be so significant. For
further literature on GPS meteorology, we refer to [10, 276].
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Algebraic Diagnosis of Outliers

14.1 Outliers in Observation Samples

In Chap. 6, we introduced parameter estimation from observational
data sample and defined the models applicable to linear and nonlinear
cases. In-order for the estimates to be meaningful however;

(a) proper field observations must be carried out to minimize chances
of gross errors,

(b) the observed data sample must be processed to minimize or elimi-
nate the effects of systematic errors,

(c) appropriate estimation procedures that account for random errors
have to be applied.

Despite the care taken during observation period and the improved
models used to correct systematic errors, observations may still be con-
taminated with outliers or gross errors. Outliers are those observations
that are inconsistent with the rest of the observation sample. They often
degrade the quality of the estimated parameters and render them un-
reliable for any meaningful inferences (deductions). Outliers find their
way into observational data sample through:

• Miscopying during data entry, i.e., a wrong value can be entered
during data input into the computer or other processing machines.

• Misreading during observation period, e.g., number 6 can erro-
neously be read as 9.

• Instrumental errors (e.g., problems with centering, vertical and hor-
izontal circles, unstable tripod stands etc.)

• Rounding and truncation errors (e.g., during data processing)
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• Poor models applied to correct systematic errors and estimate pa-
rameters (e.g., a linear model may be assumed where a nonlinear
model could be suitable). This error is also common during data
smoothing where a linear fit is used where actually a cubic fit could
have been most suitable etc.

• Key punch errors during data input etc.

A special problem faced by users while dealing with outliers is the basis
on which to discard observations from a set of data on the grounds that
they are contaminated with outliers.

The least squares method used to estimate parameters assume the
observational errors to be independent and normally distributed. In
the presence of gross errors in the observational data sample, these as-
sumptions are violated and hence render the estimators, such as least
squares, ineffective. Earlier attempts to circumvent the problem of out-
lier involved procedures that would first detect and isolate the outliers
before adjusting the remaining data sample. Such procedures were both
statistical as seen in the works of [39, 40, 41, 252, 342, 343, 344], and
non statistical e.g., [183]. Other outlier detection procedures have been
presented by [4, 7].

The detection and isolation approach to the outlier problem comes
with its own shortcoming. On one hand, there exists the danger of false
deletion and false retention of the assumed outliers. On the other hand,
there exists the problem that the detection techniques are based on the
residuals computed initially using the least squares method which has
the tendency of masking the outliers by pulling their residuals closer to
the regression fit. This makes the detection of outliers difficult. These
setbacks had been recognized by the father of robust statistics P. J.
Huber [190], [191, p. 5] and also [172, pp. 30–31] who suggested that
the best option to deal with the outlier problem was to use robust es-
timation procedures. Such procedures would proceed safely despite the
presence of outliers, isolate them and give admissible estimates that
could have been achieved in the absence of outliers (i.e., if underly-
ing distribution was normal). Following the fundamental paper by P.
J. Huber in 1964 [189] and [191], several robust estimation procedures
have been put forward that revolve around the robust M-estimators, L-
estimators and R-estimators. In geodesy and geoinformatics, use of ro-
bust estimation techniques to estimate parameters has been presented
e.g., in [5, 16, 17, 88, 164, 200, 202, 203, 254, 284, 344, 347, 348, 350]
among others.
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In this chapter, we present a non-statistical algebraic approach to
outlier diagnosis that uses the Gauss-Jacobi combinatorial algorithm
presented in Chap. 6. The combinatorial solutions are analyzed and
those containing falsified observations identified. In-order to test the
capability of the algorithm to diagnose outliers, we inject outliers of
different magnitudes and signs on planar ranging and GPS pseudo-
ranging problems. The algebraic approach is then employed to diagnose
the outlying observations.

For GPS pseudo-range observations, the case of multipath effect is
considered. Multipath is the error that occurs when the GPS signal is
reflected (mostly by reflecting surfaces in built up areas) towards GPS
receivers, rather than travelling directly to the receiver. This error still
remains a menace which hinders full exploitation of the GPS system.
Whereas other GPS observational errors such as ionospheric and at-
mospheric refractions can be modelled, the error due to multipath still
poses some difficulties in being contained thus necessitating a search
for procedures that can deal with it. In proposing procedures that can
deal with the error due to multipath, [338] have suggested the use of
robust estimation approach that is based on iteratively weighted least
squares (e.g., a generalization of the Danish method to heterogeneous
and correlated observations). Awange [15] proposed the use of algebraic
deterministic approach to diagnose outliers of type multipath.

14.2 Algebraic Diagnosis of Outliers

Let us illustrate by means of a simple linear example how the algebraic
algorithm diagnoses outliers.

Example 14.1 (Outlier diagnosis using Gauss-Jacobi combinatorial al-
gorithm). Consider a case where three linear equations have been given
for the purpose of solving the two unknowns(x, y) in Fig. 14.1. Three
possible combinations, each containing two equations necessary for
solving the two unknowns, can be formed as shown in the box labelled
“combination”. Each of these systems of two linear equations is either
solved by substitution, graphically or matrix inversion to give three
pairs of solutions {x1,2, y1,2}, {x2,3, y2,3} and {x1,3, y1,3}. The final step
involves adjusting these pseudo-observations {x1,2, y1,2, x2,3, y2,3, x1,3,
y1,3} as indicated in the box labelled “adjustment of the combi-
natorial subsets solutions”. The weight matrix Σ or the weight el-
ements {π1,2, π2,3, π1,3} are obtained via nonlinear error/variance-
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covariance propagation. Assuming now that observation y1 is contam-
inated by gross error ∂y, then the first two combinatorial sets of the
system of equations containing observation y1 will have their results
{x1,2, y1,2}, {x1,3, y1,3} changed to {x∗

1,2, y
∗
1,2}, {x∗

1,3, y
∗
1,3} respectively

because of the change of observation y1 to (y1 + ∂y). The third combi-
nation set {x2,3, y2,3} without observation (y1+∂y) remains unchanged.
If one computes the combinatorial positional norms⎡

⎢⎢⎢⎣
p1 =

√
(x∗2

1,2 + y∗21,2)

p2 =
√

(x∗2
1,3 + y∗21,3)

p3 =
√

(x2
2,3 + y2

2,3),

and subtract them from the norms of the adjusted positional values,
median or a priori values (say from maps), one can analyze the devia-
tions to obtain the falsified observation y1 which is common in the first
two sets. It will be noticed that the deviation of the first two sets con-
taining the contaminated value is larger than the uncontaminated set.
The median is here used as opposed to the mean as it is less sensitive
to extreme scores.

Fig. 14.1. Algebraic outlier diagnosis steps
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The program operates in the following steps:

Step 1: Given an overdetermined system with n observations in m
unknowns, k combinations are formed using (6.26) on p. 69.

Step 2: Each of the minimal combination is solved in closed form using
either Groebner basis or polynomial resultant algebraic technique
of Chaps. 4 or 5. From the combinatorial solutions, compute the
positional norm.

Step 3: Perform the nonlinear error/variance-covariance propagation
to obtain the weight matrix of the pseudo-observations resulting
from step 2.

Step 4: Using these pseudo-observations and the weight matrix from
step 3, perform an adjustment using linear Gauss-Markov model
(6.10) on p. 62.

Step 5: Compute the adjusted barycentric coordinate values together
with its positional norm and the median positional norm from step
2. Subtract these positional norms from those of the combinatorial
solutions to diagnose outliers from the deviations.

14.2.1 Outlier Diagnosis in Planar Ranging

In Sect. 9.3 of Chap. 9, we discussed the planar ranging problem and
presented the solution to the overdetermined case. We demonstrated
by means of Example 9.4 on p. 130 how the position of unknown sta-
tion could be obtained from distance measurements to more than two
stations. In this section, we use the same example to demonstrate how
the algebraic combinatorial algorithm can be used to diagnose outliers.
From observational data of the overdetermined planar ranging problem
of [195] given in Table 9.9 on p. 131, the position of the unknown sta-
tion is determined. The algorithm is then applied to diagnose outlying
observations. Let us consider three cases as follows; first, the algorithm
is subjected to outlier free observations and used to compute the po-
sitional norms. Next, an outlier of 0.95 m is injected to the distance
observation to station 2 and the algorithm applied to diagnose that
particular observation. Finally, the distance observed to station 4 is
considered to have been miss-booked with 6 typed as 9, thus leading
to an error of 3 m.

Example 14.2 (Outlier free observations). From the values of Table 9.9
and using (6.26) on p. 69, 6 combinations, each consisting of two obser-
vation equations are formed. The aim is to obtain the unknown position
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from the nonlinear ranging observations equations. From the computed
positions in step 2, the positional norms are given by

Pi =
√

X2
i + Y 2

i |i=1, . . . ,6, (14.1)

where (Xi, Yi) |i=1, . . . ,6 are the two-dimensional geocentric coordinates
of the unknown station computed from each combinatorial pair. Table
14.1 indicates the combinations, their computed positional norms, and
deviations from the norm of the adjusted value (48941.769 m) from
step 4. The results are for the case of outlier free observations. These
deviations are plotted against combinatorial numbers in Fig. 14.2.

Table 14.1. Combinatorial positional norms and their deviations from that of the
adjusted value (outlier free observations)

Combination Positional norm (m) Deviation from adjusted value (m)

1-2 48941.776 0.007
1-3 48941.760 -0.009
1-4 48941.767 -0.002
2-3 48941.769 0.000
2-4 48941.831 0.062
3-4 48941.764 -0.005
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Fig. 14.2. Deviations of the combinatorial positional norms from that of the ad-
justed value (outlier free observation)
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Example 14.3 (Outlier of 0.950m in observation to station 2). Let us
now consider a case where the distance observation to station 2 in Table
9.9 has an outlier of 0.950 m. For this case, the distance is falsified
such that the observed value is recorded as 1530.432 m instead of the
correct value appearing in Table 9.9. The computed deviations of the
combinatorial positional norms from the adjusted value (48941.456 m)
and the median value of (48941.549 m) are presented in Table 14.2 and
plotted in Fig. 14.3.

Given that there exists an outlier in the distance observation to
station 2, which appears in combinations (1-2), (2-3) and (2-5), i.e.,
the first, fourth, and fifth combinations respectively, one expects the
deviations in positional norms in these combinations to be larger than
those combinations without station 2. Values of Table 14.2 columns
three and four indicate that whereas combinations (1-3), (1-4) and
(3-4), i.e., the second, third, and sixth combinations respectively have
deviations in the same range (c.a. 0.3 m and 0.2 m in columns three
and four respectively), the other combinations with outliers are clearly
seen to have varying deviations. Figure 14.3 clearly indicates the first,
fourth, and fifth combinations respectively with outlying observation
to have larger deviations as compared to the rest. This is attributed to
observation to station 2 containing gross error.

Table 14.2. Combinatorial positional norms and their deviations from that of the
adjusted value and median (error of 0.950 m in observation to station 2)

Combination Positional Deviation from Deviation from
norm-(m) adjusted value (m) median value (m)

1-2 48940.964 -0.492 -0.585
1-3 48941.760 0.304 0.211
1-4 48941.767 0.311 0.218
2-3 48941.338 -0.118 -0.211
2-4 48936.350 -5.106 -5.199
3-4 48941.764 0.308 0.215

Example 14.4 (Outlier of 3m in observation to station 4). Next, we
consider a case where observation to station 4 in Table 9.9 has an
outlier of 3 m, which erroneously resulted from miss-booking of the
number 6 as 9. This falsified the distance such that the recorded value
was 1209.524 m. The computed deviations of the combinatorial posi-
tional norms from the norm of the adjusted value (48942.620 m) and
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Fig. 14.3. Deviations of the combinatorial positional norms from that of the ad-
justed value (error of 0.950 m in observation to station 2)

the median value (48941.772 m) are given as in Table 14.3 and plotted
in Fig. 14.4. Given that there exists an outlier in the distance observa-
tion to station 4, which appears in combinations (1-4), (2-4) and (3-4)
i.e., the third, fifth, and sixth combinations, Table 14.3 columns three
and four together with Fig. 14.4 clearly indicates the deviations from
these combinations to be larger than those of the combinations without
observation 4, thus attributing it to observation to station 4 containing
gross error.

Table 14.3. Combinatorial positional norms and deviations from the norms of
adjusted value and median (error of 3m in observation to station 4)

Combination Positional Deviation from Deviation from
norm-(m) adjusted value (m) median value (m)

1-2 48941.776 -0.844 0.004
1-3 48941.760 -0.860 -0.012
1-4 48944.388 1.768 2.616
2-3 48941.769 -0.851 -0.003
2-4 48927.912 -14.708 -13.860
3-4 48943.061 0.441 1.289
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Fig. 14.4. Deviations of the combinatorial positional norms from that of the median
value (error of 3m in observation to station 4)

14.2.2 Diagnosis of Multipath Error in GPS Positioning

For GPS pseudo-ranging, consider that a satellite signal meant to travel
straight to the receiver was reflected by a surface as shown in Fig.
14.5. The measured pseudo-range reaching the receiver ends up being
longer than the actual pseudo-range, had the signal travelled directly.
In-order to demonstrate how the algorithm can be used to detect outlier

Fig. 14.5. Multipath effect

of type multipath, let us make us of Example 9.2 on p. 116. Using the
six satellites, 15 combinations are formed whose positional norms are
computed using
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Pi =
√

X2
i + Y 2

i + Z2
i |i=1, . . . ,15, (14.2)

where (Xi, Yi, Zi) |i=1, . . . ,15 are the three-dimensional geocentric coor-
dinates of the unknown station computed from each combinatorial set.
The computed positional norm are then used to diagnose outliers. Three
cases are presented as follows: In case A, outlier free observations are
considered while for cases B and C, outliers of 500 m and 200 m are
injected in pseudo-range measurements from satellites 23 and 9 respec-
tively.

Example 14.5 (Case A: Multipath free pseudo-ranges). From the values
of Table 9.2 and using (6.26) on p. 69, 15 combinations, each consisting
of four satellites, are formed with the aim of solving for the unknown
position. For each combination, the position of the receiver is computed
as discussed in Example 9.2 on p. 116. Table 14.4 indicates the combi-
nations, the computed combinatorial positional norms from (14.2) and
the deviations from the norms of the adjusted value of 6369. 582 m
and the median from step 4, for outlier free case. The combinatorial
algorithm diagnoses the poor geometry of the 10th combination. Figure
14.6 indicates the plotted deviations versus combinatorials.

Table 14.4. Positional norms and deviations from the norms of adjusted value and
median (multipath free)

Combination Combination Positional Deviation from the the norm of
Number norm (km) norm of the Deviation from

adjusted value (m) the median (m)

1 23-9-5-1 6369.544 -39.227 -17.458
2 23-9-5-21 6369.433 -149.605 -127.837
3 23-9-5-17 6369.540 -43.255 -21.487
4 23-9-1-21 6369.768 185.342 207.110
5 23-9-1-17 6369.538 -44.603 -22.835
6 23-9-21-17 6369.561 -21.768 0.000
7 23-5-1-21 6369.630 47.449 69.217
8 23-5-1-17 6369.542 -41.229 -19.461
9 23-5-21-17 6369.507 -76.004 -54.235
10 23-1-21-17 6373.678 4094.748 4116.516
11 9-5-1-21 6369.724 140.976 162.744
12 9-5-1-17 6369.522 -60.746 -38.978
13 9-5-21-17 6369.648 64.830 86.598
14 9-1-21-17 6369.712 128.522 150.2908
15 5-1-21-17 6369.749 166.096 187.865



14.2 Algebraic Diagnosis of Outliers 255

0 5 10 15
-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500
Deviation of positional norm without outlier

Combinatorial No.

D
ev

ia
tio

n 
in

 (
m

)

Outlier diagnosis

Fig. 14.6. Deviations of the combinatorial positional norms from that of the ad-
justed value (outlier free observation).

Example 14.6 (Case B: Multipath error of 500m in pseudo-range mea-
surements from satellite 23). Let us assume that satellite number 23
had its pseudo-range longer by 500 m owing to multipath effect. Once
the positions have been computed for the various combinations in Table
9.2, the positional norms for the 15 combinatorials are then computed
via (14.2). The computed deviations of the positional norms from the
norm of the adjusted value 6368.785 m, norm of the median value of
6368.638 m and a priori norm from case A are presented in Table 14.5.
The deviations from a priori norm in case A are plotted in Fig. 14.7.

Given that there exists an outlier in the pseudo-range measurements
from satellite 23, which appears in combinations 1 to 10, one expects the
deviation in positional norms in these combinations to contain higher
fluctuations than the combinations without satellite 23. Values of Ta-
ble 9.2 columns four, five and six indicate that whereas combinations
11, 12, 13, 14 and 15 without satellite number 23 have values with less
fluctuation of positional norms, the variation of the first 10 combina-
tions containing satellite 23 were having larger fluctuations. The case is
better illustrated by Fig. 14.7, where prior information is available on
the desired position (e.g., from the norm of outlier free observations in
Example 14.5). In such case, it becomes clearer which combinations are
contaminated. From the figure, the first 10 combinations have larger
deviations as opposed to the last 5, thus diagnosing satellite 23 as the
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outlying satellite. In practice, such prior information can be obtained
from existing maps.

Table 14.5. Positional norms and deviations from the norms of adjusted value,
median norm and the norm of case A (Multipath error of 500m in satellite 23)
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Fig. 14.7. Deviations of combinatorial positional norms from the norm of the a
priori value in case A (error of 500m in pseudo-range of satellite 23)

Comb. Combination Positional Deviation from norm of Deviation from
No. norm (km) norm of Deviation from a priori norm

adjusted value (m) the median (m) (m)

1 23-9-5-1 6368.126 -658.763 -512.013 -1456.925
2 23-9-5-21 6367.147 -1637.513 -1490.763 -2435.675
3 23-9-5-17 6368.387 -397.366 -250.616 -1195.528
4 23-9-1-21 6370.117 1332.597 1479.347 534.435
5 23-9-1-17 6368.475 -309.906 -163.155 -1108.068
6 23-9-21-17 6368.638 -146.750 0.000 -944.912
7 23-5-1-21 6368.895 110.069 256.820 -688.093
8 23-5-1-17 6368.256 -528.806 -382.055 -1326.967
9 23-5-21-17 6368.006 -779.197 -632.447 -1577.359
10 23-1-21-17 6368.068 -716.569 -569.818 -1514.730
11 9-5-1-21 6369.724 939.136 1085.888 140.976
12 9-5-1-17 6369.522 737.416 884.166 -60.746
13 9-5-21-17 6369.648 862.991 1009.742 64.829
14 9-1-21-17 6369.712 926.684 1073.434 128.522
15 5-1-21-17 6369.749 964.258 1111.008 166.096
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Example 14.7 (Case C: Multipath error of 200m in satellite 9). Let us
now suppose that satellite number 9 appearing in the last 5 combina-
tions in case B (i.e., combinations 11, 12, 13, 14 and 15) has outlier of
200 m. The positional norms for the 15 combinatorials are then com-
puted from (14.2). The computed deviations of the positional norms
from the norm of the adjusted value 6369.781 m, norm of the median
value 6369.804 m and a priori norm from case A are presented in Table
14.6 and plotted in Fig. 14.8. Satellite 9 appears in combinations 1, 2, 3,
4, 5, 6, 11, 12, 13, 14 and 15, with larger deviations in positional norms
as depicted in Table 14.6 columns four, five and six and plotted in Fig.
14.8. Whereas combinations 7, 8, 9 and 10 without satellite number
9 have values with less deviations of positional norms, the deviations
of the first 6 combinations and those of combinations 11-15 containing
satellite 9 were larger. With prior information as shown in Fig. 14.8,
satellite 9 can then be isolated to be the satellite with outlier. The
value of combinatorial 10 is due to poor geometry as opposed to outlier
since this particular combination does not contain satellite 9. This can
be confirmed by inspecting the coefficients of the quadratic equations
used to solve the unknown pseudo-range equations as already discussed
in Example 9.2 on p. 116.

Table 14.6. Positional norms and deviations from the norms of adjusted value,
median norm and the norm of case A (Multipath error of 200m in satellite 9)

Comb. Combination Positional Deviation from norm of Deviation from
No. norm (km) norm of Deviation from a priori norm

adjusted value (m) the median (m) (m)

1 23-9-5-1 6369.386 -394.656 -417.522 -196.748
2 23-9-5-21 6369.075 -705.644 -728.511 -507.737
3 23-9-5-17 6369.699 -81.796 -104.6639 116.111
4 23-9-1-21 6370.019 238.062 215.195 435.969
5 23-9-1-17 6369.804 22.866 0.000 220.774
6 23-9-21-17 6369.825 44.237 21.371 242.145
7 23-5-1-21 6369.630 -150.459 -173.325 47.449
8 23-5-1-17 6369.542 -239.137 -262.003 -41.229
9 23-5-21-17 6369.507 -273.911 -296.778 -76.004
10 23-1-21-17 6373.678 3896.840 3873.974 4094.748
11 9-5-1-21 6369.894 113.076 90.209 310.983
12 9-5-1-17 6371.057 1276.444 1253.578 1474.352
13 9-5-21-17 6370.333 552.230 529.364 750.138
14 9-1-21-17 6369.966 184.890 162.024 382.798
15 5-1-21-17 6369.749 -31.811 -54.678 166.096
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Fig. 14.8. Deviations of combinatorial positional norms from the norm of the a
priori value (error of 200m in pseudo-range of satellite 9)

The diagnosed outliers in planar ranging observations as well as the
pseudo-ranges of satellites 23 and 9 could therefore either;

• be eliminated from the various combinations and the remaining ob-
servations used to estimate the desired parameters or,

• the effect of the outlier could be managed using robust estimation
techniques such as those discussed in [16, 17, 338], but with the
knowledge of the contaminated observations.

14.3 Concluding Remarks

The success of the algebraic Gauss-Jacobi combinatorial algorithm to
diagnose outliers in the cases considered is attributed to its computing
engine. The capability of the powerful algebraic tools of Groebner basis
and polynomial resultants to solve in a close form the nonlinear sys-
tems of equations is the key to the success of the algorithm. With prior
information from e.g., existing maps, the method can further be en-
hanced. For the 7-parameter datum transformation problem discussed
in the next chapter, Procrustes algorithm II could be used as the com-
puting engine instead of Groebner basis or polynomial resultants. The
algebraic approach presented could be developed to further enhance
the statistical approaches for detecting outliers.
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Transformation Problem: Procrustes
Algorithm II

15.1 7-Parameter Datum Transformation and its
Importance

The 7-parameter datum transformation C7(3) problem comprises the
determination of seven parameters required to transform coordinates
from one system to another. Transformation of coordinates is a compu-
tational procedure that maps one set of coordinates in a given system
onto another. This is achieved by translating the given system so as
to cater for its origin with respect to the final system, and rotating
the system about its own axes so as to orient it to the final system. In
addition to translation and rotation, scaling is performed in-order to
match the corresponding baseline lengths in the two systems. The three
translation parameters, three rotation parameters and the scale element
comprise the 7 parameters of the datum transformation C7(3) problem.
They are required to transform a set of three-dimensional coordinates
from one system A onto another system B. In the 7-parameter da-
tum transformation problem C7(3), one understands C7(3) to be the
notion of the seven parameter conformal group in R3, leaving “space
angles” and “distance ratios” equivariant (invariant). A mathematical
introduction to conformal field theory is given by [114, 290], while a
systematic approach of geodetic datum transformation including geo-
metrical and physical terms is has been presented by [157]. For a given
network, it suffices to compute the transformation parameters using
three or more coordinates in both systems. These parameters are then
later used for subsequent conversions.

In geodesy and geoinformatics, the 7-parameter datum transforma-
tion problem has gained significance following the advent of Global
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Navigation Satellites System (GNSS), and particularly GPS. Since
satellite positioning operates on a global reference frame (see e.g., Chap.
7), there often exists the need to transform coordinates from local sys-
tems onto GPS’s World Geodetic System 84 (WGS-84). Specifically
coordinates can be transformed;

• from map systems to digitizing tables (e.g., in Geographical Infor-
mation System GIS),

• from photo systems (e.g., photo coordinates) to ground systems
(e.g., WGS-84),

• from local (national) systems to global reference systems (e.g.,
WGS-84) as in (12.29) on p. 215,

• from regional (e.g., European Reference Frame EUREF system) to
global reference systems (e.g., WGS-84),

• from local (national) systems to regional reference systems, and
• from one local system onto another local system. In some countries,

there exist different systems depending on political boundaries.

This problem, also known as 7-parameter similarity transformation,
has its 7 unknown transformation parameters related to the known
coordinates in the two systems by nonlinear equations. These equations
are often solved using numerical methods which as already pointed out
in the preceding chapters, rely on linearization, approximate starting
values and iterations. In this chapter, we solve the problem algebraically
using;

(a) Procrustes II
(b) Groebner basis, and
(c) Gauss-Jacobi combinatorial algorithms.

Before we present the usage of these algebraic algorithms, let us see
how the 7-parameter datum transformation problem is formulated.

Formulation of the Problem

Consider a case where coordinates have been given in two systems A
and B. For clarity purposes, let us assume the two coordinate systems to
be e.g., photo image coordinates in system A and ground coordinates
in system B (see e.g., Fig. 12.7 on p. 215). The ground coordinates
{Xi, Yi, Zi|i, . . . , n} of the objects are obtained from say GPS measure-
ments. Given the photo coordinates {ai = xi, bi = yi, ci = −f |i, . . . , n}
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and their equivalent ground coordinates {Xi, Yi, Zi|i, . . . , n}, the 7-
parameter datum transformation problem concerns itself with the de-
termination of;

(1) scale parameter x1 ∈ R,
(2) three translation parameters x2 ∈ R3, and
(3) rotation matrix X3 ∈ R3×3 comprising three rotation elements.

Once the listed unknowns have been determined, coordinates can sub-
sequently be transformed from one system onto another. The nonlinear
equations relating these unknowns and coordinates from both systems
are given by (cf., equation 12.29 on p. 215)⎡

⎣ai

bi

ci

⎤
⎦ = x1X3

⎡
⎣Xi

Yi

Zi

⎤
⎦+ x2 | i = 1, 2, 3, . . ., n, (15.1)

subject to

	



�
�X

′

3X3 = I3 . (15.2)

In (15.1), {ai, bi, ci} and {Xi, Yi, Zi} are coordinates of the same points,
e.g., in both photo and ground coordinate systems respectively. The
determination of the unknowns x1 ∈ R, x2 ∈ R3, X3 ∈ R3×3 require a
minimum of three points in both systems whose coordinates are known.
Owing to the nonlinearity of (15.1), the solutions have always been
obtained using least squares approach iteratively. With this approach,
(15.1) is first linearized and some initial approximate starting values of
the unknown parameters used. The procedure then iterates, each time
improving on the solutions of the preceding iteration step. This is done
until a convergence criteria is achieved.

Where the rotation angles are small e.g., in photogrammetry, the
starting values of zeros are normally used. In other fields such as
geodesy, the rotation angles are unfortunately not small enough to
be initialized by zeros thereby making the solution process somewhat
difficult and cumbersome. Bad choice of initial starting values often
leads to many iterations for the convergence criteria to be achieved. In
some cases, where the initial starting values are far from those of the
unknown parameters, iteration processes may fail to converge. With
these uncertainties of initial starting values, cumbersomeness of lin-
earization and iterations, procedures that would offer exact solution to
the 7-parameter datum transformation problem would be desirable. In
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answer to this challenge, we propose algebraic approaches whose ad-
vantages over the approximate numerical methods have already been
mentioned.

Apart from the computational difficulties associated with numerical
procedures, the 7-parameter datum transformation problem poses an-
other challenge to the existing algorithms. This is; the incorporation of
the variance-covariance (weight) matrices of the two systems involved.
Communications between [201, 220, 277] on the subject, following the
work of [219], provides an insight to this problem. In practice, users have
been forced to rely on iterative procedures and linearized least squares
solution which are incapable of incorporating the variance-covariance
matrices of both systems in play. We will attempt to address this chal-
lenge algebraically in this chapter.

15.2 Algebraic (Analytic) Determination of
Transformation Parameters

15.2.1 Groebner Basis Transformation

By making use of the skew-symmetric matrix S, the rotation matrix
X3 ∈ R3×3 in (15.1) is expressed as

X3 = (I3 − S)−1(I3 + S), (15.3)

where I3 is the identity matrix and the skew-symmetric matrix S given
by

S =

⎡
⎣ 0 −c b

c 0 −a
−b a 0

⎤
⎦ . (15.4)

The rotation matrix X3 ∈ R3×3 is parameterized using Euler or Cardan
angles. With Cardan angles, we have:

Solution 15.1 (Parametrization of the rotation matrix by Car-
dan angles).

X3 = R1(α)R2(β)R3(γ) (15.5)

with

R1 =

⎡
⎣ 1 0 0

0 cosα sinα
0 −sinα cosα

⎤
⎦ , R2 =

⎡
⎣ cosβ 0 −sinβ

0 1 0
sinβ 0 cosβ

⎤
⎦ , R3 =

⎡
⎣ cosγ sinγ 0
−sinγ cosγ 0

0 0 1

⎤
⎦ ,
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leading to

R1(α)R2(β)R3(γ) =⎡
⎣ cosβcosγ cosβsinγ −sinβ

sinαsinβcosγ − cosαsinγ sinαsinβsinγ + cosαcosγ sinαcosβ
cosαsinβcosγ + sinαsinγ cosαsinβsinγ − sinαcosγ cosαcosβ

⎤
⎦ .

(15.6)
The Cardan angles are then obtained from the rotation matrix X3 ∈
R3×3 through:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α = tan

{
r23

r33

}

γ = tan

{
r12

r11

}

β = tan

{
−r31√

r2
11 + r2

12

}
= tan

{
−r31√

r2
23 + r2

33

}
.

(15.7)

For parametrization using Euler angles, we have:

Solution 15.2 (Parametrization of the rotation matrix by Eu-
ler angles ΛΓ , ΦΓ , ΣΓ ).

RE(ΛΓ , ΦΓ , ΣΓ ) := R3(ΣΓ )R2(
π

2
− ΦΓ )R3(ΛΓ ) (15.8)

R1 :=

⎡
⎣ 1 0 0

0 cos 1 sin 1
0 − sin 1 cos 1

⎤
⎦ , R2 :=

⎡
⎣ cos 2 0 − sin 2

0 1 0
sin 2 0 cos 2

⎤
⎦ , R3 :=

⎡
⎣ cos 3 sin 3 0
− sin 3 cos 3 0

0 0 1

⎤
⎦

(15.9)

R3(ΛΓ ) =

⎡
⎣ cos ΛΓ sin ΛΓ 0
− sin ΛΓ cos ΛΓ 0

0 0 1

⎤
⎦ , R2(

π

2
− ΦΓ ) =

⎡
⎣ sin ΦΓ 0 − cos ΦΓ

0 1 0
cos ΦΓ 0 sin ΦΓ

⎤
⎦ (15.10)

R2(
π

2
− ΦΓ )R3(ΛΓ ) =

⎡
⎣ sinΦΓ cos ΛΓ sinΦΓ sinΛΓ − cos ΦΓ

− sinΛΓ cos ΛΓ 0
cos ΦΓ cos ΛΓ cos ΦΓ sinΛΓ sinΦΓ

⎤
⎦

(15.11)
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R := R3(ΣΓ )R2(
π
2
− ΦΓ )R3(ΛΓ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos ΣΓ sin ΦΓ cos ΛΓ

− sin ΣΓ sin ΛΓ

cos ΣΓ sin ΦΓ sin ΛΓ

+sin ΣΓ cos ΛΓ − cos ΣΓ cos ΦΓ

− sin ΣΓ sin ΦΓ cos ΛΓ

− cos ΣΓ sin ΛΓ

− sin ΣΓ sin ΦΓ sin ΛΓ

+ cos ΣΓ cos ΛΓ sin ΣΓ cos ΦΓ

cos ΦΓ cos ΛΓ cos ΦΓ sin ΛΓ sin ΦΓ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 ≤ ΛΓ < 2π,−π
2

< ΦΓ < +π
2
, 0 ≤ ΣΓ < 2π

(15.12)

The inverse map of

R = [rkl] ,k,l ∈ {1, 2, 3} ,

to
(ΛΓ , ΦΓ , ΣΓ )

is given by Lemma 15.1.

Lemma 15.1 (Inverse map R �→ ΛΓ , ΦΓ , ΣΓ ). Let the direct Euler
map of the rotation matrix be given by (15.12), namely

R := R3(ΣΓ )R2(
π

2
− ΦΓ )R3(ΛΓ ),

(ΛΓ , ΦΓ , ΣΓ ) ∈
{
R3

∣∣∣0 ≤ ΛΓ < 2π,−π

2
< ΦΓ < +

π

2
,0 ≤ ΣΓ < 2π

}
.

The inverse Euler map is parameterized by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

tanΛΓ =
r32

r31
⇒ ΛΓ = arctan

r32

r31

tanΦΓ =
r33√

r2
31 + r2

32

⇒ ΦΓ = arctan
r33√

r2
31 + r2

32

tanΣΓ = −r23

r13
⇒ ΣΓ = arctan−r23

r13
.

(15.13)

The properties of the rotation matrix X3 ∈ R3×3 expressed as in (15.3)
have been examined by [352] and shown to fulfill (15.2). Only a min-
imum of three corresponding points in both systems are required for
the transformation parameters to be obtained. For these points, (15.1)
is now written for i = 1, 2, 3 using (15.3) as
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⎣ 1 c −b
−c 1 a
b −a 1

⎤
⎦
⎡
⎣ai

bi

ci

⎤
⎦ = x1

⎡
⎣ 1 −c b

c 1 −a
−b a 1

⎤
⎦
⎡
⎣Xi

Yi

Zi

⎤
⎦+

⎡
⎣X0

Y0

Z0

⎤
⎦ , (15.14)

with {X0, Y0, Z0} ∈ x2 being the translation parameters. For these
three corresponding points in both systems, the observation equations
for solving the 7 datum transformation parameters are expressed from
(15.14) as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1 := x1X1 − x1cY1 + x1bZ1 + X0 − a1 − cb1 + bc1 = 0
f2 := x1cX1 + x1Y1 − x1aZ1 + Y0 + ca1 − b1 − ac1 = 0
f3 := −x1bX1 + x1aY1 + x1Z1 + Z0 − ba1 + ab1 − c1 = 0
f4 := x1X2 − x1cY2 + x1bZ2 + X0 − a2 − cb2 + bc2 = 0
f5 := x1cX2 + x1Y2 − x1aZ2 + Y0 + ca2 − b2 − ac2 = 0
f6 := −x1bX2 + x1aY2 + x1Z2 + Z0 − ba2 + ab2 − c2 = 0
f7 := x1X3 − x1cY3 + x1bZ3 + X0 − a3 − cb3 + bc3 = 0
f8 := x1cX3 + x1Y3 − x1aZ3 + Y0 + ca3 − b3 − ac3 = 0
f9 := −x1bX3 + x1aY3 + x1Z3 + Z0 − ba3 + ab3 − c3 = 0,

(15.15)

where {xi, yi, zi} := {ai, bi, ci} | i ∈ {1, 2, 3} are coordinates of the three
points in one of the systems (e.g., local system) and {Xi, Yi, Zi} | i ∈
{1, 2, 3} are the corresponding coordinates in the other system (e.g.,
global system). In (15.15), {f1, f2, f3} are algebraic expressions formed
from the first point with coordinates in both systems, {f4, f5, f6} from
the second point and {f7, f8, f9} from the third point. From (15.15),
one requires only seven equations for a closed form solution of the 7
parameter datum transformation problem.

Let us consider the system of nonlinear equations extracted from
(15.15) to be formed by {f1, f2, f3, f4, f5, f6, f9}. Our target now is to
solve algebraically this nonlinear system of equations using Groebner
basis approach to provide symbolic solutions. We proceed as follows:
First, the translation parameters {X0, Y0, Z0} are eliminated by differ-
encing⎡
⎢⎢⎣

f14 := f1 − f4 = x1X12 − x1cY12 + x1bZ12 − a12 − cb12 + bc12

f25 := f2 − f5 = x1cX12 + x1Y12 − x1aZ12 + ca12 − b12 − ac12

f39 := f3 − f9 = −x1bX13 + x1aY13 + x1Z13 − ba13 + ab13 − c13

f69 := f6 − f9 = −x1bX23 + x1aY23 + x1Z23 − ba23 + ab23 − c23,
(15.16)

where
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Xij = Xi − Xj , Yij = Yi − Yj , Zij = Zi − Zj

aij = ai − aj , bij = bi − bj , cij = ci − cj

⎤
⎦ | i, j ∈ {1, 2, 3}, i �= j.

The reduced Groebner basis of (15.16) is then obtained using (4.38) on
p. 44 by

GroebnerBasis[{f14, f25, f37, f67}, {x1, a, b, c}, {a, b, c}].

This gives only the elements of Groebner basis in which the variables
{a, b, c} have been eliminated and only the scale factor x1 left. The
scale parameter is then given by the following quartic polynomial:

a4x
4
1 + a3x

3
1 + a2x

2
1 + a1x1 + a0 = 0, (15.17)

with the coefficients as in [20, Boxes 2-2] or [34, Appendix A]. Once
the admissible value of scale parameter x1 ∈ R+ has been chosen from
the four roots in (15.17), the elements of the skew-symmetric matrix
S in (15.4) can then be obtained via the linear functions in [20, Boxes
2-3] or [34, Appendix B]. Substituting the skew-symmetric matrix S
in (15.1) gives the rotation matrix X3, from which the Cardan rota-
tion angles are deduced using (15.7) in Solution 15.1. The translation
elements x2 can then be computed by substituting the scale parame-
ter x1 and the rotation matrix X3 in (15.1). Three sets of translation
parameters are obtained from which their mean is taken.

Example 15.1 (Computation of transformation parameters using Groeb-
ner basis algorithm). Cartesian coordinates of seven stations are given
in the local and global system (WGS-84) in Tables 15.1 and 15.2 re-
spectively. Desired are the seven parameters of datum transformation.
Using explicit solutions in [20, Boxes 2-2 and 2-3] or [34, Appendices A
and B], the 7 transformation parameters are computed and presented
in Table 15.3. These parameters are then used to transform the three
points involved in the computations from the local reference System in
Table 15.1 to the WGS-84 as shown in Table 15.4.
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Table 15.1. Coordinates for system A (local system)

Station Name X(m) Y (m) Z(m)

Solitude 4157222.543 664789.307 4774952.099
Buoch Zeil 4149043.336 688836.443 4778632.188

Hohenneuffen 4172803.511 690340.078 4758129.701
Kuehlenberg 4177148.376 642997.635 4760764.800
Ex Mergelaec 4137012.190 671808.029 4791128.215
Ex Hof Asperg 4146292.729 666952.887 4783859.856
Ex Kaisersbach 4138759.902 702670.738 4785552.196

Table 15.2. Coordinates for system B (WGS-84)

Station Name X(m) Y (m) Z(m)

Solitude 4157870.237 664818.678 4775416.524
Buoch Zeil 4149691.049 688865.785 4779096.588

Hohenneuffen 4173451.354 690369.375 4758594.075
Kuehlenberg 4177796.064 643026.700 4761228.899
Ex Mergelaec 4137659.549 671837.337 4791592.531
Ex Hof Asperg 4146940.228 666982.151 4784324.099
Ex Kaisersbach 4139407.506 702700.227 4786016.645

Table 15.3. Groebner basis’ 7 transformation parameters

Transformation parameter Value unit

Scale k − 1 -1.4343 [ppm]

Rotation X1(a) 0.32575149 [“]

Rotation X2(b) -0.46037399 [“]

Rotation X3(c) -0.00810606 [“]

Translation ∆X 643.0953 [m]

Translation ∆Y 22.6163 [m]

Translation ∆Z 481.6023 [m]

15.2.2 Gauss-Jacobi Combinatorial Transformation

When more than three points in both systems are given and the trans-
formation parameters desired, Gauss-Jacobi combinatorial algorithm is
applied. In such a case, the dispersion matrix has to be obtained via
nonlinear error propagation law/variance-covariance propagation law.
From the algebraic system of equations (15.15), the Jacobi matrices are
given (using e.g., (6.28) and (6.29) on p. 70) as
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Table 15.4. Transformed Cartesian coordinates of System A (Table 15.1) into Sys-
tem B using parameters in Table 15.3

Site X(m) Y (m) Z(m)

System A: Solitude 4157222.5430 664789.3070 4774952.0990
System B 4157870.2370 664818.6780 4775416.5240

Transformed value 4157870.3070 664818.6742 4775416.5240
Residual - 0.0700 0.0038 0.0000

System A: Buoch Zeil 4149043.3360 688836.4430 4778632.1880
System B 4149691.0490 688865.7850 4779096.5880

Transformed value 4149691.1190 688865.7812 4779096.5880
Residual - 0.0700 0.0038 0.0000

System A: Hohenneuffen 4172803.5110 690340.0780 4758129.7010
System B 4173451.3540 690369.3750 4758594.0750

Transformed value 4173451.2141 690369.3826 4758594.0750
Residual 0.1399 -0.0076 0.0000

Jx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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∂f5

∂Z0

∂f6
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (15.18)

and



15.2 Algebraic (Analytic) Determination of Transformation Parameters 269

Jy =

⎡
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (15.19)

where the doted points in Jy represent the partial derivatives of
(15.15) with respect to

{b3, c3, X1, Y1, Z1, X2, Y2, Z2, X3, Y3}.
From the dispersion Σy of the vector of observations y and with (15.18)
and (15.19) forming J = J−1

x Jy, the dispersion matrix Σx is then ob-
tained using (6.29). Finally we obtained the dispersion matrix Σ from
(6.31) on p. 71. The solution is performed stepwise as discussed on p.
212. There exist two possibilities of using the combinatorial algorithm.
These are:

(1) Forming combinations of the given coordinates, each minimal set
comprising 3 points. Given n number of points in both systems,
combinations can be formed from (6.26) on p. 69, each set contain-
ing m = 3 points. For each combination, the desired transformation
parameters are computed using the explicit formulae in [20, Boxes 2-
2 and 2-3] or [34, Appendices A and B]. The resulting combinatorial
solutions are then adjusted using the special linear Gauss-Markov
model.

(2) Alternatively, instead of forming combinations from points alone
and solving as in (1) above, combinations are formed both for the
points and also from the 9 equations in (15.15). In this case, each
minimal combinatorial in points will have three stations from which
a further combinatorial in terms of equations are formed. From the
9 equations in (15.15), combinations are formed with a minimum



270 15 Transformation Problem: Procrustes Algorithm II

of seven equations per set. The solution of the seven equations of
each combinatorial set delivers equations of the form in [20, Boxes
2-2 and 2-3]. Once the solution is completed for a minimum com-
binatorial set for three points, the procedure is repeated for other
points until all the combinations have been solved. The resulting
combinatorial solutions are then adjusted using the special linear
Gauss-Markov model as already explained. This approach is labour
intensive but may offer improved accuracy as compared to the ap-
proach in (1) as all the available information is exploited. We leave
it as an exercise for an interested reader.

Example 15.2 (Computation of transformation parameters using Gauss-
Jacobi combinatorial algorithm). We repeat Example 15.1 by comput-
ing the 7 transformation parameters for the overdetermined case using
the combinatorial algorithm. All the 7 points of Tables 15.1 and 15.2
are used, unlike in Example 15.1 where only three points were used
(e.g., the minimal case). The computed transformation parameters are
presented in Table 15.5. In-order to check the accuracy of these pa-
rameters, they are used to transform the Cartesian coordinates from
the local reference system in Table 15.1 to WGS-84. Table 15.6 gives
the residuals computed by subtracting the transformed values from the
actual GPS coordinates of Table 15.2. Table 15.7 gives for comparison
purposes the residuals obtained using least squares method. The resid-
uals from both procedures are of the same magnitude. We also compute
the residual norm (square root of the sum of squares of residuals) and
present them in Table 15.8. The computed norms from the combina-
torial solutions are somewhat better than those of the linearized least
squares solutions. Figure 15.1 presents the scatter of the computed 36
minimal combinatorial solutions of scale indicated by doted points (•)
around the adjusted value indicated by a line (−). Figures 15.2 and
15.3 plots the scatter of the computed 36 minimal combinatorial solu-
tions of translation and rotation parameters indicated by doted points
(•) around the adjusted values indicated by star (�).
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Table 15.5. Gauss-Jacobi combinatorial’s 7 transformation parameters

Transformation parameter Value Root-mean-square unit

Scale k − 1 4.92377597 0.350619414 [ppm]

Rotation X1(a) -0.98105498” 0.040968549 [“]

Rotation X2(b) 0.68869774” 0.047458707 [“]

Rotation X3(c) 0.96671738” 0.044697434 [“]

Translation ∆X 639.9785 2.4280 [m]

Translation ∆Y 68.1548 3.0123 [m]

Translation ∆Z 423.7320 2.7923 [m]

Table 15.6. Residuals of the transformed Cartesian coordinates of System A (Table
15.1) into System B using parameters in Table 15.5

Site X(m) Y (m) Z(m)

Solitude 0.0739 0.1381 0.1397
Buoch Zeil 0.0328 -0.0301 0.0095

Hohenneuffen -0.0297 -0.0687 -0.0020
Kuelenberg 0.0246 -0.0347 -0.0793

Ex Mergelaec -0.1405 0.0228 -0.0148
Ex Hof Asperg -0.0477 0.0116 -0.0599
Ex Keisersbach -0.0673 0.0335 -0.0070

Table 15.7. Residuals of the transformed Cartesian coordinates of System A (Table
15.1) into System B using parameters computed by least squares method

Site X(m) Y (m) Z(m)

Solitude 0.0940 0.1351 0.1402
Buoch Zeil 0.0588 -0.0497 0.0137

Hohenneuffen -0.0399 -0.0879 -0.0081
Kuelenberg 0.0202 -0.0220 -0.0874

Ex Mergelaec -0.0919 0.0139 -0.0055
Ex Hof Asperg -0.0118 0.0065 -0.0546
Ex Keisersbach -0.0294 0.0041 -0.0017

Table 15.8. Computed residual norms

Method X(m) Y (m) Z(m)

Linearized Least Squares Solution 0.1541 0.1708 0.1748
Gauss-Jacobi Combinatorial 0.1859 0.1664 0.1725
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15.2.3 Procrustes Algorithm II

Application to the 7-Parameter Datum Transformation
Problem

In Chap. 8, we presented the partial Procrustes algorithm and referred
to it as “partial” because it was applied to solve only the rotation
component of the datum transformation problem. The analysis of the
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Fig. 15.3. Scatter of the 36 computed rotations around the adjusted values

parameterized conformal group C7(3) (7-parameter similarity trans-
formation) as we saw in Sect. 15.1, however, requires the estimation
of the dilatation unknown (scale factor), unknown vector of transla-
tion and the unknown matrix of rotation. These unknowns are deter-
mined from a given matrix data set of Cartesian coordinates as pseudo-
observations. In addition to the unknown rotation matrix which was
determined in Chap. 8, therefore, one has to determine the scale and
translation elements. The partial Procrustes algorithm gives way to
the general Procrustes algorithm which we call Procrustes algorithm II.
The transpose which was indicated by {′} in Chap. 8 will be denoted
by {∗} in this section. In Sect. 15.1, we formulated the 7-parameter da-
tum transformation problem such that the solution of (15.1) led to the
desired seven parameters. We will now introduce the weight component
to (15.1) and solve it using Procrustes algorithm II; an alternative to
the procedure that we presented in (15.2.2).

Let us revisit the unknown parameters that we introduced in Sect.
15.1. These were; a scalar-valued unknown x1 ∈ R, a vector-valued
unknown x2 ∈ R3×1 (column vector) and a matrix valued unknown
X3 ∈ O+(3) := {X3 ∈ R3×3 | X∗

3X3 = I3, | X3 |= +1}, which in total
constitute the 7-dimensional parameter space. x1 represents the dilata-
tion unknown (scale factor), x2 the translation vector unknown (3 pa-
rameters) and X3 the unknown orthonormal matrix (rotation matrix)
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which is an element of the special orthogonal group in three dimension.
In other words, the O+(3) differentiable manifold can be coordinated
by three parameters. In (8.23) on p. 101, relative position vectors were
used to form the two matrices A and B in the same dimensional space.
If the actual coordinates were used instead, the matrix-valued pseudo-
observations {Y1,Y2} become⎡

⎣x1 x2 . . . xn

y1 y2 . . . yn

z1 z2 . . . zn

⎤
⎦
∗

=: Y1, Y2 :=

⎡
⎣X1 X2 . . . Xn

Y1 Y2 . . . Yn

Z1 Z2 . . . Zn

⎤
⎦
∗

, (15.20)

with {Y1 and Y2} replacing {A and B}. The coordinate matrices
of the n points (n−dimensional simplex) of a left three-dimensional
Weitzenböck space as well as a right three-dimensional Weitzenböck
space, namely Y1 ∈ Rn×3 and Y2 ∈ Rn×3 constitute the 6n dimen-
sional observation space. Left and right matrices {Y1,Y2} are related
by means of the passive 7-parameter conformal group C7(3) in three
dimensions (similarity transformation, orthogonal Procrustes transfor-
mation) by (cf., 15.1 on p. 261)

Y1
.
= F (x1,x2,X3 | Y2) = Y2X

∗
3x1 + 1x∗

2,1 ∈ Rn×1. (15.21)

The nonlinear matrix-valued equation F (x1,x2,X3 | Y2)
.
= Y1 is in-

consistent since the image �(F )⊂
�=

D(Y1) of F (range space �(F ))

is constrained in the domain D(Y1) of Y1 ∈ Rn×3 (domain space
D(Y1)). First, as a mapping, F is “not onto, but into” or “not surjec-
tive”. Second, by means of the error matrix E ∈ Rn×3 which accounts
for errors in the pseudo-observation matrices Y1 as well as Y2, re-
spectively, we are able to make the nonlinear matrix-valued equation
F (x1,x2,X3 | Y2)

.
= Y1 as identity. In this case,

Y1 = F (x1,x2,X3 | Y2) + E = Y2X
∗
3x1 + 1x∗

2 + E. (15.22)

Furthermore, excluding configuration defect which can be detected a
priori we shall assume ℵ(F ) = {0}, the kernel of F (null space ℵ(F ))
to contain only the zero element (empty null space ℵ(F )). A simplex of
minimal dimension which allows the computation of the seven parame-
ters of the space X is constituted by n = 4 points, namely a tetrahedron
which is presented in the next examples.
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Example 15.3 (Simplex of minimal dimension, n = 4 points, tetrahe-
dron).

Y1 =

⎡
⎣x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

⎤
⎦
∗

∈ Rn×3, Y2 =

⎡
⎣X1 X2 X3 X4

Y1 Y2 Y3 Y4

Z1 Z2 Z3 Z4

⎤
⎦
∗

∈ Rn×3,

⎡
⎢⎢⎣

x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

X4 Y4 Z4

⎤
⎥⎥⎦X∗

3x1 + 1x∗
2 +

⎡
⎢⎢⎣

e11 e12 e13

e21 e22 e23

e31 e32 e33

e41 e42 e43

⎤
⎥⎥⎦ .

Example 15.4 (Weighted LEast Squares’ Solution W-LESS). We de-
part from the set up of the pseudo-observation equations given in Ex-
ample 15.3 (simplex of minimal dimension, n = 4 points, tetrahedron).
For a diagonal weight W = Diag (w1, . . . , w4) ∈ R4×4 we compute the
Frobenius error matrix W-semi-norm

‖ E ‖2
W:= tr(E∗WE) =

tr

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎣e11 e21 e31 e41

e12 e22 e32 e42

e13 e23 e33 e43

⎤
⎦
⎡
⎢⎢⎣

w1 0 0 0
0 w2 0 0
0 0 w3 0
0 0 0 w4

⎤
⎥⎥⎦
⎡
⎢⎢⎣

e11 e12 e13

e21 e22 e23

e31 e32 e33

e41 e42 e43

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

= tr

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎣e11w1 e21w2 e31w3 e41w4

e12w1 e22w2 e32w3 e42w4

e13w1 e23w2 e33w3 e43w4

⎤
⎦
⎡
⎢⎢⎣

e11 e12 e13

e21 e22 e23

e31 e32 e33

e41 e42 e43

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎣ w1e

2
11 + w2e

2
21 + w3e

2
31 + w4e

2
41

+w1e
2
12 + w2e

2
22 + w3e

2
32 + w4e

2
42

+w1e
2
13 + w2e

2
23 + w3e

2
33 + w4e

2
43.

Obviously the coordinate errors (e11, e12, e13) have the same weight w1,
(e21, e22, e23) → w2, (e31, e32, e33) → w3 and finally (e41, e42, e43) → w4.
We may also say that the error weight is pointwise isotropic, namely
weight e11 =weight e12=weight e13=weight w1 etc. But the error weight
is not homogeneous since w1 =weight e11 �=weight e21 = w2. Of course,
an ideal homogeneous and isotropic weight distribution is guaranteed
by the criterion w1 = w2 = w3 = w4 = w.

By means of Solution 15.3 we have summarized the parameter space
(x1,x2,X3) ∈ R × R3 × R3×3. In contrast, Solution 15.4 reviews the
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pseudo-observation space (Y1,Y2) ∈ Rn×3 × Rn×3 equipped with the
Frobenius matrix W–semi-norm.

Solution 15.3 (The parameter space X).
x1 ∈ R dilatation parameter (scale factor)

x2 ∈ R3×1 column vector of translation parameters
X3 ∈ O+(3) := {X3 ∈ R3×3 | X∗

3X3 = I3, | X3 |= +1}
orthonormal matrix,
rotation matrix of three
parameters

Solution 15.4 (The observation space Y).

Y1 =

⎡
⎣x1 x2 . . . xn

y1 y2 . . . yn

z1 z2 . . . zn

⎤
⎦
∗

∈ Rn×3, Y2 =

⎡
⎣X1 X2 . . . Xn

Y1 Y2 . . . Yn

Z1 Z2 . . . Zn

⎤
⎦
∗

∈ Rn×3

left three-dimensional coordinate right three-dimensional coordinate
matrix of an n− dimensional matrix of an n− dimensional
simplex simplex

The immediate problem that one is faced with is how to solve the in-
consistent matrix-valued nonlinear equation (15.22). Essentially, this is
the same problem that we introduced in (15.1) on p. 261. The difference
between (15.1) and (15.22) is the incorporation of the error matrix E
in the latter. This takes into consideration the stochasticity of the sys-
tems Y1 and Y2. In what follows W-LESS (i.e., the Weighted LEast
Squares’ Solution) is defined and materialized by the Procrustes al-
gorithm II presented by means of:

• Corollary 15.1 (partial W-LESS for the unknown vector x2l).
• Corollary 15.2 (partial W-LESS for the unknown scalar x1l).
• Corollary 15.3 (partial W-LESS for the unknown matrix X3l).

The partial optimization results are collected in Theorem 15.1 (W-
LESS of Y1 = Y2X

∗
3x1 +1x∗

2 +E) and Corollary 15.4 (I-LESS of Y1 =
Y2X

∗
3x1 + 1x∗

2 + E). Solution 15.5 summarizes the general Procrustes
algorithm II.

Definition 15.1 (W-LESS). The parameter array {x1l,x2l,X3l} is
called W-LESS (least squares solution with respect to Frobenius matrix
W–semi-norm) of the inconsistent nonlinear matrix-valued system of
equations
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Y2X
∗
3x1 + 1x∗

2 + E = Y1, (15.23)

subject to
X∗

3X3 = I3, | X3 |= +1, (15.24)

if for the parameter array in comparison to all other parameter arrays
{x1l,x2l,X3l}, the inequality⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

‖ Y1 − Y2X
∗
3lx1l − 1x∗

2l ‖2
W

:= tr((Y1 − Y2X
∗
3lx1l − 1x∗

2l)
∗W(Y1 − Y2X

∗
3lx1l − 1x∗

2l)

≤ tr((Y1 − Y2X
∗
3x1 − 1x∗

2)
∗W(Y1 − Y2X

∗
3x1 − 1x∗

2)

=:‖ Y1 − Y2X
∗
3x1 − 1x∗

2 ‖2
W

(15.25)

holds, in particular if El := Y1 − Y2X
∗
3lx1l − 1x∗

2l has the minimal
Frobenius matrix W–semi-norm such that W ∈ Rn×n is positive semi-
definite.

Note that ‖ E ‖2
W

:= tr(E∗WE) characterizes the method of least
squares tuned to an error matrix E ∈ Rn×3 and a positive semi-definite
weight matrix W. Indeed a positive semi-definite weight matrix W of
weights is chosen in-order to have the option to exclude by means of
zero weight a particular pseudo-observation, say a particular coordinate
row vector [xi, yi, zi], i ∈ N arbitrary, but fixed by wii = wi = 0, which
may be an outlier . Example 15.4 illustrates details of Definition 15.1.

In-order to construct W-LESS of the inconsistent nonlinear matrix-
valued system of equations (15.23) subject to (15.24) we introduce the
Procrustes algorithm II . The first algorithmic step is constituted by
the forward computation of the transformation parameters x2l from
the unconstraint Lagrangean L(x1,x2,X3) which is twice the value
of the Frobenius error matrix W–semi-norm. As soon as the trans-
lation parameters x2l are backward substituted we gain a Lagrangean
L(x1,X3) which is centralized with respect to the observation matrix
Y1 − Y2X

∗
3x1. In the second algorithmic step the scale parameter x1l

is forward computed from the centralized Lagrangean L(x1,X3). Its
backward substitution leads to the Lagrangean L(X3) which is only
dependent on the rotation matrix X3. Finally the optimization prob-
lem L(X3) = min subject to X∗

3X3 = I3, | X3 |= +1 generates the
third algorithmic step. This computational step is similar to that of
partial Procrustes algorithm of Sect. 8.3. By means of singular value
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decomposition SVD the rotation matrix X3l is forward computed and
backward substituted to gain (x1,x2,X3) at the end. The results are
collected in Corollaries 15.1 to 15.3.

Corollary 15.1 (Partial W-LESS for the translation vector
x2l). A 3×1 vector x2l is partial W-LESS of (15.23) subject to (15.24)
if and only if x2l fulfills the system of normal equations

1∗W1x2l = (Y1 − Y2X
∗
3x1)

∗W1. (15.26)

The translation vector x2l always exist and is represented by

x2l = (1∗W1)−1(Y1 − Y2X
∗
3x1)

∗W1. (15.27)

For the special case W = In, i.e., the weight matrix is unit, the trans-
lational parameter vector x2l is given by

x2l =
1

n
(Y1 − Y2X

∗
3x1)

∗1.

Proof. W-LESS is constructed by unconstraint Lagrangean⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L(x1,x2,X3) :=
1

2
‖ E ‖2

W=‖ Y1 − Y2X
∗
3x1 − 1x∗

2 ‖2
W

=
1

2
tr(Y1 − Y2X

∗
3x1 − 1x∗

2)
∗W(Y1 − Y2X

∗
3x1 − 1x∗

2) = min,

subject to {x1 ≥ 0,x2 ∈ R3×1,X∗
3X3 = I3}

∂L

∂x∗
2

(x2l) = (1∗W1)x2 − (Y1 − Y2X
∗
3x1)

∗W1 = 0,

(15.28)
constitutes the first necessary condition. Basics of vector-valued dif-
ferentials are as given in Table 8.1, p. 96. For more details on matrix
properties and manipulations, we refer to [149, pp. 439–451]. As soon
as we back-substitute the translation parameter x2l, we are led to the
centralized Lagrangean⎡
⎢⎣

L(x1,X3) =
1

2
tr{[Y1 − (Y2X

∗
3x1 + (1∗W1)−111∗W(Y1 − Y2X

∗
3x1))

]∗
W

∗ [Y1 − (Y2X
∗
3x1 + (1∗W1)−111∗W(Y1 − Y2X

∗
3x1))

]}
(15.29)
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⎢⎢⎢⎣

L(x1,X3) =
1

2
tr{[(I − (1∗W1)−111∗)W(Y1 − Y2X

∗
3x1)

]∗
W

∗ [(I − (1∗W1)−111∗)W(Y1 − Y2X
∗
3x1)

]}
(15.30)

C := In − (1∗W1)−111∗W (15.31)

is a definition of the centering matrix , namely for W = In

C := In − 1

n
11,∗ (15.32)

being symmetric, in general. Substituting the centering matrix into the
reduced Lagrangean L(x1,X3), we gain the centralized Lagrangean

L(x1,X3) =
1
2 tr{[Y1 − Y2X

∗
3x1]

∗ C∗WC [Y1 − Y2X
∗
3x1]} (15.33)

��
Corollary 15.2 (Partial W-LESS for the scale factor x1l). A
scalar x1l is partial W-LESS of (15.23) subject to (15.24) if and only
if

x1l =
trY∗

1C
∗WCY2X

∗
3

trY∗
2C

∗WCY2
(15.34)

holds. For special case W = In the scale parameter vector x1l is given
by

x1l =
trY∗

1C
∗CY2X

∗
3

trY∗
2C

∗CY2
(15.35)

Proof. Partial W-LESS is constructed by the unconstraint centralized
Lagrangean⎡
⎣ L(x1,X3) =

= 1
2 tr{[(Y1 − Y2X

∗
3x1)]

∗C∗WC [Y1 − Y2X
∗
3x1]} = minx1,X3

,
subject to {x1 ≥ 0,X∗

3X3 = I3}.
(15.36)

∂L

∂x1
(x1l) = x1ltrX3Y

∗
2C

∗WCY2X
∗
3 − trY∗

1C
∗WCY2X

∗
3 = 0

(15.37)
constitutes the second necessary condition. Due to (e.g., cyclic property
in Table 8.1, p. 96)
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trX3Y
∗
2C

∗WCY2X
∗
3 = trY∗

2C
∗WCY2X

∗
3X3 = Y∗

2C
∗WCY2,

(15.37) leads to (15.34). While the forward computation of
∂L

∂x1
(x1l) = 0

enjoyed a representation of the optimal scale parameter x1l, its back-
ward substitution into the Lagrangean L(x1,X3) amounts to⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

L(X3) =

tr{
[
Y1 − Y2X

∗
3

trY∗
1C

∗WCY2X
∗
3

trY∗
2C

∗WCY2

]
C∗WC

∗
[
Y1 − Y2X

∗
3

trY∗
1C

∗WCY2X
∗
3

trY∗
2C

∗WCY2

]
}

(15.38)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L(X3) =

1

2
tr{(Y∗

1C
∗WCY1) − tr(Y∗

1C
∗WCY2X

∗
3)

trY∗
1C

∗WCY2X
∗
3

trY∗
2C

∗WCY2

−tr(X3Y
∗
2C

∗WCY1)
trY∗

1C
∗WCY2X

∗
3

trY∗
2C

∗WCY2

+tr(X3Y
∗
2C

∗WCY2X
∗
3)

[trY∗
1C

∗WCY2X
∗
3]

2

[trY∗
2C

∗WCY2]2
}

(15.39)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

L(X3) =

=
1

2
tr(Y∗

1C
∗WCY1) − [trY∗

1C
∗WCY2X

∗
3]

2

[trY∗
2C

∗WCY2]

+
1

2

[trY∗
1C

∗WCY2X
∗
3]

2

[trY∗
2C

∗WCY2]

(15.40)

⎡
⎢⎢⎢⎢⎢⎢⎣

L(X3) =

=
1

2
tr(Y∗

1C
∗WCY1) − 1

2

[trY∗
1C

∗WCY2X
∗
3]

2

[trY∗
2C

∗WCY2]
= min,

subject to {X∗
3X3 = I3}

(15.41)



15.2 Algebraic (Analytic) Determination of Transformation Parameters 281

Corollary 15.3 (Partial W-LESS for the rotation matrix X3l).
A 3 × 3 orthonormal matrix X3 is partial W-LESS of (15.41) if and
only if

X3l = UV∗ (15.42)

holds, where A := Y∗
1C

∗WCY2 = UΣsV
∗ is a singular value decom-

position with respect to a left orthonormal matrix U,U∗U = I3, a right
orthonormal matrix V,VV∗ = I3, and Σs = Diag(σ1, σ2, σ3) a diag-
onal matrix of singular values (σ1, σ2, σ3). The singular values are the
canonical coordinates of the right eigenspace (A∗A−Σ2

sI)V = 0. The
left eigenspace is based upon U = AVΣ−1

s .

Proof. In (15.41) L(X3) subject to X∗
3X3 = I3 is minimal if

tr(Y∗
1C

∗WCY2X
∗
3) = min, subject to {x1 ≥ 0,X∗

3X3 = I3}.
(15.43)

Let A := Y∗
1C

∗WCY2 = UΣsV
∗ be a singular value decomposition

with respect to a left orthonormal matrix U,U∗U = I3, a right or-
thonormal matrix V,VV∗ = I3, and Σs = Diag(σ1, σ2, σ3) a diagonal
matrix of singular values (σ1, σ2, σ3). Then[

tr(AX∗
3) = tr(UΣsV

∗X∗
3)

= tr(ΣsV
∗X∗

3U) =
∑3

i=1 σirii ≤
∑3

i=1 σi,
(15.44)

holds since R = V∗X∗
3U = [rij ] ∈ R3×3 is orthonormal with | rii |≤ 1.

The identity tr(AX∗
3) =

3∑
i=1

σi applies if V∗X∗
3U = I3, that is X∗

3 =

VU∗, X3 = UV∗, namely if tr(AX∗
3) is maximal:[

tr(AX∗
3) = max{X∗

3
X3=I3} ⇔

⇔ R = V∗X∗
3U = I3.

trAX∗
3 =

3∑
i=1

σ.i (15.45)

An alternative proof of Corollary 15.3 based on formal differentiation
of traces and determinants has been given in Sect. 8.3.2 of Chap. 8.
Finally we collect our sequential results in Theorem 15.1 identifying
the stationary point of W-LESS of (15.23) specialized for W = I, i.e.,
matrix of unit weight in Corollary 15.4. The highlight is the Procrustes
algorithm II we have developed in Solution 15.5.
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Theorem 15.1 (W-LESS of Y1 = Y2X
∗
3x1 + 1x∗

2 + E).
(i) The parameter array {x1,x2,X3} is W-LESS of (15.23) if

x1l =
trY∗

1C
∗WCY2X

∗
3l

trY∗
2C

∗WCY2
(15.46)

x2l = (1∗W1)−1(Y1 − Y2X
∗
3lx1l)

∗W1 (15.47)

X3l = UV∗, (15.48)

subject to the singular value decomposition of the general 3 × 3 matrix

Y∗
1C

∗WCY2 = UDiag(σ1, σ2, σ3)V
∗, (15.49)

namely

[
[(Y∗

1C
∗WCY2)

∗(Y∗
1C

∗WCY2) − σ2
i I]vi = 0 ∀i ∈ {1, 2, 3}

V =
[
v1, v2, v3

]
,VV∗ = I3

(15.50)[
U = Y∗

1C
∗WCY2VDiag(σ−1

1 , σ−1
2 , σ−1

3 )
U∗U = I3

(15.51)

and as well as to the centering matrix

C := In − (1∗W1)−111∗W. (15.52)

(ii) The empirical error matrix of type W-LESS accounts for

El = [In − 11∗W(1∗W1)−1]

{
Y1 − Y2VU∗ trY∗

1C
∗WCY2VU∗

trY∗
2C

∗WCY2

}
,

(15.53)

with the related Frobenius matrix W–semi-norm

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

‖ E ‖2
W

:= tr(E∗
l WEl) =

tr{(Y1 − Y2VU∗ trY∗
1C

∗WCY2VU∗

trY∗
2C

∗WCY2
)∗.

.[In − 11∗W(1∗W1)−1]∗W[In − 11∗W(1∗W1)−1].

.(Y1 − Y2VU∗ trY∗
1C

∗WCY2VU∗

trY∗
2C

∗WCY2
)},

(15.54)
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and the representative scalar measure of the error of type W-LESS
given by

|‖ El ‖|W:=
√

tr(E∗
l WEl)/3n. (15.55)

Corollary 15.4 (I-LESS of Y1 = Y2X
∗
3x1 + 1x∗

2 + E ).

(i) The parameter array {x1,x2,X3} is I-LESS of (15.23) if

x1l =
trY∗

1CY2X
∗
3l

trY∗
2CY2

(15.56)

x2l =
1

n
(Y1 − Y2X

∗
3lx1l)

∗1 (15.57)

X3l = UV∗, (15.58)

subject to the singular value decomposition of the general 3 × 3 matrix

Y∗
1CY2 = UDiag(σ1, σ2, σ3)V

∗, (15.59)

namely

[
[(Y∗

1CY2)
∗(Y∗

1CY2) − σ2
i I]vi = 0∀i ∈ {1, 2, 3}

V =
[
v1, v2, v3

]
,VV∗ = I3

(15.60)

U = Y∗
1CY2VDiag(σ−1

1 , σ−1
2 , σ−1

3 )
U∗U = I3

(15.61)

and as well as to the centering matrix

C := In − 1

n
11∗. (15.62)

(ii) The empirical error matrix of type I-LESS accounts for

El = [In − 1

n
11∗]

{
Y1 − Y2VU∗ trY∗

1CY2VU∗

trY∗
2CY2

}
, (15.63)

with the related Frobenius matrix W–semi-norm
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

‖ E ‖2
I
:= tr(E∗

l El) =

tr{(Y1 − Y2VU∗ trY∗
1CY2VU∗

trY∗
2CY2

)
∗

.

.[In − 1
n
11∗].

.(Y1 − Y2VU∗ trY∗
1CY2VU∗

trY∗
2CY2

)}

(15.64)

and the representative scalar measure of the error of type I-LESS

|‖ El ‖|I:=
√

tr(E∗
l El)/3n.

In the proof of Corollary 15.4, we only sketch the results that the
matrix In − 1

n
11∗ is idempotent:

⎡
⎢⎢⎢⎢⎣

(In − 1
n
11∗)(In − 1

n
11∗) =

= In − 2
n
11∗ + 1

n2 (11∗)2 =

= In − 2
n
11∗ + 1

n2 n11∗ = In − 1
n
11∗.

Solution 15.5 (Procrustes algorithm II).	
 ��Step 1

Read : Y1 =

⎡
⎣ x1 y1 z1

. . .
xn yn zn

⎤
⎦ and

⎡
⎣X1 Y1 Z1

. . .
Xn Yn Zn

⎤
⎦ = Y2

	
 ��Step 2

Compute : Y∗
1CY2 subject toC := In − 1

n
11∗

	
 ��Step 3

Compute : SV D Y∗
1CY2 = UDiag(σ1, σ2, σ3)V

∗

3-1 | (Y∗
1CY2)

∗(Y∗
1CY2) − σ2

i I |= 0 ⇒ (σ1, σ2, σ3)
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3-2
((Y∗

1CY2)
∗(Y∗

1CY2) − σ2
i I)vi = 0∀i ∈ {1, 2, 3}

⇒ V =
[
v1, v2, v3

]
right eigenvectors
(right eigencoloumns)

3-3
U = Y∗

1CY2VDiag(
1

σ1
,

1

σ2
,

1

σ3
) left eigenvectors

(left eigencoloumns)	
 ��Step 4

Compute : X3l = UV∗ (rotation)	
 ��Step 5

Compute : x1l =
trY∗

1CY2X
∗
3

trY∗
2CY2

(dilatation)

	
 ��Step 6

Compute : x2l = 1
n
(Y1 − Y2X

∗
3x1)

∗1 (translation)	
 ��Step 7

Compute : El = C

{
Y1 − Y2VU∗ trY∗

1CY2VU∗

trY∗
2CY2

}
(error

matrix)

“optional control”

El := Y1 − (Y2X
∗
3lx1l + 1x∗

2l)	
 ��Step 8

Compute : ‖ El ‖I:=
√

tr(E∗
l El) (error matrix)	
 ��Step 9

Compute : |‖ El ‖|I:=
√

tr(E∗
l El)/3n (mean error matrix)
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15.2.4 Weighted Procrustes Transformation

As already stated in Sect. 15.1, other than the problems associated with
linearization and iterations, the 7-datum transformation problem (con-
formal group C7(3)) is compounded with the problem of incorporating
the weights of the systems involved. This section presents Procrustes
algorithm II; a reliable means of solving the problem. We have already
seen that the problem could be solved using Gauss-Jacobi combinato-
rial algorithm in Sect. 15.2.2. Procrustes algorithm II presented in the
preceding section offers therefore an alternative that is not computa-
tionally intensive as the combinatorial method.

To obtain the weight matrix used in Corollaries 15.1, 15.2 and
15.3 in the weighted Procrustes problem, we proceed via the variance-
covariance matrix of Theorem 15.2, whose proof is given in Solution
15.6 where the dispersion matrices of two sets of coordinates in R3 are
presented in (15.66) and (15.68). They are used in (15.70) and (15.71)
to obtain the dispersion of the error matrix E in (15.72). In-order to
simplify (15.72), we make use of Corollary 15.5 adopted from [149, Ap-
pendix A, p. 419] to express vec x1X3Y

∗
2 as in (15.73) and substitute

it in (15.72) to obtain (15.74). We provide as a summary the following:

Theorem 15.2 (variance-covariance matrix). Let vec E∗ denote
the vector valued form of the transposed error matrix E := Y1 −
Y2X

∗
3x1 − 1x∗

2. Then[
ΣvecE∗ = ΣvecY

∗

1
+ (In ⊗ x1X3)ΣvecY

∗

2
(In ⊗ x1X3)

∗

−2ΣvecY∗

1
,(In⊗x1X3)vecY∗

2

(15.65)

is the exact representation of the dispersion matrix (variance-covariance
matrix) Σvec E∗ of vec E∗ in terms of dispersion matrices (variance-
covariance matrices) ΣvecY

∗

1
and ΣvecY

∗

2
of the two coordinates sets

vecY∗
1 and vecY∗

2 as well as of their covariance matrix

ΣvecY∗

1
,(In⊗x1X3)vecY∗.

2

Proof. By means of Solution 15.6 we define the dispersion matrices,
also called variance-covariance matrices, of vecY∗

1 and vecY∗
2 of the

two sets of coordinates.
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Solution 15.6 (Dispersion matrices of two sets of coordinates
in R3 ).

ΣvecY
∗

1
= E{

⎡
⎢⎢⎣

x1 − E{x1}
x2 − E{x2}

...
xn − E{xn}

⎤
⎥⎥⎦ [ (x1 − E{x1})∗ . . . (xn − E{xn})∗

]}
(15.66)

E{(vecY∗
1 − E{Y∗

1})(vecY∗
1 − E{Y∗

1})∗} (15.67)

ΣvecY
∗

2
= E{

⎡
⎢⎢⎣

X1 − E{X1}
X2 − E{X2}

...
Xn − E{Xn}

⎤
⎥⎥⎦ [ (X1 − E{X1})∗ . . . (Xn − E{Xn})∗

]}
(15.68)

Next from the transposed error matrix

E∗ := Y∗
1 − (x1X3Y

∗
2 + x21x∗

2) (15.69)

we compute the dispersion matrix (variance-covariance matrix) ΣvecE
∗⎡

⎢⎢⎢⎢⎣
ΣvecE

∗ := E{[vecE∗ − E{vecE∗}][vecE∗ − E{vecE∗}]∗}

= E {[vecY∗
1 − E{vecY∗

1} − x1(vecX3Y
∗
2 − E{vecX3Y

∗
2})]

× [vecY∗
1 − E{vecY∗

1} − x1(vecX3Y
∗
2 − E{vecX3Y

∗
2})]∗}}

(15.70)⎡
⎢⎢⎢⎢⎣

ΣvecE
∗ = E{[vecY∗

1 − E{vecY∗
1][vecY∗

1 − E{vecY∗
1]
∗}

+x2
1E{[vecX3Y

∗
2 − E{vecX3Y

∗
2}][vecX3Y

∗
2 − E{vecX3Y

∗
2]
∗

−2x1E{[vecY∗
1 − E{vecY∗

1][vecX3Y
∗
2 − E{vecX3Y

∗
2]
∗}

(15.71){
ΣvecE

∗ = ΣvecY
∗

1
+ Σvec x1X3Y

∗

2
− 2ΣvecY

∗

1
,vec x1X3Y

∗

2
(15.72)

Corollary 15.5.[
vecAB = (Iq ⊗ A)vecB for all A ∈ Rn×m,B ∈ Rm×q

vecX3Y
∗
2 = (In ⊗ x1X3)vecY∗

2 for all X3 ∈ R3×3, Y∗
2 ∈ R3×n

(15.73)
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As soon as we implement the Kronecker-Zehfu decomposition of the
vecAB we arrive at the general representation of the dispersion matrix
ΣvecE

∗ , namely[
ΣvecE

∗ = ΣvecY
∗

1
+ (In ⊗ x1X3)ΣvecY

∗

2
(In ⊗ x1X3)

∗−
−2ΣvecY∗

1
,(In⊗x1X3)vecY∗

2

(15.74)

��
The results of Theorem 15.2 are interpreted in more detail as fol-

lows: The variance-covariance matrix of the vectorized error matrix E∗

depends on;

(i) the variance-covariance matrix ΣvecY
∗

1
of the local coordinate set

(x1, y1, z1, . . . , xn, yn, zn),
(ii) the variance-covariance matrix ΣvecY

∗

2
of the global coordinate set

(X1, Y1, Z1, . . . , Xn, Yn, Zn),
(iii) the covariance matrix between vecY∗

1 and (In ⊗ x1X3)vecY∗
2 of

the global coordinate set vecY∗
2 as well as

(iv) the nonlinearity of the parameter model on the unknowns x1, X3

of type “scale factor” and “rotation matrix” coupled to (In⊗x1X3).

So as to take advantage of the equivalence theorem between least
squares approximation and best linear uniformly unbiased estimation,
e.g., [149, §3, pp. 339–340], which holds for linear Gauss-Markov model,
it is tempting to identify the weight matrix W of W-LESS with Σ−1

vecE
∗

shrunk to a locally isotropic error situation. Such a shrinking procedure
is outlined in Example 15.5, namely by taking in account isotropic, but
inhomogeneous criterion matrices.

Example 15.5 (Computation of transformation parameters incorporat-
ing weights). We consider Cartesian coordinates of seven stations given
in the local and global system (WGS-84) as in Tables 15.1 and 15.2 on
pp. 267 and 267 respectively. Desired are the 7-datum transformation
parameters; scale x1, the translation vector x2 ∈ R3×1 and the rotation
matrix R ∈ R3×3. In addition to these 7 datum transformation pa-
rameters, we compute for control purposes the residual (error matrix)
E upon which the mean error norm (15.55) is determined as a scalar
measure of error of types W-LESS. A two step procedure is carried out
as follows:

In the first step, we computed the 7 transformation parameters using
I-LESS (with weight matrix as identity) from Corollary 15.4 on p. 283.
The computed values of scale x1 and the rotation matrix R ∈ R3×3
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are used in (15.74) to obtain the dispersion of the error matrix E.
In-order to obtain the dispersions ΣvecY∗

1
and ΣvecY∗

1
of the pseudo-

observations in the local and global systems respectively, we make use
of “positional error sphere” for each point (position) in both systems.
Here, the positional error sphere refers to the average of the variances

(σ2
i =

√
(σ2

x + σ2
y + σ2

z)/3) for the i = 7 points involved so as to achieve

the isotropic condition.
The identity matrices are multiplied by these positional error spheres

so as to obtain the dispersion matrices ΣvecY∗

1
and ΣvecY∗

2
which fulfill

the isotropic condition. One obtains therefore the dispersion matrices
ΣvecY∗

1
and ΣvecY∗

2
as being diagonal block matrices with each block

corresponding to the variance-covariance matrices of the respective po-
sition. For points 1 and 2 in the local system for instance, assuming no
correlation between the two points, one obtains

ΣvecY∗

1
=

⎡
⎢⎢⎢⎢⎢⎢⎣

σ2
1

σ2
1

σ2
1

σ2
2

σ2
2

σ2
2

⎤
⎥⎥⎥⎥⎥⎥⎦

, (15.75)

where {σ2
1, σ

2
2} are positional error spheres for points 1 and 2 respec-

tively. This is also performed for ΣvecY∗

2
and the resulting dispersion

matrices used in (15.74) to obtain the dispersion matrix of the error
matrix E.

Since the obtained block diagonal error matrix E is a 3n×3n matrix,
the n× n matrix is extracted by taking the trace of the block diagonal
matrices of E. Adopting such a matrix from [138, Table 7] as

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.8110817 0 0 0 0 0 0
0 2.1843373 0 0 0 0 0
0 0 2.1145291 0 0 0 0
0 0 0 1.9918578 0 0 0
0 0 0 0 2.6288452 0 0
0 0 0 0 0 2.1642460 0
0 0 0 0 0 0 2.359370

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(15.76)
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In Tables. 15.9 and 15.10, the results of I-LESS (step 1) and W-LESS
(step 2) Procrustes transformation are presented. Presented are the 7-
datum transformation parameters namely; the scale, rotation matrix
and the translation parameters. We also present the residual (error)
matrix and the norms of the error matrices. The computed residuals
can be compared with those of linearized least squares procedure in
Table 15.7 on p. 271.

Table 15.9. Results of the I-LESS Procrustes transformation

Values
Rotation Matrix 1.00000 -4.33276e-6 4.81463e-6

X3 ∈ R
3×3 -4.81465e-6 1.00000 -4.84085e-6

4.33274e-6 4.84087e-6 1.00000
Translation 641.8804

x2 ∈ R
3×1(m) 68.6553

416.3982
Scale x1 ∈ R 1.00000558251985

Residual matrix E(m) Site X(m) Y (m) Z(m)
Solitude 0.0940 0.1351 0.1402

Buoch Zeil 0.0588 -0.0497 0.0137
Hohenneuffen -0.0399 -0.0879 -0.0081
Kuelenberg 0.0202 -0.0220 -0.0874

Ex Mergelaec -0.0919 0.0139 -0.0055
Ex Hof Asperg -0.0118 0.0065 -0.0546
Ex Keisersbach -0.0294 0.0041 0.0017

Error matrix norm (m)

|‖ El ‖|W:=
√

tr(E∗

l El) 0.2890
Mean error matrix norm (m)

|‖ El ‖|W:=
√

tr(E∗

l El)/3n 0.0631
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Table 15.10. Results of the W-LESS Procrustes transformation

Values
Rotation Matrix 1.00000 4.77976e-6 -4.34410e-6

X3 ∈ R
3×3 -4.77978e-6 1.00000 -4.83730e-6

4.34408e-6 4.83731e-6 1.00000
Translation 641.8377

x2 ∈ R
3×1(m) 68.4743

416.2159
Scale x1 ∈ R 1.00000561120732

Residual matrix E(m) Site X(m) Y (m) Z(m)
Solitude 0.0948 0.1352 0.1407

Buoch Zeil 0.0608 -0.0500 0.0143
Hohenneuffen -0.0388 -0.0891 -0.0072
Kuelenberg 0.0195 -0.0219 -0.0868

Ex Mergelaec -0.0900 0.0144 -0.0052
Ex Hof Asperg -0.0105 0.0067 -0.0542
Ex Keisersbach -0.0266 0.0036 0.0022

Error matrix norm (m)

|‖ El ‖|W:=
√

tr(E∗

l WEl) 0.4268
Mean error matrix norm (m)

|‖ El ‖|W:=
√

tr(E∗

l WEl)/3n 0.0930

15.3 Concluding Remark

The chapter has illustrated how the algebraic technique of Groebner
basis explicitly solves the nonlinear 7-parameter datum transformation
equations once they have been converted into algebraic (polynomial)
form. In particular, the algebraic tool of Groebner basis provides sym-
bolic solutions; showing the scale parameter to fulfill a quartic poly-
nomial and the rotation parameters are given by linear functions in
scale. It has also been demonstrated how overdetermined version of the
problem can be solved using the Gauss-Jacobi combinatorial algorithm
and the general Procrustes algorithm. Both approaches incorporate the
stochasticity of both systems involved in the transformation problem.

Although computationally intensive, the Gauss-Jacobi combinato-
rial algorithm solves the weighted transformation problem without any
assumption. The general Procrustes algorithm functions well with the
isotropic assumptions, i.e., all the three coordinates {Xi, Yi, Zi} of a
point i are given the same weight. The weights are further assumed to
be inhomogeneous, i.e., the weights of a point i differ from those of the
point j. Both these assumptions are ideal and may not necessarily hold
in practice. The subject of transformation in general is still an active
area of research as evidenced in the works of [2, 3, 6, 11, 13, 20, 23, 34,
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35, 45, 50, 52, 62, 66, 106, 137, 138, 143, 153, 154, 155, 158, 159, 169,
179, 196, 204, 206, 258, 259, 260, 309, 319, 329, 339, 347].



16

Computer Algebra Systems (CAS)

16.1 General and Special Purpose CAS

In high school algebra, one learnt how to perform long division of uni-
variate polynomials such as the one we illustrated in Example 4.7 on
p. 36. This is just but one example of operations that do not involve
numerical manipulation. Expanding and factoring of polynomials, so-
lution of ordinary differential equations and integration without limits
are some non numeric problems that require hand computation; which
had often required a paper and a pen. Some derivations and compu-
tations were however long and labour intensive such that one gave up
mid way. With the advent of computers, the paper and pen approach is
slowly being replaced by software developed to undertake these tasks.
Specifically, where symbolic rather than numerical solutions are desired,
these software normally come in handy. Software which perform sym-
bolic computations are called Computer Algebra System (CAS). Com-
puter algebra system made its appearance in early 1970s as a product
of research in artificial intelligence.

The symbolic mathematical software that form computer algebra
system are normally divided roughly into two: These are the general and
special purpose computer algebra systems. The general purpose com-
puter algebra systems consists of software such as MATHEMATICA,
MAPLE, AXIOM, MACSYMA, REDUCE and MAGMA etc. They of-
ten solve broad range of problems and contain in-built functions to solve
several tasks such as trigonometry, square roots etc. They are widely
used by scientists and engineers and offer nice user interface. They have
the capability to plot graphs (see e.g., Fig. 16.2) and manipulate data.
Special purpose computer algebra system on the contrary are tailored
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towards specific areas of computer algebra. In most cases, they are
developed by specific research groups with the users being limited.

In this chapter, the general purpose computer algebra systems are
discussed. We examine possible areas where they can be of use in
geodesy and geoinformatics and presents references where further ma-
terials could be obtained. Indeed, computer algebra system has widely
been used for:

(a) Manipulating symbolic and numerical computations. In this regard
for instance, one would be interested in explicit solutions of func-
tions. In the preceding chapters, we have actually employed the
computer algebra system (e.g., MATHEMATICA) to provide ex-
plicit solutions to various problems. Besides the provision of explicit
formulae, CAS also find use in expanding and factoring algebraic
expressions.

(b) Provision of graphical visualization. In vehicle production industry
for example, computer algebra systems are used to design vehicles.
Various graphs of vehicles are drawn from which experts analyze
shapes in order to obtain best possible products.

(c) Modelling engineering curves during constructions of roads, rails
etc.

16.2 Some CAS Software Useful in Geodesy and
Geoinformatics

Several general purpose computer algebra software exist that maybe
of use. In this section, four software are discussed namely: MATLAB,
MAPLE, MATHEMATICA and REDUCE.

16.2.1 MATLAB

Perhaps in the list of the four above, MATLAB appears to be the odd
one out. This is because in most computer algebra textbooks, it is not
listed as one of the computer algebra software. It however performs
functions such as factoring of polynomials, symbolic and numerical op-
erations. Since these operations are performed also by computer algebra
software such as MATHEMATICA and MAPLE, we find it useful to
include MATLAB in this group.
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MATLAB is essentially based on linear algebra, operating best with
vectors and matrices. Whereas in Fortran programming, one has to de-
fine the sizes of vectors and matrices, and declare whether variables are
real or integers, MATLAB does not have such requirements. Most func-
tions and subroutines are in-built. One therefore does not need to call
subroutines during execution of files as does Fortran. It provides nice
user interface and has the capability to plot and manipulate graphs (see
e.g., Fig. 16.1). Besides a nice user interface, it also has an editor where
the user can write programmes. Both online as well as textbook help
are provided to the user. There exists commercial as well as students’
version of MATLAB, e.g., [174]. It can manipulate both numerical as
well as symbolic computations. MATLAB has several tool boxes for
different tasks. Some of them, which may be of use, include:

• Curve Fitting Toolbox.
• Data Acquisition Toolbox.
• Filter Design Toolbox.
• Image Processing Toolbox.
• Mapping Toolbox.
• Optimization Toolbox.
• Differential Equation Toolbox.
• Signal Processing Toolbox.
• Spline Toolbox.
• Statistics Toolbox.
• Symbolic Math Toolbox.
• Wavelet Toolbox.

Several versions of MATLAB exist, with the latest (2004) being
version 6.5. Most examples presented in this book and figures were
prepared using versions 5.2 and 6.5. Some of the toolboxes listed above
could be used for:

1. Mapping. The mapping toolbox offers nice facilities for plotting in
different coordinate systems and different map projections. Figure
16.1 for example is a MATLAB graphic interface viewmaps used
to display various map projections. In the figure, we have directed
MATLAB to display equal area cylindrical map projection on the
second box, top right corner. One can further constrain what one
wants MATLAB to perform. For example, if one is interested in
displaying an equal area cylindrical map projection with only to-
pography and continents, the boxes for these features are checked.
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The resulting figure, when the apply button is pressed, is displayed
on the left of Fig. 16.1. One can compare several types of map pro-
jections and play around with the origin and orientation. Several
other tasks can be performed using the mapping toolbox.

Fig. 16.1. Interactive graphic windows in matlab

2. Symbolic computations of problems in calculus and algebra. In the
Examples that follow, we demonstrate how MATLAB 6.5 solves the
problems of numeric as well as symbolic nature.

Example 16.1 (MATLAB’s symbolic computation). Compute the
symbolic solution of the following function

f(x) :=

∫
x6dx. (16.1)

One proceeds as follows: In the MATLAB windows, the symbolic
toolbox is activated by declaring the variables x, y as symbols using
the command
>> syms x y.
The solution of (16.1) then proceeds by first entering the function
to be solved in MATLAB’s user interface as

>> f = x∧6,

then using “int” function as
>> solution1=int(f,x).
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The “int” function is a MATLAB in-built function for integration.
In the execution above, MATLAB is told to integrate the function
f with respect to x. One can learn more about the command “int”
by accessing MATLAB’s online help or by simply typing >> help
int on MATLAB window. The resulting solution is
solution1 = 1/7 ∗ x∧7,
which does not look good. The “pretty” command is used to make
the solution more presentable, e.g.,
>> pretty(solution1)
leading to 1/7x7

Example 16.2 (MATLAB’s numerical computation). Let us con-
sider a case where the limits to Example 16.1 are given as

g(x) =

∫ 5

1
x6dx. (16.2)

One proceeds to solve 16.2 by writing
>> solution2=int(x,1,5),
which tells MATLAB to integrate the function g with respect to
x from a lower limit of 1 to an upper limit of 5. On pressing the
enter/return key, the answer is given as 12.

Example 16.3 (Interaction with MATLAB). In this example, we il-
lustrate how MATLAB responds when there is an error in the en-
tered expressions. Consider a case where we have requested MAT-
LAB to find the partial derivative of the function

h(x, y) = x2 + 6xy + x3y3, (16.3)

with respect to x. In trying to enter (16.3) into MATLAB, let us
assume that one typed the expression erroneously in MATLAB as

>> h = (x∧2 + 6x ∗ y + x∧3 ∗ y∧3).

After pressing the return key, MATLAB will return the following
error message

???f2 = (x∧2 + 6x ∗ y + x∧3 ∗ y∧3).

Error: ”)” expected, ”identifier” found.
In the expression above MATLAB noticed that between 6 and x, a
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multiplication sign {*} was missing and reported an error message.
The correct expression is then entered and MATLAB returns

>> h = (x∧2 + 6 ∗ x ∗ y + x∧3 ∗ y∧3).

MATLAB is then instructed to find the partial derivative of h with
respect to x using “diff” command as
>> solution3=diff(h,x)
which leads to
>> solution3 = 2 ∗ x + 6 ∗ y + 3 ∗ x∧2 ∗ y∧3.

3. Faster computation of problems that are not labour intensive such
as those illustrated in the preceding chapters. Although MATLAB
can be used for geoid computations, other users have complained
that it is too slow compared to Fortran.

4. Plotting and manipulating graphs. It permits graphs to be produced
in encapsulated postscript (eps) format that can easily be placed in
text editors such as Microsoft word or latex.

5. Statistical analysis of data. In Chap. 14 for example, the median
used was obtained using MATLAB’s “median” command. For a
vector X, median(X) is the median value of the elements in X.

More information on MATLAB can be found online from its web page1

and also in [174].

16.2.2 MAPLE

There are several versions of MAPLE with the latest (2004) being
MAPLE 9.5. MAPLE software can be run on desktop windows’ sys-
tems and also SUN systems. All the versions of MAPLE software use
the same kernel for computing. The difference between the versions ap-
pear only in the user interface. Information on MAPLE software can
be obtained from its web page2. With this software, users have an in-
teractive system that displays input, output, text and graphics on the
same worksheet. MAPLE further offers the possibilities to:

• Solve symbolic computations. Problems that require expansion, fac-
torization and solving of systems of equations can be undertaken
using MAPLE.

1http://www.mathworks.com/
2http://www.maplesoft.com/
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• Manipulate calculus. Problems requiring differentiation, integration,
series expansion and limits can be performed.

• Solve differential equations.

16.2.3 MATHEMATICA

MATHEMATICA software exist in several versions with the latest
(2004) being MATHEMATICA 5. These versions have the same com-
puting kernel and differ only in the user interface. Both symbolic and
numerical computations can be performed using this software. When it
is started, an empty notebook appears which allows the user to enter
input to be evaluated. When the input is typed, a blue bracket at the
right-hand-side appears. This is the cell to which the input is placed.
By pressing shift-enter keys, the input is executed. Similar to MATLAB
and MAPLE, it also offers an online help. MATHEMATICA informa-
tion can be obtained from its web page3. The following capabilities are
offered to users:

• Integration of numerical and symbolic problems.
• Graphics system (e.g., Example 16.4).

Example 16.4 (Using MATHEMATICA 3.0 interface). Let as con-
sider a simple case where we are required to plot a graph of Cos(xy)
for x = 0, π and y = 0, π. This is entered in MATHEMATICA in-
terface as:
in[1]:=Plot3D[Cos[x y],{x,0,Pi},{y,0,Pi}],
which leads to Fig. 16.2.

• Programming language. The software allows users to write their own
programs.

• It can be used for calculus computations as is the case with MAPLE.
• Documentation system.
• Advanced connectivity to other applications. For instance, it per-

mits one to save documents in latex format. Figure (16.2) for ex-
ample was plotted in MATHEMATICA 3.0 and saved as a latex file
which was easily integrated to this text.

16.2.4 REDUCE

This is an interactive computer algebra software that manipulates prob-
lems of algebraic nature. There are several versions of this software with

3http://www.wolfram.com/
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Fig. 16.2. MATHEMATICA plot of Cos(xy)

the latest (2004) being REDUCE 3.8, released on 15th April 2004. Its
Information can be obtained online from the web4. Similar to modern
calculators which have replaced hand calculations, the software can be
seen as an algebraic hand calculator which could be used for:

• Expanding, factorizing and ordering polynomials and rational func-
tions.

• Substitutions and pattern matching in a wide variety of forms
• Simplification of expressions.
• Symbolic calculations, e.g., solving algebraic equations.
• Arbitrary precision integer and real arithmetic.
• Defining new functions and extending program syntax.
• Solving analytically differentiation and integration problems.
• Manipulating expressions in variety of formats.
• Optimizing numerical programs from symbolic input.

16.3 Concluding Remarks

The chapter has only presented an overview of computer algebra sys-
tems. More details can be obtained e.g., in [178, 292, 324, 334]: In the
book of [334] for instance, it is pointed out that some systems could give

4http://www.uni-koeln.de/REDUCE/
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wrong answers. This finding is thus an eye-opener to users who tend to
believe that every computer algebra result is truth. The book further
discusses a list of computer algebra systems e.g., MathCAD and their
resources. Harper [178] also provides a thorough comparison of five
computer algebra systems namely: REDUCE, MACSYMA, MAPLE,
MATHEMATICA and DRIVE. Their advantages and disadvantages
are documented therein.

We conclude this chapter by advocating the use of computer al-
gebra systems. They may make a difference between geodesists and
geoinformatists sticking to the paper and pencil snail phase approach
or replacing it!



Appendix

Appendix A-1: Definitions

To enhance the understanding of the theory of Groebner bases pre-
sented in Chap. 4, the following definitions supplemented with exam-
ples are presented.

Three commonly used monomial ordering systems are; lexicographic
ordering, graded lexicographic ordering and graded reverse lexicographic
ordering. First we define the monomial ordering before considering the
three types.

Definition .1 (Monomial ordering). A monomial ordering on
k [x1, . . . , xn] is any relation > on Zn

≥0 or equivalently any relation on
the set xα, α ∈ Zn

≥0 satisfying the following conditions:
(a) is total (or linear) ordering on Zn

≥0

(b) If α > β and γ ∈ Zn
≥0, then α + γ > β + γ

(c)< is a well ordering on Zn
≥0.

This condition is satisfied if and only if every strictly decreasing se-
quence in Zn

≥0 eventually terminates.

Definition .2 (Lexicographic ordering). This is akin to the order-
ing of words used in dictionaries. If we define a polynomial in three
variables as P = k[x, y, z] and specify an ordering x > y > z, i.e., x
comes before y and y comes before z, then any term with x will su-
persede that of y which in tern supersedes that of z. If the powers of
the variables for respective monomials are given as α = (α1, . . ., αn)
and β = (β1, . . ., βn), α, β ∈ Zn

≥0, then α >lex β if in the vector differ-
ence α− β ∈ Zn, the most left non-zero entry is positive. For the same
variable (e.g., x) this subsequently means xα >lex xβ .



Example .1. x > y5z9 is an example of lexicographic ordering. As a
second example, consider the polynomial f = 2x2y8 − 3x5yz4 + xyz3 −
xy4, we have the lexicographic order ; f = −3x5yz4 + 2x2y8 − xy4 +
xyz3 |x > y > z .

Definition .3 (Graded lexicographic ordering). In this case, the
total degree of the monomials is taken into account. First, one consid-
ers which monomial has the highest total degree before looking at the
lexicographic ordering. This ordering looks at the left most (or largest)
variable of a monomial and favours the largest power. Let α, β ∈ Zn

≥0,

then α >grlex β if |α| =
n∑

i=1
αi > |β| =

n∑
i=1

βi or |α| = |β|, and α >lex β,

in α − β ∈ Zn, the most left non zero entry is positive.

Example .2. x8y3z2 >grlex x6y2z3 |(8, 3, 2) >grlex (6, 2, 3), since
|(8, 3, 2)| = 13 > |(6, 2, 3)| = 11 andα − β = (2, 1,−1). Since the
left most term of the difference (2) is positive, the ordering is graded
lexicographic. As a second example, consider the polynomial f =
2x2y8 − 3x5yz4 + xyz3 − xy4, we have the graded lexicographic order;
f = −3x5yz4 + 2x2y8 − xy4 + xyz3 |x > y > z.

Definition .4 (Graded reverse lexicographic ordering). In this
case, the total degree of the monomials is taken into account as in
the case of graded lexicographic ordering. First, one considers which
monomial has the highest total degree before looking at the lexicographic
ordering. In contrast to the graded lexicographic ordering, one looks
at the right most (or largest) variable of a monomial and favours the

smallest power. Let α, β ∈ Zn
≥0, then α >grevlex β if |α| =

n∑
i=1

αi >

|β| =
n∑

i=1
βi or |α| = |β|, and α >grevlex β, and in α− β ∈ Zn the right

most non zero entry is negative.

Example .3. x8y3z2 >grevlex x6y2z3 |(8, 3, 2) >grevlex (6, 2, 3) since
|(8, 3, 2)| = 13 > |(6, 2, 3)| = 11 andα − β = (2, 1,−1). Since the
right most term of the difference (-1) is negative, the ordering is graded
reverse lexicographic. As a second example, consider the polynomial
f = 2x2y8 − 3x5yz4 + xyz3 − xy4 , we have the graded reverse lexico-
graphic order : f = 2x2y8 − 3x5yz4 − xy4 + xyz3 |x > y > z .

If we consider a non-zero polynomial f =
∑

α aαxα in k [x1, . . . ., xn]
and fix the monomial order, the following additional terms can be de-
fined:
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Definition .5.
Multidegree of f : Multideg (f )=max(α ∈ Zn

≥0 |aα �= 0)
Leading Coefficient of f : LC (f )=amultideg(f) ∈ k

Leading Monomial of f : LM (f )=xmultideg(f) (with coefficient 1)
Leading Term of f : LT (f )=LC (f ) LM (f )

Example .4. Consider the polynomial f = 2x2y8 − 3x5yz4 +xyz3 −xy4

with respect to lexicographic order {x > y > z} , we have
Multideg (f )=(5,1,4)
LC ( f)= -3
LM ( f)= x5yz4

LT ( f)= −3x5yz4

The definitions of polynomial ordering above have been adopted from [94,
pp. 52–58].

Appendix A-2: C. F. Gauss Combinatorial
Formulation
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Quadrate auf das Prinzip des arithmetischen Mittels. Zeitschrift für Vermes-
sungswesen 38: 13–18

189. Huber PJ (1964) Robust estimation of a location parameter. Annals of Math-
ematical Statistics 35: 73–101

190. Huber PJ (1972) Robust Statistics; A review. Annals of Mathematical Statis-
tics 43: 1041–1067

191. Huber PJ (1981) Robust Statistics. John Wiley & Sons, New York
192. Ireland K, Rosen M (1990) A classical introduction to modern number theory.

Springer, New York
193. Irving RS (2004) Integers, polynomials, and rings. Springer, New York
194. Jacobi CGI (1841) Deformatione et proprietatibus determinantum, Crelle’s

Journal für die reine und angewandte Mathematik, Bd. 22

318



195. Kahmen H, Faig W (1988) Surveying. Walter de Gruyter, Berlin
196. Kampmann G (1996) New adjustment techniques for the determination of

transformation parameters for Cadastral and Engineering purposes. Geomatica
50: 27–34
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322. Vincenty T (1980) Zur räumlich-ellipsoidischen Koordinaten-Transformation.
Zeitschrift für Vermessungswesen 105: 519–521

323. Voigt C (1998) Prokrustes Transformationen. Geodätisches Institut, Stuttgart
324. Von zur Gathen J, Gerhard J (2003) Modern computer algebra. 2nd edition,

Cambridge University Press, UK
325. Vorob’ev, VV, Krasil’nikova TG (1994) Estimation of the accuracy of atmo-

spheric refractive index recovery from Doppler shift measurements at frequen-
cies used in the NAVSTAR system. Phys. of Atmos. and Oceans 29: 602–609

326. Van Der Waerden BL (1950) Modern Algebra. 3rd Edition, F. Ungar Publish-
ing Co., New York

324



327. Weiss J (1993) Resultant methods for the inverse kinematics problem. In: An-
geles et al. (eds.) Computational Kinematics, Kluwer Academic Publishers,
Netherlands

328. Wellisch S (1910) Theorie und Praxis der Ausgleichsrechnung. Bd. II: Probleme
der Ausgleichsrechnung

329. Welsch WM (1993) A general 7-parameter transformation for the combina-
tion, comparison and accuracy control of the terrestrial and satellite network
observations. Manuscripta Geodaetica 18: 295–305

330. Ware H, Fulker D, Stein S, Anderson D, Avery S, Clerk R, Droegmeier K,
Kuettner J, Minster B, Sorooshian S (2000) SuomiNet: A real time national
GPS network for atmospheric research and education. Bull. Am. Meteorol. Soc.
81: 677–694

331. Werkmeister P (1916) Trigonometrische Punktbestimmung durch einfaches
Einschneiden mit Hilfe von Vertikalwinkeln. Zeitschrift für Vermessungswesen
45: 248–251
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Möbius barycentric, 200
maps’, 89
spherical, 80–82, 100

correlation matrix, 66
criterion matrices, 288

D. Hilbert, 36
Dedekind, 36
degenerate conics, 156
degenerate quadrics, 185
desertification, 217
determinant, 47, 50, 60, 183
digitizing table, 8
dilatation, 273, 285
directions, 12

horizontal, 85, 175
vertical, 85, 175

dispersion matrix, 61, 66, 70–72, 130,
145

distance ratios, 200, 215, 259
distances, 8, 10, 12, 22, 105, 154, 201
distributivity, 14
doppler shift, 223, 228, 229, 234

E. Noether, 36
eccentricity, 160
eigenspace, 281
eigenvalues, 51, 156
eigenvectors, 51
elimination theory, 50
ellipsoidal

anti-starshaped surface, 151
coordinates, 148
heights, 147, 148, 151
latitude, 103
longitude, 103

normal, 103
starshaped surface, 151

environment, 1
environmental monitoring, 217, 243
equations

algebraic, 20
Grunert’s, 83, 176, 177
nonlinear systems, 2, 5, 7, 16
polynomial, 17, 18, 35
quadratic, 22, 23

equivariant, 259
error

matrix, 282, 283, 285
norm, 121
propagation, 68, 70, 72, 248, 267
weight, 275

errors, 2, 246
Euclidean space, 103, 200
Euler, 10
Euler angles, 84, 263
Euler map, 264
Euler rotation matrix, 82, 84
Evariste Galois, 23
excess Doppler shift, 224
expectation, 70
explicit

formulae, 3, 5
procedures, 3

extension theorem, 43
exterior orientation, 193, 200
external relation, 13
extraneous factors, 52

F. Crosilla, 90
factor analysis, 89
Fermat’s principle, 224
field extension, 24
fields (cf. rings), 13
first moments, 70
flooding, 217
four square identity, 11
frequency, 225
Frobenius error matrix, 275–277, 282,

283
Frobenius norm, 95, 96, 98

Gauss elimination, 31–33
Gauss-Krueger projection, 130
geodetic

328



coordinates, 79, 148
height, 79
heights, 151
latitude, 79
longitude, 79

geoid, 78, 147
geopotential heights, 219, 227
GIS, 8
global warming, 217, 221, 243
GPS, 5

applications, 2
C/A-code, 1
control segment, 79
meteorology, 1, 5, 105, 218, 220
P-code, 1
PDOP, 117
pseudo-ranges, 107, 247
receivers, 219
remote sensing, 1
Selective Availability (SA), 1
signals, 1
space segment, 78
user segment, 78

GPS meteorology
ECMWF, 223
EQUARS, 219
EUMETSAT, 220
GEONET, 226
GPSOS, 220
GRAS, 220
IPWV, 220
METEOSAT, 218
NCEP, 223
NOAA, 218
NPOESS, 220
NWP, 237
NWP models, 217
refraction angles

Groebner basis solution, 231
Sylvester resultant solution, 233

GPS system, 77
GRACE, 243
gravimetric, 25
gravitation lens, 47
gravity, 8, 12, 77, 78
gravity vector, 79, 80, 82, 83, 86, 91,

100
greatest common divisors (gcd), 31
greenhouse gas, 217

Greenwich, 79
Groebner basis, 29, 50

definition, 37, 40
Maple computation, 45
Mathematica computation, 43

group axioms, 14
Grunert’s equations, 168

H. Hironaka, 29
Hamilton quaternion, 83, 185
Hamilton’s letter, 11
heights, 65
Helmert’s projection, 148
Hilbert Basis Theorem, 36, 37
homogeneous, 275

Ideal, 29, 33, 34, 158, 179
Ideal membership, 38
idempotent, 284
identity, 14
impact parameter, 224, 234
injective function, 63
integers, 7, 8, 12, 14
internal relation, 13
international reference ellipsoid, 148,

151
intersection, 22, 23, 199

planar
conventional solution, 200
Groebner basis solution, 202

three-dimension
closed form, 205
conventional solution, 206
Grafarend-Shan method, 214
Groebner basis solution, 207
overdetermined, 210
photogrammetric, 214
resultant solution, 208

invariant, 259
inverse, 14
ionosphere, 219, 223
ionospheric errors, 234, 247
isotropic, 275
isotropic dilatation, 95
isotropic error, 288
isozenithal, 151

J. A. Grunert, 167, 176
Jacobi matrix, 121

329



Jacobian determinant, 51, 53, 111, 112,
139, 184, 208

Kronecker, 36
Kronecker-Zehfu decomposition, 288
Kummer, 36

L1-signals, 237
L2-signals, 237
Lagrangean, 153, 155, 156, 277

centralized, 278
multiplier, 34
reduced, 279
unconstraint, 278

Leading Coefficient (LC), 305
Leading Monomial (LM), 37, 179, 305
Leading Term (LT), 305
Least Common Multiple (LCM), 39,

179
least squares, 47, 89, 116, 131, 194, 270,

276, 288
levelling, 25, 65
lexicographic ordering, 33, 38–40, 42,

110, 158, 171, 178, 181, 203, 231,
303

graded, 42, 304
graded reverse, 304

linear algebra, 13, 47
linear Gauss-Markov model, 288
LPS systems, 78

Macsyma, 293
Magma, 293
manifold, 63
Maple, 33, 293, 298

Groebner basis computation, 45
Mathematica, 25, 27, 28, 33, 293, 299

Groebner basis computation, 43
Matlab, 25, 27, 28, 33, 294

“det” command, 50
“diff” command, 298
“int” command, 297
“median” command, 298
“polyfit” function, 234
“randn” command, 87
“roots” command, 33, 38, 49, 106,

127, 173, 183, 232
symbolic computation, 296, 297

matrix properties, 96

maximum, 33
mean error matrix, 285
minimum, 33
minimum distance mapping (MDM),

148
models

Gauss-Markov, 61
linear Gauss-Markov, 66
mixed, 61
non-stochastic, 61
stochastic, 61

monoid, 15
monomial ordering, 303
monomials, 17
multideg, 37, 305
multidimensional scaling, 92
multipath, 1, 247
multiplicative associativity, 14
multiplicative commutativity, 14
multiplicative distributivity, 14
multiplicative identity, 9, 14
multiplicative inverse, 10, 13, 14
multipolynomial resultants, 47, 50

nadir-viewing microwave, 221
necessary condition, 53, 115, 155
network densification, 5
Niels Henrick Abel, 23

impossibility theorem, 23
nonlinearity, 5
nonlinearity errors, 228
numbers

complex, 7, 10, 12
invention of zero, 8
natural, 7, 8, 24
prime, 22
rational, 7, 9, 12, 14
real, 7, 10, 12, 13
ring, 24

orientation unknown, 82, 83
orthogonal group, 274
orthonormal matrix, 273, 281
outliers, 245, 277

P-code, 78, 223
P. J. Huber, 4, 246
partial Procrustes algorithm, 168
PDOP, 117, 118
permutation, 69

330



perspective center, 193, 214
phase delay, 226
photo coordinates, 8, 12
Pizetti’s projection, 147
planar ranging, 22
polynomials, 3, 7, 18, 19

S–polynomial, 39, 40, 179
critical degree, 51
cubic, 26, 53, 180
degree zero, 172
equivalence, 38
expansion, 293
extraneous factor, 52, 53
factorization, 22, 293
homogeneous, 48, 52
impossibility theorem, 23
irreducible, 22
Legendre, 6
minimal, 24
multivariate, 18, 20
of degree zero, 49
ordering

lexicographic, 33
quadratic, 22, 25, 53
quartic, 27, 28, 168, 207, 231, 266
reduced cubic, 26
resultants, 29, 47
roots, 2, 25, 26, 28, 33
solvability test, 43
Sylvester resultant, 228
total degree, 51
univariate, 3, 11, 19, 33, 156, 158, 183

positional error sphere, 289
positional norm, 115
positive definite, 61, 66, 155
positive semi-definite, 277
Pothenot’s problem, 167
precipitable water, 226
pressure, 1, 105, 219, 223, 227
Procrustes

application in medicine, 93
gene recognition, 93
general solution, 95
identification of malarial parasites, 94
magic bed, 91
partial solution, 89, 95
software, 93

projection lines, 153
Pythagorean length, 10

Pythagorean theorem, 230

quadratic formula, 25
quaternions, 7, 60
quotient, 10

radial distance, 115
radio waves, 223
radiometers, 221
radiosondes, 218
Random Access Memory (RAM), 6
random errors, 60, 64
ranging, 105

3d-ranging
closed form, 133
elimination approach-1, 135
elimination approach-2, 136
Groebner approach, 138
ovedetermined case, 144
resultant approach, 139

GPS pseudo-ranging
Groebner basis solution, 113
Sturmfels’ solution, 111

planar
conventional approach, 122
overdetermined, 130
reduced Groebner approach, 126
Sylvester approach, 124

Reduce, 293, 299
reduced Groebner basis, 34, 44, 228, 231
reference ellipsoid, 147
reference frames, 79
refraction angle, 223, 227
refractive index, 225
remote sensing, 105
resection, 165

3dimension
exact solution, 175
Grafarend et al. approach, 185
Groebner basis solution, 178
Grunert’s equations, 176
overdetermined, 189
photogrammetric, 193
resultant solution, 181

planar
analytic solution, 169
Groebner basis approach, 171
Sturmfels’ resultant approach, 172

scanner application, 165

331



residuals, 121, 246
rings, 7

commutative, 15, 19
congruence, 13
definition, 15
division, 15
fruit, 13
modular arithmetic, 13, 18
numbers, 7, 12, 18
polynomial, 7, 13, 16, 19
with identity, 15

robotics, 6
robust estimation, 4, 246
Rodrigues, 10
root-mean-square-errors, 121
roots, 25
rotation, 95, 259, 285
rotation matrix, 96, 101, 215, 273, 290

satellites
CHAMP, 78, 219
clock bias, 109
COSMIC, 219
ephemerids, 79
GALILEO, 2, 77, 90, 105, 220
geostationary, 218
GLONASS, 2, 77, 90, 105, 220
GNSS, 1, 105
GOCE, 78
GPS, 1, 78, 90, 105, 218
GRACE, 77, 219
LEO, 223
occultations, 5, 234
polar, 218
receiver range bias, 109
remote sensing, 218
SAC-C, 219
velocities, 224, 229

scale factor, 259, 273, 290
second moments, 70
semi-group, 15
semi-major axis, 151, 160
semi-minor axis, 151, 160
semi-norm, 282, 283
set, 8, 10
shape analysis, 89
singular value decomposition (SVD),

97, 99, 278, 281, 283
skew-symmetric matrix, 262, 266

slant water, 226
smooth-linear bending, 94
Snell’s law, 224
solutions

algebraic, 6
analytic, 6
closed form, 6
exact, 2, 5
least squares, 20, 64
numerical, 3, 6

space angles, 176, 200, 205, 259
Spatial Reference System, 105
spherical harmonics, 6
square matrix, 52
square root, 10
standard basis, 29
standard deviation, 87
standard errors, 87
starshaped surface, 151
stencil method, 185
stochasticity, 3, 74
stratosphere, 218, 221
sufficient condition, 53, 115, 155
surface normal, 151
surjective mapping, 274
Sylvester resultants, 47, 49, 139
Synthetic Aperture Radar (SAR), 222

Taylor points, 70
Taylor series expansion, 119
TEC, 220
temperature, 1, 105, 218, 219, 223, 227,

243
Theseus, 91, 92
topographical surface, 151
total degree, 48, 53, 182, 304
transformations

7-parameter, 3, 90
affine, 94
Cartesian to ellipsoidal, 148, 160
Gauss-Jacobi solution, 267
Groebner solution, 262
Karussel, 81
orthogonal, 89
orthogonal Procrustes, 274
Procrustes solution, 272
similarity, 200, 215, 274

translation, 95, 259, 273, 285, 290
trigonometric addition formulae, 229

332



tropopause, 221, 243
troposphere, 221

UCAR, 219
unknown orientation, 81, 100, 168, 171,

172, 202

variance-covariance, 116, 144, 289
matrix, 71
propagation, 68, 70, 72, 248, 267

vectors, 13
vertical deflection, 91

W-semi-norm, 275

W. Groebner, 29

W. R. Hamilton, 11, 60

W. WU, 55

water vapour, 105, 218, 219, 223, 227,
243

weather, 2, 217

weight matrix, 74, 247

weighted arithmetic mean, 64
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