
Continuing medical education activity
in American Journal of Hematology

CME Editor: Ayalew Tefferi, MD
Author: Ryan A. Wilcox, MD

Article Title: Cutaneous T-cell lymphoma: 2011 update on
diagnosis, risk-stratification, and management
If you wish to receive credit for this activity, please refer

to the website: www.wileyblackwellcme.com

Accreditation and designation statement:

Blackwell Futura Media Services designates this journal
based CME activity for a 1 AMA PRA Category 1 CreditTM.
Physicians should only claim credit commensurate with the
extent of their participation in the activity.
Blackwell Futura Media Services is accredited by the

Accreditation Council for Continuing Medical Education to
provide continuing medical education for physicians.

Educational objectives

Upon completion of this educational activity, participants will
be better able to discuss the current approach to diagnosing
and managing Cutaneous T-cell lymphoma.

Activity disclosures

No commercial support has been accepted related to the
development or publication of this activity.

Faculty disclosures

CME editor—Ayalew Tefferi, MD: The CME Editor has no
relevant conflicts of interest.

Author—Ryan A. Wilcox, MD: The author has no relevant
conflicts of interest.

Conflicts of interest have been identified and
resolved in accordance with Blackwell Futura Media

Services’s Policy on Activity Disclosure and Conflict
of Interest. The primary resolution method used was
peer review and review by a non-conflicted expert.

Instructions on receiving credit

For information on applicability and acceptance of
continuing medical education credit for this activity, please
consult your professional licensing board.
This activity is designed to be completed within an hour;

physicians should claim only those credits that reflect the
time actually spent in the activity. To successfully earn
credit, participants must complete the activity during the
valid credit period, which is up to two years from initial
publication.
Follow these steps to earn credit:

� Log on to www.wileyblackwellcme.com
� Read the target audience, educational objectives, and
activity disclosures.

� Read the article in print or online format.
� Reflect on the article.
� Access the CME Exam, and choose the best answer
to each question.

� Complete the required evaluation component of the
activity.

This activity will be available for CME credit for twelve
months following its publication date. At that time, it will be
reviewed and potentially updated and extended for an addi-
tional twelve months.

VVC 2011 Wiley-Liss, Inc.

American Journal of Hematology 928 http://wileyonlinelibrary.com/cgi-bin/jhome/35105



ANNUAL CLINICAL UPDATES IN HEMATOLOGICAL MALIGNANCIES:
A CONTINUING MEDICAL EDUCATION SERIES

Cutaneous T-cell lymphoma: 2011 update on diagnosis,
risk-stratification, and management

Ryan A. Wilcox*

Disease overview: Cutaneous T-cell lymphomas are a heterogenous group of T-cell lymphoproliferative disorders
involving the skin, the majority of which may be classified as Mycosis fungoides (MF) or Sézary syndrome (SS).
Diagnosis: The diagnosis of MF or SS requires the integration of clinical and histopathologic data.
Risk-adapted therapy: Tumor, node, metastasis, and blood (TNMB) staging remains the most important prog-
nostic factor in MF/SS and forms the basis for a ‘‘risk-adapted,’’ multidisciplinary approach to treatment. For
patients with disease limited to the skin, expectant management or skin-directed therapies is preferred, as
both disease-specific and overall survival for these patients is favorable. In contrast, patients with advanced-
stage disease with significant nodal, visceral, or blood involvement are generally approached with biologic-
response modifiers, denileukin diftitox, and histone deacetylase inhibitors before escalating therapy to
include systemic, single-agent chemotherapy. Multiagent chemotherapy may be used for those patients with
extensive visceral involvement requiring rapid disease control. In highly-selected patients with disease refrac-
tory to standard treatments, allogeneic stem-cell transplantation may be considered. Am. J. Hematol. 86:929–
948, 2011. VVC 2011 Wiley-Liss, Inc.

Disease Overview
Primary cutaneous lymphomas are a heterogenous group of

extranodal non-Hodgkin lymphomas which, by definition, are
largely confined to the skin at diagnosis. After the gastrointesti-
nal tract, the skin is the second most common site of extrano-
dal involvement in non-Hodgkin lymphoma [1]. The European
Organization for Research and Treatment of Cancer (EORTC)
and World Health Organization (WHO) published a consensus
classification for cutaneous lymphomas in 2005, as summar-
ized in Table I [2]. In contrast to nodal non-Hodgkin lymphoma,
most of which are B-cell derived, �75% of primary cutaneous
lymphomas are T-cell derived, two-thirds of which may be clas-
sified as Mycosis fungoides (MF) or Sézary syndrome (SS) [2–
4]. The incidence of cutaneous T-cell lymphomas (CTCL) has
been increasing and is currently 6.4 per million persons, based
on Surveillance, Epidemiology, and End Results (SEER) regis-
try data, with the highest incidence rates being reported among
males (male:female incidence rate ratio 1.9) and African–
Americans (incidence rate ratio 1.5) [3]. While CTCL may occur
in children and young adults, this is very uncommon and often
associated with histologic variants of MF [5–7]. The incidence
of CTCL increases significantly with age, with a median age at
diagnosis in the mid-50s and a fourfold increase in incidence
appreciated in patients over 70 [3,7].
Epidemiological studies have failed to consistently identify

environmental or virally-associated risk factors for most
CTCL subtypes, with the notable exception of human T-cell
lymphotropic virus-1 (HTLV-1) infection in adult T-cell leuke-
mia/lymphoma [8–11]. Rare reports of familial MF and the
detection of specific HLA class II alleles in association with
both sporadic and familial MF suggest that host genetic fac-
tors may contribute to MF development [12–14]. While the
role of environmental and host genetic factors in CTCL
pathogenesis remains unclear, significant insights into dis-
ease ontogeny, molecular pathogenesis, and disease-associ-
ated immune dysregulation have been realized.

Cell of origin
It is estimated that normal human skin contains approxi-

mately one million T cells per cubic centimeter. Conse-
quently, the skin is an important ‘‘lymphoid organ,’’ as the

skin contains twice as many T cells (�20 billion) than the
peripheral blood [15]. Following antigenic activation, naı̈ve
T cells differentiate into effector and memory cells with dis-
tinct migratory patterns characterized by the expression of
tissue-specific homing addressins. The overwhelming ma-
jority of skin-resident T cells are CD45RO1 memory T cells
expressing the skin-homing addressin CLA, which binds
E-selectin on post-capillary venules in the skin and is
required for lymphocyte rolling [15]. Skin-resident T cells
highly express the chemokine receptors CCR4, CCR6, and
CCR10, among others, required for their migration into the
skin [15–17]. In contrast to central memory T cells (TCM)
expressing CCR7 and L-selectin, required for lymph-node
homing and circulation in the peripheral blood, effector
memory T cells (TEM) form a persistent population of tis-
sue-resident cells capable of rapidly responding to anti-
genic rechallenge and comprise 80% of T cells residing in
normal skin [15]. Immunophenotyping studies demonstrate
that malignant T cells in patients with leukemic CTCL var-
iants (Sézary Syndrome) express CCR7 and L-selectin,
resembling TCM, while the malignant clone in MF lesions
resembled TEM [18]. This fundamental difference in the pu-
tative cell of origin between SS (TCM derived) and MF (TEM

derived) is consistent with their distinct clinical behavior, as
TCM may be found in both the peripheral blood, lymph node
and skin and are long-lived cells resistant to apoptosis,
while skin-resident TEM cells fail to circulate in peripheral
blood, remaining fixed within the skin [18]. The contention
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that MF and SS originate from different T-cell subsets is
consistent with comparative genomic hybridization (CGH)
and gene-expression profiling data demonstrating that
these CTCL subtypes are genetically distinct [19,20].
Regulatory T cells (Treg) expressing the transcription fac-

tor FoxP3 are important in the maintenance of self-tolerance
and form a minor subset of skin-resident T cells. During in
vitro cultures with immature dendritic cells loaded with apo-
ptotic T cells, malignant T cells from CTCL patients upregu-
lated the expression of activation antigens and FoxP3, lead-
ing to the suggestion that CTCL may be derived from Treg
cells [21]. However, conventional T cells upregulate FoxP3
expression following activation [22,23]. Therefore, FoxP3
expression alone, particularly at low-intermediate levels, as
observed in activated T cells and in some patients with
CTCL, is insufficient evidence to support the claim that clo-
nal T cells in MF or SS are Treg-derived, particularly consid-
ering the observation that conventional T cells may acquire
a similar Treg-phenotype when cultured under similar condi-
tions [24,25]. Subsequent histologic analyses of FoxP3
expression by immunohistochemical staining demonstrate
that malignant T cells in CTCL lesions do not express
FoxP3 to any significant degree [26,27]. As FoxP3 expres-
sion is not entirely specific for Treg cells, the definition of
‘‘Treg cells’’ has been, at least in part, a functional one.
Therefore, the interpretation of data demonstrating that
FoxP31 CTCL cells suppress conventional T cells is fraught
with difficulty, as these cells may suppress conventional T
cells in a FoxP3-independent fashion [28]. The finding that
the FoxP3 promotor is demethylated in bona fide Treg has
shed light on this issue [29]. Heid et al. recently demon-
strated that the malignant T cells in a subset of Sézary
patients may be derived from Treg cells, as the malignant
clone in these patients not only expressed FoxP3 and sup-
pressed conventional T cells but possessed a demethylated
FoxP3 promoter [30]. Whether this subset of patients repre-
sents a distinct or overlapping population with the subset of
Sézary patients which were recently found to express low-
molecular weight splice forms of FoxP3 is unknown [28].
Therefore, a subset of CTCL patients appears to harbor a
Treg-derived clone, although the prognostic and therapeutic
implications of this observation remain to be defined.
In contrast to regulatory T cells, which represent a minor-

ity of skin-resident T cells, the majority of effector T cells
present in the skin produce cytokines characteristic of dis-
tinct T-cell subsets, including Th1, Th2, and Th17 cells, rais-
ing the possibility that future studies may define CTCL sub-
sets derived from these T-cell subsets [31]. Of note, MF/SS
is associated with the expression of Th2-associated genes
(e.g., GATA-3) and the production of Th2-associated cyto-
kines (e.g., IL-4, IL-5, and IL-10), thus raising the possibility
that a significant subset of patients may harbor Th2-derived
clones [32–36]. As the cell of origin is further defined in sub-
sets of CTCL, including MF/SS, one may anticipate that this
data may have a significant impact on the classification,
risk-stratification, and treatment of these diseases.

Immunopathogenesis
The establishment of long-term CTCL cell lines is chal-

lenging, as these cell frequently undergo spontaneous cell
death during in vitro culture [37,38] (and personal observa-
tion). Therefore, the resistance to apoptosis observed in
vivo is unlikely due to an intrinsic resistance to apoptosis
alone. Rather, extrinsic factors present within the tumor
microenvironment likely contribute to the growth and sur-
vival of malignant T cells, a contention supported by the
observation that cytokine supplementation or the provision
of T-cell costimulatory signals supports the growth of malig-
nant T cells in vitro [37,39,40]. Both gene-expression profil-

ing and immunohistochemistry-based studies have recently
highlighted the important contribution of nonmalignant cells,
including monocyte-derived lymphoma-associated macro-
phages, in the pathogenesis of both Hodgkin and non-Hodg-
kin lymphomas [41–43]. Similarly, malignant T cells in the
skin are frequently associated with dendritic cells and immu-
nohistochemistry-based studies have clearly demonstrated
an abundant infiltrate of both lymphoma-associated macro-
phages and dendritic cells, many of which may be actively
recruited into the tumor microenvironment by tumor-derived
chemokines [44,45]. These monocyte-derived cells promote
tumorigenesis both directly, by the production of factors
which promote tumor cell growth and survival, and indirectly,
by supporting tumor angiogenesis and suppressing host
antitumor immunity [46]. For example, monocyte-derived
dendritic cells supported the long-term survival of malignant
T cells during in vitro culture [38]. More recently, peripheral
blood monocytes (and their progeny) were shown to support
the growth of malignant T cells in vitro, confer resistant to
chemotherapy, and promote tumor engraftment in immuno-
deficient mice [45]. Lymphoma-derived IL-10, upregulated in
patients with advanced-stage disease poorly responsive to
therapy [47], impairs the maturation of lymphoma-associated
dendritic cells, rendering them immunologically incompetent,
thus promoting escape from host antitumor immune surveil-
lance. In addition, lymphoma-associated dendritic cells were
observed to express the T-cell coinhibitory ligand B7-H1
(PD-L1, CD274), which directly inhibits the proliferation of tu-
mor-specific T cells, but also indirectly impairs antitumor im-
munity by promoting the induction of suppressive regulatory
T cells [48]. Therefore, lymphoma-associated macrophages
and dendritic cells appear to play an important role in cuta-
neous T-cell lymphomagenesis while contributing to the eva-
sion and suppression of host antitumor immunity.
In addition to the tumor microenvironment’s role, wide-

spread impairment of cellular immunity—the tumor ‘‘macro-
environment’’—has long been appreciated in CTCL and con-
tributes to the significant morbidity and mortality associated
with infectious complications observed in CTCL. Approxi-
mately 50% of patients with CTCL, particularly those with
advanced stage disease, will ultimately succumb to infec-
tious complications [49–51]. Both quantitative and qualitative
defects in natural killer (NK) cell [52,53], dendritic cell [54],
and T cell-mediated [55–57] immunity are observed in
CTCL. In addition, CTCL is associated with a significant loss
of the T-cell repertoire, analogous to that observed in HIV
infection. T-cell receptor (TCR) diversity within multiple TCR
beta-variable (Vb) families was analyzed using complemen-
tarity-determining region 3 (CDR3) spectratyping and com-
bined with a quantitative analysis of TCR-Vb usage by flow
cytometry [58]. In patients with advanced-stage disease, and
half of patients with limited-stage disease, a dramatic loss of
TCR diversity was observed. Whether this observation may
be explained by tumor-mediated suppression of nonmalig-
nant T cells, diminished thymic output of naı̈ve T cells and
compensatory homeostatic expansion of oligoclonal periph-
eral T cells, or some other mechanism, is unknown [47]. As
lymphopenia is an adverse prognostic factor in many hema-
tologic malignancies [59–64], and undoubtedly contributes to
the infectious complications observed in CTCL, improved
understanding of the causative mechanism(s) leading to this
dramatic loss of T-cell diversity may have significant thera-
peutic implications.

Molecular pathogenesis
Recurrent chromosomal translocations involving the IgH

gene on chromosome 14 lead to the aberrant expression of
anti-apoptotic (e.g., Bcl-2) and oncogenic (e.g., cyclinD1,
Myc) proteins in B-cell lymphomas. These recurrent trans-
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locations arise in peripheral B cells undergoing class-switch
recombination and somatic hypermutation. In contrast, the
TCR gene loci, while involved in recurrent chromosomal
translocations in precursor T-cell lymphoblastic leukemias/
lymphomas, are rarely involved in recurrent translocations
in mature T-cell lymphoproliferative disorders [65,66]. With
the exception of translocations involving the interferon regu-
latory factor 4 (IRF4) gene (also known as MUM1) in a
subset of cutaneous anaplastic large cell lymphomas,
recurrent chromosomal translocations are infrequently
observed in CTCL [67–71]. Despite this, a number of sig-
naling pathways regulating cell-cycle progression and sur-
vival have been implicated in CTCL pathogenesis.
The NF-kB family of transcription factors (i.e., c-rel, p65/

RelA, RelB, p50/p105, p52/p100) plays an important role in
normal lymphocyte development, activation and differentia-
tion via the regulation of target genes involved in cell
growth, survival and cytokine production. Normally, NF-kB
is sequestered within the cytoplasm by members of the IkB
family of inhibitory proteins. A variety of cytokines, antigen-
receptor engagement and other stimuli, including signaling
events downstream of the HTLV-1 encoded Tax protein
expressed in ATLL, culminate in NF-kB activation. Phos-
phorylation of IkBs by IkB kinase (IKK), composed of two
catalytic subunits (IKKa, IKKb) and a regulatory subunit
(NF-kB essential modulator/IKKg), triggers IkB ubiquitina-
tion and subsequent proteasomal degradation. In this way,
NF-kB dimers are liberated and regulate gene expression
following nuclear translocation. Multiple mechanisms, well
described in B-cell lymphomas, lead to constitutive NF-kB
activation, promoting lymphomagenesis [72]. In a similar
fashion, NF-kB is constitutively activated in CTCL [73–75].
Immunohistochemical analysis of MF cases demonstrated
nuclear localization of p65/RelA in over 90% of the cases
examined [73]. Furthermore, pharmacologic NF-kB inhibi-
tion in CTCL cell lines decreases NF-kB DNA binding activ-
ity, thus promoting cell death [73–76]. While the molecular
mechanisms leading to constitutive NF-kB activation in
CTCL are poorly understood, the observation that IKK inhi-
bition downregulates NF-kB activity implicates upstream
IKK-activating elements [74,75].
The signal transducers and activators of transcription

(STATs) are a family of six transcription factors which
become phosphorylated by one of four upstream receptor-
associated Janus kinases (JAKs) following cytokine stimu-
lation. Nuclear localization and DNA-binding of phosphoryl-
ated STAT3 has been convincingly demonstrated in CTCL
[77,78]. Following nuclear translocation, STAT3 directly reg-
ulates a number of target genes in CTCL, including regula-
tors of apoptosis (e.g., Bcl-2/Bax), cytokines (e.g., IL-5,
IL-13) and suppressors of cytokine signaling (e.g., SOCS).
In addition, STAT3 indirectly regulates gene expression by
inducing the expression of DNA methyltransferase 1
(DNMT1), which promotes the epigenetic silencing of tumor
suppressor genes [79]. Not surprisingly then, pharmaco-
logic inhibition of STAT3 promotes apoptosis in CTCL
[77,80–82]. Cytogenetic gains involving STAT5A and
STAT5B or their activation in response to cytokines present
within the tumor microenvironment suggests a pathogenic
role for other STATs [83–85].
Normal T cells undergo a controlled process of activa-

tion-induced cell death following antigen-dependent activa-
tion and proliferation, thus maintaining lymphocyte homeo-
stasis. Extrinsic death receptors, including Fas (CD95),
play an important role in regulating this process. A number
of mechanisms, including promoter methylation [86–88],
gene mutations [89] and loss of the long arm of chromo-
some 10 [90] result in diminished Fas expression in CTCL
and reduced sensitivity to apoptosis. In addition, promoter

methylation and epigenetic instability leading to the inacti-
vation of many tumor suppressor genes, including those
involved in the induction of apoptosis, appear to be com-
monly used mechanisms of lymphomagenesis in CTCL
[91].
In addition to multiple defects in apoptosis, aberrant cell-

cycle regulation, including inactivation of the CDKN2A-
CDKN2B locus, is frequently observed in CTCL. The
CDKN2A locus, located on chromosome 9p21, encodes for
two overlapping proteins (p16INK4A and p14ARF) by the
selective use of two alternative first exons. The p16INK4A

protein inhibits cyclinD1-dependent activation of cyclin-de-
pendent kinase (CDK) 4 and CDK6, thus preventing RB1
phosphorylation and cell-cycle progression. In contrast,
p14ARF inhibits MDM2, a ubiquitin ligase that targets p53
for proteasomal degradation, leading to the induction of
p53-dependent genes, including cell-cycle regulators (e.g.,
p21WAF1/CIP1). The CDKN2B locus encodes p15INK4B which
inhibits CDK4/6 and subsequent RB1 phosphorylation.
Therefore, combined deletion of CDKN2A/CDKN2B or their
epigenetic silencing, leads to RB1 phosphorylation and loss
of p53, culminating in cell-cycle progression. These abnor-
malities are frequently observed in CTCL, suggesting their
early involvement in disease pathogenesis [92,93]. Cyclin
upregulation, including cyclinD1, and loss of RB1 have also
been described [94]. As gene-expression profiling and next-
generation sequencing technologies are used, additional
pathogenic pathways, including those involving transcription
factors regulating T-cell differentiation [35,36], c-MYC
[95,96], RAS/RAF/MEK signaling [97], among others
[90,98], may be identified in subsets of CTCL.

Diagnosis

Mycosis fungoides
The definitive diagnosis of MF, particularly patch/plaque

stage disease, is challenging, as many of its clinical and
pathologic features are nonspecific. Many patients will have
had symptoms attributed to eczema or parapsoriasis for
years before obtaining a definitive diagnosis. The median
time from symptom onset to diagnosis in retrospective se-
ries is 3–4 years, but may exceed four decades [99–101].
Clinically, patch/plaque stage MF is frequently character-
ized by persistent and progressive lesions that develop in a
‘‘bathing suit’’ distribution and vary in size, shape and color.
These lesions are frequently large (>5 cm), pruritic and
multifocal in ‘‘classical’’ MF (Fig. 1A). However, a broad
range of MF variants have been described with differences
in tropism (e.g., follicular MF), distribution (e.g., palmoplan-
tar MF), pigmentation (e.g., hypopigmented and hyperpig-
mented variants) and focality (e.g., unilesional MF), some
of which are formally recognized in the WHO-EORTC clas-
sification (see Table I) [2,102].
Histologically, MF is characterized by the infiltration of

small to medium-sized lymphocytes with cerebriform nuclei
in the upper dermis and epidermis (i.e., epidermotropism),
occasionally forming intraepidermal nests, or Pautrier’s
microabscesses (Fig. 1B). In a retrospective review, biopsy
specimens obtained from 64 patients with bona fide MF
(based on their clinical course) were systematically com-
pared with 47 non-MF biopsy specimens. On univariate
analysis, seven characteristics were significantly associated
with MF, including: Pautrier’s microabscesses, haloed lym-
phocytes, exocytosis, disproportionate epidermotropism,
epidermal lymphocytes larger than dermal lymphocytes,
hyperconvoluted (i.e., cerebriform nuclear contour) intraepi-
dermal lymphocytes, and lymphocytes aligned within the
basal layer [103]. Of these, the presence of haloed lympho-
cytes was the most significant discriminator on multivariate
analysis. Unfortunately, these histologic characteristics are

American Journal of Hematology 931

annual clinical updates in hematological malignancies: a continuing medical education series



neither sensitive nor specific. For example, Pautrier’s micro-
abscesses, often considered to be pathognomonic of MF,
were only observed in 37.5% of MF cases, while being
observed in 2.1% of non-MF cases. Conversely, spongiosis
(i.e., intercellular edema between epidermal keratinocytes)
may be associated with benign dermatoses, yet it was
observed in 39.1% of MF cases. In a smaller series, the
presence of medium to large lymphocytes with cerebriform
nuclei and epidermotropism were important distinguishing
features of MF [104]. Given the importance of clinicopatho-
logical correlation in the diagnosis of MF and the variable
association of specific histologic findings with the diagnosis,
biopsy reports are not infrequently ‘‘suggestive of’’ the diag-
nosis. This occasional uncertainty implied in biopsy reports
and apparent lack of a more definitive histologic diagnosis
may be a source of frustration for clinicians unfamiliar with
the challenges associated with rendering a pathologic diag-
nosis of MF.
While a definitive diagnosis of MF may be made on the

basis of clinical and pathologic features alone, determina-
tion of T-cell clonality and assessing the aberrant loss of T-
cell antigen expression upon immunohistochemical staining
for CD2, CD3, CD5, and CD7 are useful ancillary studies in
the diagnosis of MF (and SS). Southern blot analysis and
PCR-based methods are able to detect clonal rearrange-
ments of the T-cell receptor (TCR) in formalin-fixed, paraf-
fin-embedded biopsy specimens [105,106]. PCR-based
methods are sensitive (�1%) and should be interpreted
with caution, as TCR gene rearrangements suggesting
clonality may be detected in normal elderly individuals and
in patients with benign dermatoses or other disease states

[107–111]. However, detection of identical clones from two
different sites is quite specific for MF [112]. The extent to
which MF/SS may be preceded by a premalignant state,
analogous to monoclonal B-cell lymphocytosis (MBL) or
monoclonal gammopathy of undetermined significance
(MGUS), is debatable and poorly defined [113]. The malig-
nant lymphocytes in MF/SS are usually CD31CD41 and
CD82, but frequently lose the expression of other pan-T-
cell antigens. Therefore, demonstration of a significant pop-
ulation of cells lacking CD2, CD5, and/or CD7 expression,
either within the entire lesion or the epidermis alone, is
highly specific (specificity >90%) for MF in most reported
series [114,115].
Given the need for uniform diagnostic criteria in MF, the

International Society for Cutaneous Lymphoma (ISCL)
recently proposed a point-based diagnostic algorithm which
integrates clinical, histopathologic and immunophenotyping
data with an assessment of T-cell clonality [116]. This diag-
nostic algorithm is intended for classic presentations of MF
and is summarized in Table II.

Sézary Syndrome
Traditionally, SS is defined as a leukemic form of CTCL

associated with erythroderma (Fig. 1C). A series of studies
in the early to mid-20th century, beginning with Sézary’s ini-
tial landmark observation in 1938, identified a population of
large lymphocytes in the peripheral blood with grooved,
lobulated (i.e., ‘‘cerebriform’’) nuclei in patients with MF or
SS (Fig. 1D) [118–123]. As in other chronic lymphoprolifer-
ative disorders, the Sezary cell count is preferably
expressed in absolute terms, with �1,000 cells/ll classified

Figure 1. A patient with hyperpigmented patch-stage (stage Ib) MF is shown (A). H&E stained skin biopsy from a patient with MF demonstrates characteristic histologic find-
ings, including epidermotropism with haloed lymphocytes aligned along the basal layer. A pautrier’s microabscess is indicated by the arrow (B). A patient with erythroderma
(SS) is shown (C). A Sézary cell with cerebriform nucleus is shown (D). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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as B2 disease in the current ISCL/EORTC TNMB staging
classification. The morphologic detection of Sezary cells in
the peripheral blood is not specific for CTCL, as Sezary
cells may be found in peripheral blood from normal donors
and in benign conditions [124–126]. The histologic findings
in the skin often resemble those observed in MF, with less
prominent epidermotropism, while lymph node involvement
is characterized by complete effacement of the nodal archi-
tecture by infiltrating Sezary cells [127].
In SS, clonal T cells are generally CD31CD41 and CD82

by multicolor flow cytometry [128–130]. As in MF, the aber-
rant loss of pan-T-cell antigens, including CD2, CD3, CD4,
CD5, and CD7 is frequently observed [130–132]. Of these,
the aberrant loss of CD7 expression is most common, being
observed in approximately two-thirds of cases
[131,133,134]. Loss of CD26 expression is also useful in the
identification of Sezary cells, being observed in �50% of
cases [135–137]. More recently, the aberrant expression of
the MHC class I-binding, killer immunoglobulin-like receptor
(KIR) CD158j, normally expressed by natural killer cells,
was described in the majority of patients examined with SS
[138,139]. Molecular studies, including detection of a clonal
TCR gene rearrangement by PCR and the presence of a
clonal cytogenetic abnormality, provide evidence of T-cell
clonality. An alternative approach to demonstrate T-cell clon-
ality incorporates multicolor flow cytometry using a panel of
antibodies specific for various TCR beta-chain variable
region family members (TCR-Vb) [140–142]. This approach
is successful in identifying a clonal population of T cells if
this population is significantly higher than the background
frequency of polyclonal T cells harboring the same Vb chain
[140,141]. Clark et al. recently observed that lymphocytes
isolated from either peripheral blood or skin lesions of CTCL
patients contained a population of cells with high forward
and side scatter characteristics on flow cytometric analysis
[24]. A similar population of so-called high-scatter T cells
(THS) was not observed in samples obtained from patients
with benign conditions. More importantly, these high-scatter
T cells, upon careful immunophenotyping and analysis of
clonal TCR-Vb chain expression, were convincingly shown
to represent the malignant T-cell clone. While additional con-
firmatory studies are warranted, detection of high-scatter T

cells may be an easily performed method to detect a clonal
T-cell population in patients with limited-stage MF and to
monitor the response to therapy.
The currently proposed ISCL criteria for SS integrate

clinical, histologic, immunophenotyping, and molecular
studies. In patients with erythroderma, criteria recom-
mended for the diagnosis of SS by the ISCL include the fol-
lowing: absolute sezary count �1,000/ll, a CD4/CD8 ratio
�10 (due to the clonal expansion of CD41 cells), aberrant
expression of pan-T-cell antigens, demonstration of T-cell
clonality in the presence of a lymphocytosis by Southern
blot or PCR-based methods, or cytogenetic demonstration
of an abnormal clone [143]. At a minimum, the WHO-
EORTC recommends the demonstration of T-cell clonality
in combination with the aforementioned criteria for the diag-
nosis of SS, as summarized in Table II [2]. On rare occa-
sions, SS may be preceded by a prior history of classic MF.
The ISCL recommends that such cases be designated as
‘‘SS preceded by MF.’’ Conversely, patients with MF, but
without erythroderma, may meet hematologic criteria for
SS. In these cases, the designation ‘‘MF with leukemic
involvement’’ is recommended.

Non-MF/SS subtypes of CTCL
An important goal during a patient’s initial diagnostic

evaluation is to distinguish non-MF/SS CTCL subtypes
from MF/SS, as the natural history, prognosis, and treat-
ment approach for each of the non-MF/SS lymphomas is
highly variable. While a detailed description of these CTCL
subtypes is beyond the scope of this update, the salient
features of each are briefly summarized in Table III.
Recently published overviews are also available [2].

Risk-Stratification

Staging
In contrast to many other lymphoproliferative disorders in

which cytogenetic and laboratory findings play a prominent

TABLE I. WHO-EORTC Classification of Primary Cutaneous Lymphomas [2]

Cutaneous T-cell and NK-cell lymphomas
Mycosis fungoides
Mycosis fungoides, variants and subtypes
Folliculotropic MF
Pagetoid reticulosis
Granulomatous slack skin

Sézary syndrome
Adult T-cell leukemia/lymphoma
Primary cutaneous CD301 lymphoproliferative disorders
Primary cutaneous anaplastic large cell lymphoma
Lymphomatoid papulosis

Subcutaneous panniculitis-like T-cell lymphoma
Extranodal NK/T-cell lymphoma, nasal type
Primary cutaneous peripheral T-cell lymphoma, unspecified
Primary cutaneous aggressive epidermotropic CD81 T-cell lymphoma

(provisional)
Cutaneous g/d T-cell lymphoma (provisional)
Primary cutaneous CD41 small/medium-sized pleomorphic T-cell lymphoma

(provisional)
Cutaneous B-cell lymphomas
Primary cutaneous marginal zone B-cell lymphoma
Primary cutaneous follicle center lymphoma
Primary cutaneous diffuse large B-cell lymphoma, let type
Primary cutaneous diffuse large B-cell lymphoma, other
Intravascular large B-cell lymphoma

Precursor hematologic neoplasm
CD41/CD561 hematodermic neoplasm (blastic plasmacytoid dendritic cell
neoplasm)

TABLE II. Diagnostic Criteria for Classic Mycosis Fungoides and Sézary

Syndrome

Disorder Diagnostic criteria References

Mycosis fungoides
(4 points required
for diagnosis)

Clinical (2 points for 1 basic 1 2
additional criteria; 1 point for 1 basic
1 1 additional criteria)

[116]

Basic: persistent and/or progressive
patches/plaques
Additional: non-sun exposed location,
variation in size/shape, poikiloderma

Histopathologic (2 points for 1 basic 1 2
additional criteria; 1 point for 1 basic
1 1 additional criteria)
Basic: superficial lymphoid infiltrate
Additional: epidermotropism without
spongiosis, lymphoid atypia (cells with
large, cerebriform nuclei)

Molecular biological (1 point)
Clonal TCR gene rearrangement

Immunopathologic (1 point for �1
criteria)
<50% CD21, CD31 and/or CD51 T
cells
<10% CD71 T cells
Epidermal/dermal discordance of CD2,
CD3, CD5 or CD7

Sézary syndrome Clonal rearrangement of the TCR (by
Southern or PCR)

[117]

Absolute Sézary count � 1,000/ll
Or 1 of the following if Sézary count not

able to be used:
Increased CD41 or CD31 T cells with

CD4/CD8 ratio �10
Abnormal immunophenotype:

CD41CD72 ratio �40% or
CD41CD262 ratio �30%
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role in risk stratification, TNMB (tumor, node, metastasis,
and blood) staging remains an important prognostic factor
in MF/SS and forms the basis for a ‘‘risk-adapted’’
approach to treatment. In 2007, the ISCL and EORTC re-
vised the TNMB staging of MF/SS [143]. Patients with only
patches and plaques have stage I disease, but may be fur-
ther divided into stage IA (<10% body surface area
involved or T1) or stage IB (>10% body surface area
involved or T2) based on the extent of skin involvement.
For practical purposes, the area of one hand (including
both palm and digits) represents �1% of body surface
area. Current staging and diagnostic recommendations do
not require a biopsy of clinically normal lymph nodes; how-
ever, an excisional biopsy of any abnormal lymph nodes
(�1.5 cm in diameter or firm/fixed) is recommended, with
preference being given either to the largest lymph node
draining an area of skin involvement or to the node with the
greatest standardized uptake value (SUV) on FDG-PET
imaging. In current practice, two pathologic staging systems
are used to classify the extent of nodal involvement. In the
Dutch system, lymph nodes are pathologically graded
based on the presence of large cerebriform nuclei (>7.5
lm) and the degree of architectural effacement [182]. In
contrast, the National Cancer Institute-Veterans Administra-
tion (NCI-VA) classification uses the relative number of
atypical lymphocytes (not size), along with nodal architec-
ture to determine the extent of nodal involvement
[183,184]. Patients with patch/plaque stage disease (T1/T2)
and architectural preservation of any clinically abnormal
lymph nodes are classified as stage IIA. Collectively,
patients with stage I-IIA disease have ‘‘limited-stage’’ dis-
ease, as the overall survival in these patients is measured
in decades, with survival in patients with stage IA disease
resembling that of normal age-matched controls [7,99,100].
At diagnosis, the majority of MF patients will have limited-
stage disease [7]. In contrast, patients with tumor stage dis-
ease (T3), erythroderma (T4), nodal involvement character-
ized by partial or complete architectural effacement (N3),
visceral metastases (M1), or significant leukemic involve-
ment (B2) have ‘‘advanced-stage’’ disease. Detection of a
clonal TCR gene rearrangement by PCR, which has been
incorporated into the revised ISCL/EORTC node(N) and
blood(B) staging classification, is an adverse prognostic
factor [7,185–188]. Unfortunately, median survivals from
�1–5 years are observed in these patients with more
extensive disease [7]. The revised ISCL/EORTC staging for
MF/SS is summarized in Table IV.
A recently reported retrospective study which included

1,398 MF patients, 71% with patch/plaque stage disease,
and 104 SS patients has validated the revised ISCL/
EORTC staging classification [7]. On univariate and multi-
variate analyses, the revised T, N, M, and B classification

were significantly associated with overall and disease-
specific survival. The median survival, disease-specific sur-
vival and risk of disease progression, by clinical stage, are
summarized in Table IV. In addition to staging, male gender,
increasing age, an elevated LDH and the folliculotropic vari-
ant of MF were also independently associated with poorer
overall and disease-specific survival. In contrast to previous
reports highlighting the aggressive clinical course associated
with large cell transformation [189–193], defined as the pres-
ence of large, atypical lymphocytes comprising at least 25%
of the total lymphoid infiltrate, large cell transformation was
not an independent predictor of overall or disease-specific
survival but was associated with a higher risk (hazard ratio
3.32) of disease progression [7]. Given the importance of
the TNMB classification in risk stratification and defining dis-
ease burden, the ISCL/EORTC recommends its use in defin-
ing the initial, maximum and current burden of disease,
which will ultimately play an important role in the selection of
either skin-directed or systemic therapies [143].
Recognizing that the staging system used for MF/SS is

less helpful for non-MF/SS cutaneous lymphomas, a new
TNM classification was also proposed for these CTCL var-
iants [194]. Because of the significant heterogeneity of
these lymphomas, this staging system does not provide
prognostic information, but is intended to provide a uniform
description of the disease burden.

Cytogenetics
In contrast to some B-cell lymphoproliferative disorders,

such as chronic lymphocytic leukemia and multiple my-
eloma, for which gene-expression profiling and cytogenetic
findings have important prognostic implications, risk-stratifi-
cation in CTCL based on cytogenetic findings has only
recently been described, is poorly understood, and conse-
quently is not routinely performed in clinical practice.
Shin et al. performed a gene expression profiling analysis

on lesional skin biopsy specimens obtained from 62 CTCL
patients and identified three distinct gene expression clus-
ters that were prognostically important [47], that were later
confirmed by RT-PCR analysis [195]. The first cluster was
associated with the upregulation of genes involved in T-cell
activation, homing and tumor necrosis factor (TNF) signal-
ing. This cluster conferred an inferior event-free survival
when compared with the other two clusters. The second
cluster, associated with the upregulation of genes involved
in keratinocyte and epidermal proliferation and differentia-
tion, was comprised largely of patients with limited-stage
disease and was, not surprisingly, associated with superior
event-free survival. Cluster 3, associated with an event-free
survival intermediate between the first two clusters, was
associated with the upregulation of genes involved in kerati-
nocyte function and WNT signaling.
Array-comparative genomic hybridization techniques

have revealed chromosomal copy number alterations that
are prognostically relevant. First, an inverse association
between survival and the absolute number of copy number
alterations, reflecting genomic instability, has been
observed in both tumor-stage MF and SS [196,197]. For
example, in a cohort of 28 SS patients, the presence of
fewer than three copy number alterations was associated
with a median overall-survival of 93 months, compared with
a median overall-survival of 67 months for those with three
or more copy number alterations [196]. In addition to
genomic complexity, specific chromosomal gains/losses
have also been associated with inferior survival. Unfortu-
nately, many of these studies are small and hindered by
the inclusion of multiple histologies. For example, in a
cohort of 58 patients with transformed MF, SS, or cutane-
ous anaplastic large cell lymphoma (cALCL), loss of the

TABLE IV. ISCL/EORTC Staging

Stages

TNMB
Classification

Median
OS (years)

10-year [7]

T N M B OS (%) DSS (%) RDP (%)

IA 1 0 0 0,1 35.5 88 95 12
IB 2 0 0 0,1 21.5 70 77 38
IIA 1, 2 1 0 0,1 15.8 52 67 33
IIB 3 0–2 0 0,1 4.7 34 42 58
IIIA 4 0–2 0 0 4.7 37 45 62
IIIB 4 0–2 0 1 3.4 25 45 73
IVA1 1–4 0–2 0 2 3.8 18 20 83
IVA2 1–4 3 0 0–2 2.1 15 20 80
IVB 1–4 0–3 1 0–2 1.4 18 (5 years) 18 (5 years) 82 (5 years)

OS, overall survival; DSS, disease-specific survival; RDP, risk of disease pro-
gression
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CDKN2A-CDKN2B locus (at 9p21) was associated with
inferior overall survival that was highly significant. However,
9p21 loss was only found in a single patient with cALCL.
Therefore, when these patients were omitted from analysis,
the loss of 9p21 was associated with decreased overall
survival that approached, but did not reach, statistical
significance [93]. Despite this, the adverse prognostic sig-
nificance of 9p21 loss is supported by multiple patient
cohorts including both MF and SS [19,20,197]. Additional
cytogenetic abnormalities, involving gains of chromosomes
1q and 8q and losses of chromosome 10q, have been
associated with inferior survival and are summarized in
Table V.

Treatment of Limited-Stage MF
As the majority of CTCL patients present with patch/pla-

que stage MF and have an excellent prognosis, the initial
goal of therapy is to improve symptoms and quality of life
while avoiding treatment-related toxicity. For many patients,
this may involve either expectant management (i.e., ‘‘watch
and wait’’) or skin-directed therapies. A randomized trial
comparing early combined modality therapy with both radia-
tion and multiagent chemotherapy (cyclophosphamide, dox-
orubicin, etoposide, and vincristine) with sequential topical
therapies demonstrated that combined modality therapy,
while associated with a superior complete response rate, did
not translate into improvements in disease-free or overall
survival, but was associated with significant toxicity [198].
Therefore, patients with limited-stage disease who require
therapy are best approached with skin-directed therapies,
usually under the direction of a dermatologist and/or radia-
tion oncologist. Excellent reviews, and treatment guidelines,
are available [199–204]. Consequently, management of lim-
ited-stage disease will be summarized only briefly.
Corticosteroids, alkylating agents and bexarotene are

available for topical use and are frequently utilized in the
management of patients with limited-stage disease. Topical
corticosteroids produce both clinical and/or pathologic com-
plete remissions in up to 63% of patients with limited patch/
plaque stage MF [205]. Nitrogen mustard (mechloreth-
amine) may be applied as an aqueous or ointment-based
preparation and produces complete remissions in �50–
75% of patients with limited patch/plaque stage disease
[206,207]. The median time to response is �10–19 months,
depending on the extent of disease, with freedom-from-

progression rates exceeding 80% at 10 years [207]. Contact
hypersensitivity reactions are more common with the aque-
ous preparation, but occur in fewer than 10% of patients
with the ointment-based formulation [207]. Myelosuppression
is not observed. While the risk of secondary nonmelanoma
skin cancers following topical mechlorethamine alone is
debatable, it may potentiate the carcinogenic affects of other
therapies [208]. Topical BCNU (carmustine) is associated
with complete remission rates exceeding 80% following a
median of 3 months of therapy. Because of systemic
absorption, it is associated with myelosuppression which
requires monitoring, and in some cases dose modifications
[209,210]. The most common toxicities are benign cutane-
ous reactions, including erythema, telangiectasias and
hyperpigmentation. Bexarotene 1% gel is generally well tol-
erated and has been associated with an overall response
rate of 63% (and complete response rate of 23%), prompt-
ing FDA approval for limited-stage CTCL in 2000 [211].
In addition to topical therapies, both ultraviolet radiation, ei-

ther UVA or UVB, and total skin electron beam therapy
(TSEBT) are frequently utilized in limited-stage CTCL. Psora-
len, which forms DNA adducts upon photoactivation, com-
bined with ultraviolet A (PUVA) causes tumor cell apoptosis
and is associated with a complete response rate exceeding
90%, and a prolonged disease-free interval, in patients with
stage IA/IB disease [212,213]. In contrast to PUVA, use of ei-
ther broadband or narrowband ultraviolet B (UVB) does not
require psoralen and is associated with a high clinical and
pathologic complete response rate, particularly for patients
with patch-stage disease [214–218]. Malignant T cells are ra-
diosensitive. Therefore, the delivery of electrons to the entire
skin surface with TSEBT is associated with response rates
exceeding 90% and is potentially curative for patients with
stage IA disease [219,220]. Given the limited depth of pene-
tration, systemic toxicity is avoided with TSEBT, although hair
loss and the risk of secondary skin cancers may limit its wide-
spread use. If needed, a second coarse of TSEBT may be
safe and efficacious [221]. Focal, conventional radiation ther-
apy is useful for the palliation of local lesions.

Treatment of Advanced-Stage MF/SS

Overview
Patients with advanced-stage MF/SS require a multidisci-

plinary approach, as various combinations of skin-directed
therapies, biologic-response modifiers and ultimately the

TABLE V. Common Chromosomal Gains/Losses in MF/SS

Gain Loss

Gain
Frequency

(%)
Candidate genes
(cytogenetic band) References Loss

Frequency
(%)

Candidate genes
(cytogenetic band) References

1p 15–45 [20] 5q 40–45 TAF9 (q13) [20]
1q* 15–45 MCL1, CLK2, PRCC, ARHGEF11

(q21–q22); RGS1, RGS2 (q25–q31);
MDM4, NAV1, KIF14 (q31–q32)

[19,20,197] 6q 17 [197]

7p 41–50 CAMK2B (p13–p14); TAX1BP1,
HOXA10, CREB5 (p15-p14); RAC1,
OCM (p11.2–p22);

[19,20] 9p* 30–42 CDKN2A, CDKN2B (p21) [19,20,93,197]

7q 50–60 GTF2IRD1 (q11.2); AP1S1, HGF
(q21–q22); MET (q31); BRAF, HIPK2
(q33.3–q35); FASTK (q36)

[19,20,197] 9q 30–35 UBQLN1, CDK20 (q21–q22) [19,20,197]

8p 50 BAG4 (p11.23) [196] 10p 17–68 NRP1, MAP3K8, ZEB1, ITGB1
(p11.22–p11.23)

[19,196,197]

8q* 32–75 MYC (q24.21); HSF1, PLEC1 (q24.3) [19,20,197] 10q* 20–47 PTEN, FAS (q22–q24); FGFR2, CASP7
(q25–q26); MGMT (q26)

[19,20,84]

9q 17 NOTCH, TRAF2, CARD9 (q34) [197] 11q 20 DDX10 (q22.3) [19]
10p 17–36 GATA3, IL2R (p14) [196,197] 13q 20–36 RB1, KLF12 (q14–q31); [20,197]
17q 30–70 ERBB2 (q12); FMNL1, SKAP1,

SUPT4H1, STAT3, STAT5A,
STAT5B (q21–q25)

[19,20,197] 16q 17–35 E2F4, CBFB (q21–q22) [19,20,197]

17p 9–71 TP53 (p13.1) [19,20,197]

*Associated with inferior overall survival.
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sequential use of systemic chemotherapeutic agents are
frequently used in the management of these patients. As
for limited-stage disease, multiagent chemotherapy, with
only few exceptions, is generally not appropriate [198]. As
summarized in Fig. 2, a ‘‘risk-adapted’’ stage-based
approach is adopted, with biologic-response modifiers (e.g.,
bexarotene and interferon-alpha), denileukin diftitox, and
histone deacetylase inhibitors (e.g., vorinostat) generally
preferred before escalating therapy to include systemic
chemotherapy. Therapeutic decisions are individualized and
based on a patient’s age, performance status, extent of dis-
ease burden and the rate of disease progression, and pre-
vious therapies. The concise treatment algorithm provided
in Fig. 2 is consistent with published treatment guidelines
and expert opinion [199–204].

Bexarotene
The endogenous retinoids all-trans retinoic acid and 9-cis

retinoic acid (i.e., vitamin-A-derived compounds) regulate a
diverse array of biologic processes, ranging from embryonic
development to cell growth, differentiation and survival,
upon binding two families of steroid hormone receptors, the
retinoic acid receptors (RAR) and retinoid X receptors
(RXR). Each retinoid receptor has three subtypes (a, b, g),
each of which is associated with various tissue-specific iso-
forms. Upon forming homodimers or heterodimers, these
receptors recruit various nuclear corepressor or coactivator
proteins depending whether or not they are bound by
ligand. For example, in the absence of RAR ligand, RXR/
RAR heterodimers recruit histone deacetylase, leading to
epigenetic silencing of gene transcription. In contrast, upon
engaging RAR ligand, corepressors dissociate, coactivators
are recruited, and gene transcription ensues [222,223].

Multiple RAR retinoids have been used in MF/SS, either
topically or systemically (reviewed in [222,224]), with
response rates exceeding 50%. However, in 1999 the oral
RXR-selective ‘‘rexinoid’’ bexarotene was FDA approved for
CTCL and was later approved as a topical gel formulation.
Laboratory studies demonstrate that bexarotene promotes
cell cycle arrest and apoptosis in CTCL cell lines [225,226].
In a multicenter phase II-III study, 94 patients with
advanced-stage CTCL who had been previously treated
with a median of five prior therapies, the vast majority of
whom had disease refractory to at least one prior systemic
therapy, received at least 300 mg/m2 of oral bexarotene
daily [227]. Among patients treated at the 300 mg/m2 dose,
an overall response rate of 45% was observed, only 2% of
which were complete. While an improved overall response
rate was noted with the use of higher doses, this difference
was not statistically significant, and dose-limiting toxicity
was far more common (50% vs. 89%) in these patients.
While a dose-response relationship is likely, the 300 mg/m2

dose appears to provide the optimal risk-benefit ratio. The
most common toxicities associated with therapy were hy-
pertriglyceridemia (in 82%) and central hypothyroidism
(29%). Myelosuppression is infrequent and usually uncom-
plicated. Pancreatitis secondary to hypertriglyceridemia
may be rarely observed, but is reversible upon discontinua-
tion of treatment. Therefore, a baseline lipid panel and TSH
should be obtained before the initiation of therapy. In one
retrospective study, all patients treated with bexarotene
developed hyperlipidemia and hypothyroidism, frequently
within weeks of initiating treatment [228]. Consequently,
use of lipid-lowering agents (e.g., statins or fenofibrate but
not gemfibrozil due to its association with increased bexar-
otene levels and pancreatitis) and low-dose levothyroxine
(e.g., 50 lg) before initiating bexarotene is reasonable
[229,230]. In clinical practice, bexarotene is frequently initi-
ated at a lower dose of 150 mg/m2 and subsequently
titrated to full doses after 2–4 weeks of therapy, depending
on patient tolerability. As most responses occur within 2–3
months of treatment initiation, treatment should be discon-
tinued or an escalation in the dose considered for those
patients with progressive disease after 2–3 months of ther-
apy, depending on the degree of disease progression and
ability to tolerate further treatment. For responding patients,
treatment may be continued until disease progression and,
depending on the quality of the response, adjunctive skin-
directed therapies (e.g., PUVA) considered [231].
Combination therapies incorporating bexarotene are cur-

rently being explored. Bexarotene combined with denileukin
diftitox provides a noteworthy example, as bexarotene was
shown to increase IL-2Rb (CD122) expression in malignant
T cells [232], conferring increased sensitivity to denileukin
diftitox, thus forming the rationale for a phase I study com-
bining these two agents [233]. In this study, 14 patients
with relapsed/refractory CTCL received bexarotene (75–
300 mg daily) with denileukin diftitox (18 mcg/kg daily for 3
days every 21 days). Eight responses, including four com-
plete responses, and upregulation of the IL-2 receptor fol-
lowing therapy were observed [233]. Future studies clarify-
ing the optimal use of bexarotene, either in combination or
sequentially with other agents, are needed.

Denileukin diftitox
Components of the trimeric IL-2 receptor complex, com-

prised of an alpha chain (CD25) required for high-affinity
binding, beta chain (CD122), and a common gamma chain
(CD132), are expressed by clonal T cells in CTCL. Target-
ing the IL-2 receptor with the monoclonal antibody Daclizu-
mab was safe and partially effective in adult T-cell leuke-
mia/lymphoma [234,235]. In hopes of improving on these

Figure 2. Approach to treatment of advanced-stage MF/SS. Abbreviations: MTx,
methotrexate; RIC, reduced-intensity conditioning; SDT, skin directed therapy. Clin-
ical trial participation, whenever possible, is encouraged.
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results targeting the IL-2 receptor, denileukin diftitox (Dd)
was developed (reviewed in [236]). Denileukin diftitox is a
fusion protein comprised of human IL-2 fused to a trun-
cated diphtheria toxin which has high affinity for the IL-2 re-
ceptor and is internalized upon receptor binding, leading to
liberation of the toxin and the induction of apoptosis. Phase
I/II studies demonstrated objective responses in approxi-
mately one-third of patients [237–239], leading to a phase
III study which randomized 71 patients with CD25 positive
(i.e., �20% T cells positive by immunohistochemistry)
CTCL, most with advanced-stage disease, to either 9 or 18
lg/kg/day of Dd given intravenously on five consecutive
days every 3 weeks for up to eight cycles [240]. An objec-
tive response, 20% partial and 10% complete, was
observed in 30% of patients, while an additional 32% of
patients had stable disease. The median time to response
was 6 weeks, with 95% of responding patients demonstrat-
ing evidence of response by week 9. The median duration
of response was 7 months (range 2.7–46.1 months).
Among responders, significant improvements in self-
reported quality of life were observed [241]. More recently,
results of a large phase III placebo-controlled trial, utilizing
the same Dd dosing schedule, were reported. An overall
response rate of 44% was observed and was associated
with a median progression-free survival exceeding 2 years
[242]. While only patients felt to have CD25 positive dis-
ease were included in these studies, biopsies obtained
from different sites or at different times demonstrate signifi-
cant variability, suggesting that patients with CD25 negative
CTCL may benefit from treatment. In a prospective analy-
sis, a significant difference in response rate was noted
between CD25 positive and negative lymphomas, with only
20% of patients with absent or low-level expression
responding to treatment, compared with a response rate
approaching 80% for those with CD25 positive disease
[243]. In a meta-analysis of three trials, including 307
patients, the overall response rate for Dd-treated patients
that were CD25 positive was 47.5%, and was associated
with a median progression-free survival exceeding 2 years
[244]. In contrast, a lower response rate of 30.6%, with a
progression-free survival exceeding 487 days, was
observed among CD25 negative patients. For patients
given placebo (n 5 44), the reported response rate was
15.9% and a median progression-free survival of 4 months
observed. Most of these patients (52%) experienced dis-
ease progression, compared with disease progression in
17.5% of all Dd-treated patients. In addition, responses
were observed in Dd-retreated patients who relapsed after
achieving an initial response.
A vascular leak syndrome leading to hypoalbuminemia,

hypotension or edema has been reported in �25% of
patients, usually within the first 2 weeks of treatment. Most
of these patients were retreated without further symptoms.
Approximately two-thirds of patients developed evidence of
hypersensitivity reactions (e.g., chest pain, hypotension, an-
gioedema, pruritus, and rash) within 1 hr of treatment. In
hopes of ameliorating these symptoms, premedication with
corticosteroids was performed in 15 patients that were sub-
sequently reported [245]. With premedication, only three
patients experienced hypersensitivity reactions, while two
patients developed vascular leak syndrome. Furthermore,
an impressive response rate of 60% was reported. Given
these toxicities, the infusion of normal saline (e.g., 500 cc)
before and after Dd administration and correction of under-
lying hypoalbuminemia (<3 g/dL) before treatment is rec-
ommended. Dexamethasone premedication (e.g., 2–4 mg
intravenously) is routinely provided, and patients instructed
to monitor daily weights following treatment. Weight gain
and edema are managed with diuretics. Routine monitoring

of liver function tests, serum creatinine and albumin is rec-
ommended. Of note, Dd should not be administered in a fa-
cility ill equipped to provide cardiopulmonary resuscitation.
Severe and persistent transaminitis, thyrotoxicosis, loss of
visual acuity or color vision, and rhabdomyolysis have been
reported but are uncommon [240,246–248]. Investigations
combining Dd with conventional chemotherapeutic agents
are ongoing.

HDAC inhibitors
Histone deacetylases (HDACs) catalyze the removal of

acetyl groups from both histone and nonhistone proteins.
As histone acetylation is associated with an open chromatin
configuration associated with active gene transcription,
HDACs contribute to histone deacetylation and the epige-
netic repression of gene transcription. The 18 human
HDACs may be classified as either zinc- or NAD1-depend-
ent and further subclassified into class I (HDAC1, 2, 3, and
8), class II (HDAC4, 5, 6, 7, 9, and 10), class III (including
NAD1-dependent sirtuins), and class IV (HDAC11) HDACs.
As HDACs regulate a wide variety of processes involved in
carcinogenesis, multiple mechanisms may explain the clini-
cal activity of HDAC inhibitors [249,250], including altered
gene expression of cell-cycle and apoptotic regulatory pro-
teins [251–255], acetylation of nonhistone proteins regulat-
ing cell growth and survival [256–259], angiogenesis
[260,261], aggresome formation [262], and DNA repair
[263]. In addition, HDAC inhibitors may have important
effects on the tumor microenvironment via reactive oxygen
species [264,265], enhanced antigen presentation [266]
and downregulation of immunomodulatory cytokines, like
IL-10 [267].
Vorinostat (suberoylanilide hydroxamic acid, SAHA) and

romidepsin (depsipeptide) inhibit class I and II HDACs (i.e.,
pan-HDAC inhibitors), the former being widely expressed in
various lymphoma subtypes [268]. Early phase I studies of
both vorinostat and romidepsin established their safety and
potential efficacy in lymphoproliferative disorders, including
CTCL [269], thus paving the way for larger phase II studies.
An earlier phase II study established 400 mg of oral vorino-
stat once daily as the optimal dose that was investigated
further in 74 previously treated patients with CTCL, most of
whom (>80%) had advanced-stage disease [270,271]. The
overall response rate was �30% for patients with
advanced-stage disease and was associated with a median
duration of response estimated to exceed 185 days. Most
responses were rapid (i.e., <2 months) and were also
noted in patients with tumor-stage disease and Sézary syn-
drome [272]. Patients who failed to achieve an objective
response appeared to derive some clinical benefit, includ-
ing stable disease, decreased lymphadenopathy and pruri-
tis relief, with treatment. The most common nonhemato-
logic adverse events, observed in almost 50% of patients,
were gastrointestinal toxicities (nausea, vomiting, and diar-
rhea). Hematologic toxicities, including anemia or thrombo-
cytopenia, were observed in up to 20% of patients. Among
responding patients, long-term therapy with vorinostat
appears to be well tolerated [273]. Prolongation of the QT
interval was rarely observed, but monitoring and appropri-
ate electrolyte replacement is recommended for those
patients at risk for QT prolongation.
Romidepsin, administered as a 4-hr intravenous infusion

(14 mg/m2) days 1, 8, and 15 every 4 weeks, was eval-
uated in two phase II studies, the largest of which included
96 patients, most with advanced-stage disease [274,275].
The overall response rate was 38% for patients with
advanced-stage disease, with a median duration of
response that exceeded 1 year. A toxicity profile similar to
that described for vorinostat was observed. Intensive
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cardiac monitoring in a subset of these patients failed to
demonstrate any clinically significant cardiotoxicity [276].
Additional HDAC inhibitors, including potent pan-HDAC

inhibitors, appear to have activity in CTCL [255,277,278].
Further studies are needed to fully define the mechanisms
of resistance to HDAC inhibition in CTCL [255,279–282],
enabling the development of rational therapeutic combina-
tions incorporating HDAC inhibitors in CTCL [283,284].

Interferon-alpha
Interferon-alpha (i.e., interferon-alpha 2b), a type I inter-

feron with immunomodulatory properties, has pleiotropic
effects in CTCL and is associated with an overall response
rate of 50–70% and a complete response rate of 20–30%,
particularly in patients with limited-stage disease [285–288].
While often considered as second-line therapy for limited-
stage CTCL, interferon-alpha, frequently at doses ranging
from 3 to 10 million units daily to three times weekly, is a
treatment to be considered in the first-line setting in
patients with advanced-stage disease. Responses, which
may be achieved within a few months, are observed in
patients with tumor-stage MF and SS. Furthermore, inter-
feron-alpha may be successfully combined with a number
of other therapeutic modalities, including PUVA, bexaro-
tene, chemotherapy and ECP, which are frequently utilized
in the management of these patients [289–302]. For exam-
ple, in a cohort of 51 patients (42 of which had advanced-
stage disease) treated with single-agent, low-dose, inter-
feron-alpha, responses were observed in 34 (67%), 21
(41%) of which were complete and maintained long-term in
nine patients [288]. Similarly, in a cohort of 47 patients with
stage III/IV disease, 89% of which had peripheral blood
involvement, a response rate exceeding 80% was observed
in those treated with a combination of ECP and interferon-
alpha [302]. Interferon-alpha is associated with myelosup-
pression, transaminitis and dose-limiting flu-like side
effects, particularly at higher doses.

Extracorporeal photophoresis
During extracorporeal photophoresis (ECP), inspired by

PUVA, pooled leukapheresis and plasmapheresis products
are exposed to 8-methoxypsoralen (8-MOP) before extrac-
orporeal circulation through a 1-mm thick disposable cas-
sette exposed to UVA radiation. The irradiated leukocytes,
representing �5% of peripheral blood leukocytes, are sub-
sequently reinfused. Psoralen covalently binds and cross-
links DNA following UVA exposure, leading to the induction
of apoptosis in the majority of treated lymphocytes by multi-
ple mechanisms involving bcl-2 family members, disruption
of the mitochondrial membrane potential and extrinsic cell
death pathways [303–305]. In contrast, ECP leads to
monocyte activation, including significant changes in gene
expression [306], and dendritic cell differentiation, which is
thought to culminate in enhanced antigen presentation and
the initiation of a host immune response [307]. In hopes of
prolonging the exposure time between monocyte-derived
dendritic cells and malignant lymphocytes undergoing apo-
ptosis, investigators have developed a modified ECP proto-
col (i.e., ‘‘transimmunization’’) whereby blood products are
incubated overnight following UVA irradiation and before
patient infusion [308]. This novel adaptation is investiga-
tional and has not been widely used given concerns about
infectious risks and lack of a proven increase in efficacy.
Following the landmark study by Edelson and colleagues

describing responses in 27 of 37 patients with erythroder-
mic CTCL treated with ECP, ECP was approved by the
Food and Drug Administration of the USA for the treatment
of CTCL and is now considered the treatment of choice in
the first-line management of patients with Sézary syndrome
in many centers [309]. While responses vary between case

series, overall response rates hover around 60%, with a
complete response rate of �20% [310,311]. As current
treatment protocols no longer require the oral administra-
tion of 8-MOP, eliminating nausea, ECP is safe and gener-
ally very well tolerated. While alternative schedules have
been investigated, ECP is generally performed for two con-
secutive days every 2–4 weeks. While the precise mecha-
nism of action is incompletely understood, evidence sug-
gests that ECP has immunomodulatory effects which may
augment host antitumor immunity. It is not surprising then
that the median time to response following the initiation of
ECP is �6 months. Median survival exceeding 8 years has
been observed in ECP treated patients and among com-
plete responders, many experience durable responses
which may permit, for some, weaning from CTCL-directed
therapies [310,312–314]. While patient- or disease-specific
factors which may predict a response to therapy are imper-
fect, patients for whom treatment is initiated promptly after
diagnosis who have circulating Sézary cells, but without
significant nodal or visceral disease, may be more likely to
respond. In addition, patients without profound immune
deficiencies, reflected by normal or near-normal cytotoxic
T-cell and CD4/CD8 values and the absence of prior expo-
sure to systemic chemotherapy, may be more likely to
respond to therapy [310,313]. While effective as monother-
apy, ECP has also been combined with other therapeutic
strategies, including interferon, bexarotene and TSEBT
[292,302,312,315–317].

Monoclonal antibodies
In contrast to many B-cell lymphoproliferative disorders,

where the incorporation of CD20-targeting monoclonal anti-
bodies has become the standard of care, additional studies
are needed to identify the optimal approach targeting T-cell
specific antigens in advanced-stage MF/SS. Alemtuzumab
is a humanized IgG1 monoclonal antibody directed against
CD52, an antigen widely expressed by B-cells, T cells, and
monocytes [318]. In a phase II study in 22 patients with
advanced-stage MF/SS, overall and complete response
rates of 55 and 32%, respectively, were observed, with a
median time to treatment failure of 1 year [319]. Given the
significant risk of infectious complications, low-dose subcu-
taneous alemtuzumab was investigated in 14 patients with
SS, most of whom had relapsed/refractory disease [320].
Most patients in this study received 3 mg of subcutaneous
alemtuzumab on day 1 followed by a 10 mg dose on alter-
nating days until the Sézary count was <1,000/mm3. With
the exception of a single patient whose best response was
stable disease, nine of 10 patients treated in this manner
achieved a response, three of which were complete. For
most patients, the time to treatment failure exceeded 12
months. What is notable, however, is that infectious compli-
cations were not observed in patients treated with the low-
est dose (i.e., 10 mg) of alemtuzumab. Similar results, with
no infectious complications, were recently reported in a
small cohort of patients treated with modified, low-dose,
subcutaneous alemtuzumab for 6 weeks [321]. In addition
to hematologic toxicity, conventionally dosed alemtuzumab
in advanced-stage MF/SS is associated with a high inci-
dence of infectious complications [319,320,322–325]. Over-
all, infectious complications have been observed in two-
thirds of treated patients, most of which are bacterial,
including sepsis. Cytomegalovirus (CMV) reactivation is the
most common viral infection. In addition, Pneumocystis jiro-
vecii pneumonia and invasive fungal infections have also
been observed. Therefore, trimethoprim-sulphamethoxazole
and acyclovir should be routinely administered for PJP and
HSV/VZV prophylaxis, respectively, in patients receiving
alemtuzumab. In addition, CMV surveillance should be
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performed every 1–2 weeks by quantitative PCR and sup-
pressive therapy with ganciclovir or oral valganciclovir initi-
ated in response to viral reactivation. Low-dose, subcutane-
ous alemtuzumab appears to be safe and efficacious in
selected patients with advanced-stage MF/SS provided with
appropriate supportive care. Monoclonal antibodies target-
ing additional T-cell specific antigens, including CD2 [326],
CD4 [327], CD25 [328], and CCR4 [329–331] are being
explored and appear promising.

Systemic chemotherapy
Systemic chemotherapy is generally reserved for patients

with advanced-stage MF/SS who have either relapsed fol-
lowing therapy with skin-directed therapies and the bio-
logic-response modifiers described above or have extensive
disease with visceral organ involvement. Multiple chemo-
therapeutic agents, including single-agent and combination
chemotherapy regimens, are associated with high response
rates in MF/SS and have been reviewed recently
[200,202,332]. While combination chemotherapy regimens
(e.g., CHOP) are associated with response rates exceeding
70–80%, the responses achieved are frequently short-lived
and are associated with significant myelosuppression and
infectious complications [333–335]. Therefore, with the
exceptions of refractory disease or in the setting of exten-
sive or rapidly progressive disease where a rapid treatment
response may be necessary, the administration of sequen-
tial, single-agent chemotherapy, as summarized in Fig. 2, is
preferred.
Low-doses of oral chemotherapy, including methotrexate

(as used for limited-stage CTCL), cyclophosphamide, chlor-
ambucil, or etoposide, may be considered for patients with
minimal disease burden that is slowly progressive or for el-
derly patients with a poor performance status. For example,
overall response rates of 58–76% (and 41% complete
response rate) have been observed in patients with MF/SS
treated with low-dose, oral methotrexate [336–339]. In con-
trast, for patients with an adequate performance status, sin-
gle-agent gemcitabine [340–344], pegylated liposomal dox-
orubicin [345–348] and pentostatin [349–355] are frequently
utilized (Table VI). Gemcitabine, a pyrimidine nucleoside
analog, is associated with overall and complete response
rates of 50–70% and 10–20%, respectively, but is associ-
ated with neutropenia and nonhematologic toxicities [356].
Zinzani et al. recently reported long-term outcomes in a
cohort of previously treated T-cell lymphoma patients [344].
Among the 19 MF patients included in the study, an overall
and complete response rate of 48 and 16%, respectively,
was observed. Overall, seven of nine complete responders
remained in continuous complete remission with a disease-
free interval ranging from 15 months to 10 years. In the
largest prospective study of pegylated liposomal doxorubi-
cin, an overall response rate of 56%, with a complete
response rate of 20%, was reported [348]. Pegylated lipo-
somal doxorubicin is generally well tolerated, with a lower
incidence of neutropenia than gemcitabine, but with occa-
sional infusion-related and mucocutaneous toxicities,
including palmoplantar erythrodysesthesia. The most dura-
ble responses with pentostatin, a purine antimetabolite
which inhibits adenosine deaminase, have been reported in
SS [355]. Pentostatin is associated with fewer complete
responses (�10–20%) and significant lymphopenia-associ-
ated immunosuppression. Unfortunately, the duration of
response with these agents is frequently measured in
months. Therefore, novel therapeutic agents, either alone
or in combination, are needed.
Pralatrexate, a novel antifolate with a high affinity for the

reduced folate carrier (RFC-1) and novel mechanism of re-
sistance when compared with methotrexate [357–359], was

associated with an overall response rate of 29% in the
PROPEL study, which was comprised largely of peripheral
T-cell lymphoma patients, the majority of which had disease
refractory to the most recent treatment [360]. Twelve
patients with transformed MF were included in the study
[361]. Many of these patients had received more than five
prior systemic therapies, including CHOP or CHOP-like reg-
imens. With only a single exception, these patients were re-
fractory to their most recent therapy. Responses, as
assessed by the study investigators, were observed in 58%
of patients with a median duration of response and pro-
gression-free survival of 4–5 months. Results of a dose-
finding study were reported in a larger cohort of CTCL
patients [362]. In this study, the optimal dose was identified
as 15 mg/m2, given weekly 3 weeks out of 4, and was
associated with an overall response rate of 43%. In an
effort to reduce the incidence of mucositis, folic acid and
vitamin B12 supplementation is routinely provided in these
patients [363]. Additional novel agents, including bortezo-
mib [364], are being explored. As there is no standard of
care for patients with MF/SS requiring systemic chemother-
apy and the decision to initiate therapy is individualized,
including consideration of responses and complications
related to prior therapies, participation in a well-designed
clinical trial is always worth consideration.

High-dose chemotherapy and hematopoietic stem cell
transplantation
The available experience with high-dose chemotherapy

and autologous stem cell transplantation, largely confined
to case series, suggests that responses following treatment
are frequently transient. In contrast, the durable remissions
observed following allogeneic transplantation may be
explained by the graft versus lymphoma immune response
[365,366]. A retrospective analysis of 60 patients with
advanced-stage MF/SS who underwent allogeneic stem
cell transplantation was recently reported [367]. In this se-
ries, patients had received a median of four prior therapies
before undergoing either reduced-conditioning (73%) or
myeloablative (27%) conditioning before related (75%), or
matched-unrelated donor (25%) transplantation. Nonre-
lapse mortality at 1 year was 14% for patients receiving
reduced-intensity conditioning or HLA identical/related do-
nor stem cells and 38–40% for those undergoing myeloa-
blative conditioning or receiving match-unrelated donor
grafts. Transplantation during an early phase of disease
(defined as first or second remission or relapse following
three or fewer systemic therapies) was associated with
lower relapse rates (25% vs. 44% at 1 year) and a statisti-
cally insignificant increase in 3-year overall survival (68%
vs. 46%). Given the differences in nonrelapse mortality,
both reduced-intensity conditioning and use of matched-
related donors were associated with superior overall sur-
vival (63% at 3 years). Seventeen out of 26 patients who
relapsed received donor-lymphocyte infusions. Of these,
47% achieved a complete remission, thus providing evi-
dence for a graft-versus-lymphoma effect in MF/SS. In con-
trast to the experience with B-cell non-Hodgkin lymphomas,
chemotherapy sensitivity before transplantation or the

TABLE VI. Selected Chemotherapeutic Agents

Agents ORR (CR/CRu) (%) References

Pegylated liposomal doxorubicin
(20–40 mg/m2 q2–4 weeks)

56–88 (20–67) [345–348]

Gemcitabine (1,200 mg/m2 days
1, 8, 15 q4 weeks)

48–75 (8–22) [340–344]

Pentostatin (various
doses/schedules)

28–71 (11–25) [349–355]
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extent of disease burden did not influence overall survival.
The estimated 3-year progression-free and overall survivals
were 34 and 53%, respectively. Therefore, allogeneic stem-
cell transplantation may be considered for young patients
with disease refractory to standard treatments.

Summary
Establishing a definitive diagnosis of CTCL, accurate dis-

ease staging and risk-stratification, and the selection of
appropriate therapy requires a multidisciplinary approach.
While high response rates may be achieved with systemic
chemotherapy, these responses are frequently short-lived
and associated with significant toxicities. As treatment of
advanced-stage MF/SS is largely palliative, a stage-based
approach utilizing sequential therapies in an escalated
fashion is preferred. Participation in a well-designed clinical
trial is encouraged, as the introduction of novel agents will
continue to expand the therapeutic options available in the
management of CTCL.
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