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Species distribution models are commonly used in the marine environment as management tools. The high cost of collecting marine data for
modelling makes them finite, especially in remote locations. Underwater image datasets from multiple surveys were leveraged to model the
presence–absence and abundance of Arctic soft-shell clam (Mya spp.) to support the management of a local small-scale fishery in
Qikiqtarjuaq, Nunavut, Canada. These models were combined to predict Mya abundance, conditional on presence throughout the study
area. Results suggested that water depth was the primary environmental factor limiting Mya habitat suitability, yet seabed topography and
substrate characteristics influence their abundance within suitable habitat. Ten-fold cross-validation and spatial leave-one-out cross-validation
(LOO CV) were used to assess the accuracy of combined predictions and to test whether this was inflated by the spatial autocorrelation of
transect sample data. Results demonstrated that four different measures of predictive accuracy were substantially inflated due to spatial auto-
correlation, and the spatial LOO CV results were therefore adopted as the best estimates of performance.
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Introduction
Species distribution models (SDMs) have become important tools

for the management of marine resources (Brown et al., 2011;

Hattab et al., 2013). By exploring the relationships between an or-

ganism of interest and environmental variables, SDMs are used to

predict presence, absence, and abundance of taxa (Franklin,

2009). In addition to predicting distributions, SDMs can be used

to investigate the environmental conditions that meet a given spe-

cies’ habitat requirements. This information is essential to effec-

tively manage marine ecosystems. A typical SDM workflow is to

sample an organism across a range of environmental variables,

use statistical relationships to create spatially continuous predic-

tions of its distribution, and evaluate these predictions to provide

estimates of model accuracy. There are many different SDM sta-

tistical methods and algorithms that have been thoroughly

reviewed in the literature (Guisan and Zimmermann, 2000; Elith

et al., 2006; Franklin, 2009; Miller, 2010; Drew et al., 2011).

In this study, we created an SDM to investigate the environmen-

tal drivers of soft-shell clam (Mya spp.; hereafter referred to as

“Mya”) distribution and to predict their abundance in support of

community-based fisheries management near Qikiqtarjuaq,

Nunavut (Arctic Canada). Mya are commonly harvested in the in-

tertidal zone as a source of food in Inuit communities (Aitken

et al., 1988; Nunavut Department of Environment—Fisheries and

Sealing Division, 2012). A small number of local SCUBA divers in

Qikiqtarjuaq have had success over the past few decades in effi-

ciently harvesting clams at depths where they are abundant

(�20 m), and this has generated interest in formalizing a

community-based fishery. High-resolution information on how the

Mya population is distributed in this area can serve as an effective

management tool for the sustainable development of this fishery.

Siferd (2005) surveyed the Mya population along the coasts

near Qikiqtarjuaq as part of a Department of Fisheries and

Oceans (DFO) stock assessment in zone CFZ3. The assessment
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quantified Mya abundance using still image transects running

parallel to shore at 10, 20, 30, and 40 m isobaths, and found pop-

ulations >50 individuals/m2 on average in many areas, and nearly

100 individuals/m2 on average in the densest region. They esti-

mated the total population in this area at over 1.5 billion individ-

uals and modelled the effects of various fishing rates on that

population. This assessment can be supplemented by an SDM

that continuously predicts Mya abundance over the extent of the

study area. Maps from SDMs are visually intuitive and useful to

experts and non-experts alike. Furthermore, Smith et al. (2017)

demonstrated that incorporating SDMs into fishery stock assess-

ments introduces a spatial component that is important for main-

taining the long-term viability of a fishery, since exploitation is

non-uniform and tends to correspond with high levels of habitat

suitability for the target species.

Extensive benthic species abundance datasets are a valuable re-

source—the Mya image dataset can be put to further use as part

of an SDM. This requires consideration of qualities of the dataset

that complicate statistical modelling though. For instance, sam-

ples were only collected near the coast, and up to 40 m water

depth. Mya likely inhabit environments outside these conditions,

and it is desirable to sample across the full range of their habitat

preference. In addition to informing habitat suitability, this

allows for a better estimation of what habitats are unsuitable for

Mya, and where they are likely to be absent. Relatedly, the second

issue is that modelling species absence is not always straightfor-

ward with an abundance model (Ridout et al., 1998; Martin et al.,

2005), often requiring more flexible approaches that can accom-

modate zero values. Third, images within sample transects, and

potentially the transects themselves, are likely to be spatially auto-

correlated, which may introduce bias in statistical models

(Segurado et al., 2006). Unchecked, bias can violate model

assumptions (Legendre, 1993) and potentially inflate estimates of

model performance (Bahn and McGill, 2013).

To better inform Mya models, we conducted additional sur-

veys near Qikiqtarjuaq to supplement Siferd’s (2005) data. The

goal was to sample Mya over a greater spatial and environmental

range (e.g. >40 m water depth). Because clams were still observed

abundantly at the maximum sampling depth in Siferd’s study

(�40 m), it was important to investigate the maximum depths

that they inhabit. In addition, most of Siferd’s (2005) samples

were nearshore, yet it is possible that more distal locations con-

tain different topographic and substrate characteristics that influ-

ence the suitability of Mya habitat.

Sampling across a greater range of environmental variables can

provide information on conditions that are unsuitable for Mya,

yet this still may not result in reliable predictions of absence using

an abundance model. Modelling datasets with zero values poten-

tially requires data transformation or methods that allow for

over-dispersion (Warton, 2005), or combined modelling

approaches (e.g. hurdle or mixture models; Mullahy, 1986; Welsh

et al., 1996). The latter allow for the possibility that the environ-

mental drivers of species occurrence (i.e. habitat suitability) are

not necessarily the same that drive abundance (Clark et al., 2014).

Thus, these two characteristics of a species’ spatial distribution

may require separate modelling procedures—one that models the

presence or absence of the species, and one that determines its

abundance, conditional on presence (Welsh et al., 1996).

Once modelled, predictions of species distribution require esti-

mates of accuracy to indicate their performance (Franklin, 2009),

yet these may be compromised when model training and test data

are not independent. Ideally, test data would be collected sepa-

rately from training data to ensure independence, yet this is often

not feasible in marine science, and especially in the Arctic, where

ship time and sampling season are limiting factors. Training data

are therefore commonly subsampled to test model performance,

yet this can result in biased evaluation if the data are not indepen-

dent (Hijmans, 2012). Transect sampling is used in marine sci-

ence to obtain many samples at a single location, or continuously

over some distance (Foster et al., 2014), and is likely to produce

non-independent data. Furthermore, data collection for purposes

other than modelling, such as the DFO survey that produced the

dataset used here, may place greater emphasis on obtaining many

samples than on ensuring their independence. In such cases it is

necessary to account for spatial autocorrelation when evaluating

statistical models. There are several methods for this, including

designating entire sample transects as test or training data

(Brown et al., 2012; Porskamp et al., 2018), spatial blocking

(Roberts et al., 2017), spatial subsampling (Kendall et al., 2005;

Segurado et al., 2006; Veloz, 2009), and geostatistical methods (Li

et al., 2017).

The goal of this study was to predict the distribution of Mya to

support sustainable development of the clam fishery near

Qikiqtarjuaq, NU. Specifically, we set out to (i) supplement

Siferd’s (2005) survey data by sampling a broader range of envi-

ronmental variables to determine the extent of Mya habitat, (ii)

model Mya abundance using this combined dataset, including

predictions of absence where habitat is unsuitable, and (iii) esti-

mate the magnitude of inflation caused by spatial autocorrelation

in the sample data to provide accurate estimates of model

performance.

Study area and species
Qikiqtarjuaq is located on the west coast of Broughton Island, off

eastern Baffin Island, Nunavut, Canada (Figure 1). The commu-

nity is set across from the shallowest part of a sheltered, north–

south-oriented channel that is seasonally impacted by sea ice,

which modifies the seabed and coastline (Forbes and Taylor,

1994). The relief in this part of the channel is gradual compared

to the surrounding terrain—much of the Baffin Island coast is

characterized by steep topography above and below the waterline

(Brigham, 1983). Glaciers flowing from the Penny Ice Cap carved

deep valleys and fjords during the Quaternary Period, producing

a distinct glacial landscape (Dyke et al., 1982). These processes

have scoured the local bedrock over repeated glacial cycles, pro-

ducing a sandy till veneer that overlies granitic and gneissic bed-

rock (Dyke et al., 1982; Brigham, 1983; Fulton, 1995; Wheeler

et al., 1996). The surficial seabed substrate is correspondingly

sandy in much of the study area, with large patches of mixed and

coarse sediments near Qikiqtarjuaq, in the nearby fjords, and to

the south of the community (Misiuk et al., 2018).

The sandy and mixed substrates near Qikiqtarjuaq form suitable

habitat for soft-shelled clams, while accelerated currents in the

north–south-oriented channel may increase food transport, sup-

porting dense populations. Siferd’s (2005) assessment covered fish-

ing zone CFZ3 (Figure 1), and suggested abundances were greatest

at 30–35 m water depth—beyond the range of local SCUBA har-

vesters. The survey also suggested that Arctic Mya near

Qikiqtarjuaq take �10 years to mature and can live up to 60 years

(cf. 40 years; Hewitt and Dale, 1984). Previous surveys (Petersen,

1978; Abraham and Dillon, 1986; Siferd, 2005) have also suggested

that Mya prefer shallow depths, and unconsolidated substrates that
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allow juveniles (spat) to settle and burrow, where they remain for

their entire adult life. From their burrows, Mya filter feed by

extending their siphon above the substrate surface to capture food,

which settles through the water column, or is delivered via

currents.

Data and methods
In SDM, spatially continuous environmental data explaining the

habitat preferences of an organism are used to predict their distri-

bution. Seabed morphology has been recognized as an integral

component of benthic habitat and has been used to successfully

predict the distribution of benthic taxa, including bivalves

(Brown et al., 2012). Benthic substrate properties were also

expected to contribute to Mya habitat suitability, as they are in-

faunal organisms. Our modelling approach applied sonar-derived

seabed morphological data and sediment grain size models to

predict the abundance of Mya observed from the underwater im-

age ground truth.

Environmental data
Multibeam echosounder (MBES) bathymetry and backscatter

data (Figure 2) were collected near Qikiqtarjuaq to characterize

Mya habitat. MBES collect depth soundings (bathymetry in m)

and measurements of acoustic reflectivity (backscatter in dB) si-

multaneously, allowing for the approximation of fine-scale seabed

morphology and substrate properties. MBES data were collected

by two different vessels over a 4-year period and were used to de-

rive explanatory environmental variables for the Mya presence–

absence and abundance models. The CCGS Amundsen mapped

�20 km2 in the deepest part of the study area in 2007 using a

Kongsberg EM300 30 kHz echosounder, and the RV Nuliajuk

mapped the remaining area in 2012 and 2013 using an EM3002

300 kHz echosounder, and in 2015 using an EM2040C 200–400

kHz echosounder.

Lecours et al. (2017a) suggested a combination of six terrain

variables that capture most of the morphological information of a

surface, which can be derived from a bathymetric model using

the “Terrain Attribute Selection for Spatial Ecology” (TASSE)

toolbox (Lecours, 2017; Table 1) in ESRI ArcGIS. In addition to

these, we produced eight terrain variables commonly used to de-

scribe seabed morphology using the “Benthic Terrain Modeler”

(BTM; Walbridge et al., 2018) and spatial analyst toolboxes in

ESRI ArcGIS (Table 1). These were calculated as “multiscale” ter-

rain variables by averaging over a series of increasing neighbour-

hood sizes to incorporate information from a range of spatial

scales between 5 and 275 m (Dolan, 2012; Dolan and Lucieer,

2014). While backscatter is commonly used as a proxy for seabed

hardness (low backscatter corresponds to soft/fine sediments,

high backscatter to hard/coarse; Harris and Baker, 2012), Diesing

and Stephens (2015) suggested that the local variability in back-

scatter can inform on other substrate properties. We calculated

the local variability in backscatter (i.e. the range of backscatter

values in a 3 � 3-pixel neighbourhood; hereafter referred to as

Dbackscatter) from the backscatter layer using the “Focal

Statistics” and “Raster Calculator” tools in ESRI ArcGIS. We also

included predicted proportions of mud, sand, and gravel, mod-

elled for the study area by Misiuk et al. (2018).

Mya ground-truth data
Siferd (2005) collected and analysed drop-camera bottom photo-

graphs from sites randomly selected along the coast near

Qikiqtarjuaq to quantify the abundance of Mya (individuals per

m2). Ten photographs were taken in transects parallel to shore at

�10, 20, 30, and 40 m water depths, resulting in four transects of

10 closely spaced sample points per site. Photographs were taken

using a Nikon D1X digital camera in a Seacam underwater hous-

ing mounted on a frame with legs standing 70 cm above the sea-

bed; the area photographed was �0.5 m2. Mya abundance was

quantified by counting their siphons, which protrude above the

substrate surface and are visible in underwater image frames.

Photographs overlapping MBES coverage (n ¼ 1827) were used

for this analysis.

Underwater towed-video transects were collected in 2015 to

supplement Siferd’s (2005) dataset at a broader depth range (up to

200 m). Four-minute drifts were recorded from a 24 ft Nor-West

freighter canoe using a GoPro Hero3 in a waterproof case,

mounted to a housing with underwater lights and a live-feed Deep

Blue Pro underwater camera. Two green lasers were attached to the

camera housing, spaced 5 cm apart to provide scale in the under-

water video. Positioning was obtained using a Garmin 18� PC

GPS with a live feed to the underwater video, providing continuous

locational information from the surface for the duration of the

video. The surface GPS accuracy was rated at <3 m, but the

Figure 1. Location of Qikiqtarjuaq study area within fishing zone
CFZ3 and eastern Nunavut, Canada (inset map). Basemaps obtained
from the Canadian Land Cover GeoBase Series, containing
information licenced under the Open Government Licence—
Canada.
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accuracy of the camera position underwater was likely >5 m

depending on depth and current conditions. Sample sites were ran-

domly selected over the MBES coverage, stratified by environmen-

tal variables expected to influence the abundance of Mya (water

depth, seabed slope, and backscatter). Still frames were extracted

from underwater video (n ¼ 938) at�2.5 m intervals.

Underwater video sampling in 2015 was designed to replicate

Siferd’s (2005) data, yet not all images were of comparable qual-

ity. Siferd’s photos were taken from a stationary platform from

which Mya abundance could be consistently quantified.

Underwater video from 2015 was high resolution, but the drift

speed, water clarity, and light availability at greater depths limited

the quality of some frames. Video frames were therefore ranked

for quality to determine their compatibility with still-frame data.

“High” quality frames (n ¼ 250) were of comparable quality to

drop-camera stills (i.e. Mya abundance could be readily quanti-

fied). In “medium” quality frames (n ¼ 301) the analyst was not

confident that all syphons could be identified but was able to con-

fidently determine presence or absence. In “low” quality frames

(n ¼ 387) presence or absence could not be confidently

confirmed. Siferd’s (2005) drop-camera still dataset and the

“high” quality 2015 video frames therefore constituted the abun-

dance modelling dataset, while these data plus the “medium”

quality video frames were used to model presence–absence.

“Low” quality video frames were not used.

Statistical modelling
Welsh et al. (1996) and Barry and Welsh (2002) recommended a

combined modelling approach for zero-inflated species abundan-

ces, in which the presence or absence of a species is modelled first,

then abundance conditional on presence. While “zero-inflated”

generally implies the use of a parametric distribution, and many

zeroes do not necessarily mean zero-inflation (see Warton, 2005),

the Mya abundance dataset had absences that were not predicted

by the abundance model, making a combined modelling ap-

proach useful. Furthermore, this approach acknowledges that the

environmental variables influencing whether species are present

and whether they are abundant may not be identical (Van Horne,

1983; Johnston et al., 2015; Tingley et al., 2016). Recall that

Figure 2. (a) Multibeam bathymetry near Qikiqtarjuaq. (b) Multibeam backscatter with ground truth image samples. Basemaps were
obtained from the Canadian Land Cover GeoBase Series, containing information licenced under the Open Government Licence—Canada.
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abundance was quantified for all “high” quality video data col-

lected in 2015 and all of Siferd’s (2005) data, yet “medium” qual-

ity data were only sufficient for presence–absence. Images that

overlapped the MBES data coverage were therefore used to pro-

duce two separate modelling datasets: presence–absence observa-

tions from Siferd’s (2005) images along with “medium” and

“high” quality images from the 2015 survey (n ¼ 2273), and

abundance observations from Siferd’s (2005) images along with

only “high” quality images from the 2015 survey (n ¼ 1985;

Table 2). We thus created separate models of presence–absence

and abundance using the two datasets, and ultimately combined

them for a single ensemble map prediction.

The boosted regression trees (BRTs) machine learning algo-

rithm has been shown to consistently perform well compared to

other SDM techniques due to its flexibility for fitting non-

parametric environmental relationships and its robustness to

noisy data (Olden et al., 2008; Franklin, 2009). Reiss et al. (2015)

discussed how machine learning techniques can outperform

regression-based models at predicting a quantitative response,

such as abundance. BRTs were trained using the “gbm.step” func-

tion in the R package “dismo” (Hijmans et al., 2017). A Bernoulli

deviance loss function was used for the Mya presence–absence

model and Poisson deviance was used for abundance. Ten sto-

chastic models were initially trained for each dataset (presence–

absence and abundance) using all multiscale variables to explore

individual variable contributions to the models. BRTs can return

information on the relative contribution of each variable to the

model, and these were used to rank their importance for predict-

ing the presence–absence and abundance of Mya. Spearman’s

rank correlation was then assessed between all variables, and

when variables had correlation q � 0.7, the variable of lower rank

was removed (Gottschalk et al., 2011; Millard and Richardson,

2015; Jarnevich et al., 2017). Retained variables for both datasets

were used in the full presence–absence and abundance models.

The results of the presence–absence model were probabilities

of occurrence for Mya at a given location from 0 to 1; these were

converted to presences and absences using a threshold probabil-

ity, above which Mya were predicted as “present” and below

which were predicted as “absent.” We selected the threshold that

maximized the cross-validated accuracy of abundance predictions

(see Model evaluation section). The results of the abundance

model were predicted densities of Mya individuals per m2.

Abundance predictions were multiplied by predicted occurrence

of Mya (0 or 1), resulting in abundance predictions conditional

on presence. Both models were predicted over the full extent of

the environmental data.

Model evaluation
An important step in SDM is evaluating model performance

(Franklin, 2009), which is commonly based on assessing a mod-

el’s ability to generalize to test data that were not used to train it.

Table 1. Multiscale variables tested for inclusion in Mya presence–absence and abundance models.

Variable Calculation method Method source

Bathymetry Primary data –
Eastness TASSE Lecours et al. (2017a)
Northness TASSE Lecours et al. (2017a)
RDMVa TASSE Lecours et al. (2017a)
SDb TASSE Lecours et al. (2017a)
Slope TASSE Lecours et al. (2017a)
Broad BPIc BTM Walbridge et al. (2018)
Fine BPId BTM Walbridge et al. (2018)
Surface area BTM Walbridge et al. (2018)
Rugosity BTM Walbridge et al. (2018)
Ruggedness BTM Walbridge et al. (2018)
Curvature Spatial analyst toolbox ESRI ArcGIS
Profile curvature Spatial analyst toolbox ESRI ArcGIS
Plan curvature Spatial analyst toolbox ESRI ArcGIS
Backscatter Primary data –
DBackscatter Focal statistics Diesing and Stephens (2015)
Mud proportion BRT model Misiuk et al. (2018)
Sand proportion BRT model Misiuk et al. (2018)
Gravel proportion BRT model Misiuk et al. (2018)
aRelative difference to the mean value; a unitless measure of local topographic position.
bStandard deviation of bathymetry values in a local neighbourhood.
cBroad benthic position index; inner radius of 15, outer radius of 50.
dFine benthic position index; inner radius of 1 and outer radius of 20.

Table 2. Underwater image samples used for abundance and presence–absence modelling datasets.

Siferd (2005)

2015 survey

Total“Medium” quality images “High” quality images

Abundance (n) 1 813 – 172 1 985
Presence–absence (n) 1 827 274 172 2 273
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There are several methods for obtaining independent test data.

The most obvious, and arguably most robust (cf. Hijmans, 2012),

is to collect an independent test sample dataset (Araújo and

Guisan, 2006; Elith et al., 2006); but this is often not feasible in

the marine realm. A common approach is thus to withhold a pro-

portion of the sample data from model training (e.g. 25%) to test

predictive performance. A more robust approach is cross-

validation, in which the sample data are randomly partitioned

into k sets (e.g. 10), k�1 of which are used to train a given model

fold, with the excluded set withheld for testing. This is repeated

over k folds that are subsequently averaged for prediction and

model evaluation. Using this method, all data are used to both

train and test a model. When k ¼ n (the total number of sam-

ples), each sample in the dataset is withheld in turn to test model

predictions—known as “leave-one-out cross-validation” (LOO

CV; Hastie et al., 2009).

To conduct an unbiased assessment of accuracy we used a spa-

tial (buffered) LOO CV (SLOO CV; Le Rest et al., 2014; Valavi

et al., 2018). Using this approach, the first sample point in the

dataset is withheld for testing and a spatial buffer is placed

around it, up to a distance beyond which the effects of spatial au-

tocorrelation are negligible. Any sample points falling within the

buffer are also omitted from the model training fold. The model

is trained using all remaining sample points, and the value at the

withheld site is predicted. The process is then repeated for each

point in the dataset, and the performance metrics from all sites

are averaged. SLOO CV is an effective method for evaluating

model performance when samples are not spatially independent,

and is flexible with regards to clustered or irregular sampling

compared to other methods (e.g. blocking; Roberts et al., 2017).

The distance of the SLOO CV buffer was determined by vario-

gram analysis. We investigated spatial structure in ESRI ArcGIS

Pro v.2.3 by calculating the average length of all sample transects

and the average distance between transects, using their mean cen-

tre. The average distance between samples within transects was es-

timated given the number of samples and transect length.

Isotropic and directional variograms were generated for Mya

abundance model residuals using the “gstat” package in R

(Pebesma, 2004; Gräler et al., 2016), and variogram models were

fit using the ESRI ArcGIS Geostatistical Wizard to estimate spatial

autocorrelation. The Geostatistical Wizard was also used to test

for anisotropy and fit directional variograms. The variogram

model major range was used as a buffer distance for SLOO CV,

beyond which the effects of autocorrelation on the model results

were assumed to be negligible (Wagner and Fortin, 2005; Roberts

et al., 2017).

The area under the receiver operating characteristic curve

(AUC) was calculated to measure the threshold-independent ac-

curacy of the presence–absence model, and the correct classifica-

tion rate and Cohen’s kappa were used to measure the threshold-

dependent accuracy. The linear correlation between observed and

predicted Mya abundance, conditional on presence, was assessed

using Pearson’s correlation coefficient, and non-linear correlation

was assessed using Spearman’s coefficient. The mean absolute er-

ror (MAE) was calculated between observed and predicted values

to estimate the magnitude of error in modelled predictions, and

the percentage of variance explained (VE) was calculated to esti-

mate the error in predictions relative to the variance in the data-

set. Predictive accuracy estimates from the SLOO CV were

compared to estimates from the internal 10-fold CV (cross-vali-

dation) within the “gbm.step” function to determine if apparent

accuracy was inflated by spatial autocorrelation, and if so, the

magnitude of inflation for each statistic.

Results
Response to environmental variables
Mya were prevalent in the dataset, occurring in 84% of images

analysed. Eleven variables were selected to model their presence

and absence after correlation reduction (Figure 3). Bathymetry

was the most important variable, accounting for over 66% of the

explanatory power in the presence–absence model. Image obser-

vations and the partial response of Mya to bathymetry suggested

that they generally did not occur deeper than 70 m. The

Dbackscatter variable suggested by Diesing and Stephens (2015)

was the second most important, and the partial response plot

showed an inverse relationship with Mya presence—probability

of presence was predicted to decrease with increase in local back-

scatter variability. All other variables provided only minor contri-

bution (�5%) to the model.

Where present, Mya where observed at densities of 2–472 indi-

viduals per m2, and a different suite of 12 non-correlated varia-

bles were selected to model their abundance (Figure 4). The

northness component of aspect was the most important variable,

suggesting Mya were abundant on north- and south-facing

slopes. The partial response plot of Mya to ruggedness suggests

that abundance decreases with an increase in terrain variability.

The response plot to bathymetry showed a decrease in abundance

with increasing water depth greater than �40 m. Many of the

remaining variables displayed complex relationships with Mya

abundance, but it was generally highest at intermediate levels of

backscatter and a low mud proportion.

Statistical modelling and prediction
High probabilities of presence were predicted along the coast

throughout much of the study area, while absences were generally

predicted further from the coast, in deeper water (Figure 5). The

most extensive patches of suitable Mya habitat were predicted in

the southern half of Broughton Channel. Moderate probabilities

near Qikiqtarjuaq and in the northernmost part of the study area

indicate greater uncertainty in predicted habitat suitability.

Extensive areas of low probability further from the coasts, and in

the east–west-oriented Kingnelling Fjord indicate unsuitable hab-

itat with low uncertainty.

A 0.61 probability threshold was selected based on maximizing

the accuracy of the combined presence–absence and abundance

predictions. Therefore, abundance was predicted for locations

where the probability of presence exceeded 0.60, while absence

was predicted for all other locations. The highest abundances

(>200 individuals per m2) were predicted in <50 m water depth

in southwest and southeast Broughton Channel (Figure 6a), on

the southern shore at the mouth of Kingnelling Fjord (Figure 6b),

and directly south of Broughton Island. Substantial populations

were also predicted near the southern shore of Kingnelling Fjord,

southeast of Broughton Island, throughout most of the nearshore

area of Broughton Channel, and in patches northwest of

Broughton Channel. Moderate abundances generally surrounded

areas of higher abundance south of Broughton Island and in

Broughton Channel, and abundances were predicted low outside

of these areas, near the limits of suitable habitat. Mya were pre-

dicted to be absent in >70 m water depth.
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Model evaluation
Image sample transects were �30 m long on average, and the av-

erage distance between samples within a transect was estimated at

�3 m. On average, transects were spaced �128 m apart. We

calculated the empirical variogram for the Mya abundance model

residuals using 15 m lags and also tested for anisotropy using di-

rectional variograms. The abundance residuals exhibited anisot-

ropy oriented at 69�, and a circular variogram model was fit with

a major range of 60 m (Figure 7), suggesting that the residuals

were autocorrelated up to that distance at this scale. Therefore,

nearly all samples within a given transect were expected to con-

tain residual spatial autocorrelation.

Based on the directional variogram major range, SLOO CV

was used with a 60 m buffer to evaluate presence–absence and

abundance models to estimate non-biased predictive perfor-

mance. The presence–absence model had a correct classification

rate of 92%, and AUC and kappa values of 0.87 and 0.59, respec-

tively. Pearson’s and Spearman’s correlation coefficients between

observed and predicted abundances were r ¼ 0.55 and q ¼ 0.64,

respectively; MAE and VE values were 44.07 and 0.27. The 10-

fold CV estimates of correlation for the abundance model were r

¼ 0.78 and q ¼ 0.81, and MAE and VE were 31.57 and 0.61

(Table 3). The combined abundance-conditional-on-presence

predictions evaluated using SLOO CV were slightly more accurate

than abundance alone, with r ¼ 0.55, q ¼ 0.64, MAE ¼ 43.54,

and VE ¼ 0.27, yet they included “zero” predictions, unlike the

abundance model in isolation (Figure 6).

Discussion
The presence and absence of Mya was predicted primarily by ba-

thymetry (Figure 3). The partial response plot showed a strong

decrease in likelihood of presence at depths >50 m, confirming

findings by Ellis (1960) and Siferd (2005). It is likely that bathym-

etry is a proxy for several variables that define the ecological niche

for Mya at this depth, possibly such as light, temperature, food

availability, or water chemistry. Probability of presence also had a

negative relationship with Dbackscatter suggesting that Mya are

more likely to inhabit areas of relatively homogenous seabed

hardness, but this only contributed marginally to the presence–

absence model. The remaining topographic and substrate varia-

bles made only minor contributions to the model, suggesting that

they may exercise subtle influence on the suitability of Mya habi-

tat, yet may not form distinct environmental boundaries.

However, Mya abundance predictions were influenced consid-

erably by several topographic and substrate variables (Figure 4).

Surprisingly, the northness component of seabed aspect was the

most important variable in predicting abundance. This may be

caused by correlation with other important environmental factors

such as bottom currents, which control the flow of food to ben-

thic filter feeders (Tong et al., 2016; Lacharité and Metaxas,

2018), or with local geomorphic features where Mya were ob-

served, such as portions of east–west-oriented Kingnelling Fjord.

Benthic SDM commonly rely on such surrogates to represent

oceanographic information, as primary variables are seldom

available. Down-scaled oceanographic models have the potential

Figure 3. Mya log-odds scale presence–absence partial response plots with percent contribution of explanatory variables (Table 1).
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to provide important habitat information for benthic filter

feeders, yet their joint use with terrain variables has not been

thoroughly explored.

Bathymetric ruggedness was the second most important var-

iable for predicting abundance; it is derived from the three-

dimensional variability in terrain orientation. The partial re-

sponse plot showed that Mya were more abundant in low rug-

gedness areas, but interpretation of this variable requires

caution. Though comparable for most of the mapped area, rug-

gedness measurements appeared to differ between portions of

the dataset derived from different MBES systems in the deepest

part of the survey, near the mouth of Kingnelling Fjord. It is

unlikely that this seriously impacted the statistical analysis be-

cause this deep area was not ground-truthed, and because

BRTs are effective at ignoring noisy or unimportant data (Elith

et al., 2008), yet it demonstrates how combining MBES datasets

from different sources could potentially lead to error. Possible

sources of discrepancy between datasets include noise in the

bathymetry data from acquisition that was amplified in the

ruggedness measure (Lecours et al., 2017b), error in the data

caused by mapping near the depth limits of the echosounder,

and differences in MBES system parameters such as beam

width and operating frequency. The response of Mya abun-

dance to bathymetry was similar to that of presence–absence,

showing a decline in abundance with increasing depth. Mya

had a specific response to seabed substrate—favouring areas of

moderate backscatter intensity (i.e. seabed hardness) and low

mud proportion, which was also suggested by Pfitzenmeyer

(1972) and Abraham and Dillon (1986). Anecdotal observation

generally supports these predictions, with sandy or mixed

sandy/gravelly substrates appearing to contain the highest

abundances.

The use of data collected over multiple years introduced the

potential for temporal error in predicted abundance. Though ma-

jor changes to the broad seabed morphology or current regimes

are unexpected over a 10-year period, other external factors could

affect the Mya population. Icebergs regularly scour the seabed

near Qikiqtarjuaq and become grounded in shallow parts of the

north–south-oriented channel—sometimes for multiple years.

This could locally impact clam populations and is difficult to de-

termine. Predation and harvest may also exert fine-scale influence

on the abundance of the species. Walrus are a common predator

of clams, and the small but active subsistence clam fishery in

Qikiqtarjuaq operates in locations up to 20 m water depth

throughout the area. Though these temporal components have

the potential to introduce error to a multi-year study, the value of

the extensive combined dataset likely outweighs the associated

temporal error.

Figure 4. Mya log scale abundance partial response plots and percent contribution of explanatory variables (Table 1).
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The Mya sample dataset contained “zero” values where no

individuals were observed, and the abundance model alone was

unable to reliably predict these. For instance, the model predicted

decreased abundance at depths >70 m, but not necessarily ab-

sence. By combining the model of abundance with binary pres-

ence–absence predictions, Mya were predicted absent in areas of

unsuitable habitat while leaving predictions of abundance intact

where habitat is suitable. This approach is similar to the use of a

parametric conditional or hurdle model for zero-inflated count

data (Welsh et al., 1996; Martin et al., 2005), yet differs at the step

at which maps of presence–absence and abundance are combined

by using the threshold of occurrence to determine where abun-

dance will be predicted (Rooper et al., 2016), rather than using

the product of the abundance estimate and the probability of

presence (Barry and Welsh, 2002). This produces exact zero val-

ues where habitat is predicted to be unsuitable, and leaves the

abundance estimates unaffected where the probability of presence

is greater than the threshold but <1. This approach acknowledges

that the environmental factors determining if Mya are present

and whether they are abundant may not be the same, and there-

fore treats these as distinct phenomena. This is supported by the

plots of partial response, which show that bathymetry was the

main determining factor in predicting where habitat is potentially

suitable (Figure 3), yet seabed topography and substrate proper-

ties ultimately influenced predictions of how abundantly Mya

colonize these areas (Figure 4). The final map (Figure 6) can

therefore be conceptualized as a combination of two separate and

distinct predictions, rather than as a hurdle model.

In addition to providing more realistic predictions of Mya dis-

tribution, the integration of presence–absence and abundance

models maximized use of the data. This approach allowed for the

use of all “moderate” and “high” quality images for modelling.

Furthermore, because SLOO CV tests only one sample point at a

time, nearly the full dataset is used for each model evaluation

fold. This produces model folds that are expected to be very close

to the full model, which was used for the final prediction. It does

not require that samples are excluded from analysis, which is a

common approach to dealing with spatially autocorrelated data

(Dale and Fortin, 2002; Segurado et al., 2006). Though it is im-

portant to use information within the modelling dataset as effi-

ciently as possible, large amounts of autocorrelation can

potentially produce a pseudo-replication effect (Segurado et al.,

2006), meaning that multiple proximal samples add little or no

new information to the model. It is worth considering whether

the potential for inflation due to autocorrelation outweighs the

loss of information caused by sample aggregation or omission.

Figure 5. Predicted probability of Mya presence near Qikiqtarjuaq. Basemaps were obtained from the Canadian Land Cover GeoBase Series,
containing information licenced under the Open Government Licence—Canada.
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Spatial leave-one-out CV is a flexible, albeit computationally in-

tensive compromise.

The directional variogram of Mya abundance residuals sug-

gested that spatial autocorrelation between samples within �60

m of on another might be influencing apparent model perfor-

mance, which would include nearly all samples within a given

transect. These spatial properties largely represent those of the

2005 sample data, which comprised the majority of the combined

dataset, though the 2015 survey was designed to be similar. The

difference in performance between spatially dependent (internal

10-fold CV) and independent (SLOO CV) model evaluations

confirmed that this bias inflated all measures of apparent predic-

tive performance substantially (Table 3). Using 10-fold CV for

evaluation, the abundance model seems highly accurate at both

linear and non-linear monotonic prediction (r ¼ 0.79, q ¼ 0.81),

with an average error that was 39% of the variance in the ob-

served data (VE ¼ 0.61). Spatially independent evaluation (SLOO

CV), however, suggested substantially weaker linear and non-

linear monotonic correlation (r ¼ 0.55, q ¼ 0.64), and an average

error that was 73% of the variance in the observed data (VE ¼
0.27).

These results have applied relevance for managing the clam

fishery in Qikiqtarjuaq, but the methods highlight several impor-

tant concepts for marine SDM. Combining abundance with pres-

ence–absence predictions increased the ability to distinguish

between suitable and non-suitable habitat by incorporating pre-

dicted absences that were not available using the abundance

model. This also utilized a greater proportion of the sample

Figure 6. Combined prediction of Mya abundance, conditional on presence, near Qikiqtarjuaq, with insets (a) at the southern part of
Broughton Channel, and (b) on the southern shore at the mouth of Kingnelling Fjord. Basemaps were obtained from the Canadian Land
Cover GeoBase Series, containing information licenced under the Open Government Licence—Canada.
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dataset, which were of sufficient quality to determine presence or

absence of Mya but not abundance. Using a spatial LOO CV

demonstrates that failing to account for spatial autocorrelation

when evaluating SDMs can substantially inflate estimates of pre-

dictive performance. Transect sampling is common in marine sci-

ence, yet the spatial characteristics of these data and the effects

they have on benthic habitat maps are often not considered (but

some notable exceptions include Kendall et al., 2005; Foster et al.,

2014; Perkins et al., 2019). Furthermore, SLOO CV may be useful

for limited datasets where subsampling would constrain the pre-

dictive ability of the model, as it does not require large

subsampling.

Conclusions
Results suggest that although bathymetry is the primary limiting

factor to Mya habitat, seabed topography, morphology, and sub-

strate properties jointly predict how abundantly they occur within

the appropriate depth range. Different environmental variables

appear to influence whether Mya are present, and whether they

are abundant, reinforcing that relationships between habitat suit-

ability and species abundance can be non-linear. Therefore, when

abundance models fail to predict species absence, combined

approaches such as mixture and hurdle models that are more

flexible at modelling zero values may be useful (Mullahy, 1986;

Welsh et al., 1996).

We found that nearly all samples within a sample transect were

spatially autocorrelated, which inflated estimates of model accu-

racy substantially. These results demonstrate that the spatial de-

pendence of sample points can impact the interpretation of

model quality, and this reinforces the importance of a non-biased

evaluation. This is especially relevant in the marine realm, where

transect data are common, yet the spatial qualities of the data are

often not considered. At the very least we recommend exploring

the spatial structure of ground-truth data as a compulsory step in

marine SDM. This can only help to improve the transparency of

model quality and limitations for map users.
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