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SUMMARY 
Multicellular organisms consist of numerous cell types, each serving a specific 

function. Remarkably, almost all cells within an organism contain the same genetic 

information. Nevertheless, each cell type interprets this information differently, 

resulting in cell type specific gene expression patterns. These expression patterns 

define cellular function and are acquired upon lineage commitment of a pluripotent 

cell. Once acquired, these patterns can be stably maintained throughout subsequent 

cell divisions. For example, upon differentiation of a stem cell pluripotency-

associated genes need to be silenced, while lineage-specific genes have to be 

activated. The maintenance and propagation of these expression patterns is thought 

to be mediated at least in part via the posttranslational modification of chromatin 

components (Kouzarides 2007). These covalent modifications are deposited by 

specialized enzymes that modify specific histone residues (Meissner 2010). 

However, while many of the enzymes responsible for establishing these marks have 

been identified, how they are targeted to specific loci remains unclear.  

Polycomb-group (PcG) proteins represent key regulators of gene expression, 

especially during early development where they play key roles in the stable 

repression of developmental regulators (Di Croce and Helin 2013). They form 

several complexes that mediate the modification of distinct histones. For example, 

the PRC2 complex mediates trimethylation of histone H3 at lysine 27 (H3K27me3), a 

chromatin mark essential for proper development of both flies and mammals (Papp 

and Muller 2006). However, despite the importance of this modification, it remains 

elusive how H3K27me3 is targeted to specific loci. In Drosophila melanogaster, it 

has been demonstrated that transcription factors (TFs) play a major role in guiding 

PcG complexes to specific DNA elements, termed Polycomb responsive elements 

(PREs) (Ringrose and Paro 2004). Efforts to identify similar DNA elements in 

mammals have proven less successful, with only a handful of PREs known today 

(Sing et al. 2009, Woo et al. 2010). Furthermore, it is unclear whether the correlation 

between TF binding and PcG recruitment observed in D. melanogaster is indeed 

reflecting a direct physical interaction or rather an indirect crosstalk involving other 

factors.  
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In this study, we aimed to investigate the mechanisms that facilitate PRC2 

recruitment and deposition of its associated H3K27me3 mark in mammals. We 

hypothesized that recruitment of PcG complexes to specific loci is encoded within 

the target DNA sequence either in the form of TF binding sites or other sequence 

queues. To test this, we employed a reductionist approach and inserted a set of 

endogenous PRC2 targets in mouse embryonic stem (ES) cells into a defined 

ectopic locus. We then examined whether these ectopically inserted DNA sequences 

could recapitulate the H3K27me3 levels observed at endogenous loci. Indeed, all of 

the tested elements were able to reconstitute endogenous PRC2 and H3K27me3 

patterns. Further dissection of these elements revealed that DNA sequences rich in 

CpG dinucleotides and as short as 220 bp are sufficient to establish an H3K27me3 

domain. Furthermore, we found that cell-type specific recruitment is determined by 

the transcriptional state of the target locus. In particular, transcriptional activity 

regulated by TF binding to a proximal cis-regulatory element can efficiently block the 

acquisition of H3K27me3. Finally, by systematically mutating the identified recruiter 

elements we demonstrate that DNA methylation directly prevents the recruitment of 

H3K27me3 to the underlying DNA sequence. 

Taken together, we propose a model whereby PRC2 recruitment and 

H3K27me3 deposition defines a default chromatin signature at transcriptionally 

inactive and unmethylated genomic regions. Furthermore, we show that TFs are 

involved in the recruitment of PRC2 by controlling the transcriptional activity of the 

target locus. This study therefore provides novel insights into the relationship 

between different gene regulatory mechanisms and broadens our understanding of 

the crosstalk between TFs and epigenetic modifications. 
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CHAPTER 1 

1. INTRODUCTION 
 The blue prints for all life on earth are stored within a genetic code defined by 

the nucleotide sequence of deoxyribonucleic acids (DNA). DNA molecules are 

double stranded helices with each strand carrying the entire genetic information. Due 

to the large size of eukaryotic DNA, it is systematically organized within the nucleus 

to access stored information in an efficient manner. To achieve this, it is wrapped 

around a core histone protein complex forming a structure termed nucleosome. 

Nucleosomes subsequently make up the building blocks of chromosomes. 

Remarkably, almost every cell type in a multicellular organism contains an identical 

set of chromosomes, yet may serve drastically different functions. For example, the 

human body consists of several hundred different cell types, each carrying out 

specific functions. The fact that they all possess the same DNA implies regulatory 

mechanisms that allow for cell type-specific interpretation of the genetic information. 

This is reflected by distinct gene expression patterns acquired by cells during 

development. These patterns are set up by transcription factors (TFs) that can 

interact with specific DNA sequences to either promote or repress transcriptional 

activity. In addition to TFs, gene expression can be regulated by modification of DNA 

and histones that make up the core of the nucleosome. Such modifications are 

thought to alter DNA accessibility, leading to changes in gene expression.  

 Taken together, TF binding and chromatin modifications act in concert to 

dictate the specific gene expression patterns unique to each cell type. It is thus of 

critical interest to identify functional crosstalk between these processes in order to 

better understand gene regulation. Throughout the following chapters I will first 

discuss gene regulatory principles and then outline new insights into the crosstalk 

between TFs and epigenetic modifications. 
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1.1 Principles of gene regulation: from bacteria to mammals 

 Pioneering work in prokaryotes by Jacob and Monod in the 1960s revealed 

that a genetic locus contains three fundamental parts in addition to the coding 

sequence; the promoter sequence that is recognized by RNA polymerase, operator 

sequences that are bound by repressors in order to inhibit transcription, and activator 

elements that can be bound by factors that stimulate transcription (Jacob and Monod 

1961). The authors proposed that in prokaryotes the ground state of transcription is 

non-restrictive, meaning that in the absence of repressors and activators 

transcriptional activity is determined by the quality of the promoter sequence alone. 

The complete silencing of a prokaryotic gene therefore requires the presence of a 

repressor. It was later demonstrated that repressors act by binding to specific DNA 

sequences and block the binding of RNA polymerase to the promoter (Ptashne 

1967). Activators, on the other hand, are not required for basal transcriptional activity 

in prokaryotes and act only on generally weak promoters. They are able to stimulate 

transcriptional activity by directly interacting with RNA polymerase, resulting in either 

recruitment of the polymerase to the promoter, or stimulation of already bound 

polymerase (Hochschild and Dove 1998).  

 While bacterial RNA polymerase requires only one additional cofactor to 

initiate transcription, eukaryotic RNA polymerase requires many additional proteins 

that help position the polymerase to the gene promoter (Figure 1). One group of 

these factors consists of the general transcription factors (GTF), including TFIIA, 

TFIIB, TFIID, TFIIE, TFIIF, and TFIIH. These GTFs form the pre-initiation complex  

(PIC) with the help of another multi-subunit protein complex called the mediator 

complex (Figure 1) (Conaway and Conaway 2011). This assembly of protein 

complexes results in the correct positioning of RNA polymerase II (Pol II) at the 

transcription start site. Eukaryotic core promoters harbor specific DNA sequence 

elements in close proximity to the transcription start site, which can be recognized by 

the GTF TFIID in order to recruit additional subunits of the PIC (Maston et al. 2006). 

However, in contrast to prokaryotes, the ground state of transcription in eukaryotes is 

generally restrictive. This is mostly due to the presence of nucleosomes, which have 

been shown to act inhibitory to the binding of the transcriptional machinery 

(Felsenfeld 1992, Workman and Kingston 1998). Thus, transcription in eukaryotes 
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requires additional factors that help facilitate PIC assembly and subsequent 

transcription (Lorch et al. 1987, Morse 1989).  

Such factors are known as activating transcription factors (TFs), which bind 

DNA in a sequence-specific manner. TFs can be classified into different groups 

based on the structure of their DNA binding domains (DBDs) that enable them to 

interact with DNA in a sequence specific manner. Usually, such TF binding sites 

(TFBS) are short and range between 6 and 12 basepairs (bp). Stimulation of PIC 

assembly and transcriptional activity is mediated either via direct interaction with 

specific subunits of the PIC, resulting in recruitment to the promoter, or by factors 

that modify chromatin to increase accessibility of the underlying DNA (Figure 1) 

(Kuras and Struhl 1999, Struhl 1999, Levine and Tjian 2003). This recruitment 

function of TFs is achieved via a second domain, the activating domain (AD). A 

prominent example is the yeast TF GAL4; when a GAL4 binding site is placed 

upstream of a reporter gene, GAL4 can bind to it and activate transcription of a gene 

driven by an otherwise silent promoter (Giniger et al. 1985). Furthermore, the 

function of the DBD and the AD can be separated from each other as they act 

independently, demonstrated in an elegant experiment where the GAL4 AD was 

fused to the DBD of the bacterial repressor LEX A (Brent and Ptashne 1985). This 

fusion protein is able to interact with and recruit the transcriptional machinery to a 

gene harboring LEX A binding sites and drive transcription of the gene via its GAL4 

AD (Brent and Ptashne 1985). Remarkably, expression of GAL4 in other eukaryotes, 

including mammals, leads to activation of transgenes harboring GAL4 binding sites 

in proximity to the otherwise inactive promoter (Ptashne 2005). This indicates that 

the general principles of gene regulation by TFs are highly conserved in eukaryotic 

organisms. However, most mammalian TFs do not work alone to recruit the PIC. 

Instead, they need to act in concert to control tissue-specific gene expression, either 

via interactions between multiple copies of the same factor (Carey et al. 1990) or 

cooperation between different factors (Lin et al. 1990). This allows for much tighter 

regulation of expression levels, which is needed in multicellular organisms where 

cells need to communicate and interact with each other and serve distinct functions.  

A third set of factors, the co-activators, can mediate interactions between TFs 

and the PIC (Figure 1). In contrast to TFs, co-activators do not directly interact with 

DNA but rather act via protein-protein interactions to modulate transcriptional activity 

(Lemon and Tjian 2000). Interaction between different TFs and co-activators is 
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required in order to orchestrate the crosstalk between various regulatory elements in 

higher eukaryotes. Metazoan regulatory modules contain many distal elements 

termed enhancers that can be up to 100 kilobases away from the gene (Ong and 

Corces 2011). These enhancer elements are brought into close proximity of 

promoters by looping the intervening DNA sequence (Figure 1) (Schoenfelder et al. 

2010). 

 
Figure 1 Basic mechanisms of metazoan gene regulation. The expression of genes in higher eukaryotes is 
regulated by transcription factors (TFs) that interact with various proximal and distal regulatory DNA sequences. 
Many of these factors act in concert to recruit cofactors that bring distal elements in proximity to the core 
promoter via the mediator complex. This results in the recruitment of the pre-initiation complex (PIC) and RNA 
polymerase II and subsequent transcription of the gene. Adapted from (Maston et al. 2006). 

The human genome codes for around 1’700 – 2’000 TFs (Vaquerizas et al. 

2009). This repertoire allows for a vast amount of combinatorial information, forming 

complex gene regulatory networks able to direct and maintain all the different gene 

expression patterns that define cellular identity.  

As mentioned above, activation of eukaryotic transcription requires a 

permissive chromatin structure to make core promoters accessible for the 

transcriptional machinery. This is thought to be achieved via recruitment of specific 

chromatin modifying factors, whose enzymatic activity can either positively or 

negatively regulate transcriptional activity. In the following sections I will outline the 

mechanisms involved in these processes in order to provide a more detailed view on 

eukaryotic gene regulation. 
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1.2 Chromatin as a means of organizing DNA 

The human genome consists of roughly 3 · 109 nucleotide pairs coding for 

20’000- 30’000 genes and when fully extended measures around two meters. In 

order to organize such large molecules inside a nucleus measuring only roughly 6 

µm in diameter (Alberts et al. 2008) DNA is wrapped around a protein complex and 

further folded into entities called chromosomes (Figure 2). This chromosomal 

structure can be observed in condensed mitotic and meiotic chromosomes during 

metaphase alignment. The proteins around which DNA is wrapped are called 

“histones” and were first described not long after the initial discovery of nucleic acids 

by Friedrich Miescher in 1871 [reviewed in (Dahm 2005)]. They were observed by 

Albrecht Kossel upon extraction of components of nucleated erythrocytes (Kossel 

1884). The term chromatin was first used by Walther Flemming because he 

observed that the nucleus of a cell absorbed basophilic dyes (Flemming 1882). It 

took nearly a century before the single components of chromatin started to emerge. 

In the 1970s, it was demonstrated that chromatin digested with exogenous 

nucleases left roughly half of the DNA intact and protected. Remarkably, these 

protected regions were all between 100 – 200 bp long, leading to a model whereby 

chromatin is built up by a basic repeating structure (Clark and Felsenfeld 1971, 

Hewish and Burgoyne 1973). Electron microscopy and biochemical studies later 

defined the structure of chromatin to be a flexible chain of spherical particles that 

were termed nucleosomes (Oudet et al. 1975). It was demonstrated that a 

nucleosome consists of about 200 bp of DNA and four distinct core histones in a 1:1 

ratio. Moreover, the authors showed that the identified building blocks of chromatin 

had the ability to self-assemble in vitro (Oudet et al. 1975).  

 Today, we know that four core histones, namely H2A, H2B, H3 and H4 form 

an octamer with two of each histone present. This structure represents the core 

particle of the nucleosome, around which 147 bp of DNA are wrapped 1.65 times 

(Figure 2) (Luger et al. 1997). Individual nucleosomes are separated from each other 

by 10 - 80 bp of linker DNA (Kornberg 1974, Luger et al. 1997). This “beads-on-a-

string” structure (Figure 2) measures 11 nm in diameter and is mostly observed 

transcriptionally active regions of the genome. At inactive sites, it is thought to be 

further folded into a fiber roughly 30 nm in diameter via addition of the H1 linker 
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histone (Widom and Klug 1985). However, to date, such a 30 nm fiber has not been 

observed in vivo, despite the fact that artificial nucleosome arrays formed in vitro 

tend to acquire such a structure (Tremethick 2007).  

 

Figure 2 Chromatin compaction and nucleosome. DNA is located in the nucleus of each cell and undergoes 
several layers of compaction, forming chromatin. The basic subunit of chromatin is the nucleosome (right), 
consisting of an octamer of histones H2A, H2B, H3, and H4. An array of nucleosomes is then further organized 
into a chromatin fiber and eventually into a chromosome. Adapted from (Luger et al. 1997) and Darryl Leja, 
NHGRI. 

 

1.2.1 Different states of chromatin 
Chromatin can be divided into two distinct classes, heterochromatin and 

euchromatin. Initially, heterochromatin was defined as regions within nuclei that 

stained strongly with basic dyes (Figure 3). Strong staining at these domains 

indicated a state of high compaction. In contrast, euchromatin is more loosely 

structured. Today, the term heterochromatin is mainly applied to condensed and 

inactive regions of the genome, while euchromatin depicts sites of active 

transcription. However, within heterochromatin, a distinction is made between 

constitutive and facultative heterochromatin. Constitutive heterochromatin 

demarcates genomic loci that are always silent and condensed such as repetitive 

elements, gene-poor regions, and late replicating sequences (Trojer and Reinberg 

2007). Facultative heterochromatin, on the other hand, is also transcriptionally silent, 

but can be decondensed and activated in response to specific stimuli (Trojer and 
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Reinberg 2007). To switch from an inactive heterochromatic state to a more 

accessible euchromatic state, chromatin structure has to be decondensed. To 

achieve this, specific protein complexes are able to interact with and modify 

nucleosomal entities. Thus, in addition to DNA sequence motifs that can be 

recognized by TFs, chromatin structure and organization plays a key role in the 

regulation of eukaryotic gene expression. In the next section I will expand on the 

processes involved in this type of gene regulation. 

 
Figure 3 Nucleus staining showing hetero- and euchromatin. Histology slide depicting a cell nucleus stained 
for chromatin. The bright regions indicate active euchromatin and the black regions represent inactive condensed 
heterochromatin. Adapted from Histology Department of Yale University. Adapted from 
http://medcell.med.yale.edu/histology/cell_lab/images/euchromatin_and_heterochromatin.jpg 
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1.3 Epigenetic regulation of gene expression 

Regulation of heritable gene expression patterns via modification of chromatin 

components is commonly described as “epigenetic”. This term was first shaped by 

Conrad Waddington to describe changes in gene expression that could not be 

explained by genetics (Waddington 1942). He therefore suggested epigenetics to be 

the “branch of biology that studies the causal relationship between genes and their 

products, which bring the phenotype into being” (Waddington 1942). Today, 

epigenetics is defined as processes that can heritably change the output of a genetic 

locus without altering the underlying DNA sequence. For example, most cells of a 

multicellular organism harbor the same genetic material (i.e. DNA sequence), yet 

they differ from one another significantly in regard to how they interpret this material. 

Moreover, gene expression patterns can be stably maintained and propagated to the 

daughter cell, even in the absence of the initial stimulus (i.e. TF binding). This 

maintenance is thought to be at least in part mediated by epigenetic modifications. 

However, the mechanisms underlying epigenetic processes are still unclear. 

In the following sections, I will introduce the basic concepts of epigenetic gene 

regulation and outline the recent advances in our understanding thereof. 

 

1.3.1 DNA methylation 

The first epigenetic mark discovered was the covalent modification of DNA by 

addition of a methyl group at the 5th carbon of cytosine rings. At promoters, this 

modification can trigger transcriptional repression, mediated either directly by 

blocking TF-binding (Figure 4) (Iguchi-Ariga and Schaffner 1989) or via recruitment 

of proteins that specifically recognize methylated DNA (Nan et al. 1993). On the 

other hand, DNA methylation within mammalian gene bodies has been shown to 

correlate with transcriptional activity (Hellman and Chess 2007, Zilberman et al. 

2007, Ball et al. 2009). DNA methylation has been implicated in several cellular 

processes such as genomic imprinting, X-chromosome inactivation in females, and 

suppression of repetitive elements [reviewed in (Weber and Schubeler 2007)]. In 

vertebrates, DNA methylation is exclusively deposited at cytosines that are followed 

by a guanine (CpG). In contrast, cytosine methylation in plants can occur in all 

sequence contexts (Henderson and Jacobsen 2007). Interestingly, the two 

invertebrates Caenorhabditis elegans and Drosophila melanogaster both lack DNA 
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methylation, while most other invertebrates show mosaic patterns of DNA 

methylation throughout the genome (Bird et al. 1979, Tweedie et al. 1997). Similar 

observations have been made in plants where DNA methylation is restricted to 

repetitive elements and gene bodies (Martienssen and Colot 2001, Zilberman et al. 

2007). Vertebrates, on the other hand, display genome-wide DNA methylation 

outside of genic regions with around 80% of all CpGs methylated (Singer et al. 1979, 

Tweedie et al. 1997). Exceptions to this global methylation are active promoters, 

distal regulatory regions, and regions harboring a high density of CpG dinucleotides 

(Stadler et al. 2011). 

 
Figure 4 DNA methylation at promoters inhibits transcription. Schematic representation of the effects of 
DNA methylation on target gene expression. Unmethylated promoters (left) can be bound by activating TFs and 
therefore engage in transcription of the associated gene. On the other hand, methylation of a promoter (right) is 
generally associated with gene repression. This involves the binding of specific factors that contain an MBD 
domain that recognizes the methyl-group on the cytosine. 

 

In the 1970s, CpG methylation was first suggested to be a mechanism of 

cellular memory when two independent groups showed that methylation patterns are 

copied to the daughter strand during DNA replication (Holliday and Pugh 1975, 

Riggs 1975). The authors proposed a mechanism whereby an enzyme would 

recognize existing patterns of DNA methylation and faithfully copy them during cell 

division. Such a mechanism would allow for the propagation of existing gene 

expression patterns even in the absence of the initial signal. Indeed, in 1983 Bestor 

and Ingram identified DNMT1, an enzyme with methyltransferase activity 

preferentially towards hemimethylated DNA (Bestor and Ingram 1983). It was later 

demonstrated that lack of DNMT1 leads to a global loss of DNA methylation in 

mouse embryonic stem cells (Li et al. 1992). Thus, DNMT1 was found to be the 

major enzyme responsible for maintaining DNA methylation patterns in mammals. 

 In 1982 Stewart et al. demonstrated that insertion of viral DNA into somatic 

cells resulted in expression of the viral genes. However, the viral genes were not 

expressed when inserted into pre-implantation embryos or mouse embryonic stem 

cells (ESCs), (Stewart et al. 1982). It was found that viral DNA became methylated 
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upon insertion in ESCs, which caused the silencing of viral gene expression. These 

experiments suggested the existence of enzymes capable of de-novo methylation, 

rather than just maintenance. In support of this, deletion of DNMT1 did not affect de-

novo methylation of the inserted viral DNA in stem cells, supporting the idea of a 

separate set of methyltransferases (Lei et al. 1996). Sequence homology searches 

for the enzymatic domain of DNMT1 revealed several candidate proteins for de-novo 

methyltransferase activity. In vitro experiments confirmed that both DNMT3A and 

DNMT3B could de-novo methylate DNA (Okano et al. 1998). Loss of function 

experiments showed that cells lacking both of these proteins were no longer able to 

methylate and silence viral genes (Okano et al. 1999). 

In summary, we now know that the enzymes DNMT3A and DNMT3B are able 

to de-novo methylate DNA during early development, while DNMT1 is responsible 

for maintaining the existing methylation patterns upon cell division (Figure 5) (Weber 

and Schubeler 2007). 

 
Figure 5 Mechanisms of de novo and maintenance methylation. Schematic depiction of the mechanisms 
involved in establishing and propagating DNA methylation states. Dnmt3a and Dnmt3b are cooperatively 
establishing new methylation marks. CpG dense regions are protected against such de novo methylation. During 
replication, preexisting DNA methylation patterns are copied onto the newly synthesized DNA strands by Dnmt1. 
RC: Replication complex. 

 

1.3.1.1 CpG islands 

Throughout the mammalian genome, CpG dinucleotides occur at only around 

one-fifth of the expected frequency (Russell et al. 1976). This is mainly attributed to 

spontaneous deamination of 5-methylcytosine, which converts methylated cytosine 

into a thymine and subsequent inefficient repair of G - T mismatches (Bird 1980). 
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This, together with the fact that around 80% of all CpGs in mammalian genomes are 

methylated has lead to a gradual global depletion of CpG dinucleotides over the 

course of evolution. In contrast, organisms that lack DNA methylation in the 

germline, such as Drosophila melanogaster and Caenorhabditis elegans, harbor 

CpG dinucleotides at the expected frequency throughout the genome (Takai and 

Jones 2002). Despite genome-wide depletion of CpGs in mammals, there are 

regions in the genome where CpG dinucleotides cluster together and occur at the 

expected frequency. These CpG-rich regions are called CpG islands (CGI) and are 

unmethylated in most tissues (Bird 1986). Both the human and mouse genome 

contain roughly 25’000 CGIs with an average size of around 1 kb and roughly half of 

them lie within gene promoters (Illingworth et al. 2010). In fact, around 60% of all 

annotated gene promoters are associated with a CGI, making this the dominant type 

of promoter throughout the mammalian genome (Saxonov et al. 2006). Interestingly, 

however, this feature appears to be specific to warm-blooded vertebrates as only 

around 10% of promoters in cold-blooded vertebrates overlap with CGIs (Sharif et al. 

2010). It has been proposed that CGI promoters are associated with genes that 

show similar activity in multiple tissues, often housekeeping genes, while non-CGI 

promoters represent tissue-specific genes that are activated upon distinct external 

stimuli (Sharif et al. 2010).  

CGIs that do not lie within promoters are distributed throughout the genome 

mostly within gene-bodies or in intergenic regions. The function of these islands has 

been somewhat elusive, but several lines of evidence suggest that they are 

associated with transcriptional regulation of non-coding RNAs. For example, 

imprinting of the Igf2r gene is dependent on a non-coding transcript that initiates at a 

CGI within the Igf2r gene-body (Sleutels et al. 2002).  Genome-wide analyses have 

revealed that around 40% of non-promoter CGIs are associated with transcriptional 

initiation and could therefore represent novel promoters (Illingworth et al. 2010, 

Maunakea et al. 2010). This number might increase in the future as more cell types 

are analyzed for transcriptional initiation. 

The answer to the question how and why CGIs have emerged during 

evolution is still unclear. There are two possibilities that are currently being debated 

(Deaton and Bird 2011): (1) CGIs arose because they are enriched for cis-regulatory 

regions that are active in the germ-line and thus kept unmethylated. This would allow 

them to evade the gradual C to T erosion. (2) CGIs contain important regulatory 
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sequence motifs for TFs that have evolved specifically in organisms that harbor DNA 

methylation. Recent evidence points toward the second possibility, as factors have 

been identified that contain a specific structural domain (CXXC), which recognizes 

unmethylated CpG dinucleotides (Long et al. 2013). 

Likewise, the mechanisms protecting CGIs from DNA methylation are still 

elusive, but are likely dependent on CpG density, presence of TFs, and modification 

of other chromatin components (Ooi et al. 2007, Weber et al. 2007, Lienert et al. 

2011, Rose and Klose 2014). Despite the general absence of DNA methylation at 

CGIs, there are exceptions where CGIs get de-novo methylated during lineage 

commitment of pluripotent cells (Stein et al. 1982, Mohn et al. 2008, Payer and Lee 

2008). However, it is thought that prior to DNA methylation, the target promoters 

become transcriptionally inactive via other mechanisms, including the modification of 

chromatin structure by post-translational modifications of histones (Mohn et al. 

2008). This suggests a complex crosstalk between DNA methylation and other 

epigenetic modifications, some of which I will introduce in the following sections. 

 

1.3.2 Chromatin remodeling and histone modifications 
The key players that facilitate changes in chromatin structure are chromatin 

remodelers and chromatin modifiers. Chromatin remodelers consume energy in the 

form of ATP to physically expose the DNA masked within the nucleosome and thus 

make it accessible to DNA-binding proteins such as TFs (Clapier and Cairns 2009). 

This can be achieved by repositioning of existing nucleosomes, removal of a 

nucleosome, or just temporary unwrapping of DNA from the histone octamer. All 

chromatin remodelers have a conserved catalytic ATPase domain and share the 

ability to interact not only with DNA but also directly with histones. Chromatin 

remodelers can be classified into different families based on the presence of distinct 

domains that allow them to recognize specific post-translational modifications of 

histone proteins (Clapier and Cairns 2009). 

 In addition to chromatin remodelers, DNA accessibility can be regulated via 

post-translational modification of histones. The general structure of the four core 

histones is divided into two main parts, the globular domain and the N-terminal 

unstructured domain (Figure 6). Within the nucleosomal histone octamer, the N-

terminal domains protrude from the central structure, making them accessible to 
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protein complexes that can interact with and chemically modify them (Figure 6) 

(Luger et al. 1997). It is thought that once established, these histone modification 

patterns can be propagated to the daughter cell upon division (Meissner 2010). Such 

a mechanism would allow for the stable maintenance of gene expression patterns 

during embryonic development even in the absence of the initial signal. In support of 

this model, loss of certain chromatin modifiers has been shown to impair ESC 

differentiation and cause embryonic lethality (Aloia et al. 2013). 

 

 
Figure 6 Histone octamer with protruding N-terminal tails. Two H2A-H2B and two H3-H4 dimers form an 
octamer, which represents the core of the histone. DNA is wrapped around this octamer 1.65 times to form the 
nucleosome. Each histone protrudes the nucleosome via its unstructured N-terminal domain. These histone tails 
can be accessed and modified by specific factors, leading to changes in the organization of chromatin structure. 

 

 Well over 50 histone modifications have been identified to date (Figure 7) 

(Kouzarides 2007). They include acetylation, methylation, ubiquitination, and 

phosphorylation, each having distinct effects on the surrounding chromatin 

environment (Koch et al. 2007, Kouzarides 2007). The first discovered histone 

modification was acetylation of lysine residues (Phillips 1963) and was suggested to 

be associated with active gene expression and proposed to increase DNA 

accessibility by neutralizing the positive charge of histone tails (Pogo et al. 1966, 

Hong et al. 1993, Megee et al. 1995). However, these conclusions were mostly 

driven by correlative data and it was not until the identification of the first histone 

acetyltransferase (HAT) in yeast that a direct relationship between histone 

acetylation and transcriptional activity was shown (Brownell et al. 1996). 

Concomitant with the discovery of the first HAT, Taunton et al. identified the first 



INTRODUCTION 

20 

histone deacetylase (HDAC), HD1, responsible for reversing the acetylation mark 

and promoting gene repression (Taunton et al. 1996).  

 

 
Figure 7 Selection of posttranslational modifications of N-terminal histone tails. Indicated are some of the 
known posttranslational modifications of specific amino acid residues within the N-terminal ends of the core 
histone proteins. A: acetylation, P: phosphorylation, U: ubiquitination, M: methylation. Adapted from (Xu 2013) 

 

In addition to altering the DNA-histone contacts, histone modifications also 

generate docking sites for nuclear proteins. The first histone modification-reader was 

discovered in 1999 when Dhalluin et al. identified the bromodomain in the HAT 

P300/CBP-associated factor (Dhalluin et al. 1999). This particular domain within the 

protein forms a specific structure that can bind the acetyl group on the histone tail. 

Since this initial discovery, several additional histone modification readers have been 

identified, including readers of histone methylation and phosphorylation (Taverna et 

al. 2007, Musselman et al. 2012). Remarkably, many of these factors not only 

recognize a specific modification, but also the sequence surrounding them, therefore 

increasing their specificity.Once bound, these factors can recruit larger complexes 

which can then remodel nucleosomes or further modify histones (Musselman et al. 

2012).  

 Due to the vast amount of possible combinations of histone marks on a single 

nucleosome, the existence of a “histone code” has been proposed (Strahl and Allis 

2000). Recent advances in DNA sequencing technologies coupled with modification-

specific antibodies enabled genome-wide analysis of chromatin modifications (Filion 

et al. 2010, Hawkins et al. 2010, Zhu et al. 2013). Chromatin maps in different cell 
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types have revealed association of specific histone marks with distinct gene 

expression patterns. However, efforts to dissect the histone code in Drosophila 

melanogaster have led to a rather simple classification of chromatin in just five major 

groups, despite the large number of theoretically possible combinations of chromatin 

marks (Filion et al. 2010). Studies in human cell lines have yielded similar results, yet 

a more variable number of chromatin states, ranging from 6 to 51 (Ernst and Kellis 

2010, Ram et al. 2011, Hoffman et al. 2013).  

Taken together, these studies define a set of common chromatin states 

including promoters marked by trimethylated histone H3 at lysine 4 (H3K4me3) and 

bound by polymerases, transcribed regions marked by trimethylated H3K36, 

enhancers characterized by monomethylated H3K4 and acetylated H3K27, 

Polycomb repressed regions marked by trimethylated H3K27, and heterochromatic 

regions characterized by the presence of trimethylated H3K9 (Ram et al. 2011, 

Hoffman et al. 2013).  

 In summary, histone modifications add an additional layer of information and 

are thought to aid in maintaining cell type-specific gene expression patterns. In the 

next section, I will describe the process of histone methylation in more detail and 

outline its relevance in gene regulation.  

 

1.3.2.1 Histone methylation  

Histone methylation is the process of covalently adding up to three methyl 

groups from the donor S-adenosylmethionine on the side-chains of lysine, arginine, 

and histidine. Methylation of lysine residues in histone proteins was first 

demonstrated in the 1960s (Allfrey and Mirsky 1964, Murray 1964). However, the 

first enzyme capable of transferring methyl groups onto histones, SUV39H1 was only 

recently discovered and has been demonstrated to be conserved from yeast to 

human (O'Carroll et al. 2000, Rea et al. 2000). Since then, additional histone 

methyltransferases (HMTs) have been identified based on homology searches 

(Black et al. 2012). 

This discovery of many HMTs has lead to their classification into three main 

groups of enzymes that mediate histone methylation; the lysine-specific HMTs 

contain a 130 amino acid catalytic SET domain and mediate methylation of lysines 4, 

9, 27, and 36 of histone H3 and lysine 20 of histone H4. The second group of HMTs 
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contains no SET domain and is involved in the methylation of lysine 79 of histone 

H3. The third set of HMTs is arginine-specific and methylates arginines 2, 17, and 26 

of histone H3 and arginine 3 of histone H4. The HMTs in each group are highly 

specific for distinct amino acid residues within the histone tails and for the degree of 

methylation. For example, the lysine-specific HMTs SUV39H1/H2 specifically 

recognize H3K9 and di- or trimethylate it from a monomethylated state (Peters et al. 

2001, Peters et al. 2003) while the HMT G9A preferentially mono- and dimethylates 

H3K9 (Tachibana et al. 2002). Similarly, MLL1 dimethylates H3K4, but when it 

associates with Ash2L and RbBP5 it is able to trimethylate the same lysine (Dou et 

al. 2006). Thus, intrinsic features of the HMTs as well as their interaction partners 

can regulate the amino acid specificity and the preferred degree of methylation. 

In contrast to DNA methylation, histone lysine-methylation can be reversed by 

specific enzymes termed lysine demethylases (KDMs). The first discovered KDM 

was LSD1, which mainly reverses H3K4 methylation, but also shows some affinity 

towards methylated H3K9 when it interacts with the androgen receptor (Shi et al. 

2004, Metzger et al. 2005). Subsequently, other KDMs were discovered and were 

classified into three distinct groups, the largest of which consists of the Jumonji C-

domain containing KDMs (Klose et al. 2006).   

 Histone lysine methylation can have both activating and repressive effects on 

chromatin. As described above, H3K4 di-and trimethylation mediated by MLL1/2 and 

SET1 correlates well with gene activity throughout the genome and localizes mainly 

to active gene promoters and enhancer regions (Santos-Rosa et al. 2002, Schubeler 

et al. 2004, Barski et al. 2007, Mikkelsen et al. 2007). Functionally, it has been 

implicated in transcriptional elongation by interacting with Pol II in its initiated form 

(serine 5 phosphorylated). Additionally, TFIID can directly interact with H3K4me3 via 

its PHD domain, further emphasizing the crosstalk between histone modifications 

and TFs (Vermeulen et al. 2007). Due to the genome-wide anti-correlation with DNA 

methylation, especially at CGIs, H3K4me3 has been proposed to be a key factor in 

preventing DNA methylation at these sites (Ooi et al. 2007, Weber et al. 2007). 

H3K4me3 can also be found at inactive promoter regions in embryonic stem cells, 

where it co-localizes with the repressive H3K27me3 mark to form what has been 

termed bivalent domains (Bernstein et al. 2006). It has been proposed that it primes 

these promoters for later activation during lineage-commitment. In addition to H3K4 

di- and trimethylation, monomethylation robustly demarcates distal cis-regulatory 
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regions. Together with p300-binding and H3K27 acetylation it predicts the genome-

wide location of enhancer elements in the mammalian genome (Heintzman et al. 

2009, Rada-Iglesias et al. 2011).  

H3K36 trimethylation mediated by the HMT SETD2 also correlates with gene 

expression and is a good indicative marker for transcriptional activity (Tippmann et 

al. 2012). It localizes to the gene body, peaks near the 3’ end of the gene, and 

associates with the elongating serine 2 phosphorylated form of Pol II (Bannister and 

Kouzarides 2011). H3K36me3 is believed to suppress inappropriate transcriptional 

initiation from cryptic start sites within the coding region of the gene, in part via the 

recruitment of DNA methylation and histone H3K4me3 demethylases to gene bodies 

(Carrozza et al. 2005, Joshi and Struhl 2005, Keogh et al. 2005, Fang et al. 2010). In 

contrast, H3K79 is less studied and believed to be involved in the activation of 

certain Hox genes and has a role in the DNA damage response and telomere 

silencing (Nguyen and Zhang 2011). 

Histone lysine methylation is not only associated with gene activation, but can 

also serve repressive functions. In particular, methylation of H3K9, H3K27 and 

H4K20 has been demonstrated to play key roles in the formation of silent 

heterochromatin. H3K9 methylation is associated with the formation of constitutive 

heterochromatin, mainly at repetitive regions, including satellite sequences, 

ribosomal RNA clusters and pericentromeric chromatin (Mikkelsen et al. 2007, Filion 

et al. 2010, Ernst et al. 2011, Riddle et al. 2011). Di- and trimethylation of H3K9 is 

recognized by HP1, which forms a dimer and binds to the methyl mark via its 

chromodomain, resulting in the stabilization and spreading of heterochromatin (Hall 

et al. 2002).  

H3K27 trimethylation is set by the HMT EZH2 in complex with EED and 

SUZ12 and marks inactive promoter regions of developmental regulators 

(Kuzmichev et al. 2002, Muller et al. 2002, Cao and Zhang 2004). While the 

H3K27me3 domains in ESCs are of short focal nature around promoters, these short 

domains can spread into larger domains upon differentiation (Hawkins et al. 2010, 

Zhu et al. 2013). The mechanisms involved in H3K27me3 mediated gene repression 

are discussed in more detail in the following section. 

In summary, methylation of histone tails is a good indicator of transcriptional 

and regulatory activity. Together with DNA methylation, these modifications add an 

additional layer to the already complex regulatory network of transcription factors 
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(Figure 8). However, despite extensive mapping of these chromatin marks, the 

mechanisms whereby chromatin modifications influence transcriptional output are 

still poorly understood. It is important to investigate the relationship between all these 

factors and how they influence each other in order to better understand the 

regulatory cascade that leads to the phenotypic output of a genetic locus.  

 

 
Figure 8 Complex interplay between TFs, DNA methylation and chromatin modifications leads to tightly 
regulated transcriptional output. Schematic representation of the interplay between epigenetic chromatin 
modifications and the transcriptional machinery. Inactive promoters are marked by H3K27me3, H3K9me3 or 
DNA methylation, while active promoters display an enrichment for H3K4me3. Distal regulatory elements such as 
enhancers are marked by H3K4 monomethylation and H3K27 acetylation and reduced levels of DNA 
methylation. Adapted from Anaïs Bardet and Maston et al. Annu. Rev. Genomics. Hum. Genet. 2012. 

So far, I have discussed the importance of gene regulation in maintaining cell 

identity and the key processes involved in this regulation among which the 

modification of histones and DNA play a major role. But what regulates the 

deposition of these modifications? How does a cell decide when and where to modify 

chromatin? 

 

1.4 Polycomb group proteins: developmental regulators 

Probably the most studied group of chromatin modifiers in terms of genomic 

targeting is the polycomb group (PcG) of proteins. PcG proteins are key epigenetic 

regulators and play central roles in the regulation of genes involved in embryonic 

development and differentiation (Aloia et al. 2013). They were identified in the 1970s 

as regulators of homeotic (Hox) gene expression during embryonic development of 
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Drosophila melanogaster (Lewis 1978). Hox genes code for transcription factors that 

are required for shaping the body patterning and segmentation of fly embryos. Their 

expression is set up by early TFs that quickly decay after initiating the Hox gene 

expression patterns. These patterns, however, are maintained throughout 

development into adult stages (Moehrle and Paro 1994). Mutations in Hox genes 

cause characteristic phenotypes manifested in the aberrant development of body 

structures such as copies of structures that normally develop in different segments of 

the embryo. Accordingly, PcG mutants display defects in body-patterning where 

anterior segments are transformed toward more posterior segments and were 

therefore named after the observed phenotypes (Sato and Denell 1985). Because 

loss of PcG protein activity generally results in ectopic expression of Hox genes, they 

were classified as repressors. Furthermore, it was observed that PcG proteins do not 

act by themselves, but rather form complexes (Shao et al. 1999, Czermin et al. 2002, 

Kuzmichev et al. 2002). This was confirmed by studies that showed biochemical co-

fractionation and cytological co-localization of PcG proteins (Shao et al. 1999, Cao et 

al. 2002). The first member of PcG proteins that was cloned and characterized was 

Polycomb (PC) (Paro and Hogness 1991). It was proposed to act on the level of 

chromatin because it harbors a chromodomain similar to HP1 and is thus able to 

interact with modified histones. Crosslinking PcG proteins to DNA by formaldehyde 

treatment further confirmed the direct interaction of PC with Hox gene loci (Orlando 

and Paro 1993).  

Orthologs of Drosophila PcG proteins have since been identified in many 

multicellular organisms ranging from plants to humans (Schumacher and Magnuson 

1997, Ross and Zarkower 2003, Hennig and Derkacheva 2009, Surface et al. 2010). 

Many of their functions appear to be conserved as outlined by their important roles 

during mouse embryonic development (Faust et al. 1995, O'Carroll et al. 2001, 

Suzuki et al. 2002, Voncken et al. 2003, Pasini et al. 2004, Boyer et al. 2006, Pasini 

et al. 2007). Furthermore, it has been demonstrated that the hallmark of PcG 

mediated silencing is the modification of histone tails, in particular methylation of 

lysine 27 on histone H3 (H3K27me3) and monoubiquitination of lysine 119 on 

histone H2A (H2AK119ub) (Cao et al. 2002, Muller et al. 2002, Wang et al. 2004, 

Papp and Muller 2006). The interdependence of these two chromatin marks evident 

as the H3K27me3 mark, set by the PRC2 complex, can be recognized by a second 
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complex, PRC1, which in turn deposits the H2AK119ub mark (Cao et al. 2002, 

Muller et al. 2002, Wang et al. 2004).  

 In addition to the regulation of developmental genes, PcG proteins have also 

been implicated in various cellular processes and diseases. First, PcG are key 

components of X-chromosome inactivation in mammals (Wang et al. 2001, Plath et 

al. 2003, de Napoles et al. 2004, Zhao et al. 2008). To achieve dosage 

compensation female cells, one X-chromosome is randomly chosen and inactivated 

in cells of the inner cell mass in early blastocysts. An initial step in this process is 

thought to be the recruitment of PcG proteins leading to the inactivation of the X-

chromosome. This inactivation is irreversible during the lifetime of the cell and will be 

passed on to daughter cells during mitosis. Furthermore, PcG proteins have been 

implicated in the maintenance of pluripotency and cell-lineage specification (Boyer et 

al. 2006, Lee et al. 2006, Mohn et al. 2008). Nevertheless, ESCs lacking PcG 

proteins can be successfully generated, indicating that ESC self-renewal is not 

dependent on PcG proteins (Pasini et al. 2004, Chamberlain et al. 2008, Shen et al. 

2008). However, in vitro differentiation of ESCs is severely affected by the loss of 

PcG proteins, emphasizing the key role of these proteins during lineage commitment 

(Chamberlain et al. 2008). In D.melanogaster, PcG proteins have been shown to 

target ncRNAs, which suggests a function in the regulation of microRNAs essential 

for development, apoptosis, and growth (Enderle et al. 2010). Additionally, aberrant 

expression and targeting of PcG proteins has been demonstrated to play key roles in 

the development and progression of a variety of different tumors by mediating the 

emergence and maintenance of cancer stem cells (Weikert et al. 2005, Bachmann et 

al. 2006, Collett et al. 2006, Suva et al. 2009, Mills 2010). In plants, H3K27me3 was 

shown to function in the regulation of vernalization by repressing FLC, a gene coding 

for a protein that represses flowering (Michaels and Amasino 1999, Sheldon et al. 

1999, Schubert et al. 2006, Wood et al. 2006, De Lucia et al. 2008).  

 Despite the widespread recognition that PcG proteins are important for the 

repression of target genes, the exact mechanisms involved remain unclear. 

Transgenic experiments involving artificial tethering of PcG proteins proximal to a 

promoter driving a reporter gene suggest that recruitment of PcG complexes can 

induce repression of genes nearby (Sarma et al. 2008). However, whether this 

artificial tethering and subsequent recruitment reflects mechanisms that take place in 
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vivo remains elusive. In the following sections I will introduce in more detail the two 

main complexes formed by PcG proteins and their associated histone modifications.   

 

1.4.1 Polycomb Repressive Complex 1 (PRC1) 
 The main components of the PRC1 complex in D. melanogaster are 

Polycomb (PC), Polyhomeotic (PH), Posterior sex combs (PSC), and Ring finger 

protein (RING), all of which are present in stoichiometric amounts (Di Croce and 

Helin 2013). In contrast, mammalian PRC1 is more diverse with several homologs 

for each component, resulting in different PRC1 variations (Figure 9) (Peterson et al. 

2004, Li et al. 2010, Casanova et al. 2011, Gao et al. 2012, Hunkapiller et al. 2012). 

Canonical PRC1 consists of RING1A/B, homologs of RING, several chromodomain 

proteins (CBX) that are homologous to PC, one of six polycomb ring finger (PCGF) 

proteins that are similar to PSC, and three different polycomb-like (PCL) proteins, 

homologs of PH (Levine et al. 2002). The presence of CBX proteins enables the 

complex it to bind the H3K27me2/me3 chromatin marks via its chromodomain. It is 

thus believed that canonical PRC1 is recruited to target loci via prior deposition of 

the H3K27me3 mark by PRC2 (Cao et al. 2002, Min et al. 2003). Non-canonical 

PRC1 complexes lack CBX proteins and therefore cannot interact with the 

H3K27me3 mark and may instead bind genomic loci through mechanisms 

independent of the H3K27me3 mark (Farcas et al. 2012, Tavares et al. 2012, Wu et 

al. 2013). Shared among all PRC1 variants is the RING-domain containing protein, 

RING1B or RING1A, which acts as an ubiquitintransferase with H2AK119 as a 

substrate (Wang et al. 2004, Cao et al. 2005). It has been demonstrated that this 

histone mark is required for efficient silencing of target genes, but the precise 

mechanisms involved have yet to be determined (Wang et al. 2004, Cao et al. 2005). 

Furthermore, it has been proposed to inhibit RNA Pol II activity, possibly by blocking 

the phosphorylation of serine 2 at its C-terminal domain (Stock et al. 2007). 

Additionally, H2AK119ub prevents the eviction of the H2A-H2B dimers, a process 

that takes place during transcriptional elongation (Zhou et al. 2008). Another 

mechanism involves compaction of chromatin (Eskeland et al. 2010, Grau et al. 

2011). This compaction reduces accessibility of the underlying chromatin to both 

transcription factors and chromatin remodelers such as SWI/SNF (Bantignies and 

Cavalli 2011). Furthermore, PRC1 has been demonstrated to directly interact with 
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the transcriptional machinery and inhibit transcriptional elongation (King et al. 2002, 

Zhou et al. 2008, Lehmann et al. 2012).  

 

 
Figure 9 PRC1 and PRC2 complexes. Depicted are the two main complexes formed by mammalian PcG 
proteins. In the case of PRC1, the different subunits contain several optional factors that can be incorporated in 
order to form distinct subcomplexes. The RING1 subunit is present in all PRC1 subcomplexes and contains 
ubiquityltransferase activity towards histone H2AK119. The three core subunits of PRC2 have been shown to 
interact with several interaction partners that have been suggested to be involved in guiding the complex to its 
target loci. Adapted from (Di Croce and Helin 2013) 

 

1.4.2 Polycomb Repressive Complex 2 (PRC2) 
 Mammalian PRC2 contains three core components: enhancer of zeste 

(EZH2), embryonic ectoderm development (EED), and suppressor of zeste 12 

(SUZ12). The catalytic subunit of the complex, EZH2 bears a SET domain that 

catalyzes mono-, di-, and trimethylation of H3K27 (Cao et al. 2002, Muller et al. 

2002, Schuettengruber et al. 2007). However, EZH2 on its own is inactive and must 

form a complex with EED and SUZ12 to gain catalytic activity (Cao and Zhang 2004, 

Pasini et al. 2004, Ketel et al. 2005). Accordingly, EED knock-out cells show 

complete loss of the H3K27me3 mark. Surprisingly, depletion of EZH2 results in 

dramatic loss of the mark, but not complete absence thereof. This is a result of its 

homolog, EZH1, which is partially redundant in function (Margueron et al. 2008). 

Another mechanism that regulates methyltransferase activity of EZH2 is the 

phosphorylation outside its active site (Chen et al. 2010, Kaneko et al. 2010, Wei et 

al. 2011). In addition to these three core components of the methyltransferase 

complex PRC2, there are several accessory proteins that regulate its 

methyltransferase activity as well as its recruitment to genomic sites (discussed 

below).  
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 Despite the widespread recognition that H3K27me3 is a hallmark of gene 

repression, the mechanisms underlying this process are still elusive. As mentioned 

above, one function of the H3K27me3 mark could be that it acts as a docking site for 

PRC1. The chromodomain of the CBX component recognizes H3K27me3 and thus 

recruits the other components of PRC1 to sites marked by H3K27me3 in order to 

facilitate monoubiquitination of H2AK119. Additionally, the EED component of PRC2 

also interacts with H3K27me3 via its aromatic cage structure and is thus thought to 

help propagate the H3K27me3 mark in order to maintain repressive chromatin 

domains and to transmit the histone mark from the mother to the daughter cells 

(Margueron et al. 2009, Xu et al. 2010). Furthermore, a recent study has 

emphasized the importance of the H3K27me3 mark in D. melanogaster by 

expressing a mutant form of histone H3 that cannot be methylated at lysine 27. 

Remarkably, replacement of endogenous histones with these mutant ones mimics 

the phenotypes observed in PcG mutants (Pengelly et al. 2013). Whether the 

observed phenotype is due to the absence of PRC1 as a result of the missing 

H3K27me3 mark remains to be determined. 

In summary, PcG complexes comprise two main complexes that facilitate 

H3K27 trimethylation and H2AK119 monoubiquitination, respectively. These 

epigenetic marks play key roles in the maintenance of gene expression patterns and 

their absence leads to aberrant gene expression during development. However, 

despite their important role in gene regulation it is still controversial how PcG 

proteins find their way to their target sites. Interestingly, core PcG proteins do not 

have the ability to directly interact with DNA, suggesting the need for cofactors that 

recruit the complexes to their target loci. In the following sections I will introduce 

different models that have been proposed for PcG recruitment. 

 

1.4.3 Genomic targeting of PcG proteins 

1.4.3.1 Targeting PcG proteins in Drosophila Melanogaster 

PcG proteins were initially discovered in D. melanogaster as repressors of 

Hox genes and as a result most of the work regarding PcG recruitment has emerged 

from studies of the Hox clusters in flies. Efforts to study cis-regulatory regions that 

control the segment specific Hox gene expression patterns during early development 

have revealed the existence of two groups of DNA regulatory elements; the initiator 



INTRODUCTION 

30 

elements and the maintenance elements. The initiator elements are DNA sequences 

bound by TFs that set the expression pattern of the target genes in the very early 

stages of development. As mentioned earlier, these TFs decay quickly while the 

expression patterns they established are maintained throughout development. This 

is largely dependent on the activity of the maintenance elements, termed 

Polycomb/Trithorax response elements (PREs) (Busturia et al. 1989, Simon et al. 

1990, Simon et al. 1993, Chan et al. 1994, Chiang et al. 1995, Cavalli and Paro 

1998). PREs are short DNA elements located several kb away from the transcription 

start site of the target gene [reviewed in (Ringrose and Paro 2004)]. In addition to 

being bound by PcG proteins, they can also be occupied by trithorax group (TrxG) 

proteins, which act antagonistically to the PcG proteins by maintaining an active 

state of the target gene via trimethylation of H3K4 (H3K4me3) (Schuettengruber et 

al. 2007). In that sense, PREs in D. melanogaster have dual potential for epigenetic 

maintenance of specific expression patterns. Furthermore, this maintenance is 

reversible in the sense that PREs can switch from an active to an inactive state and 

vice versa and therefore maintain the balance between gene activity and repression 

(Cavalli and Paro 1998, Cavalli and Paro 1999). This switch from a PcG repressed to 

a TrxG activated state can be induced via transcription through the PRE (Cavalli and 

Paro 1998, Schmitt et al. 2005).  

The fact that PcG complexes bind PREs in a tissue-specific manner, but are 

ubiquitously expressed in all cells suggests that sequence specific DNA binding 

factors are involved in the recruitment of PcG proteins. However, since core PcG 

proteins do not harbor DNA binding capabilities themselves, there must be other 

factors that guide PcG complexes to their target loci. In order to identify specific 

sequence determinants that are common between PcG bound sites, several studies 

undertook efforts to identify novel PREs. Initially, cytological studies on polytene 

chromosomes that analyzed the co-localization of PcG proteins estimated the 

number of PREs in the fly genome to several hundred (Zink and Paro 1989, 

DeCamillis et al. 1992, Chinwalla et al. 1995). Biochemical and transgenic 

experiments revealed that all PREs share common characteristics, such as their 

ability to maintain the transcriptional state of a reporter gene when taken out of their 

endogenous context (Chan et al. 1994, Christen and Bienz 1994, Cavalli and Paro 

1998, Sengupta et al. 2004). However, it was not until 2003 when Ringrose et al. 

developed a computational algorithm that could identify similarities between PREs, 
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based on the co-occurrence of transcription factor binding sites (Ringrose et al. 

2003). In particular, the authors found binding sites for the sequence-specific DNA-

binding factors GAG, ZESTE, PSQ, and PHO to be enriched in PREs. Interestingly, 

the binding sites do not occur on their own, but are present in clusters of pairs within 

the PREs. Of these proteins, PHO was already known to be involved in PcG-

mediated silencing (Simon et al. 1992, Brown et al. 1998, Brown et al. 2003), but the 

mechanisms involved were still elusive. Similar observations have been made for the 

other two factors, ZESTE and GAF, which had previously been demonstrated to 

have activating and repressing functions (Hagstrom et al. 1997, Strutt et al. 1997, 

Decoville et al. 2001, Huang et al. 2002, Mulholland et al. 2003, Bejarano and 

Busturia 2004). In total, this algorithm predicted 167 candidate PREs, some of which 

were experimentally validated in transgenic assays testing their potential to repress a 

reporter in a PcG dependent manner (Ringrose et al. 2003). These studies lead to a 

model whereby PREs are defined by specific combinations of transcription factor 

binding sites.  

A few years later, the emergence of microarray analysis and high-throughput 

sequencing enabled genome-wide occupancy studies with much higher resolution. 

Coupled with antibody-specific immunoprecipitation of formaldehyde crosslinked 

chromatin, analyses allowed for thorough evaluation of the computationally predicted 

model. In fact, three studies independently sought to map genome-wide binding 

profiles of PcG proteins (Negre et al. 2006, Schwartz et al. 2006, Tolhuis et al. 

2006). Strikingly, there was only limited overlap between PRE prediction by Ringrose 

et al. and the in vivo binding data, with 73% - 94% of PcG binding sites lacking a 

corresponding predicted PRE. These observations suggest that there are PREs that 

are regulated by factors other than PHO, ZESTE and GAF. Furthermore, genome-

wide occupancy data revealed that PHO associates not only with PcG targets but is 

also present at genes marked by active histone modifications such as H3K4me3 

(Kwong et al. 2008, Oktaba et al. 2008, Schuettengruber et al. 2009). Moreover, 

Dejardin et al. constructed a synthetic PRE by inserting these binding sites into a 

bacterial backbone and showed that presence of binding sites for these three factors 

is not sufficient to create a PRE (Dejardin et al. 2005). The authors were, however, 

able to create a functional PRE by adding a motif for the homeotic gene regulator 

Dorsal switch protein 1 (DSP1). This construct successfully recruited PcG proteins 

and resulted in silencing of a downstream reporter (Dejardin et al. 2005). 
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In summary, PcG protein recruitment in D. melanogaster appears to be 

mediated by specific DNA sequences termed PREs and guided there by 

combinatorial binding of sequence specific TFs. However, many of these TFs are 

also associated with positive regulation of gene expression and it thus remains 

unclear whether their contribution to PcG recruitment is direct or indirect. 

 

1.4.3.2 Targeting mammalian PcG proteins 

After the discovery of PcG proteins in D. melanogaster and the identification 

of PREs as recruiter sequences, substantial efforts were made in searching for 

mammalian PREs. Despite these efforts, to date only two PREs have been 

discovered in vertebrates that fulfill the definition of a PRE (Sing et al. 2009, Woo et 

al. 2010). Instead, other mechanisms have been proposed to play a role in 

mammalian PcG recruitment, some of which will be discussed in more detail in the 

following sections.  

 

Targeting non-canonical PRC1  

Mammalian PcG proteins localize mainly to promoters overlapping with CGIs, 

leading to the hypothesis that CpG dinucleotides might be involved in recruiting of 

PcG complexes (Ku et al. 2008, Orlando et al. 2012). Indeed, two recent studies 

have linked the CxxC zinc-finger domain containing protein KDM2B to the 

recruitment of non-canonical PRC1 to CpG islands (Farcas et al. 2012, Wu et al. 

2013). Wu et al. showed that KDM2B interacts with RING1B to form a non-canonical 

PRC1 that is required for H2AK119 ubiquitination of specific targets in mouse ESCs 

(Wu et al. 2013). Furthermore, loss of KDM2B results in reduced occupancy of 

PRC1 and deposition of H2AK119ub at CGIs (Wu et al. 2013). However, KDM2B 

occupies nearly all CGIs throughout the genome while PRC1 is present only at a 

subset of these, suggesting involvement of additional factors. 

Some of these factors may include REST, RUNX1, and YY1 (Woo et al. 2010, 

Ren and Kerppola 2011, Dietrich et al. 2012, Yu et al. 2012, Woo et al. 2013). 

However, as depletion of these factors only affects a small set of target loci, they are 

unlikely to play a general role in recruitment. For example, YY1, the mammalian 

homologue of the Drosophila PHO, was suggested to regulate recruitment of PcG 

proteins to a specific locus within the HoxD cluster (Woo et al. 2010). Furthermore, 
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when placed upstream of a reporter gene, the element was able to repress its 

expression in a PcG dependent manner, a key characteristic of PREs in D. 

melanogaster (Woo et al. 2010). YY1 might therefore be a factor involved in 

targeting non-canonical PRC1 complexes that lack the CBX component. 

Nevertheless, the fact that YY1 does not correlate with PcG binding on a genome-

wide level (Vella et al. 2012) makes it an unlikely candidate for a general recruitment 

factor. 

 

Targeting mammalian PRC2  

Similar to non-canonical PRC1, mammalian PRC2 has been suggested to be 

recruited by mechanisms involving factors that specifically recognize CGIs 

(Mendenhall et al. 2010). However, in contrast to PRC1, no CxxC-domain containing 

protein has been directly implicated in recruiting PRC2 to CGIs. Two proteins, 

JARID2 and AEBP2, have been co-purified with core PRC2 components and shown 

to be able to bind CG-rich DNA (Peng et al. 2009, Shen et al. 2009, Landeira et al. 

2010, Li et al. 2010, Pasini et al. 2010). Furthermore, genome-wide occupancy 

studies have revealed a strong overlap between JARID2 and PRC2 core 

components, suggesting a role in regulating PRC2 targeting and / or activity (Peng et 

al. 2009, Landeira et al. 2010, Li et al. 2010, Pasini et al. 2010). JARID2 is a member 

of the Jumonji family of histone demethylases but lacks key catalytic residues 

required for demethylase activity (Li et al. 2010). It does, however, bear the DNA-

binding domains, supporting its proposed role in targeting the PRC2 complex. 

Furthermore, knock-down of JARID2 in ESCs results in reduced levels of H3K27me3 

at many target sites. However, the effect on H3K27me3 levels is relatively mild and 

most target genes remain silent. Thus, JARID2 might be involved in fine-tuning 

PRC2 methyltransferase activity, rather than recruiting the complex to DNA (Panning 

2010). Whether this influence on catalytic activity of EZH2 is stimulatory or inhibitory 

is still controversial (Herz and Shilatifard 2010). 

 Another mechanism proposed to recruit PRC2 involves sequence-specific 

binding of TFs similar to what has been observed in D. melanogaster. This model is 

appealing as it would explain cell type-specific targeting of PRC2. As mentioned 

above, one such candidate factor is YY1, but poor correlation with PRC2 occupancy 

throughout the genome and mainly localized to active regions makes it unlikely to be 

a general recruitment factor (Vella et al. 2012). Two other candidates are SNAIL 
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(Herranz et al. 2008, Arnold et al. 2013) and REST (Dietrich et al. 2012, Arnold et al. 

2013). REST has been demonstrated to play a role for in targeting and regulating 

H3K27 trimethylation (Dietrich et al. 2012, Arnold et al. 2013). In particular, Arnold et 

al. showed the importance of REST for efficient PRC2 targeting in neural progenitor 

cells. In contrast, depletion of REST in ESCs only mildly affected H3K27me3 levels. 

Similarly, SNAIL has been associated with only a small subset of targets and is 

therefore unlikely to play a general role in recruitment (Herranz et al. 2008, Arnold et 

al. 2013). 

 Another set of factors, which were shown to play a role in guiding PRC2 to its 

target sites are the Polycomb-like (PCL) factors. They were demonstrated to not only 

stimulate enzymatic activity, but also aid in recruiting PRC2 to specific sites in ESCs 

(Walker et al. 2010, Casanova et al. 2011, Hunkapiller et al. 2012). There are three 

main PCL proteins in mammals, each having distinct effects on PRC2 activity. For 

example, PCL1 and PCL3 have been shown to be important for genome-wide 

deposition of H3K27me3 and ESC self-renewal, while PCL2 was suggested to play a 

role in guiding PRC2 to its targets via its PHD finger (Sarma et al. 2008, Walker et al. 

2010, Casanova et al. 2011). Furthermore, all three PCLs have recently been shown 

to interact with H3K36me3 via their Tudor domain (Ballare et al. 2012, Brien et al. 

2012, Musselman et al. 2012). This interaction was suggested to be important to 

target PRC2 to previously active genes in order to repress them (Abed and Jones 

2012). 

 Finally, interactions between noncoding RNAs (ncRNAs) and PcG 

components have been proposed to guide PcG complexes to their targets. In 

particular, several studies have suggested a role for these RNAs in the recruitment 

of PRC2. The basis for this model stems from studies on X-chromosome inactivation 

in females, which is initiated via transcription of a long non-coding RNA (lncRNA) 

called Xist (Brockdorff et al. 1992, Brown et al. 1992, Lee et al. 1999). Upon 

transcription of this ncRNA, it coats the entire X-chromosome in cis and is believed 

to initiate the formation of heterochromatin by recruiting PRC2 via a specific 

sequence within the transcript (Plath et al. 2003, Silva et al. 2003, Zhao et al. 2008). 

Another ncRNAs implicated in gene repression via PRC2 recruitment in humans is 

the lncRNA HOTAIR, which is transcribed from the HOXD cluster and has been 

proposed to act in trans to silence genes within the HOXC cluster (Rinn et al. 2007). 

Third, Kcnqot1 seems to be involved in imprinting the Kcnq1 cluster on mouse 
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chromosome 7 in a PRC2 dependent manner (Fitzpatrick et al. 2002, Pandey et al. 

2008). In addition to lncRNAs, short ncRNAs have been proposed to be involved in 

PRC2 recruitment (Kanhere et al. 2010, Davidovich et al. 2013, Kaneko et al. 2013). 

However, despite the recent attention given to recruitment mechanisms involving 

ncRNAs, evidence for a direct interaction between ncRNAs and Polycomb proteins 

remains scarce and the observed interactions may be of indirect nature facilitated by 

other factors. 

 Taken together, several models for recruiting PcG complexes to their target 

loci have been proposed in recent years, all supported by experimental evidence 

(Figure 10). It thus remains a controversially debated question and it is likely that 

proper targeting is the result of a complex interplay between different mechanisms.  

 

 

 
Figure 10 Proposed mechanisms that guide PcG complexes to their target loci. (A) Sequence specific TFs 
interact with PcG complexes and guide them to their targets. (B) The CxxC domain-containing protein KDM2B 
has been shown to be involved in the recruitment of non-canonical PRC1. An analogous factor has yet to be 
identified for PRC2. (C) Canonical PRC1 is recruited to H3K27me3-marked regions via its CBX component that 
contains a chromodomain. Similarly, the PRC2 component EED can bind to the H3K27me3 mark, a mechanism 
believed to be responsible for spreading the mark. (D) Non-coding RNAs have been shown to play a role in 
guiding PRC1 and PRC2 to their targets. Adapted from (Lanzuolo and Orlando 2012). 
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CHAPTER 2 

2. SCOPE OF THIS THESIS 
During development of an organism, pluripotent stem cells differentiate into 

specialized cell types carrying out specific functions. In order to achieve this, cell 

type-specific gene expression patterns are established upon lineage commitment 

and stably maintained during subsequent cell divisions. In particular, during 

differentiation of pluripotent stem cells, pluripotency genes get repressed and 

lineage-specific genes are activated. It is thought that histone modifications and DNA 

methylation play a key role in the maintenance of these patterns. Recent advances 

in the genome-wide analysis of these epigenetic marks have revealed distinct 

distributions throughout the genome, effectively distinguishing active and accessible 

euchromatin from inactive and closed heterochromatin. However, it remains unclear 

how specific modifications are targeted to distinct genomic loci in a temporally and 

spatially defined manner. It is essential to understand these mechanisms in order to  

One epigenetic process that has been studied extensively in regard to 

genomic targeting is PcG-mediated gene repression. Stable repression by PcG 

proteins is thought to be mediated by deposition of the H3K27me3 mark. This mark 

is highly dynamic during the course of differentiation, emphasizing its relevance 

during development (Mohn et al. 2008). Work in both D. melanogaster and mammals 

suggests that TFs play a key role in the recruitment of PcG complexes to their target 

loci (Ringrose and Paro 2007, Herranz et al. 2008, Woo et al. 2010, Dietrich et al. 

2012, Arnold et al. 2013). However, it is still unclear whether the observed functional 

interactions between TFs and PcG complexes are mediated via a direct physical 

interaction.  

In addition to TFs, CpG-rich DNA sequences have been suggested to play a 

role in recruiting PcG complexes. This is made evident by the fact that the majority of 

H3K27me3 peaks are associated with CGIs (Ku et al. 2008, Orlando et al. 2012). 

Nevertheless, the direct role of CpG dinucleotides remains elusive. 

Here, we aim to identify DNA sequences that can autonomously recruit the 

Polycomb machinery. Furthermore, we will dissect these elements in order to identify 
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specific sequence determinants that are required for efficient recruitment of PcG 

complexes and establishment of H3K27me3 domain. To this goal, we will employ a 

system that allows genomic targeting of murine embryonic stem cells at a specific 

locus, using CRE recombinase-mediated cassette exchange (Feng et al. 1999, 

Lienert et al. 2011). This reductionist approach will allow us to test the effect of 

minimal DNA sequence variations on the recruitment of PcG complexes and 

subsequent acquisition of H3K27me3. 
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CHAPTER 3 

3. RESULTS 
3.1 Summary 

Multicellular organisms consist of various cell types, each serving a 

specialized function. Remarkably, all of these different cell types originate from one 

cell, the oocyte, which has the potential to give rise to every cell type within the 

organism. Therefore, almost all cells within an organism contain the same genetic 

information. Nevertheless, each cell type interprets this information differently, 

resulting in cell type-specific gene expression patterns. These expression patterns 

define a cell’s function and are acquired upon lineage commitment of a pluripotent 

cell. Furthermore, once acquired, these patterns can be stably maintained 

throughout subsequent cell divisions via mechanisms involving the modification of 

chromatin structure by specialized enzymes. 

A key group of such chromatin modifiers are the Polycomb-group (PcG) 

proteins. These proteins play key roles during early development by stably 

repressing developmental regulators. They function in part through methylation of 

histone H3 at lysine 27 (H3K27me3), an epigenetic mark associated with gene 

repression (Cao et al. 2002, Muller et al. 2002, Papp and Muller 2006). However, 

despite the importance of this epigenetic mark, it remains elusive how PcG 

complexes are guided to their target loci in a cell type-specific manner. Studies in 

Drosophila melanogaster and mammals suggest that TFs play a key role in the 

recruitment of PcG complexes (Ringrose and Paro 2007, Woo et al. 2010, Dietrich et 

al. 2012, Arnold et al. 2013). However, it is unclear whether this mechanism involves 

direct interactions between TFs and PcG proteins.  

Here, we hypothesized that recruitment of PcG complexes to specific loci is 

encoded within the target DNA sequence. This could be in the form of TF binding 

sites or other sequence queues. To test this, we employed a reductionist approach 

to identify sequence determinants that guide PRC2 recruitment. In particular, we 

inserted a set of endogenous H3K27me3 targets in mouse ES cells into a defined 

ectopic locus. Then, we examined whether these ectopically inserted DNA 
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sequences could recapitulate endogenous H3K27me3 levels. Indeed, the tested 

elements were able to recruit PRC2 and acquire the H3K27me3 mark at levels 

comparable to the endogenous locus. Further dissection of these elements revealed 

that DNA sequences rich in CpG dinucleotides and as short as 220 bp are sufficient 

to establish an H3K27me3 domain. Furthermore, we found that cell type-specific 

recruitment is determined by the transcriptional state of the target locus. In particular, 

transcriptional activity regulated by TF binding to a proximal cis-regulatory element 

can efficiently block the acquisition of H3K27me3. Finally, using mutant DNA 

sequences we demonstrate that absence of DNA methylation at the target locus is 

necessary to efficiently recruit PRC2. 

Taken together, we propose a model whereby PRC2 is recruited to 

transcriptionally inactive, unmethylated CpG-rich DNA. We observe that TFs play a 

key role in this process, albeit not via direct interaction with PcG components, but 

rather via regulation of transcriptional activity. We thus provide new insights into the 

role of epigenetic modifications in regulating gene expression patterns.  
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3.2.1 Abstract 
Trimethylation of histone H3 at lysine 27 (H3K27me3) is a chromatin mark 

associated with Polycomb mediated gene repression. Despite its critical role in 

development, it remains largely unclear how this mark is targeted to defined loci in 

mammalian cells. Here, we employ iterative genome editing in order to identify small 

DNA sequences capable of autonomously recruiting Polycomb. We inserted 28 DNA 

elements at a defined chromosomal position in mouse embryonic stem (ES) cells 

and assessed their ability to promote H3K27me3 deposition. Combined with deletion 

analysis we identified DNA elements as short as 220 nucleotides that correctly 

recapitulate endogenous H3K27me3 patterns. Functional Polycomb recruiter 

sequences are invariably CpG rich but require protection against DNA methylation. 

Alternatively, their activity can be blocked by placement of an active promoter-

enhancer pair in cis. Taken together, these data support a model whereby PRC2 

recruitment at specific targets in mammals is positively regulated by local CpG 

density yet obstructed by transcriptional activity or DNA methylation. 
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3.2.2 Significance statement 
Polycomb repressive complex 2 functions in gene repression and acts by 

methylating histone H3 at lysine 27 (H3K27me3). Despite its relevance it remains 

elusive how this complex is recruited to its target sites in the genome. Here, we used 

repeated genomic targeting in embryonic stem cells to identify DNA sequence 

determinants that autonomously confer H3K27me3 recruitment. We show that 

surprisingly small CG-rich DNA sequences are sufficient to recruit H3K27me3, but 

only if they are devoid of DNA methylation and transcriptional activity. This study 

provides new insights into the mechanisms recruiting H3K27me3 and the crosstalk 

between diverse chromatin modifications. 
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3.2.3 Introduction 
Polycomb Group (PcG) proteins are required for proper fine-tuning of gene 

expression and act in part through modifications of histones  (Boyer et al. 2006, 

Pereira et al. 2010, Pengelly et al. 2013). Initially identified in D. melanogaster as 

regulators of homeobox gene expression and body segmentation, PcG proteins have 

since been described in mammals and implicated in many cellular processes, 

including maintenance of pluripotency and lineage-commitment (Lewis 1978, Di 

Croce and Helin 2013). PcG proteins form two main complexes, PRC1 and PRC2 

(Levine et al. 2004). PRC1 monoubiquitylates histone H2A lysine 119 (H2AK119), 

while PRC2 harbors histone methyltransferase (HMT) activity towards histone H3 

lysine 27 (H3K27) (Kuzmichev et al. 2002, de Napoles et al. 2004). Both chromatin 

marks are associated with gene repression and are essential for embryonic stem 

(ES) cell differentiation (Cao et al. 2002, Boyer et al. 2006). Mammalian PRC2 

consists of 3 core proteins essential for its catalytic activity; Enhancer of zeste 

homologue 2 (Ezh2), Suppressor of zeste homologue (Suz12) and Embryonic 

ectoderm development (Eed). Genome-wide analysis of the H3K27me3 mark in 

different cell types and during in vitro differentiation of ES cells revealed the mark to 

be dynamic during lineage-commitment, suggesting that the complex is recruited to 

target sites in a cell-type specific manner (Bracken et al. 2006, Mohn et al. 2008). 

The mechanisms by which PcG proteins are recruited to specific genomic 

sites are still elusive. In D. melanogaster, transgenic experiments showed that 

polycomb can be recruited to polycomb responsive elements (PREs) leading to 

repression of reporter genes (Chan et al. 1994, Cavalli and Paro 1998, Ringrose et 

al. 2003). Several TF binding motifs are enriched within fly PREs and might 

contribute to Polycomb recruitment (Ringrose et al. 2003, Muller and Kassis 2006). 

In mammals, PRC2 and the H3K27me3 mark localize mainly to transcriptionally 

inactive regions rich in CpG dinucleotides, referred to as CpG-islands (CGIs) (Tanay 

et al. 2007, Ku et al. 2008, Mendenhall et al. 2010, Lynch et al. 2012, Orlando et al. 

2012). Since CGIs are regulatory regions they are under high selection for presence 

of regulatory motifs more complex than CG, which are occupied by transcription 

factors (TFs) (Cohen et al. 2011). It thus remains open whether high CpG 

dinucleotide frequency is indeed sufficient to direct PRC2 recruitment. 
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Here we aimed to identify DNA elements that can autonomously establish an 

H3K27me3 domain and dissect their function through iterative testing of sequence 

variants. To control for position effect and copy number, we employed 

recombination-mediated cassette exchange (RMCE) to insert DNA elements into the 

same genetic locus. These repeated insertions identify DNA fragments as short as 

220 nucleotides (nt) capable of autonomously acquiring H3K27me3 in a 

heterologous genomic context. This ability is determined by the presence of 

unmethylated CpG dinucleotides, yet the cell-type specific acquisition of H3K27me3 

during differentiation is dependent on the presence of a cell-type specific enhancer.  
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3.2.4 Results 
Small DNA elements autonomously recruit H3K27me3 when placed at an 

ectopic locus in ES cells  

Candidate recruiter sequences for PRC2 were chosen based on their 

enrichment for H3K27me3 and SUZ12 in genome-wide chromatin 

immunoprecipitation (ChIP) datasets from murine ES cells (Pasini et al. 2010, Tiwari 

et al. 2012). Since the majority of SUZ12 peaks lie within CGIs (Tanay et al. 2007, 

Ku et al. 2008) we asked if candidate CGIs could act autonomously to promote 

H3K27me3 when inserted in a heterologous genomic environment. We chose eight 

candidate CGIs ranging in size from 550nt to 1000nt and included elements that are 

putative promoters as well as elements located within exons and intergenic regions 

(Figure 11A-E, Figure 16C-E). In addition, we inserted a ninth CGI overlapping with 

the promoter of the exosome complex component Exosc9. This element does not 

harbor H3K27me3 at its endogenous site and served as a negative control (Figure 

11F).  

All nine elements were inserted separately into a previously described target 

site in the beta-globin locus using CRE-mediated recombination (Lienert et al. 2011) 

(Figure 16A). Importantly, the globin locus and several hundred kilobases of 

surrounding region contain no preexisting H3K27 methylation in stem cells (Figure 

16B), making this site suitable to test for the autonomous ability of DNA elements to 

recruit this chromatin mark. Moreover the RMCE approach relies only on negative 

selection and the pre-existing marker gene is removed during the insertion, leaving 

behind only the sequence of interest flanked by loxP sites. Following verification of 

correct insertion, we tested for the presence of H3K27me3 and the core PRC2 

component Suz12 at all elements by ChIP. For each of the eight putative recruiter 

elements, we observed the acquisition of H3K27me3 after insertion at the globin 

locus (Figure 11A-E). In contrast, no enrichment for either Suz12 or H3K27me3 was 

observed at the control sequence, excluding that the insertion of any heterologous 

genomic region leads to PRC2 recruitment and acquisition of H3K27me3 (Figure 

11F). Importantly, the H3K27me3 levels detected at the eight functional elements are 

comparable to those observed at their endogenous loci, consistent with full 

sequence autonomy in recruitment of this chromatin mark. This is particularly 

intriguing in light of the relatively small sizes of tested sequences that range from 
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542 to 901 base pairs and demonstrates that elements of less than one kilobase can 

establish a local H3K27me3 domain. We also detected the PRC2 component Suz12 

at all inserted candidate elements (Figure 11A-E, Figure 16C-E). In five of eight 

elements at levels similar to the endogenous site, while at three elements levels 

were reduced even though H3K27me3 levels were similar to the endogenous site.  

 
Figure 11 Short DNA sequences can establish H3K27me3 domains. (A)-(F) Top panels show Suz12 and 
H3K27me3 profiles around the candidate (A)-(E) and control (F) CGIs. Genomic coordinates indicate the location 
of the candidate CGI. Bottom panels show H3K27me3 and Suz12 ChIP-qPCR data at the ectopically inserted 
and endogenous loci.; All qPCR data are normalized to input DNA and shown relative to the 5’ amplicon of the 
endogenous locus in order to better compare the levels between the ectopic and endogenous sites. Evx2 and 
Hprt were used as endogenous positive and negative controls, respectively. Error bars represent standard 
deviation between at least two biological replicates. 

The fact that autonomous PRC2 recruitment and subsequent establishment of 

an H3K27me3 domain is observed for all cases tested suggests that such local 

sequence autonomy may be a general feature of polycomb recruitment in the mouse 
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genome. Next we asked if further deletions could identify even smaller sequence 

elements as functional recruiters.  

 

 

Small functional polycomb recruiter elements cover less than two 

nucleosomes 

To dissect length requirements and potentially identify regions essential for 

recruitment, we tested subfragments of the identified recruiter sequences ranging 

from 218 to 445 nt. The resulting eight fragments were separately inserted and 

Suz12 and H3K27me3 enrichments were measured (Figure 12, Figure 17). 

Enrichments varied between elements indicating that these smaller elements do not 

show a uniform ability to recruit a functional polycomb complex. For example, the 3’ 

half of element 3 shows no recruitment of H3K27me3, while the 5’ half shows strong 

recruitment, despite the fact that both are comparable in size (Figure 12C, Figure 

17C). Importantly these insertion experiments show that elements as short as 218nt 

can be sufficient to create a local H3K27me3 domain (Figure 12D, Figure 17D). Thus 

DNA regions spanning less than two nucleosomes can be sufficient to recruit PRC2, 

leading to H3K27 methylation levels similar to their endogenous site.  

 
Figure 12 Dissection of H3K27me3 recruiters identifies 220 nt recruiter sequence. (A)-(D) Recruiter 
elements were dissected into smaller parts and analyzed for H3K27me3 enrichments by ChIP-qPCR. All qPCR 
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data are normalized to input DNA and shown relative to the 5’ amplicon of the endogenous locus in order to 
better compare the levels between the ectopic and endogenous sites. Evx2 and Hprt were used as endogenous 
positive and negative controls, respectively. Error bars represent standard deviation between at least two 
biological replicates. 

 

Cell-type specific reconstitution of H3K27me3 patterns requires 

endogenous context 

The above experiments argue that CGIs that recruit H3K27me3 in stem cells 

function similarly when placed in an ectopic site. Since polycomb recruitment is 

variable between cell types we next asked whether sequences that do not harbor 

H3K27me3 in stem cells but gain it during differentiation recapitulate this behavior 

when placed at an ectopic site. As a test sequence we chose a 1.1kb CGI 

overlapping with the Utf1 gene-body since it harbors no detectable H3K27me3 in 

stem cells but gains the mark during neuronal differentiation (Figure 13A). When 

inserted in the beta globin locus, however, this CGI recruits the H3K27me3 mark 

already in stem cells even though it is absent at the endogenous locus (Figure 13B). 

Thus, outside of the native genomic locus, this sequence acquires H3K27me3 in a 

cell-type independent manner. The Utf1 locus codes for an established pluripotency 

factor (Kooistra et al. 2010) and is exclusively expressed in ESCs (Tippmann et al. 

2012). Upon differentiation into neuronal progenitors, Utf1 expression is shut off 

accompanied by the gain of H3K27me3 (Figure 13A). Expression of the Utf1 gene is 

regulated by a proximal downstream enhancer positioned adjacent to the CGI (Chew 

et al. 2005). To determine whether the transcriptional context is required to regulate 

cell-type specific H3K27me3 recruitment, we inserted the entire Utf1 locus including 

the promoter and enhancer. Addition of these cis-regulatory elements resulted in 

loss of H3K27me3 acquisition in stem cells, mimicking the endogenous locus (Figure 

13C). Furthermore, upon in vitro differentiation of ESCs into NPs, we observed 

acquisition of H3K27me3 at the ectopic locus similar to the endogenous site, 

indicating that the dynamic pattern of this chromatin mark is now reconstituted at the 

ectopic site in both ESCs and NPs (Figure 13C). One possible explanation is that 

inclusion of the promoter and enhancer leads to transcriptional activation, which in 

turn counteracts H3K27me3 recruitment in stem cells. To test this, we sought to 

reduce the transcriptional activity of the promoter-enhancer pair with minimal 

changes in its sequence. The Utf1 enhancer contains an OCT4/SOX2 binding site 

(Chew et al. 2005), both key transcription factors of the pluripotency network active 
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in stem cells. Genome-wide profiles of SOX2 in ES cells and NPs confirmed that the 

factor is bound to the Utf1 enhancer in ES cells, but not in NPs (Lodato et al. 2013). 

We thus inserted a construct with a 15 nt deletion within the enhancer, effectively 

removing the OCT4/SOX2 binding site while leaving the enhancer otherwise 

unchanged. Expression from this construct was analyzed by replacing the Utf1 gene 

with a luciferase reporter as transcripts from the endogenous Utf1 locus and ectopic 

site are otherwise indistinguishable (Figure 18A). After insertion we compared 

expression of both constructs revealing that deletion of the OCT4/SOX2 binding site 

abolishes transcription, leading to a 100-200 fold decrease in luciferase activity. To 

determine if this affects H3K27me3 acquisition we next inserted the enhancer 

mutation in combination with the Utf1 gene. As expected, SOX2 binding was strongly 

reduced at the mutated enhancer when compared to the wild-type construct (Figure 

18C). More importantly, however, and in contrast to the unaltered enhancer 

construct, this mutant now showed premature acquisition of H3K27me3 in stem cells 

(Figure 13D). Thus the presence of the Utf1 promoter/enhancer pair is necessary to 

inhibit H3K27me3 of the overlapping CGI in stem cells and loss of enhancer activity 

is sufficient to cause premature recruitment of H3K27me3 to the Utf1 CGI.  

 
Figure 13 Transcriptional activity inhibits H3K27me3 acquisition. (A) Sox2, RNA-seq, and H3K27me3 
profiles around the Utf1 locus in ESCs and NPs. (B) Ectopic insertion of the Utf1 CGI and corresponding 
H3K27me3 ChIP-qPCR enrichments in ESCs.; (C) Insertion of the whole Utf1 locus including its promoter and 
wild-type enhancer and corresponding H3K27me3 levels in ESCs and NPs.; (D) H3K27me3 enrichments at the 
Utf1 locus with the mutated enhancer in ESCs.; (E) Insertion of CGI10 flanked by the Utf1 promoter and 
enhancer and corresponding H3K27me3 enrichments in ES cells and NPs.; (F) Comparison of H3K27me3 levels 
between CGI10 in the context of the wild-type or mutant Utf1 enhancer in ESCs.; (G) As in E but with the 
negative control CGI14 placed between the Utf1 promoter and enhancer.; All qPCR data are normalized to input 
DNA and shown relative to the indicated amplicon (y-axis) of the endogenous locus in order to better compare 
the levels between the ectopic and endogenous sites. Evx2 and Hprt were used as endogenous positive and 
negative controls, respectively. Error bars represent standard deviation between at least two biological replicates. 
Numbers above asterisks indicate p-value. 
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Transcriptional context arbitrates recruitment abilities 

To test whether the antagonism between recruitment and transcription was 

specific to the Utf1 recruiter element, we replaced the Utf1 gene-body CGI between 

the promoter-enhancer pair with the recruiter CGI10 (Figure 11D). Insertion of CGI10 

in the context of the Utf1 promoter-enhancer combination indeed inhibited 

H3K27me3 acquisition in ESCs (Figure 13E). Furthermore, upon differentiation into 

NPs, the CGI reacquired the H3K27me3 mark concomitant with loss of 

transcriptional activity (Figure 13E, Figure 18B). Using mutated constructs, we also 

observed that the OCT4/SOX2 binding site in the enhancer is essential for 

preventing H3K27me3 deposition in ESCs (Figure 13F). To further verify that 

H3K27me3 recruitment in NPs is indeed mediated by the CGI10 and not the Utf1 

promoter or enhancer, we repeated the experiment with the CGI10 replaced by the 

non-recruiting CGI14 (Figure 11F, Figure 13G). This construct no longer acquired 

H3K27me3 upon differentiation, confirming that the observed gain of this histone 

mark at the CGI10 construct was indeed due to the presence of the inserted CGI.  

Thus cell type specific recruitment of the H3K27me3 mark can be 

counteracted by transcriptional activation mediated by surrounding regulatory 

regions.  

 

DNA methylation and H3K27me3 recruitment exclude each other at CpG 

islands 

All tested recruiter sequence elements are CpG dense as they originate from 

CGIs, suggesting that CpG dinucleotides might play an important role in the 

recruitment of the H3K27me3 mark to these target sites. In support of this model, we 

did not observe H3K27me3 at the CpG-free Luciferase reporter construct described 

above, even in the inactive state (Figure 18D), suggesting that CpG dinucleotides 

are required for H3K27me3 recruitment. Such a model has previously been 

proposed based on the strong presence of H3K27me3 at CGIs (Tanay et al. 2007, 

Ku et al. 2008) and the observation that two CpG-rich elements from the e.coli 

genome become H3K27 methylated when placed into stem cells as part of larger 

transgenes (Mendenhall et al. 2010, Lynch et al. 2012). The identification of small 

endogenous sequences that can autonomously recruit H3K27me3 enabled us to 

rigorously test this model. To determine if the density of CpGs and their individual 
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position is sufficient for recruitment, we synthetically modified three of the identified 

sequence elements (Figure 14). Specifically, we kept all CpG dinucleotides and their 

relative positions but replaced the rest of the sequence with random stretches of 

prokaryotic DNA from the e.coli genome. The purpose of this approach was to 

remove sequence cues (e.g. TF motifs) other than the CpG dinucleotides. Upon 

insertion, only one of three tested elements recruited Suz12 and showed H3K27me3 

levels reminiscent of the wild-type fragment (Figure 14A, Figure 19A), while the other 

two displayed strongly reduced levels (Figure 14B,C and Figure 19B,C). Thus, CpG 

frequency and position cannot solely account for the ability to recruit H3K27me3. 

Notably, of the three modified recruiter elements above, the construct capable of 

recruitment also has the highest CpG density suggesting that very high CpG density 

could indeed be sufficient (Figure 14). 

We have previously suggested that transcription factor binding within CGIs 

contributes to their low DNA methylation (Lienert et al. 2011). This could be relevant 

for the recruitment of the H3K27me3 mark since occupancy of DNA methylation and 

H3K27me3 in ES cells has been observed to be mutually exclusive at CGIs 

(Brinkman et al. 2012), leading to the hypothesis that DNA methylation could inhibit 

H3K27me3 acquisition. To explore whether increased DNA methylation could 

account for the absence of H3K27me3 at the two elements with modified sequence 

backbone we first determined their DNA methylation state. Bisulphite sequencing 

revealed that elements depleted in H3K27me3 upon alteration of the sequence 

backbone were indeed fully DNA methylated (Figure 14B,C and Figure 20A,B). 

Conversely, their wild-type counterparts showed little to no DNA methylation upon 

insertion (84% vs 19% and 94% vs 17%, respectively). The third element retaining 

H3K27me3 showed very low methylation even with the prokaryotic backbone (14% 

vs 0%, Figure 14A and Figure 20C). Thus, loss of Polycomb recruitment coincides 

with increased susceptibility to DNA methylation. This is compatible with the 

observation of increased H3K27 methylation upon global loss of DNA methylation 

(Brinkman et al. 2012, Lynch et al. 2012, Long et al. 2013, Reddington et al. 2013), 

which we also observe in our genome-wide datasets (Figure 21A). With this in mind, 

we also analyzed the DNA methylation of the smaller fragments described above 

(Figure 12C). Again the smaller fragment that lost the ability to recruit H3K27me3 

became fully DNA methylated (Figure 20D). Taken together, this supports a model of 
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competition between DNA methylation and H3K27me3 recruitment at the tested 

CGIs.  

 
Figure 14 CpG dinucleotides cannot solely account for the establishment of H3K27me3 domains. (A)-(C) 
Replacement of all non-CpG nucleotides in CGI6 (A), CGI10 (B), and CGI3 (C) with prokaryotic DNA. Top panels 
represent CpG dinucleotide positions within the sequences and the color indicates the level of DNA methylation 
(white through red indicates 0% - 100%). Bar plots show H3K27me3 ChIP-qPCR levels at the tested sequences 
(left) and total DNA methylation percentages (right).; All qPCR data are normalized to input DNA and shown 
relative to the 5’ amplicon of the endogenous locus in order to better compare the levels between the ectopic and 
endogenous sites. Evx2 and Hprt were used as endogenous positive and negative controls, respectively. Error 
bars represent standard deviation between at least two biological replicates. Numbers above asterisks indicate p-
values. 

 

Trimetylation of H3 at lysine 4 (H3K4me3) has been demonstrated to co-

occupy PRC2 bound CpG islands in ES cells resulting in bivalent domains (Bernstein 

et al. 2006). When determining H3K4me3 levels at the three elements above, CGI3 

and CGI10 both displayed low levels of H3K4me3 at the endogenous site and as 

wild-type inserts (Figure 19E,F). This signal was reduced upon sequence mutation in 

agreement with observations that H3K4me3 is absent at methylated CGIs (Weber et 

al. 2007). In case of CGI6 the wild-type insert showed high levels of H3K4me3 while 

the signal in the mutant was reduced even though it remains DNA unmethylated and 

maintains wild-type levels of H3K27me3 (Figure 19D, Figure 14A). One potential 

explanation is that mutation of the sequence backbone removed TF binding sites 

that positively affect H3K4 methylation at this sequence. 

 

DNA methylation counteracts H3K27me3 recruitment  

If DNA methylation at the two modified recruiter elements inhibits deposition 

of H3K27me3, removing DNA methylation should recover H3K27me3. To test this, 

we treated the respective cells with the DNMT inhibitor 5-Aza-2′-deoxycytidine 

(Juttermann et al. 1994), which resulted in loss of DNA methylation to levels closely 

reflecting those observed at wild-type CGIs (Figure 21B,C). Strikingly, reacquisition 

of H3K27me3 levels comparable to the corresponding wildtype sequences occurred 
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coincident with reduced DNA methylation (Figure 15A,B). We thus conclude that 

DNA methylation can directly block the ability of CpG rich DNA stretches to recruit 

the H3K27me3 mark.  

The above results predict that a CGI that is not K27 methylated should be 

either DNA methylated or transcriptionally active. This is indeed what we observe at 

the level of the genome (Figure 21D) and at the CGI that was used as a negative 

control and which did not recruit PRC2 (CGI14, Figure 11F). This particular 

sequence is not DNA methylated after insertion but recruits efficiently RNA 

polymerase, similar to its endogenous site again in line with this model (Figure 20E 

and Figure 20F). 

 
Figure 15 Removal of DNA methylation reestablishes acquisition of H3K27me3 at the modified fragments. 
(A)-(B) ESCs harboring the modified versions of fragments CGI10 (A) and CGI3 (B) were treated with 5-Aza-2′-
deoxycytidine for four days. Top panels represent CpG dinucleotide positions within the sequences and the color 
indicates the level of DNA methylation (white through red indicates 0% - 100%). Bar plots show H3K27me3 
ChIP-qPCR levels at the tested sequences (left) and total DNA methylation percentages (right). All qPCR data 
are normalized to input DNA and shown relative to the 5’ amplicon of the endogenous locus in order to better 
compare the levels between the ectopic and endogenous sites. Evx2 and Hprt were used as endogenous 
positive and negative controls, respectively. Error bars represent standard deviation between at least two 
biological replicates. Numbers above asterisks indicate p-values. 
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3.2.5 Discussion 
Using iterative genome editing, we define minimal DNA sequence elements capable 

of recruiting PRC2 and acquire H3K27me3 in stem cells. The genomic locus used in 

our studies is otherwise devoid of this mark, allowing us to identify DNA elements as 

short as 220 nt that autonomously create local H3K27me3 domains. Furthermore, 

we could recapitulate H3K27me3 dynamics upon differentiation into neural 

precursors, demonstrating that the cellular signal for recruiting PRC2 and H3K27me3 

is encoded within the target DNA sequence. Of particular note, by genetically 

uncoupling the contribution of CpGs from the rest of the DNA sequence we show 

that CpG frequency and positioning is sufficient to recruit PRC2. Additionally, we 

demonstrate that DNA methylation directly inhibits H3K27me3 deposition at CpG rich 

sequences and that this inhibition can be directly reversed upon chemical removal of 

DNA methylation. These observations readily explain the occupancy of H3K27me3 

and DNA methylation observed throughout the genome (Brinkman et al. 2012, Lynch 

et al. 2012, Long et al. 2013, Reddington et al. 2013). They extend previous studies 

that already suggested a role for CpG dinucleotides in PRC2 recruitment 

(Mendenhall et al. 2010, Lynch et al. 2012) but are also more comprehensive and 

provide novel mechanistic details.  

Our data reveal that transcriptional context surrounding recruiter sequences is 

critical in H3K27me3 establishment. By coupling enhancer dependent activation to 

otherwise transcriptionally inert constructs, we were able to inhibit premature 

acquisition of the H3K27me3 mark. This suggests that active transcription prevents 

PRC2 binding, a finding confirmed by minimal deletions in motifs for activating 

transcription factors. Importantly, while the transcriptional state of a promoter is 

critical in H3K27me3 deposition, our data argue that it is codependent on CpG 

density. It is important to note that alternate transcriptional contexts have been 

implicated in recruiting the polycomb machinery to chromatin. For example, PRC2 

has been suggested to interact with RNAs in a promiscuous manner leading to an 

elaborate model whereby nascent RNA accumulation results in a chromatin state 

refractory to H3K27me3 deposition (Davidovich et al. 2013). Our observations 

implicate transcriptional activity as an antagonistic factor for PRC2 activity and are 

thus compatible with these findings. Notably, our results argue that acquisition of 
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H3K27me3 is not the cause of target gene repression, but rather occurs in the 

absence of a transcriptional activator at CG-rich sequences. 

TFs themselves have been implicated in modulating local levels of H3K27 

methylation and in line with the above model many of these factors serve as 

transcriptional repressors (e.g. REST and SNAI1) (Herranz et al. 2008, Dietrich et al. 

2012, Arnold et al. 2013). Notably, ES cells lacking REST display only subtle effects 

on H3K27me3 levels at target loci, while more pronounced implications are observed 

upon neuronal differentiation (Arnold et al. 2013). Additionally, loss of REST often 

accompanies transcriptional upregulation (Arnold et al. 2013), an observation 

compatible with our enhancer mutation experiments. A precedent for TF mediated 

H3K27me3 deposition was originally described in Drosophila melanogaster where, 

among others, the TF pleiohomeotic (Pho) seems to be involved in recruiting 

Polycomb (Brown et al. 1998, Brown et al. 2003, Ringrose et al. 2003, Klymenko et 

al. 2006). The mammalian homologue Yin-Yang1 (YY1), however displays mutually 

exclusive binding patterns with PRC2 in mouse stem cells (Vella et al. 2012).  

Notably the fly genome lacks DNA methylation and CGIs and it is thus 

tempting to speculate that the adaptation to these genomic elements in mammals 

played a critical role in shaping H3K27me3 distribution. A critical question is thus 

how unmethylated CpGs are interpreted to become H3K27me3 domains in 

mammalian genomes. While several CXXC domain containing proteins can 

recognize the unmethylated CpG dinucleotide (Thomson et al. 2010, Long et al. 

2013), it is unclear if they account for the observed genome-wide H3K27me3 

distribution. Indeed, two recent studies have shown that the CXXC domain protein 

KDM2B interacts with PRC1 and binds to CGIs in stem cells and (Farcas et al. 2012, 

Wu et al. 2013). Importantly, however, KDM2B cannot solely account for PRC1 

recruitment as the protein also binds active CGIs (Farcas et al. 2012, Wu et al. 

2013). Furthermore, loss of KDM2B only results in a mild reduction of PRC1 

recruitment at relatively few targets (Farcas et al. 2012, Wu et al. 2013). Another 

factor implicated in PRC2 recruitment is the lysine methyltransferase cofactor Jarid2 

(Peng et al. 2009, Shen et al. 2009, Landeira et al. 2010, Li et al. 2010, Pasini et al. 

2010). While Jarid2 may be involved in this process, it actually binds CG-rich DNA 

with relatively low affinity (Kim et al. 2003, Li et al. 2010) and its loss results only in 

mild H3K27me3 changes (Shen et al. 2009, Li et al. 2010) indicating that Jarid2 may 
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fine-tune rather than directly recruit PRC2. Our findings are in agreement with the 

concept that PRC1 and PRC2 are recruited to transcriptionally inactive, 

unmethylated CpG-rich DNA sequences (Klose et al. 2013). We envision a model 

whereby unmethylated CGIs are PRC2 occupied by default in the absence of active 

transcription. Presence of the H3K27me3 mark may serve to suppress sporadic 

expression of target genes, while concurrently allowing for future transcriptional 

activation. The dispensability of PRC2 in ES cells lends support to this model, as 

well as the fact that only few genes are upregulated in PRC2 null stem cells (Boyer 

et al. 2006, Leeb et al. 2010).  

Through analysis of several sequence variants in a controlled system we were 

able to delineate a set of guidelines for H3K27me3 recruitment in mouse stem cells. 

Critical parameters for this establishment include CpG density, transcriptional 

competency and DNA methylation. The robustness of these criteria is exemplified by 

our experiments recapitulating Polycomb recruitment on an element spanning less 

than two nucleosomes. 
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3.2.6 Methods 
Cell lines and cell culture. TC-1 ES cells (Lienert et al. 2011) and DnmtTKO cells 

(Tsumura et al. 2006) were cultured on 0.2% gelatin coated dishes. Growth medium 

consisted of DMEM (Invitrogen) supplemented with 15% fetal calf serum (Invitrogen), 

1x non-essential amino acids (Invitrogen), 1 mM L-glutamine, LIF, and 0.001% β-

mercaptoethanol. Differentiation was performed as previously described (Bibel et al. 

2007). Treatment with 5-Aza-2′-deoxycytidine (Sigma) was performed over a course 

of four days at a concentration of 0.1 µM.  

 

Recombination mediated cassette exchange. For targeted insertion, DNA 

fragments were cloned into a plasmid containing a multiple cloning site flanked by 

two inverted L1 LoxP sites (L1-poly-1L). Promoter regions were amplified from TC-1 

ES cell genomic DNA (primers in Table S1) or synthesized (modified CGIs, Table 

S2) and TF binding site deletions were introduced by Quick-Change PCR. RMCE 

was performed as described (Lienert et al. 2011) with slight modifications: TC-1 ES 

cells were selected under hygromycin (250 µg ml-1, Roche) for 10 days. Next, 4 × 

106 cells were electroporated (Amaxa nucleofection, Amaxa) with 25 µg of L1-poly-

1L plasmid and 15 µg of pIC-Cre. Selection with 3 µM Ganciclovir (Roche) was 

started 2 days after transfection and continued for 7–10 days. The surviving 

population was then diluted and selected for another 7-10 days. Single clones were 

tested for successful insertion events by PCR using site-specific primers. 

 

Chromatin IP. ChIP was carried out as previously described (Weber et al. 2007): 

Cells were cross-linked in medium containing 1% formaldehyde for 10 min at room 

temperature. The reaction was quenched with 150 mM Glycine on ice. Crosslinked 

cells were washed twice with ice-cold PBS and incubated on ice 5 min in Buffer1 

containing 10 mM Tris pH 8.0, 10 mM EDTA pH 8.0, 0.5 mM EGTA, and 0.25% 

Triton X-100. The cells were centrifuged 5 min at 600g followed by 5 min incubation 

on ice in Buffer2 consisting of 10mM Tris pH 8.0, 1 mM EDTA, 0.5 mM EGTA and 

200 mM NaCl. Finally, cells were centrifuged again and resuspended in lysis buffer 

consisting of 50 mM HEPES/KOH pH 7.5, 500mM NaCl, 1mM EDTA, 1% Triton X-

100, and 1x Protease Inhibitor cocktail (Roche). The crosslinked chromatin lysate 

was sonicated for 15 (stem cells) or 20 cycles (neuronal progenitors) of 30 sec each 



RESULTS 

 

58 

using a next-gen Diagenode Bioruptor on high setting. Sonicated chromatin was 

divided into 70 µg aliquots and either stored at -80°C or used immediately for ChIP. 

In the latter case aliquots were pre-cleared with BSA and tRNA blocked Protein A or 

G sepharose beads for 1h, rotating at 4°C. 5% of pre-cleared lysate was kept as an 

input sample and the rest was then incubated overnight with the corresponding 

antibodies, rotating at 4°C and subsequently with 30 µl Protein A or G beads for 3h 

at 4°C. Chromatin-bound beads were then washed twice with lysis buffer containing 

protease inhibitors at room temperature for 5 min followed by a single 5 min wash 

with DOC buffer consisting of 10mM Tris Ph 8.0, 250 mM LiCl, 0.5% NP-40, 0.5% 

DOC, and 1 mM EDTA. Beads were then transferred to a fresh tube and bound 

chromatin was eluted in elution buffer containing 1% SDS and 100 mM NaHCO3 in 

two rounds of 20 min, rotating at room temperature. Eluted chromatin and input 

sample were treated with 50 µg ml-1 RNase A for 30min at 37°C and subsequently 

reverse-crosslinked by addition of 200 µg ml-1 Proteinase K and 3h incubation at 

55°C followed by overnight incubation at 65°C. DNA was then purified by phenol / 

chlorophorm extraction, precipitated in ice-cold ethanol, and resuspended in 40 µl 

(IP) or 50 µl (Input DNA) TE pH 8.0. Quantitative PCR (qPCR) was performed using 

SYBR Green chemistry (Applied Biosystems) and 1/80th of the ChIP reaction or 20 

ng of input chromatin per PCR reaction, respectively. Standard curves and primer 

efficiencies for each primer pair used in qPCR were determined by measuring signal 

intensity of a dilution series of input DNA ranging from 100 ng to 0.1 ng. All IP 

measurements were normalized to the corresponding input values. Samples were 

excluded from analysis when the experiment clearly failed due to technical issues 

(no enrichments for positive controls). Error bars in all figures represent standard 

error from at least two biological replicates. Significances were calculated using a 

one-tailed, unpaired two-sample T-test. The following antibodies were used in this 

study: H3K27me3 (Millipore, #07-449 and Abcam, #ab6002), Suz12 (Cell Signaling, 

#3737), Pol II (Santa Cruz, #SC899), H3K4me3 (Abcam, ab8580), and Sox2 (R&D 

Systems, AF2018). Primers used for qPCR are listed in Table S3. H3K27me3 ChIP 

in TKO-133 cells was subjected to high-throughput sequencing on an Illumina GAII 

sequencer using standard Illumina library preparation kits and protocols (GEO 

accession GSE56110). For details regarding sequencing data analysis see 

supplementary methods.  
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High-throughput sequencing data analysis. The July 2007 Mus musculus 

genome assembly (NCBI37/mm9) provided by the National Center for Biotechnology 

Information (NCBI) (http://www.ncbi.nlm.nih.gov/genome/guide/mouse/) and the 

Mouse Genome Sequencing Consortium 

(http://www.sanger.ac.uk/Projects/M_musculus/) was used as a basis for all 

analyses. A nonredundant, nonoverlapping set of promoters (n=19,534) was 

obtained by using the annotation of known RefSeq transcripts from the University of 

California, Santa Cruz genome browser (http://hgdownload.cse.ucsc.edu/ 

goldenPath/mm9/database/refGene.txt.gz, downloaded on April 24, 2013), 

generating 2,000-bp windows centered around RefSeq transcription start sites and 

removing all overlapping windows. CpG island annotation ("cpgIslandExt") was 

downloaded from the UCSC genome browser (http://genome.ucsc.edu/) using the R 

package rtracklayer (Lawrence et al. 2009) and all islands were resized to a length of 

1 kb centered around their annotated midpoint. Fully methylated, low-methylated and 

unmethylated regions were identified applying the R package MethylSeekR (Burger 

et al. 2013) to mouse embryonic stem cell whole-genome bisulfite data (Stadler et al. 

2011). The following published datasets were used for analysis: H3K27me3 in ES 

cells (2 replicates, GEO accessions GSM632032-GSM632034), H3K27me3 in 

DNMT triple knockout ES cells (GEO accession 56110), Input chromatin (GEO 

accession: GSM671103), Pol II (2 replicates, GEO accessions GSM747547-

GSM747548).  Alignment and quantification of ChIP-seq samples was performed 

using the qAlign and qCount function of the R package QuasR, version 1.2.2 

(http://www.bioconductor.org/packages/release/ 

bioc/html/QuasR.html). For ChIP-seq quantification (single-end), read counts were 

assigned to the 5' coordinate of the mapped read and shifted by 60 nts towards the 

3' end (ie assuming a fragment length of 120 nts, shift=60 in the qCount/qProfile 

functions). To account for differences in read depths in the various samples, the total 

counts for all regions (promoters or CpG islands) were normalized to the minimal 

number of counts observed in any of the samples. Region levels were then 

determined as log2(x+8), where x is the number of normalized read counts and 8 is 

a pseudocount (to reduce the sampling noise). For K27me3 and PollII wt, reads 

counts from each replicate were pooled. To generate the heatmap in Figure 21D, 

counts were aggregated in consecutive bins of 50nts for each region (ie 20 bins for 
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1kb) and enrichments (over input) were first calculated separately in each bin and 

then averaged over the two neighbouring bins. Methylation levels in each bin were 

determined as the ratio of summed-up methylated counts divided by the summed-up 

total counts for all CpGs overlapping the bin, only retaining bins with at least 5 total 

counts. For bins, which were not covered or did not contain any CpGs, methylation 

levels were inferred by linear interpolation from neigbhbouring bins. To avoid 

overplotting, 1000 randomly chosen CpG islands were used for visualization. These 

regions were clustered via kmeans-clustering with 3 clusters using Z-scores of Pol II 

and K27me3 (vs input) enrichments as well as Z-scores of methylation. For locus 

specific ChIP-seq profiles shown throughout figures 1, S1, 3, and S4 we generated 

wiggle tracks depicting genome-wide coverage. Published data was used for 

H3K4me3 (GSM207618), Sox2 (GSE35496), Suz12 (GSM480680), and RNA 

(GSE34473). 

 

Methylation analysis. Cells were lysed in cell lysis buffer containing 20 mM Tris pH 

8.0, 4 mM EDTA, 20 mM NaCl, 1 % SDS, and 0.7 mg/ml Proteinase K, followed by 

incubation at 55°C for 5 hours. Genomic DNA was extracted by phenol-chloroform 

extraction and precipitated in EtOH. 2ug of genomic DNA was bisulfite converted 

with the EpiTec Bisulfite Kit (QIAGEN). Regions of interest were amplified by PCR 

and cloned by TOPOTA cloning (Invitrogen). Bisulfite PRC primers were designed to 

be complementary to the converted DNA and did not contain CpG dinucleotides to 

avoid biases (see Table S4). Sequences were analyzed using BiQ Analyzer (Bock et 

al. 2005). 

 

RNA expression. RNA was isolated from cells using Trizol / chloroform extraction. 

Briefly, cell pellets were resuspended in 1 mL of Trizol Reagent and incubated for 5 

min at room temperature, followed by the addition of 0.2 mL chlorophorm and 

another incubation for 3 min at room temperature. The Trizol / chlorophorm solution 

was centrifuged for 15 min at 4°C and 12’000g. The aqueous phase was transferred 

into a fresh 1.5 mL eppendorf tube followed by the addition of 0.5 mL isopropanol. 

This mixture was incubated for 10 min at room temperature, followed by 10 min 

centrifugation at 4°C and 12’000g. The pellet was washed in 75% EtOH and then air-

dried. The RNA pellet was treated with DNaseI for 50 min at 37°C in a volume of 40 
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µL to remove residual DNA contaminants. cDNA synthesis was performed using the 

PrimeScript RT reagent Kit (Takara). Corresponding cDNA levels were measured by 

quantitative PCR and normalized to endogenous LaminB levels. 

 

Luciferase activity measurement. Lysate preparation and measurement of 

luciferase activity was done according to the Luciferase Assay Kit (Promega). 

Luminescence was normalized to total protein content in the lysate measured with a 

BCA Protein Assay Kit (Pierce). 
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3.2.8 Supplemental Material 
 

Supplemental Figures 

 
Figure 16 Short DNA sequences reconstitute endogenous H3K27me3 patterns when inserted ectopically. 
(A) Schematic representation of ectopic insertion of DNA sequences by recombination-mediated cassette 
exchange (RMCE, see text for details).; (B) H3K27me3 profiles within 500 kb around the Hbb-y locus (top) and 
the HoxD gene cluster (bottom).; (C)-(E) Top panels show Suz12 and H3K27me3 profiles around the candidate 
CGIs. Genomic coordinates indicate location of the candidate CGI. Bottom panel shows H3K27me3 and Suz12 
ChIP-qPCR data at the ectopically inserted and endogenous loci.; ChIP-qPCR data in all panels are shown 
relative to the 5’ amplicon of the corresponding endogenous locus. Error bars indicate standard deviation 
between at least two biological replicates. 
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Figure 17 Minimal recruiter elements are bound by Suz12. A)-(D) Recruiter elements were dissected into 
smaller parts and analyzed for Suz12 enrichments by ChIP-qPCR. Error bars represent standard deviation 
between at least two biological replicates. 
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Figure 18 Ectopic Utf1 promoter-enhancer activity reflects endogenous pattern. (A) A CpG-free Luciferase 
gene driven by the Utf1 promoter with or without the enhancer was stably inserted in the beta-globin locus and 
activity was measured in ESCs and / or NPs. ∆TFB indicates OCT4/SOX2 binding site deletion.; (B) CGI10 was 
inserted between the wild-type or mutated Utf1 promoter-enhancer pair and RNA levels were measured in ESCs 
and NPs. (C) Comparison of Sox2 ChIP enrichments between the Utf1 locus with either the wild-type or mutant 
enhancer in ES cells; (D) H3K27me3 enrichments at the Luciferase construct in ES cells and NPs.; Error bars in 
all panels represent standard deviation between at least two biological replicates. 
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Figure 19 Suz12 and H3K4me3 occupancy at the wild-type and mutated CGIs. (A)-(C). Top panels show 
H3K4me3, Suz12, and H3K27me3 profiles around the candidate CGIs. Genomic coordinates indicate location of 
the tested elements. Bottom panels show Suz12 ChIP-qPCR data at the wild-type and mutated elements.; (D)-
(F) H3K4me3 ChIP enrichments at the wild-type and mutated elements. Error bars in all panels represent 
standard deviation between at least two biological replicates. 
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Figure 20 DNA methylation levels at the modified recruiter sequence elements (A)-(C) Bisulphite sequencing 
data for CGI10 (A), CGI3 (B), and CGI6 (C). Top panels show DNA methylation levels at the wild-type 
sequences, bottom panels at the mutant elements.; (D) Bisulphite sequencing data for ectopic insertion of CGI 
3.1 and 3.2 in ES cells. (E) Bisulphite sequencing data for CGI14 at the endogenous and ectopic locus.; (F) Pol II 
ChIP-qPCR data for CGIs 14, 13, 20, and 10. 
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Figure 21 DNA methylation inhibits H3K27me3 acquisition. (A) Scatterplot showing H3K27me3 in DNMT 
triple knockout ES cells at all gene promoters in relation to the DNA methylation state in wild-type ES cells.; (B)-
(C) Bisulphite DNA methylation profiles at the modified fragments CGI3 (B) and CGI10 (C) before and after 
treatment with 5-Aza-2’-deoxycytidine. (D) Heatmap comparing K27me3, Pol II and DNA methylation at all CGIs. 
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Primers used in this study 

Table S1 Primers used to clone DNA fragments from genomic DNA 
Fragment 

Name 

Sense Primer Anti-sense Primer 

CGI1 AAAAAGGATCCGCTAGGGTAACCAGGCTGTC TTTTTAAGCTTCGCCCTGCTTTGCTATGT 

CGI3 665nt AAAAAGATATCGTCTTCTATCCCAGGGCAAGG TTTTTAAGCTTCTTGTCCCTGTTCCCCAAC 

CGI3 571nt AAAAAGGATCCCGGGCGGATCCGGCCTGGCG AAAAAATCGATCGCGTCTCTACGCTTCTGCA 

CGI6 AAAAAGGATCCATGCCTAGGTCAGCTATTCAA

CA 

TTTTTATCGATCAAAATGCCTTCTTTTCCTTG 

CGI10 AAAAAGGATCCTATTTCAACCTAGCTGTCCAAT

TC 

TTTTTAAGCTTTCCTCCCCTTCCCTCCTT 

CGI11 AAAAAGATATCGGTGGTGGTGGTTGAGAAAA TTTTTAAGCTTCTCCAGCTCTCCCAGCAG 

CGI12 AAAAAGGATCCCTACCCTGACTCACCTTGAGC TTTTTAAGCTTGCTTTAAATGCCCACTACAAA 

CGI13 AAAAAGATATCACATGAGCAGCATCTCATAAG

G 

TTTTTAAGCTTAGGAACACAGGCAGGAGAAA 

CGI14 AAAAAGGATCCACTGCAGATGCTAATCTCCAC

TG 

AAAAAAAGCTTATACTGCCCTGAGGCTTGG 

CGI20 AAAAAGGATCCCAGGGTTTGACCCAGAAAAG AAAAAAAGCTTAGGACCTCAGCTGAACTATGC 

3.2 AAAAAGATATCCCGGGAGACTCGCTGTTT TTTTTAAGCTTCTTGTCCCTGTTCCCCAAC 

3.1 AAAAAGATATCGTCTTCTATCCCAGGGCAAGG TTTTTAAGCTTCCGGGAAACAGCGAGTCT 

10.2 AAAAAGGATCCATCACCACCGTGGGCTCTA TTTTTAAGCTTTCCTCCCCTTCCCTCCTT 

10.1 AAAAAGGATCCTATTTCAACCTAGCTGTCCAAT

TC 

TTTTTAAGCTTGCAGCAGAGTGGCTCCTTC 

11.2 AAAAAGATATCCTCCTCTTGATTCGCCTATG TTTTTAAGCTTCTCCAGCTCTCCCAGCAG 

11.1 AAAAAGATATCGGTGGTGGTGGTTGAGAAAA AAAAAAAGCTTCATAGGCGAATCAAGAGGAG 

20.2 AAAAAGGATCCCAGACTCGCCTCGATCTCC AAAAAAAGCTTAGGACCTCAGCTGAACTATGC 

20.1 AAAAAGGATCCCAGGGTTTGACCCAGAAAAG TTTTTAAGCTTGGAGATCGAGGCGAGTCTG 

Utf1 Locus AAAAAATCGATGAGTACATCGCTGTCTTTTGAC

AC 

AAAAAGCCGGCCAAGCCCTGGGACCATCT 

utf1 CGI AAAAAGGATCCATGCTGCTTCGTCCCCGGA AAAAAATCGATTTCTGGAGAAGAGGACTGATAACAA

A 

Oct4/Sox2 

deletion 

GAAGCTGCTGCCGGCACTTCACGGCTCATCCT

GAGGCTC 

GAGCCTCAGGATGAGCCGTGAAGTGCCGGCAGCA

GCTTC 

 

Table S2 Prokaryotic DNA sequences used to replace non-CpG dinucleotides 
Name prokaryotic sequence 

CGI3 AAATATTGAATACACATGGATTGAAAACTATGACACAGCCCATTTAACATCAAAGAAAGTTAATAAGTTTGAGAT

TATGGATCAAGTTGATGATGATAGACTTGCACAACTTATTCCTGATTTTTATGTCTTTCCAGAAAAAAGTGTAAG

CTATAATATACTAAAGCAAGGTAAGCATGCTTTTATTTTGAGCATTGGTAACAGAGCAATAATGCATTGTGCAA

GGTAAACTAAAATAGATAACAAAAAGATGGAACCTCAGCAAAGTCAGGCATTTATACTCTTTTGAATACATAGA

AAATTGATATCAATATAATGAAAATATCAAATATTTGCATATAAATATAATCTTAAAGTTCAGTCTATTTAATGTT

CAATGAAATATTTCTGCCTGTATAATCTTTAAAGATGTTGAACATATATTCACATTAAATATGATTATGTACTTGT

TACAAGGATAAGGTTATATATGAATAAAGTTACAAAAACAGCTATTGTCCCCAGAGCCTCTTCAGCCATCTATT

TGGGAGCAAACAATTTCATTCCAACTCATAACCCCAGCATATAAATC 

CGI6 AGCAATCAAAAAAGACAAGCAACTTTCAGCAGAAGGCTCTATCCTTGAAGCTGGATGGTAGCTGTAGATAAAC

ATTTCTTTTTGAAGGCAAAAAAATAAAATATTCTGTAAGTCCTCCACAGTTCTGCCAAGACAGCTTAGATCTGG
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AATGACAAGGTCATTGTCACTTCAGCTTTATACAGGCACTCTCTATCAGAATGTTGTTTATTACTGCCCAGAGT

TTTGTTGGTATTCATCTACCATTTTTTTGACAAGGCAAAACATTACAGAAATTACAATGCTTAGAAAAAATCCCA

GAGCCAGGCAAATGGCAGCAGGGTATTTATTTTTTATTTCTGGTGAGCTTATAGTTACACAGCCATCACATGC

AAAAACCAATAAGGAAACCTGTGATTTTCAGCTCTACATCACCCTGCAAATCTCTGTCACTTCTAATATAAAAAT

AGGGAGAAATGATGGAGCTTATATTCATTGGTGTAAAAAATATGCTTAATAGCACCATTTCTATGAGTTACCCT

GATGTTGTAATTGCATGTATAGAACATAAGGTGTCTCTGGAAGCATTCAGGGCAATTGAGGCAGGTAACAAAT

TTCCATATTAACTATTATTAATAGAACTCATTAATTGTTTTATTAATTAGTACCCCTCCAGTGTTCTGGAGGGGA

TATTCATATTTTTTAAGAGTGACTATTTATGAAAACTTGCATAACAAAGGGAATTGTGACATTGATTCACCAGAG

ATATTTCTGCTGGTTTGCTCTCTCATTAGAATTTAACACTAA 

CGI10 AGATGTACTTGATCTCAATAATTTGTAACCACAAAATATTTGTTATGGTGCAAAAATAACACATTTAATTTATTGA

TTATAAAGGGCTTTAATTTTTGGCCCTTTTATTTTTGGTGTTATGTTTTTAAATTGTCTATAAGTGCCAAAAATTA

CATGTTTTGTCTTCTGTTTTTGTTGTTTTAATGTAAATTTTGACCATTTGGTCCACTTTTTTCTGCTGTCATTGTC

ACTTCAGCTTTATACAGGCACTCTCTATCAGAATGTTGTTTATTACTGCCCAGAGTTTTGTTGGTATTCATCTAC

CATTTTTTTGACAAGGCAAAACATTACAGAAATTACAATGCTTAGAAAAAATCCCAGAGCCAGGCAAATGGCAG

CAGGGTATTTATTTTTTATTTCTGGTGAGCTTATAGTTACACAGCCATCACTTGAATGGATATTATCCATATAGT

GAATTTGTTGATGATGAATTCATCTGTGCTAAAAATGTTAGTTTAATAAAATATTGAAAGTGACCTGTAATAACA

GTTGTTGTTGATTGAGAACAAATAAGTTTATGTGAAAAATATATAAATACATTAGCTGGTCTTGTGTGTCATTTT

ATTTTTTTTTGTTGCTAACACAGGGATATGAACAATAA 

 

Table S3 qPCR Primers 
Name Used for sequence 

FL30 RMCE upstream s TCTTGGAAGAGAAACTCTTAGGG 

FL40 RMCE downstr. as TGTATACAGATCTACCAACATTACGA 

FM83 Evx2 s CGCAGCCCATCATTAAGAC 

FM84 Evx2 as CGGACAAACTGGAGAACCTC 

FM81 HoxA9 s AAGAAGGAAAAGGGGAATGG 

FM82 HoxA9 as TCACCTCGCCTAGTTTCTGG 

Hprt s1 Hprt s CCAAGACGACCGCATGAGAG 

Hprt as1 Hprt as CAACGGAGTGATTGCGCATT 

FM85 Gapdh s CTCTGCTCCTCCCTGTTCC 

FM86 Gapdh as TCCCTAGACCCGTACAGTGC 

m1_RT5_as_short CGI1 5’ as GACAGCCTGGTTACCCTAGC 

m1_RT3_s_short CGI1 3’ s GGGAAGGCCTAAGACATAGC 

ML1_5_s CGI1 5’ endog. s GCTAGGGTAACCAGGCTGTC 

ML1_3_as CGI1 3’ endog. as GCCCTGCTTTGCTATGTCTT 

m3_RT5_as_short CGI3 5’ as CCTTGCCCTGGGATAGAAGAC 

m3_RT3_s_short CGI3 3’ s GAAGCGTAGAGACGCGTTG 

ML3_RT5_f CGI3 5’ endog. s CCCCCTATTAACTGCACCAA 

ML3_RT3_r CGI3 3’ endog. as GCGTCTCTACGCTTCTGCAT 

ML3_RT5_r CGI3 5‘ endog. as TCCTGAGCTCTCCAGTCTTTG 

ML3_RT3_f CGI3 3‘ endog. s GAGATTCCGTGGAAGAGCAT 

ML11_RT5_s CGI11 5‘ endog. s GTGGTGGTGGTGGTAGTGGT 

ML11_RT5_as CGI11 5‘ endog. as TCAATATCCCCGCTTCAATT 

ML11_RT3_s CGI11 3‘ endog.s GAAGAGAGGCGCAGAGTG 

ML11_RT3_as CGI11 3‘ endog. as AGCCTCGGTTCTCCAGCTC 

m11_RT3_s_short CGI11 3‘ s AAGAGAGGCGCAGAGTGG 

m11_RT5_as_short CGI11 5‘ as GATGCTCCTAGCGCTCTG 

ML13_RT5_s CGI13 5‘ endog. s AGGGGACATCAGTGTGCATC 
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ML13_RT5_as CGI13 5‘   GTGCAGCTGCCCAATGTG 

ML13_RT3_s CGI13 3‘ endog. s AAGCCAGTCAGGAGGTTCG 

ML13_RT3_as CGI13 3‘ endog. as AGCCGCAGGTTCAAGAGTC 

m13_RT3_s_short CGI13 3‘ s GCCAAAGACCGGCGAGT 

ML14_RT5_s CGI14 5‘ endog. s TGCAGATGCTAATCTCCACTG 

ML14_RT5_as CGI14 5‘ endog. as GAAAACCGACGTCATCCAG 

ML14_RT3_s CGI14 3‘ endog. s CGCAATTGAGGAGAAGAAGG 

ML14_RT3_as CGI14 3‘ endog. as AATGGGGAGAGTCCACACTG 

m14_RT_3_s_short CGI14 3‘ s AGTGTGGACTCTCCCCATTC 

m14_RT_5_as_short CGI14 5‘ as GCATCGCAGTGGAGATTAGC 

ML20_RT5_s CGI20 5‘ endog. s AGGCTACTTCCCATCCTGGT 

ML20_RT5_as CGI20 5‘ endog. as GCGGCAGACAGACTGAGAAT 

ML20_RT3_s CGI20 3‘ endog. s GCCCGACCGGGTAAGTAG 

ML20_RT3_as CGI20 3‘ endog. as CACGGGGAAGTTCTTGCAG 

m20_RT5_as_short CGI20 5‘  as CTTTTCTGGGTCAAACCCTG 

ML10_RT3_r CGI10 3‘ endog. as CTTCCCTCCTTGCCTTCCT 

ML10_RT5_f CGI10 5‘ endog. s TCAACCTAGCTGTCCAATTCC 

ML10_RT5_r CGI10 5‘ endog. as GTACTGTCCTGGCGACGTG 

ML10_RT3_f CGI10 3‘ endog. s CACAGCTCAACGAATTGGAG 

m10_RT3_s_short CGI10 3‘ s AGGAAGGCAAGGAGGGAAG 

m10_RT5_as_short CGI10 5‘ as GGTTTCCCAGGAATTGGA 

ML6_RT3_fwd CGI6 3‘ endog. s GTCCCGCGACCACAAAGT 

ML6_RT3_rev CGI6 3‘ endog. as AAAATGCCTTCTTTTCCTTGC 

ML6_RT5_fwd CGI6 5‘ endog. s TGCCTAGGTCAGCTATTCAACA 

ML6_RT5_rev CGI6 5‘ endog. r GGGCTGGGAGCAATTACAG 

m6_RT_3_s_short CGI6 3‘ s CTCTGGACTACCAGCAAGGA 

m6_RT5_as_short CGI6 5‘ as CCAAGGTGGTGAAGTGTAAGAG 

ML12_RT3_r CGI12 3‘ endog. as ATTGTTCAGCGCCGGTTTAT 

ML12_RT5_f CGI12 5‘ endog. s CTACCCTGACTCACCTTGAGC 

ML12_RT5_r CGI12 5‘ endog. as CGCTCTGGACAAGGACGA 

ML12_RT3_f CGI12 3‘ endog. s GAGGGGGAGGGAATGCAG 

m12_RT3_s_short CGI12 3‘ s GCGCTGAACAATGAGTCCTAAC 

m12_RT5_as_short CGI12 5‘ as CTGGACCGGTATCTGCTCA 

Utf1_CGI_RT3_s Utf1 CGI 3‘ s GGACTTGCGCCAATAAAGC 

Utf1noP_CGI_RT5_as Utf1 CGI 5‘ as GGACGAAGCAGCATGGATC 

Utf1_enh_RT5_as Utf1 CGI end. 3‘ as AGTCCGAATTCATTCACAGGA 

Utf1e_end_RT3_s Utf1 endog. 3‘ s TGACTTGTGGTGTGGACCTC 

Utf1e_end_flank_as Utf1 endog. 3‘ as CATTTGCAGAGTGGGCTCAT 

Utf1e_RT3_s_new Utf1 enhancer  3‘ s CAGATGGTCCCAAGGTCACA 

Utf1e_RT5_as Utf1 enhancer  5‘ as AGGCCCCAGCCTCTCTCTAT 

Utf1p_RT3_s Utf1 promoter 3‘ s AGGAGCCCTCCTCTCTGGT 

Utf1p_RT5_as Utf1 promoter 5‘ as TGCCCTGCTACACAAAACAG 

Utf1p_upstr_RT Utf1 endog. 5‘ s CAGATGGTTGTGAAACACCAG 

6coli_RT3_s cCGI6 3‘ s TGCTGGTCGGCTCTCTCATC 

6coli_RT5_as cCGI6 5‘ as GTGCTCGTCTTCGTTGATTGC 

3coli_RT3_s cCGI3 3‘ s GATTTCATTCCCGCGCATAAC 

3coli_RT5_as cCGI3 5‘ as GCTGTGTCCGCGTTTTCAAC 

10coli_RT3_s cCGI10 3‘ s ATCGCGTGGTCTTGTGTGT 
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10coli_RT5_as cCGI10 5‘ as TTACGGCCCTTTATCGTCAAC 

10_left_RT3_s 10.1 3‘ s CACTCTGCTGCAAGCTTATC 

10_right_RT5_as 10.2 5‘ as TAGAGCCCACGGTGGTGATG 

11_left_RT3_s 11.1 3‘ s GCCTCGCCTCCTCTTGATTC 

11_right_RT5_as 11.2 5‘ as CATAGGCGAATCAAGAGGAG 

20_left_RT3_s 20.1 3‘ s CCAGACTCGCCTCGATCTCC 

20_right_RT5_as 20.2 5‘ as GGAGATCGAGGCGAGTCTG 

m3_left_RT3_s 3.1 3‘ s CCGGGAGACTCGCTGTTT 

m3_right_RT5_as 3.1 5‘ as GAAACAGCGAGTCTCCCG 

Nanog s Nanog promoter CCCAGGGAGGTTGAGAGTTC 

Nanog as Nanog promoter AGCCGCCAAGTTCACAAAG 

Utf1_TFB_s Utf1 enhancer TFB GGAGGGCTTAGGTGCAGGTAG 

Utf1_TFB_as Utf1 enhancer TFB TCCTCAGGACTTCCCTTAGCC 

 

 

Table S4 Bisulfite Primers 
Name Used for  Sequence 

MamBis1 RMCE 

upstream 

ATTAAATAAAATGAAAGTTTTGGAAGAG 

FL277 RMCE 

downstr. 

ATATAAAATAATAACAATATATACAAATCTACCAAC 

10_WT_bis_as_new CGI10 5‘ CTAAATAACCCCCAAAATCAAAAC 

10_WT_bis_s_new CGI10 3‘ TATTTAGGGGATTTGGTATTTAATT 

3left_bis_as 3.1 5‘ ACTTACTAAACAAAATTCCCTTTCC 

3left_bis_s 3.1 3‘ TAATTGTATTAAGGTTTGTTTTGGG 

3right_bis_as 3.2 5‘ AATAAACTAAAAACCCCAAAC 

3right_bis_s 3.2 3‘ TTTTTTTTATGATATTTTGGATGTGG 

6coli_inv_bis_as cCGI6 3‘ TCTATAAATTACCCTAATATTATAC 

6coli_inv_bis_s cCGI6 5‘ AAAAATAAATATTTTGTT 

6WT_bis_s CGI6 5‘ GGAGAGGTAGTAAGAAAGGTTATTAA 

6WT_bis_i_as CGI6 3‘ AACCTTTCTTACTACCTCTCCAAAC 

m3_bis_WT_as CGI3 5‘ AAAACCACATCCAAAATATCATAAAA 

m3_bis_WT_s CGI3 3‘ GGAAAGGGAATTTTGTTTAGTAAGTA 

3_coli_bis_s_new cCGI3 3‘ GATGTTTAATGAAATATTTTTGTTTGTAT 

m3_bis_coli_as cCGI3 5‘ CAAACAAAAATATTTCATTAAACATC 

10_WT_bis_as_new CGI10 5‘ CTAAATAACCCCCAAAATCAAAAC 

10_WT_bis_s_new CGI10 3‘ TATTTAGGGGATTTGGTATTTAATT 

10coli_bis_as4 cCGI10 5‘ AAACTCTAAACAATAATAAACAACATTCTAATAAA 

m10_bis_coli_s_2 cCGI10 3‘ TTTATTAGAATGTTGTTTATTATTGTTTAGAGTTT 

14_bis_as2 CGI14  AAAATCCACACTAAACAACCCC 

14_bis_s_end CGI14  TAGAGTGAGATTTTGTTTTAATAAAAA 
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3.3 Additional results 

3.3.1 Utf1 promoter region is required to fully inhibit PRC2 
recruitment 

Since we observed that loss of OCT4 / SOX2 binding at the Utf1 locus could 

prevent acquisition of H3K27me3, we wanted to investigate whether this inhibitory 

effect required the presence of the Utf1 promoter. To this end, we inserted the Utf1 

locus without its promoter and tested if this construct would still be able to prevent 

H3K27me3 acquisition (Figure 22). Indeed, the observed levels of H3K27me3 at this 

construct were significantly reduced in comparison to the Utf1 CGI inserted without 

the enhancer (Figure 22). Nevertheless, the H3K27me3 levels were still significantly 

above background, indicating that the OCT4 / SOX2 binding to the enhancer is not 

sufficient to completely block H3K27me3 acquisition, but instead requires the 

presence of the promoter and possibly the transcriptional machinery. However, it has 

to be noted that the qPCR amplicons at the 3’ end of the inserted constructs are not 

the same due to presence or absence of the enhancer. It is therefore possible that 

the observed difference in H3K27me3 levels at the 3’ end is partially caused by the 

fact that different amplicons were analyzed. To exclude this possibility one could use 

a construct that contains the enhancer with the OCT4 / SOX2 binding site deleted 

instead of the complete absence of the enhancer. 

 

 
Figure 22 Utf1 enhancer is not sufficient to fully prevent H3K27me3 recruitment. Comparison between 
H3K27me3 levels at the Utf1 CGI with and without the enhancer. TF binding at the enhancer has a significant 
effect on H3K27me3 recruitment, even in the absence of the promoter. All data normalized to input and shown 
relative to Evx2 levels.  
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3.3.2 Inhibition of H3K27me3 recruitment is independent of promoter 
directionality 

In order to test whether transcription through the CGI is required for inhibition 

of H3K27me3 recruitment, we inversed the promoter sequence relative to the Utf1 

CGI and enhancer (Figure 23). Insertion of this construct and subsequent 

measurement of H3K27me3 levels revealed that similar to the wild-type locus 

H3K27me3 deposition was still inhibited. These data suggest that the directionality of 

the promoter sequence does not play a major role in preventing the deposition of 

H3K27me3 in ES cells. We therefore conclude that transcription through the CGI is 

not required to prevent deposition of H3K27me3. Notably, however, it has previously 

been shown that active promoters in ES cells often produce short anti-sense 

transcripts peaking at around 250 nt upstream of the TSS (Seila et al. 2008). It is 

therefore possible that the presence such anti-sense transcripts originating from the 

Utf1 promoter might play a role in preventing H3K27me3. 

 

 
Figure 23 Directionality of Utf1f promoter sequence does not influence H3K27me3 recruitment in ES 
cells. The promoter sequence of the Utf1 locus was inverted to prevent transcription through the CGI. 
H3K27me3 levels at the ectopic were subsequently measured by ChIP. Similar to the wild-type construct, 
H3K27me3 is not recruited, indicating that promoter directionality does not play a significant role in preventing 
H3K27me3 deposition. 
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3.3.3 DNA methylation and H3K27me3 mark different sets of 
promoters 

The observation that DNA methylation and H3K27me3 are mutually exclusive 

throughout the genome in stem cells prompted us to further investigate the sequence 

composition of the underlying DNA sequences. To this end, we analyzed the levels 

of H3K27me3 and DNA methylation at all non-overlapping promoters (n=19’517) in 

the mouse genome and compared them to RNA Pol II levels in order to define active 

and inactive promoters (Figure 24). While active promoters are virtually devoid of 

DNA methylation and the H3K27me3 mark, inactive promoters are either marked by 

H3K27me3 or DNA methylation (Figure 24A). Next, we wanted to know whether 

there is any significant difference in the sequence composition between the 

H3K27me3 modified and DNA methylated promoters. Remarkably, when plotted 

against CpG density, the DNA-methylated promoters are exclusively CpG-poor, 

while the H3K27me3 levels scale with increasing CpG density (Figure 24B). This 

demonstrates that high CpG density seems to have an inhibitory effect on DNA 

methylation as observed previously (Lienert et al. 2011), while at the same time 

favoring Polycomb binding.  

 
Figure 24 DNA methylation and H3K27me3 occupy separate sets of promoters in the mouse ES cells. (A) 
Genome-wide comparison of Pol II, H3K27me3 and DNA methylation levels at all non-overlapping promoters 
(2kb window around transcription start site) in mouse ESCs. Pol II negative promoters are marked by either 
H3K27me3 or DNA methylation. (B) Same as (A), but instead of Pol II, chromatin marks are shown against CpG 
density. This shows that H3K27me3 marks promoters of high CpG density, while DNA methylation is found at low 
CpG density regions. UMR: unmethylated region; LMR: Low methylated regions; FMR: Fully methylated region. 

Taken together, these genome-wide data confirm our observations at the 

single insertions, suggesting that the antagonistic relationship between DNA 

methylation and H3K27me3 are conserved throughout the genome. Furthermore, 
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CpG density appears to have an important role in defining the epigenetic state of a 

promoter. 
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CHAPTER 4 

4. CONCLUSIONS AND OUTLOOK 
Recent advances in DNA sequencing technologies have enabled the 

genome-wide analysis of epigenetic marks and have revealed striking correlations 

between chromatin modifications and gene expression patterns (Suzuki and Bird 

2008, Hawkins et al. 2010, Meissner 2010, Zhou et al. 2011, Zhu et al. 2013). 

Therefore, epigenetic modifications have been proposed to directly influence 

transcriptional output and maintain expression patterns established by TFs 

(Kouzarides 2007). However, despite their important role during the development of 

an organism, it remains unclear how the enzymes that facilitate epigenetic 

modifications are targeted to specific loci in a tissue-specific manner. 

Here, we employed a reductionist approach involving repeated genomic 

insertions coupled with iterative dissection and manipulation of short DNA 

sequences to address this fundamental question. We focused on the recruitment of 

PcG complexes, as this repressive system is highly relevant during development. 

Using mouse embryonic stem cells as a model system, we demonstrate that DNA 

sequences as short as 220 bp can be sufficient to recruit the PRC2 complex and 

establish an H3K27me3 domain. Furthermore, by systematically mutating these 

elements we show that unmethylated CpG-dense sequences are sufficient to 

facilitate this recruitment. Finally, we demonstrate that tissue-specific establishment 

of a H3K27me3 domain is abrogated by the activity of active adjacent cis-regulatory 

regions. Furthermore, H3K27me3 acquisition can be reestablished when activating 

TFBS are mutated.  

Taken together, we propose a model whereby recruitment of PRC2 and 

subsequent establishment of an H3K27me3 domain represents a default state of 

transcriptionally inactive and unmethylated CpG-dense genomic regions (Figure 25).  
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Figure 25 Schematic representations of the PRC2 recruitment mechanisms suggested here. The data 
presented in this study argue for a model whereby H3K27me3 marks transcriptionally inactive promoter regions if 
they are unmethylated (left). On the other hand, regions that are DNA methylated block the binding of PRC2 and 
therefore prevent deposition of the H3K27me3 mark (right). Active promoters are enriched in the H3K4me3 mark, 
which together with TF binding and RNA production inhibits the binding and activity of PRC2. 

 

4.1 Crosstalk between H3K27me3 and DNA methylation 

In this study we demonstrate an important interplay between two repressive 

epigenetic marks, namely H3K27me3 and DNA methylation. Similar observations 

have been made between DNA methylation and chromatin states, suggesting that 

DNA methylation plays an important role in the regulation of epigenetic modifications 

(Rose and Klose 2014). For example, a recent study investigating the conservation 

of non-methylated regions (NMRs) in seven vertebrate species showed that absence 

of DNA methylation is a highly conserved feature of vertebrate promoters (Long et al. 

2013). Interestingly, while roughly half of all promoters in humans and mice are 

associated with CGIs, other vertebrates such as the frog or zebrafish display a much 

smaller overlap of only around 10%. Accordingly, the correlation between 

H3K27me3 and CGIs observed in humans and mice is not seen in the frog and 

zebrafish (van Heeringen et al. 2013). Instead, H3K27me3 domains in these species 

overlap largely with NMRs. This suggests that the observed correlation between 

CpG density and H3K27me3 in mammals could be simply due to the strong overlap 

with unmethylated regions. 

To test this experimentally and expand on the role of CpG dinucleotides in 

recruiting PRC2 in mammals, further insertion experiments using fragments with 

various CpG densities would be necessary. Additionally, the relationship between 

DNA methylation and H3K27me3 could be more extensively studied by inserting 
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these fragments into Dnmt1/3a/3b triple-knockout cells. Such a setup would bypass 

the need for chemical treatment with methylation inhibiting factors and thus allow for 

direct comparison of H3K27me3 recruitment in the absence of DNA methylation in a 

more efficient manner. 

 

4.2 The role of transcription factors in PcG recruitment 

In light of the different models that have been suggested for Polycomb 

recruitment, the seemingly simple mechanism proposed here appears controversially 

different from other models. For example, in D. melanogaster, where most of the 

early work on Polycomb recruitment was performed, established models suggest 

that recruitment of PcG complexes to PREs is facilitated by a direct interaction with 

sequence specific TFs [reviewed in (Muller and Kassis 2006)]. Furthermore, the D. 

melanogaster genome does not contain CGIs and lacks global DNA methylation. 

Hence, at first glance, our proposed model for PcG recruitment in mammals seems 

to contradict those established in the fly. However, these seemingly different modes 

of recruitment are not mutually exclusive and have many factors in common. First, 

similar to what has been reported in D. melanogaster, we observe a direct 

correlation between TF occupancy and H3K27me3 deposition. However, we propose 

that the link between the two is not based on direct physical interaction. Instead, our 

data suggest that H3K27me3 recruitment is secondary to TF activity and thus 

responsive to the transcriptional state of a locus (Figure 13). Considering the limited 

evidence for direct interaction of PcG proteins with TFs in D. melanogaster, a similar 

mechanism might be at work in flies. This is supported by the fact that transcriptional 

activity opposes PcG occupancy in D.melanogaster (Cavalli and Paro 1998, Schmitt 

et al. 2005). In particular, it was demonstrated that transcription through a Drosophila 

PRE could induce a switch from a PcG mediated “off” state to an active state 

maintained by TrxG proteins, indicating that PcG occupancy is sensitive to the 

transcriptional state (Cavalli and Paro 1998, Schmitt et al. 2005). Similar 

observations have also been made in plants deposition of the H3K27me3 mark at 

the FLC locus during vernalization is dependent on the transcriptional state of the 

locus (Buzas et al. 2011). 

Thus, we propose that instead of being directly recruited via sequence 

specific TFs, PcG complexes scan along the genome and sense the chromatin state 
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as well as transcriptional activity of a locus. One mechanism through which this 

scanning for inactive genes could be facilitated might involve the interaction of PRC2 

with short non-coding RNAs. Recent studies investigating these interactions 

revealed promiscuous binding of RNAs to PRC2 (Zhao et al. 2010, Davidovich et al. 

2013, Kaneko et al. 2013). Interestingly, Kaneko et al. observed widespread 

interactions between PRC2 and short ncRNAs originating from active gene 

promoters and propose that these interactions are a means for PRC2 to detect 

transcriptional activity (Kaneko et al. 2013). Furthermore, the authors propose that 

interaction with these RNAs could negatively affect enzymatic activity and thus lead 

to decreased H3K27me3 deposition at active loci. Such a mechanism would be 

compatible with the model proposed here whereby transcriptional activity inhibits 

H3K27me3 recruitment.  

 

4.3 H3K27me3 as a means to reinforce repressive chromatin 

The model for Polycomb recruitment that we propose here raises several 

questions in terms of functional relevance of this chromatin mark. If it is not 

necessary to induce gene repression, then what role does it play in gene regulation? 

Depletion of PcG proteins in stem cells has minimal consequences regarding 

transcriptional activity (Chamberlain et al. 2008, Leeb et al. 2010). However, it is also 

clear that PcG proteins are key regulators of embryonic development and 

differentiation of pluripotent stem cells. This is made evident in the absence of 

canonical PcG complexes, which results in early embryonic lethality caused by 

defects in cellular differentiation (Faust et al. 1995, O'Carroll et al. 2001, Suzuki et al. 

2002, Voncken et al. 2003, Pasini et al. 2004, Boyer et al. 2006, Pasini et al. 2007).  

Based on our observation that H3K27me3 deposition may represent a default 

state of inactive CpG-rich chromatin, we propose that PcG proteins serve to maintain 

a repressed state and protect the target genes from aberrant transcription. This 

could be especially important during differentiation when tight regulation of 

developmental regulators is essential. It is possible that basal transcriptional output 

even in the absence of specific activators could produce enough protein to disturb 

the overall balance and result in aberrant functionality of the cell. Thus, targeting of 

promoters below a certain basal level of transcriptional activity could be a 

mechanism to reinforce the repressed state and ensure dampen transcriptional 
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noise. Such a mechanism would allow recruitment of basal transcriptional 

components while concomitantly dampening aberrant transcriptional output. 

Conversely, to overcome the repressive state maintained by PcG, activating TFs 

would cause a switch from a H3K27me3 repressed state into an H3K4me3 marked 

active state. A similar mechanism involving H3K4me3 might then be used to prevent 

H3K27me3 from aberrantly repressing active genes (Schmitges et al. 2011, Voigt et 

al. 2012). 

Loss of PRC2 activity in stem cells has only very mild effects on gene 

expression, suggesting that this cell type might not be ideal for studying the 

mechanisms underlying H3K27me3 mediated repression. Instead, it may be more 

informative to study these aspects in differentiated cells, where loss of H3K27me3 

could have more drastic consequences on gene expression. To achieve this, one 

could generate a conditional Eed-knockout stem cell line to study loss of PRC2 in a 

differentiated type, such as neural progenitors or terminal neurons.  

In summary, this study provides novel insights into the targeting mechanisms 

of the PRC2 complex and H3K27me3 deposition. Moreover, it emphasizes the 

crosstalk between epigenetic marks and broadens our understanding of how 

epigenetic modifications influence gene expression. 
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