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AbstraR: Tinjauan ini menyimpulkan kes kerintangan insektisid terpilih pada lipad Jerman yang 
pernah diterbitkan sejak tahun 1952, dengan menumpu kepada melranisme kerintangannya 
(penurunan penembusan kutikel, monooqgenase, esterase, glutathion S-transferase, asetilkolines- 
eerase terubah dan kerintangan jenis kdr). Setiap mekanisme kerintangan ini dibincangkan dengan 
menumpu kepada kes lipas Jerman yang telah dilaporkan. Satu ringkasan pendek mengenai 
beberapa aspek utama yang memerlukan penyelidikan mendalam juga disertskan. 

Abstract: This review summarizes selected published cases of German cockroach resistance to 
insecticides since 1952, with emphasis on resistance mechanisms (reduced cuticular penetration, 
monooqgenase, esterase, glutathione S-transferase, altered aceytlcholinesterase and Mr-type 
resistance) that had been reported to date. Each resistance mechanisms is discussed with emphasis 
on cases reported for German cockroaches. A short summary on several priority research areas that 
warrants further studies is also included. 

INTRODUCTION 

"Whereas the presence of resistance was a 
rare phenomenon during the early 1950s, it 
is the fully susceptible population that is rare 
at present.. . . " (Georghiou 19861. 

Pesticide resistance is found in many living 
forms ranging from bacteria to plants and 
mammals (Georghiou & Mellon 1983). 
However, the worst case of pesticide resis- 
tance is insecticide resistance. According to 
the World Health Organization (19921, 
resistance is defined as  "an inherited 
characteristic that imparts an increased 
tolerance to a pesticide, or group pesticides, 
such that the resistant individuals survive a 
concentration of the compound(s) that 
would normally be lethal to the species." 
The first case of insecticide resistance was 
observed in San Jose scale on apples in 
Washington State. USA where the insect 
became resistant to lime sulphur (Melander 
1914). With the discovery of organic 
insecticides in the 1940s followed by 
extensive usage in the 1950s, cases of 
insecticide resistance have increased each 

year since then. Today, more than 504 
species of insects have been reported a s  
being resistant to insecticides. There has 
been more cyclodienes and DDT resistance 
than resistance to any other group of 
insecticides (organophosphates, carbamates 
and pyrethroids), probably owing to their 
long persistence in the environment 
(Georghiou 1990). 

The impact of insecticide resistance can 
range from increases in cost of control 
programme to total control failures by 
chemical tools (Moberg 19901. An example 
of control cost increase is 1 the 
international malaria control programme. 
Due to the DDT resistance in many 
anopheline populations around the world, 
the replacement of DDT by malathion has 
increased the cost by 6- to 7-folds. Repla- 
cement with other organophosphates, 
carbamates and pyrethroids cost even morel 
Due to these financial constraints. DDT has 
not been replaced completely; thus human 
morbidity and mortality due to ineffective 
control are still on the increase (World 
Health Organization 1992). 



HISTORY OF INSECTICIDE RESISTANCE 
IN THE GERMAN COCKFtOACH 

The German cockroach, Blattella germanica 
&.) is an import J - I~  urban insect pest in 
many parts of 1 ie world. Control of this 
pest species relies heavily on the use of 
neurotoxic insecticides. Extensive usage of 
insecticides has led to the development of 
~nsecticide resistance in the German 
cockroach. The first case of German cock- 
roach resistance to insecticide was detected 
in Corpus Christi. Texas, USA in 1952, 
where a strain was found to be resistant to 
chlordane a t  >loo-fold by the glass jar 
method (Ileal et aL 1953). Subsequently, 
resistance to other organochlorines such as  
DDT, dieldrin and lindane were also noted 
in many strains of the German cockroach in 
many parts of the world (Cornwell 1976). 
Resistance to organophosphates and carba- 
mates in the German cockroach was first 
detected in the 1960s Failure to achieve 
satisfactory control with pyrethroids was 
observed in the 1980s when cypermethrin 
no longer provided effective control against 
German cockroaches in apartments (Schal 
1988, Zhai & Robinson 1991). A thorough 
resistance study on 45 strains of the 
German cockroach from all over the USA 
against various insecticides was reported by 
Cochran (1989). Rust & Reierson (1991) 
trapped and studied chlorpyrifos resistance 
level in German cockroaches from 35 
restaurants in California, USA They found 
tha: resistance level (at LD,J ranged from 
4.2 :o 29.7. The Village Green strain, which 
was collected from Gainesville. Florida, 
USA, demonstrated high pyrethroid resis- 
tance ranging from 29 8 0  337-fold when 
tested against 1 0 pyrethroids (Atkinson et 
al. 1991). 

In Malaysia, the German cockroach is 
the major insect pest in hotels and food 
preparative industries (Lee et al. 1993). 
Broad spectrum resistance in twelve field 
collected strains where resistance were law 
to high for carbamates, low for organo- 
phosphates and low to moderate for 
pyrethroids were reported lately (Lee 1995, 
Lee et al. 1994, Lee et al. 1995, Lee et al. 
1996a). Recently, Lee et al. (1997) reported 
malathion and bendiocarb resistance in two 
strains of German cockroach collected from 
food outlets in Kuala Lumpur, Malaysia. 

To avoid repetition of citation in this 
review, a summary of selected cases of 
insecticide resistance in the German 
cockroach documented from 1953 to 1997 
is presented in Table I i .  This summary 
excludes reports in which field-collected 
cockroaches have been subjected to 
laboratory selection pressure (eg. Scott et al. 
1990, Siegfried & Scott 1991, Bull & 
Patterson 1993, Hemingway et al. 1993a. 
1993b). 

RESISTANCE MECHANISMS IN THE 
GERMAN COCKROACH 

The mechanism of insecticide resistance in 
insects can be divided into physiological 
and behavioural resistance. Physiological 
resistance occurs when biochemical/ 
physiological-related mechanisms are in- 
volved in reducing the efficacy of an 
insecticide. On the other hand, the ability of 
insects to avoid lethal insecticide exposures 
due to the nature of or changes in their 
behaviour is classified as behaviourai 
resistance. Only physiological resistance 
mechanisms is reviewed in this paper. Prior 
to this paper, a good review on the subject 
had been reported by Siegfried and Scott 
( 1992). 

There are three general resistance 
mechanisms which can be classified as  
physiological resistance: reduced cuticular 
penetration: increased metabolic detord- 
fication and target site insensitivity. 

Reduced cuticular penetration 
Reduced cuticular penetration confers low 
level of resistance in insects, usually less 
than three-fold (Scott 1990). This rnecha- 
nism was first noted by Fine et al. (1963). 
Generally, this mechanism provides 
protection against a wide variety oi 
insecticides (Plapp & Hoyer 1968). How- 
ever, it is the least understood and 
considered a s  the least significant single 
resistance mechanism (Soderlund & 
Bloomquist 1990). 

In the German coc&oach, Siegfried & 
Scott (1 991) found that penetration of [I4c]- 
propoxur into the body was reduced wHen 
the chemical was applied topically in a 
propoxur-resistant strain. A highly 



pyrethroid-resistant strain, Village Green, 
was also found to-exhibit this mechanism 
where the penetration rate of [I4C]- 
permethrin was found to be slower than 
that of the susceptible strain (Bull & 
Patterson 1993. h s p a u g h  et al. 1994). In 
another report, no difference in [I4c]- 
chlorpyrifos penetration rate was demon- 
strated in susceptible and chlorpyrifos- 
resistant cockroaches (Siegfried et al. 
1990). 

Increased metabolic detoxication. 
Increased metabolic detoxication is the 
mosi common resistance mechanism in 
insects. The most conclusive way to study 
this type of resistance mechanism is 
through in vivo and in vitro metabolism 
studies using radio-labeled insecticides 
(Scott 1990). In ' the German cockroach, 
several studies utilizing this technique have 
been reported (Bull et al. 1989. Siegfried et 
al. 1990, Siegfried & Scott 1991. Bull & 
Patterson 1993, h s p a u g h  et aE. 1994). 

However, if radio-scintillation facilities 
are not readily available, increased 
metabolism can be studied by performing 
enzyme assays. With enzyme assays, a 
specified centrifugal fraction or purified 
sample from susceptible and resistant 
insects is assayed against model substrates 
and then compared on the basis of 
product/min/mg protein. This method. 
however, will not provide direct evidence for 
the resistance mechanism involved (Scott 
a 990). 

Three groups of metabolic enzymes which 
are involved in detoxication of insecticides: 

Monooxygenases 
Monooxygenase or mixed function oxidase 
(older nomenclature) systems play an 
important role in detoxication of many 
groups of insecticides (ie carbamates. 
pyrethroids and organophosphates) in both 
mammals and insects (Agosin & Peny 1974, 
Hodgson 1983). They catalyze a series of 
oxidative reactions where one atom of an 
oxygen molecule is reduced to water, while 
the other atom is incorporated into its 
substrate (Hodgson 1983). They are located 

in the microsomes and can be obtained by 
centrifuging postmitochondrial homoge- 
nates a t  100,000g for 60 minutes. 
Monooqgenases usually require NADPH 
and 0, for activity and are inhibited by CO 
(Agosin & Peny 1974). 

The most important component of a 
monoqgenase system is cytochrome P,,, 
(Agosin & Perry 1974). This name is 
derived from the prominent peak at  or 
about 450 nm in the CO optical difference 
spectrum [Omura & Sato 1964). In insects, 
the activity of cytochrome P,,, has been 
demonstrated in the midgut, fat body and 
malphigian tubules with the midgut being 
the site of greatest activity (Hodgson 1983). 
Reactions catalyzed by cytochrome P,,, 
include epoxidation, aromatic ring hydroq- 
lation, 0- and N-dealkylation, N-methyl 
hydroxylation. oxidation of thioester a- 
phosphorothioates and hydroqlation of 
aliphatic hydrocarbons. 

Cytochrome P,,, monooxygenases usual- 
ly prefer to metabolize lipophilic substances 
into products with high water solubility, 
hence promoting excretion (Soderlund & 
Bloomquist 1990). It has been suggested 
that foreign compounds will initially form a 
complex with the olddised form of 
cytochrome P,,,; this complex is then 
reduced by one electron from NADPH. The 
reduced cytochrome P,,,/ substrate complex 
then reacts with and activates 0,. The 
resulting oxygenated complex break and 
form an end-product and water. Two 
flavoproteins, (ie NADPH-cytochrome P,,, 
reductase and cytochrome b,) are respon- 
sible for the electron transfer (Wilkinson 
1983, Soderlund & Bloomquist 1990). 

This resistance mechanism can be 
overcome by the action of methyle- 
nediomhenyl (MDP) synergists (eg 
piperonyl butoxide [PBOI and sesamex) 
which block the monooqgenases. The 
presence of these synergists can revert the 
level of resistance in resistant strains to a 
level approaching that of the susceptible 
strain (Sun & Johnson 1960. Casida 1970). 



Table 1: Selected cases of insecticde resistance in the German cockroach from 1953- 1997 
\ class -. Assessment Resistance ratio Location Reference 

insecticide method 
Organochlorines 
chlordane SC (time) 

SC (time) 
SC (time) 
SC (time) 
SC (time) 
T (dose) 
T (dose) 
T (dose) 
T (dose) 
T (time) 
T (dose) 

lindane SC (time) 
SC (time) 
T (dose) 
T (dosej 

dieldrin SC (time) 
SC (time) 
SC (timet 
T (dose) 
T (dose) 
T (dose) 

DDT SC (time 
SC (time) 
T (dose) 
T (dose) 

Organophosphates 
malathion SC (time) 

SC (time) 
T (dose) 
SC (dose) 
T (dose) 
T (dose) 
SC (time) 
SC (time) 
SC (time) 

diazinon SC (dose) 
SC (time) 
SC (dose) 
T (dose) 
T (dose) 
T (dose) 
SC (time) 

Texas, USA. 
U.S.A. 
U.S.A 
France & Germany 
California, USA 
Hawaii, USA 
Japan 
Lousiana. USA 
Canada 
Baltimore. USA 
Muncie. IN, USA 

Texas, USA 
U.S.A 
Hawaii, USA 
Japan 

9-17 US.A 
LT50 = >48 h England 
3 5 Canada 
2000 Denmark 
360- >750 Japan 
> 54 London. UK 

1.5 - 3.0 
5.1 - 1 1.2 (at LTw) 
6.8 - 8.5 
2.2 - 12.8 
7 - 110 
3 - 4  
>60 (1 3 of 45 strains) 
6.5 
1.9-41.1 

Texas, USA 
Germany & France 
Hawaii, USA 
Malaysia 

Germany & France 
U.S.A 
Mawali, USA 
Texas, USA 
Lousiana USA 
Canada 

*lf.S.A 
Baltimore, USA 
Malaysla 

3 - 15 (at LC90) Kentucky, USA 
1.3 (at LT90) U.S.A 

3 - 8 Texas, USA 
6 -  13 Lousiana, USA 
3.8 London 
2 - 4  Canada 
3.7 Baltimore. USA 

Heal et al. (1 953) 
Keller et al. (1956) 
Lofgren et al. ( 1  957) 
Webb (1961) 
Micks ( 1960) 
Ishii & Sherman ( 1965) 
Yasutomi et al. (1966) 
Bennett & Spink (1968) 
Batth (1977) 
Nelson & Wood (1 982) 
Scharf et al. (1996) 

Heal et al. (1953) 
Keller et al. (1 956) 
Ishii & Sherman ( 1965) 
Yasutomi et al. (1966) 

Keller et al. (1956) 
Gradidge ( 1960) 
Anonymous il961) 
Keiding (1964) 
Yasutomi et a]. (1966) 
Cornwell ( 1968) 

Heal et al. (1953) 
Webb (1961) 
Ishii & Sherman (1965) 
Lee et aI. (1996a) 

Webb (1961) 
Johnston et al. 6 1964) 
iishii & Sherman (1965) 
Grayson ( 1965) 
Bennett & Spink ( 1968) 
Batth (1977) 
Cochran (1989) 
Nelson & Wood (1982) 
Lee et al. (1997) 

Grayson ( 1965) 
Johnston et al. (1 964) 
Grayson ( 1965) 
Bennett & Spink (1968) 
Cornwell (1968) 
Batth ( 1977) 
Nelson & Wood (1982) 



(Table 1 continued) 
Class Assessment Resistance ratio Location Reference 

-. 
insecticide method 

SC (time) 1.9 New Jersey, USA Schal(1988) 
T (dose) 1 - 2  Denmark Vagn-Jensen ( 1993) 

1 T (dose) 3.4 Muncie, IN, USA Scharf et al. (1996) 

chlorpyrifos T (dose) 
(time) 
SC (time) 
T (dose) 
6 (dose) 
T (dose) 
T (dose) 
T (dose) 
T (dose) 

fenthion LC (dose) 
T (dose) 

Canada 
New Jersey. USA 
U.S.A 
California. USA 
Denmark 
UK. USA 
Malaysia 
USA 
Muncie. IN. USA 

Texas. USA 
Lousiana, USA 

Batth ( 1977) 
Scha1( 1988) 
Cochran (1989) 
Rust & Reierson (1991) 
Vagn-Jensen ( 1993) 
Chapman et al ( 1993) 
Lee et al. ( 1996a) 
Valles & Yu ( 1996) 
Scharf et aY. ( ). 996) 

Grayson ( 1965) 
Bennett & Spink ( 1968) 

( fenitrothion T (dose) 1.3 - 3.7 UK and USA Chapman et al. (1993). I 
Curbamutes 
kndiocarb SC (time) 

SC (time) 
SC (time) 

SC (time) 
T (dose) 
T (dose) 
T (dose) 
SC (time) 
T (dose) 
SC (time) 

propoxur T (dose) 
T (dose) 
SC (time) 
SC (time', 
SC (time) 
T (dose) 
T (dose) 
T (dose) 
T (dose) 
SC (time) 

U.S.A 
England 
Baltimore, USA 
New Jersey, USA 
UK, USA 
Malaysia 
USA 
Malaysla 
Muncie, IN, USA . 
Malaysia 

Lousiana, USA 
Canada 
Baltimore, USA 
New Jersey, USA 
U.S.A 
UK, USA 
Malays~a 
USA 
Muncie. IN. USA 
Malaysia 

Cochran ( 1989) 
Barson & McCheyne (19793 
Nelson & Wood ( 1982) 
Schal( 1988) 
Chapman et al. ( 1993). 
Lee et aY. ( 1996a) 
Valles $r Yu ( 1996) 
Lee et al. ( 1997) 
Scharf et al. (1 996) 
Lee et al. (In press) 

Bennett & Spink ( 1968) 
Batth ( 1  977) 
Nelson & Wood (1982) 
Schal(1988) 
Cochran i 1989) 
Chapman et al. (1993) 
Lee et ai. (1996a) 
Valles $r Y u ( 1996) 
Scharf et al. (1 996) 
Lee et d. (In press) 

Pyre throids 
pyrethrin SC (time) 3 - 31 U.S.A. 

SC (time) > 80 (20 of 45 strains) U.S.A 
T (dose) 43.4 - 98.8 UK, USA 

Keller et al. (1956) 
Cochran ( 1989) 
Chapman et al. (1993)' 

cypermethrin SC (time) 4.5 
T (dose) 103.6 

New Jersey, USA Schal(1988) 
Florida, USA Atkinson et al (1 99 1 b) 



(Table l continued) 
Class Assessment Resistance ratio Place Reference 
insecticide method - 

T (dose) 180 Roanoke, VA, USA Zhai & Robinson (1991) 
T (dose) 11.6 - 29.1 UK, USA Chapman et al. (1993) 
T (dose) 1 - 2 2  Malaysia Lee et al. (1996a) 
T (dose) 28 USA Valles & Yu ( 1996) 
T (dose) 3.5 - 4.2 Muncie, IN, USA Scharfet al. (1996) 
SC (time) 1.5 - 3.6 Malaysia Lee et al. (In press) 

deltamethrin T (dose) 20 
T (dose) 2 - 3 1  
T (dose) 6 - 24 

Australia Horwood at al. (1 991) 
Denmark Vagn-Jensen (1993). 
Malaysia Lee et al. (1996a) 

pennethrin SC (time) > 100 ( 1 of 45 strains) USA Cochran ( 1989) 
T (dose) 45 Florida, USA Atkinson et al. (1991b) 
T (dose) 3 - 57 Denmark Vagn-Jensen (1 993) 
T (dose) 1 - 15 Malaysia Lee et al. (1996a) 
T (dose) 12 USA Valles & Yu (1996) 
T (dose) 2.2 Muncie. IN, USA Scharfet al. (1996) 
SC (dose) 1.9 - 3.2 Malaysia Lee et al. (In press) 

I SC (time) >lo0 (7 of 45 strains) USA Cochran ( 1989) 

phenothrin SC (time) > 80 (3 of 45 strains) USA Cochran ( 1989) 
T (dose) 13 -52  Malaysia Lee et al. (1996a) 

fenvalerate SC (time) > 60 (1 of 45 strains) USA . Cochran ( 1989) 
T (dose) 97.7 Florida, USA Atkinson et al. (1991 b) 

cyfluthrin SC (time) 5 - 6 (1 of 45 strains) USA Cochran (1989) 
T (dose) 87.5 Florida, USA Atkinson et al. (1991b) 
T (dose) 3 .O Muncie, IN, USA Scharf et al. (1996) 

' SC = surface contact; T = topical application. 



Multiple forms of cytochrome P,,, 
monooxygenases - have been reported. 
Evidence showed that different inducing 
agents cause synthesis of different forms of 
cytochrorne P,,, monooxygenases with 
varying catalytic and structural properties 
(Lu et al. 1976, Coon et al. 1977). They are 
also not equally susceptible to inhibition by 
PBO or other enzyme inhibitors. Therefore, 
lack of synergism when using any MDP 
compound does not imply an absence of 
oxidative metabolism [SoderPund & 
Bloomquist 1990). 

.Resistance due to cytochrome P,,, 
monooxygenase is common in the German 
cockroach. Propoxur and chlopyrifos resis- 
tance in Baygon-R and Dursban-R strains, 
respectively were suppressed partially with 
PBO and confirmed with higher rates of 
NADPH-dependent microsomal metabolism 
of ['"CI-propoxur and ['4~l-chlorpyrifos 
(Siegfried et UL 1990, Siegfried & Scott 
1991). Further studies showed that the 
Baygon-R strain possessed 1 . 6 ~  more total 
cytochrome P,,, than a susceptible strain, 
but no difference was found in cytochrome 
b, and NADPH-cytochrome c-reductase in 
both strains. This suggested that the latter 
two components were not involved in the 
resistance mechanism (Siegfried & Scott 
1992). Hemingway et al. (1993b) studied 30 
pyrethroid-resistant strains from three 
continents and found elevated levels of total 
cytochrome P,,, in 15 strains. Scharf et al. 
I1 996. 1997) also reported increased levels 
of cytochrome P,,, in two strains of German 
cockroaches collected from a housing 
project in Indiana, USA. Valles et aL (1996) 
reported higher monooxygenase activity in 
late nymphs as  compared to adult males 
which contributed to stage-dependent 
propoxur tolerance in the German 
cockroach. 

The use of PBO to characterize the 
possible involvement of increased oxidative 
metabolism as a resistance mechanism has 
also been reported in strains of the German 
cockroach which are carbamate- and 
organophosphate-resistant (Cochran 1987, 
Scott et UL 1990, Chapman et aL 1993. 
Hemingway et aL 1993a, Lee et aL 1996) 
and pyrethroid-resistant (Scott et aL 1990, 
Atkinson et al. 1991, Chapman et aL 1993, 
Hemingway et aL 1993b, Cochran 1994a. 

Lee et aL 1996a, Valles & Y u  1996, Valles et 
aE. 1996). 

Esterases 
Esterases hydrolyze carboxylester and 
phosphorotriester bonds, mainly in OP and 
CARB insecticides. Like monooxygenases, 
they exist in multiple forms (Soderlund & 
Bloomquist 1990). Isozymes are separable 
with electrophoretic techniques and can 
also be detected by spectrophotometric 
assays using model substrates (eg naphthyl 
acetate) (Scott 1990). These isozymes can 
be further characterized by using selective 
inhibitors after electrophoresis and prior to 
visualization, eg eserine, sodium flouride 
and cupric sulphate (Sudderuddin & Tan 
1973, Setakana 1989, Lim & Tan 1993, 
Prabhakaran & Kamble 1993). 

Two groups of esterases involved in the 
detoxication of insecticides are carboxyles- 
terases and arylesterases. ' carboxyles- 
terases are the most important group in 
organophosphate and carbamate resistance. 
These enzymes cleave one or both ethyl 
ester groups in malathion, leaving it as a 
mono or diacid (Brattsten 1990). This 
activity is so specific that it does not 
hydrolyze any other phosphoester bond. 
Arylesterases catalyze the hydrolysis of OP 
oxons, but do not hydrolyze the parent 
phosphorothioate insecticides. This 
mechanism, however, is quite rare in 
insects (Brown 1990). 

Since many organophosphates inhibit 
serine hydrolases by phosphorylation, they 
are potential inhibitors of esterases 
(Brattsten 1990). Some relatively non- toxic 
organophosphates [eg S,S.S-tributylphos- 
phorotrithioate ( D E ~  and S-benzyl 0,0- 
diisopropyl phosphorothionate (IBP)] c;m 
act as  inhibitors of esterase because they 
cause irreversible or slowly reversible 
inhibition (Soderlund & Bloomquist 1990). 
Another compound, triphenyl phosphate 
(TPP) can also serve as an inhibitor against 
malathion-carboxylesterase. Dong & Scott 
(1992) compared fifteen compounds as 
synergists for chlorpyrifos and found that 
two substituted N,N-dimethylcarbamates 
(SK-37 and SK-102) performed better than 
D E F ~  in reducing the resistance levels of a '  
chlorpynfos-resistant strain. 



Elevated esterase has been reported as  
a common resistance mechanism in the 
German cockroach. Chlorpyrifos and 
propoxur resistance in the Dursban-R and 
Baygon-R strains, respectively, were 
partially suppressed with DEP. This was 
confirmed with in vitro metabolism studies 
using ['4~]-chlorpyrifos ,and ['4~]-propoxur 
where high levels of hydrolytic activity were 
also detected in both strains (Siegfried et a[. 
1990. Siegfried & Scott 1991). Further 
study revealed that esterases in both 
strains showed greater hydrolytic activity 
against a-naphthyl propionate and a- 
naphthyl butyrate when a series of a- 
naphtolic ester substrates . with varying 
alkyl chain length were assayed [Siegfried -& 
Scott 1992). 

Hemingway et a!. (1993a) had 
conducted biochemical esterase assays on 
15 resistant strains of the German 
cockroach from 3 continents and found 11 
strains had elevated esterase activities. 
This finding was confirmed with synergism 
studies using DEF'. Scott et a[. (1990) 
partially reduced the bendiocarb resistance 
level in two German cockroach strains 
(Kenly and Rutgers) with DEF@: however, 
they were not successful in suppressing 
pyrefirin and cypermethrin resistance with 
the same synergist in Kenly and Ectiban-R 
strains, respectively, 

Prabhakaran & Kamble (1993) found 
two resistant strains of the German 
cockroach with higher hydrolytic activity 
than the susceptible strains when using p- 
nitrophenyl acetate (PNPA) as  a model 
substrate. Ten esterase bands (El to El,) 
separated by electrophoresis and 
characterized with selective inhibitors 
suggested that E, - E, were cholinesterases, 
E, and E, were phosphatases and E, - El, 
were carboxylesterases. Further studies 
using differential centrifugal fractions 
showed that soluble enzymes (the cytosolic 
fraction) are responsible for most of the 
total esterase activities in the German 
cockroach, although esterases are also 
found at  microsomal level (Prabhakaran & 
Kamble 1994). Recently, the authors 
purified three isoenzymes (E,, E, and E,) 
using column chromatography and 
preparative gel electrophoresis. They 
suggested that insecticide resistance in the 

strain of German cockroach studied 9s due 
to overproduction of esterase E6 which 
sequesters rather than hydrolyzes the 
insecticide (Prabhakaran & Kamble 1995). 
A summary of their three earlier papers was 
reported recently (Prabhakaran & Kamble 
1996). 

In Malaysia, possible involvement of 
elevated esterase in ten resistant strains of 
field collected German cockroaches was 
documented (Lee et al. 1996a). Four strains 
demonstrating low to high propomr 
resistance levels were then chosen and 
further studied using biochemical enzyme 
assays and native polyacrylamide gel 
electrophoresis. Elevated esterase activity 
in all four resistant strains were confirmed 
and these activities were also well- 
correlated with propoxur resistance levels. 
Seven bands were also detected by native 
polyacrylamide gel. electrophoresis, with 
bands El, E, and E, more intensely stained. 
This indicated that these esterase isozymes 
were overproduced. Inhibition studies with 
selective inhibitors suggested that E, 
belongs to the cholinesterase group, while 
E, and E, were carboxylesterases (Lee 1995, 
Lee et al. 1996b, Lee et al. In review). More 
recently. Lee et al. (in press) detected 
elevated esterase activity in five resistant 
strains of German cockroach using modified 
Pasteur-Georghiou's filter paper method 
which is simple and economical. However. 
its sensitivity for detecting esterase 
resistance is lower than that of the 
microplate technique. 

As practically all pyrethroids are esters, 
esterases have also been shown to cause 
pyrethroid resistance by hydrolysis of the 
central carboxylester bond In pyrethroids. 
although this is very rare (Casida et al. 
1983. Soderlund et al. 1983). Pn the cattle 
tick (Boophilus microplus), resistance to 
permethrin and cypermethnn appeared to 
be partially due to elevated esterase activity 
(Schnitzerling et aE. P 982). Riskallah (1 983) 
observed low levels of pyrethroid resistance 
in Spodaptera littoris in Egypt, which were 
correlated with enhanced hydrolysis of a- 
naphthyl acetate. Dowd et al. (19871 
reported complete synergism of trans- 
permethrin by profenofos (serving as a 
synergist) in a resistant strain of H. 
virescens. In M. domestics. esterase 



activity was found to confer low level of 
resistance to pyrethrin and pyrethoids 
(Sawicki et al. 1984). 

In the German cockroach, permethrin 
resistance level in a strain from Osaka, 
Japan. did not decline with the addition of 
PBO, but reverted with N U  16388, a 
monooxygenase and esterase inhibitor. 
suggesting the possible involvement of 
esterase (Umeda et al, 1988). Unselected 
Village Green German cockroaches showed 
partial elimination of cypermethrin and 
permethrin resistance with DEF@, sug- 
gesting the involvement of esterase in the 
resistance mechanism (Atkinson et al. 
1991). This was later confirmed by 
Anspaugh et aE. (1994) who found elevated 
esterase activity (1.7 - 2 . 4 ~ )  in this strain. 

Glutathione Stransferase (GST] 
GST has not been associated with 
insecticide resistance in as  many cases as  
monooxygenases or esterases (Dauterman 
1983). GST catalyzes the nucleophilic 
attack of the endogenous tripeptide 
glutathione (Brattsten 1990, Soderlund & 
Bloomquist 1990). Principally, these enzy- 
mes catalyze o-dealkylation of OP (both 
phosphorothioates and oxon analogues). 
They also catalyze dehydrochlorination of 
DDT to DDE (Clark & Shamaan 1984). Like 
monooxygenases and esterases, GST exists 
in multiple forms (Clark & Dauterman 
1982, Clark et al. 19843. 

Elevated GST is not a common cause of 
resistance in the German cockroach. 
Babers & Roan (1953) found that in the 
Corpus CPlristi . strain, DDT was dehyd- 
rochlorinated to DDE and other metabolites 
at  a faster rate when compared to a 
susceptible strain. Hemingway et al. 
(1993a) found that only 7 out of 15 strains 
from 3 continents had elevated GST activity. 
Anspaugh (1994) found a 1.6-fold elevated 
GST activity in the Village Green strain 
when compared to that of a susceptible 
strain. In addition, two resistant strains 
from Malaysia (Melia I1 and HangTuah) also 
demonstrated elevated GST activity, but at  
low frequencies (Lee 1995, Lee et al. 1996b, 
Lee et al. In press). 

Target site f nsensitivity 
Besides reduced cuticular penetration and 
increased metabolism, insecticide resistance 
may also due to an insensitive target site. 
Reduced sensitivity to insecticides due to 
modification of target site car? be divided 
into: (1) altered acetylcholinesterase (AChE) 
which confers resistance to organophos- 
phates and carbamates. (2) hockdown re- 
sistance (kdr-@pel, where insects become 
insensitive to DDT and pyrethroids. 

Altered AChE 
Altered AChE, which becomes insensitive to 
organophosphate and carbamate inhibitions 
was first reported in spider mites, 
Tetranychus urticae (Smissaert 1964). 
Subsequently, altered AChE has been found 
in several species of insects including green 
rice leaf hopper (Hama & Iwata 197 1, 1978). 
mosquitoes (Ayad & Georghiou 1975, 
Raymond et a[. 1986, Hemingway et aE 
P 986), house flies (Tripathi & O'Brien 1973) 
and army worm (Yu 1991). Two 
comprehensive reviews on the subject have 
since been published (Hama 1983, Foumier 
& Mutero 1994). 

Modification a t  the active site of AChE 
will cause carbamylation or phospho- 
rylation of the active site serine to be less 
effective (Fournier & Muter0 1994). Method 
of studying AChE activity generally follows 
that of Ellman et a1. 11 961). Fraction 
containing AChE is assayed against 
acetylthiocholine (ATCh) as substrate and 
the rate of thiocholline production is 
measured. This is made possible with the 
reaction between thiocholine and dithio-bis- 
nitrobenzoic acid (DTNB) which produces 
yellow-coloured thionitrobenzoic acid. 

Like many other metabolic enzymes, 
altered AChE exists in multiple forms 
(Tripathi & O'Brien 1973, Devonshire & 
Moores 1984a, 1984b). Altered AChE has 
serious implications for resistance 
management because: (1) there is no 
suitable synergist available to inhibit the 
altered enzyme, and (2) cross-resistance to 
other insecticides with the same mode of 
action (Brattsten 1990). 



This mechanism, however, is not 
common in the German cockroach. To 
date, only three -publications has reported 
altered AChE in the German cockroach. 
Hemingway et al. (1993a) found only one of 
15 strains studied to possess altered AChE. 
This strain (Dubai) showed low orga- 
nophosphate and high carbamate resis- 
tance. Lee et al. i19971 detected two strains 
of German cockroaches from food outlets 
with AChE insensitivity. In four strains of 
resistant German cockroaches from hotels 
and restaurants, low frequencies of altered 
AChE were detected (Lee 1995, Lee et al. 
1996b. Lee et al. In press). Altered AChE 
was not found in an earlier study [Siegfried 
& Scott 1990). 

Knockdown resistance (kdr-type) 
Insensitivity to DDT and pyrethroids due to 
kdr-type resistance has been observed in 
many insects such a s  German cockroaches 
(Scott & Matsumura 1981, 1983. Umeda et 
al. 1988. Bull & Patterson 1993. 
Hemingway et aE. 1993b, h s p a u g h  et al. 
1994). house flies (DeVries & Georghiou 
1981, Ahn et aL 1986. Scott & Georghiou 
1986). mosquitoes (Omer et al. 1980, 
Wester & Georghiou 1980, Breadley et al. 
1984, Hemingway et aL 1989a, Umeda et al. 
1990). diamond-back moths (Eiu et al. 
1982) and predatory mites Arnblyseius 
faIlacis (Scott et al. 1983). To date. three 
reviews on kdr-type resistance in insects 
have been published (Miller et al. 1983, 
Shono 1985. Scott & Dong 1994). 

Basic characteristics of kdr-type 
resistance include: (1) reduced sensitivity 
to DDTfpyrethroids in neurophysiological 
studies (Scott & Matsumura 1981. Umeda 
et al. 1988), (2) resistance to all pyrethroids 
(Scott & Matsumura 1983). and (3) failure 
of any synergist to increase toxicity of DDT 
and pyrethroids. However, it was found 
recently that formamidine compounds (eg 
chlormediform and Arnitraz) can act as  
putative target site synergists for 
pyrethroids (Eiu & Plapp 1992). 

Although the incidence of kdr-type 
resistance has been reported extensively, its 
underlying molecular mechanism is still 
very much debated. Three hypotheses have 
been proposed: (1) changes in number of 
pyrethroid binding site on the voltage- 

sensitive sodium channel (Chang & Plapp 
1983. Rossignol 1988, Kasbekar & Hall 
1988, Bull & Pryor 1990) or altered binding 
affinity (Salgado et al. 1983, Pauron et al. 
1989, Dong & Scott 199 1) or combination of 
both. (2) changes in lipid components of 
the neuronal membranes (Chiang & 
Devonshire 1982), and (3) altered Ca++ 
binding protein (Ca-ATPase) (Ghiasuddin et 
al. 1981). 

The altered binding affinity due to 
structural changes in sodium channel 
seems to be the most likely mechanism with 
recent evidence that reduction in binding 
sites at the sodium channel is associated 
with metabolic resistance rather than to 
kdr-type resistance (Eiu & Plapp 1991) and 
that modification of para-homologous 
sodium channels is associated with kdr- 
type resistance (Dong & Scott 1994). 

In German cockroaches, a DDT- 
resistant strain (VPIDLS) was first shown to 
be due to a target site insensitivity to DDT 
and permethrin. In this strain. the time 
requi-red to cause repetitive discharges by 
the two insecticides was longer than that of 
the susceptible strain (Scott & Matsumura 
1981). After 3 generations of DDT selection, 
VPIDLS showed cross resistance to all 
pyrethroids tested (Scott & Matsumura 
1983). Following that, Umeda et al. (1988) 
collected a strain of German cockroach 
from Osaka, Japan, which showed 
resistance to DDT and 7 pyrethroids and 
exhibited kdr-type resistance (based on 
electrophysiological studies on the central 
nervous system). The Village Green strain. 
which demonstrated resistance to 10 
pyrethroids (Atkinson et aE. 199 1) was 
indirectly shown to possess kdr-type 
resistance based on results from 
metabolism (Bull & Patterson 1993) and 
dose-knockdown studies (Anspaugh et al. 
1994). Recently, Hemingway et al. (1 993b) 
also demonstrated this resistance 
mechanism in two US and one Denmark 
pyrethroid-resistant strains of the German 
cockroach. Possible involvement of kdr-type 
resistance can also be deduced when 
resistance level to pyrethroids did not 
decrease in PBO or DEF-treated cock- 
roaches (Atkinson et al. 1991, Lee et al. 
1996a). 



Cosclusfon and future research priorities 
Insecticide resistance status and its 
underlying mechkisms in the German 
cockroach is a timely important topic that 
warrants more studies. Currently there is 
only a small pool of scientists working in 
this area. Except for USA. United Kingdom. 
Malaysia and Japan, there is a serious lack 
of information on the status of German 
cockroach resistance in other parts of the 
world. In addition, many of the studies 
reported also lack information on its 
underlying mechanisms, which is essential 
for constructing resistance management 
options . 

There have been a serious lack of 
information in methods to overcome the 
development of insecticide resistance in the 
German cockroach. Although several labo- 
ratory studies have suggested the feasibility 
of insecticide rotation and mixture as  
possible solution to the problem (eg Scharf 
19971, only a handful of studies actually 
addressed its possibility under field 
situation (eg Scharf et al. 1997). Possible 
resistance development models can be 
constructed to provide a useful tool to pest 
control operators for proper and correct 
insecticide usage and rotation. In addition, 
the prospects of using insect growth 
regulators and insecticidal baits against 
insecticide resistant German cockroaches 
should also be looked into in the near 
ffiture. 
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