AIP LIBYA 17 JUN 2021

Civil Aviation Authority P.O. Box 97602 Gaser Ben Gashir Post Office, Libya

Tel: 00218 21 360 55630 -35 Fax: 00218 21 360 5322

GEN

AIRAC AIP Amendment No. 06 Effective Date: 17 JUN 2021

Enclosed herewith is the Amendment No. 06/2021 for the Aeronautical Information Publication (AIP) of Libya.

GEN

1- Contents Of The Amendment GEN, ENR & AD

2 - Insert & Removed Pages

1. Please insert the attached replacement pages dated AMDT 06/2021

2. Please destroy the following pages •

OLI (32.1
GEN 0.1-1 / 0.1-2 GEN 0.2-1 / ILB GEN 0.4-1 / 0.4-2 GEN 0.4-3 / ILB GEN 1.7-1/1.7-2 GEN 2.4-1 / 2.4-2 GEN 3.2-3 / 3.2-4 GEN 3.2-5 / 3.2-6	GEN 0.1-1 / 0.1-2 GEN 0.2-1 / ILB GEN 0.4-1 / 0.4-2 GEN 0.4-3 / ILB GEN 1.7-1/1.7-2 GEN 2.4-1 / 2.4-2 GEN 3.2-3 / 3.2-4 GEN 3.2-5 / 3.2-6
ENR	ENR
ENR 1.1-1 / 1.1-2 ENR 1.2-1 / 1.2-2 ENR 1.3-1 / ILB ENR 1.4-1 / 1.4-2 ENR 1.6-1 / 1.6-2 ENR 1.7-3 / ILB ENR 1.8-1/ 1.8-2 ENR 1.10-1/ 1.10-2 ENR 1.13-1/ ILB ENR 2.1-1/ ILB ENR 3.1-5 / 3.1-6 ENR 3.1-9 / 3.1-10 ENR 3.1-15 / 3.1-16 ENR 3.1-19 / 3.1-20 ENR 3.1-21 / ILB	ENR 1.1-1 / 1.1-2 ENR 1.2-1 / 1.2-2 ENR 1.3-1 / ILB ENR 1.4-1 / 1.4-2 ENR 1.6-1 / 1.6-2 ENR 1.7-3 / ILB ENR 1.8-1/ 1.8-2 ENR 1.10-1/ 1.10-2 ENR 1.13-1 / ILB ENR 2.1-1 / ILB ENR 3.1-5 / 3.1-6 ENR 3.1-9 / 3.1-10 ENR 3.1-13 / 3.1-14 ENR 3.1-15 / 3.1-16 ENR 3.1-19 / 3.1-20 ENR 3.1-21 / ILB

17 JUN 21 AIP LIBYA

ENR 3.3-1 / 3.3-2	ENR 3.3-1 / 3.3-2
ENR 3.3-3 / 3.3-4	ENR 3.3-3 / 3.3-4
ENR 3.3-9 / 3.3-10	ENR 3.3-9 / 3.3-10
ENR 3.3-11 / 3.3-12	ENR 3.3-11 / 3.3-12
ENR 3.3-13 / 3.3-14	ENR 3.3-13 / 3.3-14
ENR 3.6-1 / ILB	ENR 3.6-1 / ILB
ENR 4.1-1 / 4.1-2	ENR 4.1-1 / 4.1-2
AD AD 0.5-1/ILB AD 2 HLLS-5/6 AD 2 HLLT-5/6 AD 2 HLLT-7/8 AD 2 HLMS-1/2 AD 2 HLMS-3/4 AD 2 HLMS-5/ILB AD 3 HLTQ-1/2 AD 3 HLTQ-5/ILB	AD AD 0.5-1/ILB AD 2 HLLS-5/6 AD 2 HLLT-5/6 AD 2 HLLT-7/8 AD 2 HLLT-19/ILB AD 2 HLLT-23/ILB AD 2 HLLT-27/28 AD 2 HLLT-31/32 AD 2 HLLT-31/32 AD 2 HLMS-1/2 AD 2 HLMS-5/ILB AD 3 HLTQ-1/2 AD 3 HLTQ-3/4 AD 3 HLTQ-5/ ILB
AD 3 HLTQ-7/ ILB	AD 3 HLTQ-7/ ILB
AD 3 HLTQ-9/ ILB	NEW
AD 3 HLTQ-11/ ILB	NEW
AD 3 HLUB-3/4	AD 3 HLUB-3/4
AD 3 HLUB-5/ILB	AD 3 HLUB-5/ILB

This current version comprises all existing information contained in . SUPPLEMENTS : -

001/13 002/13 008/15 009/17 019/18

AIRAC :- 01/13 01/14 which are cancelled here by ..

AIP GEN 0.1-1 LIBYA 13 AUG 20

PART 1 - GENERAL (GEN) GEN 0. GEN 0.1 PREFACE

1- NAME OF THE PUBLISHING AUTHORITY

The AIP Libya is published by the Authority of Civil Aviation. Postal Address: Civil Aviation Authority P. O. BOX 14349 Tripoli

AFS Address: HLLLYAYA

Telefax: 00218 21 3605322
Telefax: 00218 21 3618075 H24
Tel.Fax: 00218 21 3618425 H24

2- APPLICABLE ICAO DOCUMENTS

The AIP is prepared in accordance with the Standards and Recommended Practices (SARPs) of Annex 15 to the Convention on International Civil Aviation and the ICAO Aeronautical information Services Manual (Doc 8126).

Charts contained in the AIP are produced in accordance with Annex 4 to the Convention on international Civil Aviation and the ICAO Aeronautical Chart Manual (Doc 8697). Differences from ICAO Standards, Recommended Practices and Procedures are given in subsection GEN 1.7.

3- THE AIP STRUCTURE AND ESTABLISHED REGULAR AMENDMENT INTERVAL

3.1 The AIP Structure

The AIP forms part of the integrated Aeronautical information Package. details of which are given in subsection GEN 3.1. The principal structure is shown in graphic form on page GEN 0.1-3.

The AIP is made up of three parts, General (GEN), En-route (ENR) and Aerodromes (AD), each divided into sections and subsections as applicable, containing various types of information subjects.

3.1.1 Part 1 - General (GEN)

Part 1 consists of five sections containing information as briefly described hereafter. **GEN 0.**

Preface Record of AIP Amendments Record of AIP Supplements Checklist of AIP Pages List of Hand Amendments to the AIP; and the Table of Contents to Part 1.

GEN 1.

National Regulations and Requirements; Designated Authorities; Entry; Transit and Departure of Aircraft; Entry, Transit and Departure of Passengers and Crew; Entry, Transit, and Departure of Cargo; Aircraft Instruments, Equipment and Flight Documents; Summary of National Regulations and International Agreements/Conventions and Differences from ICAO standards, Recommended Practices and Procedures.

GEN 2. Tables and Codes

Measuring System, Aircraft Markings; Holidays: Abbreviations used in AIS Publications; Chart Symbols; Location Indicators; List of Radio Navigation Aids: Conversion Tables; Sunrise/Sunset Tables.

GEN 3. Services

Aeronautical information Services; Aeronautical Charts; Air Traffic Services; Communication Services; Meteorological Services; Search and Rescue.

GEN 4. Charges for Aerodromes and Air Navigation

Services. Aerodrome Charges; Navigation Service Charges.

3.1.2 Part 2 - En-route (ENR)

Part 2 consists of (seven) sections containing the information as briefly described hereafter. **ENR 0.**

Preface; Record of AIP Amendments; Record of AIP Supplements: Checklist of AIP Pages; List of Hand Amendments to the AIP; and the Table of Contents to Part 2.

ENR 1. General Rules and Procedures

General Rules; Visual Flight Rules; Instrument Flight Rules; ATS Airspace Classification; Holding; Approach and Departure Procedures: Radar Services and Procedures: Altimeter Setting Procedures; Regional Supplementary Procedures (Doc 7030); Air Traffic Flow Management (ATFM); Flight Planning; Addressing of Flight Plan Messages; Interception of Civil Aircraft; Unlawful Interference; and Air Traffic Incidents.

ENR 2. Air Traffic Services Airspace

Detailed description of Flight information regions (FIR); Upper Flight Information Regions (UIR); Terminal Control Areas (TMA); and Other Regulated Airspace

GEN 0.1-2 17 JUN 21

ENR 3. ATS Routes

Detailed description of Lower ATS Routes" Upper ATS Routes; Area Navigation (RNAV) Routes; Helicopter Routes; other Routes; and En-route Holding.

Note: Other types of routes which are specified in connection with procedures for traffic to and from aerodromes/heliports are described in the relevant sections and subsections of part 3 - Aerodromes.

ENR 4. Radio Navigation Aids/Systems Radio Navigation Aids - En-route; Special Navigation Systems; Global Navigation Satellite System (GNSS); Name - Code Designators for Significant Points; and Aeronautical Ground Lights - En-route.

ENR 5. Navigation Warnings
Prohibited, Restricted, and Danger Areas;
Military Exercise and Training Areas and Air
Defense Identification Zone; Other Activities of
a Dangerous Nature and Other Potential Hazards
Air Navigation Obstacles - Aerial Sporting
and Recreational Activities; and Bird Migration
and Areas with Sensitive Fauna.

ENR 6. En-route Charts

Air Traffic Services System - Index Chart Prohibited, Restricted and Danger Areas - Index Chart; Radio Facility - Index Chart.

3.1.3 Part 3 - Aerodromes (AD)

Part 3 consists of four sections containing information as briefly described hereafter.

AD O.

Preface; Record of AIP Amendments; Record of AIP Supplements; Checklist of AIP Pages. List of Hand Amendments to the AIP and the Table of Contents to Part 3.

ΔD1

Aerodromes/heliports - Introduction - Aerodrome/ Heliport Availability; Rescue and Fire Fighting Services and Snow Plan; Index to Aerodromes and Heliport; and Grouping of Aerodromes/Heliports.

AD 2.

Aerodromes - Detailed Information about Aerodromes including Helicopter Landing Area, if located at the aerodromes, listed under 24 subsections.

AD 3.

Other Aerodromes - Detailed information about Aerodromes including Helicopter Landing Area, if located at the aerodromes, listed under 24 subsections.

3.2 Regular Amendment Interval
Amendments to the AIP will be issued In JUN
Only

4. SERVICE TO CONTACT IN CASE OF DETECTED AIP ERROR OR OMISSIONS

In the compilation of the AIP care has been taken to ensure that the information contained therein is accurate and complete. Any errors and omissions which may nevertheless be detected, as well as any correspondence concerning the Integrated Aeronautical Information Package, should be referred to:

Aeronautical Information Service Gaser Ben Gashir Post Office P.O. Box . 97602 Email . <u>ais@caa.gov.ly</u> Tel - Fax - 00218215632338 website caa.gov.ly/ais/ Tripoli - Libya

GEN 0.2 RECORD OF AIP AMENDMENTS

	AIP AMEND	MENT	
No./Year	Publication	Date	Inserted
•	Date	Inserted	by

AIRAC AIP AMENDMENT				
No./Year	Publication	Effective	Inserted	
	Date	Date	by	
01/2007		15 JUL 07	5 TH EDITION	
02/2010	23 SEP 10	21 OCT10		
03/2012	09 AUG 12	20 SEP 12		
04/2020	02 JUL 20	13 AUG 20		
05/2021	17 DEC 20	28 JAN 21		
06/2021	06 MAY 21	17 JUN 21		

INTENTIONALLY BLANK

GEN 0.4 - CHECKLIST OF AIP PAGES

PART 1 - GENERAL (GEN)

GEN 0)
0.1-1	. 13 AUG 20
0.1-2	
0.1-3	21 OCT 10
0.2-1	
0.3-1	21 OCT 10
0.4-1	
0.4-2	
0.4-3	
0.5-1	
0.6-1	
GEN 1	
1.1-1	
1.2-1	
1.2-2	
1.3-1	
1.4-1	
1.5-1	21 OCT 10
1.6-1	
1.6-2	
1.6-3	
1.7-1	
1.7-2	
1.7-3 GEN 2	
2.1-1	
2.1-2	
2.2-1	
2.2-2	
2.2-3	
2.2-4	
2.2-5	
2.2-6	
2.2-7	21 OCT 10
2.2-8	
2.2-9	
2.2-10	
2.2-11	
2.3-1	
2.3-2	21 OCT 10
2.4-1	. 17 JUN 21
2.4-2	. 17 JUN 21
2.5-1	13 AUG 20
2.5-2	. 13 AUG 20
2.6-1	21 OCT 10
2.6-2	21 OCT 10
2.7-1	21 OCT 10
2.7-3	21 OCT 10
2.7-4	. 21 OCT 10
2.7-5	
2.7-6	. 21 OCT 10
2.7-7	21 OCT 10

2.7-8	21 21 21 21 21 21	OCT OCT OCT	10 10 10 10 10
3.1-1	28	JAN	21
3.1-2			
3.1-3			
3.1-4		AUG	
3.2-1 3.2-2			
3.2-3			
3.2-4			
3.2-5			
3.2-6		SEP	
3.2-7			
3.2-8			
3.3-1		OCT	
3.3-2			
3.4-1 3.4-2			
3.5-1	21	OCT	10
3.5-2	21	OCT	10
3.5-3			
3.6-1	21	OCT	10
3.6-2	21	OCT	10
	21	OCT OCT	10
3.6-2 3.6-3 GEN 4	21	OCT OCT	10 10
3.6-2	21 21 21	OCT OCT	10 10
3.6-2 3.6-3 GEN 4	21 21 21	OCT OCT	10 10
3.6-2	21 21 21 21	OCT OCT OCT	10 10 10 10
3.6-2	21 21 21 21 21	OCT OCT OCT	10 10 10 10
3.6-2	21 21 21 21 21	OCT OCT OCT OCT	10 10 10 10 R)
3.6-2	21 21 21 21 UTE	OCT OCT OCT E (EN	10 10 10 10 R)
3.6-2	21 21 21 21 UTE	OCT OCT OCT E (EN	10 10 10 10 R)
3.6-2	21 21 21 21 UTE	OCT OCT OCT E (EN	10 10 10 10 R)
3.6-2	21 21 21 21 UTE	OCT OCT OCT E (EN	10 10 10 10 R)
3.6-2	21 21 21 21 21 21 21 21	OCT OCT OCT E (EN OCT OCT OCT OCT OCT	10 10 10 10 R)
3.6-2	21 21 21 21 UTE 21 21 17	OCT OCT OCT E (EN	10 10 10 10 R)
3.6-2	21 21 21 21 21 21 21 17 21 17 21	OCT OCT OCT OCT OCT OCT OCT JUN OCT JUN OCT JUN	10 10 10 R) 10 10 21 10 21 10 21
3.6-2	21 21 21 21 21 21 21 17 21 17 21	OCT OCT OCT OCT OCT OCT JUN OCT JUN OCT JUN OCT JUN OCT JUN OCT	10 10 10 10 R) 10 10 21 10 21 10 21 10
3.6-2	21 21 21 21 21 21 21 17 21 17 21 17	OCT OCT OCT OCT OCT OCT OCT JUN OCT JUN OCT JUN OCT JUN	10 10 10 10 R) 10 10 21 10 21 10 21 10 21
3.6-2	21 21 21 21 21 21 21 17 21 17 21 17 21	OCT OCT OCT OCT OCT OCT OCT JUN OCT JUN OCT JUN OCT JUN OCT JUN OCT JUN OCT	10 10 10 R) 10 21 10 21 10 21 10 21 10
3.6-2	21 21 21 21 21 21 17 21 17 21 17 21 17	OCT OCT OCT OCT OCT OCT OCT JUN OCT JU	10 10 10 10 R) 10 21 10 21 10 21 10 21 10 21
3.6-2	21 21 21 21 21 21 17 21 17 21 17 21 17	OCT OCT OCT OCT OCT OCT OCT JUN OCT JU	10 10 10 R) 10 21 10 21 10 21 10 21 10

1.7-1	
1.7-2	21 OCT 10
1.7-3	17 JUN 21
1.8-1	17 JUN 21
1.8-2	
1.9-1	
1.10-1	
1.10-2	
1.11-1	21 OCT 10
1.12-1	21 OCT 10
1.12-2	21 OCT 10
1.12-3	21 OCT 10
1.12-4	
1.13-1	
1.14-1	21 OCT 10
1.14-2	
1.14-2	21 001 10
1.14-3	
1.14-4	21 OCT 10
1.14-5	21 OCT 10
1.14-6	21 OCT 10
FNR :	2
ENR 2	17 ILIN 21
2.2-1	21 OCT 10
2.2-1	21 001 10
END 0	
ENR 3	
3.1-1	
3.1-2	28 JAN 21
3.1-2 3.1-3	28 JAN 21 28 JAN 21
3.1-2 3.1-3 3.1-4	28 JAN 21 28 JAN 21 28 JAN 21
3.1-2 3.1-3 3.1-4	28 JAN 21 28 JAN 21 28 JAN 21
3.1-2	28 JAN 21 28 JAN 21 28 JAN 21 17 JUN 21
3.1-2	28 JAN 21 28 JAN 21 28 JAN 21 17 JUN 21 28 JAN 21
3.1-2	28 JAN 21 28 JAN 21 28 JAN 21 17 JUN 21 28 JAN 21 28 JAN 21
3.1-2	28 JAN 21 28 JAN 21 28 JAN 21 17 JUN 21 28 JAN 21 28 JAN 21 28 JAN 21
3.1-2	28 JAN 21 28 JAN 21 28 JAN 21 17 JUN 21 28 JAN 21 28 JAN 21 28 JAN 21 28 JAN 21
3.1-2	28 JAN 21 28 JAN 21 28 JAN 21 17 JUN 21 28 JAN 21 28 JAN 21 28 JAN 21 28 JAN 21 28 JAN 21 28 JAN 21
3.1-2	28 JAN 21 28 JAN 21 28 JAN 21 17 JUN 21 28 JAN 21 28 JAN 21 28 JAN 21 28 JAN 21 28 JAN 21 28 JAN 21 27 JUN 21 28 JAN 21
3.1-2	28 JAN 21 28 JAN 21 28 JAN 21 17 JUN 21 28 JAN 21 28 JAN 21 28 JAN 21 28 JAN 21 28 JAN 21 17 JUN 21 28 JAN 21 28 JAN 21
3.1-2	28 JAN 21 28 JAN 21 28 JAN 21 17 JUN 21 28 JAN 21 28 JAN 21 28 JAN 21 28 JAN 21 28 JAN 21 27 JUN 21 28 JAN 21 28 JAN 21 28 JAN 21 28 JAN 21
3.1-2	28 JAN 21 28 JAN 21 28 JAN 21 17 JUN 21 28 JAN 21
3.1-2	28 JAN 21 28 JAN 21 28 JAN 21 17 JUN 21 28 JAN 21
3.1-2	28 JAN 21 28 JAN 21 28 JAN 21 17 JUN 21 28 JAN 21
3.1-2	28 JAN 21 28 JAN 21 28 JAN 21 17 JUN 21 28 JAN 21 17 JUN 21 17 JUN 21
3.1-2	28 JAN 21 28 JAN 21 28 JAN 21 17 JUN 21 28 JAN 21 17 JUN 21 17 JUN 21 17 JUN 21 17 JUN 21 17 JUN 21
3.1-2	28 JAN 21 28 JAN 21 28 JAN 21 17 JUN 21 28 JAN 21 17 JUN 21 17 JUN 21 17 JUN 21 17 JUN 21 17 JUN 21 28 JAN 21 28 JAN 21
3.1-2	28 JAN 21 28 JAN 21 17 JUN 21 17 JUN 21 17 JUN 21 17 JUN 21 28 JAN 21 17 JUN 21 28 JAN 21 28 JAN 21 17 JUN 21
3.1-2	28 JAN 21 17 JUN 21 17 JUN 21 17 JUN 21 17 JUN 21 28 JAN 21
3.1-2	28 JAN 21 17 JUN 21 17 JUN 21 17 JUN 21 17 JUN 21 28 JAN 21
3.1-2	28 JAN 21 17 JUN 21 17 JUN 21 17 JUN 21 28 JAN 21 17 JUN 21 28 JAN 21
3.1-2	28 JAN 21 28 JAN 21 17 JUN 21 17 JUN 21 28 JAN 21 17 JUN 21 28 JAN 21 17 JUN 21 28 JAN 21 27 JUN 21 28 JAN 21 28 JAN 21 28 JAN 21
3.1-2	28 JAN 21 17 JUN 21 17 JUN 21 17 JUN 21 28 JAN 21 17 JUN 21 28 JAN 21 17 JUN 21 28 JAN 21 28 JAN 21 28 JAN 21 28 JAN 21
3.1-2	28 JAN 21 17 JUN 21 17 JUN 21 17 JUN 21 28 JAN 21 17 JUN 21 28 JAN 21 17 JUN 21 28 JAN 21 28 JAN 21 28 JAN 21 28 JAN 21
3.1-2	28 JAN 21 17 JUN 21 17 JUN 21 17 JUN 21 28 JAN 21 17 JUN 21 28 JAN 21 17 JUN 21 28 JAN 21 28 JAN 21 28 JAN 21 28 JAN 21
3.1-2	28 JAN 21 28 JAN 21 28 JAN 21 28 JAN 21 17 JUN 21 28 JAN 21 17 JUN 21 17 JUN 21 17 JUN 21 17 JUN 21 28 JAN 21 28 JAN 21 28 JAN 21 17 JUN 21 28 JAN 21 17 JUN 21 28 JAN 21 17 JUN 21 28 JAN 21 28 JAN 21 28 JAN 21 28 JAN 21
3.1-2	28 JAN 21 17 JUN 21 17 JUN 21 17 JUN 21 28 JAN 21 17 JUN 21 28 JAN 21 28 JAN 21 28 JAN 21 17 JUN 21 28 JAN 21
3.1-2	28 JAN 21 17 JUN 21 17 JUN 21 17 JUN 21 28 JAN 21 17 JUN 21 28 JAN 21
3.1-2	28 JAN 21 28 JAN 21 28 JAN 21 28 JAN 21 17 JUN 21 28 JAN 21 17 JUN 21 17 JUN 21 17 JUN 21 28 JAN 21

LIBYA C.A.A

ENR 3		
3.3-4 17 JUN 21	AD 1	
3.3-5 28 JAN 21	1.1-1 21 OCT 10	AD 2 HLLM-1 13 AUG 20
3.3-6 28 JAN 21	1.1-2 21 OCT 10	AD 2 HLLM-2 13 AUG 20
3.3-7 28 JAN 21	1.2-1 21 OCT 10	AD 2 HLLM-3 13 AUG 20
3.3-8 28 JAN 21	1.3-1 20 SEP 12	AD 2 HLLM-4 13 AUG 20
3.3-9 17 JUN 21	1.4-1 20 SEP 12	AD 2 HLLM-5 13 AUG 20
3.3-10 28 JAN 21	AD 2	AD 2 HLLM-6 13 AUG 20
3.3-11 28 JAN 21	AD 2 HLGD-1 20 SEP 12	AD 2 HLLM-7 13 AUG 20
3.3-12 17 JUN 21	AD 2 HLGD-2 21 OCT 10	AD 2 HLLM-913 AUG 20
3.3-13 17 JUN 21	AD 2 HLGD-3 20 SEP 12	AD 2 HLLM-1113 AUG 20
3.3-14 28 JAN 21	AD 2 HLGD-4 20 SEP 12	
3.3-15 28 JAN 21	AD 2 HLGD-5 20 SEP 12	AD 2 HLLQ-1 20 SEP 12
3.3-16 28 JAN 21	AD 2 HLGD-6 20 SEP 12	AD 2 HLLQ-2 21 OCT 1
3.3-17 28 JAN 21	AD 2 HLGD-7 20 SEP 12	AD 2 HLLQ-3 20 SEP 12
3.3-18 28 JAN 21	AD 2 HLGD-9 20 SEP 12	AD 2 HLLQ-4 21 OCT 1
	AD 2 HLGD-11 20 SEP 12	AD 2 HLLQ-5 20 SEP 12
ENR 3.6	AD 2 HLGD-13 20 SEP 12	AD 2 HLLQ-7 20 SEP 12
3.6-1 17 JUN 21	7.5 2 1 12 05 10 20 021 12	AD 2 HLLQ-9 20 SEP 12
	AD 2 HLKF-1 20 SEP 12	AD 2 HLLQ-11 20 SEP 12
ENR 4	AD 2 HLKF-2 20 SEP 12	AD 2 HLLQ-13 20 SEP 12
4.1-1 28 JAN 21	AD 2 HLKF-3 20 SEP 12	
4.1-2 17 JUN 21	AD 2 HLKF-4 20 SEP 12	AD 2 HLLS-1 20 SEP 12
4.2-1 21 OCT 10	AD 2 HLKF-5 20 SEP 12	AD 2 HLLS-2 20 SEP 12
4.4-1 28 JAN 21	AD 2 HLKF-6 20 SEP 12	AD 2 HLLS-3 20 SEP 12
4.4-2 28 JAN 21	AD 2 HLKF-7 20 SEP 12	AD 2 HLLS-4 20 SEP 12
4.4-3 28 JAN 21	AD 2 HLKF-9 20 SEP 12	AD 2 HLLS-5 17 JUN 2
4.4-4 28 JAN 21	AD 2 HLKF-11 20 SEP 12	AD 2 HLLS-6 17 JUN 2
	7.5 - 7.1-1.1 7.1	AD 2 HLLS-7 20 SEP 12
ENR 5	AD 2 HLLB-1 20 SEP 12	AD 2 HLLS-9 20 SEP 12
5.1-1 28 JAN 21	AD 2 HLLB-2 20 SEP 12	AD 2 HLLS-11 20 SEP 12
5.2-1 21 OCT 10	AD 2 HLLB-3 20 SEP 12	AD 2 HLLS-12 20 SEP 12
5.3-1 21 OCT 10	AD 2 HLLB-4 20 SEP 12	AD 2 HLLS-13 20 SEP 12
5.4-1 21 OCT 10	AD 2 HLLB-5 20 SEP 12	AD 2 HLLS-14 20 SEP 12
5.5-1 21 OCT 10	AD 2 HLLB-6 20 SEP 12	AD 2 HLLS-15 20 SEP 12
5.6-1 21 OCT 10	AD 2 HLLB-7 20 SEP 12	AD 2 HLLS-17 20 SEP 12
ENR 6	AD 2 HLLB-9 20 SEP 12	AD 2 HLLS-19 20 SEP 12
6.1-1 21 OCT 10	AD 2 HLLB-11 20 SEP 12	AD 2 HLLS-21 20 SEP 12
6.2-1 21 OCT 10	AD 2 HLLB-13 20 SEP 12	AD 2 HLLS-23 20 SEP 12
6.3-1 21 OCT 10	AD 2 HLLB-15 20 SEP 12	AD 2 HLLS-25 20 SEP 12
6.7-1 21 OCT 10	AD 2 HLLB-17 20 SEP 12	AD 2 HLLS-27 20 SEP 12
	AD 2 HLLB-19 20 SEP 12	AD 2 HLLS-29 20 SEP 12
PART 3 - AERODROMES (AD)	AD 2 HLLB-21 20 SEP 12	
	AD 2 HLLB-23 20 SEP 12	
AD 0	AD 2 HLLB-25 20 SEP 12	
0.5-1 17 JUN 21	AD 2 HLLB-27 20 SEP 12	
0.6-1 20 SEP 12	AD 2 HLLB-29 20 SEP 12	
0.6-2 20 SEP 12	AD 2 HLLB-31 20 SEP 12	
0.6-3 20 SEP 12	AD 2 HLLB-33 20 SEP 12	
0.6-4 20 SEP 12	AD 2 HLLB-35 20 SEP 12	
0.6-5 20 SEP 12		
0.6-6 20 SEP 12		
0.6-7 20 SEP 12		

AD 2 HLLT-1 20 SEP 12	AD 3	
AD 2 HLLT-2 20 SEP 12	-	
AD 2 HLLT-3 20 SEP 12	AD 3 HLGT-1 20 SEP 12	AD 3 HLZW-1 20 SEP 12
AD 2 HLLT-4 20 SEP 12	AD 3 HLGT-2 20 SEP 12	AD 3 HLZW-2 20 SEP 12
AD 2 HLLT-5 17 JUN 21	AD 3 HLGT-3 20 SEP 12	AD 3 HLZW-3 20 SEP 12
AD 2 HLLT-6 17 JUN 21	AD 3 HLGT-4 20 SEP 12	AD 3 HLZW-4 20 SEP 12
AD 2 HLLT-7 20 SEP 12	AD 3 HLGT-5 20 SEP 12	AD 3 HLZW-5 20 SEP 12
AD 2 HLLT-8 17 JUN 21	AD 3 HLGT-7 20 SEP 12	AD 3 HLZW-7 20 SEP 12
AD 2 HLLT-9 20 SEP 12	AD 3 HLGT-9 20 SEP 12	
AD 2 HLLT-11 20 SEP 12	AD 3 HLGT-11 20 SEP 12	
AD 2 HLLT-13 20 SEP 12	AD 3 HLGT-13 20 SEP 12	
AD 2 HLLT-15 20 SEP 12		AD 3.3-1 28JAN 21
AD 2 HLLT-17 20 SEP 12	AD 3 HLBK-1 20 SEP 12	AD 3.3-2 28JAN 21
AD 2 HLLT-21 20 SEP 12	AD 3 HLBK-2 20 SEP 12	AD 3.3-3 28JAN 21
AD 2 HLLT-25 20 SEP 12	AD 3 HLBK-3 20 SEP 12	AD 3.3-4 20 SEP 12
AD 2 HLLT-26 20 SEP 12	AD 3 HLBK-4 20 SEP 12	AD 3.3-5 28JAN 21
AD 2 HLLT-29 20 SEP 12	AD 3 HLBK-5 20 SEP 12	AD 3.3-6 20 SEP 12
AD 2 HLLT-30 20 SEP 12	AD 3 HLBK-7 20 SEP 12	
AD 2 HLLT-33 20 SEP 12		
AD 2 HLLT-35 20 SEP 12	AD 3 HLTD-1 20 SEP 12	
AD 2 HLLT-37 20 SEP 12	AD 3 HLTD-2 20 SEP 12	
AD 2 HLLT-39 20 SEP 12	AD 3 HLTD-3 20 SEP 12	
AD 2 HLLT-41 20 SEP 12	AD 3 HLTD-4 20 SEP 12	
AD 2 HLLT-43 20 SEP 12	AD 3 HLTD-5 20 SEP 12	
	AD 3 HLTD-7 20 SEP 12	
AD 2 HLMS-1 17JUN 21	AD 3 HLTD-9 20 SEP 12	
AD 2 HLMS-2 20 SEP 12	AD 3 HLTD-11 20 SEP 12	
AD 2 HLMS-3 20 SEP 12	AD 3 HLTD-13 20 SEP 12	
AD 2 HLMS-4 17 JUN 21	AD 3 HLTD-15 20 SEP 12	
AD 2 HLMS-5 17 JUN 21		
AD 2 HLMS-7 20 SEP 12	AD 3 HLTQ-1 17JUN 21	
AD 2 HLMS-9 20 SEP 12	AD 3 HLTQ-2 17JUN 21	
AD 2 HLMS-11 20 SEP 12	AD 3 HLTQ-3 17JUN 21	
	AD 3 HLTQ-4 17JUN 21	
	AD 3 HLTQ-5 17JUN 21	
	AD 3 HLTQ-7 17JUN 21	
	AD 3 HLTQ-9 17JUN 21	
	AD 3 HLTQ-11 17JUN 21	
	AD 3 HLUB-1 20 SEP 12	
	AD 3 HLUB-2 20 SEP 12	
	AD 3 HLUD-2 20 3EF 12	

LIBYA C.A.A AMDT 06/2021

INTENTIONALLY BLANK

GEN 1.7 DIFFERENCES FROM ICAO STANDARDS, RECOMMENDED PRACTICES AND PROCEDURES

in general, Libya regulations rules and procedures are in conformity with ICAO SARPS, PANS-, ATM and regional supplementary procedures except in the cases indicated hereunder (all differences have been registered with ICAO)

1. ANNEX 1 -

PERSONNEL LICENSING (10th Edition)

2. ANNEX 2 -

RULES OF THE AIR (10th Edition)
Reference

Chapter 2

Para2.1.1 The International Rules of the Air as amended below shall apply to all aircraft within the territory of Libya.

para2.3.1 The pilot-in-command of an air-craft shall, whether manipulating the controls or not, be responsible for operating the aircraft in accordance with the rules of the air. He may depart from the rules in circumstances that render such a departure necessary in the interest of safety, but when doing so, he shall inform the appropriate ATS unit and as soon as practicable submit a written report to the Civil Aviation Authority.

Chapter 3

Para3.3.1 Submission of a Flight Plan

Para3.3.1.1 information relative to an intended flight or portion of a flight shall be in the form of a Flight Plan.

Para3.3.1.2 Flight Plan shall be submitted for any flight or portion of flight within the territory of Libya.

Para3.3.1.3 Flight plan shall be submitted before departure. For domestic flights originating at an aerodrome not connected to the AFTN, essential flight details

shall be communicated before departure to the ACC at TRI-POLI or BENGHAZI by any available means (e.g. TELEFAX, E-MAIL). Compliance with this procedure must, for the time being, be regarded as mandatory.

3. ANNEX 3.

METEOROLOGY (17th Edition)

4. ANNEX 4 -

AERONAUTICAL CHARTS (11th Edition)

5. ANNEX 5 -

UNITS OF MEASUREMENT TO BE USED IN AIR AND GROUND OPERATIONS (5th Edition)

Nil

6. ANNEX 6 -

OPERATION OF AIRCRAFT VOL. I (9th Edition), VOL. II (7th Edition), VOL. III (7th Edition) NiI

7. ANNEX 7 -

AIRCRAFT NATIONALITY AND REGISTRA-TION MARKS (5th Edition) Nil

8. **ANNEX 8 -**

AIRWORTHINESS OF A/C (11th Edition)

9. **ANNEX 9 -**

FACILITATION (13th Edition)

Reference Difference

- Para2.4 The general declaration is required as an essential document.
- Para2.5 Presentation of passenger manifest continues to be required.
- Para2.6.2 Full name and surnames of passengers are required.
- Para2.11 Presentation of three copies of the passenger manifest are required.
- Para2.14 Same as 2.1 1.
- Para2.19 Under consideration.

GEN 1.7-2 20 SEP 12 AIP

Para 2.30 Prior permission is required in accordance with current regulations published in AIP Libya, GEN 1.4-1.

Para 2.31 Not applicable at present.

Para 3.8.3 Resident aliens must hold reentry visas.

Para 3.9 Information supplementary to those presented in the passports are required to be written on the E/D card, which differs slightly in terms from that shown in Appendix 4.

Para 4.19 Certain consular formalities are required.

Para 4.38 Admittance of airlines documents are duty-free on reciprocal treatment basis.

Para 4.44 All imported animals must be accompanied by a certificate of sanitary inspection.

Para 6.47 Such arrangements are not justified for the moment.

Para 8.2 The provisions of Civil Aviation Law no 6 for the year 2005 are applicable.

10. ANNEX 10 -

AERONAUTICAL TELECOMMUNICATIONS VOL. I (6th Edition), VOL. II (6th Edition), VOL. IV (4th Edition), VOL. V (2nd Edition)

Nil

11. ANNEX 11 AIR TRAFFIC SERVICES (13th Edition)

Reference Difference Chapter 2

Para 2.5.2.2

for IFR flights shall - irrespective of prevailing weather conditions - conduct all flights within terminal control areas and control zones in accordance with IFR unless otherwise permitted by the appropriate ATS unit. Other aircraft shall conduct flight in

special procedures in paragraph 1 below:

accordance with VFR and the

Aircraft equipped and manned

1.1 Air Traffic Control Clearance

An Air Traffic Control Clearance shall be obtained from the appropriate Air Traffic Control Unit.

Note: Separation between VFR flights is only provided when those flights constitute aerodrome traffic. Clearances are issued to provide separation between VFR flights and IFR flights or military traffic flying under special conditions.

1.2 Position Reports

Reporting of position and level shall be made over reporting points specified by the Air Traffic Control Unit and when entering or leaving controlled airspace as follows:

- a) Traffic from Malta Cairo Tunis Algiers FIRs to report at least 10 min. before entering Tripoli FIR.
- b) Traffic from the South of N'Djamena and Khartoum FIRs to report at least 15 min. before entering Tripoli FIR.

1.3 Radio

Aircraft shall be equipped for two-way radio communication and shall maintain continuous listening watch on the appropriate radio frequency.

12. ANNEX 12 -SEARCH AND RESCUE (8th Edition)

Nil

13. ANNEX 13 AIRCRAFT ACCIDENT INVESTIGATION (10th Edition)

Nil

14. ANNEX 14 AERODROMES VOL. I (5th Edition), HELIPORTS VOL. II (3rd Edition)

Nil

Reference

15. ANNEX 15 AERONAUTICAL INFORMATION SERVICES (13th Edition)

Difference

Chapter 10 Para 10.1.8 Electronic terrain and obstacle data Area 4 are not provided for all runways at Libyan international airports where precision approach operations have been

established.

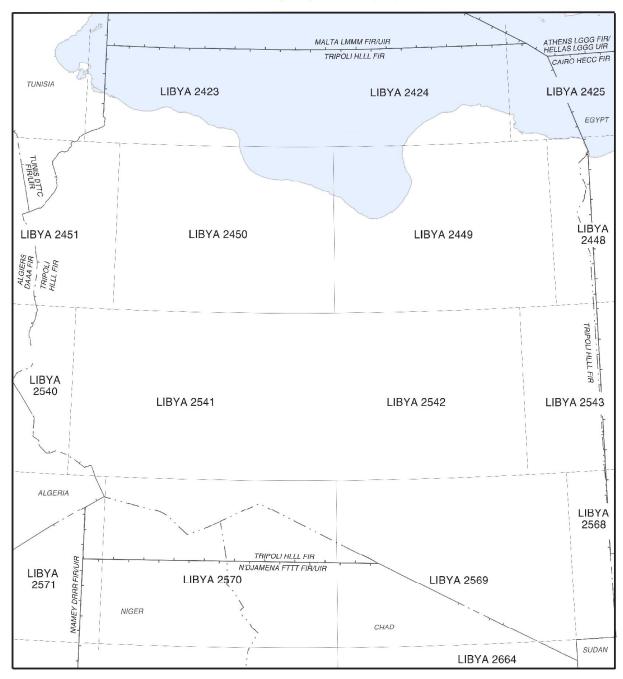
GEN 2.4 LOCATION INDICATORS

1. ENCODE		2. DECODE	
LOCATION (AD/NAME)	ICAO INDICATOR	ICAO INDICATOR	LOCATION (AD/NAME)
Al Bumbah	HLBU	HLAM	Amal (V12)
Al Wigh		HLBD	Beda (M3)
Amal (V12)	HLAM	HLBK	Burdi (Kambut)
Beda (M3)	HLBD	HLBR	Mabruk
Benghazi (Benina Intl)	HLLB	HLBS	Booster
Beni Walid	HLWD	HLBU	Al Bumbah
Booster	HLBS	HLCH	El Sharara
Bu Attifel (100)	HLFL	HLDB	Eddib
Burdi (Kambut)	HLBK	HLFD	Fidaa
Dahra (Warehouse 32)	HLRA	HLFE	El Feel
Eddib (V7)	HLDB	HLFL	Bu Attifel (A100)
El Beida (Labrag)	HLLQ	HLFX	Fox Three
El Feel	HLFE	HLGD	Sirte (Ghardabiya Intl)
Elmarj	HLMJ	HLGL	Gialo (Warehouse 59E)
El Sharara	HLCH	HLGT	Ghat
Essider (OJ)	HLSD	HLHB	Hateiba
Fidaa	HLFD	HLHM	Hamada (NC5)
Fox Three	HLFX	HLJF	Jufra
Ghadames	HLTD	HLKF	Kufra
Ghat	HLGT	HLML	Messla (5ALV)
Gialo (warehouse 59E)	HLGL	HLLB	Benghazi (Benina Intl)
Hamada (NC5)	HLHM	HLLM	Tripoli (Mitiga Intl)
Hamada (NC8)	HLNM	HLLQ	El Beida (Labrag)
Hateiba	HLHB	HLLS	Sebha (Sebha Intl)
Hon	HLON	HLLT	Tripoli (Tripoli Intl)
Jaref	HLRF	HLMB	Marsa Brega (S21)
Jufra	HLJF	HLMD	Majed
Kufra	HLKF	HLMJ	Elmarj
Mabruk	HLBR	HLMS	Misrata (Misrata Intl)
Majed	HLMD	HLMT	Martubah (Darnah)
Marsa Brega (21)	HLMB	HLNC	N 29C
Martubah (Darnah)	HLMT	HLNF	Ras Lanuf(V40)
Messla (5ALV)	HLML	HLNM	Hamada (NC8)
Misrata (Misrata Intl)	HLMS	HLNR	Nafoora (M4)
N29C	HLNC	HLON	Hon
Nafoora (M4)	HLNR	HLRA	Dahra (Warehouse 32)
Okba Ibn Nafa		HLRF	Jaref
Oxy (103A)	HLZG	HLRG	Raguba (S24)
Raguba (S24)	HLRG	HLSA	Sarir (C4/5ALZ)
Ras Lanuf (V40)	HLNF	HLSB	Sabah (S74)

1. ENCODE		2. DECODE			
LOCATION (AD/NAME)	ICAO INDICATOR	ICAO INDICATOR	LOCATION (AD/NAME)		
Sabha (S74)	HLSB	HLSD	Essider (OJ)		
Sahil	HLSH	HLSH	Sahil		
Samah (warehouse 59L)	HLSM	HLSM	Samah (warehouse 59L)		
Sarir (C4/5ALZ)	HLSA	HLTD	Ghadames		
Sebha (Sebha Intl)	HLLS	HLTG	Tagrift (V10)		
Sirte (Ghadabiya Intl)	HLGD	HLTQ	Tobruk		
Tagrift (V10)	HLTG	HLTM	Tamanhint		
Tamanhint	HLTM	HLTS	Tebesty (V9)		
Tebesty (V9)	HLTS	HLUB	Ubari		
Tobruk	HLTQ	HLUF	Um-Farud		
Tripoli (Mitiga Intl)	HLLM	HLWA	Waha (Warehouse 59A)		
Tripoli (Tripoli Intl	HLLT	HLWD	Beni Walid		
Ubari	HLUB	HLWF	Wafa		
Um-Farud	HLUF	HLWN	Waddan		
Waddan	HLWN	HLZA	Zella (Z74)		
Wafa	HLWF	HLZG	Oxye (103A)		
Waha (warehouse 59A)	HLWA	HLZN	ZINTAN		
Waw Al Kabir		HLZT	Zelten (S22)		
Zella (Z74)	HLZA	HLZU	Zueitina (Oxy1)		
Zelten (S22)	HLZT	HLZW	Zwara		
ZINTAN	HLZN		Al Wigh		
Zueitina (Oxy 1)	HLZU		Okba Ibn Nafa		
Zwara	HLZW		Waw Al Kabir		

LIST OF CHART SERIES

Title of Series	Scale	Name	Number	Price per sheet	Date					
World Aeronautical Chart - ICAO	1:1,000,000	ONC G2 ONC G3 ONC H3 ONC H4 ONC J3		·	19 OCT 95 27 JUL 98 3 APR 84 16 NOV 98 23 AUG 88					
(WAC)		ONC J4 ONC J5			27 JAN 00 8 JAN 88					
Aeronautical Chart Libya - ICAO	1 : 500,000		HL-1 HL-2 HL-3 HL-4 HL-5 HL-6 HL-7 HL-8 HL-9 HL-10 HL-11 HL-12 HL-13		Edition 2012					
	BENGHAZI/B	l Senina Intl	HL-14							
	1 : 350,000 1 : 250,000	VOR ILS DME RWY 33L VOR DME RWY 15L/R VOR DME RWY 33L/R Locator RWY 15L/R Locator RWY 33L/R	AD 2 HLLB-25 AD 2 HLLB-27 AD 2 HLLB-29 AD 2 HLLB-31 AD 2 HLLB-33	in AIP in AIP in AIP in AIP in AIP	20 SEP 12 20 SEP 12 20 SEP 12 20 SEP 12 20 SEP 12					
	EL BEIDA/La		AB 2 HEED 00	1117 (11	20 OL1 12					
	1:250,000	NDB ILS DME RWY 28 NDB RWY 10 NDB RWY 28	AD 2 HLLQ-9 AD 2 HLLQ-11 AD 2 HLLQ-13	in AIP in AIP in AIP	20 SEP 12 20 SEP 12 20 SEP 12					
	GHADAMES/Ghadames									
Instrument	1:250,000	VOR DME RWY 06 VOR DME RWY 24 NDB RWY 06 NDB RWY 24	AD 3 HLTD-9 AD 3 HLTD-11 AD 3 HLTD-13 AD 3 HLTD-15	in AIP in AIP in AIP in AIP	20 SEP 12 20 SEP 12 20 SEP 12 20 SEP 12					
Approach &	GHAT/Ghat									
Landing Chart - ICAO (IAC)	1:200,000	VOR DME RWY 17 VOR DME RWY 35 NDB RWY 17	AD 3 HLGT-9 AD 3 HLGT-11 AD 3 HLGT-13	in AIP in AIP in AIP	20 SEP 12 20 SEP 12 20 SEP 12					
	KUFRA/Kufra									
	1:200,000	VOR DME RWY 02 VOR DME RWY 20	AD 2 HLKF-9 AD 2 HLKF-11	in AIP in AIP	20 SEP 12 20 SEP 12					
	MISRATA/Mis	VOR DME RWY 15	VD 3 HI MC 0	in AID	20 SED 42					
	1:250,000	VOR DME RWY 33	AD 2 HLMS-9 AD 2 HLMS-11	in AIP in AIP	20 SEP 12 20 SEP 12					
	SEBHA/Sebh	ILS DME RWY 13	AD 2 HILE 22	in AIP	12 DEC 12					
	1:250,000	VOR DME RWY 13 VOR DME RWY 13 VOR DME RWY 31	AD 2 HLLS-23 AD 2 HLLS-25 AD 2 HLLS-27	in AIP in AIP in AIP	12 DEC 13 20 SEP 12 20 SEP 12					
	TOBRUK/Tok		1 12 2 1 1 2 2 1	1 / ***						
	1:200,000	VOR DME RWY 02 VOR DME RWY 20	AD3 HLTQ -9 AD3 HLTQ-11	in AIP in AIP	17 JUN 21 17 JUN 21					


LIST OF CHARTS SERIES

Title of	01-	N	Nemakan	D.:	Dete					
Series	Scale	Name	Number	Price per sheet	Date					
Instrument	SIRTE / Ghard		AD 0 1 11 0D 0	in AID	00.050.40					
Approach	1:250,000	VOR ILS DME RWY 36 VOR DME RWY 18	AD 2 HLGD-9 AD 2 HLGD-11	in AIP in AIP	20 SEP 12 20 SEP 12					
&	1.250,000	VOR DME RWY 36	AD 2 HLGD-11	in AIP	20 SEP 12					
Landing Chart										
ICAO (IAC)	TRIPOLI / Trip		14501111700							
(/		ILS DME RWY 27 VOR DME RWY 09	AD 2 HLLT-33 AD 2 HLLT-35	in AIP in AIP	20 SEP 12 20 SEP 12					
	1:250,000	VOR DME RWY 27	AD 2 HLLT-37	in AIP	20 SEP 12					
	1 . 250,000	Locator RWY 09	AD 2 HLLT-39	in AIP	20 SEP 12					
		Locator RWY 27	AD 2 HLLT-41	in AIP	20 SEP 12					
	TRIPOLI / Miti	iga Intl								
	4 - 050 000	DVOR DME RWY 10	AD 2 HLLM -9	in AIP	13 AUG 20					
	1 : 250,000	DVOR DME RWY 28	AD 2 HLLM -11	in AIP	13 AUG 20					
Standard Departure	BENGHAZI / E	Benina Intl								
Chart	1:790,000	SID C RWY 15L/R	AD 2 HLLB-13	in AIP	20 SEP 12					
Instrument ICAO (SID)	1:790,000	SID C RWY 33L/R	AD 2 HLLB-15	in AIP	20 SEP 12					
	Sebha / Sebha Intl									
	1:790,000	SID C RWY 13	AD 2 HLLS-11	in AIP	20 SEP 12					
	1:790,000	SID C RWY 31	AD 2 HLLS-13	in AIP	20 SEP 12					
	TRIPOLI / Tripoli Intl									
	1:1,000,000	SID C RWY 09	AD 2 HLLT-17	in AIP	20 SEP 12					
	1:1,000,000	SID C RWY 27	AD 2 HLLT-21	in AIP	20 SEP 12					
Standard Arrival	BENGHAZI / Benina Intl									
Chart	1:790,000	STAR A RWY 15L/R	AD 2 HLLB-17	in AIP	20 SEP 12					
Instrument	1:790,000	STAR B RWY 15L/R	AD 2 HLLB-19	in AIP	20 SEP 12					
ICAO (STAR)	1:790,000	STAR D RWY 33L/R	AD 2 HLLB-21	in AIP	20 SEP 12					
(017111)	1:790,000	STAR E RWY 33L/R	AD 2 HLLB-23	in AIP	20 SEP 12					
	Sebha/Sebha	Intl								
	1:790,000	STAR A RWY 13	AD 2 HLLS -15	in AIP	20 SEP 12					
	1:790,000	STAR B RWY 13	AD 2 HLLS -17	in AIP	20 SEP 12					
	1:790,000	STAR D RWY 31	AD 2 HLLS -19	in AIP	20 SEP 12					
	1:790,000	STAR E RWY 31	AD 2 HLLS -21	in AIP	20 SEP 12					
	1 . 7 55,000	01/11CE 110V 1 01	1	1	L					

LIST OF CHARTS SERIES

Title of					5.				
Series	Scale	Name	Number	Price per sheet	Date				
Standard Arrival	TRIPOLI / Tripoli Intl								
	1:1,000,000	STAR A RWY 09	AD 2 HLLT - 25	in AIP	20 SEP 12				
	1:1,000,000	STAR D RWY 27	AD 2 HLLT - 29	in AIP	20 SEP 12				
Visual Approach	1:200,000	BENGHAZI/Benina Intl	AD 2 HLLB-35	in AIP	20 SEP 12				
& Landing	1:200,000	SEBHA/Sebha Intl	AD 2 HLLS-29	in AIP	20 SEP 12				
Chart - ICAO (IAC)	1:200,000	TRIPOLI / Tripoli Intl	AD 2 HLLT- 43	in AIP	20 SEP 12				
Aerodrome Obstacle	1:20,000	BENGHAZI/Benina Intl	AD 2 HLLB-11	in AIP	20 SEP 12				
Chart - ICAO	1:20,000	SEBHA /Sebha Intl	AD 2 HLLS- 9	in AIP	20 SEP 12				
Type A (AOC)	1:20,000	TRIPOLI / Tripoli Intl	AD 2 HLLT- 13	in AIP	20 SEP 12				
	1:30,000	BENGHAZI / Benina Intl	AD 2 HLLB- 9	in AIP 20 SEF	20 SEP 12				
Aerodrome Chart - ICAO	1:20,000	BURDI / Kambut	AD 3 HLBK-7	in AIP	20 SEP 12				
(ADC)	1:20,000	EL BEIDA / Labraq	AD 2 HLLQ-7	in AIP	20 SEP 12				
	1:25,000	GHADAMES / Ghadames	AD 3 HLTD-7	in AIP	20 SEP 12				
	1:25,000	GHAT / Ghat	AD 3 HLGT-7	in AIP	20 SEP 12				
	1:30,000	KUFRA / Kufra	AD 2 HLKF-7	in AIP	20 SEP 12				
	1:20,000	MISRATA / Misrata Intl	AD 2 HLMS-7	in AIP	20 SEP 12				
	1:25,000	SEBHA / Sebha Intl	AD 2 HLLS-7	in AIP	20 SEP 12				
	1:30,000	SIRTE/Ghardabiya Intl	AD 2 HLGD-7	in AIP	20 SEP 12				
	1:25,000	TOBRUK / Tobruk	AD 3 HLTQ-7	in AIP	17 JUN 21				
	1:15,000	TRIPOLI/Tripoli Intl	AD 2 HLLT-9	in AIP	20 SEP 12				
	1:20,000	TRIPOLI / Mitiga Intl	AD 2 HLLM-7 in AIP		13 AUG 20				
	1:15,000	UBARI/Ubari	AD 3 HLUB-7	in AIP	20 SEP 12				
	1:15,000	ZWARA/Zwara	AD 3 HLZW-7	in AIP	20 SEP 12				
Aircraft Parking Docking Chart ICAO	1 : 5500	TRIPOLI / Mitiga Intl	AD 2 HLLT- 11	in AIP	20 SEP 12				
(PDC)									

5. INDEX TO THE WORLD AERONAUTICAL CHART (WAC) - ICAO 1: 1,000,000

AIP LIBYA

ENR 1. GENERAL RULES AND PROCEDURES ENR1.1 GENERAL RULES

GENERAL

The Air Traffic Rules and Procedures applicable to the air traffic in Libyan territory conform to Annexes 2 and 11 of the Convention on International Civil Aviation. They are in conformity with those portions of the Procedures for Air Navigation Services-Air Traffic Management (ICAO Doc4444) which are applicable to aircraft and with the Regional Supplementary Procedures applicable to the AFR/MID region. Differences from ICAO Standards are listed in GEN 1.7-1, 1.7-2 and 1.7-3.

1. MINIMUM SAFE HEIGHT

Aircraft shall not be flown below the minimum safe height except when necessary for take-off and landing. The minimum safe height is the height at which neither an unnecessary noise disturbance nor unnecessary hazards to persons and property in the event of an emergency landing are to be feared.

The minimum height for VFR flights and IFR flight shall be those specified in page ENR.1.2-1 and page ENR 1.3-1.

Aircraft shall not be flown below bridges and similar constructions nor below overhead lines and antennas. For flights conducted for special purposes, the local aeronautical authority may grant exemptions.

2. DROPPING OF OBJECTS

Dropping or spraying from an aircraft in flight shall only be conducted in accordance with:

(a)- A pilot of an aircraft shall not allow any object to be dropped from that aircraft in flight unless the pilot has taken every possible precaution to ensure that such action does not constitute any danger to persons or property on the surface; and

(b)- as indicated by any relevant information, advice and/or clearance from the appropriate air traffic services unit.

1 Fuel Dumping

2.1.1 in general fuel dumping shall not be permitted over inhabited areas at heights less than 6000ft.

Tripoli Area

Area of Fuel dumping located at ABU VOR/DME on radial 136 at altitude not less than 6000ft.

3. ACROBATIC FLYING

An aircraft shall not carry out any acrobatic maneuvers:

- a) over the congested areas of any city, town or settlement; or
- b) within Controlled Airspace except with the consent of the appropriate Air Traffic Control Unit.

ENR1.1-1

17 JUN 21

4. TOWING AND ADVERTISING FLIGHTS

No person may operate a civil aircraft towing a glider or unpowered ultra light vehicle Unless such person holds appropriate qualification and when so approved by the appropriate ATS

Aircraft shall not be flown in formation except by pre-arrangement among the pilots-in command of the aircraft taking part in the flight and, for formation flight in controlled airspace, in accordance with the conditions prescribed by the LYCAA.

5. TIMES AND UNITS OF MEASUREMENT

Coordinated Universal Time (UTC) and the prescribed Units of Measurement shall be applied to flight operations. The Units of Measurement to be used are specified in GEN 2.1-1.

6. AIRSPACE STRUCTURE

For the performance of the flight information service and the alerting service, a flight information region has been established. Within the flight information region, controlled and uncontrolled airspaces are established subject to the type of air traffic services provided. Airspace classification is outlined in sub-section ENR 2.1. VFR flights are prohibited within class A airspaces at or above FL 150.

7. PROHIBITED AREAS AND FLIGHT RESTRICTIONS

if necessary, the Director of Civil Aviation establishes prohibited and restricted areas for the prevention of danger to public safety or for the safety of air traffic. These areas are published in the AIP ENR 5.1.

8. CLOUD FLIGHTS WITH GLIDERS

Cloud flights with gliders may be permitted by the air traffic services if the safety of air traffic can be maintained by appropriate measures. Conditions may be attached to the permission.

ENR 1.1-2 AIP 21 OCT 10 LIBYA - GSPAJ

9. EXPECTED APPROACH

In the Radio Communication Failure Procedures given below, the expression "EAT" will mean either an EAT given by the appropriate ATC Unit or the ETA over the holding point, if the pilot has been told "No delay expected".

10. FAILURE OF RADIO NAVIGATION EQUIPMENT

If part of an aircraft's radio navigation equipment fails but two-way communication can still be maintained with the ATC service, the pilot must inform the ATC service of the failure and report his altitude and approximate position. The ATC Unit may, at its discretion authorize the pilot to continue his flight in or into controlled airspace.

11. OMIT POSITION REPORT PROCEDURE

In order to reduce RTF communication a pilot may be instructed by Air Traffic Control to omit position reports provided that the aircraft is radar identified.

12. DME DISTANCE REPORTS TO ATC

Pilots, when requested by ATC to report their distance from a DME facility which they do not have displayed, should return their equipment to that DME. If, for any reason, they are unable to report their distance from the requested DME, ATC is to be informed. Pilots should not calculate the distance based on the reading from another DME.

13. CLIMB AND DESCENT

13.1 Minimum Rates

- 13.1.1 In order to ensure that controllers can accurately predict flight profiles to maintain standard vertical separation, pilots of aircraft commencing a climb or descent in accordance with an ATC clearance should:
 - a) inform the controller if they anticipate that their vertical speed during the level change will be less than 500 ft per minute, or
 - b) if at any time during such a climb or descent, their vertical speed is in fact less than 500 ft per minute.

13.2 Vacating (Leaving) Levels

13.2.1 When pilots are instructed to report leaving a level, they should advise ATC that they have left an assigned level only when the aircraft's altimeter indicates that the aircraft has actually departed from that level and is maintaining a positive rate of climb or descent in accordance with published procedures.

ENR 1.2 VISUAL FLIGHT RULES

AIR TRAFFIC CONTROL CLEARANCE

An airtraffic control clearance shall be obtained from the appropriate Air Traffic Control Unit **Note**:

- Separation between VFR flights is only provided when those flights constitute aerodrome traffic. Clearances are issued to provide separation between VFR flights and IFR flights or military traffic flying under special conditions.
- 1. Except when operating as a special VFR flight VFR flights shall be conducted so that the air craft is flown in conditions of visibility and distance from clouds equal to or greater than those specified in Table 1
- 2. Except when a clearance is obtained from an Air Traffic Control Unit, VFR flights shall not take off or land at an aerodrome within a control zone, or enter the aerodrome traffic zone or traffic pattern
 - a) when the ceiling is less than 450m (1500ft); or
- b) when the ground visibility is less than 5 km.
- **3.** VFR flight shall not be operated at night unless authorized by an ATS Unit under Special VFR.
- **4.** VFR flights in Tripoli FIR shall not be operated:
- a) above FL195;
- b) at transonic and supersonic speeds.
- c) Authorization for VFR flights to operate above FL285 shall not be granted where a vertical separation minimum of 300m (1000ft) is applied above FL290
- d) Operators intending to operate within Tripoli FIR above FL195 as en-route GAT in VFR should submit their request in writing to LYCAA at least (72 hours) before the planned conduct of flight. the approval of such flights may be subject to restrictions or specific arrangements agreed by the appropriate ATS authority
- **5.** Except when necessary for take-off or landing or except by permission from the appropriate authority, a VFR flight shall not be flown:
 - over the congested areas of cities, towns or settlements, or over an open-air assembly of persons at a height less than 300m (1000 ft) above the highest obstacle within a radius of 600 m from the aircraft;
 - elsewhere than as specified in 5 a), at a height less than 150 m (500 ft) above the ground or water.

VMC visibility and distance from cloud minima

Altitude	Airspace class	Flight visibility	Distance from clouds
*At and above (10 000ft) AMSL	CFG	8KM	1500 m horizontally 300 m (1000ft.) vertically
Below (10 000 ft) AMSL and above (3000ft) AMSL, or above (1000ft.) above terrain, whichever is he higher	CFG	5KM	1500 m horizontally 300 m (1000ft) vertically
At and below (3000 ft) AMSL, or (1000ft) above terrain, whichever is the higher	С	5KM	1500 m horizontally 300 m (1000ft) vertically
	FG	5KM **	Clear of cloud and with the surface in sight

- * When the height of the transition altitude is lower than 3050 m (10,000ft) AMSL, FL 100 should be used in lieu of 10.000ft.
- ** When so prescribed by the appropriate ATS authority:
- a) lower flight visibilities of 1500m may be per-mitted for flights operating
- i. at speeds that. in the prevailing visibility, will give adequate opportunity to observe other traffic or any obstacles in time to avoid collision; or
- ii. in circumstances in which the probability of encounters with other traffic would normally be low, e.g. in areas of low volume traffic and for aerial work at low levels.
- b) Helicopters may be permitted to operate in less than 1500 m flight visibility, if maneuvered at a speed that will give adequate opportunity to observe other traffic or any obstacles in time to avoid collision.
- 6. Except where otherwise indicated in Air Traffic Control clearances or specified by the appropriate ATS authority, VFR flights in level cruising flight when operated above 900 m (3000 ft) from the ground or water, or a higher datum as specified by the appropriate ATS authority, shall be conducted at a flight level appropriate to the track as specified in the tables of cruising levels.

- 7. VFR flights shall comply with the provisions of 3.6 of ICAO Annex 2:
 - a) when operated within Classes C and D airspace;
 - b) when forming part of aerodrome traffic at controlled aerodromes; or
 - c) when operated as Special VFR flights.
- 8. An aircraft operated in accordance with the visual flight rules which wishes to change to compliance with the instrument flight rules shall:
 - a) if a flight plan was submitted, communicate the necessary changes to be effected to its current flight plan, or
 - b) when so required by 3.3 of ICAO Annex 2, submit a flight plan to the appropriate Air Traffic Services Unit and obtain a clearance prior to proceeding IFR when in controlled airspace.

9. VISUAL CIRCUIT REPORTING PROCEDURE

In order that the maximum use may be made of aerodromes for the purposes of landings and takeoffs, it is essential that pilots accurately report their positions in the circuit when so requested. The positions in which the various reports should be made are as follows:

- a) Downwind: Aircraft are to report "Downwind" when abeam the upwind end of the runway;
- b) Base leg: Aircraft are to report "Base Leg" (if requested by ATC) immediately upon completion of the turn on to base leg;
- Final: Aircraft are to report "Final" after the completion of the turn on to final approach when not more than 4 NM from the approach end of the runway;

d) Long Final: Aircraft flying a final approach of a greater length than 4 NM are to report "Long Final" when beyond that range and "Final" when a range of 4 NM is reached. Aircraft flying a straight-in-approach are to report "Long Final" at 8 NM from the approach end of the runway, and "Final" when a range of 4 NM is reached.

Note: At grass aerodromes, the area to be used for landing should be regarded as the runway for the purposes of position reporting.

- e) Normally, only one aircraft will be permitted on the runway in use at any time.
- f) An aircraft may be allowed to land on a runway before the preceding aircraft has cleared it, if:
 - 1. the length of the runway permits;
 - 2. it is during daylight hours; and
 - the following aircraft will be able to see the preceding one clearly and continuously until it has turned off the runway.
 - * Reporting of position and level shall be made over reporting points specified by the Air Traffic Control Unit and when entering or leaving controlled airspace.

10. RADIO

Aircraft shall be equipped for two-way radio communication and shall maintain continuous listening watch on appropriate radio frequency.

11. SPECIAL VFR FLIGHTS

- 11.1 A Special VFR flight is a controlled flight carried out in Instrument Meteorological Conditions, or at night within a Control Zone subject to prior authorization by an Air Traffic Unit, but not subject to Instrument Flight Rules.
- 12. A VFR flight operating within or into areas, or along routes, designated by the appropriate ATS Authority in accordance with 3.3.1.2 c) or d), shall maintain continuous air-ground voice communication watch on the appropriate communication channel and report its position as necessary to the Air Traffic Services Unit providing flight information service.

ENR 1.3 INSTRUMENT FLIGHT RULES

1. RULES APPLICABLE TO ALL IFR FLIGHTS

1.1 Aircraft Equipment

Aircraft shall be equipped with suitable instruments and with navigation equipment appropriate to the route to be flown.

1.2 Minimum Levels

Except when necessary for take-off or landing, or when specifically authorized by the appropriate Authority, an IFR flight shall be flown at a level which is not below the minimum flight altitude

1.3 Change from IFR Flight to VFR Flight

- 1.3.1 An aircraft electing to change the conduct of its flight from compliance with the instrument flight rules to compliance with the visual flight rules shall, if a flight plan was submitted, notify the appropriate air traffic services unit specifically that the IFR flight is cancelled and communicate thereto the changes to be made to its current flight plan.
- 1.3.2 When an aircraft operating under the instrument flight rules is flown in or encounters visual meteorological conditions, it shall not cancel its IFR flight unless it is anticipated, and intended, that the flight will be continued for a reasonable period of time in uninterrupted visual meteorological conditions.

2. RULES APPLICABLE TO IFR FLIGHTS WITHIN CONTROLLED AIRSPACE

- 2.1 An IFR flight shall comply with the provisions of 3.6 of ANNEX 2 when operated in controlled Airspace.
- 2.2 An IFR flight operating in cruising flight in controlled airspace shall be flown at a cruising level, or, if authorized to employ cruise climb techniques, between two levels or above a level, selected from:
 - a) the Tables of cruising levels in Appendix 3, or
 - b) a modified table of cruising levels, when so prescribed in accordance with Appendix 3 for flight above FL 410, except that the correlation of levels to track prescribed therein shall not apply whenever otherwise indicated in air traffic control clearances or specified by the appropriate ATS authority in Aeronautical Information Publications.

3. RULES APPLICABLE TO IFR FLIGHTS OUTSIDE CONTROLLED AIRSPACE

3.1 Cruising Levels

An IFR flight operating in level cruising flight outside of controlled airspace shall be flown at a cruising level appropriate to its track as specified in:

- a) the Tables of cruising levels in Appendix 3 of ANNEX 2; except
- b) when otherwise specified by the appropriate ATS authority for flight at or below 900m (3000 ft) above mean sea level.

3.2 Communications

An IFR flight operating outside controlled air space but within or into areas, or along routes, designated by the appropriate ATS authority. shall maintain an air-ground voice communication watch on the appropriate communication channel and establish two- way communication. as necessary, with the air traffic services unit providing flight information service.

4. SPECIAL APPLICATION OF INSTRUMENT FLIGHT RULES (ANNEX 2 - Paragraph 2.2 And Chapter 5)

Flights shall be conducted in accordance with Instrument Flight Rules IFR (even when not operating in Instrument Meteorological Conditions) when operated:

- a. Above FL 195.
- b. at transonic and supersonic speeds
- 4.1. All IFR flights shall comply with the procedures for air traffic advisory service when operating in advisory airspace.

INTENTIONALLY BLANK

ENR 1.4 ATS AIRSPACE CLASSIFICATION

1. CLASSIFICATION OF AIRSPACES

ATS airspaces are classified and designated in accordance with the following:

Class A

IFR flights only are permitted, all flights are subject to Air Traffic Control Service and are separated from each other.

Class C

IFR and VFR flights are permitted, all flights are subject to Air Traffic Control Service and IFR flights are separated from other IFR flights and from VFR flights. VFR flights are separated from IFR flights and receive traffic information in respect of other VFR flights.

Class F

IFR and VFR flights are permitted. All participating IFR flights receive an air traffic advisory service and all flights receive flight information service if requested.

Class G

IFR and VFR flights are permitted and receive flight information service if requested. The requirements for the flights within each class of airspace are shown in the following table.

Class	Type of flight	Separation provided	Service provided	VMC visibility& distance from cloud minimum	Speed Limitation	Radio communication Requirement Clearance	Subject to ATC
Α	IFR only	All aircraft	Air Traffic Control Service		Not applicable	Continuous Tow-way	Yes
	IFR	IFR from IFR IFR from VFR	Air traffic Control Service	Two-way	Not applicable	Continuous Tow-way	Yes
С	VFR	VFR from IFR	Air Traffic Control Service for separation from IFR; 2.VFR/VFR traffic information (and traffic avoidance on request).	8 km at and above 3050m (10000 ft) AMSL; 5 km below 3050 m (10000 ft) AMSL; 1500 m horizontal 300 m vertical distance cloud.	250 kt IAS below 3050 m (10000 ft) AMSL	Continuous Two-way	Yes
	IFR	IFR from IFR As far as practical	Air traffic advisory service; Flight Information Service.	Not applicable	250 kt IAS below 3050 m (10000 ft) AMSL	Continuous Two-way	No
F	VFR	Nil	Flight information Service if requested	8 km at and above 3050m (10000 ft) AMSL; 5 km below 3050 m (10000 ft) AMSL; 1500 m horizontal; 300 m vertical distance cloud; At and below 900 m AMSL or 300 m above terrain whichever is higher; 5 km clear of cloud and in sight of ground or water.	kt IAS250 below (10000 ft) AMSL 3050 m (10000 ft) AMSL	No No	
	IFR	Nil	Flight information Service if requested	Not applicable	kt IAS 250 below 3050 m (ft 10000) AMSL	Continuous Two-way	No
G	VFR	Nil	Flight information Service if requested	8 km at and above 3050m (10000 ft) AMSL; 5 km below 3050 m (10000 ft) AMSL; 1500 horizontal; 300m vertical distance from cloud; At and below 900 m AMSL or 300 m above terrain whichever is higher;	250 kt IAS below 3050 m (10000 ft) AMSL	No	No
				5km clear of cloud and in sight of ground or water.			

ENR 1.6 RADAR SERVICES AND PROCEDURES

1. PRIMARY RADAR

1.1 Supplementary Services

- 1.1.1 A radar unit normally operates as an integral part of the parent ATS unit and provides radar service to aircraft, to the maximum extent practicable, to meet the operational requirements. Many factors, such as radar coverage, controller workload and equipment capabilities, may affect these services. The radar controller shall determine the practicability of providing or continuing to provide radar services in any specific case.
- 1.1.2 A pilot will know when radar services are being provided because the radar controller will use the following call signs:
 - a) Aircraft under area control (Tripoli) for En-Route and TMA "TRIPOLI RADAR"
 - b) Aircraft under area control (Benina) TMA "BENINA RADAR"
- 1.1.3 Tripoli area control service operates radar station:

Tripoli MSSR-S

Location: N324033 E0130836

Range: 256 NM

1.1.4 Benina area control service operates radar station:

PSR+MSSR-S

Location: N320426 EO201932

Range: PSR 100 NM / MSSR-S 256 NM

1.1.5 Sirte area control service operates radar

station:

Sirte PSR+MSSR-S

Location: N310348 E0163448

Range: PSR 100 NM I MSSR-S 256 NM

1.1.6 Sebha area control service operates radar

station:

Sebha PSR+MSSR-S

Location: N265926 ED142720

Range: PSR100 NM / MSSR-S 256 NM

1.1.7 Tazerbo area control service operates radar

station:

Tazerbo MSSR-S

1.2 The Application of Radar Control Service

- 1.2.1 Radar identification is achieved according to the provisions specified by ICAO .
- 11.2.2 Radar control service is provided in controlled airspaces to aircraft operating within Tripoli TMA and Benina TMA and along airways within radar coverage. This service may include:
 - a) radar separation of arriving, departing and en-route traffic;
 - radar monitoring of arriving, departing and en-route traffic to provide information on any significant deviation from normal flight path;
 - c) radar vectoring when required;
 - d) assistance to aircraft in emergency;
 - e) assistance to aircraft crossing controlled airspace;
 - f) warnings and position information on other aircraft considered to constitute a hazard;
 - g) information to assist in the navigation of aircraft
 - 1.2.3 The minimum horizontal radar separations shall be at least:
 - a- 10 NM EN-ROUTE
 - b- 6 NM TMA
 - 1.2.4 Levels assigned by the radar controller to pilots will provide a minimum terrain clearance according to the phase of flight.

1.3 Radar and Radio Failure Procedures

1.3.1 Radar Failure

In the event of radar failure or loss of radar identification, instructions will be issued to restore non-radar standard separation and the pilot will be instructed to communicate with the appropriate ATS unit.

1.3.2 Radio Failure

1.3.2.1 The radar controller will establish whether the aircraft radio receiver is working by instructing the pilot to carry out a turn of turns. If the turns are observed, the radar controller will continue to provide radar service to the aircraft.

2. SECONDARY SURVEILLANCE RADAR (SSR)

2.1 Emergency Procedures

Except when encountering a state of emergency, pilots shall operate transponders and select modes and codes in accordance with ATC instructions. In particular, when entering Tripoli FIR, pilots who have already received specific instructions from ATC concerning the setting of the transponder shall maintain that setting until otherwise instructed.

- 2.1.2 Pilots of aircraft about to enter Tripoli FIR who have not received specific instructions from ATC concerning the setting of the transponder shall operate the transponder on Mode A/3, Code 2000 before entry and maintain that code setting until otherwise instructed.
- 2.1.3 If the pilot of an aircraft encountering a state of emergency has previously been directed by ATC to operate the transponder on a specific code, this code setting shall be maintained until otherwise advised
- 2.1.4 In all other circumstances, the transponder shall be set to Mode A/3, Code 7700. Notwithstanding the procedure in 2.1.1. above, a. pilot may select Mode A/3, Code 7700 whenever the nature of the emergency is such that this appears to be the most suitable course of action.

Note: Continuous monitoring of responses on Mode A/3, Code 7700 is provided.

2.2 Radio Communication Failure and Unlawful Interference Procedures

2.2.1 Radio Communication Failure Procedures In the event of an aircraft radio receiver failure, a pilot shall select Mode A/3, Code 7600 and follow established procedures; subsequent control of the aircraft will be based on those procedures.

2.2.2 Unlawful Interference Procedures

Pilots of aircraft in flight subjected to unlawful interference shall endeavor to set the transponder to Mode A. Code 7500 to make the situation known, unless circumstances warrant the use of Mode A/B, Code 7700.

Note: Mode A, Code 7500 is permanently monitored in the Tripoli FIR.

2.3 System of SSR Code Assignment

- 2.3.1 Originating region code assignment method (ORCAM) is applied as per mid region plan.
- 2.3.2 The following functional codes are assigned by TRIPOLI ACC:
 - a) Domestic traffic mode A/3 codes 1300-1377
 - b) international traffic mode A/3 codes 2001-2077
 - c) Radio communication frequencies
 - Radar services will be made on frequencies 120.9MHz or 128.4 MHz and Approach 124.0MHz.

5. TABLE OF CRUISING LEVELS

	Track										
From 000° to 179°						From 180° to 359°					
IFR	Flight Alt	itude	VFF	R Flight Alt	itude	IFR Flight Altitude VFR Flight Alti			titude		
FL	Feet	Meters	FL	Feet	Meters	FL	Feet	Meters	FL	Feet	Meters
30	3000	900	35	3500	1050	40	4000	1200	45	4500	1350
50	5000	1500	55	55000	1700	60	6000	1850	65	6500	2000
70	7000	2150	75	7500	2300	80	8000	2450	85	8500	2600
90	9000	2750	95	9500	2900	100	10,000	3050	105	10,500	3200
110	11,000	3500	115	11,500	3500	120	12,000	3650	125	12,500	3800
130	13,000	3950	135	13,500	4100	140	14,000	4250	145	14,500	4400
150	15,000	4550	155	15,500	4700	160	16,000	4900	165	16,500	5050
170	17,000	5200	175	17,500	5350	180	18,000	5500	185	18,500	5650
190	19,000	5800	195	19,500	5950	200	20,000	6100	205	20,500	6250
210	21,000	6400	215	21,500	6550	220	22,000	6700	225	22500	6850
230	23,000	7000	235	23,500	7150	240	24,000	7300	245	24,500	7450
250	25,000	7600	255	25,500	7750	260	26,000	7900	265	26,500	8100
270	27,000	8250	275	27,500	4800	280	28,000	8550	285	28,500	8700
290	29,000	8850	300	30,000	9150	310	31,000	9450	320	32,500	9750
300	33,000	10,050	340	34,000	10,350	350	35,000	10,650	360	36,000	10,950
370	37,000	11,300	380	38,000	11,600	390	39,000	11,900	400	40,000	12,200
410	41,000	12,500	420	42,000	12,800	430	43,000	13,100	440	44,000	13,400
450	45,000	13,700	460	46,000	14,000	470	47,000	14,350	480	48,000	14,650
490	49,000	14,950	500	50,000	15,250	510	51,000	15,550	520	52,000	15,850
etc.	etc.	etc.	etc.	etc.	etc.	etc.	etc.	etc.	etc.	etc.	etc.

6. OPERATIONS WITHIN RVSM AIRSPACE OF TRIPOLI FIR

- 6.1- Only RVSM approved aircraft (airworthiness and operations approval) will be cleared to operate within TRIPOLI FIR between FL290 and FL410 (inclusive).
- 6.2 Operators must contact their national authority without delay, in order to make sure to obtain an RSVM homologation
- 6.3- The airspace within Tripoli FIR between FL290 and FL410 inclusive, as described in ENR 2.1-1 and 2.1-2, is RVSM air space.
- 6.4- Within this airspace, the vertical separation minimum shall be;
 - a)- 1000ft between RVSM approved aircraft;
 - **b)-** 2000ft between;
 - i)- formation flights of State aircraft and any other aircraft operating within the RVSM airspace and,
 - (i) an aircraft experiencing a communications failure in flight and any other aircraft, when both aircraft are operating within the RVSM airspace;
 - iii) non -RVSM approved aircraft and any other aircraft operating within the RVSM airspace .
- 6.5 When an aircraft operating in RVSM airspace encounters wake turbulence, a report should be filed by completing the appropriate Wake Turbulence Report Form.

INTENTIONALLY BLANK

ENR 1.8 REGIONAL SUPPLEMENTAFIY PROCEDURES (DOC 7030)

In the following sections the Supplementary Procedures applicable are given in their entirety; "any differences" are printed in CAPI TAL LETTERS where they exist

1. VISUAL FLIGHT RULES (VFR) (ANNEX 2, 4.8)

VFR flights when operated within a control zone established at an aerodrome serving international flights and in specified portions of the associated terminal control area shall:

- a) have two-way radio communications
- b) obtain permission from the appropriate air traffic control unit; and
- c) report positions. as required
 Note: The phrase "specified portions of the associated terminal control area" is intended to signify at least those portions of the TMA used by international IFR flights in association with approach

holding, departure and noise abatement procedures.

2. SPECIAL APPLICATION OF INSTRUMENT FLIGHT RULES

Flights shall be conducted in accordance with instrument Flight Rules (even when not operating in instrument meteorological conditions) when operated;

- a. ABOVE FL 195.
- b. at transonic and supersonic speeds .

3. AIR TRAFFIC ADVISORY SERVICES (PANS. ATM 9.1.4)

All IFR flights shall comply with the procedures for air traffic advisory service when operating in advisory airspace.

4. ADHERENCE TO ATC APPROVED ROUTE (ANNEX 2, 3.6.2.2)

If an aircraft has inadvertently deviated from the route specified in its ATC clearance, it shall forthwith take action to regain such route within one hundred (100)" nautical miles from the" position at which the deviation was observed.

5. AIR-GROUND COMMUNICATIONS AND IN-FLIGHT REPORTING

Aircraft flying within uncontrolled airspace shall maintain continuous watch on the appropriate air/ground frequency of the Air Traffic Services Units serving the Flight Information Region within which the aircraft is flying.

5.1 Contents of Position Reports

5.1.1 Position Reports

Position reports should normally contain the aircraft identification, position, time, flight level, next position and time over, and ensuing significant point, except such reports on FIR boundary reporting points which shall include meteorological observations specified in section 3 of the AIREP.

5.1-2 Abbreviated Reports

Abbreviated position reports should only contain the aircraft identification, position, time and flight level, unless otherwise specified. The initial call after changing a radio frequency may contain only the aircraft identification and level and subsequently any position report may contain only air craft identification, position and time.

5.2 provision of Abbreviation Reports

Abbreviated position reports should be pro-vided:
a) in defined portions of the airspace designated by the appropriate ATS authority where, through SSR, individual identity and verified Mode C information are permanently available in the form of labels associated with the radar position of the aircraft concerned and, b) where reliable air-ground communications coverage and direct pilot-to-controller communication exist.

5.3 Air Traffic Control Clearances

5.3.1 Contents of Clearances

A pilot-in-command shall, if at any time in doubt, request a detailed description of the route from ATS.

6. USE OF SSR

SSR-derived information may be used alone for the provision of horizontal separation between aircraft within and/or outside the coverage area of the associated primary radar except when applying reduced radar separation of 5 NM for level change within Tripoli TMA and Tripoli Approach area of responsibility.

ENR 1.8-2 AIP 21 OCT 10 LIBYA - GSPAJ

7. FLIGHT INFORMATION SERVICE

7.1 Transmission of SIGMET Information

7.1.1 SIGMET information shall be transmitted to aircraft with the least possible delay on the initiative of the appropriate ATS unit, by the preferred method, or directed transmission followed by acknowledgement or by a general call when the number of aircraft would render the preferred method impracticable.

7.2 Transmission of Amended Aerodrome Forecast

7.2.1 Amended aerodrome forecasts shall be passed to aircraft within 60 minutes from the aerodrome of destination, unless the information would have been made available through other means.

8. AIR TRAFFIC SERVICES COORDINATION

8.1 Co-ordination between Units providing Area Control Services

If a flight should enter an adjacent area, information concerning any revision of estimate of three minutes shall be forwarded to the adjacent Area Control Centre, normally by telephone.

9. ALERTING SEARCH AND RESCUE SERVICES

9.1 Routes and Equipment of Private Aircraft

General aviation aircraft operating over designated areas, land or sea, where search and rescue operations would be difficult, should:

- a) carry appropriate survival equipment;
- b) follow the routes or specified procedures if not equipped with two-way radio, except that under special circumstances the appropriate authority may grant specific exemptions from this requirement.

9.2 Alerting Services

The procedures for "Alerting Service" detailed in the PANS-RAC: part VI, 2. are applicable to all sectors of flights over mountainous or sparsely populated areas, including sea areas.

AIP ENR 1.10-1 LIBYA 17 JUN 21

ENR 1.10 FLIGHT PLANNING

1. PROCEDURES FOR THE SUBMISSION OF A FLIGHT PLAN

1.1 Because of the great difficulties of Search and Rescue operations within territory of Libya. the pilot is strongly advised, regardless of his formal obligations, to file a flight plan for every flight. At aerodromes which are not manned by the Authority of Civil Aviation, the flight plan should be filed with the Reporting Officer, if established, or with some other responsible person. In this way the general intentions regarding the flight will be known, or will ultimately become available to the Air Traffic Services, and could be used as a basis for any search operations that might become necessary

1.2 Submission of a Flight Plan

1.2.1 information relative to an intended flight or portion of a flight shall be in the form of a Flight Plan.

1.2.2 Requirement to submit a Flight Plan

1.2.2.1 A flight plan shall be submitted for any flight or portion of a flight within the territory of the Libya. A flight plan shall he submitted before departure. For domestic flights originating from aerodromes without adequate communication facilities, flight plans may be submitted during flight.

Note: For domestic flights with intermediate Stop(s) at aerodrome(s) without adequate communication facilities through flight plans are accepted.

1.2.2.2 Nevertheless, irrespective of the flight routes on which an aircraft is to be flown, before an aircraft takes off from any aerodrome which is manned by the Authority of Civil Aviation, the Commander of the aircraft shall cause a flight plan to be submitted thereto in respect of any flight which he intends to make outside the circuit of that aerodrome.

Note: The Air Traffic Services Unit may, at their discretion, exempt the Commander of an aircraft from the requirements of this paragraph in respect of an intended flight which is to be made in a local flying area within a radius of 20 NM and in which the aircraft will return to the aerodrome of departure without making an intermediate landing.

1.3 Time of Submission

- a) A flight plan shall be submitted at least (1) hour prior to EOBT, except flights destined for overflying restricted areas daily imposed by CFMU in the European Region. These are to submit their flight plans 3 hours before EOBT, taking into account the requirements of ATS units in the airspace along the route to be flown for timely information, including requirements tor early submission for Air Traffic Flow Management (ATFM) purposes.
- b) In the event of a delay of thirty (30) minutes in excess of approved EOBT the flight plan shall be amended or a new flight plan submitted and the old flight plan cancelled.

1.4 Place of Submission

- a) Flight plans shall be submitted at Tripoli (ARO) AFS HLLTZPZX or at the (ARO) of the aerodrome of departure.
- b) In the absence of such a unit at the aerodrome of departure, a flight plan shall be submitted by telephone or by any communication means available to the nearest ATS unit.

1.5 Contents and Form of a Flight Plan

- a) ICAO Flight Plan Forms are available at all aerodrome ATS units. The instructions for completing those forms shall he followed.
- Flight plans concerning IFR flights along ATS routes need not include FIR boundary estimates. Inclusion of FIR boundary estimates is, however, required for international VFR flights.
- c) When a flight plan is submitted by telephone, teletype or any communication means, the sequence of items in the flight plan form shall be strictly followed.
- d) Accumulated Estimated Elapsed Time for Tripoli FIR boundary is required in flight Plans.

ENR 1.10-2 AIP 21 OCT 10 LIBYA - GSPAJ

1.6 Adherence to ATS Route Structure

No flight plans shall be filed for routes deviating from the published ATS route structure unless prior permission has been obtained from Tripoli or Benghazi ATC authorities.

1.7 Arrival Report (Closing of a Flight Plan)

A report of arrival shall be made at the earliest possible moment after landing to the airport office of the arrival aerodrome by any flight for which a flight plan has been submitted, except when the arrival has been acknowledged by the local ATS unit. After landing at an aerodrome which is not the destination aerodrome (diversionary landing), the local ATS unit shall be specifically informed accordingly. In the absence of a local ATS unit at the aerodrome of diversionary landing, the pilot is responsible for passing the arrival report to the destination aerodrome.

Arrival reports shall contain the following elements of information:

- aircraft identification
- departure aerodrome
- destination aerodrome
- time of arrival.

In the case of diversion, insert the "arrival aerodrome" between "destination aerodrome" and "time of arrival".

2. REPETITIVE FLIGHT PLAN SYSTEM

To be developed.

3. CHANGES TO THE SUBMITTED FLIGHT PLAN

To be developed.

ENR 1.13 UNLAWFU INTERFERENCE

1. GENERAL

The following procedures are intended for use by aircraft when unlawful interference occurs and the aircraft is unable to notify an ATS unit of this fact.

2. PROCEDURES

- 2.1 Unless considerations aboard the aircraft dictate otherwise. the pilot in-command should attempt to continue flying on the assigned track and at the assigned cruising level at least until notification to an ATS unit is possible
 - or the aircraft is within radar coverage.
- 2.2 When an aircraft, subjected to an act of unlaw- ful interference, must depart from its assigned track or its assigned cruising level without being able to make radiotelephony contact with ATS, the pilot-in-command should, whenever possible:
- Attempt to broadcast warnings on the VHF emergency frequency and other appropri- ate frequencies unless considerations aboard the aircraft dictate otherwise. Other equipment such as on-board transponders, data links, etc. should also be used when it is advantageous to do so and circum- stances permit; and
- b) Proceed in accordance with applicable special procedures for in-flight contingencies where such procedures have been established and promulgated in Doc 7030 -Regional Supplementary Procedures; or
- Aircraft subject to unlawful interference shall proceed at level which differs from the cruising levels normally used by IFR flights by :
 - i) 500ft in an area where vertical separation minimum of 1000ft is applied.
 - ii)- 1000ft in an area where vertical separation minimum of 2000ft is applied .

INTENTIONALLY BLANK

ENR 2. AIR TRAFFIC SERVICES AIRSPACE

ENR 2.1 FIR, ACC, TMA

Name Lateral and vertical Limits Providing Service Area and Condition of use Hours of Department of Use Hours of Operation Prequency Purpose Purpose		T	ENR 2.1 FIR, ACC, TWA		
TRIPOLI FIR		Providing	of use Hours of		Remarks
N342000 E013000 N342000 E0233500 N340000 E0241000 FIC INFORMATION 11300 KHz 5517 KHz 5217 KHz	1	2	3	4	5
to Western Border Libya to along Western Border Libya to N322200 E0113000 N322200 E0113000 N342000 E0113000 UNL GND Class of airspace A above FL195 C at & below FL195 G outside controlled airspace BENGHAZI ACC ENG H24 BENGHAZI CONTROL ENG H24 RVSM AIRSPACE BITN FL290 AND FL 410 INCLUSIVE BENGHAZI TMA Circle of 105 NM radius from Benina VOR/DME BNA (N320728 E0201513) UNL 4500ft Class of airspace: A above FL195 C at & below FL195 C at & belo	N342000 E0113000 N342000 E0233500 N340000 E0241000 N314100 E0250800 N220000 E0250000 N200000 E0250000 N200000 E0240000 N193000 E0240000 N220000 E0190000	FIC TRIPOLI	INFORMATION TRIPOLI	5517 KHz 120.900 MHz	Tel.: 00218-213619614 00218-213619380
Class of airspace	to Western Border Libya along Western Border Libya to N322200 E0113000				provided
Circle of 105 NM radius from Benina VOR/DME BNA (N320728 E0201513) BENGHAZI ACC BENGHAZI CONTROL 129.200 MHz 126.500 MHz Class of airspace: A above FL195 C at & below FL195 ENG H24 Emergency Frequency Available TRIPOLI, BENG H24 SEBHA CTA circle radius 65NM centered at SEBHA VOR/DME Coor.26590700N 14270600E 3000ft MSL /FL195 (Class C) SEBHA TWR TOWER ENG H24 119.1 MHz SEBHA 121.9 MHz BENGHAZI & SEBHA 121.9 MHz TRIPOLI TMA CLASS A and C 2000 ft MSL/UNL Circle Radius 41.1NM centered at Tripoli VOR/DME coorN323946.72E0130706.27 TRIPOLI TRIPOLI APP TRIPOLI TRIPOLI APP 120.9 MHz 124.0 MHz Loss of airspace: A acc above FL195 TRIPOLI APP TRIPOLI APPROACH 124.0 MHz	GND Class of airspace A above FL195 C at & below FL195				AIRSPACE BTN FL290 AND FL 410
SEBHA CTA SEBHA SEBHA TOWER 119.1 MHz BENGHAZI & SEBHA circle radius 65NM centered at SEBHA VOR/DME TWR TOWER 121.9 MHz SEBHA Coor.26590700N 14270600E 3000ft MSL /FL195 (Class C) TRIPOLI TRIPOLI 120.9 MHz CLASS A and C 2000 ft MSL/UNL Circle Radius 41.1NM centered at Tripoli VOR/DME coor. TRIPOLI APP TRIPOLI APPROACH TRIPOLI APPROACH 124.0 MHz	Circle of 105 NM radius from Benina VOR/DME BNA (N320728 E0201513) <u>UNL</u> 4500ft Class of airspace: A above FL195		CONTROL ENG		Frequency Available
CLASS A and C 2000 ft MSL/UNL Circle Radius 41.1NM centered at Tripoli VOR/DME coorN323946.72E0130706.27 ACC CONTROL 128.4 MHz TRIPOLI APP APP APP 124.0 MHz 124.0 MHz	circle radius 65NM centered at SEBHA VOR/DME Coor.26590700N 14270600E	TWR	TOWER ENG		BENGHAZI & SEBHA
1127	CLASS A and C 2000 ft MSL/UNL Circle Radius 41.1NM centered at Tripoli VOR/DME coor.	ACC TRIPOLI	CONTROL TRIPOLI APPROACH	128.4 MHz	

INTENTIONALLY BLANK

Route designator	Track	Distance	Upper Limit Lower Limit Airspace	Lateral Limits (NM)	Direct Cruis Lev	sing	Remarks Controlling Units
Significant Points Coordinates	(MAG)	(NM)	Classification	(INIVI)	Even	Odd	Frequency
G659 MITIGA DVOR/DME MTG N325336E0131626	149° 329°	36	<u>UNL</u> FL195 CLASS A				Tripoli CONTROL VHF 120.9 MHz VHF 128.4 MHz
▲ KADRA NDB KDR N322200E0133700	148° 330°	40	<u>FL195</u> FL065	10			
▲ BENI WALID VOR/DME WLD N314657E0140034	<u>124°</u> 302°	90	CLASS C				MTG - KDR AVAILABLE FOR HLLM ARRS/DEPS
△ NJEIM N305536E0152736 ▲ TAMIT	122° 302°	20					ONLY
N304412E0154654 ▲ TILAL	<u>121°</u> 301°	35					Tripoli INFORMATION
N302448E0162100 A DERNI N301328E0164015	122° 302°	20					HF 11300 HF 5517
DAHRA VOR/DME DHR N292803E0175554	<u>122°</u> 303°	80		20			
▲ LEBKO N284908E0193736	<u>111°</u> 291°	97	<u>UNL</u>				
▲ DAYFA N281918E0205236	112° 292°	72	FL065 CLASS F			•	
A SARIR NDB GS N273900E0223000	<u>112°</u> 292°	95					
G660 ▲ BENI WALID VOR/DME WLD N314657E0140034	107° 288°	70	<u>UNL</u> FL195 CLASS A	10	1		Tripoli CONTROL VHF 120.9 MHz VHF 128.4 MHz
▲ NAMWA N312542E0151824 ▲ SIRTE VOR/DME SRT N310333E0163553	<u>106°</u> 287°	70	<u>FL195</u> FL065 CLASS C				WLD - SRT AVAILABLE FOR HLGD ARRS / DEPS ONLY.
N310333E0163553					,	*	

Route designator Significant Points	Track (MAG)	Distance (NM)	Upper Limit Lower Limit Airspace	Lateral Limits (NM)	Direct Crui Lev		Remarks Controlling Units
Coordinates	(MAG)	(1411)	Classification	(,	Even	Odd	Frequency
G661 ▲ MISRATA VOR/DME MIS N321852E0150440 ▲ NAMWA N312542E0151824	166° 346° 163°	54	UNL FL195 CLASS A		↑		Tripoli CONTROL VHF 120.9 MHz VHF 128.4 MHz Tripoli INFORMATION HF 11300
 △ NJEIM N305536E0152736 ▲ HON NDB HON N290800E0155700 	343° 165° 345°	31 110	<u>FL195</u> FL065 CLASS C	10		 	MIS - HON AVAILABLE FOR HON -MIS ARRS/DEPS ONLY.
G662 ▲ NAGDA N321500E0162328 ▲ LABAX	170° 350°	32	<u>UNL</u> FL195 CLASS				Tripoli CONTROL VHF 120.9MHz VHF 128.4MHz
N314327E0162855	<u>169°</u> 350°	40	A	10		+	NAGDA- SRT ONE WAY SOUTHBOUND
▲ SIRTE VOR/DME SRT N310333E0163553	<u>196°</u> 016°	41	<u>FL195</u> FL065 CLASS C		<u> </u>		ONLY. SRT - HON AVAILABLE FOR HLGD, HLON
▲ TILAL N302448E0162100 ▲ HON NDB HON N290800E0155700	193° 013°	79			<u> </u>		ARRS/ DEPS ONLY.
G663F SEBHA VOR/DME SEB N265944E0142735 HORUJ	082° 263°	96		30	†		Sebha Tower VHF119.1MHz
N270906E0161442 ▲ MASIT N272816E0194016	<u>081°</u> 263°	184	FL245 FL065 CLASS F				
▲ ARRIG N272930E0200112	084° 264°	19					Tripoli INFORMATION HF 11300 HF 5517
▲ KARUB N273524E0211524	082° 263°	66					
SARIR NDB GS N273900E0223000	<u>084°</u> 264°	66			•		

Route designator Significant Points	Track (MAG)	Distance (NM)	Upper Limit Lower Limit Airspace	Lateral Limits (NM)	Crui Lev	tion of ising vels	Remarks Controlling Units
Coordinates			Classification		Even	Odd	Frequency
V100 ▲ MISRATA N321852E0150440 ▲ CIBIA N324012E0160112 ▲ SOLUN N325912E0170000 ▲ DOLFI N331248E0174312 ▲ TUNAR N332448E0182212 ▲ FARUJ N333124E0184354 ▲ RAMLI N334300E0192300 ▲ RASNO (FIR BDRY) N342000E0212758	244° 064° 248° 067°	52 53 39 35 19 35	FL195 FL065 CLASS C	10			Tripoli CONTROL VHF 120.9 MHz VHF 128.4 MHz Benghazi CONTROL VHF 129.2 MHz VHF 126.5 MHz
V200 ▲ SOLUN N325912E0170000 ▲ IVAKI N325530E0150618 ▲ BREAM N325330E0140500	<u>268°</u> 087°	97 51	<u>UNL</u> FL195 CLASS A <u>FL195</u> FL065 CLASS C		•		Tripoli CONTROL VHF 120.9 MHz VHF 128.4 MHz

Track (MAG)	Distance (NM)	Upper Limit Lower Limit Airspace	Lateral Limits (NM)	Direction of Cruising Levels		Remarks Controlling Units
		Classification		Even	Odd	Frequency
<u>124°</u> 305°	50	<u>UNL</u> FL195				Tripoli
<u>126°</u> 307°	22	CLASS A				CÓNTROL VHF 120.9 MHz VHF 128.4 MHz
<u>106°</u> 284°	25	<u>FL195</u>				
<u>099°</u> 280°	102	FL065 CLASS C	10			
<u>091°</u> 272°	98					
<u>091°</u> 271°	71	<u>FL195</u> FL125				BENGHAZI CONTROL
<u>088°</u>	94	CLASS C				VHF 129.2MHz VHF 126.5MHz
200					+	
	124° 305° 126° 307° 106° 284° 099° 280° 091° 272° 091° 271°	(MAG) (NM) 124° 305° 50 126° 307° 22 106° 284° 25 280° 102 091° 272° 98 091° 271° 71 088° 94	Track (MAG) Distance (NM) Lower Limit Airspace Classification 124° 305° 50 UNL FL195 305° 22 CLASS A 126° 284° 25 FL195 FL065 288° 102 FL195 FL065 091° 277° 98 FL195 FL125 CLASS C 088° 94 FL195 FL125 CLASS C	Track (MAG) Distance (NM) Lower Limit Airspace Classification Limits (NM) 124° 305° 50 UNL FL195 SCLASS A FL195 CLASS A FL195 FL195 FL195 FL195 FL195 FL065 CLASS C TO 10	Track (MAG) Distance (NM) Lower Limit Airspace Classification Limits (NM) Cruit Lev Even 124° 305° 50 UNL FL195 CLASS A 4 4 126° 307° 22 CLASS A 4 4 106° 284° 25 FL195 FL065 CLASS C 10 <	Track (MAG) Distance (NM) Lower Limit Airspace Classification Limits (NM) Cruising Levels 124° 305° 50 UNL FL195 CLASS A FL195 FL065 CLASS C 126° 284° 22 106° 284° 102 102 100 <

Route designator Significant Points	Track (MAG)	Distance (NM)	Upper Limit Lower Limit Airspace	Lateral Limits (NM)	Direct Cruis Lev	sing els	Remarks Controlling Units
Coordinates			Classification		Even	Odd	Frequency
V700 ABU ARGUB VOR/DME ABU N322746E0131010		36	<u>UNL</u> FL195 CLASS A		1		Tripoli CONTROL VHF 120.9 MHz VHF 128.4 MHz
▲ TAWUS N315218E0131736▲ GHERIAT NDB GRT N302341E0133509	<u>169°</u> 348°	90	<u>FL195</u> FL065 CLASS C	10		•	
V800							
ABU ARGUB VOR/DME ABU N322746E0131010 GWASM N320800E0130700 MIZDA	187° 006° 186° 007°	20	<u>FL325</u> FL195 CLASS A	10	†		Tripoli CONTROL VHF 120.9 MHz VHF 128.4 MHz
VOR/DME IZD N312709E0130038	184° 003°	41 115	<u>FL195</u> FL065				Tripoli
N293200E0125000 ▲ WANIN N281000E0124800	<u>180°</u> 360°	82	CLASS C				INFORMATION HF 11300 HF 5517
▲ UBARI NDB UBR N263552E0124648	<u>179°</u> 360°	94				 	

Route designator Significant Points	Track (MAG)	Distance (NM)	Upper Limit Lower Limit Airspace	Lateral Limits (NM)	Direct Crui Lev	sing	Remarks Controlling Units
Coordinates		· ·	Classification		Even	Odd	Frequency
V900 ABU ARGUB VOR/DME ABU N322746E0131010 A SAKKR N321236E0124748 A SINAW N310600E0110600	231° 050° 231° 051°	24 109	<u>UNL</u> FL195 CLASS A <u>FL195</u> FL065 CLASS C	10			Tripoli CONTROL VHF 120.9 MHz VHF 128.4 MHz V900 is Available for domestic flights only.
GHADAMES VOR/DME GAD N300949E0094429	230° 050°	90			+		
V950 ▲ CLAMS N331700E0120800 △ UKSAG N330448E0124530 △ CONCH N325948E0130000 ▲ MITIGA DVOR/DME MTG N325336E0131626 ▲ NAWRS N325324E0133148 △ BREAM N325330E0140500 ▲ GARUS N324000E0170000	111° 292° 112° 292° 089° 269° 270° 093° 273°	34 13 15 13 28	<u>UNL</u> FL195 CLASS A <u>FL195</u> FL125 CLASS C	10			Tripoli CONTROL VHF 120.9 MHz VHF 128.4 MHz AVAILABLE FOR HLLM ARR / DEPS ONLY.

Route designator Significant Points Coordinates	Track (MAG)	Distance (NM)	Upper Limit Lower Limit Airspace Classification	Lateral Limits (NM)	Direct Cruis Lev Even	sing	Remarks Controlling Units Frequency
W9 ■ BENINA VOR/DME BNA N320728E0201513 ■ MARSA BREGA NDB MB N302506E0193421	196° 016° 234° 054°	108 103	<u>UNL</u> FL195 CLASS A	10		↑	BENGHAZI CONTROL VHF 129.2 MHz VHF 126.5 MHz
■ DAHRA VOR/DME DHR N292803E0175554 ■ NABUR N290307E0172012	<u>230°</u> 049°	40	<u>FL195</u> FL065 CLASS C	20			
▲ FUGHA N281001E0160541	229° 049° 230°	84					
SEBHA VOR/DME SEB N265944E0142735	049° 244°	112					Sebha Tower VHF119.1MHz
W9F ▲ TAZIT N255624E0115418	064°	151					
GHAT DVOR/DME GHT N250933E0100823	<u>243°</u> 062°	107		20			Tripoli INFORMATION HF 11300
▲ TWARG (FIR BDRY) N250301E0100200	<u>224°</u> 044°	8	<u>UNL</u> FL065 CLASS F		↓		HF 5517
W852							
▲ LOTIN N342000 E0150959							Tripoli
▲ REXUN N333206E0141539	<u>224°</u> 043°	67	<u>UNL</u> FL195 CLASS A	10			CONTROL VHF 120.9MHz VHF 128.4MHz LOTIN - NAWRS
▲ NAWRS N325324 E0133148		53	<u>FL195</u> FL065 CLASS C				ONE WAY SOUTHBUND ONLY.

Route designator Significant Points Coordinates	Track (MAG)	Distance (NM)	Upper Limit Lower Limit Airspace Classification	Lateral limits (NM)	Directi Cruis Lev Even	sing	Remarks Controlling Units Frequency
W853 ▲ MIZDA VOR/DME IZD N312709E0130038 ▲ EBITO N301222E0122407 ▲ ORBEL N282236E0113218 ▲ GHAT DVOR/DME GHT N250933E0100823	201° 021° 200° 020°	81 119 207	UNL FL195 CLASS A FL195 FL065 CLASS C	20	•	↑	Tripoli CONTROL VHF 120.9 MHz VHF 128.4 MHz Tripoli INFORMATION HF 11300 HF 5517
W854 ▲ BENI WALID VOR/DME WLD N314657E0140034 ▲ HON NDB HON N290800E0155700 ▲ ALGAF N281000E0151600 ▲ SEBHA VOR/DME SEB N265944E0142735	147° 326° 210° 030°	188 68 82	<u>UNL</u> FL195 CLASS A FL195 FL065 CLASS C	10		↑	Tripoli CONTROL VHF 120.9 MHz VHF 128.4 MHz Sebha Tower VHF119.1MHz Tripoli INFORMATION HF 11300 HF 5517

Route designator Significant Points	Track (MAG)	Distance (NM)	Upper Limit Lower Limit Airspace	Lateral limits (NM)	Direction of Cruising Levels		Cruising Levels		Remarks Controlling Units
Coordinates	(- /	, ,	Classification		Even	Odd	Frequency		
W860					†	1	Tripoli		
MITIGA DVOR/DME MTG N325336E0131626	<u>108°</u> 288°	38					CONTROL VHF 120.9 MHz VHF 128.4 MHz		
▲ KHOMS N324024E0135912	<u>109°</u> 290°	59	<u>UNL</u> FL195						
▲ MISRATA VOR/DME MIS N321852E0150440	113° 293°	52	CLASS A	10			BENGHAZI		
△ BAGLI N315636E0160000	<u>116°</u> 296°	81	FI 405				CONTROL VHF 129.2 MHz VHF 126.5 MHz		
▲ CILBA N311800E0172400		404	<u>FL195</u> FL065 CLASS C						
▲ MARSA BREGA NDB MB N302506E0193421	<u>112°</u> 293°	124							

Route designator Significant Points	Track (MAG)	Distance (NM)	Upper Limit Lower Limit Airspace	Lateral limits (NM)	Direct Crui Lev	sing els	Remarks Controlling Units
Coordinates			Classification		Even	Odd	Frequency
W861							
▲ NASER N315112E0235518	<u>297°</u> 117°	111	<u>UNL</u> FL195			†	BENGHAZI CONTROL
▲ LABRAQ NDB LAB N324641E0220113	<u>245°</u> 063°	98	CLASS A <u>FL195</u>				VHF 129.2 MHz VHF 126.5 MHz
BENINA VOR/DME BNA N320728E0201513	<u>249°</u> 069°	83	FL065 CLASS C				
▲ BOURI N314124E0184259							Tripoli CONTROL VHF 120.9 MHz
▲ CILBA N311800E0172400	<u>249°</u> 069°	71					VHF 128.4 MHz
▲ SIRTE VOR/DME SRT N310333E0163553	<u>248°</u> 069°	44		20			
▲ TAMIT N304412E0154654	<u>248°</u> 069°	46					Tripoli INFORMATION
△ ALBEY N302600E0150000	<u>245°</u> 065°	44	<u>UNL</u> FL065				HF 11300 HF 5517
▲ SWIRF N295300E0134300	<u>243°</u>	74	CLASS F				
▲ HAMRA N293200E0125000	063°	52					
▲ NGIRT N285200E0112700	<u>242°</u> 062°	82					
ZARZAITINE VOR/DME IMN N280400E0093939	<u>242°</u> 062°	106			•		

Route designator Significant Points Coordinates	Track (MAG)	Distance (NM)	Upper Limit Lower Limit Airspace Classification	Lateral Limits (NM)	Direct Cruis Lev Even	sing	Remarks Controlling Units Frequency
W863 ▲ MITIGA DVOR/DME MTG N325336E0131626 ▲ DERKA N330900E0132202	<u>198°</u> 018°	16	<u>UNL</u> FL195 CLASS A	10	†	<u> </u>	Tripoli CONTROL VHF 120.9 MHz VHF 128.4 MHz
▲ ODGAX N333754E0135256 ▲ LUMED N342000E144203	<u>223°</u> 042°	39 57	FL195 FL065 CLASS C				DERKA-LUMED ONE WAY NORTHBOUND ONLY.

INTENTIONALLY BLANK

ENR 3.3 AREA NAVIGATION (RNAV) ROUTES

Route designator (RNP) Significant Points	Track (MAG)	Distance (NM)	Upper Limit Lower Limit Airspace	Lateral Limits (NM)	Direct Crui: Lev	els	Remarks Controlling Units
Coordinates			Classification		Even	Odd	Frequency
L31 (RNP5) ▲ LOTIN (FIR BDRY) N342000E0150959 ▲ IVAKI N325550E0150630 ▲ MISRATA VOR/DME N321852E0150440	<u>180°</u> 359°	84 37	UNL FL195 CLASS A FL195 FL065 CLASS	10			Tripoli CONTROL VHF 120.9 MHz VHF 128.4 MHz LOTIN-MIS ONE WAY SOUTHBOUND ONLY.
M1 (RNP5) A RASNO (FIR BDRY) N342000E0212758 A REDFI N332030E0205442 A WHALE N324436E0203300 A BENINA VOR/DME N320728E0201513	205° 025° 199° 019°	66 40 40	UNL FL195 CLASS A FL195 FL065 CLASS C	10			BENGHAZI CONTROL VHF 129.2 MHz VHF 126.5 MHz

Route designator (RNP) Significant Points	Track (MAG)	Distance (NM)	Upper Limit Lower Limit Airspace	Lateral Limits	its <u>Levels</u>		Remarks Controlling Units
Coordinates	. ,	, ,	Classification	(NM)	Even	Odd	Frequency
M7 (RNP5) ▲ BONAR (FIR BDRY) N342000E0190213	170° 351°	92 56	<u>UNL</u> FL195 CLASS A	10			BENGHAZI CONTROL VHF 129.2MHz VHF 126.5MHz
N324818E0191536 ▲ RIGED N315251E0192258	<u>171°</u> 351°	88	<u>FL195</u> FL065 CLASS C				ONE WAY SOUTHBOUND ONLY.
▲ MARSA BREGA NDB MB N302506E0193421						+	
M600 (RNP5)							Tripoli
SARKI (FIR BDRY) N342000E0131447 △ SKATE N334500E0130018	<u>197°</u> 016°	37 42	<u>FL245</u> FL195 CLASS A <u>FL195</u>	10	†		CONTROL VHF 120.9 MHz VHF 128.4 MHz ZAW-SARKI ONE WAY NORTHBOUND ONLY.
△ UKSAG N330448E0124530		42	FL065 CLASS C				NOTE . Operators
▲ ZAWIA VOR/DME ZAW N324643E0123847		19					Intended To FPL VIA M600 Should Select Even Level Due To FL Allocation Scheme BTN Tripoli ACC and Malta ACC.

Route designator (RNP) Significant Points	Track (MAG)	Distance (NM)	Upper Limit Lower Limit Airspace	Lateral Limits	Direct Crui: Lev	sing	Remarks Controlling Units
Coordinates	(1111/0)	(1411)	Classification	(NM)	Even	Odd	Frequency
M620 (RNP5) ■ BONAR (FIR BDRY) N342000E0190213 ■ RAMLI N334300E0192300 □ PUFER N325901E0194748	152° 332°	41 48 15	FL195 FL065 CLASS C	10			BENGHAZI CONTROL VHF 129.2MHz VHF 126.5 MHz BONAR-BNA ONE WAY SOUTHBOUND ONLY.
△ ATOLL N324500E0195454		41				\	
BENINA VOR/DME BNA N320728E0201513 DAMUN	<u>158°</u> 338°	105					
N302805E0205530		163					Tripoli
▲ VATAX N275312E0215602		16		10			INFORMATION HF11300 HF 5517
▲ SODOR N273747E0220159	<u>158°</u> 339°	040					
KUFRA VOR/DME KFR N240914E0231828		219			l	+	
M621 (RNP5) ▲ OLMAX (FIR BDRY) N342000E0180750		25	<u>UNL</u> FL195 CLASS A				Malta ACC VHF 123.625 MHz
▲ ERMIX N335819E0182401	<u>145°</u> 325°	32	FL195				BENGHAZI CONTROL
▲ FARUJ N333124E0184354		51	FL065 CLASS C	10			VHF 129.2MHz VHF 126.5 MHz
▲ RZAAM N324818E0191536	<u>126°</u> 306°	65					BNA-OLMAX ONE WAY NORTHBOUND
BENINA VOR/DME BNA N320728E0201513							ONLY.

Route designator (RNP) Significant Points	Track (MAG)	Distance (NM)	Upper Limit Lower Limit Airspace	Lateral Limits	Direction Cruis	ing	Remarks Controlling Units
Coordinates	(IVIAG)	(INIVI)	Classification	(NM)	Even	Odd	Frequency
M622 (RNP5) ■ BENINA VOR/DME BNA N320728E0201513 ■ RZAAM N324818E0191536 ■ TUNAR N332448E0182212 ■ LETNO	306° 126° 305° 125°	65 58 57	<u>UNL</u> FL195 CLASS A <u>FL195</u> FL065 CLASS C	10			BENGHAZI CONTROL VHF 129.2 MHz VHF 126.5 MHz BNA-INDOT ONE WAY NORTHBOUND ONLY
N340000E0172811 INDOT (FIR BDRY) N342000E0165653		33			+		Malta ACC VHF130.975 MHz
M726 (RNP5) ▲ SARKI (FIR BDRY) N342000E0131447 ▲ DISOL N334113E0131428 △ SHELL N332024E0131530 ▲ MITIGA DVOR/DME MTG	179° 359° 177° 357°	37 21 27	UNL FL195 CLASS A FL195 FL065 CLASS C	10	<u> </u>		Tripoli CONTROL VHF 120.9 MHz VHF 128.4 MHz DISOL-SARKI ONE WAY NORTHBOUND ONLY. AVAILABLE FOR HLLM ARRS/DEPS ONLY.
N325336E0131626 M727 (RNP5) ▲ ABRAM (FIR BDRY) N342000E0123816 ▲ ZAWIA VOR/DME ZAW N324643E0123847	178° 359°	93	<u>UNL</u> FL195 CLASS A <u>FL195</u> FL065 CLASS C	10			Tripoli CONTROL VHF 120.9 MHz VHF 128.4 MHz ABRAM-ZAW ONE WAY SOUTHBOUND ONLY.
M732 (RNP5) ▲ ELIMO (FIR BDRY) N342000E0162210 ▲ EVRAN N340000E0164635 ▲ DOLFI N331248E0174312	133° 313° 169° 348°	28.4 66.7	UNL FL195 CLASS A FL195 FL065 CLASS C	10		•	BENGHAZI CONTROL VHF 129.2 MHz VHF 126.5 MHz ELIMO-DOLFI ONE WAY SOUTHBOUND ONLY.

Route designator (RNP) Significant Points	Track (MAG)	Distance (NM)	Upper Limit Lower Limit Airspace	Lateral Limits (NM)	Direct Crui: Lev	sing	Remarks Controlling Units
Coordinates	(WAG)	(I VIVI)	Classification	(14.11.)	Even	Odd	Frequency
UM215 (RNP5) ▲ LUMED (FIR BDRY) N342000E0144203	151° 331°	64			↑		Tripoli CONTROL VHF 120.9 MHz VHF 128.4 MHz
▲ TULIR N332240E0151613	<u>151°</u> 332°	154	<u>UNL</u> FL195 CLASS A				TONBA-LUMED ONE WAY
▲ SIRTE VOR/DME SRT N310333E0163553		64					NORTHBOUND ONLY.
▲ SOLAB N300235E0165832	<u>160°</u> 340°	62		10			Tripoli INFORMATION HF 11300 HF 5517
▲ NABUR N290307E0172012		207					
▲ KANIR N254613E0182904	<u>161°</u> 341°		<u>UNL</u> FL245				
TONBA (FIR BDRY) N213518E0195112		261	CLASS F				
UM600 (RNP5) SARKI (FIR BDRY) N342000E0131447	<u>197°</u> 017°	37			†		Tripoli CONTROL VHF 120.9 MHz VHF 128.4 MHz
△ SKATE N334500E0130018	<u>196°</u>	42	<u>UNL</u>	10			ZAW-SARKI ONE WAY NORTHBOUND ONLY.
△ UKSAG N330448E0124530	016°	19	FL245 CLASS A				Tripoli INFORMATION
▲ ZAWIA VOR/DME ZAW N324643E0123847	<u>209°</u> 027°	104				<u>†</u>	HF 11300 HF 5517
▲ GALPO N311534E0113851	208°						Intended To FPL VIA UM600 Should Select Even Level
▲ TOKDA N303311E0111144	027°	48					Due To FL Allocation Scheme
ZARZAITINE VOR/DME IMN N280400E0093939	<u>207°</u> 027	169					BTN Tripoli ACC and Malta ACC.

Route designator (RNP) Significant Points Coordinates	Track (MAG)	Distance (NM)	Upper Limit Lower Limit Airspace Classification	Lateral Limits (NM)	Direction of Cruising Levels Even Odd		Remarks Controlling Units Frequency
UM620 (RNP5) BONAR (FIR BDRY) N342000E0190213 ARAMLI N334300E0192300 □ PUFER N325901E0194748 □ ATOLL N324500E0195454 BENINA VOR/DME N320728E0201513 A DAMUN N302805E0205530 A VATAX N275312E0215602 A SODOR N273747E0220159 A KUFRA VOR/DME KFR N240914E0231828	152° 332° 158° 338°	41 48 15 41 105 163 16	<u>UNL</u> FL195 CLASS A	10			BENGHAZI CONTROL VHF 129.2MHz VHF 126.5MHz BONAR -BNA ONE WAY SOUTHBOUND ONLY. Tripoli INFORMATION HF 11300 HF 5517

Route designator (RNP) Significant Points	Track (MAG)	Distance (NM)	Upper Limit Lower Limit Airspace	Lateral Limits (NM)	Direction Cruis Leve	ing	Remarks Controlling Units
Coordinates	(,	(,	Classification	, ,	Even	Odd	Frequency
UM727 (RNP5) ▲ ZAWIA VOR/DME ZAW N324643E0123847 ▲ VASUT N300000E0124237 ▲ UBARI NDB UBR N263552E0124648 ▲ TUBET N250000E0124008 ▲ DEKIL (FIR BDRY) N220000E0122806	179° 357° 177° 357° 182° 002°	166 204 96 180	<u>UNL</u> FL325 CLASS A <u>UNL</u> FL325 CLASS F	10			Tripoli CONTROL VHF 120.9 MHz VHF 128.4 MHz Note: It is mandatory for operators to flight plan this route at FL330 or above due to flight level allocation scheme applicable between Tripoli ACC and N'djamena ACC . Tripoli INFORMATION HF11300 HF 5517
UM731(RNP5) ▲ FARES (FIR BDRY) N320949E0105652		19	<u>UNL</u> FL325 CLASS A		†	1	Tripoli CONTROL VHF 120.9 MHz VHF 128.4 MHz
▲ NALUT N315101E0105854		68					Tripoli
▲ NAFUS N304436E0110954	<u>172°</u>	57		20			INFORMATION HF 11300 HF 5517
▲ DERJE N294742E0111900	352°	86					Note: It is mandatory for operators to flight plan this route at FL330 or above due to
▲ ORBEL N282236E0113218		147	UNL				Flight level allocation Scheme applicable between Tripoli ACC and
▲ TAZIT N255624E0115418			FL325 CLASS F				N'djamena ACC .
DEKIL (FIR BDRY) N220000E0122806		238			'	ļ	

Route designator (RNP) Significant Points	Track (MAG)	Distance (NM)	Upper Limit Lower Limit Airspace	Lateral Limits (NM)	Crui	ion of sing els	Remarks Controlling Units
Coordinates	(IVIAG)	(INIVI)	Classification	(14141)	Even	Odd	Frequency
UM732 (RNP5) ▲ DOLFI N331248E0174312 ▲ RIGED N315251E0192258 ▲ ROTOD N312538E0195724 ▲ ANHAR N303100E0210500 ▲ DITAR (FIR BDRY)	131° 311° 130° 310° 130° 311° 132° 312°	116 40 80 296	<u>UNL</u> FL195 CLASS A	10			BENGHAZI CONTROL VHF 129.2 MHz VHF 126.5 MHz DOLFI -DITAR ONE WAY SOUTHBOUND ONLY. Tripoli information HF 11300 HF 5517
N265903E0250000 UM979 (RNP5) ▲ LABRAQ NDB LAB							BENGHAZI
N324641E0220113 RAMLI N334300E0192300	<u>291°</u> 111°	144	<u>UNL</u> FL195 CLASS A	10			CONTROL VHF 129.2 MHz VHF 126.5 MHz
▲ NETAG N340032E0181517	284° 104° 284°	59	FL195 FL065 CLASS C	10			LAB-INDOT ONE WAY NORTHBOUND ONLY. Malta ACC
▲ INDOT (FIR BDRY) N342000E0165653	103°	68			Y		VHF 130.975 MHz
UM980 (RNP5) ▲ BONAR (FIR BDRY) N342000E0190213	<u>114°</u> 294°	110	<u>UNL</u> FL195				BENGHAZI CONTROL VHF 129.2 MHz VHF 126.5 MHz BONAR-LOSUL ONE WAY SOUTHBOUND ONLY.
▲ DARIP N333125E0210045 ▲ LOSUL (FIR BDRY) N314100E0250800	<u>115°</u> 295°	236	CLASS A	10			Eastbound traffic within RVSM level band cross LOSUL at FL290, FL330, FL370, FL410. Tripoli information HF 11300 HF 5517

Route designator (RNP) Significant Points	Track (MAG)	Distance (NM)	Upper Limit Lower Limit Airspace	Lateral Limits	Direct Cruis Lev	sing	Remarks Controlling Units
Coordinates	(MAG)	(1411)	Classification	(NM)	Even	Odd	Frequency
UM999 (RNP5)							
DITAR (FIR BDRY) N265903E0250000						†	
▲ SARIR NDB GS N273900E0223000	<u>284°</u> 104°	139.4					
△ KARUB N273524E0211524	<u>265°</u> 084°	66.4	<u>UNL</u>				
ARRIG N272930E0200112	<u>263°</u> 082°	66.2	FL245				
▲ MASIT N272816E0194016	264° 084°	18.7	Class F	20			
▲ HORUJ N270906E0161442	263° 081° 261°	184.1					Tripoli information
SEBHA VOR/DME SEB N265944E0142735	084°	96.1					HF 11300 HF 5517
▲ BURHA N272218E0124724	<u>285°</u> 103°	92.1					
▲ ZARZAITINE VOR/DME IMN N280412E0093954	284° 102°	171.6			+	l	
UN163 (RNP5) ▲ ABRAM (FIR BDRY)				10			Tripoli control VHF 120.9 MHZ VHF 128.4 MHZ
N342000E0123816		115		10			
ABU ARGUB VOR/DME ABU N322746E0131010	164 ⁰ 347 ⁰	36	<u>UNL</u> FL195				ABRAM-GRT ONE WAY SOUTHBOUND
▲ TAWUS N315218 E0131736	169 ⁰ 348 ⁰	30	CLASS A				ONLY
▲ GHERIAT NDB GRT N302341E0133509	340	90					

Route designator (RNP) Significant Points	Track (MAG)	Distance (NM)	Upper Limit Lower Limit Airspace	Lateral Limits (NM)	Cru	ction of uising evels	Remarks Controlling Units
Coordinates	, ,	, ,	Classification		Even	Odd	Frequency
UP32 (RNP5)						•	
▲ EKLIS (FIR BDRY) N342000E0202855	<u>234°</u> 053°	66					BENGHAZI CONTROL VHF 129.2 MHz VHF126.5 MHz
RAMLI N334300E0192300 • ORGON	<u>213°</u> 033°	61	<u>UNL</u>				
N325246E0184052	212° 032°	115	FL195 CLASS A				
▲ CILBA N311800E0172400		75		10			
▲ DERNI N301328E0164015	<u>208°</u> 028°	75					
▲ HON NDB HON N290800E0155700	210° 030°	68					Tripoli Information HF 11300
▲ ALGAF N281000E0151600	<u>210°</u> 029°	82					HF 5517
SEBHA VOR/DME SEB N265944E0142735							

ENR 3.6 EN-ROUTE HOLDING

HLDG ID / FIX /WPT Coordinates	INBD TR (MAG)	Direction Of PTN	MAX IAS (KT)	MNM-MAX HLDG LVL FL / FT (MSL)	TIME(MIN) or DIST	Controlling unit and frequency	
1	2	3	4	5	6	7	
TRIPOLI VOR/DME (TPI)	320	LEFT	265	FL150-FL290	1 1/2	Tripoli Control 120.9 MHz	
N323947 E01300706	090	RIGHT	230	FL2000 -FL140	1	128.4 MHz	
ABU ARGUB VOR/DME (ABU) N322746 E0131010	140	LEFT	265	FL150 - FL290	1 1/2	Tripoli Control 120.9 MHz 128.4 MHz	
BENINA VOR/DME (BNA)	330	LEFT	265	FL150 - FL290	1 1/2	Benghazi Control	
N320728 E0201513	330	LEFT	230	2000 FT - FL140	1	126.5 MHz 129.2 MHz	
KUFRA VOR/DME (KFR) N240914 E0231828	196	RIGHT	265	FL140 - FL290	1 1/2	Tripoli FIC HF 11300 HF 5517 TWR VHF121.9	
SEBHA VOR/DME (SEB) N265944 E0142735	315	LEFT	265	FL140 - FL290	1 1/2	Tripoli FIC HF 11300 HF 5517 TWR VHF 119.1	

INTENTIONALLY BLANK

ENR 4. RADIO NAVIGATION AIDS/SYSTEMS

ENR 4.1 RADIO NAVIGATION AIDS - EN-ROUTE

STATION NAME	IDET	FREQUEY	HOURS OF PERATIN	COORDINATES	ELEVATION DME ANTENNA	REMARKS
ABU ARGUB VOR/DME(E000)	ABU	115.1 MHz	H24	N322746 E0131010	489 ft	
BEDA NDB	XS	365KHz	H24	N283000 E0190000		
BENINA VOR/DME (E003)	BNA	117.4 MHz	H24	N320728 E0201513	349 ft	
BENI WALID VOR/DME (E001	WLD	115.9 MHz	H24	N314657 E0140034	1000 ft	
DAHRA VOR/DME (E002)	DHR	116.1 MHz	H24	N292803 E0175554		
GHADAMES VOR/DME (E001)	GAD	115.8 MHz	H24	N300949 E0094429	1110 ft	
GHAT DVOR/DME (E001)	GHT	114.8 MHz	H24	N250933 E0100823	2296ft	
GHERIAT NDB (E002)	GRT	337 KHz	H24	N302341 E0133509		
JODAY NDB (E002)	TRO	328 KHz	H24	N324745 E0124940		
JUFRA NDB	JFR	438KHz	H24	N291200 E0160018		
KADRA NDB (E002)	KDR	429 KHz	H24	N322200 E0133700		
KUFRA VOR/DME (E003)	KFR	113.2 MHz	H24	N240914 E0231828	1376 ft	
LABRAQ NDB (E002)	LAB	392KHz	H24	N324641 E0220113		

STATION NAME	IDENT	FREQUENCY	HOURS OF PERATION	COORDINATES	ELEVATION DME ANTENNA	REMARKS
MARSA BREGA NDB (E003	MB	403 KHz	H24	N302506 E0193421		
MISRATA VOR/DME (E002)	MIS	117.1 MHz	H24	N321852 E0150440	22 ft	
MITIGA DVOR/DME (E001)	MTG	113.4 MHz	H24	N325336.03 E0131626.88	32 ft	
MIZDA VOR/DME (E001)	IZD	116.5 MHz	H24	N312709 E0130038	1910 ft	
MIZDA NDB (E002)	IZD	378 KHz	H24	N312646 E0125825		
SARIR NDB (E003)	GS	305 KHz	H24	N273900 E0223000		
SEBHA VOR/DME (E002)	SEB	114.7 MHz	H24	N265944 E0142735	1405 ft	
SIRTE VOR/DME (E002)	SRT	117.0 MHz	H24	N310333 E0163553	267 ft	
TAZERBO NDB (E003)	TZR	269 KHz	H24	N254007 E0210536		
TRIPOLI VOR/DME (E002)	TPI	114.6 MHz	H24	N323947 E0130706	367 ft	
TOBRUK VOR/DME	TBQ	112.3MHz	H24	N315124 E0235443		
UBARI NDB (E002)	UBR	417 KHz	H24	N263552 E0124648		
ZAWIA VOR/DME (E000)	ZAW	117.7 MHz	H24	N324643 E0123847	100 ft	
ZWARA NDB (E002)	ZAR	432 KHz	H24	N325707 E0120122		

PART 3 - AERODROMES (AD)

AD 0.

AD 0.5 LIST OF HAND AMENDMENTS TO THE AIP

AIP Page(s) affected	Amendment Text	Introduced by AIP Amendment No.
AD2 HLLT-21	Delete SID RWY 27 GARUS 1G	06/2021

INTENTIONALLY BLANK

HLLS AD 2.17 ATS AIRSPACE

1	Designation and lateral limits	Sebha CTR established as circle radius 25NM centered at SEBHA VOR/DME Coor.N26590700 E14270600
2	Vertical limits	GND - 3000ft
3	Airspace classification	С
4	ATS unit	Sebha TWR/APP
	call sign language(s)	English,
5	Transition altitude/Transition level	5000 ft / FL70
6	Remarks	Nil

HLLS AD 2.18 ATS COMMUNICATION FACILITIES

Service designation	Call sign	Call sign Frequency Hours of o		Remarks
1	2	3	4	5
TWR	Sebha Tower	119.100 MHz	H24	Nil
APP	Sebha Approach	119.100 MHz	H24	Nil
GND	Sebha Ground	121.900 MHz	НО	Nil

HLLS AD 2.19 RADIO NAVIGATION AND LANDING AIDS

Type of aid, MAG VAR CAT of ILS/MLS (For VOR/ILS/MLS, give declination)	ID	Frequency	Hours of operation	Position of transmitting antenna coordinates	Elevation of DME transmitting antenna	Remarks
1	2	3	4	5	6	7
VOR/DME 2°E	SEB	114.700 MHz	H24	N265944.14 E0142735.05	1405	Nil
NDB	SEB	283 KHz	H24	N270048.40 E0143005.20	Nil	Nil
ILS RWY 13 CAT II						
LOC 2ºE	I-SBH	110.300 MHz	H24	N265848.24 E0142848.30	Nil	Nil
GP	I-SBH	335.000 MHz	НО	N270006.12 E0142710.08	Nil	Glideslope 3 ⁰

HLLS AD 2.20 LOCAL TRAFFIC REGULATIONS

20.1 Airport regulation

General:

Aerodrome restricted to aircraft capable of maintaining two-way radio communications with ATC.

20.2 Taxiing to and from stands

- a) Arriving flights will be allocated a stand number by the ground controller and assistance from "FOLLOW ME" vehicle can be requested via the ground controller.
- Departing IFR flights shall contact the TWR to obtain ATC clearance before commencing taxiing.

20.3 Parking area for small aircraft (General aviation)

General aviation aircraft shall not be guided by marshallers to the parking area for small aircraft.

20.4 Parking area for helicopters

As directed by ATC.

- 20.5 Apron taxiing during winter conditions
 Not applicable
- 20.6 Taxiing-limitations
- 20.7 School and training flights technical test flights use of runways
 Nil.
- 20.8 Helicopter traffic limitation

20.9 Removal of disabled aircraft from runways

When an aircraft is wrecked on a runway, it is the duty of the owner or user of such aircraft to have it removed as soon as possible. If a wrecked aircraft is not removed from the runway as quickly as possible by the owner or user, the aircraft will be removed by the aerodrome authority at the owner's or user's expense.

HLLS AD 2.21 NOISE ABATEMENT PROCEDURES

Non Noise Certificated subsonic airplane (NNC) operations restricted daily between sunset/sunrise.

HLLS AD 2.22 FLIGHT PROCEDURES

22.1 Communication failure

In the event of communication failure the pilot shall act in accordance with the communication procedures in ANNEX 2. For the TRIPOLI FIR, information concerning the associated navigation aids and the routing is given on page ENR 1.6-2

22.2 Procedures for VFR flights within SEBHA CTR

Provided traffic conditions so permit ATC clearance for VFR flights will be given under the conditions described below:

- A flight plan requesting ATC clearance, containing items 7 to 18 and indicating the purpose of the flight, shall be submitted.
- b) ATC clearance shall be obtained immediately before the aircraft enters the area concerned.
- Position reports shall be submitted in accordance with 3.6.3 of ANNEX 2.
- d) Deviation from the ATC clearance may only be made when prior permission has been obtained

- e) The flight shall be conducted with vertical visual reference to the ground unless the flight can be conducted in accordance with the Instrument Flight Rules.
- f) Two-way radio communication shall be maintained on the frequency prescribed. Information about the appropriate frequency can be obtained from Tripoli Information.
- g) The pilot-in-command shall be the holder of an International VHF licence.

22.3 Procedures for VFR flights within SEBHA CTR

- a) Flight plan shall be filed for the flight concerned.
- ATC clearance shall be obtained from the Control Tower.
- Deviation from ATC clearance may only be made when prior permission has been obtained.
- The flight shall be conducted with vertical visual reference to the ground.
- e) Two-way radio communication shall be established on the frequency prescribed before takes place in control zone

HLLS AD 2.23 ADDITIONAL INFORMATION

Nil

HLLS AD 2.24 CHARTS RELATED TO THE AERODROME

AERODROME CHART - ICAO	AD 2 HLLS-7
AERODROME OBSTACAL CHART – ICAO –TYPE A	AD 2 HLLS-9
STANDARD DEPARTURE CHART INSTRUMENT – ICAO – RWY 13	AD 2 HLLS-11
STANDARD DEPARTURE CHART INSTRUMENT – ICAO – RWY 31	AD 2 HLLS-13
STANDARD ARRIVAL CHART INSTRUMENT -ICAO - RWY 13 (ARR A)	AD 2 HLLS-15
STANDARD ARRIVAL CHART INSTRUMENT –ICAO – RWY 13 (ARR B)	AD 2 HLLS-17
STANDARD ARRIVAL CHART INSTRUMENT –ICAO – RWY 31 (ARR D)	AD 2 HLLS-19
STANDARD ARRIVAL CHART INSTRUMENT –ICAO – RWY 31 (ARR E)	AD 2 HLLS-21
INSTRUMENT APPROACH CHART -ICAO -ILS DME RWY 13	AD 2 HLLS-23
INSTRUMENT APPROACH CHART –ICAO –VOR DME RWY 13	AD 2 HLLS-25
INSTRUMENT APPROACH CHART –ICAO –VOR DME RWY 31	AD 2 HLLS-27
VISUAL APPROACH CHART - ICAO	AD 2 HLLS-29

HLLT AD 2.14 APPROACH AND RUNWAY LIGHTING

RWY Designator	APCH LGT Type LEN INTST	THR LGT color WBAR	VASIS (MEH) PAPI	TDZ, LGT LEN	RWY centre Line LGT Length, spacing color INTST	RWY edge LGT LEN, spacing color INTST	RW Y End LGT color WBAR	SWY LGT LEN (m) color	Remarks
1	2	3	4	5	6	7	8	9	10
09	ALS LIH White Calvert CAT I	LIH Green		Nil		White LIH			
27	ALS LIH White Calvert CAT II	LIM Green	PAPI 3.00°	LIH white	White LIH	Last 600m yellow	Red	NIL	NIL
18	ALS LIH White Calvert CAT II	YES	PAPI	NIL	NIL	White	YES	NIL	NIL
36	ALS LIH White Calvert CAT I	120	3.00°			LIH			

HLLT AD 2.15 OTHER LIGHTING, SECONDARY POWER SUPPLY

1	ABN/IBN location, characteristics and hours of operation	On top of control tower, flashing green/white (night time)
2	LDI location and LGT Anemometer location and LGT	09/27 THR, signal lamp
3	TWY edge and centre line lighting	Centre line: A, B, D, E, L, S Edge: partly
4	Secondary power supply/ Switch- over time	Available 3 seconds
5	Remarks	Stop bars: partly Rapid exit: F, G, H, J, S

HLLT AD 2.16 HELICOPTER LANDING AREA

To be developed

HLLT AD 2.17 ATS AIRSPACE

1	Designation and lateral limits	TRIPOLI CTR circle with radius of 8NM centered at Tripoli VOR/DME TPI N323946.72 E0130706.27
2	Vertical limits	GND / 2000ft
3	Airspace classification	С
4	ATS unit call sign language(s)	TRIPOLI TOWER English
5	Transition altitude/Transition level	5000 / FL70
6	Remarks	NIL

HLLT AD 2.18 ATS COMMUNICATION FACILITIES

Service designation	Call sign	Frequency	Hours of operation	Remarks
1	2	3	4	5
ACC/RSR	Tripoli Control	120.900 MHz 128.400 MHz	H24	Primary / Secondary
APP/RSR	Tripoli Approach	124.000 MHz	H24	NIL
TWR	Tripoli Tower	120.100 MHz 118.100 MHz	H24	Primary / Secondary
GND	Tripoli Ground	120.100 MHz	H24	NIL
ATIS		127.000 MHz	H24	NIL

HLLT AD 2.19 RADIO NAVIGATION AND LANDING AIDS

Type of aid, MAG VAR CAT of ILS/MLS (For VOR/ILS/MLS, give declination)	ID	Frequency	Hours of operation	Position of transmitting antenna coordinates	Elevation of DME transmitting antenna	Remarks
1	2	3	4	5	6	7
Tripoli VOR/DME 2°E	TPI	114.600MHz	H24	N323940.00 E0130918.80	63ft	NIL
Gazala LO	PE	390KHz	H24	N323954 F0131451	NIL	NII
Tripoli LM	G	365KHz	H24	N323949 E0131042	NIL	NIL
Tripoli L	D	435KHz	H24	N323947 E0130704	NIL	NIL
Ghararah L	TW	301KHz	H24	N323944 F0130306	NIL	NII
ILS RWY 27 CAT II						
LOC 2 ⁰ E	I-IWT	109.500MHz CH 32X	H24	N323 947.08 E0130730.39.	263ft	NIL
GP		332.600 MHz	H24	N323944.29 E0130949.77	263ft	Glideslope 3°

HLLT AD 2.20 LOCAL TRAFFIC REGULATIONS

20.1 Airport regulation

General:

Aerodrome restricted to aircraft capable of maintaining two-way radio communications with ATC.

20.2 Taxiing to and from stands

- a) Arriving flights will be allocated a stand number by the ground controller and assistance from "FOLLOW ME" vehicle can be requested via the ground controller.
- b) Departing IFR flights shall contact the TWR to obtain ATC clearance before commencing

20.3 Parking area for small aircraft (General aviation)

General aviation aircraft shall not be guided by marshallers to the parking area for small aircraft.

20.4 Parking area for helicopters

As directed by ATC.

- 20.5 Apron taxiing during winter conditions
 Not applicable
- 20.6 Taxiing-limitations
- 20.7 School and training flights technical test flights use of runways
- 20.8 Helicopter traffic limitation

20.9 Removal of disabled aircraft from runways

When an aircraft is wrecked on a runway, it is the duty of the owner or user of such aircraft to have it removed as soon as possible. If a wrecked aircraft is not removed from the runway as quickly as possible by the owner or user, the aircraft will be removed by the aerodrome authority at the owner's or user's expense.

20.9 Removal of disabled aircraft from runways

When an aircraft is wrecked on a runway, it is the duty of the owner or user of such aircraft to have it removed as soon as possible. If a wrecked aircraft is not removed from the runway as quickly as possible by the owner or user, the aircraft will be removed by the aerodrome authority at the owner's or user's expense.

HLLT AD 2.21 NOISE ABATEMENT PROCEDURES

Non Noise Certificated subsonic airplane (NNC) operations restricted daily between sunset/sunrise.

HLLT AD 2.22 FLIGHT PROCEDURES

22.1 General

Unless special permission has been obtained from Tripoli Approach or Tripoli Tower as appropriate, flight within Tripoli TMA and Tripoli CTR shall be in accordance with the Instrument Flight Rules.

22.2 Procedures for IFR flights within Tripoli TMA

The inbound transit and outbound routes shown on the charts may be varied at the discretion of ATS if necessary, in case of congestion, inbound aircraft may also be instructed to hold at one of the designated airways, reporting points.

22.3 Radar procedures within Tripoli TMA

Radar vectoring and sequencing

Normally aircraft will be vectored and sequenced from all reporting points to the appropriate final approach track (ILS, VOR/DME, VISUAL), so as to ensure an expeditious flow of traffic. Radar vectors and flight levels/altitudes will be issued, as required, for spacing and separating the aircraft, so that correct landing intervals are maintained, taking into account aircraft characteristics.

Radar vectoring charts are not published since the instrument approach procedures and altitudes ensure that adequate terrain clearance exists at all times until the point where the pilot will resume navigation on final approach or in the circuit.

22.4 Surveillance radar approaches

Surveillance radar approaches will be carried out for Tripoli runways 09/27 and Mitiga runways 11/29. Surveillance radar final approaches will be terminated at 10 NM from touchdown.

22.5 Precision radar approach

Nil.

22.6 Communication failure

In the event of communication failure the pilot shall act in accordance with the communication failure procedures in ANNEX 2.

22.7 Procedures for VFR flights within Tripoli TMA

Provided traffic conditions so permit ATC clearance for VFR flights will be given under the conditions described below:

- a) A flight plan requesting ATC clearance, containing items 7 to 18 and indicating the purpose of the flight, shall be submitted.
- ATC clearance shall be obtained immediately before the aircraft enters the area concerned.
- Position reports shall be submitted in accordance with 3.6.3 of ANNEX 2.
- d) Deviation from the ATC clearance may only be made when prior permission has been obtained.
- e) The flight shall be conducted with vertical visual reference to the ground unless the flight can be conducted in accordance with the Instrument Flight Rules.
- f) Two-way radio communication shall be maintained on the frequency prescribed. Information about the appropriate frequency can be obtained from Tripoli Information.
- g) The pilot-in-command shall be the holder of an International VHF licence.
- h) VFR traffic flying at or above 5500 ft shall be equipped with SSR transponder with 4069 codes in Mode A/3. Flights performed in connection with parachute jumps shall, in addition, be equipped with Mode C with automatic transmission of pressure altitude information (cf. ANNEX 10, Volume I). Exemption from this requirement may be granted by Tripoli Control.

22.8 In IMC ICAO procedures, supplemented as follows:

Departing aircraft

A departing controlled IFR flight operating in instrument meteorological conditions having acknowledged an initial or intermediate clearance to climb to a level other than the one specified in the current flight plan for the en-route phase of the flight. Experiencing two-way radio communication failure should, if no time limit or geographical limit was included, in the climb clearance maintain for a period of three minutes the level to which it was cleared and then continue its flight in accordance with the current flight plan.

AD 2 HLLT-8
17 JUN 21
AIP
LIBYA

Inbound clearance received and acknowledged

- a) If cruising FL150 or above proceed to Tripoli high holding and commence descend to FL140 at, or as close as possible to the ETA, continue to outer locator holding of runway-in-use or (if not known) to PE/L, holding, descend to the lowest altitude for the holding and commence instrument approach procedure.
- b) If cruising FL140 or below proceed to outer locator holding of runway-in-use or (if not known) to PE/L, holding and commence descend to the lowest altitude or as close as possible to the ETA and commence instrument approach procedure.

Procedures for VFR flights within Tripoli CTR

a) Flight plan shall be filed for the flight concerned.

- ATC clearance shall be obtained from the Control Tower.
- c) Deviation from ATC clearance may only be made when prior permission has been obtained.
- d) The flight shall be conducted with vertical visual reference to the ground.
- e) Two-way radio communication shall be established on the frequency prescribed before flight takes place in the control zone.

Communication Failure

- a) If inside CTR join the traffic circuit at altitude 1000 ft or below and stand-by for light signals from the TWR.
- b) If outside CTR descend to below TMA. Under VMC, enter CTR from the north or the south at 1000 ft or below, join the traffic circuit and stand-by for light signals from the TWR

HLLT AD 2.23 ADDITIONAL INFORMATION Nil HLLT AD 2.24 CHARTS RELATED TO THE AERODROME

AERODROME CHART - ICAO	AD 2 HLLT-9
AIRCRAFT PARKING/DOCKING CHART - ICAO	AD 2 HLLT-11
AIRCRAFT PARKING/DOCKING GUIDANCE SYSTEM CHART	AD 2 HLLT-13
AERODROME OBSTACAL CHART – ICAO –TYPE A	AD 2 HLLT-15
STANDARD DEPARTURE CHART INSTRUMENT – ICAO – RWY 09 (DEP C)	AD 2 HLLT-17
STANDARD DEPARTURE CHART INSTRUMENT – ICAO – RWY 27 (DEP G)	AD 2 HLLT-21
STANDARD ARRIVAL CHART INSTRUMENT -ICAO - RWY 09 (ARR A)	AD 2 HLLT-25
STANDARD ARRIVAL CHART INSTRUMENT -ICAO - RWY 27 (ARR E)	AD 2 HLLT-29
INSTRUMENT APPROACH CHART -ICAO -ILS DME RWY 27	AD 2 HLLT-33
INSTRUMENT APPROACH CHART -ICAO -VOR DME RWY 09	AD 2 HLLT-35
INSTRUMENT APPROACH CHART -ICAO -VOR DME RWY 27	AD 2 HLLT-37
INSTRUMENT APPROACH CHART -ICAO - Locator RWY 09	AD 2 HLLT-39
INSTRUMENT APPROACH CHART -ICAO - Locator RWY 27	AD 2 HLLT-41
VISUAL APPROACH CHART - ICAO	AD 2 HLLT-43

HLMS AD 2.1 AERODROME LOCATION INDICATOR AND NAME HLMS - MISRATA / Misrata International HLMS AD 2.2 AERODROME GEOGRAPHICAL AND ADMINISTRATIVE DATA

1	ARP coordinates and site at AD	N321927 E0150343 (WGS-84)
-		, ,
2	Direction and distance from (city)	7 km
3	Elevation/Reference temperature	38ft
4	Geoid undulation at AD ELEV PSN	Nil
5	MAG VAR/Annual change	2.3° E (2012)
6	AD Administration, address, telephone, telefax, AFS	LCAA International Airport Tripoli Tel/Fax: 00218-21-5630219 Fax: 00218-21-53222 Telex: 20353 CAA LY AFS: HLLTYFYX/HLLTYTYX SITA: TIPYAXS Email: aftn.amhs@gmail.com
7	Types of traffic permitted (IFR/VFR)	IFR / VFR
8	Remarks	Nil

HLMS AD 2.3 OPERATIONAL HOURS

1	AD Administration	SAT-THU 0600-1300	
2	Customs and immigration	H24	
3	Health and sanitation	AVBL	
4	AIS Briefing Office	NIL	
5	ATS Reporting Office (ARO)	H24	
6	Met Briefing Office	Nil	
7	ATS	H24	
8	Fuelling	H24	
9	Handling	H24	
10	Security	H24	
11	De-icing De-icing	Nil	
12	Remarks	Nil	

HLMS AD 2.4 HANDLING SERVICES AND FACILITIES

1	Cargo handling facilities	Available
2	Fuel/oil types	Jet A1
3	Fuelling facilities/capacity	Nil
4	De-icing facilities	Nil
5	Hangar space for visiting aircraft	Nil
6	Repair facilities for visiting aircraft	Nil
7	Remarks	Nil

HLMS AD 2.5 PASSENGER FACILITIES

1	Hotels	In the city
2	Restaurants	Available in the city
3	Transportation	Available
4	Medical facilities	Available
5	Bank and Post Office	Available
6	Tourist Office	Available
7	Remarks	Nil

HLMS AD 2.6 RESCUE AND FIRE FIGHTING SERVICES

1	AD category for fire fighting	CAT 8
2	Rescue equipment	Ambulance
3	Capability for removal of disabled aircraft	Nil
4	Remarks	Nil

HLMS AD 2.7 SEASONAL AVAILABILITY - CLEARING

1	Types of clearing equipment	Nil
2	Clearance priorities	Nil
3	Remarks	Nil

HLMS AD 2.8 APRONS, TAXIWAYS AND CHECK LOCATIONS/POSITIONS DATA

1	Apron surface and strength	Nil
2	Taxiway width, surface and strength	Nil
3	Altimeter checkpoint location and elevation	Nil
4	VOR checkpoints	Nil
5	INS checkpoints	Nil
6	Remarks	Nil

HLMS AD 2.9 SURFACE MOVEMENT GUIDANCE AND CONTROL SYSTEM AND MARKINGS

1	Use of aircraft stand ID signs, TWY guidelines and visual docking/parking guidance system of aircraft stands	Nil
2	RWY and TWY markings and LGT	Nil
3	Stop bars	Nil
4	Remarks	Nil

HLMS AD 2.10 AERODROME OBSTACLES

In approach/TKOF areas In c		In circling area and at AD		Remarks	
1		2		3	
RWY NR. Area affected	Obstacle type Elevation Markings/LGT	Coord.	Obstacle type Elevation Markings/LGT	Coord.	
а	b	С	а	b	
Nil	Nil	Nil	Nil	Nil	Nil

HLMS AD 2.11 METEOROLOGICAL INFORMATION PROVIDED

1	Associated MET Office	Available
2	Hours of service MET Office outside hours	H24
3	Office responsible for TAF preparation Periods of validity	Nil
4	Trend forecast Interval of issuance	Nil
5	Briefing/consultation provided	H24 Available
6	Flight documentation language(s) used	English
7	Charts and other information available for briefing or consultation	Nil
8	Supplementary equipment available for providing information	Nil
9	ATS units provided with information	Nil
10	Additional information (limitation of service, etc.)	Nil

HLMS AD 2.12 RUNWAY PHYSICAL CHARACTERISTICS

Designations RWY NR	TRUE BRG	Dimensions of RWY (m)	Strength (PCN) and surface of RWY and SWY	THR coord. RWY end coord. THR geoid undulation	THR elevation and highest elevation of TDZ of precision APP RWY	
1	2	3	4	5	6	
15	146°	3400 x 45	PCN 100	N322016.90 E0150302.80	THR 35 ft	
33	326°	3400 X 45	Asphalt	N321845.80 E0150416.20	THR 25 ft	
Designations RWY NR	Slope of RWY - SWY	SWY dimensions (m)	CWY dimensions (m)	Strip dimensions (m)	OFZ	
1	7	8	9	10	11	
15	Nil	30 x 45	300 x 60	3580 x 300	Nil	
33	Nil	30 x 45	300 x 60	3560 X 300	Nil	
Designations RWY NR	Remarks					
1	12					
15 33	Shoulder 7.5 m wide / Asphalt					

HLMS AD 2.13 DECLARED DISTANCES

RWY Designator	TORA (m)	TODA (m)	ASDA (m)	LDA (m)	Remarks
1	2	3	4	5	6
15	3400	3700	3430	3400	Nil
33	3400	3700	3430	3400	Nil

HLMS AD 2.14 APPROACH AND RUNWAY LIGHTING

RWY Designator	APC H LGT Type LEN INTS	THR LGT color WBAR	VASIS (MEH) PAPI	TDZ, LGT LEN	RWY centre Line LGT Length, spacing color	RWY edge LGT LEN, spacing color INTST	RWY End LGT color WBAR	SWY LGT LEN (m) color	Remarks
1	2	3	4	5	6	7	8	9	10
15	SALS	Yes	PAPI	Nil	Nil	Yes	Nil	Nil	Nil
33	SALS	Yes	PAPI	Nil	Nil	Yes	Nil	Nil	Nil

HLMS AD 2.15 OTHER LIGHTING, SECONDARY POWER SUPPLY

1	ABN/IBN location, characteristics and hours of operation	Nil
2	LDI location and LGT Anemometer location and LGT	Nil
3	TWY edge and centre line lighting	AVBL
4	Secondary power supply/ Switch-over time	Nil
5	Remarks	Nil

HLMS AD 2.16 HELICOPTER LANDING AREA

Nil

HLMS AD 2.17 ATS AIRSPACE

1	Designation and lateral limits	MISRATA CTR A circle with radius of 20NM Centered on MIS VOR N321851.60 E0150439.70
2	Vertical limits	GND / 5000ft MSL
3	Airspace classification	С
4	ATS unit	MISRATA TWR
	call sign language(s)	English
5	Transition altitude/Transition level	5000 / FL70
6	Remarks	Nil

HLMS AD 2.18 ATS COMMUNICATION FACILITIES

Service designation	Call sign	Frequency	Hours of operation	Remarks
1	2	3	4	5
TWR	Misrata Tower	118.500 MHz	H24	Nil
GND	Misrata Ground	121.950 MHz	H24	Nil
APP	Misrata Approach	123.200 MHz	H24	Nil

HLMS AD 2.19 RADIO NAVIGATION AND LANDING AIDS

Type of aid, MAG VAR CAT of ILS/MLS (For VOR/ILS/MLS, give declination)	ID	Frequency	Hours of operation	Position of transmitting antenna coordinates	Elevation of DME transmitting antenna	Remarks
1	2	3	4	5	6	7
VOR/DME 2°E	MIS	117.100 MHz CH118X	H24	N321851.60 E0150439.70	22 ft	Nil
NDB	AC	445 KHz	H24	N321436 E0150736	Nil	Nil
NDB	MS	330 KHz	H24	N322204 E0150123	Nil	Nil
ILS RWY 33 CAT II						
LOC	I-MIS	110.1MHz	H24	N322027.932 E015025.848	Nil	Nil
GP	I-MIS	334.4MHz	H24	N321856.44 E0150412.968		

HLMS AD 2.20 LOCAL TRAFFIC REGULATIONS

HLMS AD 2.21 NOISE ABATEMENT PROCEDURES Niil

HLMS AD 2.22 FLIGHT PROCEDURES NIL

HLMS AD 2.23 ADDITIONAL INFORMATION

HLMS AD 2.24 CHARTS RELATED TO THE AERODROME

AERODROME CHART – ICAO

AD 2 HLMS-7

INSTRUMENT APPROACH CHART – ICAO – VOR DME RWY 15

AD 2 HLMS-9

INSTRUMENT APPROACH CHART – ICAO – VOR DME RWY 33

AD 2 HLMS-11

HLTQ AD 3.1 AERODROME LOCATION INDICATOR AND NAME

HLTQ - TOBRUK / Tobruk International

HLTQ AD 3.2 AERODROME GEOGRAPHICAL AND ADMINISTRATIVE DATA

1	ARP coordinates and site at AD	N315136.1435 E0235422.7109 (WGS-84)
2	Direction and distance from (city)	30 km south of city
3	Elevation/Reference temperature	522 ft
4	Geoid undulation at AD ELEV PSN	Nil
5	MAG VAR/Annual change	3° E (2012)
6	AD Administration, address, telephone,	Tobruk Airport Authority
	telefax, AFS	Airport Tel: 00218-62-8230110
		Airport Fax: 00218-62-8230111
		Tower Tel: 00218-62-8230112
7	Types of traffic permitted (IFR/VFR)	IFR / VFR
8	Remarks	Nil

HLTQ AD 3.3 OPERATIONAL HOURS

1	AD Administration	SUN - THU 0600 - 1300 UTC
2	Customs and immigration	H24
3	Health and sanitation	Nil
4	AIS Briefing Office	Nil
5	ATS Reporting Office (ARO)	H24
6	Met Briefing Office	H24
7	ATS	H24
8	Fuelling	AVBL
9	Handling	AVBL
10	Security	H24
11	De-icing	Nil
12	Remarks	Nil

HLTQ AD 3.4 HANDLING SERVICES AND FACILITIES

1	Cargo handling facilities	Available
2	Fuel/oil types	Jet A1
3	Fuelling facilities/capacity	Nil
4	De-icing facilities	Nil
5	Hangar space for visiting aircraft	Nil
6	Repair facilities for visiting aircraft	Nil
7	Remarks	Nil

HLTQ AD 3.5 PASSENGER FACILITIES

1	Hotels	Nil	
2	Restaurants	Nil	
3	Transportation	Nil	
4	Medical facilities	Ambulance -first aid AVBL	
5	Bank and Post Office	Nil	
6	Tourist Office	Nil	
7	Remarks	Nil	

HLTQ AD 3.6 RESCUE AND FIRE FIGHTING SERVICES

1	AD category for fire fighting	CAT 6
2	Rescue equipment	Nil
3	Capability for removal of disabled aircraft	Nil
4	Remarks	Nil

HLTQ AD 3.7 SEASONAL AVAILABILITY - CLEARING

1	Types of clearing equipment	Nil
2	Clearance priorities	Nil
3	Remarks	Nil

HLTQ AD 3.8 APRONS, TAXIWAYS AND CHECK LOCATIONS/POSITIONS DATA

1	Apron surface and strength	Nil
2	Taxiway width, surface and strength	Nil
3	Altimeter checkpoint location and elevation	Nil
4	VOR checkpoints	Nil
5	INS checkpoints	Nil
6	Remarks	Nil

HLTQ AD 3.9 SURFACE MOVEMENT GUIDANCE AND CONTROL SYSTEM AND MARKINGS

1	Use of aircraft stand ID signs, TWY guide lines and visual docking/parking guidance system of aircraft stands	Nil
2	RWY and TWY markings and LGT	TWY lights available
3	Stop bars	Nil
4	Remarks	Nil

HLTQ AD 3.10 AERODROME OBSTACLES

In app	roach/TKOF areas		In circling area and at AD		Remark
	1			2	
RWY NR. Area affected	Obstacle type Elevation Markings/LGT	Coord. (Dist from THR)	Obstacle type Elevation	Coord.	
а	b	С	а	b	
02	Nil	Nil	Nil	Nil	
20	Nil	Nil	Nil	Nil	Nil

HLTQ AD 3.11 METEOROLOGICAL INFORMATION PROVIDED

1	Associated MET Office	Nil
2	Hours of service MET Office outside hours	H24
3	Office responsible for TAF preparation Periods of validity	Nil
4	Trend forecast Interval of issuance	Nil
5	Briefing/consultation provided	Nil
6	Flight documentation language(s) used	Nil
7	Charts and other information available for briefing or consultation	Nil
8	Supplementary equipment available for providing information	Nil
9	ATS units provided with information	Nil
10	Additional information (limitation of service, etc.)	Tel: 00218-62-8230053

HLTQ AD 3.12 RUNWAY PHYSICAL CHARACTERISTICS

Designations RWY NR	True Bearing	Dimensions of RWY (m)	Strength (PCN) and surface of RWY and SWY	THR coor RWY end coor. THR geoid undulation	THR elevation and highest elevation of TDZ of precision APP
02				N315056.00	
	020°	3000 x 45	PCN 100	E0235338.97	THR 461
20	200°	3000 X 43	Asphalt/Concrete	N315227.40 E0235418.45	THR 521
09	089°	2911 x 45	Asphalt/Concrete-	N315115.85 E0235325.97	THR 470
27	269°	2011 X 40	1 X 40 Nophala conordic	N315118.15 E0235516.66	THR 485
15	149°	4200 x 45	NIL	N315244.73 E0235357.97	THR 524
33	329°	4200 X 43	IVIL	N315047.57 E0235519.69	THR 469
Designations RWY NR	Slope of RWY - SWY	SWY dimensions	CWY dimensions	STRIP dimensions	OFZ
1	7	8	9	10	11
02/20	Nil	30м	300м	Nil	Nil
09/27	Nil	Nil	Nil	Nil	Nil
15/33	Nil	Nil	Nil	Nil	Nil
Designations RWY NR	Remarks				
1	12				
09/27 15/33	CLOSED				

HLTQ AD 3.13 DECLARED DISTANCES

RWY Designator	TORA (m)	TODA (m)	ASDA (m)	LDA (m)	Remarks
1	2	3	4	5	6
02/20	3000	3030	3030	3000	Nil
09/27	2911	2911	2911	2911	Nil
15/33	4200	4200	4200	4200	Nil

HLTQ AD 3.14 APPROACH AND RUNWAY LIGHTING

RWY Designator	APCH LGT Type LEN INTST	THR LGT color WBAR	VASIS (MEH) PAPI	TDZ, LGT LEN	RWY centre Line LGT Length, spacing color	RWY edge LGT LEN, spacing color INTST	RWY End LGT color WBAR	SWY LGT LEN (m) color	Remarks
1	2	3	4	5	6	7	8	9	10
02/20	Nil	Nil	PAPI-L	Nil	Nil	Nil	Nil	Nil	Nil
09/27	SALS	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
15/33	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil

HLTQ AD 3.15 OTHER LIGHTING, SECONDARY POWER SUPPLY

1	ABN/IBN location, characteristics and hours of operation	Nil
2	LDI location and LGT Anemometer location and LGT	Nil
3	TWY edge and centre line lighting	Nil
4	Secondary power supply/ Switch-over time	Nil
5	Remarks	Nil

HLTQ AD 3.16 HELICOPTER LANDING AREA

1	Coordinates TLOF or THR of FATO Geoid undulation	Nil
2	TLOF and / or FATO elevation (m/ft)	Nil
3	TLOF and / or FATO area dimensions, surface, Strength, marking	Nil
4	True BRG of FATO	Nil
5	Declared distance available	Nil
6	APP and FATO lighting	Nil
7	Remarks	Nil

HLTQ AD 3.17 ATS AIRSPACE

1	Designation and lateral limits	CTR Circle Radius 25NM Centered ARP N315136 E0235422
2	Vertical limits	GND / 5000ft
3	Airspace classification	С
4	ATS unit call sign language(s)	TOBRUK TOWER English
5	Transition altitude/Transition level	5000 / FL70
6	Remarks	Nil

HLTQ AD 3.18 ATS COMMUNICATION FACILITIES

Service designation	Call sign Frequency Hours of operation		Remarks	
1	2	3	4	5
TWR	Tobruk Tower	118.500 MHz	H24	Primary
APP	Tobruk Approach	127.000 MHz	H24	Secondary

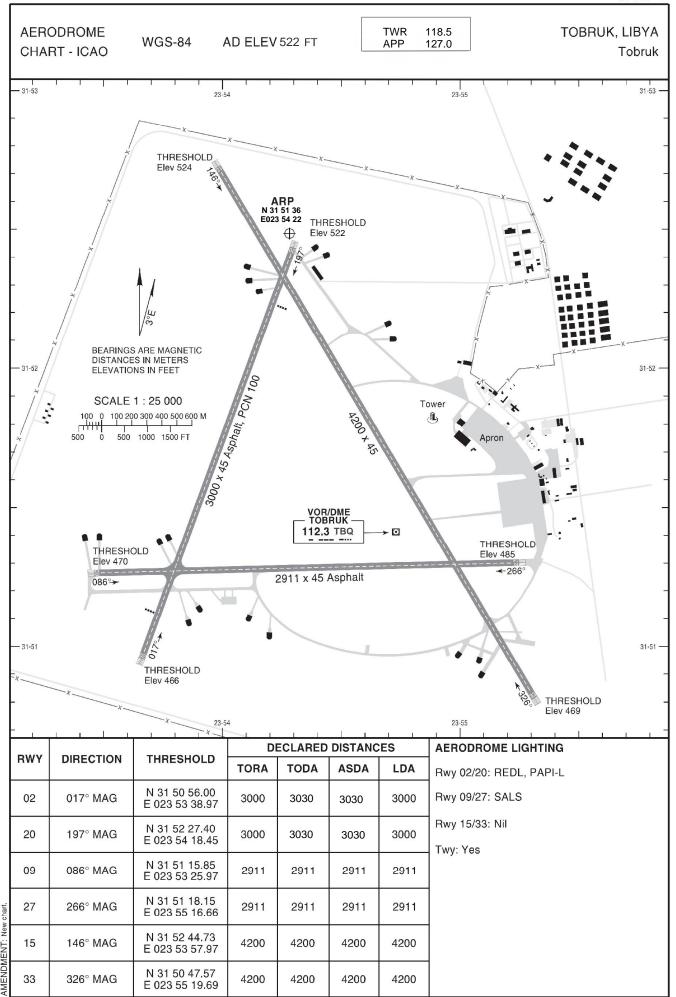
HLTQ AD 3.19 RADIO NAVIGATION AND LANDING AIDS

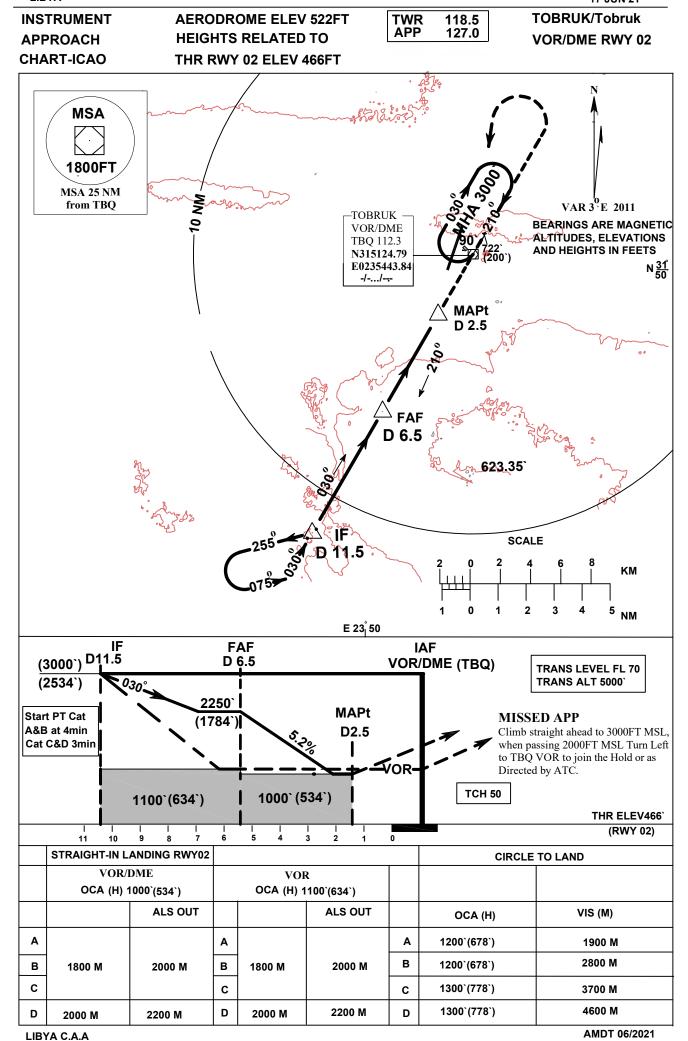
Type of aid, MAG VAR CAT of ILS/MLS (For VOR/ILS/MLS, give declination)	ID	Frequency	Hours of operation	Position of transmitting antenna coordinates	Elevation of DME transmitting antenna	Remarks
1	2	3	4	5	6	7
VOR/DME 3°E	TBQ	112.300 MHz	H24	N31 5124.79 E0235443.84	Nil	Nil
NDB	GN	330 KHz	H24	N314902.06 E0235634.66	Nil	Nil

HLTQ AD 3.20 LOCAL TRAFFIC REGULATIONS
NIL

HLTQ AD 3.21 NOISE ABATEMENT PROCEDURES NIL

HLTQ AD 3.22 FLIGHT PROCEDURES
NIL


HLTQ AD 3.23 ADDITIONAL INFORMATION NIL


HLTQ AD 3.24 CHARTS RELATED TO THE AERODROME

AERODROME CHART - ICAO AD 3 HLTQ -7

INSTRUMENT APPROACH CHART - ICAO - VOR DME RWY 02 $\,$ AD 3 \mbox{HLTQ} -9

INSTRUMENT APPROACH CHART - ICAO - VOR DME RWY 20 AD 3 HLTQ -11

AERODROME ELEV 522FT TWR INSTRUMENT 118.5 TOBRUK/Tobruk **APP** 127.0 **HEIGHTS RELATED TO APPROACH VOR/DME RWY 20 CHART-ICAO** A/D ELEV 522FT E 23 50 **MSA** 1800FT MSA 25 NM from TBQ IF D11.5 VAR 3 E 2011 **BEARINGS ARE MAGNETIC** ALTITUDES, ELEVATIONS AND HEIGHTS IN FEETS **FAF** D 6.5 **MAPt** D2.0 TOBRUK -VOR/DME TBQ 112.3 N315124.79 (200)31[°]N E0235443.84 -/-.../---E 23, 50 ΙĒ IAF **FAF** D 11.5 VOR/DME D 6.5 **TRANS LEVEL FL 70 TBQ** 3000 TRANS ALT 5000` (2478`) 2450 MISSED APP **MAPt** (1928`) Climb straight ahead to 3000FT MSL D2.0 when passing 2000FT MSL,Turn Right Start PT Cat to TBQ VOR to join the hold or as A&B at 4min Directed by ATC. Cat C&D 3min 1000 (478) 1100 (578) TCH 50 THR ELEV522 (RWY 20) 5 12 9 10 0 8 11 **CIRCLE TO LAND STRAIGHT-IN LANDING RWY 20** VOR/DME VOR OCA (H) 1000 (478') OCA (H) 1100`(578`) **ALS OUT** OCA (H) VIS (M) 1200`(678`) Α Α Α 1900 M В 1800 M В В 2000 M 1800 M 1200`(678`) 2800 M 2000 M С С С 1300`(778`) 3700 M 2200 M 2000 M D 1300`(778`) 4600 M D 2200 M D 2000 M

HLUB AD 3.11 METEOROLOGICAL INFORMATION PROVIDED

1	Associated MET Office	Nil
2	Hours of service MET Office outside hours	Nil
3	Office responsible for TAF preparation Periods of validity	Nil
4	Trend forecast Interval of issuance	Nil
5	Briefing/consultation provided	Nil
6	Flight documentation language(s) used	Nil
7	Charts and other information available for briefing or consultation	Nil
8	Supplementary equipment available for providing information	Nil
9	ATS units provided with information	Nil
10	Additional information (limitation of service, etc.)	Nil

HLUB AD 3.12 RUNWAY PHYSICAL CHARACTERISTICS

Designations RWY NR	TRUE BRG	Dimensions of RWY (m)	Strength (PCN) and surface of RWY and SWY	THR coord. RWY end coord. THR geoid undulation	THR elevation and highest elevation of TDZ of precision APP RWY	
1	2	3	4	5	6	
09	097°	2447 x 45	PCN 65	N263408.10 E0124840.26	THR 1525 ft	
27	277°	2447 X 45	Asphalt	N263358.56 E0125008.04	THR 1528 ft	
Designations RWY NR	Slope of RWY - SWY	SWY dimensions (m)	CWY dimensions (m)	Strip dimensions (m)	OFZ	
1	7	8	9	10	11	
09	Nil	200 x 45	Nil	Nil	Nil	
27	Nil	200 x 45	Nil	Nil	Nil	
Designations RWY NR	Remarks					
1	12					
09	Highest Obstacle is 800' AGL. / No THR markings					
27	No THR markings					

HLUB AD 3.13 DECLARED DISTANCES

RWY Designator	TORA (m)	TODA (m)	ASDA (m)	LDA (m)	Remarks
1	2	3	4	5	6
09	2447	2447	2647	2447	Nil
27	2447	2447	2647	2447	Nil

HLUB AD 3.14 APPROACH AND RUNWAY LIGHTING

RWY Designator	APC H LGT Type LEN INTS	THR LGT color WBAR	VASIS (MEH) PAPI	TDZ, LGT LEN	RWY centre Line LGT Length, spacing color	RWY edge LGT LEN, spacing color INTST	RWY End LGT color WBAR	SWY LGT LEN (m) color	Remarks
1	2	3	4	5	6	7	8	9	10
09	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
27	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil

HLUB AD 3.15 OTHER LIGHTING, SECONDARY POWER SUPPLY

1	ABN/IBN location, characteristics and hours of operation	Nil
2	LDI location and LGT Anemometer location and LGT	Nil
3	TWY edge and centre line lighting	Nil
4	Secondary power supply/ Switch-over time	Nil
5	Remarks	Nil

HLUB AD 3.16 HELICOPTER LANDING AREA

Nil

HLUB AD 3.17 ATS AIRSPACE

1	Designation and lateral limits	UBARI CTR A circle with radius of 15NM centered on UBA Locator N263413.02 E0124925.80
2	Vertical limits	SFC to 5000ft MSL
3	Airspace classification	С
4	ATS unit call sign language(s)	UBARI TWR English
5	Transition altitude/Transition level	5000ft/FL70
6	Remarks	Nil

HLUB AD 3.18 ATS COMMUNICATION FACILITIES

Service designation	Call sign	Frequency	Hours of operation	Remarks
1	2	3	4	5
TWR	Ubair Tower	125.300MHz	НО	Nil

HLUB AD 3.19 RADIO NAVIGATION AND LANDING AIDS

Type of aid, MAG VAR CAT of ILS/MLS (For VOR/ILS/MLS, give declination)	ID	Frequency	Hours of operation	Position of transmitting antenna coordinates	Elevation of DME transmitting antenna	Remarks
1	2	3	4	5	6	7
NDB	UBR	417 KHz	H24	N263551.72 E0124647.58	l NII	Nil
L	UBA	435 KHz	НО	N263413.02 E0124925.80	Nil	Nil

HLUB AD 3.20 LOCAL TRAFFIC REGULATIONS
Nil

HLUB AD 3.21 NOISE ABATEMENT PROCEDURES

HLUB AD 3.22 FLIGHT PROCEDURES
Nil

HLUB AD 3.23 ADDITIONAL INFORMATION

HLUB AD 3.24 CHARTS RELATED TO THE AERODROME

AERODROME CHART - ICAO

AD 3 HLUB-7