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Preface 

This book contains the papers presented at the Conference on "Mathematical 
Models and Methods for Smart Materials" which was held in Cortona, June 25-29, 
2001, organized by M. Fabrizio, G.A. Hanyga e A. Morro in memory of Giorgio 
Gentili. The topics of the Conference were much influenced by the research devel
oped by Gentili within the framework of mathematical problems connected with the 
modelling of materials. 

The Conference was organized within the program of the Italian INdAM. The 
Editors are grateful to INdAM for accepting the proposal of the Conference and the 
general support. The hospitality at the Palazzone has made the stay an easy, friendly 
and stimulating occasion for scientific contacts among the participants. Indeed, it 
is worth remarking that similar Conferences on mathematical models and methods 
for continuous media were organized at the Palazzone and Gentili was one of the 
most active participants. The authors of the present papers witness their friendship 
and admiration for the scientific activity of Gentili. 

The papers are gathered in four parts. First, "Methods in materials science" 
deals mainly with mathematical techniques for the investigation of physical systems 
such as liquid crystals, materials with internal variables, amorphous materials, ther-
moelastic materials. Also, techniques are exhibited for the analysis of stability and 
controllability of classical models of continuum mechanics and of dynamical systems. 

"Modelling of smart materials" is devoted to models of superfluids, supercon
ductors, materials with memory, nonlinear elastic solids, damaged materials. In 
the elaboration of the models, thermodynamic aspects play a central role in the 
characterization of the constitutive properties. 

"Well-posedness in materials with memory" involves existence, uniqueness and 
stability for the solution to problems, most often expressed by integro-differential 
equations, which involve materials with fading memory. Also, attention is addressed 
to exponential decay in viscoelasticity, inverse problems in heat conduction with 
memory, automatic control for parabolic equations. 

"Analytic problems in phase transitions" deals with nonlinear partial differential 
equations associated with phase transitions, hysteresis, possibly involving fading 
memory effects. Particular applications are developed for the phase-field model 
with memory, the Stefan problem with a Cattaneo-type equation, the hysteresis in 
thermo-visco-plasticity, the solid-solid phase transition. 

Mauro Fabrizio, Barbara Lazzari, Angelo Morro 
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Giorgio Gentili 

O B I T U A R Y 

It is a deeply sorrow task to trace the activity of a young collaborator at the 
University, a community where the time spent is certainly more than that spent in 
the family or in any other community. That is why, quite naturally, strict collab
orators are also close friends. This aspect is especially true for Giorgio Gentili, a 
very generous and kind man. 

He was born on 1961, in Fossombrone. After the "Maturita" from the Liceo 
Scientifico of Fermo on 1980, he went to the University of Bologna and received 
the degree in Physics on 1985, maximum cum laude. He developed a thesis on "A 
macroscopic non-local theory of superfluidity" with G. Turchetti and M. Fabrizio 
as supervisors. 

I knew him through C. Giorgi. They both were active members of the catholic 
movement "Comunione e Liberazione". Next, at the Department of Mathematics, 
especially B. Lazzari joined them thus constituting a group of friends both at the 
University and in everyday life. 

After the degree, Gentili received a fellowship from CNR and next pursued the 
doctoral studies in Mathematics at the University of Bologna. 

ix 



X 

He doesn't attained the PhD degree because he got a permanent position as a 
researcher of Mathematical Physics on March 1990 and this was incompatible with 
the position of PhD student. Since 1990 he was very active in tutoring students of 
Rational Mechanics and has given the course of Mechanics of space flight within the 
DU of Aerospace Engineering at Forli'. 

Since November 1999, he was Associate professor of Rational Mechanics, still at 
the Faculty of Engineering at the University of Bologna. 

He delivered the course of Rational Mechanics for Environment Engineering and, 
in the first semester of 2000/01, Applied Mathematics for Electronic Engineering. 

He couldn't complete the semester course because of his sudden death on De
cember 3, 2000, at the age of 39 years. 

His teaching was always open to any questions from the students; he was very 
handy for interviews and generous during the examinations. The students used 
to approach him so frequently for questions about the course and the solution of 
problems; he was especially skillful in calculations and in relating results and mod
elling. He was also an efficient member of the governing Counsel (Giunta) of the 
Department often performing burdensome tasks. 

Since the beginning, I had the impression of a deeply correct and reserved man. 
Next I realised that he had a strong character supported by a well-grounded faith. 

He used to view his and other people's inconveniences with a remarkable sense 
of humour but also to face problems with skill and firmness. That is why he was 
able to perform successfully many different tasks with an uncommon efficiency. In 
particular, while he was engaged with the academic work and the family (with two 
little children) he was much involved in the Centro Manfredini which is renowned, 
at least in Bologna, for the organisation of a cultural activity. 

After the degree in 1985, he began the scientific research while the mathematical 
physics was undergoing a strong development, both qualitative and quantitative, 
since the early seventies. 

Incidentally, since 1970 to 2000 the number of papers of the Italian commu
nity grew over ten times while the papers on international journals passed from a 
few exceptions to almost all. Sure, Gentili took advantage of this rapid positive 
evolution. 

In 1990 he stayed some months at the Carnegie-Mellon Institute of Pittsburgh, 
a well-renowned center for the research on continuum thermomechanics. That stay 
allowed him to improve the rigorous approach and the understanding of advanced 
topics of research. 



XI 

The academic career was quite difficult at the time mainly because, after the 
generous availability of positions in the seventies and eighties, there was a consequent 
shortage in the nineties. Nevertheless he was able to succeed in the competition of 
1997 and become associate professor of Rational Mechanics. 

The first two papers deal with superfluidity, the subject investigated in the thesis. 
A subject similar to superconductivity, though more involved, superfluidity is getting 
new modelling improvements (cf. the joint paper with A. Morro). The idea in 
Gentili's papers is that helium II is a mixture of two fluids, one is a normal Navier-
Stokes fluid, the other one is a fluid with non-local constitutive properties. 

Next he began the research on materials with memory, a deeply-investigated 
subject in the Italian community. 

Materials with memory traces back to V. Volterra and received an outstanding 
improvement by D. Graffi. Really, V. Volterra gave the subject a firm mathemati
cal basis along with the understanding of the physical aspects of the model and a 
connection with problems of the modern functional analysis. 

Next D. Graffi provided a twofold contribution. First, the analysis of ques
tions related to the pertinent partial differential equations were answered through 
theorems about uniqueness and continuous dependence of the solution. Secondly, 
physical or constitutive aspects have been related to mathematical consequences. 
Perhaps the main result is the restriction placed by the second law of thermody
namics on the memory kernel (in 1928) and next the expression of the free energy 
which is now termed after him. 

This digression on materials with memory is relevant to the work of Gentili. Even 
through various joint papers, Gentili investigated the thermodynamic restrictions 
for heat conductors, viscoelastic fluids, electromagnetic solids and some examples 
of nonlocal materials. A proper mention is in order for the results on free energies 
and the extension of Golden's minimal free energy to anisotropic solids. He also 
investigated the well posedness of problems both in the quasi-static approximation 
and for materials with singular kernels. Further, he examined the inversion of the 
constitutive equation in viscoelasticity. 

The last part of his research was addressed to hysteresis and phase transitions. 
Even in joint works with C. Giorgi, he elaborated models of hysteretic materials 
where the cicles are compatible with a residual magnetization and a coercive field. 
He also provided a way to circumvent the paradox of the vibrational instability. The 
last works exhibit a more refined model which allows for the existence of universal 
processes of demagnetization and for the smoothness of the hysteresis functional 
relative to BV function spaces. 

Mauro Fabrizio 
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Temperance for order/disorder transition 
in nematics 

P. Biscari* G. Caprizt 

1. - Introduction 

Loss of mesoscopic order may occur, in continua with substructure, for purely 
geometric reasons: strong anchoring conditions at the boundary may be incompat
ible with smooth, perfectly ordered fields within the body (some examples in the 
theory of nematic liquid crystals are proffered in [2, 3]); even the curvature of the 
bounding surface may induce disorder in the bulk [4]. Partial order or lack of it can 
be described in terms of purely geometric parameters: the degrees of prolation and 
of (optical) biaxiality [1]. However, thermodynamic concepts could also be stretched 
to apply here; for instance, temperance (a sort of reciprocal of absolute tempera
ture) and also a tensorial temperance can be introduced and be suggestive. Negative 
values of temperance may occur under very simple conditions; they do not appear 
to be at all exceptional. A rather gauche example was ventured already in [5], but 
the implied expression of energy was outlandish. Here developments follow strictly 
standard lines. 

2. — Nematic temperance tensor 

The microscopic configuration of a single nematic molecule can be described by 
means of the second order tensor Q n := n ® n — | I , where n € S2 is a unit vector 
parallel to the molecular direction, and I is the identity tensor: thus, the head-and-
tail symmetry which characterizes nematic molecules is automatically enforced. For 
a population of molecules, let /^(n) : S2 —> M+ be the probability distribution of 
molecular directions near the point x £ B. Then, the mesoscopic nematic order 
tensor at x is defined as the mean value of Q n on the distribution fx : 

(1) Q(x) := ( Q n ) / . = J2 /«(n) (n ® n - ~ I J da ; 

thus, Q is automatically a symmetric traceless tensor. The nematic is optically 
isotropic at x, if Q(x) = 0; it is optically uniaxial if two of the eigenvalues of Q 
coincide therein; otherwise, it is optically biaxial [6]. The optical properties of the 

'Dipartimento di Matematica, Politecnico di Milano 
tDipartimento di Matematica, Universita di Pisa 
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nematic are usually described quantitatively in terms of the measures of prolation 
s and biaxiality j3 of the molecular distribution as follows [1]. Let Hi, fi2, and /i3 be 
the eigenvalues of Q ; then, 

s — f y J I / i J and /?:= |6>/3 I J | jUi-Mj|) 

/? € [0,1] vanishes whenever two of the eigenvalues of Q coincide, and it is positive 
otherwise; s ranges from — A (corresponding to the planar distribution in which all 
the directions in the plane are equiprobable for the molecules) to 1 (completely 
ordered distribution in which all the molecules are parallel); s and /J vanish together 
when and only when the order tensor is isotropic. 

To generalize the concept of temperature to the mesoscopic disorder described by 
fx, we now focus on situations in which, at equilibrium, the molecular distribution 
approaches a local Maxwellian: 

(2) / , (Q») = k exp (B{x) • Q n ) , with k = f exp (B{X) • Q„) da 

In this case, the properties of the local order tensor Q(x), defined in (1), are deter
mined by the nematic temperance tensor B(:r), that without loss of generality can 
be assumed to be traceless and symmetric too, since its isotropic and skew parts 
do not contribute to the scalar product in (2). In particular, the proper directions 
of the order tensor Q coincide with those of the temperance tensor B, as it can be 
proved by direct computation. 

To draw a parallel with the classical kinetic theory, we remark that B plays the 
role of the inverse of a temperature tensor [7]. In the remaining part of this section, 
we will consider separately the cases in which the temperance tensor is isotropic, 
uniaxial, and biaxial, in order to study how the optical properties of Q descend from 
B. 

Isotropic temperance 

When B = 0, fx is uniform, and (1) immediately shows that also Q vanishes: 
the nematic is microscopically disordered, in accordance with the interpretation of 
B as the inverse of a temperature: B = 0 corresponds to an infinite temperature, 
and thus to a null degree of order. 

Uniaxial temperance 

When two eigenvalues of B coincide, we can write the temperance tensor as 

(3) B = 7 ( e ® e - i l ) 

where e is the symmetry direction of B, and the scalar nematic temperance 7 € E 
plays the role of inverse of a nematic temperature. Substituting (3) in (1), we obtain 
for the order tensor the expression 

Q = s(7) ( e ® e - - I 
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where 

(4) s(7) 
47 

2e^V7 
V^Erfi ( / y ) 

if 7 ^ 0, with s(0) = 0 

and Erfi(a;) = —i Erf (ire) denotes the imaginary error function. 
Figure 1 illustrates how s depends on 7 : a positive temperance implies that the 

nematic molecules tend to be oriented along the direction of e, with the limiting 
case s = 1 of perfect orientation being reachable only when 7 —• 00 (corresponding 
to a vanishing positive nematic temperature). On the contrary, when gamma is 
negative the nematic molecules tend to lie in the plane orthogonal to e; the limiting 
case s = — I is approached when 7 —» —00, which corresponds to vanishing, but 
negative, nematic temperature. Thus, within the class of uniaxial distributions, it 
is not possible to "cross" over smoothly from positive to negative values of absolute 
temperature through the value zero. 

0.75 

0.50 

0.25 

0 

0.25 

-

-

' J 

^ 
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/ 

/ 

1 1 1 

-20 -10 0 10 20 30 

7 

Figure 1: Degree of prolation s of a uniaxial nematic as a function of the scalar temperance 
7-

Biaxial temperance 

When the eigenvalues of B are all different, also Q has a biaxial structure. 
To prove this fact, we introduce an orthonormal basis {ex, ey, e 2 } , made up of 
eigenvectors of B, and without loss of generality we write B as 

(5) B = 7 e > e , - i l + A(e, 
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and thus Q = Qx ex ® ex + Qy ey ® e,, + Qz e 2 ®e z . If we insert (5) in (1), we obtain: 

i / 7 " 2 {U2~l) 7"(A(l-u2))dn 
Qz 

Qy 

Qx 

Qz 

Qz 
' 2 

, 1 I 

/ e7"2/0 (A(l - u2)) du 
Jo 

f e>u2(1 - u2) h (A(l - u2)) du 
, Jo 

2 / e7"2/0 (A(l - u2)) du 
Jo 

f e^2(1 - u2) h (A(l - u2)) du 
_ £0 

2 / e7"2/0 (A(l - u2)) du 

where In{z) denotes the n-th hyperbolic Bessel function, that is, the solution of the 
differential equation z2 y" + z y' — (z2 + n2) y = 0 which is regular at z = 0. Thus, 
in particular, Qx ^ Qy whenever Bxx ^ Byy (that is, A ^ 0), since the difference 

*°cy ^cx 

[ e 7 u 2 ( l - « 2 ) / 1 ( A ( l - w 2 ) ) d u 
[o 

/ e7"2/0 (A(l - u2)) du 
Jo 

has the same sign as A, because To is always positive and h{z) has the same sign 
as z. Clearly, a similar reasoning allows us to prove that any couple of eigenvalues 
of Q are different whenever the corresponding eigenvalues of B are so. 

In most nematic liquid crystals, the mesoscopic state is almost uniaxial, that is 
A c l . If this is the case, and considering that 

I0(z) = 1 + o(z) and IQ(z) = - + o(z) when z —> 0, 

we obtain: 

Qz = 

Qy = 

Q* = 

2e^^7 
0 F E r f i ( ^ 7 ) 27 

-f + ^ A + 0 (A) 

4 - £ M A + 0 (A) 

+ o(A) 

so that Qy — Qx = g{j) A + o(A), with 

•™du [ e^\l-u-
9(1) ~ h ji 

2 / e7"2 c 
Jo 

472 + 4 7 + 3 (27 + 3) e7 

87
2 

40T7 2 Erfi (yfy) 
if 7 ^ 0 
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and g(0) — £•. Figure 2 illustrates how the coefficient g depends on 7: it shows 
that it is easier to induce some biaxiality in an oblate nematic (that is when 7, and 
thus s, is negative) than in a prolate one. 

0.5 

0.4 

0.3 
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0.2 
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7 

Figure 2: Coefficient of A in the difference Qx - Qy, as a function of 7. 

3 . - Decay of negat ive nemat ic t e m p e r a n c e s 

The equilibrium configuration in a nematic liquid crystal can be obtained by 
minimizing the free energy density functional 

(6) ^ [ Q , VQ] = Fa[Q, VQ] + .Fint[Q] + j ; x t [Q] , 

where Te\, Tmt, and Text, respectively denote the elastic part of the free energy, the 
internal free energy (which depends only on the scalar invariants associated with 
Q), and the external free energy which takes into account the effects of any electric 
or magnetic field acting on the nematic liquid crystal. Using the 1-constant approx
imation for the elastic part of the free energy, the Landau-de Gennes' expression for 
the internal potential, and involving only an external electric field, we have 

(7) ^ [ Q , VQ] = J ( | |VQ| 2 + a t r Q 2 - 6 t r Q 3 + c t r Q 4 - x»E • Q E ) dv , 

where re is an elastic constant; a < 0 and b, c > 0 are constitutive parameters, and 
Xa > 0 is the anisotropic electric susceptibility (the sign of x a is chosen in order to 
describe nematic molecules which tend to lie parallel to the electric field E). The 
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choice of the signs of a, b, and c, ensures that the internal potential is minimized 
when the nematic is uniaxial with positive degree of prolation (that is, positive 
nematic temperance); nevertheless, negative values of s can be induced by imposing 
on the system suitable boundary conditions. In this section we show with a simple 
example how boundary uniaxial configurations with negative degree of prolation 
decay in the bulk towards positive temperance configurations. 

Let us consider a nematic liquid crystal confined within the half-space B = 
{z > 0}, subject to a constant external electric field E = Eez, and subject to the 
boundary condition Q | z = 0 = Qo •'= — § (ez ® e2 — 11), which requires the molecules 
to lie in the boundary plane, without any preferred direction on it. In such a case, a 
unique stationary distribution of the free energy functional can be found in the class 
of axisymmetric nematic distributions, that is, uniaxial distributions with director 
e = ez: indeed, if we take Q(z) = s(z) (ez <g> ez — | l ) in (7), and we insert a 
normalization factor to ensure that the energy be finite, we obtain: 

(8) T[s] = T0 / (s'2 + </>{s) - 0(1)) dx , 
Jo 

where To := \ —— , a prime denotes derivative with respect to x := - , £ := 
V 27 c, 

4>{s) := -(2s + as2 -bs3 + s4 , and 

t E
 TP F K ~ 3a ~ b 

Ei V 2Xa£ c c 

In particular, when a = | 6 — 2, with 6 6 ( | , f ) , the Landau-de Gennes' potential 
possesses an absolute minimum at s = 1, a relative maximum at s = 0, and a 
relative minimum a t s = | 6 — 1 6 ( — | , 0 ) . 

The Euler-Lagrange equations for the functional (8), with the boundary condi
tions s(0) = —i lim s(x) = 1, can be directly integrated to give 

X—KX) 

s{x) ds , „ f1 ds rs<~x> ds r1 

/ —. = = x , for 0 < x < Zi := / 
(9) J-i # R ( i j ' ~ ~ 7-j V0(S) - «A(i) ' 

s(x) s i for i > a;i. 

Using (9) and (4) we can also determine how the nematic temperance 7 depends 
on the position x. Figure 3 illustrates both s(x) and 7(2;) in the particular case 
C = 1,6= 1,5 = 4 -

Figure 3 shows that negative nematic temperances can be induced inside a uniax
ial nematic liquid crystal by imposing on it suitable boundary conditions. However, 
we will now show that the anchoring must be sufficiently strong in order to achieve 
this goal. To analyze better this problem, we now replace the strong anchoring 
condition with a condition of minimality involving an anchoring potential which 
still favours the planar distribution Q0 at the boundary z = 0, without enforcing it 
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Figure 3: Degree of prolation s (continuous line) and nematic temperance 7 (dashed line) 
as a function of position in a nematic liquid crystal confined in a half-space, with planar 
anchoring on the boundary, subject to a uniform electric field. 

necessarily. Thus, we add to the free energy (6) the usual boundary potential and 
we minimize the functional 

• ^ [ Q , V Q ] = / ( ^ | V Q | 2 + a t r Q 2 - 6 t r Q 3 + c t r Q 4 - X a E - Q E ) d v 
(10) JB

 V 2 / 

+ H Q ( 0 ) - Q 0 | 2 , 
where w is the anchoring strength. The minimizer of (10) in the class of axisym-
metric distributions is still of the form (9), with the only difference that now the 
initial condition s(0), which is also the lower bound of the integrals in (9), is to be 
determined from the natural boundary condition 

S'(0) = £r (2*(0) + 1) , 
3^o 

which implies that 

(11) ^ ( S ( O ) ) - 0 ( l ) = - = - (2s(0) + l) . 
OJ-Q 

Equation (11) admits only one real solution in the interval s(0) G [— | , l ] - Figure 
4 illustrates how s(0) depends on the anchoring strength, again for £ = 1, b = 1, 
and a = — \ . In general, (11) shows that the boundary degree of prolation (and 
thus the boundary nematic temperance) will be negative if and only if the anchoring 
strength w exceeds the critical value 

wa := 3 T0 ^0 (0 ) - <£(1) = 3 JF0 \ / c 2 - a + b - 1 , 

which is always positive in the nematic range defined by a = | b—2, with b € ( | , | ) . 
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Figure 4: Boundary degree of prolation s as a function of the anchoring strength w: the 
boundary succeeds in inducing a negative boundary degree of prolation only if w > wCT. 
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Null Lagrangians and 
Surface Interaction Potentials 

in Nonlinear Elasticity 

S. Carillo * 

1. — Introduction 

A problem in the framework of nonlinear elasticity is the subject of this study. 
Specifically, an elastic body immersed into a surrounding media is considered and, 
in particular, the interest is focussed on the nonlinear interaction between the body 
and the environment. The reasons why the classical approach [6] turns out to be 
inadequate to model the interaction body-environment has been already pointed 
out [17] and, subsequently, [3] and specifically reconsidered in [16] which is devoted 
to this subject. In particular, the classical assumption prescribes that the surface 
potential density at each point of the body boundary is a function which depends 
on two variables: the position on the body boundary and the deformation at that 
position on the body boundary. Here, according to the results comprised in [17], [3] 
and [4], the surface potential density is assumed to depend also on the deformation 
gradients, respectively, the first one alone and, afterwards, on the second one too. 

The first two questions which can be addressed to are: 

• how can be mathematically modeled these body-environment interactions? 

• how do they affect the equilibrium problem? 

An answer to these questions has been proposed to by Podio-Guidugli and Vergara 
Caffarelli [17] and, subsequently, by Carillo, Podio-Guidugli and Vergara Caffarelli 
[3] on introduction of two different body-environment interaction potentials. These 
potentials have been termed, in turn, First-Order and Second-Order Surface Inter
action Potentials. 

Here, on the basis of the results obtained in [3] and [4], some remarks in connec
tion with Second-Order Surface Interaction Potentials, on one side, and a compari
son among the classical case, the First-Order and Second-Order Surface Interaction 
Potentials, on the other side, are comprised. 

Indeed, both the body as well as the environment, which is surrounding it, can 
be considered as elastic media. Thus, to model the interaction between the two 
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of them, it is required to prescribe suitable transmission conditions between them. 
Hence, it turns out to be convenient to recall the definition of elastic materials of 
grade N [21]. An elastic material is termed to be of grade N when the correspond
ing stress response to an admissible deformation history depends on the first N 
gradients of the deformation. Accordingly, the grade N is related to the nonlocality 
of the stress response, namely, increasing N also the nonlocality increases. Simple 
materials, or of grade 1 [21], are those whose volume energy density, here denoted 
by a, is characterized by the dependence on the deformation only through the first 
deformation gradient. In general, the two bodies, the elastic body, say of grade M, 
and the surrounding media, say of grade N, following the terminology in [3], are 
termed to form an elastic body-environment pair of grade (N,M). 

Here, only the case of an environment represented by a simple material is con
sidered; a discussion concerning more general cases and further generalizations is 
comprised in [3]. Accordingly, the cases of body-environment pairs of grade, in 
turn, (1,1) [17] and (1,2), [3] and [4], that is, respectively, the case of First-Order 
as well as Second-Order Surface Interaction Potentials are considered. In particular, 
the interconnection [3] between tangency conditions and Null Lagrangians is pointed 
out. Indeed, there is a connection between the two different problems of stationary 
solutions, on one side, and of existence of Null Lagrangians, on the other one; in
deed, stationary solutions s well as Null Lagrangians satisfy some extra conditions, 
tangency conditions according to [3]. 

This relation motivates to briefly recall, in the introductory Section 2, the vari
ational setting of the equilibrium problem in the cases of body-environment pairs 
of grade, in turn, (1,1), studied in [17], and (1,2), considered in [3] and [4]. The 
subsequent Section 3 is focused on Null Lagrangians and, in particular, some re
sults obtained in [17] and, subsequently, in [3] and [4] are discussed. The aim is, 
again, to point out where the differencies and where the analogies are when the Null 
Lagrangians which correspond to the two cases of First-Order Surface interaction 
potentials, [17], and of Second-Order ones, [3] [4], are considered. 

2. — Variational Equilibrium Problem 

This Section is devoted to a brief survey of the results obtained in [17] and [3] 
wherein, respectively, the equilibrium problem in the two cases of body-environment 
pairs of grade (1,1) and (1,2) has been investigated. 

According to the standard approach, the equilibrium problem of interest, namely 
the equilibrium problem concerning body-environment pairs of grade (1,1)[17] and 
(1, 2) [3]1, admits the variational formulation 

SE = 0 

as soon as the energy E has been specified together with the suitable function space 
wherein the equilibrium solutions are looked for. 

Hhese cases are also termed, respectively, First-Order and Second-Order Surface Interaction 
Potential case to point out that they are different only as far as the potential density r is concerned 
while the environment is, in both of them, assumed to be a simple material. 
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The environmental body is assumed of grade 1 and the reference configuration 
of the elastic body immersed in the surrounding media is denoted by Q e R3, The 
total energy can be written in the form 

(1) Ei = E - T i , t = l , 2 ; 

where Tx and T2 represent, respectively, the First-Order and Second-Order Surface 
Potentials and E the total stored energy. Indeed, let the energy density per unit 
volume be a(x,F) at x € fi and F G R3x3, then, given a deformation / whose 
gradient is F := V / , the total stored energy is given by 

(2) Z= fv(x,Vf(x)) dV ; 

In addition, the elastic body is supposed to admit a reference configuration repre
sented by a closed regular set Q C R3 whose boundary is regular2 (here dtt £ C4). 

The potential energy density due to the body-environment interaction, denoted 
by r , and termed surface potential density [17] and [3], is, respectively, assumed of 
the form 

(3) T1=n{x,f,F) , F:=Vf(x) ; 

where 
(x, f,F)enxR3x R3x3 

termed First-Order Surface Potential density and 

(4) T2=T2{XJ,F,T) , F:=Vf(x) , T := V2f(x) ; 

where 

(x,f,F,F)enxR3x R 3 X 3 x{g&R?*3x3\gijh = glhj} 
termed Second-Order Surface Potential density3. 

Thus, the corresponding First-Order and Second-Order Surface Potentials are, 
respectively, given by 

(6) T 1 = f n(x,f(x),Vf(x))dA 
Jdn 

and 
(7) T2 = / r2(x, f(x), Vf(x), V 2 / (z) ) dA , 

Jan 
which allow to write the total energy under the form (1) respectively, in the two cases 
of First-Order and Second-Order Surface Potentials. In addition, surface interactions 

2extra conditions are obtained if the boundary (here dQ) exhibits lines of discontinuity of the 
outer normal unit vector n, see [17] and [3], where these problems have been developed, respectively, 
in the case of first order and second order potentials. 

3classically [6], the function r is assumed to depend on the position x e dil and on the defor
mation f(x), namely the most common assumption is r(x, f(x)) = b(x) • (f(x) — x) . Thus, a dead 
surface load corresponds to a surface load which does not depend on the deformation;that is 

(5) b(x)=Tf(x,f(x)) , Sn = b(x) cm dfl . 
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are supposed to be conservative, and this hypothesis, as it will be shown in the 
next Section, implies that 

(8) <5T8{/}[v]= / s{f}-vdA , i = l ,2 

together with further conditions, termed "tangency" conditions in [17] and [3], 
which, also, follow. It should also be remarked that the body-environment con
tact interaction is accounted for by 4 

(9) S n = s , S = op . 

To find equilibrium solutions, written the total energy (1), when the corresponding 
variational derivative is imposed to be zero for all variations v in the space of 
admissible variations, namely 

(10) <5E* = 0 , i = l ,2 

where, corresponding to i — 1, namely a body-environment pairs of grade (1,1), 

(11) Ej = E - Tj = = / a{x, V/(a;)) dV - f Tl{x, f(x), V / ( i ) ) dA 
Jn Jan 

and, corresponding to i = 2, namely a body-environment pairs of grade (1,2), 

(12) E2 = E - T2 = = / <r(x, Vf(x)) dV- J T2(X, f(x), V/ (x) , V2f(x)) dA . 

The (standard) field equation 
(13) Div aF (x, Vf(x)) = 0 , x € Q , 

follows within the open set fi. The subsequent application of the divergence theorem, 
allows to find further conditions on <9fi which involve volume energy density a as 
well as the surface interaction potential density. On the boundary dQ,, Sn = s now 
reads 
(14) aFn = Tf - sDiv TF . 

The further condition [17] follows 

(15) TF [n] = 0 . 

The latter is termed [17], Tangency Condition since it is identically satisfied when 
the First-Order Surface Potential is required T to coincide with its tangential part. 
Indeed, (15) is obtained on decomposition of all the quantities of interest into two 
parts which are, respectively, tangential to the body boundary ( denoted as s-) and 
orthogonal to the same boundary 5. In the case of Second-Order Surface Potentials, 
[3], the condition Sn = s on dQ, can be written in the form 

{16)aF n = y - sDiv TF + sDiv (sDiv T>) -TF[TL® SVH] + sDiv (7>[n]sVn) . 

4Petrowski ellipticity [18] guarantees, on 3fi, the local invertibility of Sn in (9) with respect to 
the normal derivative of the deformation / . 

5i.e. ST;[/], i = 1,2 denotes the tangential part of Tj[/], i = 1,2 the detailed computations 
are comprised in [17], [3] and also in [5] 
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In addition, Two Tangency Conditions 

(17) TT [n ® n] = 0 , 

(18) rF [n] - 2 sDiv {TT [n]) + T> [sVn] = 0 

are obtained. Again, as in the case of First-Order Surface Potential, they are iden
tically satisfied when a Second-Order Surface Potential T coincides with its tan
gential part, i.e., when T2[/] = 5T 2[ / ] . 

3. - Null Lagrangians 

This section is concerned about Null Lagrangians and, in particular, their con
nection with surface potentials. Indeed, the introduction of the concept of Null 
Lagrangians goes back to the 60's , see to Ericksen [8] and Edelen [7], and, further
more, has a much wider application which is not restricted to the case of problems 
in elasticity. Subsequently, the concept has been exploited following both a consti
tutive viewpoint, on one side, and an analytic one related to symmetry properties, 
on the other side. A wide account on recent advances on the more general subject of 
Null Lagrangians in connection to the general case of Lagrange equations has been 
discussed by Olver [14] and [15]. To the same author and co-workers, see ref.s [1], 
[11], [12], [9], [13], are also due investigations on the symmetry structure of Null 
Lagrangians in various cases. 

Here, a brief idea of the concept of Null Lagrangians is given and, afterwards, the 
connection between the stationary conditions and Null Lagrangians is reconsidered 
on the basis of the investigations comprised in [17], [3] and [4]. 

The connection between the two different problems of finding stationary solu
tions, on one side, and of Null Lagrangians, on the other one, is related to tangency 
conditions; indeed, to find stationary solutions as well as Null Lagrangians some 
extra conditions, and precisely, according to [3], tangency conditions. 

Here, to start with, the definition of Null Lagrangian is recalled. The idea, which 
stands behind such a concept, is to consider the divergence theorem to establish the 
equivalence between two different potentials. In particular, when a volume potential 
density p is introduced, whenever it can be represented in the form: 

(19) p = Div w 

i.e. 3 w s.t. (19) holds VP 6 O, where, respectively: 

(20) p = p{xJ,Vf) , p = p(xJ,Vf,V2f) 

namely, there exists a vector field w e R3 such that (19) is verified at each point P £ 
90 , then p can be represented under the divergence form. Indeed, on introduction 
of the surface potential density r defined by 

(21) r : = w n , 

where n denotes the outer unit vector normal to 90 , at the point P e 90, then, the 
divergence theorem reads 

(22) [ p( ) dV= [ r ( ) dA 
Jn Jen 
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and, accordingly, r represents the surface potential density 

(23) T = T(X,f,Vf) , T = T(x,f,Vf,V2f) . 

Hence, [4] the following definition can be introduced. 

DEFINITION 1 A functional / n p{f} dV is called a Null Lagrangian if there exists 
a vector w { / } , such that 

(24) f p{ ) dV = f T( ) dA , p = Div w , r = w • n 
Jn Jdn 

for all admissible deformations / . 

3.1. - First-Order Null Lagrangians. - According to the definition, in particular, 
a First-Order Null Lagrangian [17] is a functional of the form 

/ Pif} dV 
Jn 

such that, correspondingly, there exists a vector w { / } , which satisfies the condition 
that the functional 
(25) jV{f}:=fnp(x,f,Vf)dV 

admits a corresponding functional which can be written under the form 

(26) %r{f}:= f r ( x , / , V / ) dA 

and, in addition, the two functionals coincide for all admissible deformations / , 
namely 
(27) J\f{f} = %r{f} V/ admissible . 

When First-Order Null Lagrangian [17] are considered, on imposition of the 
previous conditions, it follows that the vector function w is required to depend on 
the position, the deformation and, in addition with respect to the classical case, also 
on the first deformation gradient, that is 

w = w(x, / , F) . 

Correspondingly, also p and the surface potential density which is related to it, T, 
must depend on the same set of variables, that is: 

p ( z , / , V / ) = D i v w ( a ; , / , V / ) , 

T(x,f,Vf) = n - w ( i , / , V / ) . 

Thus, the unknown vector function w is subject to satisfy the skew-symmetry con
dition6 

Notably, First-Order Null Lagrangians identically satisfy the tangency condition 
TF [n] = 0. 

6the details are comprised in [17] where the set of First-Order Null Lagrangians has been 
characterized. 
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3.2. - Second-Order Null Lagrangians. - When Second-Order Surface Interaction 
Potentials are considered [3] [4], the definition can be re-written in the following 
form. 

DEFINITION 2 A Second-Order Surface Potential density r = T(X, n, / , F, J7) is 
termed Null Lagrangian if there exists a volume potential density 

a = a{x,f,F,F) 

such that 

(28) / a(x, f, V / , V 2 / ) dV = f r(x, / , n, V / , V 2 / ) dA 
Jn Jdn 

for all admissible deformations / . 

According to the definition, in particular, a Second-Order Null Lagrangian [3] is a 
functional of the form 

/ P{f} dV 
Jn 

such that, correspondingly, there exists a vector 

w = w{x,f,F,F) 

which satisfies the condition that the functional 

(29) Af{f}:= [ p(x,f,Vf,V2f) dV 
Jn 

admits a corresponding functional which can be written under the form 

(30) 7 > { / } : = / r(x,f,Vf,V2f) dA 
Jan 

and, furthermore, the two functional coincide for all admissible deformations / , 
namely 
(31) J\f{f} = %/{/} V/ admissible . 

When Second-Order Null Lagrangian [3] [4] are considered, on imposition of the 
previous conditions, it follows that the vector function w is required to depend on 
the position, the deformation and, in addition, also on the first and, possibly, on the 
second deformation gradients, that is 

w = w{x,f,F,F). 

Correspondingly, also p and the surface potential density which is related to it,r, 
depends on the same set of variables, that is: 

p(x, f, V / , V 2 / ) = Div w(x, f, V / , V 2 / ) , 

(32) r ( a : , / , V / , V 2 / ) = n - w ( a : , / , V / , V 2 / ) . 

Thus, the unknown vector function w is subject to satisfy the cyclic-symmetry 
condition7 

(33) Wi,r.hk + w V l l t + v*hs.ki = 0 Mi, h, k . 
7the details are comprised in [4]. 
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Notably, when a Second-Order Null Lagrangian is considered, it is such that it 
identically satisfies the tangency condition 7> [n ® n] = 0. As a final remark, when 
it is considered the particular case of a Second-Order Null Lagrangian, which is 
represented [4] by a functional of the form (29), in which p is supposed to dependent 
on the deformation up to the first order gradient, then, the equilibrium conditions 
coincide with the tangency conditions. 
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Automatic control problems for 
integrodifferential parabolic equations 

Cecilia Cavaterra * 

1. - Introduction 

Our aim is to study some automatic control problems related to the following 
integrodifferential parabolic equations 

(1) (u + k * u)t = AM + h* Au + / in flT 

and 
(2) ut = AM + au — bu2 — u{h * u) in fir 

where fir '•= (0,T) x ft, fl being a bounded domain in !R"(n > 1) with a smooth 
boundary T and T > 0. Here zt denotes the partial derivative of a function z with 
respect to time, and A indicates the spatial Laplace operator. Moreover, (p * q)(t) 
stands for the usual time convolution product over (0, t). The convolution kernels h 
and k are time dependent functions, while a and b some given constants. 

Equation (1) describes for example the evolution of the temperature u in a ma
terial with thermal memory. The equation can be easily derived from the energy 
balance assuming that both the internal energy and the heat flux also depend on 
the past history of the temperature (see [5] and its references). Here the source term 
/ accounts for the heat supply and the past history of u, up to the time t = 0. 

Equation (2) is a reaction-diffusion equation that models a number of phenomena 
in various field of applied sciences like, e.g., biology, ecology and biochemistry as 
well as the classical fields of physical and engineering sciences. Among them, we 
recall population dynamics (see, e.g., [9], [10], [13], [4] and their references), chemical 
reactions (see, e.g., [9] and references therein), and nuclear reactor dynamics (cf., 
e.g., [9] and [14]). 

In many applications it may arise the problem of keeping the range of the state 
variable u within a given interval of values, on any prescribed finite time interval. 
This goal can be achieved in several ways. In particular, on account of [3] and [6] (see 
also their references), we are interested in formulating and studying some automatic 
control problems for equation (1) or (2) based on feedback devices located on the 
boundary V. For this reason, we are forced to allow interactions with the external 
environment through T. Therefore, the first step is to formulate suitable initial and 
boundary value problems associated with the equations (1) and (2). These problems 
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are characterized by nonhomogeneous boundary conditions of the third type. More 
precisely, we introduce 

Problem (PI ) Find u : Q,? —> M such that 

(3) (u + k * u)t = AM + h * AM + f in fiT 

(4) M(0, •) = wo in ft 

(5) «„ + h * wn = a(ue - Mr) + 9 on TT 

and 

Problem (P2) Find u : QT ->• IR swcft Wm£ 

(6) Mt = Aw + au — bu2 — u(h * u) in fir 

(7) w(0, •) = w0 in n 

(8) wn = a(we — Mr) on VT. 

Here FT := (0, T) x T and a is a positive constant. Moreover, wn indicates the 
outward normal derivative of w on T, Mr denotes the trace of u on F and we represents 
the value of w in the external environment. 

Observe that in problem ( P I ) the term g in the boundary condition (5) accounts 
for the past history of u on the boundary up to t = 0. 

Concerning problem (P2) , in equation (6) the nonlinear terms 6M2 and u(h * u) 
occur. Therefore, since our aim consists on keeping the range of the state variable u 
within a given interval of values, we need to make some assumptions on the sign of 
the coefficients b and h in order to prevent blow-up phenomena in finite time (see, 
e.g., [9]). In particular, we suppose 

(9) b > 0 

(10) h: [0,T] -> [0,+oo). 

As already stated above, we want to control u acting on we. Accordingly, we need 
a feedback device based on measurements of u. For the sake of brevity, here we 
consider only the case in which the measurement is the values of M at a fixed point 
X\ £ 0; that is, 

(11) M(u)(t):=u(t,Xl) te\0,T). 

Observe that, from the mathematical viewpoint, this pointwise control usually is the 
hardest case since it requires continuous solutions. Now, we introduce a thermostat
like device that modify ue on account of M(u). A reasonable description of how this 
device acts on we is detailed, for instance, in [6] and [3] (cf. also their references). 
On account of it, we arrive at the following relationship 

(12) we = T{W{M{u))) on TT 

where 

(13) ?(r)(t, y) := / ' E{t, r, w)r(r)dr + E0(t, y) 
Jo 

(14) E(t,T,y)^e^-T^uA(t,y) 

(15) E0(t, y) := ( j T e ^ - ^ u c { r ) d r + ^ e ^ 6 ) uA{t, y) + uB(t, y). 
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Here UB : TT —> M is a given reference boundary value (e.g., the temperature of 
the external environment); while uA : IV —• 1R is the fraction of ue that can be 
controlled by our device. Moreover, uc • [0, T] —>• IR is a given function, e is a 
positive parameter and ipo e IR. 

Possible choices of the nonlinear operator W will be discussed in the following 
section. Summing up, on account of (12), the feedback control problem reduces to a 
system with a nonlinear and nonlocal boundary condition. More precisely, recalling 
( P I ) and (P2) , we shall deal with the following problems 

Problem (CP1) Find u such that 

(16) (u + k * u)t = Au + h * Au + / in ftT 

(17) u(0, •) = u0 in ft 

(18) Bu = f(W(M («))) - a~xh *un + a^g on TT 

and 

Problem (CP2) Find u such that 

(19) ut = Au + au — bu2 — u(h* u) in fir 

(20) w(0, •) = it0 in ft 

(21) Bu = F{W{M{u))) o n l V 

Here B is the linear boundary operator defined by 

(22) Bz := zr + a^Zn. 

Our goal is to present results of existence and uniqueness of solutions to the nonlinear 
problems (CP1) and (CP2) in a suitable functional framework, provided that W 
is a relay switch or a hysteresis operator of Preisach type. 

2. - T h e operator W 

Here we complete the mathematical description of the feedback action by in
troducing two possible choices for the operator W. We report the details for the 
reader's convenience (cf. also [3] and [6]). 

(A) The relay switch operator. Assume that the state variable r e C°([0, T]) has to 
be kept under control on account of two critical time-dependent thresholds PL, pu 
such that 

(23) pL, PueC°([0,T}) 

(24) 0 < S <pL{t)< pu(t) on[0,Tj . 

Without loss of generality, we suppose that r(0) < PL(0) < Pu(0)- Since r, pL, pu 
are continuous functions, then there exists a time interval [0, t\) C [0,T] in which 
r(t) < pu(t)- In this time interval, the control device is switched on, that is we can 
think at it as a heating device. Indicating by W the associated operator, we have 
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W(r(t)) = 1, for any t € [0, <i). This situation holds up to a possible instant in 
which r reaches the upper threshold pu- Thus, if at time t = *i, ti € (0, T), we have 
r(ti) = pu(ti), then the device instantaneously switches off, that is W(r(*i)) = —1, 
and it remains in this position, acting like a cooling device, till before a possible time 
in which r reaches again the lower threshold pi. 

Proceeding formally, we set tt := inf {{t € (0,T] : r(t) = pv(t)} U {T}}. If 
h = T, this means that r(t) < pv{t) on [0,T) and we have W(r(t)) = 1 on [0,T). 
If ii G (0,T), then, at time t = i1; W switches its value from +1 to —1; namely, 

W(r(t)) = l in [ 0 , 0 , % ( < ) ) = - ! in[ t i , t 2 ) 

where £2 = inf{{£ e [h,T] : r(t) = Pi(t)} U {T}}. Observe that in this case we 
have 

r ( 0 ) < p i ( 0 ) , r (* )<p^( t ) in[0,t!) 

r(<i) = Pf/(ti), r(t) > pL{t) in [t1 ;i2). 

If t2 6 ( t i ,T), we iterate the procedure. Thanks to (24) and to the continuity of r, 
we can find a finite sequence {tft}™=0 of switching times satisfying 

(25) 0 =: t0 < ti < • • • < tm := T 

(26) W(r(t)) = ( -1)" in [ t h , t h + 1 ) 

where 

for ft = 0 , . . . , m — 1. Observe that the value of W(r(T)) is not assigned by (25-27) 
but it can be easily calculated on account of m and r(T). Finally, note that 

(28) W:C 0 ( [0 ,T ] ) ->L o o (0 ,T ) . 

(B) The Preisach operator. The hysteresis operator of Preisach type is basically 
obtained by a parallel coupling of a distribution of relay switches, each one being 
characterized by a pair of constant thresholds. Here it is introduced following the 
standard reference [12] (cf. also [11]). 

As in the previous case, we indicate by r 6 C°([0, T]) the state variable that 
we want to keep under control. Let us first introduce the delayed relay operator 
W(pllW)(r,£) : [0,T] —» {—1,-1-1} as follows. For any pair {pi,P2) € IR2 satisfying 
Pi < P2, we set 

[ +1 if r(0) < Pl 

(29) W ( w , w ) ( r , O ( 0 ) : = < U ( P i , p 2 ) if pi < r(0) < p2 

[ - 1 if r(0) > p2 

£ := V —> {—1,+1} being a given Borel measurable function. Here V is the so 
called Preisach plane defined as V := {(pi, p2) G K 2 : p\ < p2}-
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Further, for any t € (0, T], we set 

(30) Xt := {T e (0, t] : r(r) = Pl or r(r) = p2} 

f W h , w ) ( r , ( ) ( 0 ) i fX t = 0 
(31) W ( w ^ ) ( r , 0 ( * ) := \ + 1 if Xt ± 0 and r ( m a x l f ) = P l 

{ - 1 if X t ^ 0 and r(maxX () = p2. 

It can be easily checked that the mapping W(Pl,P1){r, £) is uniquely defined. 
Now, if // is a nonnegative Borel measure on the plane V, the associated Preisach 

operator is represented in this way 

(32) W(r)(t) := ^ V V ^ r . O W M P i . f t ) . 

We recall that, thanks to [11] (cf. also [12]), there holds 

PROPOSITION 1 Assume 

(33) u is a nonnegative Borel measure with bounded density 

(34) li({pi}x(pi.,+oo)) = fi((-oo,p2)x{p2}) = 0 V ( f t , f t ) e P . 

Then we have 

(35) l|W(r)«L»(o,T)<M7')<+cx> VreC°( [0 ,T] ) 

(36) W is strongly continuous from C°([0, T]) io C°([0, T]). 

Moreover, suppose that there exists a positive constant A such that 

(37) £*(̂ 4) < A£(A) /o r aH Lebesgue measurable sets A <zV 

C denoting the Lebesgue measure in R 2 . Then, there exists a positive constant Ai, 
depending on /i(V) and A, such that, for any r\,r2 £ C°([0,T]), 

(38) |(W(rO - W(r2))(t) | < A J n - r2||c0([0](]) V* e [0,T]. 

3. - Notation 

This section is devoted to introduce some useful notation and, in particular, the 
Banach spaces we need to formulate our results. The reader is referred to chapter 
5 of [7] for the details. First, we introduce spaces of continuous functions that are 
Holder continuous or continuously differentiable either with respect to time or with 
respect to the space variables. We set, for any a > 0, 

Ca'°([0,T}xU):={feCQ(UT) : f(;x)€Ca([0,T)),\lxen, 

l/lc«.o([0,T]xn) :=sup||/(-,a;)| |cc , ( [0 ;T] ) < +00} 

C°'a([0,T] x H) := {/ e C°(nT) : f(t,-) € Ca(U), V< € [0,T], 
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ll/lc«.o([o,T]xfi) : = SUP !/(*.•)Ic°(n) < + o o } . 

Further, we define the space C1,2([0, T] x Q) and its norm as 

C1-2([0,T] x H) := {/ € C°(UT) : Dtf, Dyf G C°(n T ) , », j = 1, ...,n} 

n n 

l/llci.2([o,T]xn) : = ll/lc°(nr) + l/<lc°(nr) + zZ WDif\\c«(nT) + ZJ \\Dijfic°(nT) 

where A / and Dijf are the derivatives of/ with respect to Xj and Xi, Xj, respectively. 
Now we recall the definition of the parabolic Holder spaces. For 0 < a < 2 we set 

Ca/2'a{[0,T} x Q) := Ca/2'°([0,T] x O ) f l C*°'a([0,T] x H) 

endowed with the norm 

ll/llc»/2'<«([o,T]xn) = l/llc»/2.°([o,T]xn) + l/llc°.°([o,r]xfI) 

and 

c1+Q/2-2+Q([o,T]xn) 
:= {/ G Cl'2([0,T] x H) : / t , Z7y / G (7Q/2-Q([0,T] x H), i,j = 1, ...,n} 

normed by 
n 

ll/llc1+*'2+Q([o,T]xn) : = l/lc'.^lo.Tixn) + l/'lc?-°([o,T]xn) + X, trifle*'Q([o,T]xn)-

In a similar way it is possible to define the functional spaces Ca^'a([0,T] x T), 
C°'Q([0,T] x T) and C1 + a /2 '2 + a([0,T] x T) 

Finally, let X be a real Banach space with norm | • \\x and A; G N U {0}. The 
space of all functions u : [0, T] —>- X which are continuous along with their first k 
time derivatives is denoted by Ck([0,T];X) and normed as usual. Then, for any 
a G (0,1) and k G N U {0}, we define 

Ck+a{[0,T};X):={u£Ck{[0,T};X) : 

\U(%,T,X •= sup (t - s)-a\\u^(t) - u^(s)\\x < +00} 
0<s<t<T 

and we endow it with the norm 

lulc*+'»([0,T];X) : = lplc*([0,r];X) + lU \a,T,X-

We recall that all the functional spaces here introduced are Banach spaces. 
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c ( l+2a) /2 , l+2a ( [ 0 | T ] x r ) 

ue(0, •) + oT^O, •) onT. 

4. - P re l imina ry resul ts on problems ( P I ) and (P2) 

In this section we assume that ue, representing the value of u in the external 
environment, is a prescribed function. Hence we show that problems ( P I ) and 
(P2) are well posed in suitable functional spaces. In particular, since we want to 
deal with continuous functions, we shall use the results on parabolic equations with 
nonhomogeneous boundary conditions contained in chapter 5 of [7]. 

Let a € (0,1/2). Here and below, we suppose that $7 is a bounded domain in 
IRn with boundary T uniformly C2+2a (see, e.g., chapter 0 of [7]). Moreover, for the 
sake of simplicity, we indicate by A a generic positive constant depending only on 
known quantities. 

Consider problem ( P I ) first. We have an existence and uniqueness result. 

T H E O R E M 1 Assume 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

Then problem ( P I ) admits a unique solution u € C1 + a '2 + 2 a([0, T] x £)) and 

(46) lullc<*([o,T];C°(n)) — A(JI/llc°.2«([o,:r]x?!) + Nlcd+^v^+^ao.Tixr) 

+ luolc2"(n) + Ikelcd+s-i/^'+^do.rixr))-

Further, the following continuous dependence result holds. 

T H E O R E M 2 Let the assumptions of theorem 1 hold and let u be the solution to 
problem ( P I ) corresponding to the boundary data ue. Then the map ue H-> U is 
continuous from C,(1+2a)/2-1+2a([0,T] x Y) to C1 + a '2 + 2 a([0,T] x U); that is, 

(47) | « 2 - MlfcH-».2+2"([0,T]xn) - A||«e2 - uel\\C(l+^)/^+^([0,T]xT)-

In order to prove theorems 3 and 4, we adapt an argument of [8] and we use the 
Banach contraction theorem in a suitable functional framework (see [2] for details). 

Let us consider now problem (P2) . Then we have 

T H E O R E M 3 Assume (9-10) and, moreover, 

(48) h e C°([0,T]) 

(49) u0 e C2+2a(U), u0 > 0 in U 

(50) ue e C ( 1 + 2 a ) / 2 ' 1 + 2 Q ( [0 ,T]xF) , M e > 0 o n [ 0 , T ] x r 

(51) Bu0 = ue(0,-) onT. 
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Then problem (P2) admits a unique solution u £ C 1 + Q ' 2 + 2 Q ( [ 0 , T] X fi) and 

(52) lM lc([0 ,T];C 0 (n)) — •^•(luo|lc2«(n) + llMelc(i+2«)/2.1+2°([0,T]xr)J-

Concerning the continuous dependence on the data for problem (P2) , we can prove 

T H E O R E M 4 Let the assumptions of theorem 3 hold and let u be the solution to 
problem (P2) corresponding to the boundary data ue. Then the map ue >->• u is 
continuous from C°(TT) to C°(QT); that is, 

(53) |u2 - «i|co(nT) < MWe2 - "eil c°(rT 

Proofs of Theorems 3 and 4 can be found in [1]. Observe that, due to the nonlinearity 
of equation (6), an a priori bound for the solution u is needed. To obtain that, 
assumptions (9-10) and (49-50) play a crucial role. 

5. - Main results on the control problems (CP1) and (CP2) 

On account of the preliminary results on ( P I ) and (P2) , we are now in a posi
tion to state the main theorems related to the control problems formulated in the 
introduction. The reader is referred to [1] and [2] for the details of their proofs. 

(A) The relay switch case. Let W be a relay switch operator and pi and pu the 
associated pair of lower and upper thresholds (see section 2). Further, assume 

(54) 

(55) 

and (cf. (12-15)) 

(56) 

(57) 

M{u0) < pL{0) 

W{M(u0)) = +1 

uA, u B E W1 '°°(0,T;C1 + 2 Q(r)) 

UCGL°°(0,T). 

Then we have the following existence and uniqueness results. 

T H E O R E M 5 Let (23-24), (39-44) and (54-57) hold. Moreover, assume 

(58) Bu0(y) = <p0uA(0,y) + uB(0,y)+a-lg(0,y) yeT. 

Then problem (CP1) admits one and only one solution u G Cl+a'2+2a([0,T] x Q,). 

T H E O R E M 6 Let (9-10), (23-24), (49-50) and (54-57) hold. Moreover, assume 

(59) (f\ 
( t - r ) . 

e ' [UC(T) -l]dT + tp0e * \ uA(t,y)+ uB(t,y) > 0 {t,y)eTT 

(60) Bu0 (y) = <p0uA (0, y) + uB(0,y) yeT. 

Then problem (CP2) admits one and only one solution u € C1 + a '2 + 2 a([0,T] x U). 
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On account of the preliminary results of Section 4, the proofs of Theorems 5 and 6 
can be achieved via an inductive argument introduced in [6] (see also [3]). 

(B) The Preisach operator case. Let f and JJ, be the Borel measurable functions and 
the Borel measures on the Preisach plane V defining the Preisach operator W (see 
section 2). The first two results are concerned with the existence of a solution for 
problems ( C P l ) and (CP2) . More precisely, we have 

T H E O R E M 7 Let (33-34), (39-44), and (56-58) hold. Then problem ( C P l ) admits 
at least a solution. 

THEOREM 8 Let (9-10), (33-34), (49-50), (56-57) and (60) hold. Moreover, assume 

(61) (yj\-^\uc{r)-^V)]dT + ^e-^uA{t,y) + uB{t,y)>Q {t,y) eTT. 

Then problem (CP2) admits at least a solution. 

The proofs of Theorems 7 and 8 follow from an application of the Schauder fixed 
point theorem which is made possible owing to Proposition 1 combined with the 
results of Section 4. 

Stronger assumptions on the data allow us to obtain the uniqueness of the solu
tion for both problems ( C P l ) and (CP2) ; that is, 

T H E O R E M 9 Let the assumptions of Theorem 7 hold and assume fi satisfying (37). 
Then the solution to problem ( C P l ) is unique. 

THEOREM 10 Let the assumptions of Theorem 8 hold and assume [i satisfying (37). 
Then the solution to problem (CP2) is unique. 

We recall that uniqueness bears strongly upon property (38) which is entailed by 
(37). 

REMARK 1 As we mentioned in the introduction, it is quite easy to check that our 
results still hold when the measurement functional M. has one of the following forms 

p 

(62) M(u)(t) := ^2uiu(t,Xi) t £ [0,T] 

or 

(63) M(u)(t):= [ u(t,x)uI(x)dx+ f z(u,y)(js{y)dV te[0,T]. 

Here, W{, i = 1 , . . . ,p, are positive constants and the points Xi, i = l,...,p, belong 
to fi. As far as (5.10) is concerned, w/ and ujs are suitable nonnegative summable 
weight functions, HQ C fl, and r 0 C P. It is worth observing that the action of real 
sensors can be more likely represented by functionals like (5.9) or (5.10). 
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REMARK 2 Referring, e.g., to (CP1) , an interesting inverse problem may arise 
when the convolution kernels h and/or k are supposed to be unknown. In order to 
solve this identification problem we need an additional information on the solution 
u like, for instance, 

f <j>{x)u(t,x)dx = m(t) te\0,T], fi0 C ft 
Jilo 

where <j> and m are given functions. It would be interesting to investigate this 
problem on the basis of the presented results and the related techniques. 

REMARK 3 For the sake of simplicity, here we have considered a single reaction-
diffusion equation (cf. (P2) and (CP2)) . Nevertheless, analogous results hold for 
quite a large class of reaction-diffusion systems (see [1]). 
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Asymptotic partition in the linear 
thermoelasticity backward in time 

M. Ciarletta * S. Chiritat 

1. - Introduction 

The study of the equations of dynamical linear thermoelasticity backward in 
time was initiated by Ames and Payne [1] in order to obtain stabilizing criteria 
for solutions of the boundary-final value problem. It is well known that this type 
of problem is ill posed. We recall that the backward in time problems have been 
initially considered by Serrin [2] who established uniqueness results for the Navier-
Stokes equations. Explicit uniqueness and stability criteria for classical Navier-
Stokes equations backward in time have further established by Knops and Payne 
[3] and Galdi and Straughan [4] (see also Payne and Straughan [5] for a class of 
improperly posed problems for parabolic partial differential equations). 

The boundary-final value problems associated with the linear theory of thermoe
lasticity have also been considered by Ciarletta [6] for establishing uniqueness and 
continuous dependence results upon mild requirements concerning the thermoelastic 
coefficients. 

The spatial behaviour of the thermoelastic processes backward in time has been 
studied by Ciarletta and Chiri(;a [7]. A time-weighted volume measure is used for 
establishing a first-order partial differential inequality which implies the spatial esti
mate describing the spatial exponential decay of the thermoelastic process backward 
in time. 

In this paper we consider the boundary-final value problem associated with the 
linear theory of thermoelasticity. The final data are given at t = 0 and then we are 
interested in extrapolating to previous all times. We study the temporal behaviour of 
the thermoelastic processes backward in time. In this aim we introduce the Cesaro 
means of various parts of the total energy and then, by means of some auxiliary 
Lagrange-Brun identities [8,9], we establish the relations describing the asymptotic 
behaviour of the mean energies, provided some mild restrictions are imposed on the 
backward in time process. 
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2. - Linear thermoelasticity backward in t ime 

Throughout this paper we shall denote by B a bounded regular region of the 
physical space £3 , whose boundary surface is dB. Identified £3 with the associated 
vector space, an orthonormal system of reference is introduced, so that vectors 
and tensors will have components denoted by Latin subscripts ranging over 1,2,3. 
Summation over repeated subscripts and other typical conventions for differential 
operations are implied such as a superposed dot or a comma followed by a subscript 
to denote partial derivative with respect to time or the corresponding cartesian 
coordinate. 

Throughout this paper we suppose that B is filled by an anisotropic and inho-
mogeneous thermoelastic material. We consider the boundary-final value problems 
associated with the linear theory of thermoelasticity on the time interval (—oo, 0] . 
Thus, in the absence of the supply terms, the fundamental system of field equations 
consists [10] of the strain-displacement relation 

(1) e-ii = g (ui,j + uj,i) in B x ( -co , 0], 

the thermal gradient-temperature relation 

(2) 9i = 0,i in B x ( - o o , 0 ] , 

the stress-strain-temperature relation 

(3) Sij = Cijklekl + Mij6 in B x ( -co,0] , 

the heat conduction equation 

(4) qi = -Kijgj in B x ( - o o , 0 ] , 

the equations of motion 

(5) Sjij = pui in B x (—oo, 0], 

and the energy equation 

(6) -qiti + OoMijeij = cO in B x (-oo,0]. 

In the above relations we have used the following notations: «j are the components 
of the displacement vector, 6 is the temperature variation from the uniform refer
ence temperature 0O > 0, ey- are the components of the strain tensor, gt are the 
components of the thermal gradient vector, S^ are the components of the stress 
tensor and q, are the components of the heat flux vector. Further, p is the mass 
density, Ci^i are the components of the elasticity tensor, My- are the components 
of the stress-temperature tensor, c is the specific heat and ify are the components 
of the conductivity tensor. In what follows we assume that the density p and the 
specific heat c are continuous functions of x on B. We also assume that the elastic
ity tensor, the stress-temperature tensor and the conductivity tensor are continuous 
differentiable functions of x on B and they satisfy the symmetry relations 

(7) (-'ijkl — ^klij — ^jiklt 
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(8) Ma = M^ 

(9) Kti = Kn. 

In what follows we consider the boundary-final value problem (V) defined by 
the relations (1) to (6), the final conditions 

(10) u i(x,0) = u?(x), u i (x ,0 )=«?(x) > 0(x,O) = 0°(x), x e f i , 

and the homogeneous boundary conditions 

Ui(x,t) = 0 on Ei x (-oo,01, Si(x,t) = 0 on E 2 x ( - o o , 0 ] , 
(11) 

0 ( x , t ) = O on E 3 x ( - o o , 0 ] , q ( x , i ) = 0 on E4 x (-oo,0], 

where u°, M° and 0° are prescribed functions and 

(12) Si(x,t) = 5^(x, i )n j(x) , ?(x,t) = ft(x,i)nj(x), 

rij are the components of the outward unit normal vector to the boundary surface 
and Ei, E2, E3, E4 are subsurfaces of dB so that E i U S 2 = E 3 UE 4 = dB, E ! n E 2 = 
E3 n E4 = 0. 

3. — T h e t ransformed boundary- in i t ia l value problem. Some auxi l iary 
ident i t ies 

We use an appropriate change of variables and notations convenably chosen in 
order to transforme the boundary-final value problem (V) into the boundary-initial 
value problem (V*) defined by the following equations 

(13) 

(14) 

(15) 

(16) 

i n f i x 
(17) 

(18) 

i n f i x 

[Or 

(0, 

oo), 

oo), 

eij 

&ij 

%i 

- 1( \ 

9i — 0,i! 

= Cijkieki + MijB, 

Qi **-ij9ji 

jij P^lii 

+ QoMijiij - c0, 

, with the initial conditions 

(19) u«(x,0) = u?(x)1 « i(x,0) = u?(x)) 0(x,O) = 0°(x), x£B, 

and the boundary conditions 

Ui(x,t) = 0 on Ei x [0, oo), s,(x, t) = 0 on E2 x [0, oo), 
(20) 

0(x,t) = 0 on E3 x [0,oo), q(x,t) = 0 on E4 x [0,oo). 
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By a solution of the boundary-initial value problem (V) we mean an ordered array 
IT = [ui,eij, Sij,0,gi,qi] with the following properties: 

(i) Ui, iii, Hi, (uij + Ujj) and (uy + iijj) are continuous on B x [0, oo); 
(ii) ey- is a continuous symmetric tensor field on B x [0, oo); 
(iii) Sij and Sjij are continuous on B x [0, oo); 
(iv) 8, Qj, 8 are continuous on B x [0, oo); 
(v) ft are continuous on B x [0, oo); 
(vi) qi and q^ are continuous on B x [0, oo), 

and which meets the equations (13) to (20). 
We proceed now to establish some auxiliary identities concerning the solutions 

of the boundary-initial value problem (V*). These identities constitute the essential 
ingredients in our analysis concerning the temporal behaviour of the solutions of the 
boundary-initial value problem (V*). • 

LEMMA 1 Let -K — [itj, e^Sy,0,gi ,qi \ be a solution of the boundary-initial value 
problem (V*). Then, for all t e [0, oo), we have 

I f c • 
- / [pui{t)Ui(t) + Cijkleij{t)eki{t) + — 9{t)2]dv 
z JB <7O 

( 2 1 ) =\( [pui(0)«i(0) + Cijkieij{0)ekl{0) + ^-8{0)2}dv 
l JB !7o 

+ Jo JB ^Kijgi{s)gj{s)dvds. 

P R O O F . The relations (7), (8), (13) and (17) imply that 

(22) pui(s)ui(s) = [Sji{s)ui{s)]j - Si:i{s)ei:j(s), 

so that, by means of the relations (15) and (18), we get 

s-i 1 

^-{o[P«i( s)"i(s) + Cijkleij{s)ekl{s) + ^-0(s)2}} 
(23) ds 2 1 1 

= [Sji{s)ui(s) + Tqj(s)0(s)]j - Tqj{s)gj{s). 
VQ (70 

Finally, we substitute the relation (16) into (23) and then integrate the result over 
B x [0,i\. Thus, we get the identity (21) and the proof is complete. I 

LEMMA 2 Let n = [iii,eij,Sij,0,gi,qi] be a solution of the boundary-initial value 
problem (P*). Then, for all t G [0, oo), we have 

2 / QUi{t)ui{t)dv - — / Kij / gi{z)dz / gj(z)dzdv 
JB C7Q JB JO Jo 

(24) = 2 / / {SUi{s)Ui{s) - [Cijklei:j(s)ekl{s) + +~9{s)2]}dvds 
Jo JB VQ 

+2 J QUi(Q)ui{Q)dv -2 I [ 0(s)[Myey(O) - £-9{0)}dvds. 
JB JO JB VQ 
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PROOF. We start with the following identity 

(25) ~-[gUi(s)ui(s)} = gui(s)ui(s) + £Uj(s)u;(s), 

so that, by an integration over [0, t] , we get 

(26) gui(t)ui(t) = gui(0)v,i(0) + / [QUi(s)ui(s) + QUi{s)ui(s)]ds. 
Jo 

In view of the relations (7), (8), (13) and (17), we get 

(27) gui{s)ili(s) = [Sji{s)ui(s)]j - %(s)ey(s) , 

and therefore, by means of the relation (15), we obtain 

(28) gui(s)ui{s) = [5ji(s)Mi(s)]j - Cijkieij{s)eki{s) - Miieij{s)e{s). 

now, we integrate the equation (18) over [0, t], to obtain 

1 /•' c 
(29) Mijeij(t) = - — / qu{z)dz + -6{t) + rj0, 

fo •'o fo 

where 
(30) Vo = Myey(O) - ff l(0). 

By combining the relations (28) and (29), we get 

1 fs c 
QUi(s)ui(s) = [Sji(s)ui{s) + —0(s) / qj{z)dz]j - [Cijfc,e„(s)efci(s) + -z-0(s)2] 

VQ JO t)0 

1 [" 
(31) -r]o0(s) + —Kijgtis) / g5{z)dz, 

UQ JO 

where an use was made by the relations (9) and (16). 
Finally, we substitute the relation (31) into (26) and integrate the result over B 

and then we take into account the divergence theorem and the boundary conditions 
(20). Thus, we are led to the identity (24) and the proof is complete. I 

LEMMA 3 Let 7v — [UJ, ejj, Sij, 6, gi, qi\ be a solution of the boundary-initial value 
problem (V*). Then, for all t € [0, oo), we have 

2 / gui(t)ui(t)dv - — I Ki:i / gi{z)dz / gj{z)dzdv 
JB O0 JB JO JO 

(32) = f e[u i(2t)u i(0) + Ui(2t)ui(0)]dv + f f r)o[0(t + s) - 6{t - s)]dvds. 
JB JO JB 
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P R O O F . Obviously, we have 

—{g[ui(t + s)ui{t - s) + v,i{t + s)ui(t - s)}} 

(33) = o[ui{t - s)Ui{t + s) - Ui(t + s)ili(t - s)], 

so that, by an integration over [0, t] with respect to s , we get 

2QUi{t)Ui{t) = Q[ui{2t)ui(0) + Ui(2t)ui(0)] 

(34) + / Q\ui(t + s)v,i(t - s) - Ui(t - s)ili(t + s)]ds. 
Jo 

On the other hand, by using the relations (7), (8), (13) and (17), we obtain 

g[ui(t + s)ili(t - s) - Ui(t - s)ili(t + s)] — [Sj,(t - s)Ui(t + s) - Sji(t + s)ui(t - s)]j 

(35) +[Sij(t + s)ei:i(t - s) - Sij{t - s)eij{t + s)]. 

Further, we use the relations (7) and (15) to deduce 

(36) 
Sij(t + s)eij(t - s) - Sij(t - s)eij(t + s) 

= 0(t + s)Mijeij(t - s) - 9{t - s)Miieij(t + s), 

and, by means of the relations (16) and (29), we obtain 

Sij(t + s)eij(t -s)~ Sij(t - s)eij{t + s) = q0[0(t + s) - 0{t - s)} 

(37) + V ^ ( i _ s ) I S<li(z)dz--6(t + s)Jo 'qi(z)dz]}t 
1 rt+s rt-s 

+-K-[9i(t - s)Kij gj(z)dz - gt(t + s)Ktj gj{z)dz\. 
(70 ' O J0 

Now, we substitute the relation (37) into (35) and the result into the relation (34). 
Then we integrate the result over B and use the divergence theorem and the bound
ary conditions (20). Thus, we are led to the identity (32) and the proof is complete. | 

COROLLARY 1 Let n = [ui,ey,Sy,0,ft,</j] be a solution of the boundary-initial 
value problem (V*). Then, for all t S [0, oo), we have 

2 / / {QUi(s)ui(s) - [Cijkieij(s)eki(s) + --0(s)2]}dvds 
JO JB UQ 

(38) = - 2 / gui{0)ui(0)dv + [ ^ ( 2 ^ ( 0 ) + Ui{2t)uM]dv 
JB JB 

+ f f 7?o[20(s) + 0(t + s) - 9(t - s)]dvds. 
Jo JB 

P R O O F . A combination of the relations (24) and (32) implies the identity (38) and 
the proof is complete. I 
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4. - Asymptotic partition 

In this section we derive the relations which exhibit asymptotic partition of the 
energy provided only that the thermoelastic process is constrained to lie in a set M. 
i.e., in the set of all thermoelastic processes -K = [«;, e^, SV,-, 9, gi, qi] defined on 
B x [0, oo) which satisfy 

00 (39) f f ^Kij9i{s)gj{s)dvds < M2 , Vt e [0, 
JO J B UQ 

For later convenience we shall asume in this section that meas E3 ^ 0. 
Let 7r = [ui, eij, Sij, 9, g^ g,] be a solution for the boundary-initial value 

problem (V*) and let associate with it the following Cesaro means 

(40) Kc{t) = — / / gui{s)ui{s)dvds, 
It Jo JB 

(41) Sc(t) = T r r / / Cijkieij(s)eki{s)dvds, 

At Jo JB 

(42) ^ 4 I 7 B ^ 2 ^ 
(43) Vc{t) = - f [' [ -Kijgi(z)gj{z)dvdzds. 

t Jo Jo JB fo 
We observe that if meas Si = 0, then there exists a family of rigid motions 

and null temperature which satisfy the equations (13) to (18) and the boundary 
conditions (20). For this reason, we decompose the initial data u° and ii° as 
follows 
(44) u? = uj + ^ , u° = u* + U°, 
where u* and it* are rigid displacements determined in such a way that 

J gU°dv = 0 , / 0eUkXjUjdv = 0, 
JB JB 

(45) / gU°dv = 0 , J 0£ijkXjUf> = 0, 
JB JB 

where £„•* represents the alternating symbol. 
Let us introduce the following notations: 

C 1 ^ ) ^ { v = ( t ) 1 , » ! , » s ) , « 1 6 C 1 ( B ) : «i = 0 on Ex 

and if measEi = 0, then / gvidv = 0 , / ^eykXjVkdv = 0 j ; 

&{B) = {jeC1(B): 7 = 0 on E3 }; 
Wi(B) = the completion of Cx(i?) by means of || • ||wi(B)! 
W I ( B ) = the completion of C^B) by means of || • \\wi(B) • 
In the above relations C1 (B) represents the set of scalar functions which are 

continuous and continuously difTerentiable on B. Moreover, Wm(B) represents 
the familiar Sobolev space [11] and Wm(B) = [Wm{B)f. 
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We note that because CyM is a positive definite tensor it follows that the 
following inequality [12] holds 

T / Cijki{vi:j + vjti)(vkti + Vitk)dv > mj / v^dv, ni! = const. > 0, Vv e Wi(B) . 

(46) B 

Moreover, the boundary value condition (20) coupled with the fact that meas 
£3 ^ 0 and the positive definiteness of the conductivity tensor, imply that the 
following Poincare inequality holds 

(47) / Ku") fl Av >m2 72efo, m2 = const. > 0, V7 e W^B) . 
JB ' JB 

If meas £1 = 0, then we shall find it is a convenient practice to decompose 
{MJ, 8} as follows 
(48) in = u* + tut + vt , 0 = 7, 

where {v, 7} (E W j (B) x Wi (B) represents the solution of the boundary-initial 
value problem (V*) in which the initial conditions (19) are substituted by 

(49) « i(x,0) = l/?(x), i t(x,0) = [)°(x), 7 (x ,O)=0° (x ) , x e B , 

We further introduce the total energy associated with the solution" ir — [ui, etj, 
Sij, 9, gu qi] by 

(50) £(t) = \f [pui(t)ui(i) + Czjkieij{t)ekl(t) + ^6(tf]dv. 
Z JB UQ 

We have now assembled all the preliminary material needed to derive the asymp
totic partition in terms of the Cesaro means defined by the relations (40) to (43). 

T H E O R E M 1 Let IT = [ui,eij,Sij,d,gi,qi] be a solution of the boundary-initial value 
problem (V*) residing in the class M defined by the relation (39). Then, for all 
choices of the initial data u° € Wi(B), u° G W0(-B) and 8° G W0(B), we 
have 
(51) lim Tc(t)=0-

t-KX> 

Further, we have: 
(i) if meas £1 ^ 0, then 

(52) lim £ c ( t ) = lim 5 c ( t ) , 
t - foo t->oo v ' 

(53) l i m 5 c ( t ) = i f ( 0 ) + ilimPc(t); 

(ii) if meas £1 = 0, then 

(54) lim / C c ( t ) = l i m l S c ( t ) + i / B K u > ! 

(55) lim 5b(t) = \ £(0) + \ j gu*u*dv + \ lim 2>c(t). 
' - » °o I 2 JB 2 t -»oo 
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P R O O F . We first note that the Lemma 1 and the relation (50) give 

(56) £(t) = £(0) + f J ^Kiigi{s)gi(s)dvds, t > 0. 
JO JB UQ 

By taking into account the relations (40) to (43), from the relation (56) we deduce 
that 
(57) ICc(t)+Sc{t)+Tc(.t)=£(0) + Vc{t), for all t > 0. 

On the basis of the relations (39), (42) and (47) it results 

Tc(t) < Ui maxc(x)] J* JB 0(s)2dvds 

(58) < 2 S ^ [ m | x c ( x ) ] Jo JB ^Kjjgi(s)gj(s)dvds 

< ^ [ m a x c ( x ) ] , t > 0, 

and hence by making t to tend to infinity, we get the relation (51). Thus, the 
relation (57) implies that 

(59) lim £ c ( t ) + lim «Sc(t) = £(0) + lim Vc(t). 

On the other hand, from the relations (38), (40), (41) and (42), we get 

JCc{t) - Sc{t) - Tc{t) = ~ ( QUi{0)ui(0)dv 
2.1 JB 

(60) +-J- / ' J r]Q[2e{s) + + 0(t + s) - 0(t - s)]dvds 
At Jo JB 

+ 4£ / S[ui{2t)iii(0) + Ui(2t)ui{0)]dv, t > 0. 

Further, the relations (39), (47) and (56), give 

(61) / gui{s)ui{s)dv < 25(0) + 2M2 , 
JB 

(62) / 0{sfdv < — \ - [ U{afdv < - ^ W f ( O ) + M2]. 
JB maxc(x) JB 00 maxc(x) 

Thus, by using the Schwarz's inequality and the relations (51), (61) and (62) 
into the relation (60), we obtain 

(63) lim £ c ( t ) - lim 5 c ( t ) = l im{-^ / 0Uj(O)ui(2t)dv}. 
t—>oo t—• oo t—voo 4t JB 

Let us first consider the point (i). Since meas Ei / 0 and u e W i ( B ) , from 
(46), (50) and (56), we deduce that 

(64) J ui(s)ui{8)dv < —£{s) < —[£(0) + M2], 
JB mi mi 
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(67) / Vi(s)vi(8)dv < —£(s) < —[£(0) + M2}, 
JB 77ii TTl\ 

so that, by means of the Schwarz's inequality, we get 

(65) lim{-i- J gui{0)ui(2t)dv} = 0. 
t->oo At JB 

Therefore, the relations (63) and (65) lead to the relation (52). The relation (53) 
results now from the relations (52) and (59). 

Let us further consider the point (ii). Since meas Ei = 0, then the decomposi
tions (48) and the relation (45) give 

— / QUi(0)ui(2t)dv 
At JB 

(66) 
= 1 / Qii*u*dv + 1 / Q(U* + Uf)vi(2t)dv + 1/ 8u*u*dv. 

At JB At JB I JB 

On the other hand, the relations (46), (50), (56) and (39) imply 

2 „ , N
 2 

, _ — £ * < — . 
IB mi mi 

so that, the relation (66) leads to 

(68) l i m { - / gui{0)ui(2t)dv} = - f Qu*u*dv. 
t->ao At JB 2 JB 

Therefore, if we substitute the relation (68) into (63), then we obtain the relation 
(54). The relation (55) follows then by coupling the relations (54) and (59). Thus, 
the proof of theorem 1 is complete. I 

5. - Concluding remarks 

We first note that the procedure presented in the above Theorem 1 can be 
extended to cover the case when meas E3 = 0, but a detailed analysis of various 
situations which can appear must be considered. 

The relations describing the asymptotic partition of energy for the thermoelastic 
processes forward in time have been established in [13] without any kind of con
straint restrictions upon the class of processes. The constraint restriction used to 
establish the theorem 1 is to be expected in view of the results on the uniqueness 
and continuous dependence results obtained by Ames and Payne [1] and Ciarletta 
[6]. On the other hand, in view of the identity (56), the constraint restriction (39) 
can be substituted by the following one 

£{t) < M2, Vt > 0, 

where £{t) is defined by the relation (50). 
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Internal parameters and 
superconductive phase in metals 

V. A. Cimmelli* A. R. Pace* 

1. — Introduction 

Superconductivity, i.e. the nondissipative current transport in metals, is a low 
temperature phenomenon, due to quantum effects which become apparent at the 
macroscopic scale. After the pioneering work of London brothers [1], its description 
was based on the celebrated Ginzburg-Landau theory [2], where special attention is 
paied to the transition from the normal to the superconducting phase. In modern 
nonequilibrium thermodynamics such a fascinating phenomenon motivated a wide 
literature, [3,4,5]. Let us quote the series of papers by Fabrizio and co-workers [6,7,8], 
where a nonlocal theory of superconductivity is developed by modifying the classical 
London's model. In the last decade several authors approached the problem in the 
framework of internal variable thermodynamics, by introducing a complex internal 
variable which models the phase effect of quantum mechanics [9,10]. 
In the present paper instead we introduce in the constitutive equations a real in
ternal variable together its gradient in order to account for weakly nonlocal effects, 
both in space and time, which characterize a superconductive state. A similar point 
of view has been applied by Kosinski and Cimmelli in the description of the prop
erties of the superfiuid helium II, [11]. We develop a phenomenological model of a 
rigid electromagnetic solid which is able to describe the main features of the super
conducting phase, i.e. the nondissipative current transport and the expulsion of the 
magnetic induction from the conductor (Meissner effect). According with London's 
approach [1], we split the total current density J into a sum of a normal current J„ 
and a supercurrent J s , namely: 

(1) J = J„ + JS. 

Our main hypothesis consists in assuming the vector J s proportional to the gradient 
of the internal variable. By design J s is compatible with the system of Maxwell 
equations and, moreover, it does not dissipate energy inside the conductor. 
In Section 2 we sketch the main properties of the superconducting systems in order 
to point out the experimental starting points of the theory. 
In Section 3 the complete set of evolution equations for a rigid electromagnetic solid 
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with an internal variable is derived. The local form of second law of thermodynamics 
is obtained as well. 
In Section 4 we postulate a Fourier's type constitutive relation between the super-
current vector J s and the gradient of the internal variable and show that the basic 
properties of J s are traduced by a suitable initial and boundary value problem whose 
mathematical structure is analyzed. 
In Section 5 the compatibility of the form of J s with both the system of Maxwell 
equations and the Clausius-Duhem inequality is investigated. Such a compatibility 
yields a set of thermodynamic restrictions on the response functions together with 
some additional constraints on the material functions characterizing the model. We 
close the paper by a final discussion and a comparison with a different theory pro
posed recently in the literature. 

2. - Aspects of the superconducting phase 

The superconducting phase was first observed in 1911 at the Kamerlingh Onnes 
Laboratory of the Univesity of Leiden. Onnes itself discovered that in some metals 
if the temperature is lowered until a given critical value 6C, the electrical resistance 
suddenly drops to zero and an electrical current can flow in the absence of dissipation. 
That property allows some important applications, for instance the generation of 
magnetic fields without the need to remove the Joule heating due to the current 
creating the fields [13]. In 1933 Meissner and Ochsenfeld measured the magnetic 
induction B outside a superconductor as it is cooled in an applied field. They found 
that the strength of B immediately outside the superconductor increased while its 
normal component on the boundary appeared to be zero, indicating the vanishing 
of B inside the specimen and the existence of a perfectly diamagnetic state of the 
superconductor which caused the internal field to be expelled. The final state of 
the superconductor was found to be independent of whether it was cooled through 
6C and then placed in a field or viceversa, since all the flux was expelled from the 
superconductor in either case. The phenomenon is referred to as Meissner effect. 
If the magnetic field H increases at a constant temperature below 0C the metal 
remains superconductor until a given critical field H c at which the normal behaviour 
is restored. The transition from the superconductive to the normal phase at constant 
temperature and magnetic field H c represents a first order phase transition since the 
experiments show the existence of a nonvanishing latent heat [14]. 
The London brothers were the first to suppose the existence of superconductive 
electrons flowing without resistance. In the presence of an electric field E these 
electrons obey the equation of motion: 

(2) rav, = eE, 

where m, e and v s are the mass, the electric charge and the mean velocity of the 
electrons. Under the hypothesis: 

(3) J s = nsev. 
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where n3 means the superelectron density, we get: 

(4) ^ J , = E . 
nse

2 

Finally, combination of (4) with the Maxwell equations leads to: 

(5) V x ( - ^ J . ) = - B . 

Relations (4) — (5) are referred to as London's equations, to be understood as addi
tional conditions to the Maxwell system. It was observed that the complete Maxwell-
London system is overdetermined, since it exhibits more equations than unknowns 
[6,7]. The constant A = Jm/nse

2p, where p, is the magnetic permeability, charac
terizes the properties of the medium and represents the penetration depth of the 
magnetic field in the interior of the superconductor. 

3. - A rigid superconductor with internal variable 

Let us consider an isotropic body B occupying a compact and simply connected 
region C of an Euclidean point space E3. A vector x of the associated vector space 
E 3 will denote the position of the points of C. We assume that, upon the action of 
an electrical field E and a magnetic field H, a part of the total current circulating 
inside B may flow without resistance. Its flux will be represented by the vector J s 

appearing in (1), [1]. 
A thermodynamic process of B is an almost regular curve in a state space £ spanned 
by the electric field E, the magnetic field H, the absolute temperature 9, an internal 
state variable a and the gradients g = V# and a = Va, [15,16,17]. The internal 
variable is controlled by the nonlocal kinetic equation: 

(6) d = / ( 0 , a , a , H ) ) 

accounting for the property of the material of shifting to the superconductive state 
for suitable values of the temperature and of the magnetic field. The local balance 
of energy reads, [7,18]: 

(7) pe + V • q = pr + H • B + E • D + J • E, 

where p is the mass density, r the radiative heat supply, q the heat flux vector. 
Moreover, the fields: 
(8) D = eE, B = pH, 

with the scalar functions e and p representing the electric permittivity and the 
magnetic permeability of the medium, are the electric dispacement and the magnetic 
induction. Equation (6) — (8) are supplemented by the system of Maxwell equations: 

(9) V • D = pe, 

(10) V - B = 0, 
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(11) D = V x H - J , 

(12) B = V x E, 

where pe is the density of the electric charge. 
Finally, the absence of free superconductive charges inside B forces the vector J s to 

satisfy the boundary value problem: 

(13) V • J s = 0 in C, 

(14) J s - n = 0 on dC, 

with n unitary normal vector defined on dC. Since the system constituted by (1) 
and (6)-(12) is not closed, we need additional constitutive equations for the set of 
functions {e, r, p,, e, q, J s , J n } , which will be choosen in the form: 

(15) $ = < r ( 0 , « , g , a , E , H ) . 

The dissipation principle [18,19], forces (15) to be compatible with the local form of 
second law of thermodynamics (Clausius-Duhem inequality), which in the present 
case reads [7]: 

(16) -p{ip + s 0 ) - ^ q - g + H - B + E - D + J - E > O , 
u 

where s means the specific entropy and 

(17) ip = e-6s 

is the Helmholtz free energy. In order to investigate such a compatibility, a consti
tutive equation for tp (or s) must be assigned as well. 

4. - A constitutive equation for J s 

In the present section we specialize the constitutive equation (14) for the total 
current density J, i.e. for the vectors J s and 3n, and investigate its compatibility 
with the equations (6) and (13). Let us assume: 

(18) JfI = ff(0,a,g,a)H)E) 

(19) J.=j(0,a)g)E,H)a. 

Equation (18) represents the well known Ohm's law, with a the electrical resistance 
of the normal state [5]. Equation (19) is new and relates the superconductive current 
to the gradient of the internal variable through a linear law. Due to (19), the 
boundary value problem (13)-(14) specializes to: 

(20) V j - a + j V - a = 0 in C, 

(21) a n = 0 on dC. 
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Equation (21) may be used as boundary condition for (2), together with an initial 
condition: 
(22) a{t0) = a0. 

Finally, since J s is an observable quantity, a boundary condition for j may be de
duced by the measurements of J s on the boundary of the superconductor. For 
instance, for a wide class of superconductors, it results, [4]: 

(23) J s \K= J n x H \dc . 

For such systems we get the boundary condition: 

(24) j \gc= j^(n x H) • a |aC . 

5. - Thermodynamic and electromagnetic compatibility 

The compatibility of (15) with (16) may be investigated by exploiting the clas
sical procedures of thermodynamics of irreversible processes, [12,20,21]. It can be 
proved that (15) is compatible with second law of thermodynamics if the following 
restrictions hold true: 

<»> — £ • 
(*) , - * £ . 

T da 
(27) B = - p | g , 

(28) D = - p § £ , 

(30) q . | = 0, 

(3D q - ^ = 0, 

(32) p g « + ^ q + i E ) . a + a ^ > 0 , 

with: 
(33) T =-. V + -H2 + - £ 2 , 

P P 
and: 

1 _ dj_ !_ _ 9 / 
( j

 T~: 86 ' x ~' da 
The left hand side of (32) represents the local entropy production rj^ in a thermo
dynamic process. It is in the classical form of a bilinear product of generalized forces 
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(affinities) times fluxes or rates, introduces by Onsager in nonequilibrium thermody
namics, [12,15]. Thence we may regard the quantity p | ^ as the affinity conjugated 
to the rate of the internal variable a, the quantity jpq + jE as the generalized force 
conjugated to the flux of internal variable a and the vector E as the force conju
gated to the flux of normal current J n = trE. With respect to the classical case 
77(s) contains two additional terms due to the internal variable. Under the further 
constitutive assumptions: 

(35) ^ = 0, 

(36) q = - ^ E , 
T 

jj(„) reduces to aE2, i.e. to the classical entropy production for standard electromag
netic systems. In such a case neither the internal variable nor its gradient dissipate 
energy and hence the supercurrent flows without entropy production. Let us observe 
that since below the critical temperature function a identically vanishes (see Sec.2), 
in such an interval the system is completely nondissipative. 
Furthermore, as a consequence of (27), if: 

^ 1 = ° ' 
then a perfectly diamagnetic state is present inside the superconductor (Meissner 
effect). Hence we are allowed to consider equations (35)-(37) as characterizing the 
superconductive phase. 
Finally, we investigate the compatibility of the constitutive equation (19) with the 
Maxwell equation (11). We regard that compatibility as a constraint on / , which 
must be assigned in such a way that the initial and boundary value problems for a 
and j yield a vector J s which is compatible with (11). Since / is scalar valued, it 
depends on a and H through the invariant quantities a2, H2 and / =: a- H. Thence 
(19) reads: 

(38) J s = j x a - ^ g - ^ V a 2 - J^VH2 - ^ V J , 
T V 7 0 

with: 

mi 1= M. l= 1L I = <?/ 
1 ' v 'da2 ' 7 dH2 ' S df 
On the other hand, substitution of (38) in (11) yields: 

(40) jXa. -J—%,- ^ V a 2 - J^VH2 - ^ V / = CTE + D - V x H. 
r v 7 o 

Equation (40), together with the thermodynamic restrictions (30) and (31), repre
sent five additional scalar restrictions on the five material functions r, x, 7, S and v, 
to be understood as compatibility conditions, allowing J s to satisfy (11). 

6. - Final remarks 

In that paper the superconductive state of metals has been related to an intrinsic 
state variable, controlled by a nonlocal kinetic equation which involves the magnetic 
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field and the absolute temperature as well. In fact, the nondissipative current flow 
is regarded as an intrinsic property which manifests itself only in a suitable interval 
of temperature and magnetic field. The model is completely compatible with both 
the Maxwell equations and second law of thermodynamics. It also allows the exis
tence of a nondissipative perfectly diamagnetic state, which is characteristic of the 
superconduction. The main difference between the present model and other theories 
with internal variables consists in the mathematical nature of that variable, which 
here is assumed to take only real values. Indeed different authors introduce a com
plex internal variable in order to account for quantum effects at a macroscopic level 
and to obtain, as a particular case, the Ginzburg-Landau theory, [9,10]. This fact 
renders difficult to compare these theories and the present one. However a compar
ison can be performed with a macroscopic model proposed recently by Fabrizio and 
co-workers throught a slight modification of the classical London's theory, [6,7,8]. 
In that approach an additional evolution equation for Js is postulated in the form: 

(41) V x (AjJ.) + A2J s = -fiH, 

where Ai and A2 are suitable material functions. On the other hand, (19) is com
patible with (41) if and only if the material parameters Ai, A2 and ji are choosen in 
such a way that the following evolution equation holds true: 

W V.A^. + A ^ U - g . 

If the three scalar differential constraints (42) are fulfilled, then both models coin
cide. 
Finally, let us notice that, as it is typical for low temperature systems, the model 
should allow the propagation of thermomechanical waves together with the electro
magnetic ones. The present subject is currently under investigation. 
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matics of the University of Basilicata, Research Program in Mathematical Physics. 
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Phase relaxation problems with memory 
and their optimal control 

Pierluigi Colli* 

1. - Introduction 

I would like to introduce this note with some personal recollections of Giorgio 
Gentili. The first time I met Giorgio was on occasion of a meeting held just in 
Cortona in 1996. We started a collaboration which eventually led us to our joint 
paper [6]. This paper was finalized two years later and I myself was the main 
responsible for this delay to the point that Giorgio was joking on me comparing the 
paper to the Penelope's web! Giorgio was kidding, of course; however, this episode 
showed me how he was determined on his plans. I remember him as a serious and 
very active researcher, full of enthusiasm for his work, keen on Thermodynamics, 
but also practical and constructive in building up his fine pieces of research and life. 

This paper is naturally dedicated to him as well as phase relaxation systems were 
just among the topics treated in our joint article [6] with Claudio Giorgi. By phase 
relaxation model we mean a model for solid-liquid phase transition which describes 
the evolution of a body in terms of two state variables, the (absolute) temperature 
i? and the phase parameter X, via the basic energy balance equation and a time 
relaxation dynamics for the phase variable X. About the physical meaning of X, we 
point out that it usually represents the local proportion of one of the two phases. 
Hence, we can agree for instance that X = 1 in the liquid phase, in which we expect 
the temperature § to be greater than a reference temperature $c for the phase 
transition, and X = 0 in the solid phase where $ should lie below the threshold 
$c. We can also postulate the existence of some intermediate range, characterized 
by values 0 < X < 1 and temperatures •& staying around -9C: for such a situation 
we speak of "mushy region" and in these cases we see some transition regions -
where water and ice, say, are well mixed - instead of narrow interfaces separating 
the two phases. Let us quote at once some significant references for phase relaxation 
systems: in particular, we aim to refer to [11, 16, 17] and, for an approach which 
takes into account memory effects as well, to [7, 9, 3]. 

In a very simple setting, the partial differential equations describing the phase 
relaxation model with memory are 

(1) dt{$ + X)-A{# + k*V)=f0 in Q : = Q x ( 0 , T ) , 

"Dipartimento di Matematica "F. Casorati" Universita di Pavia, Via Ferrata 1, 
27100 Pavia, Italy 
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(2) AJ$X + 0J[o,i](X)3 0 - 0 e in Q, 

where Q denotes a bounded domain in 1R3 and T stands for some final time. More
over, dt indicates the time derivative and the Laplace operator A acts on the space 
variable x e O. The memory kernel k is a prescribed function of time, and the 
convolution in (1) is denned by 

(k*tf){x,t) := f k(t-s)ti{x,s)ds, t€ [0,T]. 
Jo 

In the light of the heat conduction theory for materials with memory (cf., e.g., 
[4, 5, 13, 14] and references therein), one derives equation (1) from the energy 
balance 
(3) 9te + V - q = / 0 in Q 

where / 0 is a known heat supply, when using the linear Coleman-Gurtin law for the 
heat flux 

(4) q(x, t) = -fcoVtf (x, t) - J k{t - s) W ( z , s) ds. 
J—oo 

As usual, the internal energy e is given by 

e = * + $s 

where s = —d^/dd represents the specific entropy and ^ is the free energy. Ac
cording to [11], for the free energy we assume the following dependence on d and X, 

(5) *(tf,X) = -tf logtf + 0/[o,i](X) - j{-9 - 0c)X, 

thus allowing for a nonsmooth contribution of the indicator function 7[0ii](X) (= 0 
whenever 0 < X < 1, = +oo otherwise). Note that the free energy in (5) turns 
out the sum of three contributions: a purely caloric term — d log d, the indicator 
function term with a positive factor d (which is irrelevant for the values of the 
resulting function but plays a role in the computation of e), and a coupling term 
where also the latent heat L appears. Now, since e = d + LX, (1) eventually follows 
from a normalization of parameters L and fc0 to 1, and from the information on 
the past history of $ up to t — 0, so that the integral in (4) can be split into a 
convolution and a known contribution on the right hand side. Let us observe that in 
(1) the choice h = 0 is allowed: in this case, memory disappears and the Coleman-
Gurtin law reduces to the classical Fourier law. Likewise, we wish to point out that 
laws like (4) and conditions on kernel k are discussed in the paper [12] in connection 
with the restrictions imposed by the Second Principle of Thermodynamics, and it 
turns out that for suitable k the resulting heat flux obeys an integral version of the 
Clausius-Duhem inequality. 

In order to show the meaning of (2), following a procedure that is inspired by 
the general approach in [10], we introduce a pseudopotential of dissipation which 
may depend on several variables and here it depends at least on the derivative Xt, 

$(X 4 , . . . ) = | |X ( |
2 , 



53 

and infer (2) from the law 

(6) Wt
 + 8XB0-

Indeed, taking L/$c = 1 for simplicity and making use of the subdifferential of the 
indicator function 

I" < 0 if X = 0 
fedl[0,i](x) <=> £ \=o if o < x < l , 

I > 0 if X = 1 

we reduce to (2), which in particular says that \xXt = "& — ?9C whenever 0 < X < 1, 
otherwise Xt = 0. Thus, the dynamics of X is clearly determined from the evolution 
of d and it may happen that X € (0,1) in correspondence with values of $ that differ 
from the critical temperature dc. Let us also remark that the limiting case /i = 0 of 
(2) leads to the equilibrium condition of the Stefan problem 

dI[0,i]{X) 3 •& - dc or equivalents X € i/(tf - i?c), 

where H denotes the Heaviside graph. In this case, a comparison in (6) with the 
help of (5) shows that we are actually looking for the minima Xmin 6 [0,1] of the free 
energy, and X^^ = 0 (resp. 1) if •& < i9c (resp. > $c) while all values Xmi„ € [0,1] 
are equally minima of the free energy at the equilibrium temperature •d = dc. 

Consider now an initial and boundary value problem for the system (1-2) by 
introducing the initial conditions 

(7) (tf + X) (0 )=e 0 and X(0) = X0 in ft 

and the boundary condition 

(8) d„{-d + k * §) + Q(I? - u) = 0 on E := dQ. x (0, T). 

Here, the symbol dv denotes the outward normal derivative on d£l and a is a positive 
coefficient. In condition (7), for space-time functions v the notation v(Q) is used in 
place of v(-, 0), and eo and XQ are prescribed initial data (with 0 < X0 < 1 in ft). For 
a given u e L2(S), existence and uniqueness of a pair (#, X) solving a suitable weak 
formulation of (1-2), (7-8) are well known [16, 7, 3]. Our interest now focuses on 
the investigation of the optimal control problem for (1-2), (7-8) (the reader who is 
interested in optimal control problems for PDE's can refer, e.g., to the books [2,15]). 

Note that (8) states that the heat flux on the boundary is proportional to the 
difference of internal temperature and some external value which will play as a 
control in our presentation here. Indeed, the aim of this note is that of reviewing 
some recent results obtained in collaboration with V. Barbu, M.L. Bernardi, G. 
Gilardi in [1] regarding the minimization problem for the functional 

(9) J(0,u):= [ g(d)+ fh(u) 

over all controls u e L2(T,) and the corresponding values of the state variables $ 
and X, where g and h are given convex functions on 1R satisfying some growth 
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conditions at infinity. We discuss existence of minimizers, asymptotic convergence 
of minimizers as the parameter /j, tends to zero, and some necessary conditions for 
a given u* to be a minimizer. Moreover, in the final part of the paper we address 
a few open questions concerning possible extensions or improvements of mentioned 
results to the more general phase relaxation systems examined in [6]. 

2. - The optimal control problem 

We first introduce a variational formulation of problem (1-2), (7-8). Let V = 
H1^) and H - L2(Q) = H', so that V C H C V with dense and compact 
embeddings. Assume that /i > 0 and 

(10) /o e L2(0, T; V), e0, X0 € H, 0 < X0 < 1 a.e. in fi, 

(11) k e W M ( 0 , T ) , a e L°°(dQ) non negative. 

Testing formally (1) by an arbitrary v £ V, with the help of (8) we obtain 

(ft(0 + *)(*), «)n + (V(0 + k * 0)(i), Vv)n + j a${t) v = (f0(t),v) + jf au(t) v 

for a.a. t e (0,T), where (•, -)n stands for the inner product both in H = L2(f2) and 
in (L2(n))3 , and {•, •) denotes the duality pairing between V and V. Collecting then 
(2), (7) and defining the abstract operators A, B : V ->• V and B0 : L2(E) -> V by 

(i4w,«) := (Vw,Vw)n , (Bw,v) := / atot), 

{B0z,v)=fazv \/w,veV, Mz g L2(S), 

to any fixed w e ^ 2 ( ^ ) we associate a unique pair 

(12) •deL2{Q,T\V)^H1{Q,T;V), X&Hl(0,T;H) 

such that 

(13) dt{fi + X)+A('d + k*'d) + Bd = fo + B0u in V , a.e. in (0,T), 

(14) patX + dIm(X) 3d~dc a.e. in Q, 

(15) {•d + X)(0) = e0 and X(0) = X0. 

This mapping is well defined as it is shown in [16, 7, 3]) for analogous problems with 
different boundary conditions. 

Therefore, we let u vary and consider the cost functional 

J(d,u)= [ g{d)+ j h{u) 

with g, h : K, ->• (-oo, +oo] proper, convex, lower semicontinuous and satisfying 

g has at most quadratic growth, h has at least quadratic growth, 
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so that g{d) is in Ll{Q) and h(r) > w|r|2 — c for some positive constants ui and c, 
and for all r € IR. 

At this point, we can formulate the 

OPTIMAL CONTROL PROBLEM Minimize J(§,u) among all possible triplets (•d,X,u) 
satisfying (13-15). 

Here are our results, complemented with a brief sketch of proofs (see [1] for full 
details). 

T H E O R E M 1 [existence] There exists at least one solution to the optimal control 
problem, i.e., a triplet {•&*,X*,u*) such that 

J{P,u*)<J{d,u) V(d,X,u), 

where (d*,X*,u*) and (d,X,u) solve (13-15). 

P R O O F . Argue by minimizing sequences. | 

T H E O R E M 2 [LI \ 0] For any \i > 0 let (i?J,X*,«*) be any solution to the optimal 
control problem. Then there exists a weakly convergent subsequence of {u*} in L2(£) 
as n \ 0. Moreover, i/u* —̂  u in L2(E) as /x \ 0, then u is an optimal control for 
the limiting Stefan problem, characterized by the condition (which replaces (14)) 

X e # ( t f - i ? c ) a.e.inQ. 

P R O O F . One checks that the weak limits d of {$*} and X of {X*} yield the solution 
to the Stefan problem with u as datum. Then, the minimum property follows from a 
strong convergence argument for the functions i9M, specified by the triplet (ld)1, XM, w) 
that solves (13-15), and for the related integrals jng('d^). I 

T H E O R E M 3 [optimali ty conditions] In the case of JX > 0 fixed, let (&*, X", u*) be 
a solution to the optimal control problem. Then, there exists a pair (p, q) with 

(16) P€C°([0,T};V)nH1(0,T;H), q £ L°°(0,T; H), dtq e M(Q) 

such that 

(17) dtp- A(p + k*p) + -(q-p) - Bp e dg{ti*) a.e.inQ, 

A4 

(18) ap e dh(u*) a.e. on E, 

(19) p(T) = 0, 

where -k denotes the "backward" convolution 
rT 

(k*p){t):= k(s-t)p(s)ds, te[0,T}, 

M(Q) stands for the space of Radon measures on Q, and dg, dh represent the 
subdifferentials of the convex functions g, h in IR x El . 
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PROOF. First, some comments are due on the adjoint problem (17-19). The inclu
sion in (17) means that dtp + A(p + k *p) + ^(q — p) is in L2(Q) and belongs 
to dg^*) pointwise in the interior of the domain, besides the boundary condition 
d„(p+ k-kp) + ap = 0 on E. Note that (18) adds another condition for the trace of 
function p on the boundary. In some sense, we should admit that the optimality con
ditions for the adjoint pair (p, q) are not so satisfactory, since the only information 
we have on the solution component q is the regularity property stated in (16). 

We outline now the proof of Theorem 3. Approximate J by 

•/*(*,«) = / 9e(?) + ( h(u) + I [ \u - u*\2 

and <9/[o,i] by a suitable Fe G C1'1(IR), where e > 0 is the approximation parameter, 
gE denotes the Yosida regularization of g, and u* is fixed as in the statement. Then 
one solves the e— optimal control problem and gets one solution ($*,X*,w*), that 
is, a triplet (?9*,X*,u*) which fulfils JE(tf*,u*) < Je(i?,u) for all triplets (i?,X,u) 
satisfying the e—system corresponding to (13-15). Then the main step consists in 
proving existence and uniqueness of a pair (ps,qe) satisfying 

PeeC°([0,T];V) nff 'fO.T'jfl) and qe£H\Q,T;H), 

dtPe - A{pe + k *p£) + -{qe- pe) - BpE = g's(rs) in V, a.e. in (0, T), 
A* 

apc + u* — w* G dh(u*e) a.e. on E, 

pe(T) = qe(T) = 0, 

and 

(20) dtqE + -KiK) & ~ fe) = ° a.e. i n Q . 

Hence, one takes the limit as e \ 0 getting u* —> u* in £2(E) and checking that the 
limits p and q of some subsequences of {pe} and {qs} in a suitable topology satisfy 
(16-19). As a matter of fact, we do not pass to the limit in (20), since we can just 
prove that [i~lF'e(X*E) (pe — qe) tends to some C, weakly star in M(Q), but we cannot 
characterize £ in terms of p and q. • 

3. - Extensions and remarks 

The aim of this section is to take up the general phase relaxation systems con
sidered in [6] and comment on possible generalizations of the results presented in 
Section 2. 

Thermodynamically consistent models scrutinized in [6] are essentially concerned 
with the following form of the free energy 

(21) tt(0,X) = -0FO(0) + 0G(X) - (0 - 0c)Fi(X) 

which yields an extension of (5) since i*o(#) replaces logi?, G(X) takes the place of 
the indicator function of the interval [0,1], and Fi(X) can be possibly nonlinear. 
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This setting corresponds to an internal energy e = id2F^{'d) + •dcF[{X) which is no 
longer linear with respect to the state variables. Here, F0 and Fi are assumed to 
be smooth functions with some monotonicity properties: in particular, it is required 
that the specific heat cv{= de/dd) = 2tfF,J(tf) + tf2Fo"(tf) is well defined and lies 
between two positive constants C, and C*. 

The pseudopotential $ is supposed to depend on d and X as well, and is given 
by the following expression 

(22) $(Xu*d,X)=l-N{d)F±(X)\Xt\\ 

where N is continuous with N(d) > 0 for all d, and F2 is a smooth monotone and 
strictly increasing function on the domain where X lives. In the framework of (21) 
and (22), it turns out that the "rate type" constitutive equation (6) summarizes a 
number of well-known phase transition models in absence of interfacial energy (see 
[6] and references therein). 

Let us now briefly elucidate some peculiar choices of G(X) and Fi(X) in terms of 
stationary values of the phase parameter X (that is, values for which Xt = 0). 

• If G{X) = I[o,i](X) and F[(X) > 0 for all X € [0,1], then mushy region is 
allowed and all X € [0,1] are minima of the free energy (and obey (6)) at 
the equilibrium critical temperature $ = $c; no superheating or undercooling 
effects appear at temperatures •& =fc i?c, where either X = 0 or X = l i s a 
minimum. 

• If G(X) is a double well potential, for instance of the form G(X) = X 2 ( l -X) 2 /4 , 
then no mushy region is observed and \& (• , X) exhibits two equally preferred 
strict minima, for X = 0 and X = 1, at equilibrium [d = i?c). Moreover, if we 
take Fi(X) = X2(3 - 2X)/3 (cf. [6, equation (2.15)]), then superheating and 
undercooling phenomena may occur provided |$ — dc\/dc is sufficiently small. 
In particular, there is a range of values of d where the two minima, at X = 0 
and X = 1, still coexist. 

Note that, if the latter setting is considered, the convexity property of function G 
definitely fails. On the other hand, the investigation of the related optimal control 
problem can take advantage of the absence of subdifferential operators. In particular, 
the set of optimality conditions might be simpler to derive and more complete. 

In general, one can assume that G is the sum of a convex, possibly nonsmooth, 
potential Go : IR —» (—oo, +00], proper and lower semicontinuous, and of a smooth 
non convex contribution Gi : H —• IR. Then, the general system replacing (13-15) 
would be the following 

(23) dt(d
2F{l{d)+dcF1(X)) + A(d + k*d) + Bi} = f0 + B0u in V, a.e. in (0,T), 

(24) N{d)dt(F2(X)) + tidG0(X)3{#-tic)Fl(ti)-tfG[(X) a.e. in Q, 

(25) (^ 2 F ( ;^ ) + ^ c F 1 (X))(0) = eo and F2(X)(Q) = F2(X0). 
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Existence and uniqueness of solution to (23-24) are discussed in [6] under the fol
lowing assumptions on the nonlinearities 

F0 e C2(0, +00), the function f !-• £2Fo(f) is extended to the entire H 

in order that the extension is a.e. differentiable 

and 0 < Ct < f (2F^) + ^ ' ( 0 ) < C* for a.a. f € R , 

JV € C0,1(IR) is strictly positive with 1/7V £ L°°(1R), 

Go = /[0,i], Fu F2, d € G2(M) n C ^ I R ) , 

F&) > 0 V £ e IR, and 1/i^ e L°°(IR) 

for the sample problem characterized by fo — 0, k — 0, and a = 0. In this frame
work, Gentili, Giorgi and I obtained in [6, Theorems 3.1 and 3.4] existence of a 
strong solution (d, X) (that is, a solution more regular than in (12) and such that 
all equations and boundary conditions are satisfied almost everywhere) fulfilling the 
positivity property d > 0 a.e. in Q (see also [8] for related results). 

Of course, the case considered in [6] is not interesting for the optimal control 
problem since (8) reduces to a Neumann homogeneous boundary condition and thus 
the solution (#, X) to (23-25) would be always the same independently of the control. 

Therefore, a first open problem is the following 

QUESTION 1 [well—posedness] For a given u 6 L2(E) and under assumptions 
(10-11), prove existence, uniqueness, and possibly continuous dependence on the 
data, of a (weak) solution (d, X) to problem (23-25). 

Once this necessary and preliminary step is settled, one could address the optimal 
control problem for the system (23-25). 

QUESTION 2 [extensions] Prove results analogous to Theorems 1 and 3 for the 
triplets (9*,X*,u*) minimizing the cost functional J and solving (23-25). In addi
tion, try to extend the analysis when Go is not necessarily the indicator function of 
the interval [0,1], but an arbitrary proper convex lower semicontinuous function on 
IR (this would of course affect also Question 1). 

As it seems rather clear, the generalization of Theorem 2 is of minor interest 
in this framework, where the attention is focused on the rate-type phase transition 
models. 

QUESTION 3 [improvement] In some special and significant cases for Go, for in
stance when dG0(X) = G0(X) = X3 andG is the corresponding double well potential, 
improve the conclusion of Theorem 3. In particular, prove some further necessary 
conditions for the function q in order to completely identify the pair (p, q) from 
optimality conditions. 
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This contribution ends with the above questions which appear rather intriguing 
to me. I do hope to be able to tackle them in the near future. To resolve this 
question would be a way, I think, to keep Giorgio's memory alive. 

Acknowledgment I would like to acknowledge a financial support from the Italian Min
istry of Scientific Research and Technology through the COFIN 2000 research program on 
"Free boundary problems". 
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Some inverse problems related to the 
heat equation with memory in non 

smooth spatial domains * 

Fabrizio Colombo^ 

1. - Introduction 

In this note we present some inverse problems related to the heat equation with 
memory. The memory thermal effects are taken into account by modifying the usual 
heat equation with an additional convolution term. 

Let f2 be an open bounded set in R 3 and T > 0. We can easily deduce the 
evolution equation for the temperature u by the continuity equation (for (t,x) G 
[0, T] x fi) 
(1) Dtu(t,x) + divj(t,x)-f{t,x)=0, 

in which the vector J denotes the density of heat flow per unit surface area per unit 
time and / is the heat source per unit volume per unit time in Q. The well known 
Fourier's law is given by 

(2) J{t,x) = -DiVu(t,x) 

and its best modification for materials with memory, supported by experiments, 
leads to replace (2) by 

(3) J(t, x) = - D i Vwfi, x) - D2 [ hit - s, x)Vu(s, x) ds, 
Jo 

where Di and D2 are given positive functions and h is the convolution kernel, which 
accounts for the thermal memory. To obtain the equation for the evolution of the 
temperature we replace (3) into the continuity equation (1) and we get 

(4) Dtu(t,x) = div[DiVu{t,x) + D2 [ h(t - s,x)Vu(s,x)ds] + f(t,x). 
Jo 

The fundamental point, when we deal with memory effects is that the kernel 
h cannot be considered a known function since there are no ways to measure h 
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directly. What we can do is to try to reconstruct h by additional measurements on 
the temperature u in a suitable subset of the body Q. Such additional information 
on u can be represented in integral form as follows 

(5) f <j>(x)u{t,x)dx = g(t), W e [ 0 , T ] , 
Jn 

where <j> and g are given functions representing the type of device used to measure 
the temperature and the results of the measurements, respectively. The inverse 
problem we consider in its more general form is the following. 

Determine the temperature u : [0,T] x Q —> R and the convolution kernel 
h : [0, T] x Q —> R satisfying (4) and (5) under suitable initial boundary-conditions. 

The general problem just introduced is very difficult to solve in the general form, 
but some approximated models of physical interest can be considered. In recent 
years we have collected our results in the papers [4], [5], [6], [7]. 

The first attempt to solve integrodifferential inverse problems of parabolic type, 
using the theory of analytic semigroups as fundamental tool, has been done by A. 
Lorenzi and E. Sinestrari in [13]. 

Then several authors have worked in this area, studying the non linear version of 
the equation or systems with kernels independent of space variables see for example 
[2], [8], [10], [11], [12]. Recently in [1] has been solved an inverse problem for a 
Phase-Field model with memory. 

Using the Laplace transform method important results can be found for example 
in [15], [16] and their bibliography. 

The novelty of the papers [4], [5], [6], [7] is that the kernel h is supposed to 
depend on spatial variables. 

We now show the approximated physical models without giving the precise func
tional setting, at the moment we are interested in pointing out the physical differ
ences. We will be more precise in the next sections. 

Problem 1. The inverse problem we have solved, in the papers [5], [6], can be 
formulated as follows: Given the data <j>, g, u0 and f determine the couple (u, h) 
satisfying the system 

ut{t, x, y) = Bu(t, x, y) + /0' h(t — s, x)Bu(s, x, y)ds 
+f{t,x,y), (t,x,y)e[0,T\xil, 

(6) { u(Q,x,y) = u0(x,y), (x,y)eil, 
u{t,x,y) = 0, {t,x,y)€[0,T]xdn, 

Ju <l>{v)u(t, x, y)dy = g(t, x), (t, x) £ [0, T] x [0, L] 

in the framework of Sobolev fractional order spaces. 
Here fi is the bounded space cylindrical [0, L] x ui and x e [0, L] and y € u, B 

is a uniformly elliptic differential linear operator, in particular B is split in the sum 
Bi+B2 and B\ and B2 commute in the sense of resolvent. In this first approximation 
we suppose that the term /„* Vh(t — s, x)Vu(s, x) ds can be neglected. The sum of 
applications has been introduced to formulate the problem in an equivalent fixed 
point form that is more simple to treat. 

The papers [5] and [6] are based on the generation results [9]. 
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Problem 2. The inverse problem studied in [7] can be formulated as follows: 
Given the data 4>i, <t>2, gi, 92, (•, UQ and f determine the couple (u,h) satisfying the 
system 

(7) 

ut(t, x, y) = Au(t, x, y) + j0
l h{t - s, x)Bu(s, x, y)ds 

-f*Dxh{t-s,x)Cu{s,x,y)ds + f{t,x,y), {t, (x,y)) e [0,T] x Q, 
u(0,x,y) = u0(x,y), (x,y) 6 0 , 

dVAu{t, x, y) = £{t, x, y), {t, {x, y)) 6 [0, T) x dQ, 

ftiMX'yMt^ivWxdy = 9i{t), te [O,T] 
L<l>2{x,y)u{t,x)dy = g2{t,x), (t,x) G [0,T] x [0,L] 

in the framework of the space of continuous functions. 
Here fi is as above, A and B are second order operators, while C is a first order 

linear differential operator. The novelty with respect to the first problem is that A 
is split in the sum A\ + A2 with Ai and A2 that do not commute in the sense of 
resolvent. This problem is a generalization of the one above also for the introduction 
of the term /0 Dxh(t — s, x)Cu(s, x) ds. 

Problem 3. In the paper [4] we have considered a more general model since it 
contains two memory kernels but we neglect the term f0 Dxh(t — s,x)Cu(s,x) ds. 
The inverse problem we have solved can be formulated as follows: 

Given the data <f>\, <f>2, G\, G2, R, F, and UQ determine the triplet {u,ki,k2) 
satisfying the system 

Dtu(t,x,y) = Au(t,x,y) + A Jo ^i(* — s,x)u(s,x,y)ds 
+ So k2{t - s, x)Au(s, x, y)ds + F(t, x, y), 

(t,(x,y))£{0,T}xO. 
(8) { u(0,x,y) = u0(x,y), (x,y)eO, 

u{t, x, y) = R(t, x, y), (t, x, y) e [0, T] x dO, 

SoxM
x>y)u(x,y)dy = Giit'X), x^ [ML 

Sox 4>2{x, y)u{x, y)dy = G2(t, x), x e [a, b], 

in the framework of the space of continuous functions. 
Here O is an admissible curvilinear polygon in R2 , [a, b] is its projection onto 

the x—axis and we have set 

(9) Ox := {y e R : (x, y) e O}, Vx G [a, b], 

finally, A is a suitable uniformly elliptic second-order differential operator. 
The novelty of this paper is that, related to this model we prove theorems of 

existence and uniqueness of a solution global in time and, even though we limit 
ourselves to plane spatial domains we consider curvilinear polygon with arbitrary 
corners. The paper [4] is based on the generation results [3]. 

The strategy to solve the above mentioned problems consists in reformulating 
each one in a suitable abstract framework, related to a Banach space X. In this 
new form we can apply the analytic semigroup theory and optimal regularity results 
in Holder or in Sobolev spaces to transform the integrodifferential problem in an 
equivalent fixed point system of Volterra second kind integral equations. 
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The equivalent system in fixed point form is a crucial step in our approach since 
the compatibility conditions for the equivalence are also the conditions which assure 
that the inverse problem is well-posed. 

Then we apply fixed point arguments to prove existence and uniqueness for the 
Volterra system and finally thanks to suitable generation estimates, we apply the 
abstract theorems to the concrete case. 

In Section 2 we introduce the functional setting, 
in Section 3 we study problem P1 ; 

in Section 4 we study problem P2 and 
in Section 5 we study problem P3. 

2. — P re l imina ry mate r i a l 

In this section we define the Banach spaces that will be used in the sequel to 
formulate our results. 

We denote by C([0, T];X) the Banach space consisting of all X-valued contin
uous functions defined on [0, T\. As usual we equip C([0, T];X) with the sup-norm 
IMIojyr : = ||w||c([o,r];X)- Moreover, with any /3 € (0,1) we define the Holder spaces 
C^([b,'r];X)as 

(10) {ueC({0,T];X):\u\p,T,x= sup (t - s)-p\\u{t) - u(s)\\ < co} 
0<s<t<T 

and we endow them with the norm ||u||0,:r,.x = ||M||O,T,X + \u\p,T,x-
The Sobolev spaces of fractional order W>P((Q, T);X) consist of all functions 

/ G L P ( ( 0 , T ) ; X ) for which 

(11) \f\w>*«0,T)>x) •= {[dh £ \t2 - h]-1-^ f(t2) - HhWdh)1" < +co, 

W'p((0,t);X) turn out to be a Banach spaces when equipped with the norms 

(12) \\f\\w>*«0,nx) = (ll*-'/ll£,((o,ni*) + l / l^ -mW 1 7 ", tf * e (o, i/P), 

(13) ||/||lV-.P((0,T);X) = (\\f\\PLP((0,T);X) + l/lW^((0,T);X))1/P> */ ° G (VP' 1)-

We now recall some results from the analytic semigroup theory and interpolation 
spaces. For more details see [14]. Let B : D(B) C l ^ l b e a linear closed operator 
(possibly with D(B) -fi X) satisfying the following assumptions: 

i) there exists 0 G (TT/2, W) such that the resolvent set of B contains 0 and the 
open sector E9 = {/( e C\{0} : | arg/i| < 9}; 

ii) there exists M > 0 such that \\(XI - B)~l\\C(X) < M|A|_1 for any A e Efl. 
Here C(X) denotes the Banach space of all bounded linear operators from X 

into itself equipped with the sup-norm. 
By virtue of assumptions i ) , ii) we can define the analytic semigroup {etB}t>0 

of bounded linear operators in C(X) generated by B. 

After endowing D(B) with the graph-norm we can define the following family 
of interpolation spaces DB(/3, +00) (for /3 e (0,1)), which are intermediate between 
D{B) and X: 
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(14) VB{/3, +00) = {xeX: \X\VB{BI+OO) := sup i (1-«| |Be tBa:| | < 00}. 

Moreover, we set 

(15) P f l ( l + /3, +00) = { i e D{B) : Bx e VB{P, +00)}. 

Consequently, T>B{n + /?, +00) (n 6 N, /? e (0,1)) turns out to be a Banach spaces 
when equipped with the norm 

n 

(16) 
%\VB(P,-I-OO)-

3=0 

With any linear operator B satisfying assumptions of type i) , ii) we can associate 
the vector spaces T>B(t],p) (77 € (0,1), p € ( l ,+oo)) , intermediate between X and 
V{B), defined by 

T>B(V,p) = LeX: \x\w := (^ + °° t ^ " ^ ^ - w ^ ^ x f dtV " < + 0 0 | . 

(17) 
Analogously, we set for any p £ (1, +00) and r\ £ (0,1) 

(18) VB(l,p) = V(B), VB(l + V,P) = {x€V(B):BxeVB(r,,p)}. 

We recall that VB(n + rj,p) (n = 0,1) are Banach spaces when equipped with 
the norms 

(19) N U ^ = £ | |B'z | | + | B ^ c | w , n € (0,1), p € (1, +00), n = 0 ,1. 
j=o 

In the following sections we will formulate the three problems more precisely and 
we state the relative statements of the theorems associated. 

3. - The first problem 

In this section we consider bounded sets of cylindrical type Q. — ̂  x Q2 where 
Oi and Sl2 denote, respectively, an open interval in R and open bounded set in TV. 

The problem Pi: Find two functions u : [0, T] x Q, ->• R and h : [0, T] x f̂  -» R 
satisfying the equations: 

Dtu(t, x, y) = Bx (x, Dx)u{t, x, y) + B2(y, Dy)u{t, x, y) 

+ I h(t - s,x)[Bi{x,Dx)u(s,x,y) + B2(y,Dy)u(s,x,y)]ds 
Jo 

(20) +/(*, x, y), (t, x, y) e [0, T ] x ( ! , x ( ] 2 , 

(21) u{0,x,y)=u0(x,y), (x,y) € fix x fi2, 

(22) u(i, a;, y) = 0, t G [0, T], (x, y) e (90i x Q2) U (Oi x dtt2), 
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(23) [ (KvMt,x,y)dy = g{t,x) (t,x) e [0,T\ x Qu 

where / : [0, T] x Q. -> R, uQ : fi ->• R, 5 : [0, T] x ftx -> R and <j> : Q2 -> R-
are prescribed functions. Moreover, the linear differential operators B\{x,Dx) and 
B2{y,Dy) are defined by 

(24) Bi(a:,I»«) = E 4 - f c W £ , 5 . 
ft=0 

(25) B2(y,Dv) = J2 a$(y)DyhDyt + £ a f (y) A,„ + a<2>(j,), 
/i,fc=l h = l 

and we assume B\{x,Dx) and B2{y,Dy) to be uniformly elliptic in Qi and f22, re
spectively. In [2] with the specific identification problem (20)-(23) we have asso
ciated the following abstract version related to a Banach space X: find a function 
u : [0, T] —» X and an operator H : [0, T] —>• £(X) satisfying the equations: 

(26) w'(t) = (Bj + B2)u(i) + ftH{t-s){B1 + B2)u(s)ds + f{t), te[0,T], 
Jo 

(27) «(0) = «o, 

(28) $(u(i)) = G(t), te[0,T}. 

For any fixed pair of Banach spaces X1 and X2 we denote by £(Xi ;X 2 ) the 
space of all bounded linear operators endowed with the uniform norm. We also 
set C(X\\X\) = C(Xi). The main assumptions are the following. We now endow 
with the graph norms the domains T>(Bj) C X of the linear closed operators Bj 
(j = 1,2). Further, we assume that Bj : V{Bj) C X (j = 1,2) are sectorial 
operators with resolvent sets p(Bj), respectively, related to six constants ujj e R, 
0j e (TT/2, 7r), MJ > 0 {j = 1, 2) such that 

HI p{Bj) D S*0.,Uj = {Xj 6 C; A,- i= Wj, |arg(Ai - uij)\ < 6j}; 
H2 \\(XjI - Bj)-l\\c(x) < Mj\\j - Uj\~\ VA,- e Sijm; 
H3 there esists a pair (pi,p2) £ p{B\) x p(B2) such that 

V((nJ - Bx){p2I - B2)) = V{(p2I - B2)(ti1I - Bi)) 
and {pj - Bi){inl - B2) = (p2I - B2)(p1I - B-Cj; 

H4 V((p2I-B2)(XJ-B1))cV((p2I~B2)(p1I-B1)), VAX G p(Bi); 
H5 V{{pxI - B!)(A27 - B2)) c 2?((/xi7 - B i ) (^ 2 / - B2)), VA2 e p(B2); 
H6 p(Bi + B2) contains a real number p > max (0, w\) + co2; 
HI $ e £ ( X ; £ ( X ) ) n £ ( 2 ? ( f l i ) ; £ ( 2 ? ( 5 i ) ) ; 
H8 Bi$[w] = $[Biw], Vw 6 P(Bi) ; 
# 5 H$[u] = $[Hu], Vw e I , V / / € /C; 
# 7 0 F 6 C{V{BX)) and B2H = HB2, VH € /C; 
i/_/_/ ^(BiWo + B2u0 — /iUo) «s invertible in K, for some 

p € (max (0, wi) + CJ2, + 00) 

and its inverse operator A(u0) := [^(BxUo + B2Uo — ^Uo)]"1 belongs to fC. 
We recall that K. denotes a closed subalgebra in C(X) nC(D(Bi) nV(B2)). 
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We now list our assumptions on the data 
Kl f E W^{{0,T0);V{B1)nV(B2))nW1+"'P{{0,T0)-V{B2)y, 
K2 u0 e X>(Bi) n V{B2) n V{{BX + B2)B2), u0 satisfies # 1 1 ; 
K3 G e W2+<^((0, T0); £(X)) n VF1 +^((0, T0); £>(Bi)); 
K4 w0 e VBl(a + l/P++,p) HVB2(a + l/p++,p); 
K5 w1eVBl{a-l/P,p)nVB2{a-l/p,p), if a e ( l / p , l ) ; 
where T0 is a fixed positive number and 

(29) w0 := (B2 - nt)[{Bx + B2 - iil)u0 + /(0)], 

Wl := (Bj + B2 - / i / ) (£ 2 - /i/)[(B! + B2 - M7)M0 + /(0)] + (B2 - / i /)/"(0) 

- { $ [ ( B 2 - ^ ( ( f l i + B2 - /i/)uo + /(0))] - G"(0) + SiG"(0) + $[/"(0)]}A(%) 

(30) X{B2-IJ,I)(B1 + B2-IJ,I)U0. 

Then we list the consistency conditions related to our problem 
K6 $ H = G ( 0 ) ; 
K7 (Bt +B2- nI)G(0) + $ [ B 2 M 0 + /(0)] = G'(0). 
We now denote by Q the space of our admissible data satisfying H l - H l l and 

K1-K7. We also defined the following subset Q(m) (m G R + ) by 

(31) Q{m) = {(f,G,u0) G g : | | [$(Si«0 + S 2 M 0 - /i«o)]_1 |k < m}. 

We define then the following Banach spaces, where s e [1, +oo): 

(32) US'"{X) = Ws'p{{0, T); X) n W8'1'"^, T); £>((#!) n X»((B2)-

Finally, we give the main theorems in [6]: 

T H E O R E M 1 Let ( / ,G,u0) G Q(m) for some T0 > 0, p G ( l ,+oo) , m > 0, and 
let a G (0, l ) \ { l / p } . Then there exists T* G (0,T0] such that for any T G (0,T*] 
problem (26)-(28) admits a unique solution (u,H) G W2+CT-P(X) x ^ •" ( (O.T^ /C) . 

T H E O R E M 2 for any m > 0 andT G (0,T*j <Ae map (f,G,u0) ->• (u,i7), tu/iere 
(u,H) is the unique solution to problem (26)-(28), is bounded (i.e. maps bounded 
sets into bounded sets) and is Lipschitz continuous from Q(m) into 

U2+a'p(X)x W*((0,Ty,JC). 

The abstract theorems stated above can be applied to the concrete problem Pi 
choosing as reference spaces X = L»{Sl2; Wl'v{Q.i)) where W^p are the well known 
Sobolev spaces and p > 1. The chosen spaces seem to be unusual, one could think 
that the most natural spaces are X = U^i x £l2), but this turns out to be not 
correct because the evolution equation does not have meaning here. The above 
choice is necessary, because the kernel h depends on the spatial variable x. 
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4. - The second problem 

The paper [7] is concerned with the identification of an unknown coefficient h 
(the relaxation coefficient, depending on time and one space variable) appearing in 
the following integrodifferential equation related to the convex cylindrical domain 
Q = ( 0 , < ) x u C R n {n > 2), w being an open bounded convex set in R n _ 1 . 

The problem P2: Find two functions u : [0, T] x Q -+ R and h : [0, T] x Vli -»• R 
satisfying the equations: 

Dtu(t, x, y) = Au(t, x,y) + / h(t — s, x)Bu(s, x, y) ds 
Jo 

(33) + f Dxh{t - s, x)Cu{s, x, y) ds + f(t, x, y), {t, x, y) E [0, T] x fi, 
Jo 

(34) M(0,x,y) = u0(x,y), (x,y) € tt, 

(35) *L(t,x,v) = j±(t,x,y), (t,x,y)€[0,T]xdn, 

(36) Q[u(t, -)]{x) = <p{t, x), (t, x) € [0, T] x (0, t), 

(37) *[u(t, . , .)] = V'(*). t£[0,T], 

where u0 : f2 —• R and ui : [0, T] x £} —> R are given (smooth) functions and VA 
denotes the conormal vector associated with A and fi. 

To determine the relaxation coefficient h we assume additional information avail
able by $ and * . The linear operator $ acts on the variable y only, while ^ is a 
linear functional acting on all the space variables. The operators are: 

n—1 n— 1 

A = Dx[ahi(x)Dx] + Y, Dx[au+j(x,y)Dyj] + Y, DyilamAx> v)Dx] 

n—1 n—1 

(38) + Y Dyi[a1+iti+j{x, y)Dyj\ + a,i(x, y)Dx + ]T a1+j(x, y)DVj + a0(x, y), 

B = Dx[bhl(x,y)Dx] + £ Dx[bltl+j(x,y)Dyj} + £ DVi{bl+i>l(x,y)Dx] 
j=i i= i 

n - l n—1 

(39) + ]T DSi[bi+i,1+j(x, y)DVj\ + h(x,y)Dx + £ h+j{x,y)Dy. + b0(x,y), 

n - l 

(40) C = d(x, y)Dx + Y ci+i(x> y)Dyj + co(x, y)-

We note that C is a linear (formal) first-order differential operator, while A and 
B are two linear (formal) second-order operators with principal parts in divergence 
form. We emphasize that the coefficient ai,i in A depends on x, only, instead of on 
the pair (x, y) as in the general case. In particular, A turns out to be the sum of 
two linear differential operators A\ and A2, the first acting on the variable x only, 
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while the latter is differential in y with coefficients depending on both x and y, so 
that A\ and A2 do not commute. Operator A is supposed to be uniformly elliptic. 

Examples of admissible <& and \I/ are in Section 1 Problem 2. 
In this second problem we have considered, besides the sum of non commuting 

operators the term /0* Dxh(t — s, x)Cu(s, x, y) ds which introduces serious difficulties 
in formulating directly the inverse problem in an abstract setting. In fact we are 
forced to introduce an intermediate step, consisting in an equivalent problem in 
non abstract form for the unknowns Dtu, Dxh(0,x) and h(t, 0). To identify the 
convolution kernel h we have to identify Dxh(0,x) and h(t, 0), for this reason we 
must give two additional measurements on the temperature. 

We then give an abstract formulation and we formulate a second equivalent 
problem in abstract form. Starting from it we apply fixed point arguments to prove 
our results. 

Since the consistency conditions and the regularity conditions are very compli
cated we do not report them in the following but we refer the reader to the original 
paper. 

The set of admissible data X are in [7]: 
i) assumptions (1.5),(1.6), (2.1)-(2.9), (2.11)-(2.15) be fulfilled, 
ii) the consistency conditions (1.16)—(1.21) be fulfilled and satisfy the inequalities 

(2.20), (2.21). 
The result we obtain in this case is the following 

T H E O R E M 3 Suppose the data belong to X. Then the identification problem Pi 
admits a unique solution 

(u, h) G [C2+/?([CJ, T]; L2(n)) n C1+f,([0, T]; ff2(ft))] x C8((0, T*); #({0, £))), 

for some T* G (0, T] and /3 G (1/2,1). Moreover, (u, h) continuously depends on the 
data with respect to suitable norms. 

5. - The third problem 

The last problem introduced in Section 1 can be formulated in abstract form 
in the following way. Determine two functions u : [0,T] —• X and k : [0,T] —> Z 
satisfying the system: 

( u'(t) = Au{t) + k* (Bu + r)(t) + f{t), te[0,T], 
(41) I u(0) = «o, 

{ *[u(t)] = g(t), te[0,T}. 

The abstract version of the problem is studied under the following hypothesis: 
(HI) X, Y, Z are Banach spaces, (k, y) —> ky is a bilinear and continuous mapping 
from Z xY to X; 
(H2) A : D{A) C X —> X is a closed linear operator such that the resolvent set p(A) 
of A contains the sector E := {/J, € C \ {0} : \fi\ > A0, \argfi\ < | } and there exist 
m > 0 such that \\(XI - Ayl\\C(x) < m\X - A0 |_1 for any X € E; 
(H3) B € C(D(A);Y); 
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(H4)$e£(X,Z); 

(H5) u0 € D(A) and the linear continuous mapping of Z into itself 

k -»• <i>[k(BuQ + r(0))] 

is one to one and onto. We shall indicate with M the inverse mapping; 
(H6) there exist 7 € (0,1), A\ closed linear operator in Z with domain D(Ai) and 
^! € £(0,4(7,00); Z) such that, for every u 6 D(A), we have 

(42) ${Au) = Ai$[u] + *M; 

(HI) concerning A\ we also assume the following: leth G C1([0, T]; Z)C\C([0,T}; D(Aij) 
be such that 

' h'(t) = Alh{t) V i € [ 0 , r ] , 
h(0) = 0. 

Thenh(t) = 0, V i e [ 0 , T ] ; 
fffSj r € C1+^([0, T]; Y), /or some /? € (0,1). If /i : [0, T] -4 Z and w : [0, T] -4- Y, 

we set, for t e [0, T], 

(43) ft, * u(t) := /" h(t - s)u(s)ds 
Jo 

whenever the integral in (43) is defined in the sense of Bochner. According to HI, 
it is possible to define the semigroup {etA}t>o, of bounded linear operators in C(X), 
so that t —> etA is an analytic function from (0,00) to C(X). For more details see 
([14]). The main abstract result of this paper is the following 

T H E O R E M 4 Assume that (HI) — (H8) hold. Suppose, moreover, that 
(H9) v0 := Au0 + /(0) € D(A); 
(H10)feC1+'i([Q,T}-X); 
(Ml) g e C2+^[0,T];Z)nC^([0,T];D(A1)); 
(H12) $[«„] = g(Q), $[«„] = g'(0); 
(H13) Av0 + / ' (0) + k0(Bu0 + r(0)) € -DA(/?, 00), w/iere k0 is defined as 

k0 := M(g"(0) - $[Av0 + / '(0)]), and M is defined in H5. Then problem 
(41) has a unique solution (u,k) € [C2 + / ,([0,r];X)nC1 + '3([0,T]; D(A))} x 
C ( [0 ,T ] ;Z ) . 

This theorem is proved in Section 5 of [4]. Thanks to the generation results 
proved in [3] we can choose as reference space X = ^(O) which is an algebra and 
our concrete,problem P3 in Section 1 is well posed in this functional setting. 
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On the minimal free energy and the 
Saint-Venant principle in linear 

viscoelasticity * 

L. Deseri t G. Gentili* J. M. Golden§ 

1. - In memory of Giorgio 

The heritage that Giorgio Gentili left is certainly important not only from the 
scientific point of view. This contribution is dedicated to his memory and to his 
family. We know that He wants us to remember him in joy, but even though this is 
the case, it is not without commotion that we write these notes, to which Giorgio 
gave his significative contribution. 

2. - Introduction 

Work on deriving clearly quantified expressions of Saint-Venant's principles for 
elastic and other materials has been ongoing for some decades [24]. Rigorous proofs 
of of such a 'principles' for particular classes of linear viscoelastic solids have been 
provided in the past by many authors [see e. g. [26] and references cited therein]. 
In spite of the general shape of the analyzed bodies, main issues, such as proving 
a Saint-Venant principle for general dissipative relaxation functions, have not been 
solved yet. A very intuitive form of the Saint-Venant principle for a linear elastic 
cylinder maybe seen in several papers, such as [25]. In these cases, such a cylin
der is assumed to be free from constraints and loaded on one basis only by a self 
equilibrated traction field; the spatial decay properties of the stored energy are then 
investigated. In particular, the state of points on the cross sections of the cylinder 
are considered. The rate of spatial decay of the energy is determined along the 
direction of the axis. In the case of a semi-infinite solid this argument shows that 
the energy stored in the solid delimited by the loaded basis and a given cross section 
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approaches its value at the natural state, as the distance of the given cross section 
increases from the loaded basis. It follows that the corresponding state of points on 
the same cross section approaches the natural state. In the context just described, 
the state, called elastic state, is given by the triple {u(x, t), E(x, t), T(x, £)} (see [2]). 
As far as linear viscoelastic materials are concerned, two replacements have to be 
done in order to establish a Saint Venant principle: (i) the stored energy has to be 
replaced by some free energy, and at the same time (ii) a notion of linear viscoelastic 
state has to be provided. About (i), it is very well known that there are different 
(but related) possibilities of defining the free energy for a linear viscoelastic material 
[4]pir3, and the issue of its non-uniqueness arises [23], [15]], [16], [20], [21], [22],[14], 
[7], [32],[1]. About (ii), a notion of state for linear viscoleastic materials has been 
provided in [4] by particularizing the concept of state proposed by Noll [3]. 

The two issues (i) and (ii) have then been faced at once in [4, 8]: in particular, 
for the considered set of free energies, which are functions of the state in the sense of 
Noll, the existence of both the maximal and the minimal element is ensured, the lat
ter being the maximum recoverable work from a given state. An explicit expression 
for the isothermal minimum free energy of a linear viscoelastic material has been 
given in [1] for the case of a scalar constitutive equations, and the same problem 
has been solved for general tensorial stresses, strains and relaxation functions in 
[27]. There, a characterization in the frequency domain for the state in the sense 
of Noll has also been provided, and the resultant expression for the minimal free 
energy has shown to be a quadratic form in the variable characterizing the state in 
the abovementioned sense. References [26, 27] form the basis of the present work, 
the aim of which is to utilize the explicit expression for the minimum free energy 
and its properties in obtaining an energy decay estimate. 

The desired estimate can be established on the minimal free energy provided 
that a time-integral inequality, involving the difference between this free energy and 
the inner product between the values of stress and strain, is verified. It remains 
not clear whether or not this is the case for all relaxation functions satisfying the 
minimal thermodynamic restrictions; it is certainly the case for a special class of 
functions, and this will be discussed in the sequel. 

In the case of a semi-infinite cylynder, the state of points on a given cross section 
of the cylinder "far enough" from the loaded basis turns out to approach the natural 
state. This is infact the case, because the associated minimal free energy provides a 
norm in the state space [27], and the above mentioned result shows that the minimal 
free energy approaches its value at the natural state. The estimate for the spatial 
decay of the minimal free energy, integrated over a portion of the given cylinder, is 
obtained in this paper in terms of the constant derived in [26]. The result allowing 
for the stated decay property entails a new estimate on the magnitude of the stress 
at a given state in terms of the corresponding value of the minimal free energy 
density. 

In a future paper [11],the remaining authors will face and solve other two prob
lems which had been already discussed and almost solved with Gentili. The first 
one may regard the quasi-static case in which the self-balanced tractions do act with 
just one frequency. For this case the frequency-dependence of the spatial decay of 
the minimal free energy will be obtained. It will also be shown that any other free 
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energy does decay more rapidly than the minimal one, allowing for establishing the 
largest-influence zone for the given frequency of the applied tractions. The inertial 
case will also be discussed in a future paper together with the resulting domain of in
fluence and spatial decay theorems are discussed. The energy measure involving the 
minimum free energy, rather than the Morro-Vianello function used in [26], obeys a 
differential inequality that is stronger than that given in [26]. 

3. - Notat ion and basic assumptions for a linear viscoelastic solid 

Let Sym be the space of symmetric second order tensors acting on 1Z? viz. 
Sym := {M e Lin{Tl3) : M = M T } , where the superscript "T" denotes the 
transpose. Operating on Sym is the space of the fourth order tensors Lin(Sym). 

It is well known that Sym is isomorphic to 7£6. In particular, for every L, M G 
Sym, if Cj, i = 1, ...,6 is an orthonormal basis of Sym with respect to the usual 
inner product in Lin(7l3), namely t r (LM T ) , it is clear that the representation 

6 6 

(1) L = ^ L i C i , M = ^ M i C i 

i = l z = l 

is such that i r (LM T ) = 5Z;=i LiMi. Therefore, henceforth we treat each tensor of 
Sym as a vector in 1Z6 and denote by L • M the inner product between elements of 
Sym, viz. 

6 

L • M = t r (LM T ) = tr(LM) = ^ UM, 

and |M| 2 = M • M. Consequently any fourth order tensor K e Lin(Sym) will be 
identified with an element of Lin(7l6) by the representation 

6 

(2) K = J2 Kad ® C3 

and K means the transpose of K as an element of Lin(1Ze). According to (2), 
the norm | IK| of K € Lin(Sym) may be given by 

K| : 

In the sequel we deal with complex valued tensors. Denoting by f2 the complex plane 
and by Sym(Q) and Lin(Sym(£l)) respectively the tensors represented by the forms 
(1) and (2) with Li, Mu Kij 6 0, then the norms |M| and | K | of M £ Sym(£l) and 
IK e Lin(Sym(Q.)) will be given respectively by 

(3) |M|2 = (M • M ) , | K| 2 = tr ( K K*) = ( £ # « # * ) , 
\M=1 / 
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where the overhead bar indicates complex conjugate and K* = K is the hermitian 
conjugate. 

The above representations allows results of [6] to be easily extended to tensors 
belonging to Lin(Sym(Q.)). 

The symbols TV and TV+ denote the non-negative reals and the strictly positive 
reals, respectively, while TV and TZ denote the non-positive and strictly negative 
reals. 

For any function / : TZ —» V, where V is a finite-dimensional vector space, 
in particular in the present context Sym or LinSym, let fF, denote its Fourier 
transform viz. /F (W) = f^° f(s)e~'"sds. Also, we define 

/ + H = / f(s)e-^sdS, / _ M = / Medals 
(A\ JO J-CO 
V / /»oo pec 

fa(u)) = / f(s)smu>sds, fc(uj)= / f(s)cosu>sds 
Jo Jo 

The relations defining fp and (4) are to be understood as applying to each com
ponent of the tensor quantities involved. Some constraint must be placed on these 
components to ensure that the Fourier transforms exist. It is assumed that all com
ponents of tensors in the time domain belong to L2(TZ) (or L2(7?.±) in the case of / ± ) 
so that in the frequency domain, they belong to L2(TZ) (or Z , 2 ^*) ) [12]. Further 
restrictions on the allowed function spaces will be imposed below. 

When / : TZ+ -> V we can always extend the domain of / to TZ, by considering 
its causal extension viz. 

(5) f(s) = 
f(s) for s > 0 

0 for s < 0 

in which case 

(6) / F M = / + M = / C H - » / . ( W ) 

We shall need to consider the Fourier transform of functions that do not go 
to zero at large times and thus do not belong to L2 for the appropriate domain. 
In particular, let / ( s ) in (5) be given by a constant a for all s. The standard 
procedure is adopted of introducing an exponential decay factor, calculating the 
Fourier transform and then letting the time decay constant tend to infinity. Thus, 
we obtain 

/+(") = A 
(7) _ ^ 

LJ = limfw — ia) 
a->0v ' 

The corresponding result for a constant function defined on R~ is obtained by taking 
the complex conjugates of this relationship. Also, if / is a function defined on TV 
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and if l i m , ^ . ^ f(s) = b where the components of the function g : R+ —• V defined 
by g(s) = f(s) - b belong to L2(7l+), then 

(8) fF(w) = gF{to) - - ^ 

Again, taking complex conjugates gives the result for functions defined on 1Z+. This 
procedure amounts to defining the Fourier transform of such functions as the limit 
of the transforms of a sequence of functions in I?. The limit is to be taken after 
integrations over u> are carried out if the w_ 1 results in a singularity in the integrand. 
Generally, in the present application, the w_ 1 produces no such singularity and the 
limiting process is redundant. 

The comples ui plane, denoted by fi, will play an important role in our discus
sions. We define the following sets: 

(9) fi+ = {C G n : SmC > 0} , 0 ( + ) = { ( e f i : 9 m ( > 0 } . 

Analogous meanings are assigned to il~ and £)'"'. 
The quantities / ± defined by (4) are analytic in f̂ T' respectively. This analyt-

icity is extended by assumption to f)T. The function / + may be defined by (4) and 
analytic on a portion of fi+ if for example / decays exponentially at large times. 
Over the remaining portion of 57+, on which the integral definition is meaningless, 
/+ is defined by analytic continuation. 

4. — Relaxation functions, histories and s ta tes 

A linear viscoelastic material is described by the classical Boltzmann-Volterra 
constitutive equation between the current value of the stress tensor T(t) G Sym, 
the current strain E(t) G Sym and the past strain history up to the time t, i.e. 
E* : 11++ -» Sym, of the form: 

(10) 

/*oo 

T(t) = <E0E(t) + / (E(s)E((s)ds 
Jo 

/ • o o 

= (EooE(t) + / (E(s)E*(s)ds 
Jo 

where 

(11) E « ( s ) : = E ( t - a ) , Ej(s) := E'(a) - E(t), s G Tl++. 

We refer to E ' as the relative strain history. The fourth order tensor <E : TZ++ -4 
LinSym is assumed to be integrable, so its primitive, the relaxation function (B : 
7£++ —> LinSym is absolutely continuous and it is defined as 

(12) <R(t) : = ( E 0 + / (G(s)ds 
Jo 

where ffi0 = <E(0) is the instantaneous elastic modulus. Moreover there exists the 
limit 

(13) (Boo := lim <S(t) G LinSym 
t—>oo 
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where (Eoo is the equilibrium elastic modulus. We require the property that [27] 

(14) 0 < 
/•OO 

/ s(G(s)ds 
Jo 

< OO. 

The rightmost inequality follows from the assumed analyticity (and therefore differ
entiability) of (Ef. 

The Fourier transform of (G(i), namely (Bfr(w) = (Gc(w) — i<Ks(cj), for real w, 
belongs to L2(TZ), according to our earlier assumptions. It is clear that (Kc(tj) is 
even as a function of ui and (Ks(w) is odd. The quantity (Es(w) therefore vanishes 
at the origin. In fact, a consequence of our assumption of analyticity of Fourier 
transformed quantities on the real axis of f2, it vanishes al least linearly at the 
origin. The leftmost inequality in (14) implies that it vanishes no more strongly 
than linearly. 

Thermodynamic properties of the linear viscoelastic materials imply that [13, 14] 

(15) (D0 = ffiT, (E^ = ffiT , <Es(w)E • E < 0 VE € Sym Vw e Tl++. 

An important consequences of (15)3 is [14] 

(16) (G(O)E • E < 0 V E e j / m \{0} . 

Also [14] 

(17) ffi^ - (K0 = - r du^-

giving, by virtue of (15)3 

(18) (B0E • E > (GsoE • E VE G Sym \ {0} . 

We assume a stronger relation than (18)i, namely 

(19) ( K ( 0 ) E - E < 0 , V E e S y m \ { 0 } 

We also consider linear viscoelastic solids, so that enforce the following inequality 
to be satisfied: 

(20) (EooE • E > 0, VE G Sym \ {0} . 

We will allow the extra generality of inhomogeneity in some later sections, so that 
(K may depend on x. This dependence is omitted except where explicitly required. 

Let us extend the integral in (10) to "R. by identifying (E with its odd extension 
while taking E ( to be zero on TZ~. We now apply PlancherePs theorem, noting that 
<KF(UJ) = -2(Es(w), to obtain[7]. 

T(t) = <E0E(*) + - / (Es(w)E'(w)ds 
T J-oc 

i r°° • 

(21) = (EocEfi) + - / (E,(w)Ej+(w)d. 

E<+ = E ( » -

S 

- O O 

E(i) 

IUJ 
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where E*+ is the Fourier transform of E ' , defined in (10), as can be seen from (7). 
For simplicity, we let (E(i) be symmetric for all values of t. As well as belonging 

to L2(7l+), we assume that E ' e L1(7l+) n Cl(Tl+) and that its derivative also 
belong to L1(7l+) [12]. 

If we define the vector space 

(22) {E<: TV Sym; 
/*00 

Jo 
s + r )E ' (s) ds < oo Vr > 0 

the Boltzmann-Volterra equation (10) defines the linear functional T : Sym x T 
Sym such that 

(23) t (E( t ) ,E<) = G0E(t) + / (E(s)E*(s)ds 
Jo 

The concept of the state of a linear viscoelastic solid has been discussed by 
various authors [15, 4, 17, 3]. We briefly recall some basic propositions. 

REMARK 1. According to the definition in [15] and [14], a process P of finite du
ration d, is given by Ep : [0, d) —> Sym. Given the couple (E(J),E*) 6 Sym x F, 
related to the strain E( r ) , r < t, we associate with P the quantity 

(24) E P : (0, d) -> Sym, E P ( T ) = E(t) + / EP(s ' ) ds' r e (0, d] 
Jo 

The strain E / ( r ' ) = ( E P * E)(r ' ) , T' <t + d, yielded by E ' and Ep , is given by 

(25) E/ ( t + d - s) = (Ep * E)(t + d - s) 
Ep(d - s) 0 < s < d 

E(i + d - s) s>d 

Thus, Ef is related to the couple (Ep(d), (Ep * E) ' + d ) . 

We denote by II the set of all processes of finite duration, and by IToo the set of 
processes of infinite duration i. e. the ones related to Ep : TZ+ —> Sym. 

In the sequel we use the symbol" * " to denote both the combination of two 
histories and the combination (continuation) of two processes [4]. 

DEFINITION 1. Two histories E\ and E^ are said to be equivalent if for every E P : 
( 0 ,T ] —> Sym and for every T > 0, they satisfy [16] 

(26) f ( E P ( T ) , (Ep * E!) '+ T) = T ( E P ( r ) , ( E P * E2) ( 



As a consequence, it is easy to show that E ' is equivalent to the zero history 0^ 
if 

/

OO / * 0 0 

(E(s)E t + T (s)ds= / (K(s + T)E'(s)ds = 0 VT > 0 
Equation (27) represents an equivalence relation. Two histories E ' and Ej are said 
to be equivalent if their difference E* = E ' - E2 satisfies (27). 

According to the definition of the state a given by Noll [3], two couples (Ei(t), E ' ) 
and (E2(i) ,E2) such that Ei(t) = E2(t) and E^ - E2 satisfies (27), are represented 
by the same state o(t). In this sense, a(t) may be thought as the "minimum" set 
of variables allowing a univocal relation between E p : [0, r) —» Sym and the stress 
T(i + r ) = T ( E P ( r ) , ( E P * E) t + T) for every r > 0. 

In other words [4, 17], denoting with To the set of all the past histories of T satis
fying (27), and by r / r 0 the usual quotient space, the state a of a linear viseoelastic 
material is an element of x 

(28) E := Sym x ( r / r 0 ) 

Henceforth, we also view P as an endomorphism on E so that Pa 6 E will denote 
the state yielded by P starting from a £ E. 

The work done on the material by the strain history E ( T ) , T < t is 

W(E(<),E () : = / T ( r ) - E ( r ) d r 
J — OO 

(29) = i (G„E( t ) -E( t )+ / / (E(s)ET(s)-E(T)rfsdT. 

It will be clear from the representation of WA(E(i),E') in the frequency domain, 
given below, that it isji non-negative quantity. We will restrict our considerations 
to histories such that W(E(i),E*) < oo. 

The properties of the work have been extensively studied in [4]. 
A representation of the work W^(E(t),E'), defined by (29), in the frequency 

domain has been obtained in [7] (see also [18]) in terms of integrals over 7?.+. Using 
symmetry arguments, this representation can be expressed as an integral over 1Z of 
the form 

1 /"OO 

W W ) . E() = m + —J M( W )E^» • El+(uj)duj 

= S(t) + 7T H(w)E(
+(w) • ElJu))duj 

(30) i 7 r J-oo 

# ) = i (E 0 0 E(i) -E( i ) 

5 ( t ) = T ( t ) - E ( t ) - i f f i 0 E ( t ) - E ( t ) 
:It is worth noting that, by virtue of (22) and Definition 2.1, the space of the states E depends 

on the memory kernel (E characterising the material by means of (10). This property distinguishes 
(28) from the usual fading memory spaces 
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where, for each given u> € 11, the fourth order tensor H(w) € Lin(Sym) is defined 

as 

(31) H(w) := -u<Bs{w) 

The equivalence of the two forms of (30) follows from (17) and (21). They reduce 
to relations of Golden [1] in the scalar case. 

5. - Explicit expression for the minimum free energy 

From a result in [27], based on a theorem of Gohberg and Kreln [6], we have that 
M(UJ) can be factorized as follows: 

(32) H(w) = H+(w) H_(w) 

with ( 

(33) e+(w) = ET(w) 

where the matrix functions H(±) admit analytic continuations, are holomorphic in 
the interior and continuous up to the boundary of the corresponding complex half 
planes fi1*1, and are such that 

(34) det H (± )(C) ^ 0 , C e H± 

Similarly IH has a right factorization with corresponding properties [27]. 
The notation for H+(w) and H_(OJ) follow the convention used in [1], i.e. the 

sign indicates the half plane where any singularities of the tensor and any zeros in 
the determinant of the corresponding matrix occur. 

Consider now the second order symmetric tensor P'(w) = H - ( W ) E ' + ( C J ) , whose 
components are continuous by virtue of the properties of H_(w) and E ' + (w) . The 
Plemelj formulae [19] give that 

(35) P\u) := M.(uJ)E
t
r+(iv) = p ? » - p*.(w) 

where 

(36) pHz) :=— / — — <&j , pUcu) := lim p'(w + m) v ; w 2mJ_00uj-z ± v ;
 Q ^O=F^ V ' 

Moreover, p'(^) = pf
+(z) is analytic in z G fi(-) and pt(z) = pt(z) is analytic in 

z £ f2'+ '. Both are analytic on the real axis by virtue of the assumption in section 3 
on the analyticity of Fourier-transformed quantities on the real axis and an argument 
given in [1]. The minimum free energy has the form 

1 r°° -
(37) 1>m{t) = <Kt) + ^ J \pl{u)\2dj=:tl,m(-E{t),pL). 

where 4>m is the symbol denoting the minimal free energy as a functional of the state 
variables E(t),p'_. The main developments in [27] are in terms of the history E ( , 
although the result (37) in terms of the relative history E* is also given. 

It was demonstrated in [27] that ipm satisfies both the criteria required of a free 
energy in the sense of Graffi [20, 21] (also [22, 7]) and in the sense of Coleman and 
Owen [9, 4]. 
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6. — State in the frequency domain 

An argument used in [10], following the first characterization produced in [27] of 
the state of linear viscoleastic solids in the frequency domain, ensures that for every 
viscoelastic material with a symmetric relaxation function, a given couple (E, E () is 
equivalent to the zero couple (0, 0+) if and only if the p5_ related to E ' , by (35)-(36) 
is such that 

(38) pf_(w) = 0 , Vw € 11 

and E(i) = 0. Because the concept of state (at least in its original version) is stress-
based, the response functional (10) has to have a representation formula in terms 
of p!_(w). This can be obtained by noting that by (27) and (23) the stress can be 
epressed as follows: 

(39) T(t) = (BoE(t) + If(0). 

By particularizing Eqn. (7.7) obtained in [27] (Sect.7) the stress takes the form: 

(40) T(t) = <E0E(i) + -1 I" - ^ ± ^ q ! » d w , 

where q^_(w) and p(_(w) are related as follows (see e.g. [27] Sect. 8, [10], Sect. 6): 

(41) q«_(w ) = p^w)_J!=ME(t). 
ID 

An expression for the stress in terms of E(i) and p'_ can also be obtained, just by 
substituting (41) into (40) to get: 

(42) T(t) = (GxE(t) + - f" iL tMp^du =: t(E(t),pi 

and this will be considered in the following Proposition, providing an estimate for the 

magnitude of the stress in terms of the minimal free energy tpm(t) = ^>m(E(t),pL) 
defined in (37) . 

PROPOSITION 1. Let a(t) = (E(i),p^_) a given state. Then the following estimate 
holds true: 

(43) |f(E(i),pL)|2 < c0t/L(E(t),pi), 

where 

(44) c 0 :=2max{ | (E 0 0 | , | (E 0 0 - (Eo |} 

The proof of this Proposition is contained in [11]. 
In order to set the stage for a Saint-Venant principle a notion of triple related 

to the concept of state discussed in the previous sections may also be introduced. 
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7. — A Saint-Venant principle for the non inertial case 

We consider an open regular bounded cylindrical region Bo, which is occupied 
by an anisotropic and inhomogeneous linear viscoelastic solid in its reference con
figuration. The relaxation tensor at every point x of such a solid is (E(x, •). It is 
assumed that (B satisfies the thermodynamic restrictions outlined in section 5; and 
also that (E0(x) and (Eoo(x) are continuous on B0, the closure of B0- The boundary 
of BQ is denoted by dBo and it is partitioned as follows: 

1. lateral surface of the cylinder dBiat, 

2. "initial" cross section of the cylinder <So, 

3. "final" cross section of the cylinder Si, 

such that 

(45) dB = So\JdBu*US, 

and 

(46) dB = s0 n dBlat n s, = 0 . 

We note that the set dB = S0 fl 8Biat =: dS0 is the planar curve delimiting the 
boundary of the initial cross section, whereas 8Biat (1 <S; =: dSi is the planar curve 
delimiting the boundary of the final cross section. 

Let u be a displacement vector field defined on BxTZ and let E be the correspond
ing strain tensor, i.e. such that E = symVu € Sym. We may denote the current 
displacement at x by u(x, t) and the history of displacement at the same point with 
u'(x, •) and we may consider the triple ((u(x, t), u*(x, •)), (E(x, t), E*(x, •)), T(t))), 
where E ' is the relative history defined as in (11). Let 

( (u 1(x, t ) ,u t
1(x,-)) , (E1(x ) t ) ,Ej1(x,-)) ,Ti(t))) 

and 
((u2(x, t), u2(x, •)) , (E2(x, t), E^2(x, •)) , T2(t))) 

be two triples and let p ' and p 2 the corresponding state variables via-formula (42). 
We say that two triples are equivalent if they determine the same state at x, that 
is to say u := Ui — u2 is such that the corresponding current strain 

(47) E(x, t ) :=aj/roV(ui(x,t) - u 2 ( x , t ) ) , 

is zero and the state variable 

(48) p'(x,<j) := pi(x,w) - p2(x,w) 

is zero for almost all the w £ 7Z. 
The body is assumed not to have prescribed displacements in any part of its 

boundary, the body forces are assumed to be zero at every point in Bo at every 
time, the lateral surface of the cylinder dBiat is assumed to be traction free ans well 
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as Si. The only non-zero tractions are assumed to be acting on points belonging to 
the intial cross section S0, i.e. 

(49) s(x, r ) ^ 0 for some r € [0, T], x G <S0. 

where T is some given positive number and [0, T] is a bounded and closed time 
interval during which the abovementioned tractions are applied. It is necessary for 
the equilibrium of the solid for those tractions to be self equilibrated, i.e.: 

R(t) = [ s{-x,t)dS = Q 
JSo 

(50) M(i) = f x x s(x, t) dS = 0; 

here R(<) and M(t) denote the total load and moment acting on iS0 respectively, 
—n is the outward normal on <So, and n denotes the unit vector parallel to the axis 
of the cylinder and orienting then axis from <S0 to Si-

Let r be a fixed value of the rectilinear abscissa mapping the axis of the body 
oriented as above. Consider now an open subregion Br of BQ such that 

(51) x G B r i f x - n > r . 

The initial cross section <Sr of Br is the set of points in BQ such that 

(52) x e B 0 i f x - n = r, 

the final cross section remains Si, whereas its lateral boundary dBr is a subset of 
3BQ whose points x satisfy x • n > r. Necessary conditions for the equilibrium of Br 

are 

s(x,t)dS = R(t) 

(53) [ x x s ( x , ( ) dS = M(i) 
JSr 

Let ( (u(x, i ) ,u ' (x , •)) ,(E(x, i),E£(x,-)),T(£))) be any triple determining the 
given state a(t) = (E(t), p i ) of each point of the solid at the beginning of loading. In 
other words, t corresponds to the initial time r = 0 from which the surface tractions 
specified in 36 may be applied on S0. These tractions do induce a deformation 
process E P at each point of the body: let {u/>(x, r ) ,Ep(x , r ) , T(x, T ) } the triple 
associated with the induced deformation process, i.e. Ep = symViip G Sym and 
T ( X , T ) = T ( E P ( T ) , ( E P * E ) ( + - ) . 

From now on the triple {uP(x, r ) , Ep(x, r ) , T(x, r )} will be denoted by {u, E, T } . 
The fields u, E, T will be considered to satisfy the balance of linear momentum: 

(54) V - T ( x , i ) = 0 , ( x , t ) G £ ? 0 x [ 0 , T ] . 

with boundary conditions 

(55) s(x, t) = 0, x G dB0\S0, t G [0, T] 

I 
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and the global balance (50), i.e. 

f s(x,t)dS = f s(x,t)dS = 0 
J So " Sr 

(56) / x x s ( x , t ) d S = / x x s ( x , t ) ( i 5 = 0, t e [0,T]. 

where (54) holds true by neglecting the inertia forces. 

Because ipm(t) = ?/>m(E(t),pL) is the minimal free energy per unit volume we 
may define the foollowing function: 

(57) * m ( r ; T ) : = / / i>m{r) dVdr 
J0 JBr 

The result of Berdichevskii [28] is needed in order to prove the Saint-Venant 
principle. Berdichevskii's theorem ensures that for all vector fields v on a bounded 
domain F that satisfies the constraints 

(58) /' vdV = 0, f x x v # = 0 

the inequality 

' E • (GooE dV (59) b [\\\2dS< f] 
Jn Jr 

holds where E = sym'Vy e Sym, f2 c dV and 6 is a constant depending on T, f2 
and the positive-definite tensor (G^ e Sym(Sym). 

PROPOSITION 2. Suppose that the relaxation tensor (K satisfies the conditions (63) 
and let u, E, T be any triple related to a process satisfying (54) - (56). Then for a 
general history 

*m{r;T)<ym(0;T)e-r'a, 0<r<L-l 

/? = min b(r), I > 0 

(60) 

where 

(61) 

whenever 

(62) 

*m(r;T)<H 

4c0 
a = T 

/ i>v [ ipm{i)dt< [ T(t)-E{t)dt; 
Jo Jo 

where c0 is defined by (44) and b(r) is the optimal choice of the constant in (59) for 
Q = Sr and T = Br. 

Analoguous conclusions were obtained in [26], although the just stated Propo
sition generalizes the decay estimate to a family of energy measures involving free 
energies which are also functions of state. In particular, because ipm establishes 
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the L2 — type coarser possible norm in the space of the states (see e. g. [27]), the 
spatial decay estimate (60) entails the estimate of the spatial decay of the state of 
the material points over the whole body. 

It is worth remarking that (62) certainly holds when the relaxation function 
obeys the following restrictive assumptions: 

(63) (B(t)E • E < 0, (E(i)E • E > 0, VE e Sym \ {0} , Vt G K+ 

These assumption are sufficient for the Graffi-Volterra function xpa to be a free 
energy according to the Graffi's definition. Because ipm is the minimal free energy 
also according to both the Coleman-Owen and the Graffi's definition, we obviously 
have ipm < ipG- When (63) are verified, inequality (62) follows as it has been 
proved in [26], where tpa replaces ipm. The authors in [11] are exploring the general 
implications of inequality (62). 

Acknowledgement. Our thanks to M. Fabrizio for useful conversations on aspects of 
this paper. 
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Gentili's norm on the process and state 
spaces in linear viscoelasticity 

Mauro Fabrizio 

1. — Introduction 

In this paper we study an a priori characterization of the process and state spaces 
for a system with memory. In particular, we want to put in evidence the meaning 
and importance of determining a natural norm on the space of processes and states, 
which has been introduced by Gentili in [15] for a material with fading memory. 
We will show how the idea, considered by Gentili in [15], of introducing a topology 
first on the space of the processes through the continuity of the work provides the 
definition of a topology on the space of the states, which Gentili proves to be the dual 
one. This point of view seems particularly useful in the study of PDEs connected 
with such problems. For this reason this paper ends with an application to the 
integro-differential equation characteristic of viscoelasticity. For such problem, by 
means of this new spaces and without any hypothesis on the value of G'(0) and on 
the regularity of G"(s), but using the thermodynamic restriction 

/ •oo 

G'S(UJ) = / G'(s) sin usds < 0 , for all w e M + + 

Jo 

we are able to prove the existence, uniqueness and asymptotic decay of the solutions. 

2. — Fading memory and thermodynamics 

Consider a material with fading memory occupying the domain D, £ IR3. This 
material is defined by a constitutive equation which relates the stress tensor T and 
the deformation gradient F by a functional of the type 

T(x,t)=f(Ft(x)), 

where Ft(x, s) = F(x, t — s),s € IR+, is the history of F. In the linear case 

T(x,t) = G0(x)E(x,t) + / G'(x,s)Et(x,s)ds 
(1) •/°/.0o 

= G00(x)E(x, i) + / G'(x, s)(E\x, s) - E(x, t))ds, 
Jo 

where E — Vu+^u> [s the infinitesimal strain tensor. 
Moreover, G0(x) and —G'(x, s) are symmetric and positive define tensors, as well as 

/•OO 

GooOr) := G0(x) + / G'{x,s)ds 
Jo 

89 
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t , E\s), 0<s<b 
» M * ) H E{t-b), b<s 

Henceforth, it is understood that the statements are relative to any fixed point 
x € Q. 

DEFINITION 1 A viscoelastic material is characterized by the constitutive equation 
T{t) = f{Eb) such that 

a - the domain T> of T is a set of histories so that 

V D L°°(IR+) 

moreover, for any El € V, the static continuation El
a 6 V, where 

F * M - / ^ ' ( s - o ) . if s > a 
^aisj - | ^ if s < a 

b - there exists a constitutive equation T(E(t)) of an elastic material such that 

2&m)=fw)) 
c - if El e V, then the static relaxation bE* g X>, where 

6^00 = 

and 
lim f ((,£') = f (£() 

6->oo 

A map P : [0, rfp) —> Sym piecewise continuous on [0, dp) and defined as: 

P(t) = E(t), te[0,dp) 

is called kinetic process of duration dp 6lR+. In the following we use the notation 
P[tut2) in order to denote the restriction of P to [ti, ^2) C [0, dp). For ease in writing 
Pt stands for -Pp.t)- Given two processes Pi,Pi the composition Pi * P2 of Pi with 
P2 is defined as . 

P *Plf] = l Pitt), */ teio.dp.) 
1 2 U \ F 2 ( r f P l - f ) , i / t€[dpl,dm+dP2) 

DEFINITION 2 A fading memory material is given by the set (II, S, p, T) 

a - II is the set of kinetic processes defined as: II = {P : [0, dp) —> Sym piecewise 
continuous and such that if Pi,P2 € n , then Pi * Pi € II; and if P G II, 

1̂,(2) en, M2)c[o,ag} 
b - E is the state space, whose elements are given by a = (El) and called states. 

c - the map p : E x n —> E is called evolution function, such that if a1 is the initial 
state and P is a process: p(a',P) = a?, 
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d - the map T : E —» Sym is given by the constitutive equation: 

T(t)=f (El) 

For any state a and process P, the function p determines the one parameter 
family of states a(t) = p(a, Pt), t € [0, dp). 

If p(a, P) = a, then the family of states is called a cycle. Moreover, we consider 
the space 

E a = {a' € E ; 3 P € II, suchthata' = p(a, P)} 

Second Law for isothermal processes 
For every cycle (a, P) € E x IT the inequality 

(2) / d T ( f f ( r ) , P ( r ) ) . L ( T ) d r > 0 
Jo 
r 

Jo 

holds. 
For materials with fading memory, cycles are quite rare, because usually the 

material gets to a state, which is different from the initial state, although "close" to 
it. This is the reason why it is more convenient to use the following (see[3]) 
Strong Form of the Second Law (for isothermal processes). 
The set of the works done in passing from a to any state ff E E „ 

(3) W(o-):={W(a,P);PeU} 

is bounded below. There exists a state o~\ called zero state, such that 

inf W (o-t) = 0, and W [a\P) > 0 , for all P^O 

REMARK 1 For materials with fading memory the zero state is given by the history 

£ t ( s ) = 0 for all s e [0, oo). 

As show in ([11]) from the Second Law we have 

/•oo 

(4) G's{io)= G'(s)sinojsds<0 , for all u> <= IR++ 

Jo 

while from Strong Form of the Second Law, we have 

(5) Gee > 0 

DEFINITION 3 A function ip : S^, —> R + is called free energy if 

a - the domain S^, C V is invariant under p, namely for every ui G <Ŝ , and P e IT, 

the state a = p (a\, P) e Sy, a^ e S^ , and ip (""M = 0, 

b - for any pair 0\ , oi e S^, and P e l l such that p (a\, P) = U2 we have: 

^(a2)--<p(al)<W(a1,P). 
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In linear viscoelasticity there are many free energies. The family T of the free 
energies is a convex set. T has a minimum and a maximum element tpM, ipm . The 
maximum free energy was considered in [3] 

\ L°° f ° G ' ( | s _ s' |} (£< {s) _ E ( i )) • ( £ t (s) - E w ) d s d s ' 
( 6 ) ' " v ' 2 

3. - Maximum Recoverable Work and Minimum Free Energy 

From here on, we denote with G( \s\) the extension of G(s) to an even function 
on IR, and we suppose any process P 6 II defined over all [0, oo), by means of the 
trivial extension 

o ~ 

This new space will be denoted by II- Now let us consider the work W(a0iP), 

where a0 = (E°) is the history in t = 0, and P GYl is a process such that P(t) = 
E(t), te[0,dp). 

We regard (Ef) = p(E°, Pt) and the stress 

(8) T{El) = G0E(t) + f G'{s)Et{s) ds + I0(t, E°) 

where 
(9) I°(t, E°) = - G'(t + T)E°(T) dr 

Jo 

Moreover, from the hypothesis (7) on P, there exists the limit E(oo) = lim^+oo E(t), 
and 

W{a, P) = j°° lG0E{t) + J' G'{s)Et(s) ds\ • E{t) dt - f ° I°{t, E°) • E{t) dt 

= l{G0E(t) • E(t)dt 
oo 

(10) + r \G(s)E(t -8)11+1 G ( s )^ ' ( s ) d s ) | • ^(*) dt 

Jo L Jo J 
- / I°{t,E°)-E(t)dt 
-, Jo 

1 roo roo . . />oo 

= o / / G{\t - r\)E{t) • E{T)drdt - / I°(t, E°) • E(t) dt 
2 Jo Jo Jo 

where 
(11) I°(t, E°) = -G(t)E{0) + I°(t, E°). 

In order to obtain the maximum recoverable work from the state a0 = (E°), we 
consider the maximum of -W(a0,P) respect to the set of functions E(t) 6 M = 
L!(IR+) n L2(IR+) n C1(IR+) given by 

E{t)=EW(t)+Ee(t) , t e [ 0 , o o ) 
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where e is a real parameter and e 6 M is such that e(0) = 0. If _E(m) is a process 
for which we obtain the maximum recoverable work, we have 

( 1 2 J « t ,00 ,00 ,00 _ 

- / / G ( | i - r | ) ^ m ) ( t ) - e ( r ) d r ^ + / J°(i, £°) • e(i) dt = 0 
JO JO JO 

by the arbitrariness of e(t), necessarily we obtain 

(13) y G(\t-T\)E^(T)dT = I°{t,E°). 

The equation (13) is a Wiener-Hopf equation, whose solution makes maximum the 
recovered work. Because 

tm(a) = -min{W(a,P), VP € 11} , 

we have from (10), (13) 

1 roo /-oo . 

(14) iPm(E°) = -Jo ^ G(\t-r\)E^(t)-E^(r)drdt, 

where E^ is now the solution of the equation (13). 
The minimum free energy was determined by Golden in [4]. He begins by con

sidering the two spaces fl+, Q.^ of the complex plane fi, defined by 

( ] + = { u 6 ! ! ; I m w e ] R + } 

fi(+) = { a / e f t ; I m w € l R + + } 

Similarly, £l~ and il^ are the lower half-planes including and excluding the real 
axis, respectively. 

For any / e L2(1R), we denote its Fourier transforms by 

/•oo 

f(u)= / exp(-iuiu)f{u)du = f+(u) +f_(ui) 
J—oo 

where 

/•oo /*0 

/+(w) = / exp(—iwu)/(u)du, /-(w) = / exp(—iuju)f(u)du 
JO J-oo 

The quantities /± are analytic in Q,^ respectively. 
In the following we denote with fF(t) the inverse Fourier trasform of f(u) defined 

as 
1 f°° " 

F~lW) = 7T - / (w)expM)dw 
Z7T 7 -oo 

Consider the new function 

(15) H(w) = -«JG',(U,) 
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It is a positive, even function of the frequency. We have [14] 

(16) G'(0) = - lim H(u) 

If G(s), s € H + is extended to the even function G(\s\) on IR, then G'(\s\) is an 
odd function with Fourier transform given by 

(17) G'(W) = - 2 » G ; H 

We will be using the Fourier transforms of the strain history and continuation 
defined by 

/ •oo 

EUUJ) = / exp(-ius)Et(s)ds 
(18) > 

Ei(w) = / exp(-iws)Et{s)ds 
J—oo 

The quantity E\ is analytic on VL^~\ while £ i is analytic on Q^+\ They are assumed 
to be analytic on IR and analytic at infinity, so that El(Q) is finite. Assuming that 
the strain history has a derivative which is continuous and belongs to L 1 (H + ) , then 

(19) jtE\(u) =-iu)E\{u) + E{t) 

It is well known that (1) can be written in the form 

(20) T = G0E-~ f0 ^-EUu)dcj 
7T J-oo LO 

where the oddness of H/LQ has been used. 
Now consider the Wiener-Hopf equation 13 (see [14]) 

/

oo ft 
ao-G(\t-r\)E°{r)dT = r(t) 

(21) E°(r) = £ ( m i > ( - r ) , r e l R — 

r(t) = 0, t 6 R " 

This relation defines r on R + . Taking Fourier transforms and multiplying across by 
w, we obtain, with the aid of (17) and (15), 

(22) 2iH(oj) (E°+(oj) + EW(L>)) 

where E^{UJ) is the Fourier transform of E°(T) defined by (21) on IR and is the 
quantity we wish to determine. Also, r+(w) is analytic on ui and by assumption also 
o n H . 

Following [5], the tensor H (which is isomorphic to a matrix in IR6 x IR6) can be 
factorized as follows: H(UJ) =H+(UJ)H_(UJ), where H± is analytic. We multiply (22) 
by [H+(ui)]~ to obtain 

(23) F_(W) (El(u>) + EW{u,j) = g[ff+MrV(") 
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With the aid of the Plemelj formulae [12], we write 

Q{u) := H4w)E°+{u>) = <?_(w) - q+(u) 

(24) <?±M = lim 9 

2m J-oo us — z 

where g_ is analytic on fl'+' and g+ is analytic on UJ. Substituting (24) into (23) we 
obtain 
(25) K(u) = g_(w) + H.(UJ)E^(UJ) = q+(uj) + | [H+(u,)]? r(w) 

The function AT(w) is analytic on w~ by virtue of the first relation and analytic on 
u+ by virtue of the second. It is therefore analytic over the entire complex plane. 
By Liouville's theorem it must be a polynomial. However, for \w\ —> oo, K{ui) —> 0 
as 1/CJ since g_ and £'(m) have this property. Hence, it must vanish everywhere so 
that 
(26) H^(u)E{m)(uj) + q_(u) = 0 

By application of the convolution theorem, Plancherel's theorem and (26), the min
imum free energy may be represented in the form 

i;m(E0) = 5(0) + - / H{u)E^\u).E^\u)du; 
ATT J-oo 

1 r°° 

(27) = 5(0) + — / ?_(«)• ?_(w)dcj 

where 5(0) = T(i) • E{t) - \G0E{t) • E(t). 

4. - Notion of equivalence states 

In a material with fading memory the state is usually defined by means of the 
history E*. In this section we show that it is possible to arrive to a new definition 
of state for this materials. Following [1] 

DEFINITION 4 Two strain histories E\, E\ are said to be equivalent if Ex(t) = E2(t) 
and for every process Ep : [0, dp) —• Sym , they satisfy 

(28) f(ElEp)=f(El,Ep). 

Gentili in [15] proved as the last identity (28) is equivalent to the following 

W{E[,EP) = W[E\,EP). 

In the linear case, Del Piero and Deseri [8] observed that two histories E[ , E\ 
are equivalent if and only if E\ (t) = E2 (t) and 

/•oo roo 

/ G\s + T)EUs)ds= G'(s + T)EUs)ds,\/T>0 
Jo Jo 
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In [16] the state is represented by the pair 

a=(E(t),It(r)) 

where 
I\T) = - G'(s + T)Et(s)ds 

Jo 

In order to obtain the notion of minimal state, we consider the function 

/*oo 

/ ' ( r ) = -G(r)E{t) - / G'{s + T)Et(s)ds 
Jo 

The state a = (£(£) , / ' ( r ) ) can be identify by means of the function P(T, El). 
So that, linir^ I1 {T,E1) = -GcoE(t), and P{T) = / ' ( r , ^ ) - lirnT_>0oi'<(T)£'). 
The function P(T) is able to rapresent the equivalent class of histories, because any 
hystory which belongs to this class have the same value of / ' ( r ) . For this reason 
7 ! ( T ) will be called minimal state. 

If P° denotes process P°(t) = E°(t) = 0 , for t £ [0, r ) , then 

I\T, El) = -T{E\ P°) = - (<30E{t + r ) + jf°° G'(S)E
t+T(s)ds^ 

= - (G0E(t) + Jt+T G'{s)E(t)ds + r G'(s)Et+T{s)ds\ 

In other words the quantity P{T) describes the stress associated to the static 
continuation in the interval [0, r ) . 

Gentili considered in [15] the following definition of finite work process, from 
which he will be able to obtain a natural topology on the process space. 

A process Ep : [0, oo) —> Sym is said to be a finite work process if 

^(0+, Ep) = J*P T(0\ EP
tT)) • Ep(T)dT < oo 

From the Strong Dissipation Principle, we have for any Ep ^ 0 

W{Q\EP) > 0 . 

Moreover, Gentili [15] observes that the work W(Q\EP) can be written as 

W{0\Ep) = l-GaoE{dP)-E{dp) + 

2 

Then, he defines the process space as the set 

+ o / / G{\T-s\)Ep{r)-Ep{s)dTds + 
l Jo Jo 

-G^Eidp) • E(dP) + — / GC(UJ)EP(UJ) • Ep(cj)du 
l Z7T JO 

HG(n+) = {EP(X); JX' Ge{ui)El{w) • EP{uj)<ku < oo} 
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when we consider the norm 

\\EP\\ = / GC(LO)EP(UJ) • EP(uj)cko 

then the set /HG(1R+) becomes a Hilbert space. 
The domain of definition of the states is the set of all strain histories rendering 

the work well defined, when the process belongs to 'HG(IR+). Gentili in [15] proves 
that 

W{E\ Ep) = - / G{\T - S\)EP{T) • Ep(s)dTds + / 7'(r, El) • Ep{T)dr 
I Jo Jo Jo 

or equivalently 

W{E\ Ep) = -GxE{oo) • E{oo) + - / / G(|r - S\)EP(T) • Ep(s)drds 
Z l Jo Jo 

1 fOO ~ — 

+Go o£(0) • E(po) - — / 4 ( w ) • E$(u))du < oo, 
Z7T J—oo 

where /^(w.tf*) = J^0 P(r,Ei)eiuTdT. 

Therefore the set of admissible states (E(0), /'(•)) belongs to the set Sym x H'G(~El+), 
where ?ZG(nt+) is the dual of -HG(H+) , namely 

?4( IR + ) = | / ( ( . ) ; y 0 0 / ' ^ ) • £ p (s)dT < oo,V£;p e -HG(R+)\ 

On this space, we consider the norm 

1 /*oo _ — 

(29) = -_/o G ^ M ^ M - A M ^ 

where G*(s )=J r - 1 (G- 1 ) ( s ) . 
Finally, we can prove that there exists a new free energy ^ c , obtained by means 

of the maximum recoverable work on the process space 'HG(]R+), given by 

yc(I
t(T)) = -GooE(t)-E(t) + -J0 Jg G*(|r - S | ) / ((T) • l\s)dTds 

5. — Applications to linear viscoelasticity 

Consider the partial differential equation connected with a viscoelastic material 

/ •oo 

u{x, t) = V '• {G0{X)VU(X, t) + / G'{x, s)Vu*{x, s)ds) 
(30) Jo

rt 
= V • (G0(x)Vu(x, t) + / G'fo s)Vul(x, s)ds) + f(x, t) + V • I°(x.t), 

Jo 

where f(x, t) is a given function and I°(x, t) = /0°° G'(x, s + t)Vut=0(x, s)ds. More
over, we assume the initial conditions 

(31) u(x, 0) = u0(x), u(x,0) =UQ(X) ; ut=0(x,s) = u°(x,s), s € TR+ 
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and the boundary conditions 
(32) u\dn = 0, 

In order to obtain a rigorous definition of weak solution in the time interval M + , 
we have to introduce the space functions 

g(n+,L2(Q)) = f v e Llc0R+,L\Q)); 

dcodx < oo ! / (i + w
2 ) / L-'G'Mlvi^iv^yc 

Jo Jn' ' 

where v(u) is the Fourier transform of the causal function v G L2
0C(M,+, L2 (Q.)). 

Moreover, we denote by 

£(R+,Jf/0
1(f2)) = {u e Llx(m.+,H^Q,)),ii,'Vu,eg{m.+,L2{n))} 

and the dual of g {M+, L2 (Q)) by g'(lR+,L2(f2)). Moreover let me consider the 
new space £(¥1,HQ(Q,)) obtained as the set of the Fourier transforms of all u € 
C(B,+,H^(Q)). Finally, we denote with £'(IR, #*(«)) the dual of C(1R,H^{Q,)). Of 
course Plancherel's theorem for the Fourier transforms defines a natural isomorphism 
between C(R+,H^(Q)) and £(3R, H£(Q)). 

DEFINITION 5 A function u £ £(IR+, #d (fi)) is called a weak solution of the initial-
boundary value problem (30)-(32) with data uQ G Hl(Q), u0 £ -L2(fi), and u°(x, •) 
such that P=°(X,T) = -f™G'(x,s + T)u°(x,s)ds € W^(IR+, L2(fi)), if u(x,0) = 
Mo(â ) almost everywhere in fi and 

(33) J™ j a u(x, t) • 4>{x, i) - | G 0 V U ( X , t) + f G'{s)Vu\x, s)ds\ • V4>{x.t)dx 

= - / u0(x) • 4>(x, 0)dx + [ [ It=0(x, T) • V<^(x, r)drdx 
Jn Jo Jn 

for all </>€£'(M+,i/0
1(n)). 

If we denote with a(u, <j>) the sesquilinear form on £ (M + , HQ(Q,)) 

a(u, <f>) 

ii{x, t) • <j>{x, t) - JG0Vu(a;, t) + J^ G'{s) V M ' ( I , s ) d s | • V0{x.t)dx 

for all 0 € £ ' (H + , i/(}(fi) and such that cp (x, 0) = 0, then the equation (33) can be 
written as 

a(u, <j>) = - I iio(x) • (j>{x, 0)dx + [ [ It=0{x, r ) • V<j>(x, r)drdx 
Jn Jo Jn 

Now we are in a position to claim the following 

T H E O R E M 1 Under the hypothesis (4)-(5) for the relaxation function G, the problem 
(30)-(32) have one and only one weak solution u e £(1R+, Hg(Q)). 
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By a simple change of the unknowns, it is always possible to obtain zero initial 
data. Accordingly, without any significant loss in generality we let u0 = 0, uQ = 0. 
We denote with a the following sesquilinear form on £(1R, HQ(Q)) 

1 r°° f 
a{u,(p)— —I I —iuu{x,u))[iu)(p(x,L))]*dxdu+ 

2ir 7-oo Jn 
(34) 

+7T~ / / \G0(x)+& (X,LO)]\/u(x,iu)-\/(p* (x,u)u)dxdu) 
2-7T J-oo Jn l J 

for all (p G C(]R,HQ(Q,)). Plancherel's theorem applied to (33) gives 

(35) a{u,(p) --—- l Itr°{x,uj)-\/ip*(x,uj)dxduj 
2TT J-OO Jn 

LEMMA 1 A function u G C(JR, HQ(Q,)) is the Fourier transform of a weak solution 
of the initial boundary-value problem (30)-(32) in the sense of Definition 5 if and 
only if equality (35) holds for all (p G C'(JR, HQ(Q)). 

Taking in f35j Cp (x, to) = tp1 (x) ip2 (ui), with ipl € H1 (Q.) and <p2 G L2(1R), by 
the arbitrariness choice of ip2 it follows that, for almost all w G R , the following 
identity holds: 

(36) / u2u {x, LO) (pi (x) dx+ j [G0 (X) + & {x, <J)] y u {x, w) • yip* {x) 

= - fjX*{x,u)-W\{x)dx, 

dx 

for every ipl € H1 (Q). But identity (36) means that u (•, ui) is a generalized solution 
in Hl (Tl) for the elliptic problem 

(37) -UJ2U(X,UJ) - y • {[G0(x) + G' (X,W)] y u(x,w)} = y •/|=0(a:,oj), x G fi 

(38) u(x,u)) = 0, xedn. 

Following the proof of Theorem 3 of [17] we are able to prove 

LEMMA 2 For every w G IR problem (38) has one and only one solution u(-,ui) G 
H1 (f2). Besides, the following inequality 

(39) 
G|(w)(l + w)V«(w) 

£2 
+ G I ( W ) ( 1 + W)M(W) 

/

OO /• . _ 

/ ( 1+w) .Z^=0(:r,tj) • v « ( i , u ) dwcte 
holds, where C is a suitable constants. 

Finally, Lemma 4 and the hypotheses on the data provide the inequality 

G?M(l + M)V«(w) + G J ( W ) ( 1 + |W|)M(W) < G | | / ' = 0 ( W ) | | 2
/ < O O , 
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from which u € £(M, HQ(Q)) and the isomorphism between £(]R+, Hg(fl)) and 
£(IR, Hi (f2)) guarantees that zz is the Fourier transform of the solution u £ £(1R+, Hg (fl)) 
of problem (30)-(32) and it is unique. 
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Unified dynamics of particles and photons 

Giorgio Ferrarese* 

1. — Introduction - Scalar particles 

The present approach starts from the relativistic unified Dynamics of scalar 
particles and photons [2]; the subsequent step is to extend the previous unification 
to particles and photons with multipole structure. Thus particle dynamics with 
arbitrary structure can be extended, with a few modifications, to polarized photons, 
without postulating the corresponding relative dynamics. 

Let us consider a curved space-time V4, where the geometry realizes a good 
unification for all physical fields; particle-flux can be essentially unified with light-
flux, from both the kinematical (linear velocity, spin and deformation [1]) and the 
dynamical point of view (evolution equations). In order to clearly state the problem, 
here we restrict to particles with a vector structure; the case of scalar particles is in 
fact well known [2]. First of all, let us fix a frame of reference T(7); we can obtain 
the unification of particles and photons by introducing Cattaneo's relative time T as 
the privileged parameter along the world-line of the particle (in place of the proper 
time): 

(1) dT=-\adxa, 

T is defined by integration on the world -line (such time-parameter can be pantopic 
only for special frames of reference). So the unified dynamics is based on the two 
classical theorems, that of impulsion: p = mv and that of energy: e = mc2 : 

(2) p x = F, e= W, 
• _i_ 

where a dot denotes the T-derivation and ( ) stands for constrained derivation (see 
[3]); in particular, for vector fields, we have: 

(3) p x ^ P + P -77-

Equations (2) form the common basis for particles-photons dynamics; of course, for 
a particle, the relative mass m is defined from the proper mass m0: 

I A\ def dl!f 

(4) m = m0r], rj - yjl - V2/?' 

*Istituto Matematico G. Castelnuovo, Universita degli Studi di Roma "La Sapienza" 
Piazzale A. Moro 2, 1-00185 Roma, Italy 
e-mail: ferrarese@mat.uniromal .it 
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where n is the Lorentz factor, so that the structure is defined by the invariant mo 
only (we are considering a scalar particle) and the proper mass enters to modify the 
classical energy theorem, i.e. the power W is given by 

(5) W = F • v+q. 

Thus we not only have the mechanical power, but also the thermic power q, which 
vanishes only if mo =const, i.e. if there is no structure. So far we have talked about 
a material particle (m0 > 0) and photons are not included in the considered scheme. 
However, by using the parameter T, the relative velocity v is still meaningful for a 
photon, while (4) has no meaning, being v = c. Vice versa, the primitive quantity 
now is the relative energy e (and not mo): 

(6) e = hv, 

where h is the Planck constant and v the relative frequency, which follows the 
following transformation law ([4], 116): 

1 - u • v /c 2 

(7) v =v-\Jl - u2/c2 ' 

where the vector u is the relative velocity of the galileian reference frame R (7 ), 
related to the frequency v . Of course, being v = c , for a photon neither the proper 
mass or the proper frequency v0 are meaningful. 

In conclusion, the fundamental equations (2) also hold for a photon, provided 
mass is now defined by means of energy according to (6) and velocity v is equal to 
c: 
(8) m = —, v = c. 

2. - Vector particles and photons 

In order to obtain unified dynamics, let us consider now the case of a vector 
particle; if the particle is just a material one, along the world line of the center of 
mass we have a geometrical structure defined not only by the proper-mass m0, but 
also by three director vectors: the generalized impulsion P : 

(9) P = I + W , I =m 0 V; 

where V denotes s the 4-velocity: V = r](v + 07) and W the impulsion increase, 
which is orthogonal to V: 
(10) W • V =0; 

the static impulsion S, and, finally, the angular velocity u) (both unified by the 
total spin tensor Sa/3). 

Now let us start from Papapetrou's dynamical equations1 (see [5], p. 258); the 
first step is to translate the dynamical equations in relative terms, by using the 

lAn exact, i.e. not multipole, approach, in principle can be obtained from Dixon's theory of 
extended bodies [6] 
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standard time (1). The subsequent step is to choose additional equations, because 
the general dynamical picture needs, in order to have unicity, three constitutive 
constraints. So, given the relative dyamical picture of the material case, by the pro
cedure (8) we also obtain the dynamical equations for a spinning photon; therefore 
the world line I now becames null type, and the ordinary impulsion I : 

(11) I = p + - 7 , p = ^ v 
c & 

is now isotropic (I • I =0); we have: 

e 
2 

(12) p2- - = 0 ~ v = c. 
&• 

As for the structure vectors: P , S and <J, we need no additional hypotesis, because 
the picture is the same. 

Now let us consider our first step explicitely; first of all we have the natural 
decomposition of P : 

(13) P = P + My, M > 0, M2 = P2 - NP > 0, 

which corresponds to expression (9), by means of (11)-(12). We have: 

(14) e = mc2, 

and 
(15) P = p + - 7 + W , W-(v+c7) = 0. 

Thus, multiplying for V both expressions above we deduce the following general 
connection between M and e: 

(16) Mc = P • v + ( l - v2/c2) e. 

Then the scalar M is a well determined function of the energy e = mc2, of the 
velocity v and of the relative impulsion P . 

In the framework of Papapetrou's theory [7], the relative dynamical equations 
are the following: 

(17) IP=F-Mi, M=f_-P-7, ()=d/dT 
\ ( jX= P x v - Sx 7 S = c P - Mv + ux 7 , 

where the force F and the power W (both relative to the reference frame) are given 

by: 

(18) Fa = ; - («" + c7
ff) ^ 7 ° " , W =; —n^v'-f, 

with 

(19) K ™ ^ S""JW«> 7 a " = / f l o / , + 7 o y • 

7Q/3 denotes the spatial metric; TZaa depends on the Riemann tensor R^aa and 
on the total spin S7"', which unifies both the angular velocity uif"/ and the static 
impulsion S11: 

(20) S'"' = w'"' + 2S [ VJ . 
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We note that equations (17) constitute a first order differential system for ten un
known quantities: M, P,u>, S (the last three are spatial, i.e. 3-dimensional, vector 
fields); the velocity v here works as a parameter, while the reference frame r('y) is 
a known field, together with the metric gap. In any case, the reference frame ap
pears explicitely only by means of its derivative 7, which has the meaning of relative 
gravitational field (see [3]). 

3. - Tulczyjew scheme: resolutive equation 

Let us discard the case of more general constitutive equations (see [3]) and assume 
here Tulczyjew hypothesis [8]: 
(21) S^Pp = 0, 

which give a well determined scheme; more precisely, the structural conditions (21) 
allows, first of all, to determine S as a function of M, P , and a): 

(22) MS = P x u 

so that system (17) gives he following resolutive equation: 

(23) (P 2 - M 2) v + [Mc - P • v) P - F x w + — S , 

where S is given by (22). 
Equation (23) is not explicit type with respect to the vector v, because the veloc

ity is involved in the definition of F and W according to (18), and, by (16), in that 
of M; anyway equation (23) is equivalent to a linear system for the three compo
nents of v, and, to prove that the solution of the Papapetrou-Tulczyjew equations 
is uniquely determined, one only needs to test that the third order coefficient matrix 
is regular, as it is shown in [7]. Such matrix is in fact singular only in a few special 
cases which are still uninterpreted from the mechanical point of view. 

So, determied this way the principal function v, of course in function of M, 
P,oJ and of the curvature tensor, system (17) is automatically reduced of one unity, 
because the fourth equation can be replaced by the first integral (22); moreover by 
eliminating both v and S, we have a well determined first order differential system 
for the unknown fields M, P , and U): 

(24) 
P = F ( M , P , W ) - M 7 

A f = i w ( M , P , w ) - P - 7 
/ = P x v ( M , P , u ) - i ( P x u ) x 7 , 

The static impulsion S is then determined a posteriori by (22); we note that S 
is orthogonal to both P and w, but in the general case P • w 7^0, so we have not an 
orthogonal triad. 

Similarly from equation (16) we have the material energy e (with v < c), i.e. m, 
or equivalently m0, and finally from (15) we have the difference vector W. 
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Once verified uniqueness for the solution of the Papapetrou-Tulczyjew equations, 
let us consider the case of a spin photon (polarized light). First of all we have: 

(25) v =eu, 

with u unitary, so that the resolutive equation (23) remains substantially unchanged, 
but for the replacement of v by u: 

(26) (P2 - M2) u + (M - P • u) P - Fuxu+^-WuP x u = 0, 

where 

(27) F: = \ ( U ° + r ) ^ 7 Q / J , wu ^ ~ n a a v ° r , 
and with TZap defined by (19). 

After all, as in the material case, the kinetic field u is determined as a function 
of P (i.e. M and P ) , of u and of the curvature tensor (which is given, as is the 
metric gap)', the vectors P and w, in turn, are determined by the differential system 
(24), from their initial values P 0 and <J0. Clearly the resolutive equation has a 
fundamental role, both for the differential system (24), which governs P and u), and 
for the evolution of the static impulsion S, which is determined by means of (22). 
Similarly, the difference vector W is directly determined a posteriori by (15), after 
the determination of the motion, i.e. of u, by means of (26), and that of the energy 
e = mc2, through equation (16). Such constraints stress that, being e = hv in 
principle finite, the difference M — P • u also must be finite for v —> c; in fact we 
have both the expressions: 

(28) Mc - P • u = - P V E E - L V , 

where I = p + ^ 7 is the ordinary impulsion and V is the relative 4-velovity: 

(29) V =7 v + c 7 , 

which are both meaningful also for a photon. In other words equation (28) stresses 
first of all the kinematic meaning of the diference Mc — P • u, and, second, it 
proves that such difference is correct also for a photon, at least in the general case. 
Anyway now a new fact occurs, in comparison with the scalar case: while for a 
material photon (v « c) equation (16) allows one to determine the energy e, for 
a photon (v = c) such link has no more sense. The mass M is instead given by 
the fundamental system (24) , as in the material case. Therefore, in accordance 
with system (24), we must suppose (in order to have unification) that the solution 
satisfies the following two limit conditions: 

(30) lim (Mc - P • v) = 0, lim M° ~ f, ' 7 > 0; 

which allow to determine the energy e also for a photon: 

- M c - P - v 
(31) e = lim U->C 1 — v 2/c 
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4. - Intrinsic equations 

Clearly in all the construction stated above the reference frame is entirely free, 
i.e. equations are formally invariant with respect to the choice of 7; to fix the ideas, 
once we have studied the conditions for to shift from the material case to photons, 
let us consider the case in which the vector 7 is parallel to P (of course along the 
worldline), which is of special interest. The frame P is in this case similar to a rest 
frame, we have in fact: 

(32) P = M 7 ~ P = 0, M > 0. 

Here the frame of reference is deduced from the motion, i.e. it is not given a priori: 
both M and the versor 7 , subordinate to system (23) (intrinsic equations), are 
unknown quantities. Since we have S = 0 the resolutive equation (26) assumes the 
following reduced form: 
(33) M2v + F x u =0. 

Here we have a linear system on the componentd vk which, in the material case is 
regular [7], i.e. the coefficients determinant is non-zero; more precisely such system 
is of the following kind: 

vk ( S j * - 2M26\) = -B° kJa (7ff = Pa/M), 33' 

where the matrix B' k is a well determined function of the angular velocity and the 
spatial curvature tensor: B' k — wijR'^oJhk- From here, by adjoint operation, we 
have the following canonical decomposition: 

(34) Bi
k=uiRk-HSi

k, 

where Rk and H are defined by means of the angular velocity and of the spatial 
curvature tensor: 

(35) Rk
d^l-JGik, H^tfRi, Gik^

f Rik - ±R7ik. 

The special structure of tensor (34) gives rise to the following principal invariants 
B\: 
(36) h = ~2H, h = H\ 7 3 = 0 , 

so that the determinant V of the secular matrix (33 ) is given by: 

(37) V = - 2 M 2 (2M2 + H)2 < 0. 

Therefore V is in general negative, and it is null only if M assumes the following 
special value: 
(38) 2M2 = -u)% > 0, 

which depends on both the angular velocity and the curvature tensor (by means of 
Gik). This case discarded, equation (33) is univocally solvable with respect to v, so 
that the differential system (24), i.e.: 

(39) M=-W(M,LJ), Mi=F(M,u), o / = 0, 
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can be used to determine of M and 7, i.e. P . Moreover the vector w is Fermi-Walker 
transported along I and the motion is characterized by (33), through integration of 
the differential system (39). 

We note that, as for the reference frame, choice (32) is not consistent with 
a photon, becouse for v = c equation (16) implies the condition M = 0, which 
invalidates the above mentioned choice. 
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The Problem of 
the Rate of Thermalization, 
and the Relations between 

Classical and Quantum Mechanics 

L. Galgani* A. Carati* B. Pozzi* 

1. — Introduction 

Ther problem of the rate of thermalization consists in determining how long it 
takes for a system to reach thermal equilibrium. Thus enunciated, the problem 
appears to have no special relevance, because it is clear that every system will have 
some characteristic relaxation time, which should be estimated and suitably taken 
into account. The situation is however more delicate when relaxation times are met 
which are enormously large, as for example in the case of glasses. Indeed, these 
are fluids with the special property that the viscosity increases by even 18 orders 
of magnitude when the absolute temperature is reduced by only a factor of two, 
for example from 600 K to 300 K; thus the relaxation time to equilibrium can be 
extraordinarily large, and one meets with situations of a kind of metaequilibrium 
or metastability, for which a description by the ordinary methods of equilibrium 
statistical mechanics is not feasible. 

The main motivation of the present paper consists in illustrating how such a 
situation of metaequilibrium is not confined to "strange" systems such as glasses, 
but is met in all common situations involving harmonic oscillators, when they present 
deviations from a classical behaviour by manifesting a quantum behaviour. Thus, 
the property of presenting enormously long relaxation times to equilibrium somehow 
seems to correspond to the manifestation of a quantum behaviour, and as such 
deserves to be investigated as a property of a general relevant interest. 

It will be recalled below how the problem of the thermalization rate was actually 
introduced by Boltzmann just within such a foundational perspective, then pursued 
by Jeans and Rayleygh, and finally abandoned with a public retractation by Jeans, 
struck as he had been by a fundamental paper of Poincare on the necessity of 
quantization. It will then be recalled how the problem of the thermalization rate 
reemerged, but only within a sectorial perspective, in the problem of the sound 
dispersion in gases, and how finally the problem was reconsidered in the original 
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foundational spirit of Boltzmann, after the work of Fermi Pasta Ulam (1954) and 
the impact of the modern theory of dynamical systems. Finally, some perspectives 
will be given concerning the relations between classical and quantum mechanics in 
connection with the problem of the rates of relaxation. 

2. — The first phase: from Boltzmann to the retractation of Jeans 

Boltzmann was confronted with an essential qualitative difficulty of classical sta
tistical mechanics in connection with the equipartition principle. Indeed, according 
to classical statistical mechanics, equilibrium should be governed by the Maxwell-
Boltzmann probability distribution, the main prediction of which is the equipartition 
of energy: every degree of freedom contributes to energy (in the harmonic approx
imation) with a term 1/2 kT (or kT in the case of harmonic oscillators), where k 
is the Boltzmann constant and T the absolute temperature. So, at equilibrium the 
total energy of a system should be proportional to temperature, and thus the spe
cific heat be constant, independent of temperature (and of frequency, for systems 
of harmonic oscillators). Instead, it was found experimentally that the specific heat 
of polyatomic molecules (whose internal motions could be assimilated to harmonic 
oscillators or rotators) was decreasing with decreasing temperature. An analogous 
qualitative discrepancy was also found to occur in the black-body spectrum, be
cause the black-body can be assimilated to a system of harmonic oscillators with 
frequencies ranging from 0 to oo, and the energy of the high frequency oscillators 
appeared to go to zero exponentially fast as frequency increases. 

This is known to everybody, because it is exactly in this connection that quantum 
mechanics originated, on October 19,1900, when Planck found empirically, by means 
of a skillfull interpolation, that the mean energy U(u>, T) of a harmonic oscillator of 
angular frequency to at absolute temperature T is well fitted by Planck's law 

U^ T) = ^£7TT = kT ^ (x = P*»,P = IIkT), 

where h is the (rationalized) Planck's constant. The correspondence principle is 
saved because, from the second expression above, Planck's formula is seen to reduce 
to the "classical" formula kT for x -C 1, i.e. for high temperatures or low frequencies, 
while decreasing exponentially fast to zero for x » 1, i.e. for low temperatures or 
high frequencies. Two months later Planck introduced quantization, i.e. understood 
that his law could be obtained by the "simple" prescription that the energy of an 
oscillator be quantized, in the sense that only discrete values of energy, actually 
En = nhu, n = 1,2, •••, should be allowed (later on, in his "second theory" of 
the year 1912, he added the controversial "zero-point energy" 1/2 hco, which gives 
the "energy levels" En = (n + 1/2) hu>). Planck was originally concerned with the 
black-body problem, but his argument was extended by Einstein in the year 1906 
to "material" harmonic oscillators. In the meantime, with the celebrated paper 
on the photon (1905) Einstein had also shown that quantization was a "real" fact, 
and not just a formal one (to this we will however come back below). At the first 
Solvay conference (1911, see [1]) the existence of quanta was finally sanctioned by 
the scientific community. 



113 

This is well known. Less familiar is instead the fact that Boltzmann had previ
ously looked for a possible escape from the difficulties of the equipartition problem in 
a fully classical context. Indeed, he was just suggesting that the lack of equipartition 
could very simply be due to the fact that the system had not reached equilibrium 
within the measurement time; a hint in this direction was even given by Maxwell in 
the last page of his third memoir on kinetic theory, where he speaks of a relaxation 
time of 675 years [2]. The main idea was that the relaxation rates to equilibrium 
should be highly nonuniform with respect to frequency and temperature: for exam
ple, in the case of polyatomic molecules equilibration should be quite rapid for the 
"external" degrees of freddom such as those of the center of mass, but very slow 
for the "internal" motions, i.e. rotations and especially vibrations. This is well 
witnessed by a famous letter of Boltzmann to Nature (1895) [3], where he speaks 
of times of the order of years. Here is the quotation: " But how can the molecules 
of a gas behave as rigid bodies? Are they not composed of smaller atoms? Probably 
they are; but the vis viva of their internal vibrations is transformed into progressive 
and rotatory motion so slowly that when a gas is brought to a lower temperature the 
moleecules may retain for days, or even for years, the higher vis viva of their inter
nal vibrations corresponding to the original temperature." Even more interesting are 
the sections 43, 44, 45 of his Lectures on Gas Theory, Vol II, where one finds [4]: 
" The constituents of the molecule are by no means connected together as absolutely 
undeformable bodies, but rather this connection is so intimate that during the time 
of observation these constituents do not move noticeably with respect to each other, 
and later on their thermal equilibrium with the progressive motion is established so 
slowly that this process is not accessible to observation"; and finally, the most signif
icant statement: " The hypothesis proposed here would be confirmed experimentally 
if it were to be shown that, for any gas for which K (the ratio Cp/Cy of specific 
heats) varies with temperature, observations extended over a larger period of time 
give a smaller value than for those of shorter duration". 

To this last remark we will come back below. For what concerns quantitative 
estimates for the phenomenon predicted by Boltzmann, we could find no trace in his 
works. However, estimates were soon provided by Jeans [5], who was able to prove 
that the times needed to reach equilibrium were exponentially long with frequency 
and (essentially) inverse temperature. This was obtained by showing that the energy 
8e exchanged between external and internal degrees of freedom through collisions 
is exponentially small. As a prototype example consider the head-on collision of a 
particle with a spring of frequency co; by extremely elementary considerations Jeans 
shows that, in a first approximation, the exchanged energy 5e is nothing but the 
square of the Fourier transform (evaluatred at UJ) of the function F(t) expressing, 
as a function of time, the force acting on the free end of the spring by interaction 
with the impinging particle. Thus the exchanged energy 6e turns out to be expo
nentially small with w, namely of the form Se = Aexp(-nj), just in virtue of a 
general property of the Fourier transform of an analytic function (the intermolecu-
lar potential having been assumed to be analytic). Here r is a characteristic time of 
interaction, of the order l/v, where I is the range of the potential and v the velocity 
of the impinging particle. To have an idea of the relevance attributed by Jeans to 
such considerations, here is a quotation from the incipit of his paper: " A steel ball 
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dropped on a rigid steel plate will rebound perhaps half a dozen times before its energy 
is appreciably lessened; this is because of the great elasticity of steel. If the kinetic 
theory of gases is true, a system of molecules must rebound from one another and 
from rigid walls many billions of times before the total energy is appreciably lessened. 
The aim of the present paper is to show that, in so far as the data available enable 
us to judge, molecules will possess sufficient elasticity for this to occur." 

The point of view of Boltzmann and Jeans was amply discussed at the first Solvay 
conference (1911), after the report of Jeans ([1], page 74) and after the reading of 
a letter that Rayleigh had sent in support of the nonequilibrium point of view ([1], 
page 51). Especially relevant was the opinion expressed by Nernst, who remarked: 
"up to now it has never been observed that the measured values of the specific heat 
increase" (with the time of measurement); in particular, he added, this was true 
for gases not obeying the equipartition principle, for which there were available 
experimental methods involving measurement times ranging from a millionth of a 
second to several minutes. An even stronger argument was given by Nernst in 
connection with the fusion temperature and the vapor tension. Indeed, as such 
quantities are well known from thermodynamics to depend on the specific heat, he 
pointed out that, if the specific heat were changing with time, a difference between 
the fusion temperature of natural minerals and that of synthetic compounds should 
have been observed, which was not the case. So the phenomenology appeared to 
require that the equilibration times should be longer than millions of years for some 
components of energy, while other components should equilibrate "immediately", 
and this, Nernst concluded, "is very little probable". By the way, this seems not to 
be so clear today, with the present popularity of the studies on glasses. 

A very skeptical comment on the nonequilibrium interpretation was also made 
by Poincare after the report of Jeans. Actually, just under the influence of the dis
cussions at the Solvay conference, Poincare himself was very soon led to perform 
a deep investigation which, in his opinion, constituted a proof of the necessity of 
quantization; not only quantization produces Planck's law, but conversely, Poincare 
claims, quantization necessarily follows if Planck's law is assumed to hold at a phe-
nomenological level [6] (see also [7]). A similar argument had previously been given 
by Ehrenfest [8]. This was the end of the story, because Poincare's paper made so 
strong an impression on Jeans that he felt the need of making a public retractation. 
This occurred on the occasion of the meeting of the British Association of Physics 
of the year 1913, a report of which, published in Nature [9] (see also [10]), goes as 
follows: "On Friday morning the most important discussion of Section A, if not of 
the whole meeting, took place. The subject was radiation and it was opened by Mr. 
J.H. Jeans in a masterly and concise manner. The discussion turned on the ques
tion of the validity of the laws which have hitherto been believed to be the ultimate 
laws of nature. The problem at its simplest occurs in the case of black body radia
tion. Mr. Jeans regarded the work of Poincare as conclusive:when starting with the 
mean energy of each vibration of specified wave-length he deduces the quite definite 
result that the exchange of energy must take place by finite jumps. This leads directly 
to the quantum hypothesis which the opener assumed in its entirety." Moreover a 
few years later, in publishing the third edition of his Dynamical Theory of Gases, 
he introduced a very drastic change by completely eliminating the chapter 16 of 
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the first two editions, by the title "The transfer of energy and the propagation of 
sound' [11], where the problem of the dependence of the specific heat on the time 
of measurement was discussed in connection with the dispersion of sound. See also 
[12]. 

3. - The second phase: from physics to chemistry; relaxation times in 
sound dispersion 

After the retractation of Jeans, the problem of the times of relaxation to equilib
rium in polyatomic molecules disappeared from the domain of fundamental physics, 
people being convinced that equilibrium was reached "immediately". Typically, in 
the case of gases such as air at ordinary conditions of pressure and temperature, by 
"immediately" one meant just "after a time of the order of 10~10 seconds"; this is 
indeed the mean collision time, i.e. the mean free time between two collisions, which 
gives the order of magnitude of the equilibration time for the center-of-mass energy 

The problem then reappeared twelve years later, in the year 1925, but only as 
a sectorial one within a particular subject, namely dispersion and absorption of ul
trasound (see [13][14] [15], or the very concise review in sect. 4 of [16]). Indeed, 
by using ultrasounds with frequencies of the order of the megahertz, which had 
just become available, Pierce [17] discovered an anomalous absorption which could 
not be explained in terms of the "classical" mechanisms of viscosity and thermal 
conduction, already familiar from the times of Kirchhoff and Stokes. After a long 
discussion of about five years, people finally became convinced that such an anoma
lous absorption, which was intimately related with a corresponding phenomenon 
of dispersion, should be explained as due to the existence of a retardation in the 
equilibration of the internal degrees of freedom of polyatomic molecules with the 
external (or translational) ones, more or less in the way conceived by Boltzmann, 
Rayleigh and Jeans, although such authors and their foundational perspective es
sentially were never mentioned. The corresponding relaxation times were found, 
quite unexpectedly, to be of the order of 10~5 or 10~3 seconds, namely about 5 or 7 
orders of magnitude larger than "immediately" [18]. 

Such a phenomenon of a slow relaxation to equilibrium for the internal motions 
was then investigated from a macroscopic point of view, in the frame of continuum 
mechanics. A good survey containing a detailed historical part can be found in 
Kneser [14] (see also [19]. Quite relevant are the work of Mandelstam and Leon-
tovich, a summary of which is reported by Landau and Lifshitz in connection with 
the "second viscosity" [20], and the standard reference book of Herzfeld and Litovitz 
[21] (see also [22] and [23]). 

Many works were also performed from a microscopic point of view, namely with 
the aim of determining the relaxation rate by estimating the exchange of energy 
between external and internal degrees of freedom through molecular collisions. The 
fundamental reference here is the paper of Landau and Teller of the year 1936 
[24]. They consider the problem of the exchange of energy, according to quantum 
mechanics, in a collision between a harmonic oscillator and an impinging particle, 
interacting through a smooth potential; they claim that the result can be estimated 
classically, and give a classical estimate which is essentially equivalent to the one 
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given 33 years before by Jeans, though apparently unaware of it. The only difference 
is that they take into account the Maxwell-Boltzmann distribution of the velocities 
of the impinging particle, which entails that only the collisions with particles of 
extremely high energy are relevant; this by the way is the reason why the calcula
tion can be performed classically. In such a way Landau and Teller find that the 
exchanged energy is exponentially small with w/kT (actually, a suitable power of 
it), but refrain from giving any quantitative estimates. 

Quantitative theoretical estimates for the relaxation times, to be confronted with 
the experimental ones for several kinds of diatomic molecules, were later given by 
many people. An almost complete review up to the year 1969 can be found in Rapp 
and Kassal [25]. The essential conclusion of all such works is that everything is 
apparently in order, because the theoretical estimates are found to be in a more or 
less good agreement with the experimental data. Things are however more compli
cated, as we will try to illustrate below; a hint can be found in a standard book 
such as [15], where one finds the sentence: "Even if a completely satisfactory theory 
were available, its quantitative application would be severely limited by the lack of 
accurate and realistic interatomic potentials. " 

4. - The third phase: back to physics; Fermi Pasta Ulam and the theory 
of dynamical systems; Einstein's interpretation of Planck's law 

In the meantime, the problem of the relaxation times to equilibrium had emerged 
again, as a problem of a general interest, with the work of Fermi-Pasta-Ulam (FPU, 
1954) [26]. Such authors were making a numerical investigation of the relaxation 
to equilibrium in a one-dimensional model of a nonlinear crystal, namely a chain of 
a certain number JV of equal mass points on a line, with a coupling due to nonlin
ear springs: taking initial data with the energy concentrated on the low-frequency 
modes, they found by numerical integration of the equations of motion that energy 
did not flow to the high-frequency modes within the times they could attain. As 
Ulam reports in his preface to the work of FPU, reprinted in Vol. 2 of Fermi's col
lected papers (N. 266): "The results of the calculations ... were interesting and quite 
surprising to Fermi. He expressed to us the opinion that they really constitute a little 
discovery, in providing intimations that the prevalent beliefs in the universality of 
mixing and thermalization in nonlinear systems may not be always satisfied." 

We don't have time to enter here a discussion of the many works written on 
the FPU problem (see for example [27] [28] [29] [30]), mostly with the intent of under
standing whether classical mechanics really predicts extremely long relaxation times 
or not. It is just in this connection that many studies in the mathematical theory of 
dynamical systems were performed, in the spirit of modern perturbation theory, with 
reference to KAM theory and to the notion of weak stability in Nekhoroshev's sense 
[31] [32]. Thus the works of Boltzmann and Jeans were rediscovered (see [33] [34] 
[35]), and the analogy with glasses was first mentioned [36]. 

There still remained a fundamental problem, namely how could one give a ther
modynamic description for systems being in a state of metaequilibrium, such as 
glasses. Indeed, on the one hand it is found that, due to te exponentially small 
exchanges of energy, the high-frequency oscillators give an exponentially small con-
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tribution to the specific heat, which seems to be in a qualitative agreement with the 
description given by Planck's law; on the other hand, the dynamical laws describing 
the exponentially small exchanges of energy turn out to contain a dependence on the 
molecular parameters, which is not the case for the laws of themodynamics. A first 
step towards the solution of this fundamental problem was accomplished quite re
cently in the work [37](see also [38][39j[40]), where it was shown that the elementary 
mechanical laws governing molecular collisions entail a functional relation between 
mean exchanged energy and energy flluctuations, which has exactly the analytic 
from corresponding to Planck's formula, in a way pointed out by Einstein in his 
contribution to the Solvay conference. 

Let us briefly illustrate this point. It is known since its original derivation that 
Planck's law can be regarded as a solution of the differential equation 

W=-{eU + U*/N), 

with e = hu>. On the other hand it was pointed out by Einstein (see [1]) that such 
an equation should be better read as split up into the two relations 

^ = - 4 , al = eU + UyN, 

where a\ is the variance of energy; indeed the first one should be considered as 
a relation of a general thermodynamic character, while the second one should be 
looked at as having a dynamical character and might in principle be deducible 
from a microscopic dynamics. In his very words: these two relations "exhaust the 
thermodynamic content of Planck's" formula; and: "a mechanics compatible with the 
energy fluctuation a\ = eU + U^/N must then necessasily lead to Planck's" formula. 

Now, in the paper [37] it was shown that the mechanics that leads to such a 
functional relation is nothing but the ordinary Newtonian mechanics. Indeed, con
sidering for example the prototype model mentioned above, of a particle impinging 
on a spring, one easily shows (at least in a first approximation) that the equations 
of motion produce for the energy exchanged during a collision a certain expression, 
which in turn, by averaging over the collisions, leads exactly to the Einstein's func
tional relation between the mean exchanged energy and the corresponding variance. 
In such a way, one obtains for the mean exchanged energy an expression having the 
analytical form of Planck's law; the way in which Planck's constant should enter 
is not yet clear, although it might be worth mentioning that Planck's constant is 
known to be contained in the values of the actual molecular potentials. 

5. — Perspectives: analogy with glasses and with stellar dynamics, 
Einstein versus Poincare 

Which conclusions can then be drawn from a complicated situation as the one 
described above? The first one seems to be that one of the main effects predicted 
by Boltzmann really exists. We refer to the prediction that "observations extended 
over a larger period of time (for the specific heat should) give a smaller value than 
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for those of shorter duration". Indeed it is just this phenomenon that constitutes 
sound dispersion, that now is commonly observed in polymers, where it is described 
under the name of "time-dependent specific heat" [41] [23]. By the way, we are 
ourselves trying to observe the analogous phenomenon in crystals, in collaboration 
with G. Carini and F. Ragusa. There remains however the problem that the observed 
relaxation times are still somehow microscopic, being of the order of 10~3 or 10~6 

seconds instead of the ones that would be needed to account for the actual lack of 
equipartition; for example, times of the order of billions of years as mentioned by 
Jeans would make the job. 

This is the main problem with which we are presently confronted. In this con
nection, we are now trying to produce analytical and numerical estimates for the 
energy exchanges, in correspondence with realistic interatomic potential, and we are 
meeting with an apparently paradoxical situation. Indeed the estimates are found 
to depend in an incredibly strong way on the values of the parameters used, ex
tremely small variations of the parameters leading to sharp changes in the order 
of magnitude of the exhanged energy. We might perhaps describe such a situation 
by saying that a principle of unpredictability of the thermalization rate seems to 
hold. The minimum we can say at present is that the agreement between theory 
and experimental data which is allegedly found in the literature might just be due 
to the fact that the relevant parameters are actually fitted to the data rather than 
taken as given in advance. 

What we hope is that the relaxation times of classical mechanics, accurately 
calculated using realistic interatomic potentials without free parameters, can be 
proven to be extremely long, entailing extremely large time-scales as those occurring 
in glassy systems. But in such a case one would be confronted with the further 
problem of explaining the much shorter times which are actually obserbved, namely, 
as mentioned above, of the order of 10~3 or 10~5 seconds. Our conjecture is that 
according to classical mechanics one meets with two time-scales. The first is a short 
one, which leads to the reaching a state of metaequilibrium described by a quasi-
thermodynamics in qualitative agreement with Planck's law, through a dynamical 
mechanism as the one conceived by Einstein and illustrated above. The second time-
scale, which might be extremely large as in glassy systems, would instead lead to 
equipartition. An analogous situation seems to occur in stellar dynamics, where one 
meets with a rapid, violent, relaxation to a Fermi-like distribution, i.e. the Lynden-
Bell distribution (see [42] and the review [43]); this is obtained in the approximation 
in which the collisions are neglected, while an extremely slow relaxation to a classical 
equilibrium occurs later, under the action of the interstellar collisions. Moreover, 
for what concerns the Planck-like distribution describing the metaequilibrium in 
systems of harmonic oscillators, we would like to mention that, according to the 
scenario described above, the observations should exhibit what we like to call the 
Jeans effect (see [44], quoted in [45]; see also [46]), namely a plateau in the low 
frequency region of the energy spectrum, which advances, with an extremeley slow 
pace, towards the high frequency region. Indeed, the exponentially long relaxation 
times causing the exponential smallness of the thermodynamic energy are expected 
to occur only for frequencies above a certain threshold, below which it equipartition 
should hold; on the other hand such an "equipartition front" has to advance at all, 
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if a global equipartition has eventually to occur. Actually it seems to us that such 
an effect might already be visible in certain experimental data available for plasmas 
[47]. 

In closing the present review, we would like to mention two quotations from 
Einstein and Poincare, concerning the possibility of obtaining Planck's law without 
introducing quantization, i.e. a dicretization of energy. For what concerns Einstein, 
we have already recalled how, since his contribution to the Solvay conference, he was 
striving to obtain a classical understanding. We show now that his attitude did not 
change up to his last years. This is witnessed by the following quotations from his 
scientific autobiography, which was written a few years before his death [48]. Indeed, 
he first recalls how, by inventing the photon, he had given some concreteness to the 
discretization of energy, previously introduced by Planck at a purely formal level. In 
his very words (see [48]): "This way of considering the problem showed in a definitive 
and direct way that it is necessary to attribute a certain immediate concreteness to 
Planck's quanta and that, under the energetic aspect, radiation possesses a sort of 
molecular structure". But after a few lines he adds: " This interpretation, that almost 
all contemporary physicists consider as essentially definitive, to me appears instead 
as a simple provisional way out'. A further very impressive quotation concerning a 
classical understanding of the photon, still taken from his contribution to the Solvay 
conference, is reported in [39]. 

For what concerns Poincare, we have already recalled how in his fundamental 
paper [6] he claimed that quantization should be necessary if Planck's law is as
sumed to hold. Actually, it is well known that he had a general negative attitude 
towards the metastability scenario of Boltzmann and Jeans, as is witnessed by the 
following quotation from a paper of a less technical type [49], written just after the 
one mentioned above: "Jeans tried to reconcile things, by supposing that what we 
observe is not a statistical equilibrium, but a kind of provisional equilibrium. It is 
difficult to take this point of view; his theory, being unable to foresee anything, is 
not contradicted by experience, but leaves without explanation all known laws ... ". 
However, curiously enough, the final words of the same paper have the following 
tone: " Will discontinuity reign over the physical universe and will its triumph be 
definitive? Or rather will it be recognised that such a discontinuity is only an ap-
pearence and that it dissimulates a series of continuous processes? The first person 
that saw a collision believed to be observing a discontinuous phenomenon, although 
we know today that the person was actually seeing the effect of very rapid changes 
of velocity, yet continuous ones", with the conclusion: " To try to express today an 
opinion about these problems would mean to be wasting one's ink." 

Now, our admiration for Poincare is unlimited, but our personal feeling, or rather 
hope, is that perhaps on this point Einstein was seeing farther than him. 
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Solid-Solid Phase Transition 
in a Mechanical System 

Gianni Gilardi 

1. - Introduction 

We are concerned with phase-field models for binary alloys exposed to thermo-
mechanical loads. Phase field models describe the morphology by means of an order 
parameter that indicates the present phase at time t and at any point x of the alloy. 
Our aim is to introduce briefly the modeling of the tin/lead alloy given in [5] and to 
discuss the corresponding mathematical model from the viewpoint of mathematical 
analysis following [2], 

The variables of the tin/lead alloy are the fields 

u(x, t) (mechanical) displacement 

x{x, t) (tin) concentration. 

The field equations rely on the static momentum balance and on the conservation 
law of the tin content. They read 

dffij n , dx dJk -r-^ = 0 and —- + - — = 0 
OXJ at axk 

where the repeated index convention is in force. 
Let us describe the ingredients of such equations. The stress tensor is given by 

Hooke's law including eigenstrains that result here from different thermal expansions 
of the phases 

Oij=CiMx)(£hk-£tk{x)) with ehk=2\aVk
+aVh)' 

Both the stiffness matrix C and the eigenstrains e* depend on the concentration 
because the phases behave differently. Hence, we assume the representations 

cWx) = e(x) c%hk + (i - e(x)) cfm 

cV-X with the shape function &{x) — 
c? 

In the above equation C^hk and C^hk denote the stiffness matrices of the cubic 
a-phase and of the tetragonal /?-phase, respectively. The concentrations ca and C3 
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appearing in the shape function are the temperature dependent equilibrium concen
trations of the tin/lead phase diagram. 

The eigenstrains are assumed to be given by 

e*hk(x) = ahk(X)(T-TR) 

with ahk(X) = 9 (x) aa
hk + (1 - 8(x)) c&. 

The matrices of thermal expansion coefficients of the phases are denoted by a%k 

and ahk, and T and TR are the actual temperature and the reference temperature, 
respectively. We assume T and TR to be two fixed constants since our analysis is 
confined to the isothermal case. 

Next, we consider the diffusion flux which is given by the extended Cahn-Hilliard 
form 

Ji = -Mij{X) 
dxj 

where the potential w is defined according to 

-* - m x ) Mx) d2x 
dx dxidxj 

+ 2 ^ r ( ( £ y - 4 W ) Cijhk{x) (ehk - £*hk{x)))-

The function ip(x) is the non-convex combined free energy of the phases, the matrix 
aij(x) contains the gradient coefficients that can be related to interface surface 
tensions and the mobility appears also as a matrix here, i.e. My(x), in order to 
reflect the anisotropy of the diffusion process. The matrices My(x) and atj(x) are 
constructed in the same way as the stiffness matrix and the eigenstrains, namely 

My(x) = e(x)M« + (i-e(x))M? 
Mx) = e(xK + (i-e(*))< 

Putting all the previous equations together and adding appropriate initial and 
boundary conditions, we obtain the problem we would like to discuss. However, it 
contains too many complexities and no definitely significant result from the view
point of mathematical analysis is published, as far as we know. 

Our aim is to state some existence and uniqueness theorems for a model obtained 
by making some simplifications concerning the tensors involved in the model and 
including a relaxation term. We follow [2], whose results are just a little more 
general. Our first simplification and changes lead to the following setting 

M{j is the identity matrix 

the matrix a^kix) is replaced by a scalar a(x) 

we modify ip and force x to attain only values within [0,1] 

we add the term jxdtX to w. 

In the sequel, a is assumed to be Lipschitz continuous and strictly positive on [0,1]. 
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As far as the last modification is concerned, we quote [7], where a contribution 
like fidtX m the chemical potential is considered in a more general framework. How
ever, [7] just deals with modeling. On the contrary, results concerning the analytical 
viewpoint can be found in [4], [8], and especially in [6], where a similar problem is 
considered in a more general form, but with some simplification in a different direc
tion. In particular, Garcke's matrix Oy does not depend on x-

Coming back to our framework, the new constitutive relation w-x has to be 
properly read as a differential inclusion. Hence, we are led to the following system 

(1) d^ij = 0 

(2) Oij = Ciihk{x)(ehk(u) - £*hk{x)) 

(3) £ftfe(u) = - {dXhuk + dXkuh) 

(4) dtX ~Aw = 0 

°X ox 

(5) +\{£ij{*) ~ ^M))C'ijhk(£hk(n) - eU(x))-

where I is the indicator function of the interval [0,1] and 

(6) 

is assumed to be 

(7) 

independent 

Cijhk 

of x-

T]-.= 

w " l J ILK, \/\.f 

dx 

We set 

--s^P\c'ijhk\-
ijhk 

As said before, the above system has to be complemented by appropriate initial 
and boundary conditions. This will be done in the next section, where existence and 
uniqueness results are stated for the case TV = 1, and for the case N = 2 provided 
that r] = 0, i.e., the tensor C is independent of x-

2. - Statement of the problem and results 

Accounting also for the boundary and initial conditions, we can state the full 
problem, at least formally, as described below. To this aim, we explain our notation. 

In the sequel, ft denotes a bounded connected open set in IR^ whose boundary 
T consists of two smooth and nonempty parts Tu and Ta. We term n the outward 
unit normal on T and set 

Q : = n x ( 0 , T ) , E : = r x ( 0 , T ) , Ei := IT; x (0,T) for i = no 

where T is a given final time. We look for a quadruplet (u, x, £, w) defined in Q, 

where the displacement u is a vector valued function while x, £, w are scalar valued 

functions, satisfying the couple of systems described below. The first one consists 
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in the linear elasticity system for u with mixed boundary conditions, namely 

(8) dXj {Cijhk (x) £hk (u) + yij (x)) •• 

(9) 

(10) ( C W x ) £hk{u) + yij{x))ni l 

where we have set 

vaix) ••=-CiMx) elkix) 

= 0 i n g 

= 0 on E, 

= 0 on E, 

for X G [0,1]. 

In the sequel, we assume y^ to be Lipschitz continuous on [0,1]. 
The second system is an initial-boundary value problem for a Cahn-Hilliard type 

equation for Xi namely 

(11) 
(12) 

(13) 

(14) 

(15) 

w = iidtx-

dtX - Aw = 0 

- a (x )Ax + C + 7(x,e(u)) 

£ G Pix) 
Vx • n = Vw • n = 0 

X(0) = Xo 

in g 
in g 
in g 
on E 

in f] 

where /3 is the subdifferential of the indicator function of [0,1] and 7 — j(x, e) is 
a real function suitably related to the previous ones. Its variables x and e vary in 
the interval [0,1] and in the space of second order symmetric tensors, respectively. 
Moreover, xo is a prescribed initial datum. 

More generally, /3 could be any maximal monotone operator in ]R with domain 
[0,1] and account also for the monotone part of dip/dx- Clearly, 7 has the form 

7(X, e) = Mx) + Zijix) e» + 2£H C'ijhk £hk 

for some functions zQ and Zy which we assume to be Lipschitz continuous. Finally, 
we ask the tensor C to satisfy the symmetry and ellipticity conditions 

Cijhk = Chkij and Cijhk£hk£i] > ao£y£y 

for some positive constant ao and any symmetric tensor e and assume that the 
variation of a is small enough, namely 

sup \a'\ < inf a. 

Note that such, an inequality is trivially satisfied if a is a positive constant. 
Assuming that all the conditions we have introduced on the structure of sys

tem (8-15) are fulfilled, we state our results. 

Existence theorem. Assume either N — 2 and 77 = 0 01 N = 1. Assume 
moreover 

(16) X0£H\Cl), 0 < x o < l , 0<W\Jn
Xo<1-
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Then, there exists a quadruplet (u, Xi ?>w) such that 

(17) u e r f O . T ; ] / 1 ^ ) 

(18) x 6 tf x(0, T; L2(ft)) n C°([0, T]; if ^fi)) n L2(0, T; tf2(fi)) n 1°°{Q) 

(19) £ G L2(Q) 

(20) !B6i2(0,T;ff2(S])) 

which solves problem (8-15). 

As far as uniqueness is concerned, we observe that the components £ and w of a 
solution would be uniquely determined by u and x if/3 w e r e single valued. However, 
this is not the case in our framework. Hence, we look for a unique pair (u, x), only. 

Uniqueness t heo rem. Assume (16) and let (UJ, Xh£u wi)i i = 1,2, be two solu
tions to problem (8-15) satisfying (17-20). Then Ui = u2 and xi = Xi provided 
that one of the following assumptions is fulfilled: (i) N = 1; (ii) N = 2 and the 
supplementary regularity condition 

(21) nieLi{0,T;W1A(n)N) 

holds for i = 1, 2; (Hi) N = 2, r\ = 0, and (21) holds for either i = 1 or i = 2. 

3. - C o m m e n t s 

This section is devoted to give some ideas on the proofs of our results and to ex
plain why we are forced to make the restrictions that appear in the above statements. 
We follow [2] but we avoid technicalities if possible. 

The main idea for the existence proof is to present system (8-15) as a fixed point 
problem. Roughly speaking, we construct two maps T\ and Ti as follows. 

For a given phase parameter x, we solve the elasticity system (8-10) for u and 
term ^ i (x) i*s solution. Next, for a given displacement u, we solve the Cahn-Hilliard 
system (11-15) for the triplet (x,£,w) a r ,d term ^ ( u ) the first component x of its 
solution. However, in order to be rigorous, we should choose the precise domains of 
the maps Ti and prove that they actually are well defined. 

Once this has been done, it is clear that a fixed point x for the composed map 
T := T2 o T\ yields a solution to the full problem (8-15). Indeed, it is sufficient to 
take T\(x) as u and the solution to (11-15) as (x, £,w). Therefore, existence can be 
proved by checking that T fulfilles all the assumption of the Schauder fixed point 
theorem. 

As far as the complete definition of T\ is concerned, we can sketch the procedure 
as follows. Denoting by || . || the norm in L2(0,T; /f1(f2)), we set 

D1:={X€L2(0,T;H1(Q)): \\X\\ < R, 0 < X < l } 

where R is a positive parameter. Then we define T\ as described above on the 
domain D\. Later on we choose R in order that the range of the composed map T 
is contained in D\. 
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More precisely, the function u := ^ i (x ) is defined through the variational for
mulation of (8-10), which reads 

(22) u(t) e H^Q), u(t) = 0 on Tu 

(23) jf Cijhk{X(t)) ehk{u{t))ey(v) = jf y„(x(*)) £y(v) 

for any v e H1^)1* vanishing on Tu (here t is considered like a parameter). 
Hence, u(t) is well defined for almost every t. Indeed, the Korn and Poincare 

inequalities ensure that the formula 

IMIi : = ^ y ( v ) e y ( v ) 

defines an equivalent norm on the subspace of the v's we are dealing with. 
In order to define T-i, we need firstly a basic a priori bound for the function 

u := F\{x)- We take v = u(t) in (23) and obtain 

\W*)\\2i = JnViMt))*ijW))-

This yields immediately 

(24) ||u|| < c. 

where ||. || is now the norm in L°°(Q,T; H1(Q)N) and c» is a constant independent 
of x and R. 

Note that the map T\ would be well defined whenever x were measurable and 
bounded and that the condition x £ D\ does not help in proving further space 
regularity for the corresponding solution u. Indeed, one can just say that u satisfies 
some kind of Meyers estimates, i.e., that it is bounded in L°°(0, T\ V(Q)N) for some 
p > 2 thanks to the general results of [9]. In particular, a requirement like (21) 
cannot be obtained, unless N = 1. 

Next, we proceed in constructing .F2- We define its domain L>2 using esti
mate (24) as follows 

D2:={ueL2(0,T;H\n)N): ||u|| < c.} 

so that the range of T\ is contained in D2 and it will make sense to define the 
composed map T. However, making the definition of T2 rigorous corresponds to 
prove that problem (11-15) is well posed for a given u in an appropriate functional 
framework. Already the existence proof is not trivial and can be done by solving 
suitable and easier approximating problems and passing to the limit, provided that 
the last term on the right hand side of (12) belongs to L2(Q). For that reason one 
has to assume either JV = 1 or r\ = 0 again. 

In [2] this assumption is made and the maximal monotone operator /? is replaced 
by its Yosida approximation f}\, which is defined on the whole real line. More
over, the functions a and 7 are suitably extended to allow even an argument x n ° t 
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belonging to [0,1]. The resulting approximating problem is the following system 

(25) dtx - Aw = 0 in Q 

(26) w = M x - a ( x ) A x + £ + 7(x,e(u)) in Q 

(27) £ = /3A(x) in Q 

(28) Vx • n = Vto • n = 0 on £ 

(29) X(0) = Xo in n 

which differs from (11-15) in equation (27) and has at least a solution (xx,^x,w\)-
In order to pass to the limit as A tends to zero, one has to establish a number of 

a priori estimates on the approximate solution and use compactness results. The ba
sic observation (this holds also for system (11-15)) is that the mean value of XA does 
not depend on time, as one easily sees from equation (25) and the second boundary 
condition in (28). This allows us to choose a number of useful test functions, in 
particular the solution to the Neumann problem 

-Av = f in fi, Vv • n = 0 on T, / v = 0 
Jo. 

where / is either x(<) — Xo o r dtX{t) a n d Xo is the mean value of the initial datum Xo-
The list of a priori estimate obtained in such a way ensures that the norms of XA, 

£x, and w\ remain bounded in the spaces occurring in (18-20) with one exception: 
as Px is everywhere defined, the inequalities 0 < XA < 1 are false and XA is not 
bounded in L°°(Q). Nevertheless, we can deduce some strong convergence for XA 
thanks to strong compactness results in Sobolev spaces. This allows us to deal with 
the nonlinear terms. In particular, we can apply the general theory of maximal 
monotone operators (see, e.g., [1] and [3]) and obtain the inequalities 0 < x < 1 in 
the limit. 

As the a priori estimates holds also in the limit, one shows that the x component 
of the solution belongs to D\ for a suitable choice of R, so that the domain of T\ 
can be made precise at this point and the composed map T actually maps D\ into 
itself. The obtained a priori estimates on x are also sufficient to show the continuity 
and compactness properties for T that are required to apply the Schauder theorem. 

However, this can be used only once one knows that Ti actually is one valued, 
i.e., one has proved a uniqueness theorem for system (11-15) with a given u. A stan
dard approach to such a uniqueness result consists in writing the equations for two 
solutions and taking the difference. Next, one multiplies the obtained equalities for 
suitable test functions depending on the solutions themselves and starts estimating. 
The main troubles arise in dealing with the nonlinear terms and some Gagliardo-
Nirenberg inequalities have to be used. That is why we cannot deal with the case 
N > 2. Similar difficulties occur in proving the uniqueness result for the whole 
problem (8-15). 
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The Minimum Free Energy of 
Compressible Viscoelastic Fluids * 

J. M. Golden t G. Gentili* M. Fabrizio § 

1. — Introduction 

Recently, explicit formulae have been given for the maximum recoverable work 
from a specified viscoelastic state, under isothermal conditions, for a scalar [8] and a 
general tensor [1] constitutive relation. These formulae also represent the minimum 
free energy associated with a given viscoelastic state, by virtue of general theorems 
identifying this quantity with the maximum recoverable work [3]. 

This paper is based on [2], the aim of which is to derive an expression for the min
imum free energy of a compressible viscoelastic fluid with linear dependence on the 
history of strain. Essentially the same techniques apply, though there are significant 
differences with respect to the earlier work [8, 1]. Firstly, there is the equilibrium 
pressure term, with a non-linear dependence on the density, in the constitutive rela
tions; and secondly, there is the fact that the constitutive relations are those for an 
isotropic material. This is of course a special case of the full anisotropic tensorial 
treatment in [1]. However, it is particularly interesting in that a factorization, which 
is fundamental to the methodology, can be carried out as explicitly as in the scalar 
case [8] for general viscoelastic response. In the full anisotropic case treated in [1], 
it can be proved that the required factorization exists, but no general method for 
determining the factors has yet been given; though of course, this can be done for 
specific material responses. 

In order to obtain the process which provides the maximum recoverable work, 
it is necessary to solve an integral equation of the Wiener-Hopf type. An existence 
and uniqueness theorem is given for this integral equation, using conditions which 
follow from thermodynamics. 

In section 2, constitutive equations are given for a particular class of compressible 
viscoelastic fluids with linear dependence on strain history. Also, thermodynamic 
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states and processes are defined, and the notion of equivalent states is introduced. 
In section 3, certain thermodynamic concepts and results are presented, with appli
cation to the particular types of material under consideration. 

In section 4, the crucial factorization is carried out, while in the following section, 
the Wiener-Hopf integral equation for the process yielding the maximum recoverable 
work is derived and shown to have a unique solution. In section 6, an explicit formula 
for the minimum free energy is constructed and discussed; and a function on the 
equivalence class of states is presented. 

Certain notational usages are defined and basic formulae listed in an appendix. 
In the current summary version, proofs are omitted and also some of the discus

sion. 

2. - A Particular Class of Compressible Viscoelastic Fluids 

The state a of a compressible viscoelastic fluid can be described [5, 10] by means 
of the mass density p(x, t) and the history of strain E — j ( V u + (Vu)T) (u is the 
desplacement) relative to its present value, i.e. by means of the couple (p, E ' ) where 
the relative strain history E ' is defined by E ' (x , s) = E'(x, s) — E(x, t) s £ 1Z++ 

using the notation E'(x, s) = E(x, t — s) for the strain history. The dependence on 
the spatial variable x will henceforth be omitted. 

A fluid is necessarily isotropic. We will also assume for simplicity that it is 
homogeneous. The constitutive equation for the stress is given by 

(i) T(P,Ei) = -P(p)i+np,K) 

where I is the identity second order tensor and p denotes the pressure. The quantity 
T is referred to as the extra stress and is given by (see (A.2)): 

/*oo /-oo 

(2) T(p, K) = P A ' (s)^(s) dsI + 2 / / (s)E '(s) ds . 
Jo Jo 

where the memory kernels A', / / have the property (the prime dnoting differentiation) 

(3) A ' , p ' G ( L 1 n L 2 ) ( ^ + ) . 

Moreover we assume that 
(4) A'(0)y(0) e rc~ • 

and 
(5) A , M e ( L 1 n L 2 ) ( ^ + ) . 

where X(t) = - Jt°° A'(s) ds and n(t) = - Ji°° /z'(s) ds. 
Let E f denote a constant history i.e. E ((s) = E f Vs G TZ++ 

relative strain history E* = 0+ where 0f is the zero strain history 
extra stress is zero: 
(6) T ( p , 0 t ) = 0 

If E* = Et, the 
In this case, the 
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Moreover the relaxation property ensures that, for a static continuation E'+T, defined 
as 

(7) E < + » = 
0 for s < T 

Ej;(s - r ) for s > r 

the extra stress vanishes as r diverges, viz. 

(8) T l imT( / 3 ,E^ T ) = T ( p , 0 t ) = 0 

Given the state a(t) = (/?(£), EJ:) the stress is uniquely determined by (1-2). 
A process P of duration dp will be described by a funtion D F : [0, dp) —> Sym 

where D p ( r ) — Ep(r ) , the derivative of a strain tensor specified over a time segment 
of duration dp. For any process Dp the evolution of a(t + r) = (p(t + r), E '+ T ) , r e 
[0, dp), is determined as the solution of the differential equations given by 

(9) J; E ' + T ( s ) = DP(r"s)" DP(T) ' ° < s < r 

and the balance of mass1 

(10) —p(t + T) = -p{t + T ) V • v(t + r ) = -p{t + T)DP{T) . 
ar 

The effect of a given process on a particular strain history is described in more detail 
in [1]. Note that the solution of (10) is given by 

(11) p(t + T)=p(t)exp\-£ Dp{s)ds 

Henceforth, II will denote the set of all admissible process T>p of finite duration 
whereas the set of all admissible states will be denoted by E: 2 

(12) £ = {a = (p, EJ) : |T(p, E£T) I < °o , Vr > 0} . 

Actually two different states o\ = (pi(t),E\r) and ax = (p2(t),'E
t
2r) may yield 

the same stress T. We recall the following definition [11]: 

DEFINITION 1 Two states ax{t) = (pi(i),E (
l r) and a2(t) = (p2(t),E

t
2r) are said to 

be equivalent if, for every process D : [0, dp) —> Sym, the subsequent states, o\(t+T) 
and a2(t + r), T S [0,dp), obtained by (9-10), satisfy 

(13) T ( P l ( i + T),E[+T) = T(p2(t + r ) , E * r ) , Vr G [0, dp) 

'Note that Dp = tr(E). 
2In the sequel we make use of a slightly more restrictive definition, in order to render S com

patible with a linear thermodynamic theory. 
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Such a definition introduces an equivalence relation, whose equivalence classes 
are named the minimal states 0(m) of the material. In other words, if o\ and 02 are 
equivalent in the sense of Definition 1, they represent the same state <7(m). 

Thus the space of the minimal states E(m) is the space of the equivalent classes 
of E induced by Definition 1. 

Observe that, by virtue of decomposition (A.2), the constitutive equations (1-2) 
may be rewritten as 

/•OO /-CO o 

(14) T(p,Vt
T) = ~p(p)I + p K>(S)E

t
r(s)dsI + 2p p>'(s)Ej(s) ds 

Jo Jo 

where K\ = \\ + \p,\. Equation (14) may be written in compact form as 

, , T(p,Ej) = -p(p) I + pV(E£) 
(15) 

V(El)=J0
oo(K'(s)Et

r(S)dS 

where the relaxation function (B' is a fouth-order tensor valued function <&' : TL+ —» 
V(Sym). The first element of (E'(s) in the expansion (A.6) is given by K'(S) whereas 
the other non-vanishing (i.e. diagonal) elements are equal to 2//(s). 

For materials of type (15), under the assumption that any finite density p yields 
a finite pressure p(p), it is easy to check that the space of admissible states E, given 
by (12), may be written as E = 1V~ x T where 

E< r <&'(s + r )E ' ( s ) ds < oo , Vr > o | 

Moreover the state space E(m) can be characterised by means of the following 
property: 

T H E O R E M 1 For a viscoelastic fluid of type (2), two states o\ = (p!,Ej r) ando-i = 
(p2,E2r) are equivalent in the sense of Definition 1 if and only if 

roo o />oo 

(16) p1(t) = p2(t), p'(s + T)Et
r(s)ds = 0, K,(s + T)Et

T(s)ds = 0,VT>0 
Jo Jo 

where E = Ex — E2-

Denoting by Fo the set of all the histories E ' £ F satisfying (16)2 and (16)3, and 
by r / r 0 the usual quotient space, Theorem 1 implies that the minimal state of a 
linear viscoelastic material is an element of 

(17) E(m) := n + x (r/r0) 

We also view a process as a function P : E —>• E which associates with an initial 
state a1 e E a final state Pa1 = af 6 E. Such an evolution is governed by the 
differential equations (9-10). Considering P as a function P : F -4 T associating 
with any initial history f e T, a final history P^% — •yf e T, the evolution related 
to P is governed only by (9). 
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3. - Thermodynamics 

We confine our attention to isothermal processes, so that the Second Law of 
Thermodynamics reduces to the Dissipation Principle stating that the work on a 
cycle is non-negative. A stronger principle is adopted here for reasons given below. 

A set <S C E is said to be invariant if for every o\ G S, and P £ II, the state 
o = Pa1<= S. 

DEFINITION 2 A function ip : S —• 1Z+ is a free energy density3 if: 
i. the domain S is invariant, 
ii. for any pair <7i, CT2 € S and P G II, such that Po\ = a2 we have 

(18) ^ j j - ^ O ^ H ' K P ) 

A state a G £ is referred to as attainable from all of £ if, for any initial state 
a', there exists a process P G II such that Pa1 = a. A simple material system is 
attainable if any state a is attainable from every other state a' G E 

However, for a simple material with fading memory, not all states are attainable. 
In particular, cyclic processes constitute a very narrow class of processes related to a 
very narrow set of states. For this reason the Dissipation Principle is not restrictive 
enough and we need a stronger formulation of the Second Law. 

To this aim we denote by 

(19) W{a):={W{a,P);PeU} 

the set of the works done by all possible processes P G II acting on a given state a. 
The following principle shall be adopted 

Strong Dissipation Principle The set W(a) is bounded from below for all a G 
E. Furthermore, there is a state a\ which we refer to as the zero state, such 
that 
(20) inf [W(o\ P); P G n } = 0 

The Strong Dissipation Principle requires that we redefine the set of all admis
sible states E, modifying (12) as follows 

£ T = {a = (p, El) : |T(p, E£T)I < oo , Vr > 0} . 

(21) E : = { a G E r : i n f W ( a ) > - c o } 

If (21)2 were not true, we would have a contradiction with the Second Law. In fact, 
—W(a,P) is the work yielded by the material. If it were unbounded from above, 
as P varies, we could extract infinite energy from the material, and then generate a 
perpetual motion. 

For a material of type (1-2), the zero state is a* = (po,Ot), where po is the 
equilibrium mass density and 0^ is the zero history introduced before (6). 

3 Henceforth the free energy density will be referred to simply as the free energy. 
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DEFINITION 3 A functional ip m is the minimum free energy if: 
i) ipm is a free energy in the sense of Definition 2 with domain S = E. 
ii) the zero state o-t £ E is such that V'mCc*) = 0 

iii) for any free energy ip : <S —> 72.+ such that o^ g <S, and V,((T^) = 0, we have: 

(22) ip(a) > ipm{a) , forall a £S 

T H E O R E M 2 77ze functional 

iPm(a):=-MW(a) 

is the minimum free energy. 

The proof of this theorem has been given in [3]. 
It is always possible to represent the minimum free energy as a function of the 

minimal state am. In fact, if two equivalent states 0\ and a2, continued with the 
same process P, yield the same stress, then they also yield the same work, giving 
W{auP) = W{a2,P). Therefore W{a,P) = W{a(m),P) so that W{a) = W{am) 
and 

infW(a) =infW(crm) . 

As a consequence 

(23) V'm(o-) = i>m(0m) 

Hence the minimum free energy is independent of the definition of state that is used. 
We conclude the section by stating an important property of the free energy of 

a material described by (1) and (2). 

T H E O R E M 3 For materials described by (1) and (2), every free energy may be writ
ten as the sum of two terms 

(24) lH<0 = M>) + ¥>(7) 

where 

(25) 4>(P)= f^PiQdt 

p0 being the equilibrium mass density and ip : Sr —t 72. is defined on a set Sr that is 
T-invariant, (namely, if"/ £ <Sr then Pj £ <Sr for every P £ XI), and satisfies: 

(26) V ( 7 2 ) - p ( 7 l ) < fd' V(E*) • D(t) dt 
Jo 

where P"/i = 72 and we have dropped the superscript P on D . Moreover ifip(a1') = 0, 
then 
(27) p(0t) = 0 

Henceforth the right hand side of (26) will be termed the T-work and denoted 
by 

(28) W{j, P) = [^ - T(p, E«) • D(i) dt = I"' V(EJ) • D(t) dt 
Jo p Jo 
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whereas Wr(7) will denote the set of all the T-works starting from 7 6 T, viz. 

wr(y) = {W(7,p),Pen} 

It is easy to check that Theorems 2 and 3 imply that the minimum free energy can 
be written as 

(29) M") = <l>{p) + <Pm('Y) 

with ipm given by: 

(30) Vm(7) :=-mfWV(7) 

The right hand side of (30) represents the maximum recoverable T-work. 

4. - Thermodynamic restrictions and factorization 

Before determining the "optimal" process maximizing the recoverable T-work, 
we recall some properties of the relaxation function ffi required by thermodynamics. 

In particular, as a consequence of the Dissipation Principle, for materials de
scribed by constitutive equations (1-15) the memory kernels K' and / / must satisfy 

[6] 

(31) - /4 (w) < 0 , -K ' S (W) < 0 , V w e K , 

using the notation defined by (A.7). Since 

(32) (Bc(w) = — < B » , 
to 

the thermodynamic restrictions (31) ensure that (Ec(w) is positive definite for every 
u e K . Moreover (&c(co) vanishes as u~2 as u> tends to infinity. In fact it is easy to 
check that, if (G" is integrable, we have 

(33) lim w2(Ec(w) = -(E'(0) 

where (fi'(0) is negative definite by virtue of (4). 
The above thermodynamic properties ensure that the function (Bc(u;) may be 

factorized by [1, 7] 
(34) (EcM = (E(+)(u)(l}H(u) 

where the singularities of (&(±) on the complex plane, and the zeros of its determi
nant, are all in Q^ respectively. 

Because of the property that (Bc(w) € V(Sym), an explicit general expression 
can be given for the factors [2], generalizing a result derived for the scalar case in 
[8]. 



138 

5. - Maximum Recoverable T-Work 

Results are now summarized which prove that the problem of finding the "opti
mal" process maximizing the recoverable T-work has one and only one solution by 
virtue of the thermodynamic properties of the relaxation function. 

From here on, we denote by (E(|s|) the extension of (G(s) to an even function on 
1Z. The process which maximizes the recoverable work can be shown [2] to obey the 
integral equation 

(35) / (G(|i-T|)D<m>(T)dr = I 0 ( i , E ° ) teTZ+. 
Jo 

where 
(36) I0(t, E°) = - / (B'(t + T ) E ° ( T ) dr. 

Jo 

Equation (35) is a Wiener-Hopf equation, the solution of which maximizes the re
coverable T-work. From 

<pm(y0) = -mHw(l0,P), V P e n } 

it can be shown that [2] 

(37) Vm(E°r) = -Jo Jo (S(\t-T\)D^(t)-B^(r)drdt 

where D'm) is now the solution of the equation (35). For this reason it is important 
to prove the existence and uniqueness of the solutions of Wiener-Hopf equation (35). 
We denote with Q the completion of the set Q defined as 

(38) g = | D : [0, oo) -> Sym; /"°° f°° (E(|i - r | )D(t) • D(r)drdt < oo . j 

with respect to the norm || • \\g defined by 

(39) \\-\\s= / (B ( | t - r | )D( i ) -D(T)d rd t 
Jo Jo 

The thermodynamic restrictions (31) imply that the kernel (E(|t|) is positive defi
nite), as may be seen from the frequency domain representation of (39) [4]. Then 
we can introduce an inner product on g defined by 

0 JO 

which makes g a Hilbert space. The set of processes If is a subset of g. 

( D 1 - D 2 ) = / / (B( | t -T | )D 1 ( t ) -D 2 (T)drdt 
ô Jo 

REMARK 1 By means of the norm of (?, it is possible to provide the set of the 
processes If with a topology. In particular, the closure of II using the norm (39) is 
the Hilbert space <?. 

The equation (35) can be written as 

(40) .4D = I0 

where A is an operator from g to its dual £'. It is bounded and coercive. Then, 
from the Lax-Milgram theorem, we can give the following 
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T H E O R E M 4 For any I0 e Q', equation (35) has a unique solution D EQ. such that 

\\T>\\g<K\\lQ\\g, 

In other words, there exists an isomorphism between Q and Q'. Moreover, we have 
from Definition 3.1 the following 

PROPOSITION 1 Two histories E j , E° correspond to two equivalent states in the 
sense of (16i-16z) if and only if 

(41) I0(*,E°) = I0(*,E2°) Vt£7l+ 

REMARK 2 Proposition 1 yields a bijective map between Q' and the quotient space 
T(m) = r / I V In other words it is possible to identify any class of equivalent histories 
with a function I0. 

This result allows us to represent the minimum free energy as a function defined 
on the set Tim) of equivalent histories. 

6. — Cons t ruc t ion of t h e m i n i m u m free energy 

Rewriting the Wiener Hopf equation (35) at any time t (rather than t = 0), we 
obtain „ 

roc 

(42) Jo (S(\T-s\)B^{S)ds = I 0 ( r ,E<) , r > 0 
w i t h , „ . 

(43) IO(T,E*) = - / (E(T + s)Ej(a) ds , r > 0 
Jo 

and where D^m> is the optimal process acting on 7. The maximum recoverable work 
gives the minimum free energy ij)m(p), E ' ) = <j>(p) + v?m(E') with <p defined by (25) 
and ipm, the maximum recoverable F-work, given by 

(44) <Pm(H) = ~ / ( B ( | r - S | ) D W ( r ) - D ( m ) ( S ) d r d S 
l Jo Jo 

Wiener-Hopf equations of the first kind are not solvable in the general case. 
Nevertheless the thermodynamic properties of the integral kernel <£ allow us to 
determine the solution D'"1 ' of (42). Details of the derivation are given in [2]. One 
obtains 

(45) DW( W ) = - f f i w M - ' p ^ M 

P*-)M = -^("-Vwjr-Cw) 

using the notation for Fourier transforms defined in (A. 7) and where P(±)(z) are 
analytic respectively for z £ O^ (see (A.10)) and are defined by: 

1 r°° ®r\(w)I'+(w) 
pt(z) := - L / (~)V ; +V >dui, z <= Q\H, 

Am J-00 w — z 

(46) Pf±)M := lim p'(w + ia) 
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REMARK 3 : It follows that 

lim D L m ) H ^ 0 , 

so that D(m ' ( r ) has an initial delta-function type singularity as r —> 0+ . Thus 
the optimal continuation E^m \ where D'm) = E^m ', has an initial discontinuity as 
T -> 0+ so that E(0+) + E(i). 

REMARK 4 : Since det (E(+)(0) ^ 0, it follows that 

EW(oo) - E(ffl)(0-) = rB^{r)dr = D<™ '(0) = - ^ ( O ^ p ^ O ) 

where we have emphasized that the integral includes the discontinuity. Therefore, 
the optimal continuation tends to the finite limit 

Hm E W ( r ) = E<m>(oo) = E(t) - ^ ( O ^ p ^ O ) 

The substitution of (45) into (44), yields 
1 rOO poo 

<Pm(K) = * (E(|r-5|)DW(5)-DW(r)dSdr 

l JO JO 

I'K J-oo 

(47) = ^ / _ J p f + , M | a * -
Therefore the minimum free energy takes the form 

1 r°° 

(48) i>m(p,K) =<f>(p) + ^j_Jpl+)n\2du 
Actually, in view of equations (42) and (44), Proposition 1 and Remark 2, it is clear 
that ipm is a function of the element 7m of T(m), namely 

and hence pW-. provides an explicit representation of equivalence class j m , as ex-
plicitely shown by the following theorem. 

T H E O R E M 5 For every viscoelastic material with a symmetric relaxation function, 
a given strain history E ' is equivalent to the zero history 0* in the sense of (16)2 
and (16)3 if and only if the quantity p\+) is such that 

(49) pl+)(tj) = 0, VueK 

As a consequence of expression (47) and Theorem 5, we have that (pm provides 
a norm in T(m), namely 

||7m||2 = (3m(7m) . 

Thus the minimum free energy tpm induces a norm in the space of the minimal states 
E(m). In fact, if am = (p, 7m) and ip(am) = ip(p, E ' ) , then equations (47-48) yield 

l k m | | 2 = i>(crm) = </>(p) + <Pm(lm) • 
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7. - Concluding remarks 

The results obtained above are entirely consistent with those in [8, 1] for a linear 
viscoelastic solid. Also, the explicit results for materials with relaxation functions 
given by a sum of exponentials presented in [8, 1] are equally applicable in the 
present case, on taking account of the notational equivalences specified in the last 
paragraph and on putting ffi(oo) = 0. 

In obtaining these explicit results in [1], it is assumed that all fourth order 
tensors are simultaneously diagonalizable; and if the results are to be used, it must 
be possible to find the diagonal forms explicitly. Observe that in the present work, 
the diagonal form for the relaxation tensor is achieved without difficulty by (14) and 
the factors (E± are diagonal, so the no assumptions are necessary. 

The results presented here apply also to isotropic linear viscoelastic solids, with 
the minor modification of introducing a non-zero (E(oo). 

Appendix: Notation and basic formulae 

The space of symmetric second order tensors acting on 1Z3 is denoted by Sym 
and is isomorphic to 1Z6. Operating on Sym is the space of fourth order tensors 
Lin(Sym). We shall often write a second order tensor A in terms of its trace A and 
its trace-free part A, 

(A.l) A = tr(A), A = A - ^ I , 

where I is the identity tensor in Sym. 
We introduce a scalar product on Sym as follows: if A, B E Sym then A • B = 

t r (AB). The associated norm is defined as |A|2 = A • A. Since I and A are 

orthogonal, i.e. t r ( IA) = 0, for every A € Sym, the decomposition 

(A.2) A=^4I + A 

is unique, namely for any tensor A G Sym there exist a unique scalar A and a unique 
trace free tensor A £ Sym satisfying (A.2). As a consequence, the decomposition 
(A.2) allows us to introduce an orthonormal basis of Sym 

(A.ayj,...., N 6 : tr(N„N*) = Shk , Nx = - ^ = 1 , N4 = N h , ft = 2,..., 6 , 

5hk being the Kronecker symbol. 
Henceforth we treat each tensor A € Sym as a vector in 7?.6 whose first compo

nent is -JTA = -jrtr(A). Observe that if 

(A.4) A = ^ A N , , B = J2BiNi, 

then 

A-B = tr{AB) = YiAiBi, 
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Consequently [9] any fourth order tensor K € Lin(Sym) will be identified with 
an element of Lin(TZ6) by the representation 

6 

(A.5) K = £ KiiNi ® NJ 

and IK means the transpose of IK as an element of Lin (7£6). In the sequel we deal 
with the space V(Sym) of fourth order tensors whose representation in Lin(TZ6) is 
a diagonal matrix, viz 

6 

(A.6) K = Yl KiSijNi ® N , , 
i,i— 1 

and also with complex valued tensors. Then, denoting by U the complex plane, 
Sym(Q) and V{Sym{Q,)) denote respectively the tensors described by (A.4) and 
(A.6) with Ai,Bi,Ki € Q. 

The symbols TZ, TZ+ and TZ++ denote the reals, the non-negative reals and the 
strictly positive reals, respectively, while TZ" and TZ denote the non-positive and 
strictly negative reals. 

For every function / : TZ —• V, where V is any finite-dimensional vector space, 
in particular in the present context Sym or V(Sym), let fp, denote its Fourier 
transform viz. /F (W) = /f^, f(s)e~'bJsds. Also, we define 

/ + M = r f{s)e-™sds, /_ ( w ) = j ^ f(s)e-^sds 
(A.7) 

/«(w) = Jo" /6 s ) sinwsds, /c(w) = J,,00 / ( s ) cos w ^ s 

The relations defining fp and (A.7) are to be understood as applying to each com
ponent of the tensor quantities involved. Some constraint must be placed on these 
components to ensure that the Fourier transforms exist. Unless otherwise stated, it is 
assumed that all components of tensors in the time domain belong to L1(R) nL2(R) 
(or L1(R±)nL2(R±) in the case of / ± ) so that in the frequency domain, they belong 
to L2{R) (or L2(fl±)) [13, 12]. 

For / : TZ+ - > V w e can always extend the domain of / to TZ, by considering its 
causal extension viz. 

f(s) for s > 0 

0 for s < 0 

in which case 
(A.9) fF{w) = /+(w) = fe{u) - i/,(w) 

The complex u) plane, denoted earlier by fi, will play an important role in our 
discussions. We define the following sets: 

(A.8) m 

(A.10) ft+ = { C € f i : 3 m C > 0 } , f2<+> = { C e f t : 3 m C > 0 } . 
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Analogous meanings are assigned to Q,~ and fi,(~\ 
The quantities f± defiped by (A.7) are analytic in Q,^ respectively. This an-

alyticity is extended by assumption to CF. The function / + may be defined by 
(A.7) and analytic on a portion of Q+ if for example / decays exponentially at large 
times. Over that portion of fi+ for which the integral definition is meaningless, /+ 
is defined by analytic continuation. 
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KAM Methods for Nonautonomous 
Schrodinger Operators 

Sandro Graffi * 

1. — Introduction and statement of the results 

In this lecture a result will be reported]!] concerning the spectral analysis of 
quasi-periodically non autonomous Schrodinger operators through recent advances 
in KAM theory[12, 13, 15]. The presentation covers the statement of the results and 
the basic ideas underlying the proof. The reader is referred to [1] for all technical 
details. 

It is convenient to formulate the basic technical proposition in the language of 
abstract differential equations in Hilbert spaces. 

Consider the non-autonomous, linear differential equation in a separable Hilbert 
space H 
(1) ii>{t) = {A + eP{u)Xt,uj2t,...,wnt))i>(t), T/)(t) e H, e 6 K 

under the following conditions: 

Al The operator A is positive self-adjoint. Spec(.A) is discrete, and all eigenvalues 
0 < Xi < A2 < A3,... are simple. There is d > 1 such that 

(2) A, ~ id , i -»• 00. 

A2 P(<f>i,..., 4>„) = P{4>) is a function from the n-dimensional torus T" = K" /2-KZ" 
into the symmetric operators in "H, UJ := (wj , . . . ,un) € [0,1]" is a frequency 
vector. 

A3 For S > 0, denote B5 the Banach space of all closed operators T in H such 
that A~sldT is bounded (remark that B° = C{H)), with norm 

(3) | |T | | 4 := sup \\A-s'dTx\\H 

Then the map T" 5 <j> —> P(<j>) e Bs is analytic for some 5 < d — 1. 

Our purpose is to prove the following 
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T H E O R E M 1 There exist et > 0, a subset IP C n := [0,1]" and, if \e\ < e„ and 
UJ € IT, a unitary operator U€(u>t) = Uc(uJit, u>it, ...,w„t) in % with the following 
properties: 

Tl Ue(wt) is analytic in t and quasiperiodic with frequencies to; 

T2 Ue(u!t) transforms equation (1) into a system of the form 

(4) ix{t) = 4„(wt)x(*) 

(5) A*, := diag(A~ + / x f M ) , A? + i^(ut), Xf + /xfM), . . . ) 

Here {A°°}£ l 6 R ond any function nf{<j>) : Tn —• K is analytic with zero 
average; 

TS There exists C > 0 SMC/J ttai: 

| | l - [ / £ (wi) | |o<C*e, |A°°-A,| < C i * e , |^(wt) | < CY'e , | n - I T | E 4 0 0 . 

Straightforward integration of (4) reduces (1) to an autonomous system which makes 
the almost-periodic nature of all its solutions evident. 

COROLLARY 1 

1. If |e| < e», u> € IT i/jere exists a unitary transformation Up{tot), quasiperiodic 
with frequency w and suc/i that ||1 — Uj?(a;t)||4 < Ce, which transforms (1) into 
the system 
(6) ix = AFx, AF:=dia,g(\™,\%>,\™,...) ; 

2. For on?/ initial datum tp0 the solution ip(t) of (1) is almost-periodic with 
frequencies 27r/Af>, 2ir/X^,.. .; ui,..., uin, i.e. has the form 

oo 

(?) m = E<t>°(^yxrt 

>=0 

where {(^(cut)}^ are the components of Uc(u)t)il>o along the eigenvector basis 
of A . 

The above result can be equivalently formulated in terms of Floquet spectrum ([9] 
for the quasi-periodic case). Consider indeed on K. := rl ® L2(T") the Floquet 
Hamiltonian operator 

(8) KF:=-\JTul-?- + A + eP(<t>). 
i=i d<P' 

The maximal operator in K. generated by the differential expression (8), still denoted 
Kp, is self-adjoint by A3, which makes A + eP{uit) self-adjoint on D(A) for all t. 
Then: 
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COROLLARY 2 For \e\ < e* and u> € IT the spectrum of Kp is pure point; its 
eigenvalues are v^k :— Aj° + k • UJ, j = 0 , 1 , 2 . . . , k £ Zra. 

As in [3, 4, 5, 7, 11, 14, 8] the main motivation for this corollary is the (Floquet) 
spectral analysis for the time dependent Schrodinger equation in dimension one, 
namely: 

THEOREM 2 Consider the time dependent Schrodinger equation 

d2 

(9) H(t)it>(x, t) = idttp{x, t), x e E; H(t) :=--— + Q(x) + eV(x, cot), e e K 

and the corresponding Floquet Hamiltonian (8) under the following conditions: 

1. Q(x) E C°°(K;K), Q(x) ~ \x\a for some a > 2 as \x\ -* oo; 

2. V(x,(j>) is a C°°(lR;K)-valued holomorphic function of <j> € Tn, 

with \V(x, fyWxl'P bounded as \x\ —> oo for some 0 < —-—. 

Then there is e* > 0 such that the spectrum of Kp is pure point for all |e| < e*, 
UJ e IT6. 

2. — The formal construction 

Without loss of generality equation (1) can be written as a first-order system in 
£2: 

(10) ix=(A + eP{ujt))x , xe£2 

(11) A = diag(Ai,A2,A3,...) , A j 6 R , A, > 0 

where Aj and P(u>t) = P(oJit, w2t,...,ojnt) fulfill conditions A1-A3. 
The key point of any KAM method is the construction of a coordinate transfor

mation mapping the original problem into a new one of the same form with a much 
smaller size of the perturbation, typically the square of the original one. Here we 
construct and estimate, by an algorithm very close to that of [8], a unitary operator 
which maps (10) into an equation of the same form but with a perturbation of order 
e2. 

In this Section we describe the procedure; in Sect. 3 we work out the estimates, 
and in Sect.4 we set up the iterative scheme and prove its convergence. 

Let B{(p\, •••,<pn) € B° be anti-selfadjoint V0 6 Tn. Given the unitary operator 
eeB^\ for fixed w G II perform the change of basis x = eeB^y. Substitution in (10) 
yields 

(12) iy = (A + P1(u>t))y 

The new perturbation P1 is (the explicit dependence of B on t is omitted): 

(13) P1:=e{[A,B}-iB + P) 

+ (e-eBAeeB - A - e[A, B}) + e ( e - e f l Pe £ B - P ) - ie [eriBBetB - B) . 
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If B makes the curly bracket vanish P1 becomes of order e2. Hence we study the 
equation 
(14) [A,B]-iB + P = 0. 

Taking its matrix elements between the eigenvectors of A this equation becomes 

n g 

(15) - i Y] u,wj-Bij + (Xt - Xj)Bij = Pij , 

Expand both sides in Fourier series, i.e. write 

k€Z" keZn 

Equating the Fourier coefficients of both sides (15) becomes 

(w • k + Xi - Xj)Bijk = Pijk . 

Clearly this equation cannot be solved when i = j and k = 0. Assuming now to such 
that UJ • k + X{ — X3 ^ 0 when i ^ j or k ^ 0, the natural definition of B would be 
the operator with matrix elements defined as 

B — V ^ e1*'0 i ^ ? 

(16) Sit:= Yl —J^ 
*:6Z"-{0} W ' fc 

The second line in (13) is of order e2 only if the operator B is bounded. However 
P is not bounded; as a consequence the operator diag(.B;i) is in general unbounded, 
and the above definition cannot yield the desired result. The idea is therefore to 
define B by the first of (16) with Bu = 0; one can guess that, since the denominators 
ui • k + X, — Xj tend to infinity as i or j diverge, it should be possible to generate a 
bounded B even if P is unbounded. In the next section we will prove that this is 
actually the case. 

With the above definition of B the curly bracket in (13) turns out to be the 
operator 6diag(Pji), and hence in terms of the variables y the equation takes the 
form. 

iy=(Al + e2P\ujt))y, 

with A1 = A + ediag(Pjj(w£)). This system is defined only for u in the subset of 11 
where the denominators in (16) do not vanish. In the next section we will assume 
a diophantine type condition also for such denominators, to be valid on a Cantor 
subset of n . Then it will turn out that Pl depends in a Lipschitz way on u) in such 
a subset. 

Iterating the construction, we see that the operator A is replaced by the operator 
A1 which depends also on the angles <f>. As we shall see, this is precisely the point 
where Kuksin's result[13] enters in a critical way. 
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3. — Squaring the order of the perturbation 

Keeping in mind the discussion of the preceding section we first set some nota
tion, and then construct and estimate the transformation squaring the order of the 
perturbation. 

Let TJ be the complexified torus with |Im<fo| < s. If / is an analytic function 
from T" to a Banach space (in what follows C or the complexification of Bs), we 
denote 

ll/ll,= 8Up||/(0)|| 

For B^-valued functions we use the particular symbol 

ll/lks := sup 
0€TJ 

Let Il~ be a closed nonempty subset of II of positive measure. If / has an additional 
(Lipschitz continuous) dependence on w e II" we define the norm 

ll/lf:=i/l.+ -P -p I /*") - /»"0I 
</>€T»u,w'(=n- |w — w ' | 

In particular for 23*-valued functions we use the notation ||.||f s. 

Let us now include our system into a more general framework, which, by the 
above discussion, is convenient for the iteration scheme. Consider in I2 the equation 

(17) ix = (A-+P~{ujt))x 

under the following conditions 

HI) 

(18) A~ = diag(\~[(u)) + Hi(ijjt,w), AJ(w) + ^ (wt,w), 

A^(w) + ^ (wi ,w) , . . . ) , 

Here: 

HI.a) Vi = 1 , . . . A~(o>) is positive and Lipschitz continuous w.r.t. u £ n~; moreover 

uniformly inw e l l . Hence there is C\ > 0 independent of ui such that 

(w) \\;-\j\>c;\id-3
d\. 

Hl.b) There is C~ > 0 suitably small and 6 < d - 1 such that 

(20) sup r-—-71 <CU% 
u , u ' g n - |OJ — OJ | 
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Hl.c) Vi = 1 , . . . fi{ (u) : Tj x n —• 71 is analytic w.r.t. cf>, Lipschitz continuous 
w.r.t. u), and has zero average, i.e. 

JT 

Moreover it fulfills the estimates 

/ fj,i(<l>,(j)d<t> = 0. 

(21) 

(22) sup sup 
06Tju,cj'en-

UlM\\,<C;is 

\tJ'i(u,<f>) - fi,-(uj',(t>)\ 

\u-u'\ 
< C~i5 

H2) The operator valued function P : T™ x n —» B5 is analytic with respect to 
4> 6 T" and Lipschitz continuous w.r.t. w e l l - , 

H3) there exist j ~ > 0 and r > n + 2/(d — 1) such that, for any u> £ Tl~, one has 

(23) | W . A | > X _ , V A ; G Z " - { 0 } , 

(24) [Ai -Aj+^- fc l > ^ J * .T,^1 ,Vfc£Z", ? / j 
1 + |A:|T 

REMARK 1 In the next section we will prove that it is possible to construct a set 
n~ of positive measure such that also the original system (1) fulfills the above 
assumption. 

Let now 
(25) B : T ; ' 3 ^ . . . , i ) 4 % . . . , i ) £ 6 ° 

be an analytic map with B(cj>i,..., 4>n) anti-self adjoint for each real value of (0!,..., </>„). 
Consider the corresponding unitary operator e f l^ ' ^n\ and (as above) for any 
(j E n~ consider the unitary change of basis x = eB(u , (V Substitution in equation 
(17) yields 

(26) \y = (A+ + P+{ut))y 

(27) A+ :=A~+diag{p-). 

Here diag(P~) is the diagonal matrix formed by the diagonal elements of P~, that 
is diag(P-) := diag(P1-1M),P2-2(a;i),P3-3(^)...). 

The new perturbation P + is given by (the explicit dependence of B on t is 
omitted): 

(28) P+ := {[A~, B)-\B + (P~ - diag(P-))} + 

+ (e-BA-eB - A- - [A~, B}) + (e-
BP~eB -P~)-i [e-

BBeB - B) . 
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According to the standard procedure we subtract the mean of the perturbation. 
Namely, we write A+ — dia,g(\f + /if (ut)) where A+ = A~ + Pu(<t>) (the overline de
notes angular average). Hence the functions /̂ +(</>) have zero average; the quantities 
A+ are independent of <j> and by A3 fulfill the estimate |A+ — A~| < C~is. 

The main step of the proof is to construct B so as to make the curly bracket in 
(28) vanish, i.e. to solve for the unknwon B the equation 

(29) [A~, B}-iB + (P~ - diag(p-)) = 0 , 

The procedure explained in the previous section has to be modified since now 
the eigenvalues of A~ depend also on the angles 4>. The construction is based on a 
lemma by Kuksin [13] that we now summarize. 

On the n-dimensional torus consider the equation 

(30) - i £ w t ^ - x ( 0 ) + ElX{<j>) + EihWxM = b(4) . 
k=i 0(Pk 

Here \ denotes the unknown, while b, h denote given analytic functions onf". h has 
zero average; E\,E2 are positive constants and \\h\\s < 1. Concerning the frequency 
vector UJ = (u>i, ...,w„) the assumptions are: 

(31) \u-k\> ^p- ,Vfcez"-{0} , \u-k + El\> —\- .Viez". 
\k\T ~ 1 + \k\T 

The final hypothesis is an order assumption on the magnitude of the different pa
rameters, namely: given 0 < 9 < 1 and C > 0 we assume 

(32) E( > CE2 

LEMMA 1 (Kuksin) Under the above assumptions equation (30) has a unique ana
lytic solution x which for any 0 < a < s fulfills the estimate 

Here a,\, a2, 03, C\, C2 constants independent of Ei, E2, a, s, 71,72, w. 

To apply this lemma to the construction and estimation of B, denote Q the 
Banach space of all bounded operators B in I2 such that A~sldBAsld extends to a 
bounded linear operator. The norm in Q is denoted 

(34) \\B\f := max{||B||o, WA-^BA1'"^} . 

Moreover for the s— norms of an analytic function on the torus taking values in Q 
(possibly Lipschitz-continuous on w 6 IT-) we will use the notations 

\\Bfs , \\Bf/ . 
In what follows the notation a <-b stands for "there exists a constant C indepen

dent of C*, C * ^ * , s,a, i, j , K (some of these parameters will be defined later on) 
such that a < Cb. Equivalently we will use the notation b-> a. 

file:////B/f
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LEMMA 2 Let ~ < 9 < 1, 7, > 0, C* > 0, and C* > 0 be fixed. Assume that 

(35) C* > % , 7 > 7. , Cu<C*a. 

Then for any 0 < a < s equation (29) has a unique solution B e Q analytic on 
¥"_„., fulfilling the estimate 

^ llB"^^«»p(^)lPlt-
Here c, bi, b2 are constants depending only 9, n, r, 5, C*, 7*, C£. 

P R O O F . See [1]. | 

We are now ready to state the main result of this section. 

LEMMA 3 Consider the system (17) within the stated assumptions. Assume fur-
thermore that also (35) holds. Then there exists an anti-selfadjoint operator B S Q 
analytically depending on 4> £ T™_CT, and Lipschitz continuous in to g II ~ such that 

1. B fulfills the estimate (36); 

2. For any UJ e I T the unitary operator eB'"*' transforms the system (17) into 
the system (26); 

3. The new perturbation P + fulfills the estimate 

(37) P + <• (\\p-\\ exp — 
V ' II U,s-a - \l\ \\s,sj l Vff'i 

7 ~ 
^. For any positive K such that (1 + KT) < —, there exists a closed set 

IK \\6,S 
I l+ C n~ and a d\ > 1 (independent of K) fulfilling 

(38) | n - - n + | < - 7 - ( i + ^ ' 

5. I/w G n + i/ien assumptions H1-H3 above are fulfilled also by A+ provided the 
constants are replaced by the new ones defined by 

(39) 7+ = 7- _ jp-1^ (1 + /r) , c+ = c; + \\p-1^ , 

(40) (7+ = Cj + ||P"|£ , Ct = CI - 2 JP"| ^ . 

PROOF. See [1]. • 
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4. - I t e ra t ion 

In this section we set up the iteration needed to prove the stated results. First 
we preassign the values of the various constants occurring in the iterative estimates. 
Hence we keep e, K, s and 7 fixed and define, for I > 1, 

(41) e, := e(4/3)' , at:=-^, s, = s,_i - a, , K, := IK 

(42) 7 i = 7 , . ! - 4e,(l + KJ) , <?„,« = Cft«_i + e, , 

(43) CA,I = CA,I-I — 2e; , CUi( = Cw,/_i + e/ . 

The initial values of the sequences are chosen as follows: 

7o ~ 7 , so = s, C^ := 0 , CA,0 := CA , Cu,0 := 0 . 

PROPOSITION 1 There exist e, = €,(7) > 0 and, for any I > 1, a closed set H7 C IT 
such that, if \e\ < e», one can construct for LJ £ 11/ a unitary transformation U{, 
analytic and quasiperiodic in t with frequencies w, mapping the system (10) into the 
system 
(44) ix = (A1 + Pl{ujt))x 

where: 

1. U\{u)t) is as follows: [/](</>) = eB<WeB=(*'...eB'W>, and the anti-self adjoint op
erators B{ e Q, j=l,...,l depend analytically on </> £ T"__CT(, are Lipschitz con
tinuous in u> G 117 and /«//i/Z ('Sfij imi/i P(_i, at in place of P~, a, respectively. 

2. A1 has the form of (18) with the upper index "minus" replaced by I, i.e. 

(45}Al = diag(Ai(w) + fi[(ujt,uj), \2(u) + / 4 M , w ) , \l
3(u) + nl

3{uit, to),...) , 

3. The corresponding A' and fi\ fulfill conditions HI, H2, H3 of the previous 
section, provided A~,//j~ are replaced by A{,^', respectively. 

4- The following estimates hold 

The proof of Theorem 1, Corollaries 1 and 2 and Theorem 2 is a direct consequence 
of the above Lemams. See [1] for details. 
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Phase-field systems with memory effects 
in the order parameter dynamics 

M. Grasselli * V. Pata* 

1. - Introduction 

A phase-field system of Caginalp type (see, e.g., Ch.4 in [2]) describes the evolu
tion of the (relative) temperature •d and of the order parameter (or phase-field) x m 

a material undergoing two different phases (e.g., solid and liquid). Supposing that 
the material occupies a bounded domain £2 C H 3 , this system has the form (setting 
all the physical constants equal to 1) 

(1) dt(d + X(X)) + V • q = / 

(2) Xt = ~w 

(3) W = - A x + /3(x)-A'(X)tf 

i n f i x (r, oo), r being some fixed initial time. Here A is a smooth function, q stands 
for the heat flux, / represents the heat supply and /? is the derivative of a double 
well potential, e.g., (5{x) = X3 ~~ X- K q is given by the Fourier law 

(4) q = - K W 

where K > 0 is the heat conductivity, we have the well-known Caginalp model 
(see [3], cf. also [2]). On the other hand, we can consider an alternative model by 
assuming the Gurtin-Pipkin law (see [16]) 

poo 
(5) q = - / k(a)VV{t - a)da 

Jo 

being k the heat conductivity relaxation kernel. The latter model has also been 
investigated in details from the mathematical viewpoint (see [1, 4, 5, 6, 7, 9, 11])-

Let us consider the order parameter dynamics, i.e., equations (2)-(3), more 
closely. The quantity w may be viewed as a generalized force that drives the system 
towards equilibrium acting instantaneously. In a series of recent papers (see [19] and 
references therein), it has been proposed and phenomenologically justified a variant 
of (2)-(3) characterized by a delayed response to w; that is, 

/-oo 

(6) Xt = ~ / h(a)w(t - a)da 
Jo 

*Dipartimento di Matematica "F. Brioschi", Politecnico di Milano 
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where ft is a suitable memory kernel. This delay effect can take place even at 
standard temperature regimes, therefore it is quite interesting to analyze the corre
sponding phase-field systems both in the Fourier case and in the Gurtin-Pipkin's. 
The latter one has been the first to be considered and studied (cf. [10, 14, 15, 18, 19]), 
while the former has been just recently investigated (see [8, 12]). 

Summing up, the systems we want to examine are given by equations (3) and 
(6) coupled with 

(7) dt(§ + A(x)) - nM{t -a)da = f 

or 

(8) dttf + \{x)) ~ / k{a)M{t -o)do = f 
Jo 

respectively, in Q. x (r, oo). 
Here we want to give an overview and present further developments of some 

recent results on both the systems (see [12, 14]) in the framework of the history 
space approach developed by the authors (see [13] and its references). The main 
goal of this theory is to interpret evolution systems with memory as dissipative 
dynamical systems in suitable phase spaces which accounts for the past histories of 
the state variables. In many cases, this formulation allows to perform an analysis 
that leads to show, in particular, the existence of a (universal) attractor. Following 
this path, we first show that our systems can be viewed as dynamical systems; that 
is, they generate a strongly continuous (nonlinear) semigroup on a certain phase 
space. Then, we shall deal with the existence of absorbing sets and, finally, we shall 
state the existence theorems for the universal attractors. 

To introduce the history space formulations, we first introduce the initial condi
tions. As far as system (3), (6)-(7) is concerned, we suppose 

(9) tf(r)=tf0, X(*)=X°(*) V £ < r 

while for system (3), (6), (8), we assume 

(10) tf(O=0°(*). x(t)=X0(f) V t < r . 

Here •d0 and x° are given past histories. 
For the sake of simplicity, we consider the same boundary conditions for both 

systems; namely, 

(11) tf = 0 o n f f i x ( T , o o ) 

(12) dnX = 0 o n 3 ( ] x (r, oo) 

where n denotes the outward normal to the boundary <9fi. 
Consider first problem (3), (6)-(7), (9), (11)-(12) and introduce the additional 

variable 

£*(«)= [Sw(t-y)dy 
Jo 
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for any s > 0 and any t > r. Note that £ fulfills the initial and boundary conditions 

C = (o in ft x (0, oo) 

£ ' ( ° ) = 0 i n f i x ( r , o o ) 

where 
fo = / W°{T - y) dy in ft, V s > 0 

JO 

with 

(13) w° = -AX° + p{x°) ~ A ' ( x > ° in ft, Vt < 0. 

Moreover, f also solves the hyperbolic first-order partial differential equations 

in ft x (r, oo) x (0, co). 
On the other hand, if h is smooth enough and vanishes at oo along its first 

derivative, then an integration by parts in time of the convolution product appearing 
in equation (6) yields 

dtX + / "(<r)£*((7) da = 0 
Jo 

where we have set 
v = -h'. 

Consequently, the reformulation of our original problem (3), (6)-(7), (9), (11)-(12) 
in a space history setting reads 

Problem P j . Find (#, x>0 solution to the system 

$ ( 0 + A ( X ) ) - K A 0 = / 

dtX + / v{?)?{o) da = 0 
Jo 

w = -/\X + P(x) - A'(x)0 

in ft x (T, oo), with boundary and initial conditions 

•6 = 0 ondttx (T, OO) X (0, oo) 

dnx = 0 on (9ft x (r, oo) 

£'(0) = 0 m f t x ( r , o o ) 

# ( T ) = ^o, X(T) =XO inQ. 

£T = £o in ft x (0, oo) 

where 
X°(r) = Xo-

Consider now problem (3), (6), (8), (10)-(12). Arguing similarly, we set (cf. [14]) 

rfta) = f 0(i - y) dy, ?(s) = f w(t - y) dy 
Jo Jo 
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for any s > 0 and any t > T. This additional variables satisfy the initial and 
boundary conditions 

VT = Vo, £T = £.o in fix (0,oo) 

7/(0) = £'(0) = 0 i n f t x ( r , o o ) 

where 

?7o= f-d°{T-y)dy, £0= [3w°(T-y)dy in fi, Vs > 0 

with w° is given by (13). 
Besides, 77 and £ are solutions to the hyperbolic first-order partial differential 

equations 
dtV + dsV = $, dtti + ds(. = w 

in f2 x (r, 00) x (0,oo). 
Then, supposing that k and h are smooth enough and vanishing at 00 along 

their first derivatives, we can integrate by parts in time the convolution products 
appearing in equations (6) and (8). This gives 

/ •oo 

dt(ti + \(x))- f,(a)AV
t(a)da = f 

Jo 

dtX + / "WW da = 0 
Jo 

with the positions 

fi = —k', v = —h'. 

This procedure leads to 

P r o b l e m P2. Find (#, x, V> 0 solution to the system 

dt(ti + A(X)) - / fi(a)AV
t(a) do = f 

Jo 
/ •oo 

dtX+ v{a)e{o) da = 0 
Jo 

dtV + dsn = 1? 

w = -Ax + /3(x)-X(x)0 

in Q x (r, 00), with boundary and initial conditions 

roo 

/ n(a)if(a) da = 0 on 9fi x (r, 00) x (0,00) 

dnX = 0 on dfi x (r, 00) 

T/(0) = £((0) = 0 m f i x ( r , o o ) 

# M = «V X(T) = XO inn 

rf = %. C = to infix (0, 00) 

where 

0°(r) = tfo, X°W = Xo-



159 

In the next section we shall introduce the notion of (weak) solution for Problems 
P i and P 2 . We shall consider the autonomous case (i.e., / independent of time), 
just for the sake of simplicity. Then, we shall present the assumptions which ensure 
P i and P2 to be well posed. This fact entails that our systems generate strongly 
continuous semigroups on suitable phase spaces. The final section will be devoted 
to the longterm behavior; that is, the existence of absorbing sets and, especially, of 
the universal attractors. We point out that the results about P t generalize those of 
[12] where only the exponential kernel case is analyzed. More details on the related 
proofs will be given in a forthcoming paper. 

2. - Well-posedness 

Before introducing the weak formulations of our problems some notation is in 
order. Let Q, C M3 be a bounded open and connected set with smooth boundary 
dil. Then we define 

H = L2(U), V0 = Hl<Sl), V = H1(tt). 

Adopting the usual identification of H with its dual H* (dual space), we recall the 
compact and dense embeddings 

V0^H = H*^V0* and V ^ H = H* ^ V. 

The norm and the inner product on a (real) vector space X are indicated by (•, -)x 
and I • | |x, respectively. The symbol (•, •) denotes the duality pairing either between 
Vo and VQ or between V and V*. 

Given a positive function a denned on 1R+ = (0, 00) and a real Hilbert space X, 
the symbol L ^ ( R + , X ) stands for the Hilbert space of X-valued functions on 1R+, 
endowed with the inner product 

/•oo 

(V'I>V'2>LJ(IR+,X) = J a{cr){tpi{<7),ip2(cr))xda. 

The assumptions on the memory kernels needed in this section are 

(Kl ) /Lt,i/GC1(]R+)nL1(IR+) 

(K2) /i(s) > 0, v{s) > 0 V s e U+ 

(K3) fi'(s) < 0, */(s) < 0 V s € IR+ 

(K4) /0°° ti(a) da>0 and /0°° v{a) da > 0. 

To avoid unessential complications, we assume that (see [14] for more general 
assumptions) 

P(r) =r3 -r, r € R. 

For the same reason, we suppose that / is time independent. 
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Consider now Problem P i and let 

(HI) AeC 2 ( lR) and A" G L°°(R) 

(H2) feH 

(H3) 0O e H 

(H4) XoeV 

(H5) £ 0 E L 2 ( R + , t f ) . 

Then the definition of weak solution is 

DEFINITION 1 Let v satisfy (K1)-(K4) and let (H1)-(H5) hold. For T > r G IR, set 
/ = [r,T]. A triplet (tf,x,£) which fulfills 

0 € C o ( / , / f ) n L 2 ( / , V o ) 

eeC0(7,LS(]R+
)Jff)) 

9t(15 + A ( x ) ) e i 2 ( / , n 
w E L ° ° ( / , y * ) 

is a solution to problem P x in the time interval I with initial data ($0, Xo> £o) provided 
that, for almost every £ G 7, 

(14) <ft(i? + A(x)),u> + K<V<?,Vu)lf. = </,u>H V « e F „ 
/•CO 

(15) 9(x + / v(o)£{o) da = Q a.e. in D, 
Jo 

(16) <5^ + d&C)ij(iR+,v.) = <f,OLJOR+.V) VC E L2(M+, V*) 

(17) <«,») = (Vx,Vw)Hs + (x 3 -x-A'(x) i? ,u) V » e y 

with initial conditions 

$(r) = i?0 a.e. in fl 

X(T) = Xo a.e. in fi 

r = 6 a.e. in 0 x R+. 

Well-posedness of P x can be recovered by the techniques developed in [14] (see 
[12] for the exponential kernel case). 

T H E O R E M 1 For any fixed initial time r e IR, any T > T, and any 

(tfo,Xo,£o) eni=HxVx Ll(TR+,H) 

there exists a unique solution (#, x,£) to Problem P i according to Definition 1. 
Moreover, this solution is given by a strongly continuous semigroup Si(t) acting on 
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As far as Problem P2 is concerned, since we are able to prove uniqueness only 
when A is linear (see [14]), we need to replace (HI). Besides, we must introduce a 
further initial datum, namely, 

(H6) A(r) = r, r e E 

(H7) vo€Ll(JR+,V0). 

Our definition of weak solution now reads 

DEFINITION 2 Let (K1)-(K4), (H2)-(H7) hold. For T > r 6 IR, set / = \T,T}. A 
quadruplet ($, x, f], £) which fulfills 

tf€C°(/,ff) 

xeWl<co{i,H)nC°{i,v) 

T,€C°(I,LIQR+,V0)) 

t£C°(I,Ll(M+,H)) 

dt-d e L°°(l, V) 

WGL°°{I,V) 

is a solution to problem P 2 in the time interval I with initial data ($o,Xo,%,Xo) 
provided that, for almost every t € / , 

/•OO 

(18) {dt($ + X),u)+ fi(a)(VV(a),Vu)H3da=(f,u)H V « £ V 0 
Jo 

roo 

(19) dtx + / v{a)$,{a) da = 0 a.e. in Q. 
Jo 

(20) (dtV + dsri,i>)Ll{M+,H) = (ti,Tp)Li{^,H) V</> e ^ ( M + , H ) 

(21) (dti + dst O L J ( R + , V . ) = <™, Ot>oa+,v) V C e L2
V(M+, V) 

(22) <W,^) = ( V X , V ? ; ) H 3 + ( X 3 - X - ^ ^ VW £ V 

with initial conditions 

$ ( T ) = i?o a-e- in fi 

X(T) = Xo a.e. in ft 

T;7" = ?7o a.e. in Q x R + 

C = £0 a.e. in Q x 1R+. 

REMARK 1 In the above first-order equations ruling the integrated past histories, 
—ds has to be understood as the infinitesimal generator of the right-translation 
semigroup on Ll(R+, H) or Lfl(!R

+, V0), accordingly (see [13] for more details). 

Problem P 2 is well posed due to (see [14]) 

T H E O R E M 2 For any fixed initial time r e H, any T > T, and any 

(*o, Xo, t]o, to)eH2 = HxVx Ll(M+, V0) x Lj(R+, # ) 

there exists a unique solution ($, x, ?7, 0 *° Problem P 2 according to Definition 2. 
Moreover, this solution is given by a strongly continuous semigroup ^ ( i ) acting on 
Hi. 
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REMARK 2 The above results concerning the modified problem P i and P 2 can 
be translated back in terms of the original problems (3), (6)-(7), (9), (11)-(12) or 
(3), (6), (8), (10)-(12), respectively, provided that suitable assumptions on the past 
histories are made (see Section 4 in [13]). 

3. - Longtime behavior 

Here we require additional assumptions on the memory kernels; that is, 

(K5) limg^o M s) < °o and lims_j0 u(s) < oo 

(K6) fj!(s) + Sfi(s) < 0, v'(s) + 5v{s) < 0 for some 5 > 0, V s e 1R+. 

Observe that (K6) entails the exponential decay of both the kernels. This condition 
is also invoked in the stability analysis of linear systems with memory (see, e.g., 
[17]) and it is also crucial to prove the dissipativity of our dynamical systems or, 
more precisely, the existence of an absorbing set for the semigroups Si(t) and S2(i) 
as stated by the following theorems (cf. [12, 14]). 

T H E O R E M 3 Let the assumptions of Definition 1 hold. Suppose that v fulfills (K5)-
(K6). Then, there exists R\ > 0 such that, given any R > 0 and any initial datum 
ZQ = ($0;Xo,£o) £ Mi satisfying \\z0\\n < R, there istR>0 such that 

\Si(t)zo\Hl < Ri Vt>tR. 

T H E O R E M 4 Let the assumptions of Definition 2 hold. Moreover, assume (K5)-
(K6). Then, there exists R2 > 0 such that, given any R > 0 and any initial datum 
zo = (tfo,Xa,rio,(.o) £ %2 satisfying \\ZQ\\H2 < R, there is £R > 0 such that 

\\S2{t)z0lH2 < R2 Vt>tR. 

We recall that the balls of radii Ri and R2 are called absorbing sets for the semi
groups Si(t) and S2(t), respectively. Note that the trajectories departing from any 
bounded set of initial data eventually enter the absorbing set uniformly in time. 

As explained in [13] (cf. also its references), the existence of a uniform absorbing 
set is a preliminary step in order to show the existence of the universal attractor. 
Let us recall its definition for the reader's convenience (see, e.g., [20]). 

DEFINITION 3 Let (X, dx) be a complete metric space. A compact set A C X is 
the universal attractor for a strongly continuous semigroup S(t) acting on X if it is 
invariant and 

lim 6x{S(t)B,A) = 0 

for any bounded set B C X. Here b~x denotes the Hausdorff semidistance in X, 
defined as 

5X{B1,B2)= sup inf dx(zl,z2). 
z i € B i Z 2€B 2 

We thus can conclude by stating our main result 
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T H E O R E M 5 Let the assumptions of Theorem 3.i, i=l ,2 , hold. Then the semigroup 
Si(t) on %i generated by P , possesses a (unique) connected universal attractor Ai C 
Hi. 
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Elliptic problems depending on a 
parameter in plane curvilinear polygons 

Davide Guidetti * 

1. - Introduction 

The aim of this paper is to survey certain recent results obtained by the author 
in collaboration with F. Colombo and A. Lorenzi, concerning the existence and 
regularity of solutions of elliptic problems of Dirichlet type in plane curvilinear 
polygons. As we are also interested in applications to parabolic equations, we shall 
consider problems of the form 

, f (X-A(z,d))u(z) = f{z), zeO, 
{> \ u(z) = 0, zedO, 

where A is a complex parameter. In particular, we are concerned with estimates of 
the solution u (when existing) depending on A. 

For related questions, we recall that P. Grisvard considered elliptic problems 
in traditional LP or Holder continuous function spaces in plane domains,while the 
Russian school, on the lines of Kondratiev, developed a rich theory in spaces of 
functions with weights. Coming back to more traditional spaces, J. O. Adeyeye 
studied the generation of an analytic semigroup by the Laplace operator with various 
boundary conditions in LP spaces (1 < p < +00) in a polygon. Under the previous 
conditions, he characterized also the real interpolation spaces between the domain 
with Dirichlet boundary conditions and LP. For some bibliography concerning these 
results, we refer to [3]. 

In the paper [3] the classical mixed Cauchy-Dirichlet problem for the heat equa
tion in a plane angle was studied. To this aim, the author considered also esti
mates depending on a parameter and characterized real interpolation spaces for the 
Poisson equation in a plane angle, working in the framework of continuous and 
Holder-continuous functions, even of negative order. 

The results of [3] were developed in [1], where they were extended to the case of 
operators with nonconstant coefficients in a plane curvilinear polygon. 

Our aim is precisely to give some account of the results of [1] and [3]. 
We conclude this introduction with some notation we shall use in the sequel. 
If A C R n , we shall indicate with dA its boundary and with A its closure. 

'Dipartimento di Matematica, Universita, Piazza di Porta S. Donato 5 - 40126 Bologna (Italy) 
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If O is an open subset of R™, C{0) will indicate the space of complex valued 
uniformly continuous and bounded functions of domain O. We shall always identify 
each of them with its continuous extension to the closure O of O. 

If a G N and O is open in R™, we put 

C(0) := {/ G C{0) : daf G C(0)Va with \a\ < a}. 

Here a = (ce\,..., an) G NQ , where N 0 := N U {0}, and \a\ := a\ + ... + an. 
If a > 0, we put 

C{0) := {/ € CW(O) : <9<7 is Holder-continuous 
of exponent {a} Va with |a | < a } , 

where [cr] stands for the integer part of a and {a} := a — [a]. If / e C(0) for some 
cr > 0, we can consider its trace 7 / on 9 0 . Under reasonable assumptions on dO, 
7 / belongs to ^(dO), which can be definied by local charts. 

Each of the previous spaces will be endowed with a natural norm \\.\\a,o or ||.||ff,ao 
respectively. 

We shall indicate with C°°(0) the set f| <7CT(0). 
(7>0 

We introduce also the spaces C(0) with a < 0. The definition is the following: 
let a G R, a = —m + a, with m G N and a G [0,1). We set: 

(2) C{0) := { £ 9 ^ : / , G C Q (0) , |/3| < m}. 
\0\<m 

The derivatives in (2) are intended in the sense of distributions. If / G C(0), with 
a = — m + a, (m G N , a G [0,1)), we define its norm ||.||ffjao m the following way: 

(3) H/IU.o := inf{ ^ WfeWcO : h e Ca(0),f = ^ ^ } . 
|/3|<m |/3|<m 

If 4̂ is a linear operator in a Banach space X, we shall indicate with p(A) the 
resolvent set of A. 

If X and Y are Banach spaces, we shall use the notation (X, Y)giP (9 G (0,1), 
p G [1, +00]) to indicate the real interpolation space between X and Y. For its 
definition and properties, we refer to [5]. 

We shall consider also spaces of the form C([0,T];X), with X Banach space. 
The definitions are analogous to the previous, taking (0, T) instead of O. 

2. — The Poisson equation depending on a parameter in a plane angle 

In this section we shall describe some of the results of [3], which are preliminary 
to the case of nonconstant coefficients in a curvilinear polygon. 

First of all, we set 

(4) n„ := {z G C \ {0} : z = pei6', p > 0,0 < 9 < u}. 

(Whenever it is convenient, we shall identify R2 with C). We consider the problem 



167 

, . / (A - A)u(z) = f[z), z e a , , 
l j \ u(z) = o, zedn„, 
where A is a complex parameter and A stands for the Laplace operator. 

In case w = 7r,the following result holds (for a proof see [2] and theorem 3.2 in 

[3]): 

T H E O R E M 1 Consider the problem (5) with u = IT, |A| > 1, Arg(\) ^ K,a > - 2 , 
a $. Z, / G C(ilw). Then there exists a unique solution u € C7<7+2(f!!7r). Moreover, if 
a < 2 and |i4r^(A)| < w0 < n, there exists C(w0) > 0, such that one of the following 
estimates holds: 

(6) |A|||«|U,n. + ||«IU+2,n, < C{Uo)\\f\\ajn, if a < 0, 

m |A|||«|U,n. + | |« |U+2 i n .<C(a;o)( | | / |U,n . 
1 j + | A | f | | 7 / | | o > 8 n J « / 0 < a < 2 ) a / l . 

In case u> -£ ir, the situation is more complicated, in the sense that the singularity 
of the boundary in (0,0) causes the appearence of singular solutions. But we shall see 
that, apart certain isolated values of a, estimates like (6) and (7) continue to hold, 
if we replace C2+CT(fL) with a new space C2+a'(ilu), which we are going to describe. 
Such a space can be obtained adding to C2+<J(fiw) a certain finite dimensional space 
v({SUtk '• k € N, ^ < 2 + a}), generated by the functions Su<k, with t e N and 
*j < 2+a. These functions Su,k c a n be constructed in two different ways, depending 
on whether — belongs to N or not. 

Assume first that ^ £ N. Set, for z e flu, 

(8) 4>k{z):=Im{z%}. 

Observe that fa is harmonic in f2w and vanishes in dQ^. Fix x of class C°° and with 
compact support in R2 and set 

(9) SuJl := fax-
Then S^ $ C2+"{Q.U) if *f < 2 + ff, but ASUik G C°°(ncJ). 

Assume now that ^ 6 N . In this case z —> Im{z~^} is a polynomial,so that it 
is infinitely smooth. Let I := ^ . Observe that, as ui ^ ir, I > 2. Then one can show 
that, given / e C'_2(fiu),m order that there exist a solution u € Cl{QJ] of (5), it 
is necessary that / satisfies a certain compatibility condition. To give some flavour 
of this fact, consider, for example, the case w = | and k = 1, so that I = 2. Then 
it is clear that, if / G C(f2w), in order that there exist a solution u G C2(fiw) of 
(5), it is necessary that / (0 ,0) = 0. So, for example, if f(z) = 1, we cannot expect 
the existence of a solution in C2(^lu). In general, if — = I G N, one can choose a 

certain function Su^ G (\>o C^~e(Qu) such that ASWifc € C°°(f2w). For an explicit 
expression of SUik

 m this second case, see [3](3.21) and (3.24). 
We are now in position to give the following extension of Theorem 1 (for a proof 

see [3]): 
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T H E O R E M 2 Consider the problem (5) with UJ ^ n, |A| > 1, Arg(X) / w. Let 
a G] - 2, J A 2[, a £ Z, ^ ^ £ Z, / e C ^ ) . Then there exists a unique solution 
u € C"7"1"2^). Moreover, if a < 2, an estimate like (6) or (7) holds, if we replace 
\\u\\2+a,w with ||M||2+<Tia;, where \\-\\l+atU1 is a natural norm in C,2+CJ(r2IJ). 

REMARK 1 If 2 + a < J , then C2+a{Slu) = C2 + a(0 I J) and we get the same result 
as in case w = -K. 

We consider now the case of / G C(flw). The following result holds: 

T H E O R E M 3 Let A be the operator defined as follows: 

.,m D(A) = r u 0 { « e C 2 + < W : Aw G C(fiu),7w = 0}, 
{ ' Au = Au,ueD{A). 

Then p(A) contains {X G C \ {0} : Arg(X) / 7r}. Moreover, VR > 0,Vw0 < w there 
exists C(R,w0) > 0 such that, VA G C \ {0} uratfi |A| > R, \Arg(X)\ < LO0, 

(11) I K A - ^ n i ^ c t n ^ ^ C R . ^ I A r 1 . 

Finally, V0 e (0,1), such that 6 ^ \ and I 2 -±^ £ N, one has 

(12) (C(0 , ) , £>(>!))«,„ = {/ G (72"(fiw) : 7 / = 0}. 

REMARK 2 In Theorem 3 we can replace C(QU) with Z/°°(nu,). 

We conclude this section with an application of the previous results to the mixed 
Cauchy-Dirichlet problem for the heat equation. The result we are going to state 
can be obtained from theorems 1, 2 and 3, using techniques which are inspired by 
the theory of analytic semigroups in Banach spaces (see [3], section 4). The corre
sponding version in case of a smooth boundary is well known (see [4] IV, theorem 
5.1). 

Consider the problem 

f Dtu(t,z) = Au{t,z)+f(t,z), (t,z)e[0,T\xQu, 
(13) 1 u(t,z) = 0, {t, z) G [0,T] x dnu, 

[ u(0,z) = uQ(z), Z G QU. 

Let a > 0. We set 

(5 1 + - 2 + a ( [0 ,T] x nu) := {u G C 1 + f ( [ 0 , r ] ; C ( f i u ) ) n 5 ( [ 0 , T ] ; C ^ ( ! ] u ) ) : 
1 ' DtueB([0,T];Ca{nu))}. 

The following theorem holds: 

T H E O R E M 4 Let u> G (0,2n), a G (0, min{^, 2})\{1}. Then the following conditions 
are necessary and sufficient in order that the problem (13) have a solution u G 

ci+f^H.([o)r]xnu); 
(I) f G C*{[0,T] : C ( f U ) n B ( [ 0 , T ] ; C ( f i u ) ) ; 
(7/; «o e C 2 + a ( f i J ; 
f///j 7 U o = 0; 
^ 7 ( A « o + /(0, . )) = 0. 
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3. - Elliptic problems in plane curvilinear polygons with nonconstant 
coefficients 

We pass to the case of elliptic problems in plane curvilinear polygons with non-
constant coefficients. The results we are going to describe are contained in [1]. 

We start by specifying what we mean with plane curvilinear polygon. 

DEFINITION 1 Let O be a bounded open subset of R2 . We shall say that O is a 
plane curvilinear polygon if, VP 6 dO there exists a neighbourhood W of P in R2 

and a difFeomorphism ip : W —¥ B of class C1'1 (where we have indicated with B 
the unit ball in R 2 ) , such that ip(P) = (0,0) and ip{W nO) = fiu n B, for some 
UJ e (0,2TT). 

It is easily seen, applying a simple compactness argument, that ui = n for all 
points of dO, with the exception of a finite number of them. We shall call these 
points the vertexes of O. Let 

(15) A(z, d) := £ aiJ(z)dl + E ajWj + a0(z). 

with real valued coefficients of domain O. We shall assume that 0^2 = a2,i and that 
there exists v > 0 such that, Mz 6 0,V£ € R2, 

i,j=l 

Indicate now with P\,...,Pm the vertexes of O. Then, for each of them, we 
can choose properly the difFeomorphism ip (see definition 1) in such a way that the 
transformed operator in Qu has as a principal part in (0, 0) A. We shall indicate 
with u>(Pr, A) the value of ui corresponding to Pr. 

By these local changes of coordinates and a suitable partition of unity, we can 
construct the spaces C{0,A), starting from the spaces C"[p,J) (see definition 3.2 
in [1]) . Then one can prove the following result (see [1]): 

T H E O R E M 5 Concerning operator (15), assume the following: 
(a)Vi,j£ {1,2} £ C9'(0), for some 9' > max{0,1 - m a x J ( P r j - 4 ) } ; 

r 

(b) if, for a certain r 6 {1, ...,m\, ,p ̂ , < 2, then the coefficients a^j (i,j £ 
{1, 2}) are of the form 

aid(z) - aij(PT) = (bij(z), z - Pr), 

withbitieCe\0,B?). 
Then, \/CUQ € [0,7r), there exists R > 0, such that, if |A| > R and \Arg(X)\ < LO0, the 
problem (1) has, V/ 6 C(0), a unique solution u G nQ<Q0 C

a(0,A), with 

(17) a0 := min{2,1 + ^ }. 
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IfO<a<ao and, either a < max ZP A), or a ^ 1, there exists C > 0, depending 
on R,u)Q,a, such that, V/ e C(0), 

(is) McHo^^cixr-'WfWaoy 

REMARK 3 If u G nQ<Q0 C
a(0,A), it is possible to give a generalized meaning to 

A{z,d)u (see [1]). 

REMARK 4 If O is "convex at the vertexes",that is, maxw(P n A) < IT, then a0 = 2. 

Define now the following operator A: 

, D{A) = n a < Q > e Ca(0) : A(z, d)u € C ( f U 7 w = 0}, 
y ' Au = A{z,d)u,u€D(A). 

Then, for certain values of 0 £ (0,1), we are able to characterize the real inter
polation space (C(0),D(A))gt0O: 

T H E O R E M 6 Assume that the assumptions of Theorem 5 are satisfied. 
Then V0 £ (0,1), such that 9 ^ \, W^A) ^ N for every vertex Pr ofO, and 16 < a0, 
one has 

(20) (C(0), D{A))8t00 = {f e C20(O, A):-yf = 0). 

REMARK 5 Theorems 5 and 6 can be extended fro C(0) to L°°(0), with obvious 
changes (essentially replacing everywhere C(O) with ^(O)). 
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Fractional diffusion and wave equations 

Andrzej Hanyga* 

1. - Introduction 

The diffusion equation D u = V2 u and the wave equation D2 u = V2 u belong to 
a one-parameter family of time-fractional equations D a u = V2 u, 0 < a < 2, where 
D a is the Caputo fractional derivative and D denotes the time derivative d/dt. The 
Laplacian A := V2 can be replaced by a fractional Laplacian —(—A)" of order 2v, 
0 < v < 1, giving rise to the class of space-time fractional equations 

(1) D a u = - ( - A ) 1 /
U 

where A denotes the closure of the Laplacian in an appropriate Banach space. For 
0 < a < 1 these equations represent a diffusion process. For v = 1 such a diffusion 
process falls into the subdiffusion category [21]. Subdiffusion is is characterized by 
the relation ([x(T + t) - x(t)] > = AT1, 7 < 1, A = const > 0, as opposed to the 
normal diffusion (Brownian motion), for which 7 = 1 . This means that in sub-
diffusion particles tend to move slower than in the ordinary diffusion. At the level of 
individual particle motions subdiffusion is modeled by a class of generalized random 
walks known as Continuous Time Random Walks, with a random waiting time 
between two successive jumps [23, 22]. Solutions of fractional diffusion equations 
represent asymptotic properties of the probability densities derived from the CTRW 
model for large times and propagation distances [33, 18]. Another phenomenon 
often associated with subdiffusion is diffusion on fractals, in view of the sublinear 
dependence of the mean square displacement on time lapse. The correct formulation 
is however D M = Lu where L denotes the Laplacian on a fractal [15, 4]. Some ad 
hoc formulations of diffusion on fractals [24, 8] involve a local operator generalizing 
the Laplacian. 

Another kind of anomalous diffusion, known as superdiffusion, corresponds to 
7 > 1. It is sometimes associated with space-fractional diffusion equations 0 < v < 
1 [35, 36, 37], but the solutions of space-fractional diffusion equations (including 
space-time fractional diffusion equations with a < 1) have divergent second-order 
moments. Nevertheless a relation ([x(T + t) - x(i)]M) = DT^7 for some [i < 2 and 
7 > 1 remains valid. In order to avoid the controversial issue of a correct definition 
of superdiffusion we shall call the diffusion satisfying the last relation a generalized 
superdiffusion. In superdiffusion and in generalized superdiffusion a particle tends 
to move faster than in the Brownian motion. 
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Superdiffusion is alternatively modeled by CTRWs. In order to obtain a model 
of superdiffusion with a finite second-order moment one has to assume that the two 
random variables involved, the waiting time and the jump length, are not indepen
dent [17]. Such CTRW are called coupled. It is however known that asymptotic 
properties of a coupled CTRW are very different from the solutions of space-time 
fractional diffusion equations [18]. In this paper we shall consider generalized su
perdiffusion represented by space-fractional equations and by uncoupled CTRWs. 

Solutions of the space-fractional equation D M = — (—A)"M can be expressed in 
terms of a symmetric multivariate /3-stable probability density, j3 = 2v [11]. The 
operator —(—A)", the fractional power of the closed linear operator —A [34], is the 
generator of a semigroup associated with the corresponding isotropic stable Levy 
process [30]. A natural generalization of fractional diffusion equations consists in 
replacing the operator —(—A)" by an infinitesimal generator L of a semigroup as
sociated with an arbitrary stable Levy process [11, 12]. In this case the solution 
of DM = Lu is a time-dependent probability distribution of a Levy process. A fur
ther generalization of the diffusion equation is obtained by substituting the Caputo 
fractional derivative D a , 0 < a < 1, for D. 

For 1 < a < 2 the solutions of time- and space-time fractional equations (2) 
exhibit a wave-like behavior, with propagating crests and troughs. In three dimen
sions the solutions are no longer non-negative. For a < 2 the precursor disturbances 
propagate at an infinite speed, but the dominating crests and troughs propagate 
according to the law r = const x ta^. For a < 1.5 the dominating signal spreads 
(diffuses) rather fast, but for a = 2 its amplitude is strongly attenuated while its 
shape is remarkably stable. For v = 1 and a = 2 time fractional wave equations 
have been proposed as a model of constant Q wave propagation, where Q represents 
an attenuation per unit wavelength [2, 16]. 

Solutions of time- and space-time fractional diffusion and wave equations in one-
dimensional space have been constructed in several papers [31, 7, 10, 19, 20]. Multi
dimensional time-, space- and space-time fractional equations were discussed in [31, 
13, 11, 12]. The transition from diffusion to wave propagation in one-dimension was 
discussed by Mainardi and Gorenflo [9], by Schneider and Wyss [31] and Fujita [7] for 
multi-dimensional time-fractional diffusion-wave equations and by Hanyga [13, 12] 
in the general case. In [12] the connection between unimodality and non-negativity 
was discovered and used to define diffusion as opposed to wave propagation. 

2. - Fundamental solutions 

We shall consider the initial-value problem in the d-dimensional space Rd 

Dau~Lu = f(t,x) f o r x e R d , * > 0 

(2) u(t,x) = 0 f o r x e R d , i < 0 

u(0 + x) = «o(x), Du(0+,x) = ti|)(x) 

with 0 < a < 2. The initial condition for D«(0+) is necessary for 1 < a < 2 and 
has to be dropped for 0 < a < 1. The fractional derivative D a is defined in the 
sense of Caputo (other definitions would not be consistent with the well-posedness 
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o f t h e l V P e q . (2)): 

(3) D Q / = r~a Dm/ 

where m denotes an integer such that m — 1 < a < m and Vg, 7 6 C denotes the 
fractional integral 

(4) rg(t):=^~g(t-T)dr 

For 0 < a < 1 the operator L is assumed to be an infinitesimal generator of a 
/3-stable Levy process [30] on the Banach space Co (Kd) of continuous functions 
vanishing at infinity, endowed with the sup norm. For 1 < a < 2 the operator L 
is the fractional power —(—A)", where A denotes the closure of the Laplacian on 
£ 2 (Rd) and v = /3/2, 0 < /3 < 2. 

An arbitrary solution of the IVP (2) can be expressed in terms of two or three 
fundamental solutions G\ , P{ ' and Qt , t > 0, of the problem (2) with u0 = v0 = 
0, / = S(t)S(x); u0 = 5(x), v0 = f = 0 and u0 = f = 0, v0 = <5(x), respectively 
(the third fundamental solution is defined for a > 1 only). In the diffusive case 
0 < a < 1 the fundamental solution Q\ is irrelevant while P t is a probability 
distribution generated by the original probability concentrated at the origin: 

P (
W(x) > 0 

(5) Jpt
W(x)ddx = l 

3. — Formulation in terms of abstract Volterra equations and 
well-posedness 

Well-posedness of the IVP for the space-fractional equations in the Banach space 
Co (Kd) is an easy consequence of the fact that L is a generator of a strongly con
tinuous semigroup. On the other hand time- (and space-time-) fractional equations 
can be expressed as abstract Volterra equations [27]. We now demonstrate the 
corresponding transformations. 

For 0 < a < 1 we shall apply the operator IQ to both sides of the differential 
equation in (2) using the definition of the Caputo derivative and the semigroup 
property I71'3 = IT+/3 of the fractional integrals: 

\Du = la[Lu + F] 

The Volterra equation formulation is now obtained by working out the left-hand 
side and applying the initial conditions: 

(6) 

Fori < 

«(*) = = u0+ 1 — 
Jo 

a < 2 the result is 

l2Du~-

r(a) 

= la{Lv 

•\LU(T) 

i + F(t)\ 
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hence 

(7) u{t) = u0 + tv0+ [ (* ~ T \ " [L U{T) + F{T)\ dr 
Jo 1 (a) 

Both eq. (6) and (7) are specific instances of the more general Volterra equation 

(8) u(t)=g(t)+ k(t-T)Lu(r)dT 
Jo 

with g, u : [0, T] —> X, where X is a Banach space and the function g is given. 
The properties of eq. (8) can be restated in terms of a simpler equation 

(9) u(t)=x+ [ k(t-T)Lu(r)dT, te[0,T] 
Jo 

with a constant x € X. Following [27] we define well-posedness in terms of the 
existence of strong solutions of the corresponding Volterra equations, with additional 
continuous dependence provisions: 

DEFINITION 1 Let L be a closed linear operator defined on a dense domain V(L) 
in a Banach space X. 
The problem (8) is said to be well-posed if for every x G £>(£) there is a unique 
solution u(t;x) € £>(£) of eq. (9) such that (i) u(-;x) is continuous in the graph 
norm | | j / | | L := \\y\\ + \\Ly\\ on V{L), (ii) u(t; •) is continuous at 0 in the graph norm. 

Well-posedness is equivalent to the existence of a resolvent {S(t) \ t > 0}, 
defined as a strongly continuous one-parameter family of bounded linear operators 
on X with the following properties: 

(i). S(t)V(L)cV(L); 

(ii). L S(t) x = S{t)Lx for every x 6 V(L); 

(iii). S(t) x = x + J0
l k(t - T) S(T) LX dr for a l i i > 0 

[27]. The solution of a well-posed problem (8) with a continuous g : [0, T] —> X and 
a resolvent {S(t) | t > 0} is given by the formula [27] 

(10) u(t) = D / S(t - T) g(r) dr 
Jo 

THEOREM 1 Let L be the infinitesimal generator L of a stable Levy process and 
0< a< 1. 
The problem (6) is well-posed in the Banach space CQ (Kd). 

PROOF. Let the function da be defined by the formula 

(ID ut) = {ta~l/r{a) t>0 

y ' w ]o t<o 
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The Laplace transform of )?„ is s °. For 0 < a < 1 and s in the closed right 
half of the complex plane args~ a G [—7r/2,7r/2]. Furthermore, Vfc G Z + , k < 
n \sk dk s-a/dsk\ < K(n) \s~a\. By Theorem 3.1 of [27] eq. (6) has a C°°-smooth 
bounded resolvent and hence the problem (6) is well-posed. | 

For a = 2 the resolvent of (7) is the cosine family of the operator L [27]. We 
recall the basic definitions: 

DEFINITION 2 A strongly continuous family of bounded linear operators {S(t) 11 G 
K} on a Banach space X is said to be a cosine family if it satisfies the equations 

S(t + T) + S(t-T)=2S(t)S(T); 5(0) = Id 

Let {S(t) | t G R} be a cosine family. The limit Lx = lim t^0 2i~2 [S(t) x - x] 
exists for i in a dense subset V of X. The operator L thus defined is termed 
the infinitesimal generator of the cosine family [32, 25, 6]. The above observation 
suggests that we must require that L is an infinitesimal generator of a cosine family. 
This condition is certainly satisfied if we choose L to be a closed linear extension of 
the Laplacian on X = C2 (Rd), but the theorem below shows that fractional powers 
of the negative Laplacian are also generators of cosine families on X. 

T H E O R E M 2 Let 1 < a < 2. Let X = C2 (Rd) and let L = - ( - A ) " , where 
0 < v < 1 and A is a the closed linear extension of the Laplacian on X. 
The problem (7) is well-posed on X and the resolvent is analytic. 

P R O O F . Step 1. We show that the operator L is self-adjoint on X = C2 (Rd). 
Let X " = TX denote the Fourier image of X, a complex Banach space. The operator 
L = J-~l LT is a multiplication operator 

L / ( k ) = - | k | 2 " / ( k ) 

defined on 
T>(L) := {/ e X'\ - | k | 2 " / ( k ) is square integrable} 

It is obviously a symmetric operator. It is therefore sufficient to show that L = L\ 
or, equivalently, that every element of the domain of the ajoint V1 lies in T>{L). 
Let 6R be the characteristic function of the ball of radius R centered at the origin 
and let || • || denote the C2 norm. 

| | tf/ | | = lim \\eRDf\\ = lim sup | (g,6RDf) = lim sup \(L6Rg,f)\ 
R-^oo K-wo | | 9 | |= 1 V / R->oo| |9 | |= 1 

since 9Rg G T>(L). Hence 

lim \\9RLf\\ - lim sup 
R->OQ R—>oo ||o|| — i 

Jg(k)\k\^f(k)dk 

= lim sup | ( L ^ 5 , / ) | = | |L t / l l< 
-K-»oo i |„ | |= i 
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By the Fatou lemma, L f e X and / 6 T^{L), hence the operators L and L are 
self-adjoint, q.e.d. 

Step 2. We now show that L is an infinitesimal generator of a cosine family. 
The spectrum of L is R_ U {0}. Using the spectral theory we define the operator 
family 

(12) C(t)f.~ f cosh(te/2)P(dOf 
J — oo 

where {P^ | £ € K} is the spectral operator family of L. Note that cosh (a;) is a 
function of x2, hence the square root of f < 0 in the above equation is an artefact 
of the definition of the function cosh. 
{C(t) | t > 0} is a strongly continuous cosine family ([6], p. 41). Its infinitesimal 
generator is L: 

(13) 
2 

f2 l i m | | 2 r 2 [ C ( t ) / - / ] - L / | | 2 = / ' 0 

J — o —oo 

2 cosh (if1/2) 

t2f r(/,p(dfl/) = o 

V/ 6 2>(L) 

Indeed, there is a continuously differentiable function </> such that cosh(:r) =: 4>{x2), 
<j>'{x2) = sinh(x)/a; and (cosh(i) - l)/a;2 = (f>'((x2), for some ( € [0,1], hence the 
dominated Lebesgue theorem applies for / £ ~D(L). 

Step 3. We now use the above property of L in the proof of well-posedness. 
For 1 < a < 2 the function da is a Bernstein function: 

'da, Dtia > 0; Vn G Z + n > 2 =4> ( -1 )" Dni9a > 0 

Furthermore the function defined by eq. (4.64) of [27] has the property (i) stated 
in Theorem 4.6 of the same reference. Therefore eq. (7) has an analytic resolvent 
[27, 26]. | 

4. - Stable probability densities and infinitesimal generators of stable 
Levy processes 

We shall present explicit forms of the linear operators which generate stable Levy 
processes. To this effect we need some background in stable probabilities and Levy 
process [30]. A Levy process {Yt \ t > 0} is a stochastic process with values in Rd, 
with independent identically distributed increments, such that Y0 = 0 almost surely 
and satisfying some regularity requirements which we shall not discuss here. The 
above properties imply that Y\ has an infinitely divisible distribution. 

DEFINITION 3 The probability distribution P is said to be infinitely divisible if for 
every positive integer n > 2 there is a probability distribution Pn such that P is the 
convolutional product of n factors Pn 

(14) P = Pn*Pn...*Pn = P:n V n e N 
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The convolution of probability distributions is defined by the formula 

P*Q(B)= [ P(X-dy)Q(dy) 
JB 

In terms of characteristic functions XP(Z) '•= / e 1 z x F ( d i ) , we have for every n, 
XP = XP-^I where xpn is the characteristic function of a probability distribution Pn. 

T H E O R E M 3 (Levy-Khintchine representation) 
Let P be an infinitely divisible probability distribution on Rd. 
Then the characteristic function XP has the following form 

logXp(z) = iq • z - - z • Az + / [eiz'y - 1 - iz • y hBl (y)] /i(dy) 

where A is a symmetric positive semi-definite d x d matrix, fj, is a measure on Rd 

satisfying the conditions /i({0}) = 0, 

j [|y|2 A 1] M(dy) < oo 

and h$x denotes the characteristic function of the unit ball B\ in Rd. 

The measure \x is called the Levy measure of P. 
The characteristic function of the probability distribution of the Levy process 

Yt is {XPY, where P denotes the probability distribution of Xi and XP denotes the 
characteristic function of P. 

An important subclass of infinitely divisible probability distributions are a-stable 
probability distributions. 

DEFINITION 4 Let 0 < a < 2. A Levy process {V* | * > 0} is said to be a-stable if 
if the probability distribution P of the random variable Y\ is a-stable. 

T H E O R E M 4 A Levy process {Yt \ t > 0} is a-stable if and only if it has the following 
property of self-similarity: Yat has the same probability distribution as allaYt. 

We recall the definition and the basic property of a-stable probability distribu
tions relevant for our purposes. 

DEFINITION 5 The probability distribution P is said to be a-stable if any sequence 
of independent random variables Y^ having the probability distribution P has the 
property 

H P [y^Yk - On) /K = Yl 
d »-"*> \*=i J 

where the limit exists in the sense of distributions. 
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THEOREM 5 The characteristic function XP of an a-stable probability distribution 
has a Levy-Khintchine representation with djj, — Cdr~a~l dr. More specifically, 

(15) log vp(z) = h • Z + •& dA(f i ) F V™ ~ ^ r~*~l d r ' °<a<1 
1 ' i0gXFW | i q i . z + / 5 dA(fi) /0°° [e i zx - 1 - iz • rfi] r - " 1 dr, 1 < a < 2 

where X is a finite measure on the unit sphere S = Sd~l. 

For simplicity we have omitted the special cases a = 1, corresponding to the Cauchy 
distribution, and a = 2, corresponding to the normal distribution. 

For univariate probability distributions (d = 1) the sphere reduces to S = 
{—1,1} and the characteristic function of an a-stable probability distribution can 
be expressed in the form 

log XP(Z) = -c\z\a [I - i0 tan(7ra/2) sgnz + \qz], - 1 < 0 < 1 

where the parameter 9 £ [-1,1], 9 := (A({l}) - A({-1}))/(A({1}) + A({-1})), is 
called skewness and c = A({1}) + A({—1}). A more compact parametrization of 
univariate a-stable probability distributions is sometimes used: 

(16) fogxp(z) = -dzpe-WWcw* 

with |$| < 1A (2 — a) fa. The last formula remains valid for a = 1,2 too. Excluding 
for simplicity the special case a = 1, the asymmetry parameter # is related to 6 by 
the formula 

d = { {21 {ax) tan- 1 (9 tan(a7r/2)) 

\ {-2/{aw) tan"1 (9 tan ((2 - a)n/2)) 

with t a n - 1 taking values in [—TT/2, TT/2]. 
For a < 1 and 0 = 1 the probability distribution P is concentrated on the 

positive real axis and its density, denoted here by p+(-;a), can also be defined by 
the formula 

(18) P+^ = hL 
An a-stable probability distribution is said to be centrally symmetric (c. s.) if 

the measure A is symmetric with respect to reflections in the origin x —¥ —x. The 
characteristic function of a general c.s. a-stable probability distribution has the 
form 

\ogXp{z) = -J\z-n\ad\{si) 

where A is arbitrary finite non-zero c. s. measure on S. For a spherically symmetric 
a-stable probability distribution we have [30] 

logXp(z) = - c | z | a . 

The importance of a-stable probability distributions is explained by the following 
generalization of the Central Limit Theorem: 
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T H E O R E M 6 / / the random variables Yn, n = 0 , 1 , . . . , are independent with the 
same probability distribution P satisfying the conditions 

1 — P(x) ~ ci"*1 for x —» oo 

P(x) ~ d\x\~" for x —¥ —oo 

with p. 7̂  1, and 
n 

^n := ( 5 ^ ^ ' - a n ) / 6 n 
i=l 

f/ien 

Pz B (x) ->P(a : ;a ,0) 

a = min{2, /x} 

61 = (c - rf)/(c + d) 

an = Cn1'a bn = 0ornE[Y1] 

where P(x; a, 9) denotes the a-stable probability distribution with skewness 9. 

[33]. 
Levy processes are Markovian. The transition probability q of a Levy process 

{Yt I t > 0} from x to a Borel subset B of Rd is defined by the formula 

<ft(x, B) := F (F t + s - Ys e B - x) = Pt{B - x) 

where Pt := Py, denotes the probability distribution of the random variable Yt. The 
transition probability satisfies the Bachelier-Smoluchowski-Chapman-Kolmogorov 
equation 

/ <7s(x,dy)ft(y,S) = g t + s ( x , B ) 

We are now in position to define a strongly continuous unitary semigroup {Ut | 
t > 0} on the Banach space C0 (Rd) of continuous functions on Rd vanishing at 
infinity (endowed with the sup norm): 

Ut /(x) := J f(x - y) Pt(dy) = J /(y) ft(x, dy) 

Let L denote the infinitesimal generator of {Ut \ t > 0}. The operator L is a closed 
linear extension of the non-local operator 

(19) L / (x) = q • V/ (x ) + An d2f/8xt 8xj + 

J [f(x + rfi) - / (x ) - rfi • V/(x)/iB l(y)] /*(<to) 

where /i, A are as in Theorem 3 [30]. Up to an additional constant, such operators 
are also known as the most general infinitesimal generators of semigroups {U(t) \ 
t > 0} satisfying positivity [28]. For an a-stable Levy process the operator L we 
either have A / 0, p, = 0 (the Gaussian case) or A = 0, p(dy) = A(df2)r"Q_1 dr, 
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r := |y|, a < 2. Redefining the vector q one has the following explicitly scale-
invariant representations of L for a < 2, a ^ 1 
(20) 

' q • V/ (x ) + / [/(x + rtt) - / (x)] A(dfi) r ^ - 1 dr 

for a < 1 

q • V/ (x ) + / [/(x + rQ) - / (x ) - r Q • V/(x)] A(dft) r"""1 dr 

for 1 < a < 2 

(Af)to 

An alternative construction of the operator L on its core space can be found in [11]. 

Example. 
For an isotropic stable Levy process the operator L is a fractional power [34, 5] of 
the closure of the Laplacian in C0 (Rd) 
(21) 

7 s dAo(f i ) / 0
0 0 [ / (x + r f i ) - / ( x ) ] r - 2 - 1 d r 0 < v < 1/2 

L = - ( - A ) " = I Js dAo(Q) J0°° [/(x + rfi) + / ( x - rfi) - 2/(x)] 

x r 2 " " 1 dr 1/2 < v < 1 

where A0 denotes the uniform probability distribution on Sd~x. 

5. - Self-similarity of the fundamental solutions 

We assume that L is an infinitesimal generator of a /3-stable Levy process. 
For s = at and y = fix we have Df = aa D™, Lx = b@ Ly. This implies that the 

fundamental solutions are self-similar. Indeed, let u(t,x) be one of the fundamental 
solutions Gt , Pf or Qt . The function v(t,x) := cu(at,bx) satisfies the same 
IVP provided b = aa^ and c = al~a bd = a ^ W ^ 1 ' " in the first case, c = bd = ada//} 

in the second case and c = bd/a = a d a ^ _ 1 in the third case. 
In view of uniqueness of the IVP involved, the fundamental solutions have the 

following forms 

(22) G{
t
d) (x) = r x - w - J ) Q

 FX ( r a ^ x) 
(23) pt

(d){x) = t-da"> F2(r
a/fl x) 

(24) Q^(x) = t1_do/fl F3{r
a/e x) 

where JF\, F2, F3 are some functions on Kd. 
In the following we shall concentrate on the propagator P} '. For the other two 

fundamental solutions, see [13, 12]. 

6. - Some integral representations of the fundamental solutions 

The propagator Pf'(•;/?) = G\d (•;/?) of a space-fractional IVP (2) with a = 1 
and a centrally symmetric Levy measure can be expressed in terms of a /5-stable 
probability density pW(-; f3, A) on Kd [11]: 

(25) P / d ) ( x ; / ? , A ) = r ^ p W ( r ^ x ; / J , A ) 
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The probability density as well as the propagator depend on the index /? as well as 
on the measure A on the unit sphere in Rd, appearing in eq. (19). The propagator 
Pt(-; a, /3, A) of the space-time fractional IVP (2) with 0 < a < 1, 0 < /3 < 2 and a 
centrally symmetric measure A is given by the formula [12] 

/•oo 

(26) P^(x;a,P,X)=t-da/fi ^ V t f ; «)pW((</£)"^ x; /3, A) d£ 
Jo 

which is equivalent to 

(27) P^(x;a,p,X)= p+(fc a) Pmy.(x;P, A) d£ 
Jo 

The two formulae are valid only for 0 < a < 1. For d = 1 the operators L can be 
parameterized by i? € [—m,m], m = min{l, (2 — a)/a} instead of the measure A. 
The factor a/fi entirely determines all the scaling properties of the propagator, but 
for j3 < 2 the propagator has an infinite second-order moment [12]. 

In particular, for a time-fractional diffusion equation with a < 1 and /3 = 2 the 
space-fractional propagator in eq. (27) is the Gaussian distribution of the Brownian 
motion 

1 
(28) ^ , ( x ; 2 ) = I i ^ p e x p ( - | x | 7 ( 4 i ) ) 

and eq. (27) reduces to a superposition of Gaussian distributions 

-I /*00 

(29) P/d)(x; a, 2) = ^ - ^ j( r d / V ( £ ; a) exp ( - £ a | x | 7 (4i«)) d£ 

The propagator of a spherically symmetric space-fractional diffusion equation 
can also be expressed in terms of a superposition of Gaussian probability densities 
[11]: 

(3°) P«Wfrfl=(2^tWo P+tiPMexPi-Wm^dt 

Eq. (30) follows from a well-known formula linking a semigroup {S„(t) | t > 0} gen
erated by a fractional power —(—.A)" of an infinitesimal generator A of a uniformly 
bounded semigroup S(t) on a Banach space X [34]. This formula, due to Bochner 
and Phillips, can be rephrased as follows 

/ •oo 

(31) Sv(t)f= / P
+(^u)S(t^Of 

Jo 
d£ V / e X 

Eq. (30) follows from eq. (31) for X = C0, A - the closed linear extension of the 
Laplacian in X, 

(32) (S(t)f)(x)=Jp}d\x-y;2)f(y) ddV 

The propagator for 0 < a < 2 and L = A can be expressed in terms of the 
Mainardi function [13]. 
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For 1 < a < P, d = 1 and L — — (—A)" the propagator can be expressed in 
terms the propagators of eq. (2) with a = (5 [20]. Using the identity [12] 

M{z; a) = a'1 z^'1 p+ [z^la\ a) 

their expression, in the second line of eq. (6.16), can be rephrased as follows 

p+(Z;a/P)P§i)a,f(x;P,M)dt 

provided 1 < a < p. From the above formula propagators the propagators for 
d = 3 can be obtained by application of the operator (2TT r ) _ 1 d/dr. The propagator 
P(

(1)(-; P, ft, i5) is an algebraic function of x/t012 [20]. 

7. - Unimodality of diffusive processes 

7.1. - Introduction, - Broadly speaking, the propagator P t represents a diffusion 

if for every t > 0 (i) Pt
(d) > 0, (ii) / Pt

(d) ddx = 1 and if 

(iii) P ( either has a single maximum or if it diverges to infinity at single point (a 
priori a <5-type singularity need not be excluded). 

For the centrally symmetric case the last condition can be formulated more 
precisely: 
(iiia) P} ' either has a single maximum at the origin or it diverges to infinity for 
x —> 0 and it decreases in every radial direction. 

Condition (iiia) amounts to unimodality of Pj with mode 0, to be defined 
more precisely later. In view of the self-similarity of the propagator, criterion (iiia) 
implies that every radial section of a diffusive propagator Pt

l represents a gradually 
widening hump with a maximum or singularity at the origin. On the other hand, 
wave-like behavior is characterized by the maximum propagating away from the 
origin in all the directions. This is property is equivalent to the existence of two 
maxima of P{ at two points outside the origin, since self-similarity already implies 
that such maxima of P ( move away from the origin. In the wave-like case we 
shall consider only spherically symmetric infinitesimal generators, hence the wave
like behavior involves a crest located on an expanding sphere. Furthermore, if the 
maximum of P/ is located off the origin then P/3 ' changes sign in the spherically 
symmetric case. This strengthens the case against diffusion if condition (iiia) is 
violated (note that P / ' does satisfy conditions (i) and (ii) even if condition (iiia) 
is violated.). It should however be kept in mind that in one dimension a single 
maximum moving in one direction is a typical of a biased diffusion, associated with 
a skewed stable probability. 

Substitution Pt
l \x; fi, 1) from eq. (25) in an extension of the formula (27) to the 

asymmetric case yields 

(34) P^{x;a,P,l) = t-"fl,f{xt-a>p) 
/•OO 

(35) / ( * ) : = / P + ( £ ; a ) p + ( z r / / 5 ; 0 K o / / , d £ 
./o 
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For a = 1/2, ft = 1/3,2/3 the functions p+(x; a, p+{x; /J) can be expressed in terms 
of elementary functions and the Airy function [12]. 

To wit, a univariate probability density is unimodal with a mode at 0 if it has 
either a maximum at 0 (possibly flat) or diverges to +oo for x —» 0 or has a delta-
spiked singularity at 0. Our basic tool for proving unimodality is eq. (26), which 
implies that for 0 < a < 1 the propagator Pt lies in a closed convex hull of unimodal 
probability densities on Kd. It is crucial for our argument that the second factor in 
the integrand of (26) is unimodal with a mode at the origin for every value of the 
integration variable. 

7.2. - Unimodality in one-dimensional space. - For d = 1 there are more precise 
results on unimodality in probability theory than for higher dimensions. We begin 
with a definition of unimodality appropriate for one dimension. 

DEFINITION 6 A probability distribution Q on R is unimodal with mode at the 
origin if either it has an atom c50 at the origin or if its density q{x) > 0 is finite 
except at a finite number of points and satisfies the inequalities 
(i) q(x) < q(0) for a — e < x < a < 0 and f o r 0 < b < i < & + e where a, b and e > 0 
are some constants. 
(ii) If a < b then q(x) = q(0) < oo for all x G [a, b], otherwise a = b = 0 and 
q(0) < oo. 

By a theorem of Yamazato (Theorem 53.1 in [30]) every /^-stable probability 
distribution is unimodal. Its mode obviously lies at the origin if the probability 
distribution is symmetric about the origin. The latter property does not hold if 
skewness is different from zero. Assuming a parametrization of univariate stable 
probability densities p(-; f3, •d) in terms of the formula 

(36) log E [eizx] = -C \zf e~[wl}§/2 

with \d\ < min{l, (2 — /?)//?} and C > 0, the maximum of p(-; /3, i?) lies at a point 
x = a in K+ (K_) if i? > 0 (i? < 0) and /3 ^ 1 (this probably also applies to (3 = 1 by 
numerical arguments). Consequently, the location maximum of the second factor in 
eq. (26) depends on the integration variable. Since p+(-;cn) is not monotone, it is 
not possible to prove unimodality for F(

(1' if •& ^ 0. 
In particular, the case of a — 1, /3 = 1/2 provides a counter-example to uni

modality with mode 0 of PJ; ' since the maximum of p+(a;;l/2) lies at x = 1/6. 
More generally, for 9 / 0 the maximum of p+(x;P,'d) lies at a point xo ^ 0 ([29], 
Sec. 1.6). The maximum of P t (•; 1, /3, #), with i? > 0, propagates to the right due 
to a higher probability of diffusion to the right. On the other hand for a < 1, i? / 0 
the propagator can be unimodal with mode at x = 0. Thus, for example 

Pt(x; 1/2,1/3,1) = r 3 / 2 h (x/t3'2) (x/t3'2Yi/3 

where 

h(z):=-^= dCe-^AitC1'2*) 
^V71" Jo 

is a finite unimodal function with mode at z = 0. 
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We are thus forced to restrict our attention to symmetric univariate stable prob
ability distributions. For symmetric univariate probability distributions Definition 6 
is equivalent to the following definition: 

DEFINITION 7 A symmetric univariate probability distribution is said to be uni
modal if it lies in the closed convex hull of probability distributions which are uni
form on their supports [—a, a], a > 0. 

cf [3]. Closure is meant here in the weak measure topology. Furthermore, every uni
modal symmetric probability distribution Q is a generalized mixture of distribution 
functions Wa which are uniform on intervals [—a, a], a > 0: 

roo 

(37) Q(A) = / Wa{A) n{&a) for every Borel subset A of E 
Jo 

where [i is an univariate probability distribution with support on K+ [3]. The 
converse of the last statement is also true. 

Combining these facts with eq. (26) we have established the following theorem: 

T H E O R E M 7 Let 0 < a < 1, 0 < p < 2 and d = 0. 

The propagator P{ is unimodal with mode at 0. 

7.3. - Unimodality for d > 1. - For d > 1 the requirement of symmetry has to be 
replaced by central symmetry, i.e. symmetry with respect to the reflections x —>• —x 
in the origin. 

DEFINITION 8 A centrally symmetric probability distribution Q on Rd is said to 
be central convex unimodal if it lies in the closed convex hull of all probability 
distributions whose supports are convex cetrally symmetric subsets of Rd and which 
have constant density on their support. 

cf [3]. This definition is rather understable on intuitive grounds, but the following 
definition of unimodality is even closer to our purposes: 

DEFINITION 9 A probability distribution Q on Rd is monotonely unimodal if for 
every convex centrally symmetric set A and for every x e Rd the function t —> 
Q(A + tx) is non-increasing for t > 0. 

By Anderson's theorem [1, 3] every central convex unimodal probability distribution 
is mononotonely unimodal. 

The following definition, equivalent to Def. 8, involves the concept of a gener
alized mixture of probability distributions which are uniform on and supported by 
convex centrally symmetric subsets of Rd [14]: 

DEFINITION 10 A probability distribution Q is symmetric unimodal if there is a 
family {We | £ G 2} of convex centrally symmetric sets such that 2 is a probability 
space with a probability distribution /j,, and 

Q(A) = [ We{A) /z(d£) V Borel A C Rd 
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where each W^ is a probability distribution with support Wf and a density which is 
constant on W^, for all £ e S. 

T H E O R E M 8 Let 0<a<l, 0</3<2 and let X be a finite centrally symmetric 
measure on the unit sphere Sd~l. 
The propagator P ( (•; a, /3, A) is finite at the origin if d < f3 and diverges to +00 
for x —> 0 in the other case. For y 6 W, y ^ 0, the function Pj ( ry ; a , /3 , A) is 
finite and non-increasing for r > 0. 

P R O O F . Every a-stable probability distribution is symmetric unimodal [14]. It can 
therefore be represented in terms of a generalized mixture of probability distributions 
W^ with convex centrally symmetric supports and constant densities. According to 
eq. (26) P t is a generalized mixture of a-stable probability densities. Substituting 
the expression for pW(-;/3\) in terms of W^ in eq. (26) and folding together the 
two integrals an expression for P ( in terms of a generalized mixture of W^ is 
obtained [12], which proves that P4 is symmetric unimodal and, hence, central 
convex unimodal [3]. By theorem due to Anderson [1, 3] it is monotonely unimodal. 
Regularity properties of P/ ' are established in [12]. Applying these properties and 
the Lebesgue theorem the last statement of Theorem 8 is proved [12]. | 

7.4. - Wave-like behavior of P t . - Numerical investigations in [12] and [20] 
show that solutions of symmetric equations 2 for a > 1 in a one-dimensional space 
are bimodal, with two maxima propagating rightwards and leftwards. A spherically 
symmetric propagator of eq. (2) in K3 can be obtained by applying the formula [12] 

(38) Pt
(3)(x;«,/3,A0) = - J - J - p / ^ r ; a, (5,0) 

Anr or 
where r = |x| and A0 denotes the uniform probability on the unit sphere Sd~1. If 
P( has a maximum at x > 0 then then the corresponding spherically symmetric 
propagator P ( changes sign. 

The transition from diffusive to propagative behavior in time-fractional equations 
in 1, 2 and 3 dimensions is discussed at length in [13]. 

8. — Concluding r emarks 

Our well-posedness results cover anisotropic fractional diffusion equations (0 < 
a < 1) as well as isotropic diffusion-wave equations (L = —(—A, 0 < a < 2). Diffu
sive behavior, associated with unimodality of the propagator, has been demonstrated 
for centrally symmetric operators L and 0 < a < 1. Dropping the assumption of 
central symmetry in one dimension leads to biased diffusion (higher probability for 
moving in one direction). The propagator is still unimodal but the mode propagates 
away from the origin. It is not clear what happens in the multi-dimensional case if 
the assumption of central symmetry is dropped. 
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Exponential decay on the mean in linear 
viscoelasticity* 

Barbara Lazzari^ 

1. - Introduction 

In linear viscoelasticity, the dissipation effects due to memory lead to results of 
stability and decay of the energy under the hypothesis that the constitutive equations 
satisfy the thermodynamic restrictions (see for example [3]). 

In order to prove that the energy approaches exponentially zero as time goes to 
infinity, further hypotheses must be required. More precisely, the memory kernel, 
its derivative and a suitable linear combination of them must be positive definite 
([2, 5]). These requests imply the convexity and the exponential decay of the kernel 
and by using the theory of contraction semi-groups or suitable estimates, a point to 
point exponential decay of the energy is obtained. 

In this paper we give a sufficient condition on the relaxation function for the 
exponential decay on the mean of the energy and prove that, if the memory kernel 
has an exponential decay on the mean, i.e. if there exists a positive constant A such 
that the kernel multiplied by exp (At) is an integrable function of the time, then the 
energy has the same behavior. 

The method used here is based on the study of the Laplace transform of the 
solution of the evolutive problem in linear viscoelaticity. The main result consists 
in proving that it is possible to define the Laplace transform of the solution in the 
region of complex plane Tip > —7, with 7 > 0, and that this function is analytic 
and goes to zero when p goes to infinity. 

2. - Constitutive hypothesis 

In the linearized theory of isothermal viscoelasticity the stress tensor T is deter
mined by the history E ' of the infinitesimal strain tensor E trough the hereditary 
law 
(1) T(x, t ) = G0(x)E(x,i) + / G(x,s)E ' (x ,s)ds , ( x , i ) e f 2 x R + , 

where the elastic modulus Go and the Boltzmann function G are symmetric fourth 
order tensors. 

'Preview of the work in collaboration with J.A.D. Applebay, M. Fabrizio and D.W. Reynolds [1], 
tDipartimento di Matematica - Universita di Bologna 
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We consider the mixed initial boundary value problem in a bounded and regular 
domain Q 

(2) ii(x,i) = V- G 0 (x)V-u(x , i )+ / G(x,s)V-u ' (x ,s)ds , 
L JR+ J 

with Dirichlet boundary condition 

(3) u(x,t)|an = 0 

and initial condition 
(4) u°(x,s) = u 0 ( x , - s ) . 

The following assumptions on the constitutive tensors hold: 

Vi- G 0eL°°(f t ) , GeL2(M+ ;L0 0(n))nZ,1(R+;L0 0(f2)). 

V-2 - The constitutive equation (1) satisfies the thermodynamic restrictions for a 
linear viscoelastic solid. In particular, the instantaneous elastic tensor G0 and 
the equilibrium elastic tensor 

Goo(x, t) — G0(x) + / G(x, s) ds 

are bounded and positive definite, so that there exist four positive constants 
Go, go, Goc, goo, such that for every v e H%(Q.) 

(5) 

(6) 

9oh\\2
Hi < / nG 0 (x)Vv(x) • Vv(x)rfx < G 0 | | v | | ^ , 

goo\M\2
Hl < /nG0 0(x)Vv(x) • Vv(x)a!x < GoolMI^. 

Let Gs be the half range sine Fourier transform of G, namely 

Gs(x,w) = / sinws G(x, S) ds, 

then there exist two functions Gs : {»\0} —> E + + , gs : { M \ 0 } —• M++ such that 

(7) fl.(w)||v||^ < - / f i W G s (x , W )Vv(x ) • Vv(x)dx < Gs(uj)\\v\\llg. 

7>3 - The tensor G(-,0) exists bounded and negative definite, i.e. 

(8) ffilMI^ < - ^ G ( x , 0 ) V v ( x ) - Vv(x) ( & < ( ? ! | | v | | ^ , 

with 0 < gi < G\. 

V4 - There exist A > 0 and fj, > 0 so that 

(9) / / eAtG(x, t)Vv(x) • Vv(x) dx dt <CIHIL 
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To study the exponential stability, the Laplace transform method is used. To 
this end some properties on the Laplace transform are recalled. 

Let g : K+ —> B be a smooth function, then for any complex number p = a + iu> 

9~(P) — \ e~psg(s)ds= / e~as COSOJS g(s) ds — i / e~as sin uis g(s) ds 

= ffc(p)-«3s(p) 

denotes the Laplace transform of g. 

REMARK 1 (Relations between Laplace and Fourier transforms) For any com

plex p = a + iui e (C++, (a € R++, w £ l ) the Laplace transform G is related to the 

sine Fourier transform Gs by the following relation 

J x , p = - / 7 -
•K J,_+ (a 

(a2 - W 2 + T 2 ) T G S ( X , T ) 

do) - * / + r 
7r •/*+ (a 

(a 2 - td2 + r 2 ) 2 + 4<72w 

2i f 2crwr<Gs(x, r) 

dr 

( a 2 - u 2 + T2)2 + 4<72u;2 rfr. 

As a consequence of (10) and under the assumptions V\ and V2, for any a > 0 and 
w ^ 0, there exist two positive constants a(a) and f5(o,ui) such that 

(11) /" [G0(x)+fic(x,cr)] Vv(x) • Vv(x)dx > a{a)\\v\\2
Hi, 

(12) - ( w(Gs(x,a + iw)Vv(x) • Vv(x)dx > /3(cr, w)||v||#i. 

LEMMA 1 For any o~o G 1R s«c/i that G(x,p) is we// defined for p = (To + iu> 

(13) lim [w Gs(x, a0 + icu)] = <G(x, 0). 

Proof. To estimate the limit (13) we introduce the function 

/

oo 
e-<70TG(x,r)dT. 

The hypothesis on G assures that Fao is Fourier transformable and 

J i i r ^ w ^ J ^ x , ^ ) = F^foO) = G(x,0). 

3. - The main result 

We consider the problem (2)-(4) and require that the initial history satisfies the 
following conditions: 

i ) u0(-, - s ) € H£{Q), u0(-, -s) £ L2{Q) for s e E+; 
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ii ) the function 

\ds G ( x , s ) V u o ( x , ( - s ) i 

belongs to H1 (R+, L2(Q,)) and 

(14) / e « | | f ( t ) | | i , d t < o o . 

Under these hypotheses, we rewrite the problem ( l ) - (4 ) as follows 

(15) i i ( x , t ) <G0(x)V-u(x,£) + / G ( x , s ) V - u ' ( x , s ) d s + f ( x , t ) , 

(16) u ( x , 0) = 0 , u ( x , 0) = 0 , x e t l , 

with Dirichlet boundary condition (3). Moreover we require1 

f ( x , 0 ) = 0 , x £ f l . 

Now let consider the Laplace transform of problem (15)—(16): 

(17) 

(18) 

p 2 u ( x , p ) = V - { [ G o ( x ) + 6 ( x , p ) ] V u ( x 1 p ) } + f ( x 1 p ) 1 

u ( x , p ) I a n = 0. 

D E F I N I T I O N 1 Let p e <D with Tl{p} > - A . A function u(-,p\ £ H^(Q.) is called a 

weak solution for the elliptic problem (17)-(18), with source f(- ,p) 6 L2(Q) if the 

following relation 

J { p 2 u ( x , p ) • 0*(x) + [Go(x) + 6 ( x , p ) ] V u ( x , p ) • V</>*(x)} dx 

= jTf(x(p).0*(x)dx 

holds for any <j> G Hg(£l), where the symbol * denotes the complex conjugate. 

'The conditions on the initial values are not restrictive. In fact, if u is a solution of (15) with 
initial data u(x, 0) = u0(x) , u(x, 0) = uo(x, 0) and source f with f (x, 0) = fo(x), then the function 
v = u + w , with w 6 C°° ( ]R + , ^ (n ) ) , 

w(x,0) = -uo(x) , w(x,0) = -iio(x) , w(x,0) = f0(x) + V-[G0(x)V-uo(x)] 

and w(-,t) = 0 for every t > *oi satisfies a problem formally equal to (15) -(16) with source 

g(x,t) = f ( x , i ) - w ( x , t ) - V - <G0(x)Vw(x,t)+ / G(x,s)Vw'(x,s)ds 
L Jo 

and 

v(x,t) = u ( x , i ) , g(x,i) = f(x,t) + V- / G(x,s)Vw'(x,s)d8, Vt > t0. 

Moreover, the relation 

y + OO ft pto /- + 00 
/ eas / <G{x,s)dsdt= e~at / easG(x,s)ds 
Jto Jt-t0 Jo Jt0 

dt 

assures that g has the same exponential behavior of f. 
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LEMMA 2 Let p e (D with TZ{p\ > —A and u(-,p) £ -Ho(^) a, weak solution of 
(17)—(18) with source f(-,p) G L2(f2). If the relaxation tensor and the past history 
satisfy respectively the constitutive hypotheses V\- V^ and the requirements i)- ii), 
then there exists 5 > 0 such that the operator 

L{p) = -p2 + V - { [ G 0 ( X ) + 6(x,p)] V} 

is well defined and uniformly elliptic with respect to p for TZ{p} > —5 and 

(19) l|ii(p)irff4<«[l|f(p)lli> + llpf(p)lli»] 

where K is a positive constant. 

Proof. We introduce the sesquilinear form 

(20) a(u,v;p) = p 2 < u , v > + < [<G0 + G(p)] Vu, Vv >, 

where 
< u, v > = / u(x) 'V*(x)dx 

Jn 

and consider the real and imaginary part of (20) 

(21) K{a{u,u;p)} = {a2 - w2)||u||2L2 + < [G0 + 6c(p)] Vu, Vu > 

(22) X{o(u,u;p)} = 2crw | |u | | 2
j 2 -<G s (p )Vu,Vu> . 

We split the complex half-plane H{p} > — A in regions and prove that it is 
possible to find 5 < A such that inequality (19) holds for any p, with TZ{p} > —5 . 

First we consider a neighbor of p = 0. Since 

a(u,u;0) =<G 0 0 Vu,Vu>> f l r 0 0 | | u | | 2
? i , 

the continuity of a with respect p assures that there exists 5'0 > 0 such that 

a(u,u;p) > - 5oo||u||^i, for |p| < 25'0. 

In this way, if u(p) is a solution of (17)—(18), then 

(23) ||u(p)||2Hol < 

where c denotes the Poincare constant. 
In a similar manner, by using (21), (11) and the continuity of a, we obtain 

(24) | |u(p) | |^ < 

for p = a + iu), with a > 50 and \u>\ < 2m. 

2c 
l |f(p)ll£>. 

2c 

a{a) !|f(p)H2L> 
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Then (23) and (24) assure that for to near to zero (precisely \UJ\ < 2m) and 
a > max{-<%, -A} = —<$0 

(25) 

with 

| |u(a + iw)\\2
Hk < K(50,m)\\i{(T + iu)\\2

L2 

K(5Q, m) = max < sup 
2c 

a(a) 

2c 

floo 

For a = 0 and m < \u\ < 2M, the thermodynamic restriction (7), (22) and 
continuity of the Laplace transform yield 

(26) l|u(0 + «w)||2„1 < sup 
ffsM 

\\uf(0 + iui) 
m<\oj\<2M 

This assures that there exists Si with 0 < Si < 50 such that 

(27) \\n(a + iu)\\2
H, < K(m, M)||cuf(a + *w)||2t2 

for 0 < a < Si, where 

I L 2 -

K,(m, M) = sup 
m<\ui\<2M 

On the other hand, for a < 0 (22) yields 

2c 

Qs (OJ) 

ul{a(u, u; a + «w)} > 2 C T M 2 C 2 + -&(w) | |u(a + zw)||L 

Let Si = max{- 8 M ' i e i infm<|u,|<2M g„(ui), - A } . Then for S2 < a < 0 we obtain 

(28) ; |u(p) | | 2
1<4«(m,M)| |pf(p) | | L 2 -

In the region \a\ < 52 and |w| > M, we consider the following linear combination 
of (21) and (22) 

a (G 0 + Gc(p)) + • 
2w .(P) Vu(p) ,Vu(p)> 

(29) aft{< f (p), u(p) >} - ^ - ^ - J { < f (p), u(p) > } . 

As a consequence of (13) we have 

a (<G0 + GC(CT + iui)) + • lim 
2w 

(a + iw 

- lim u>Gs(a,w) 
2 u->oo s v ' ; 

(30) 
1 

( 2 C T G 0 - G ( 0 ) ) . 
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The hypotheses on G(0) assure that for a > max{—^-,— A} = —2(53 the tensor 

2aGo — G(0) is positive definite and the continuity of G with respect to the parameter 
p guarantees that there exists M$3 such that, for |<r| < <53 and |<j| > MSs, 

(31) < g ( G 0 + G c ( p ) ) + G,(p) 

From (29) and (31) we get 

(32) l|u(p)Hm < 

Vu,Vu » K ( M , „ < J 3 ) | | u | | ^ i 

llpf(p)ll L2-K{Mh,53) 

Relations (23), (24),(27) and (32) assure that inequality (19) holds in a neighbour 
of the real and imaginary axes. 

Finally, in the region \w\ > m and a > 5 = minx |<5;| (i = 1,2,3), (19) follows 
from (22) and (12) when \p\ is bounded, while, when \p\ go to infinity (22) yields 

(33) l|wu(p)||£a < ^ | | f ( p ) | | i > , 

so that (21) and (33) give 

(34) < [G0 + G C ( P ) ] Vu(p), Vu(p) > < ^| |?(p)l l£> + ||f(p)||||Vu(p)||. 

Inequality (19) follows from (34) recalling (5) and that lim|p|_>0oGc(p) = 0. 

4. - Exponential decay result 

Lemma 2, together with classic results on elliptic systems depending on a pa
rameter (see [6] Lemma 23.2), allow us to state the following 

T H E O R E M 1 Under the hypothesis of Lemma 2 for any p £ (C with 1Z{p} > —S the 
problem (17)-(18) has one and only one solution u(-,p) £ HQ(Q). 

Moreover the function 

l|fi(p)ll2Hi + l|pa(p)lli» 
is analytic for ~R.{p} > —S and goes to zero when p goes to infinity. 

As a consequence of Theorem 1 and recalling the relations between the Laplace 
transform and the Fourier transform of a causal function (see [4]), we can conclude 
that u(x,p) is the Fourier transform of the causal function e r tu(x, t) for any a > —5, 
with u solution of the problem (15)—(16). Moreover, from the estimate (19) on the 
Laplace transform, we have 

Mp)\\k + l|pfi(p)lli» < M [||f(p)||i, + ||pf(p)||£,] 

and the Parseval relation assures that 

/ m + e** [||u(t)||2ff, + ||u(i)||£2] dt < M / R + e<" [\\i(t)\\h + \\Ht)\\h\ dt < co 

for a > —<5. 
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Recovering a memory kernel 
in an integrodifferential Stefan problem 

L. Lorenzi * 

1. - Introduction 

In this note we deal with a one-dimensional one-phase Stefan problem for ma
terials with memory related to the curvilinear strip fis = {(£, x) e [0, T] x ]R : x < 
s(t)}. Our problem consists of determining a pair of functions s : [0, T] —> IR and 
u : fis —> M such that 

Dt(u(t,x) — / k(t — r )u( r ,x )dr j 

(1) = Dxxu{t,x) + f{t,x), te[0,T], x<s(t), 

(2) U(0,X)=UQ(X), X<S{0), 

(3) u(t,s(t)) = Ul(t), t£[0,T\, 

(4) s'{t) = -Dxu{t,s(t)) + u2{t), te[0,T\. 

In order that the time convolution term appearing in the differential equation may 
be meaningful we assume that s is a non-increasing function in [0, T]. So we deal 
with free boundaries moving to the left. 

As is well known, (4) accounts for the so-called Stefan condition needed to deter
mine the free boundary x = s(t). When also the memory kernel k is itself unknown, 
we have to prescribe an additional condition of the form 

(5) ff(t) = *[«(*,-)]:= / i>(y)u{t,y)dy, 

generalizing the energy condition considered in [3]. 
Equation (1) is a particular case of the more general equation 

Dt(u(t,x) —I k(t — T)U(T,x)dTj 

(6) = Dxxu(t,x)+ <p{t-T)Dxxu{T,x)dr + f{t,x), 
Jo 

that occurs when dealing with the heat conduction in a rigid one-dimensional body 
with memory. As is well known, the terms 

e(t, x) — u(t, x) — / kit — T)U[T•, x)dr; 
Jo 

'Department of Mathematics, University of Parma, E-mail: luca.lorenzi@unipr.it 
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and 

q{t, x) = Dxxu(t, x)+ ip(t - T)DXXU(T, x)dr, 
Jo 

account, respectively, for the internal energy and the heat flux, while / stands for 
the heat supply. 
Since the identification problem (l)-(5) seems to be new and rather complicated in 
the general formulation (6), (2)-(5), we restrict ourselves to the simpler problem 

(l)-(5). 
We recall that Stefan problems and, more generally, phase transition problems 

have been the topics of many papers in the last five decades. We quote [4], [5] and 
all the papers cited in the book [1, Chapter 12], which covers the years between 
the 70's and the beginning of the 80's, as well as the monographs [2], [10] and the 
references therein cited. 
More recently, in [6], [7], [8] the authors deal with phase transitions problems arising 
in heat conduction for materials with memory. In particular in [8] they are concerned 
with weak solutions (u, x) to the equation, similar to (6), 

Dt(u{t, x) + (ij>* X)(t, x)) = A{k * u){t, x) + f(t, x), 

related to bounded domains Q C IRN in the case of two memory kernels k and ip 
which may depend also on the space variables. Here "*" denotes time convolution. 

As far as identification problems for one-phase Stefan problem are concerned, we 
quote the papers [14], [11], [12], [9]. In [14] the author considers a one-dimensional, 
one-phase Stefan problem related to the bounded (for any fixed t) space domain 
(0, s(t)). Assuming that the problem depends also on six constants ki,..., k6, the 
author shows how to determine, by an additional measurement on the face x = 0, 
both the solution u and a pair of constants (ki, kj) [i,j = 1 , . . . ,6, i ^ j) whenever 
the remaining four constants are supposed to be known. 
In the more recent papers [11], [12] the authors deal with the problem of recovering 
an unknown time-dependent diffusion coefficient in a one-dimensional, one-phase 
Stefan problem both theoretically, using a least-square method (see [12]) and nu
merically (see [11]). 
Finally in [9] the authors are concerned with the problem of identifying a moving 
solid/liquid interface of a one-dimensional melting solid from measurements of both 
the temperature and the flux on the solid part of the interface. 

In this note we limit ourselves to stating that problem (l)-(5) admits a unique 
(local in time) classical solution (u, s, k) with Holder regularity, and we point out 
the main techniques used to get such a result. We refer the reader to [13] for a 
complete proof of the stated result. 

Let us introduce the functional spaces we deal with in this note. 

DEFINITION 1 For any T > 0 and any a £ (0,1), we denote by C a /2 'Q(0T) (ftT := 
[0, T] x (—oo,0]) the function space 

Ca/2'a(QT) = { / : O T - ^ l R : / ( - , x ) e C a / 2 ( [ 0 , T ] ) Vx < 0, 



199 

sup||/(-,s)||c»/>ao,n) < +°°. /(V)eC°((-»,o]) vte [O,T], 
x<0 

S UP [/(*, •)]c«((-oo,0]) < +0O>. 
te[o,T] 

We endow Ca/2'a(Qr) with the norm 

| | / I U / 2 , Q , T = sup | | / ( i , - ) l | c«( ( -oo ,o] )+sup[ / ( - ,a ; ) ] C Q /2 ( [ o r ] ) . 
te[o,T\ x<o 

Then we define by Cl'2(Q,T) the space of all the functions / : QT —>• 1R which are once 
continuously difFerentiable with respect to time and twice continuously difFerentiable 
with respect to the space variable in QT- We endow C1,2{Q.T) with the norm 

ll/llw= E \\D\Dif\\c{nT). 
2i+j<2 

Finally, for any a e (0,1), we denote by C1+a/2'2+a(QT) the space of all the 
functions u : HT —>• IR such that u, Dtu, Dxu and Z)rau belong to Ca/ ,2 ,Q(fiT). We 
endow C1+Q/2>2+a(fiT) with the norm 

IM|l+a/2,2+a,T = J2 ||£>J£>>|U/2,a,T-
2i+j<2 

We can now state the main result of this note. 

T H E O R E M 1 Suppose that f e C1 + a / 2 '2 + a(f2T) , Dtxf e Ca/2>a{ttT), u0 e C4+a 

((-oo,0]), $ e <73((-oo,0]) nW3 '1((~oo,0)), ultg G C2+Q/2([0,T]), u2 E Cl+al2 

([0,T}). Further assume that 

HI) U l(0) ^ 0, 

H2) the equation Uo(y) = «i(0) admits a unique solution SQ < 0, 

H3)0^X := P 1>(v)Mv)dv, 
Jo 

H4) m0 := sup t € [ 0 ] T ] w2(<) - w'o(so) < 0, 

and the compatibility conditions 

/

so 
*P(y)u0{y)dy, 

- O Q 

g'(0) = M I ( 0 ) ^ ( S O ) ( M 2 ( 0 ) - M ^ ( S 0 ) ) + A ; O 5 ( 0 ) 

+ [" 1>(v)[<{v) + mv)]dv, 
J — CO 

g"(0) = (u2(0) - ui(s0))^(ao)K(so) + «i(0) + «i(0)u{,'(s0) + / (0 , s„)] 

+ Wl(0)^(s0)K2(0) - u0"(s0) - DJ(0, so)] + M ( 0 ) 

+ W ( 0 ) - <(S 0 )V' (SO)M 1 (0)] + u i (0)^ ' (a o )MO) - M'0(S0))2 

^(y )K"(y ) + kou'Ky) + Dxxf(0, y) + Dtf(0, y)]dy 
-OO 
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hold, where 

(7) k0 = M s o ) r K ( O ) - «S(so) " u'0{s0)(u2(0) - u'0{s0)) - /(O, *„)], 

/io = X _ 1 {<(° ) " M O ) - u'0(s0))[2w'0"(so) + 2£>s/(0, s„) + <(s0)u2(0) 

- 2M'0(S0)UO(SO) + 2fc0u'0(so)] 

- £>x x / (0, s0) - «J'"(s0) - w o (so)K(0) - w0"(so) - £>x/(0, s0)] 

- A / ( 0 , s0) - fco[2«o(s0) + /(O, s0) + fc0«o(«o) - K ( s o ) ) 2 ] } -

Then there exist M0, Mi € IR+ such that for any Mj > Mj (j = 0,1) we can find 
out T0 > 0 and a unique triplet (u,s,k) solution to problem (l)-(5) such that s € 
C2+a/2([0,T0]) is a non-increasing function with s(0) = s0, k e C 1 + Q / 2 ( [ 0 , T 0 ] ) with 
k(Q) = k0 and ||fe'||c»/2([o,To]) ^ M\, and such that the function u(t, x) —> u(t,x — s(t)) 
belongs to C 1 - 2 ^ ) with Dtu 6 C1 +°/2 '2+ a(n r o) and | | A « | | I + Q / 2 , 2 + Q , T „ < M0. 

2. - Fixing the boundary 

Before fixing the domain, we observe that if k is a differentiable function, then 
equation (1) can be rewritten in the equivalent form 

(8) Dtu(t,x) = Dxxu(t,x) + k(0)u(t,x) 

+ j k'{t - T)U{T, x)dT + f(t, x), t e [0, T], x < s(t). 
Jo 

Assuming that u, its first-order time derivative and first- and second-order space 
derivatives are continuous at (0, s(0)) we can show that k(0) is uniquely determined 
from the initial data, thanks to H1-H2, and k(0) = k0 (see (7)). Hence we can 
replace equation (1) with the equation 

Dtu{t,x) = Dxxu(t,x) + k0u(t,x) 

(9) + f h(t- T)U(T, x)dr + f(t, x), t e [0, T], x < s(t), 

and we can deal with problem (9), (2)-(5) showing that it admits a unique (locally 
in time) solution (u,h,s). Coming back to our original problem (l)-(5), it is then 
easy to show that it has a unique solution (M, k, s) where 

k(t) = k0 + j h(r)dT. 
Jo 

So, let us consider problem (9), (2)-(5). As usually when dealing with a free 
boundary problem, we fix the boundary setting 

u(t, x) = u(t, x + s(t)). 
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If (u,s) is a solution to problem (9), (2)-(4), with s(0) = s0, then the pair (u,s) is 
easily seen to solve the problem: 

Dtu(t,x) = Dxxu(t,x) + k0u(t,x) + h(t —T)U(T,X +s(t) — s(r))d,T 
Jo 

(10) +s'{t)Dxu(t,x) + f(t,x + s{t)), * € [ 0 , r j , i < 0 , 

(11) u(0,x) = u0(x + s0), x < 0, 

(12) S ( t , 0 ) = « i ( t ) , t€[0,T\, 

(13) s'(t) = -£),«(*, 0 ) + u 2 ( t ) , t e [ 0 , T ] . 

Applying the operator # , defined in (5), to both sides in (9) and observing that 

rs(t) 
*[A*u(t , - )] = iP{s{t))(u2{t)-s'{t))- / iP'(y)Dxu(t,y-s(t))dy, 

J — OO 

*[A«(v)] = fl'(t)-«i(*M*(*)K(<). 

for any V € (^((-oc^O]) n ^ ' ( ( - o o . O ) ) and any t € [0,T], we easily get 

g'(t) = i>(s(t))(u2{t)-S'(t))+Ul(t)i>{s(t))s'(t) + k0g{t) 

- f 4>'{y + s(t))Dxu{t, y)dy + [ ^{y + s(t))f(t, y + s{t))dy 

(14) +fh{t-T)drf i>{y + s{t))u{T,y + s{t)-s(T))dy, te[0,T\. 
J0 J-oo 

Since our goal is to transform problem (10)-(13) into a fixed-point system, we 
set v = Dtu and differentiate problem (10)-(13) with respect to time, getting the 
following problem for the pair (s,v): 

(15) Dtv(t,x) = Dxxv(t,x) + kQv(t,x) + F(h, s, v){t,x), t e [0,T], x < 0, 

v(0,x) = u'0\x + s0) + u'0{x + s0){u2{0) - u'0(sQ)) 

(16) +k0u0(x +s0) + f{Q,x +s0), x<0, 

(17) «(t,0) = «!(*). t€[0,T], 

(18) s'(t) = u2(t) - u0{s0) - J DXV(T, 0)dr, 
Jo 

where 

T(h,s,v){t,x) = s'(t)Dxf{t,x + s(t)) + s"(t)u'0(x + So) + s'(t)Dxv(t,x) 

+h(t)u0(x + s(t)) + Dtf(t, x + s{t)) 

+s"(t) f Dxv(T,x)dT+ [ h{t-T)v(T,x + s{t)~s(r))dT 
Jo Jo 

+ f h(t-T)(s'(t)-s'(T))dT f Dxv{a,x + s{t)-s{T))da 
Jo Jo 

(19) + f h(t- T)(s'(t) - S'(T))U'JX + s(t) - S(T) + s0)dr. 
Jo 
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Differentiating equation (14) with respect to t we get 

g"(t) = TP(s(t))(u'2(t) - s"(t)) + u[(t)Tp(S(t))s'(t) + Uim>(s(tW(t))2 

+u1(t)1>(a{t))s"(t) + f{t, s(t))i,{s(t))s'(t) + k0g'(t) 

+ f iKv + s{t))DJ(t, y + a(t))dy - f ip'{y + s{t))Dxv(t, y)dy 

+s'{t) [ i>\y + s(t))dy [ DXXV{T, y)dr 
J-oo JO 

+s'(t) / iP'{y + s(t))ul(y + s0)dy + h{t) [ ^{y + s(t))u0{y + s{t))dy 
J—oo J—oo 

+tp(s(t))s'(t) [ hit - r)dr f v{a,s(t) - s{r))da 
Jo Jo 

+ip{s{t))s'{t) [ hit - r)u0(s(t) - S{T) + s0)dr 
Jo 

+ f h(t- T)dr f 4>{y + s(t))v(r, y + s(t) - s(r))dy 
JO J-oo 

- [ h{t- T)s'{r)dT [ ip{y + s{t))dy f Dxv{a, y + s(t) - s(r))da 
JO J-oo JO 

(20) - f h{t- T)S'{r)dT [ 1>(y + s{t))u'0{y + s(t) - S{T) + s0)dy, 
JO J-oo 

for any, te [0,T]. 
Under the assumptions of Theorem 1, the problems (10)-(13), (14) (say PI) 

and (15)-(18), (20) (say P2) are equivalent in the following sense: let (u,s,h) 
be a solution to problem (PI) such that u, Dtu e Cl'2{£lT), h € C([0,T]) and 
s e C2([0,T]), s being a non-increasing function with s(0) = s0, then the triplet 
(h,s,Dtu) solves problem (P2). Conversely, if (h, s,v) solves problem (P2) with 
v 6 C1:2(^IT), h € C([0,T]) and s 6 C2([0, T]), s being a non-increasing function in 
[0,T] with s(0) = so, then the triplet (h,s,u), where 

i(t,x) = / v(r,x)dr + Uo(x + s0), V(t,x) 
Jo 

£tt7 

is a solution to problem (PI) with u € C1,2(QT) and Dtu € C1,2(f2j'). For a detailed 
proof see [13]. 

In order to transform problem (15)-(18), (20) into a fixed-point problem, we recall 
that (see [2, Chapter 3]) for any A e H, any v0 6 C 2 + Q ( ( -oo , 0]), vx e C1 + a / 2([0, T]), 
/ € Ca/,2'a(f2y) satisfying the compatibility conditions 

v0(0) = v1(0), v[(0) = < (0) + Xv0(0) + / (0 ,0) , 

the problem 

(21) Dtv{t,x) = Dxxv{t,x) + Xv{t,x) + f{t,x), t e [0,T], x < 0, 

(22) v(0,x)=vo(x), x < 0, 
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(23) v(t,0) = v1(t), te[0,T], 

admits a unique solution v G C1+Q/,2'2+Q(f2r) and it satisfies 

| |^ | | l+a/2,2+Q,T < C(l |vo| |c2+°((-oo,0]) + IKIIci+°/2([0,T]) + I I / I U / 2 , Q , T ) , 

for some positive constant C, continuously depending on A and T, but independent 
of the data. It follows that any solution v e C1 + Q /2 '2 + a(f i r) to problem (15)-(17) is a 
solution to the fixed-point equation v = M{h, s, v), where M(h, s, v) is the solution 
to problem (21)-(23) with / , VQ, VI being replaced, respectively, by T(h,s,v) (see 
(19)), the right-hand side of (16), and u[. 
From (20) we get the other two fixed-point equations we need. To be more precise 
(see also [13]), h turns out to be a solution to the equation h = J\f(h, s, v), where 

jV(h,s,v)(t) 

= X'1 [«?"(*) - Hs(t))(u'2(t) - s"(t)) - u[(t)i;(S(t))s'(t) - Ul(tW(s(t))(S'(t))
2 

- Ul(t)i>(s(t))s"(t) - f(t,s(t)W(s(t))s'(t) - k0g'(t) 

- / ip{y + s(t))Dtf(t, y + s{t))dy + [ </>'(?/ + s(t))Dxv(t, v)dy 
•/—oo J— oo 

- s'(t) f iP'{y + s(t))dy f DXXV{T, y)dT 
J-oo Jo 

- s'(t) j iP'{y + s(t))4{y + s0)dy 
J — OO 

- Kt) I bP{v + s(t))u0(y + s(t)) - tp{y + s0)u0(y + s0)}dy 
J —OO 

- tl)(s(t))s'{t) f h(t - r)dr [T v(a, s(t) - s(r))da 
Jo Jo 

- l/>(s{t))s'(t) f h(t - T)u0(s(t) - S{r) + S0)dT 
JO 

- f h{t- r)dr [ xj){y + s{t))v{r, y + s{t) - s{T))dy 
JO J —oo 

+ f h(t- T)s'(T)dr j iP{y + s{t))dy f Dxv{a, y + s(t) - s{r))da 
JO J-<x JO 

+ f h{t- T)s'{T)dT f iP(y + s(t))u'0(y + s(t) - s(r) + s0)dy], 
JO J-oo 

for any t € [0,T], and s is a solution to the functional equation 

s(t) = S(v)(t):= J u2{r)dr - u'Q(s0)t - j dr JT Dxv(a,0)da + s0, W e [ 0 , T ] . 

Summing up any triplet (h,s,v), solution to problem (15)-(20) with s(0) = s0, 
is a fixed-point of the system 

(24) 

(a) h = j\f(h,s,v), 

(b) 8 = S(v), 

(c) v = M(h,s,v). 
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Replacing the expression of s given by (24b) into (24a) and (24c), we reduce the 
number of unknowns, obtaining the equivalent problem (for the pair (h,v)) 

( (a) h = M{h,v), 
(25) 

{ (6) v = M(h,v), 

where 
(26) M{h,v)=M(h,S{v),v), Af{h,v) = Af{h,S(v),v). 

If problem (25) is uniquely solvable with solution (h, v) also problem (24) is, and 
its (unique) solution is given by the triplet (h, v, s) where s = S(v). 

Unfortunately the operator (M,N) is not a contraction not even for small T. 
To overcome this difficulty, we transform problem (25) into an equivalent one by 
replacing the operator M. with the operator M. that with any v and any h associates 
the solution to problem (21)-(23) with / , VQ, VI being now replaced, respectively, 
by F{h,v), the right-hand side of (16), u[, and T{h,v) is obtained from T by 
replacing s with its expression given by (24b), and the term h(t)u0(x + S(v)) by 
the more regular term Af(h, v)u0(x + S(v)). To the so obtained fixed-point equation 
we can successfully apply the Banach fixed-point theorem, and finally we can prove 
Theorem 1. For a more detailed proof we refer the reader to [13]. 

Acknowledgment Work partially supported by the research project "Analysis and con
trol of deterministic and stochastic evolution equations" of the Italian Ministry of Univer
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The fundamental solutions 
of the time-fractional diffusion equation 

Francesco Mainardi * t Gianni Pagnini * 

1. - Introduction 

Time-fractional diffusion equations, obtained from the standard diffusion equa
tion by replacing the first order time-derivative by a fractional derivative (of order 
0 < /? < 2, in Riemann-Liouville or Caputo sense), have been treated by a num
ber of authors, see, e.g. Engler [11], Fujita [15], Gorenflo, Luchko and Mainardi 
[18, 19], Hanyga [21], Mainardi [23, 24, 25, 26], Metzler and Klafter [34], Priiss [38], 
Saichev and Zaslavsky [39], Schneider and Wyss [41], Uchaikin and Zolotarev [43]. 
For other treatments of the time-fractional diffusion equations we refer the reader 
to the references cited therein. In this paper we intend to provide more insights for 
the fundamental solutions of the general time-fractional diffusion equation, based 
on the recent results by Mainardi, Luchko and Pagnini [28]. 

By time-fractional diffusion equation we mean the evolution equation 

(1) 
d? d2 

-^u{x,t) = —u{x,t), 0 < / 3 < 2 , xeR, teR+, 

where the time-fractional derivative is intended in the Caputo sense, see Appendix 
A. When P is not integer (/? ± 1, 2) the L.H.S of (1) reads: 

1 ft 

(2) wu(x,t):=\ 1 

r(2 - p) Jo 

d_ 
~d~T 

dr2 

U(X,T) 

U(X,T) 

dr 

(t-T)"' 

dr 

(t-T)»-

if 0 < P < 1, 

if 1 < p < 2 . 
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When P = 1, 2 we recover well-known evolution equations, namely, 
for /3 = 1, the diffusion equation: 

(3) 
d 

t(x,t) 
d2 

u(x,t). 
dt~K~'"' dx2 

for f3 = 2, the D'Alembert wave equation: 

i e J i , te 1R+; 

(4) 
dt2 u(x,t) 

dx2 i(x,t), x € Ft, t e IR£ . 

For 1 < j5 < 2 the fractional equation (1) is expected to interpolate (3) and (4), 
thus in this case it can be referred to as the time-fractional diffusion-wave equation. 

Suitable processes of integration allow us to eliminate the time-fractional deriva
tive in the L.H.S of (1); recalling the definition of the Caputo derivative we easily 
obtain the following integro-differential equations: 
if 0 < p < 1, 

1 r* 
u(x,t) = u(x,0+) + —jjo dx 

(5) 

if 1 < P < 2 , 

(6) u{x,t)=u(x,0+)+tut(x,0+) + ~~ fQ 

2U(X,T) {t - rf-1 dr ; 

dx2 U(X,T) {t - rf-1 dr . 

In order to formulate and solve the Cauchy problem for (1) we have to select 
explicit initial conditions concerning u(x, 0+) if 0 < P < 1 and u(x, 0 + ) , ut{x, 0+) if 
1 < P < 2 . If (p(x) and tp(x) denote sufficiently well-behaved real functions x defined 
on JR, the Cauchy problem consists in finding the solution of (1) subjected to the 
additional conditions: 

(7a) u(x, 0+) = cj>(x), x&R, if 0 < / ? < ! ; 

(7ft) 
u(x,0+) = 
ut(x,0+) 

<f>(x), 
xe R, if l< P < 2. 

We note that if we set ip(x) = 0 in (7b) we ensure the continuous dependence of 
the corresponding solution with respect to the parameter P in the transition from 
P = 1~ to P = 1 + , as it turns out by comparing the representations (5) and (6). 

The paper is divided as follows. In Section 2 we treat the Cauchy problem for 
the equation((1) by making use of the Fourier and Laplace transforms with respect 
to the space and time variables. We state the concept of fundamental solutions 
(the so-called Green functions) for which we derive the general scaling properties in 

'In what follows we shall meet only functions that are defined and continuous in x 6 1R and/or 
t 6 (0, T), VT > 0 except, possibly, at isolated points where these functions can be infinite. 
Following Marichev [31] we restrict our attention to the classes of such functions for which the 
Riemann improper integrals in x and in t absolutely converge on 1R and (0, T), respectively. We 
denote these classes as LC(1R), Lc(0,T). 
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terms of a similarity variable. In Section 3 we provide a general representation for 
the (reduced) Green functions in terms of Mellin-Barnes integrals in the complex 
plane, which allow us to obtain them in computational form. We note that these 
functions are peculiar "higher transcendental" functions of the Wright-type, that, in 
their turn, are special cases of the more general Fox H functions. Finally, Section 4 is 
devoted to concluding discussions, and a summary of the results in which we present 
plots of the (reduced) Green functions for a number of cases. After the Appendix A 
devoted to the Caputo fractional derivative, we report in Appendix B some historical 
notes on the Italian mathematician S. Pincherle, who can be considered the pioneer 
of the Mellin-Barnes integrals. 

2. - The Green functions: scaling and similarity properties 

The Cauchy problems stated in the Introduction can be conveniently treated by 
making use of the most common integral transforms, i. e. the Fourier transform (in 
space) and the Laplace transform (in time) whose notations are briefly recalled in 2. 
Indeed, the combined Fourier-Laplace transforms of the solutions of the two Cauchy 
problems: 

(a) {(l) + (7a)} if 0 < / 3 < 1, (b) {(1) + (7b)} if 1 < 0 < 2 , 

turn out to satisfy the following algebraic equations 

(8a) -K2U{K,S) = S?U(K,S)-S^~1${K), 0 < / ? < 1 , 

(8b) ~K2U{K,S) = S^{K,S)-S0-1${K)-S^-2^{K), 1 < /3 < 2 , 

^Let 

/(«) =F{J(X);K}= / e+lKXf{x)dx, t e f f i , 
J — oo 

be the Fourier transform of a function f(x) € LC(1R), and let 

f(x)=F-l{f{K);x) = — J e - m x / ( K ) c k , xeR, 

be the inverse Fourier transform. 
Let 

f(s)=C{f(t);s}= e~stf(t)dt, %(a)>af, 
Jo 

be the Laplace transform of a function f(t) € Lc(0,T), VT > 0 and let 

/ ( t ) = £ - 1 {/(«); *} = — y estf(s)ds, » ( 8 ) = 7 > o / , 

with t > 0, be the inverse Laplace transform. Above a/ denotes the abscissa of convergence: for 
its existence a sufficient condition is that the original function is of exponential type. 
We remind that if the original functions are piecewise differentiable, then the two inversion formulas 
hold true where the functions are continuous and the corresponding integrals must be understood 
in the sense of the Cauchy principal value. 
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from which we obtain 

(9a) Z(K,S)= 24>{K), 0 < / 9 < l , 

(96) 2 ( « ) S ) = _ _ _ 0 ( / c ) + _ _ _ ^ ( « ) > l < / ? < 2 . 

By fundamental solutions (or Green functions) of the above Cauchy problems 
we mean the (generalized) solutions corresponding to the initial conditions 

(lOo) Gy(x, 0+) = 6(x), if 0 < P < 1; 

Gf{x,Q+) = S{x), (Gf>(x,0+) = 0, 

(106) { „ i a if 1 < /3 < 2. 
^ G « ( x , 0 + ) = 0 , [ ^ G ^ ( x , 0 + ) = 5 ( x ) , 

Here <5(a;) is the delta-Dirac generalized function whose (generalized) Fourier trans
form is known to be identically 1. Thus, the combined space-Fourier and time-
Laplace transforms of these Green functions turn out to be 

(11a) G%\K,S) = ^ ~ , 0 < / ? < 2 , 

(lib) G P ) ( K ) S ) = _ _ _ i l < / 3 < 2 . 

We note that the function Gp (x,t) along with its combined Fourier-Laplace trans
form is well defined also for 0 < ft < 1 even if it loses its meaning of being a 
fundamental solution of (1). 

Then, by recalling the Fourier convolution property in the inversion of the 
Fourier-Laplace transforms of (9a)-(9b), we note that the Green functions allow us 
to represent the solutions of the above two Cauchy problems through the relevant 
integral formulas 

(12a) u(x,t)= [+°°G$\z,t)<l>{x-S)dS, 0 < / ? < l ; 
J — 00 

(126) u(x,t)= / + l G ^ ( 4 , t ) 0 ( i - O + G f ( e , t ) V - ( i - O ] ^ . K / 3 < 2 . 

By using the known scaling rules for the Fourier and Laplace transforms, 

(13) / ( m J ^ a - ' / W d ) , a > 0 , f(bt) A b'1 f{s/b), 6 > 0 , 
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we infer directly from (13) (thus without inverting the two transforms) the following 
scaling properties of the Green functions, 

G(p\ax, bt) = b-"Gf{ax/V , t), 

Gf\ax , bt) = b-»+1Gf(axlbv , t), 
(14) I ~f21 ^'"-'-'' 7 f

v.r'" "•" u = 0/2. 

Consequently, introducing the similarity variable xjt^l2 , we can write 

1 j \Gf{x,t)=t-H™Kf){x/tV*), 

where the one-variable functions Kp (x) , /Q (x) are referred to as the reduced 
Green functions. We note that both the Green functions are symmetric with respect 
to x and 

(16) K{p{x)=Gf{x,l) = K{p{-z), j = 1,2. 

In view of (15) and (12), the knowledge of the reduced Green functions is sufficient 
to provide the complete solutions of the Cauchy problems. 

3. - Mellin-Barnes integral representation of the Green functions 

To determine the two Green functions in the space-time domain we can follow 
two alternative strategies related to the different order in carrying out the inversion 
of the combined Fourier-Laplace transforms in (11)-(12). Indeed we can 

(51) : invert the Fourier transforms getting Gg (x, s), Gg (x, s), and then invert 
these Laplace transforms, 

(52) : invert the Laplace transforms getting Gp' (K, t), Gp (K, t), and then invert 
these Fourier transforms. 
Strategy (SI) 

Recalling the Fourier transform pair, 

(171 -^— 6 ^ - e - N * 1 / 2 6 > 0 

and setting a,- = s^~J' , b — s13 we get 

(18) ^ W ) = ^ e H ^ / 2 , J = 1,2. 

Strategy (S2) 
Recalling the Laplace transform pair, see e.g. [12], [20], [36] 

(19) ± . L £ t>-i El)j(-ct?), c > 0 , 
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where Epj denotes the two-parameter Mittag-Leffler function3 and set t ing c = n2 

we get 

(20) G^\K,t) = lP-1Epj(-Kltp), j = 1,2. 

The s t ra tegy (Si) has been followed by Mainardi [23, 24, 25, 26] to obtain the 

first Green function as 

(21) G$\x, t) = i r ^ 2 Mm (\x\/t»2) , - o o < x < + o o , t > 0 , 

inc 

noteworthy case of the Wright function4 . 

2 

where Mp/2 denotes the so-called M function of order /3/2, see also [36], which is a 

3The Mittag-Leffler function Efftli with 0, p. > 0 is an entire transcendental function of order 
p = 1/(8, defined in the complex plane by the power series 

0 0 n 

n—0 v ' 

Originally, at the beginning of 1900, Mittag-Leffler introduced and investigated (in five notes from 
1902 to 1905) the function 

OO n 

n=0 y ' 

as an instructive example of an entire function that generalises the exponential. For detailed 
information on the Mittag-Leffler-type functions the reader may consult e.g. [10],[12], [20], [22], 
[27], [36], [40]. 

4The function Mv(z) is defined for any order v e (0,1) and Vz g W by 

M „ ( z ) : = V — - — ^ '— - , 0 < I / < 1 , zeW. 
v ' *-> n\T\-vn + (l-v]\ 

It turns out that M„(z) is an entire function of order p = \/(l — v), which provides a generalization 
of the Gaussian and of the Airy function. In fact we obtain 

M1/2(z) = -J=exp ( - z 2 / 4 ) , M1/3(z) = 32/3Ai (z/31 /3) . 

The M function is a special case of the Wright function defined by the series representation, valid 
in the whole complex plane, 

0 0 n 

Indeed, we recognize 
M„(z) = * _ „ , i _ „ ( - z ) , 0 < ! / < l . 

Originally, Wright introduced and investigated this function with the restriction A > 0 in a series 
of notes starting from 1933 in the framework of the asymptotic theory of partitions. Only later, in 
1940, he considered the case - 1 < A < 0. For detailed information on the Wright-type functions 
the interested reader may consult, e.g. [12] (where, presumably for a misprint, A is restricted to be 
non negative), [18, 19], [22]. 
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As far as the second Green function is concerned, we note from (18) that 

Gf{x,s) = G^] {x, s)/s, so 

(22) Gf{x,t) = £G$\X,T) dr. 

Closed form solutions are found in the special case /3 = 1 (diffusion equation) and 
in the limiting case f3 — 2 (D'Alembert wave equation). We easily recognize for 
(5 = 1 : 

(23) Gi'W) = g!,-.-«, 0 f . t e „ . ^ . - « « . | r t ( ^ 5 ) , 

where erfc denotes the complementary error function, and, for p = 2 : 

(24) <#>(*,*) = fo + t>+ '<*-*>, (ff(s,Q = g(j + t ) - 4 ^ , 

where 9 denotes the unit-step Heaviside function. 
The strategy (S2) has been followed by Gorenflo, Iskenderov & Luchko [17] and 

by Mainardi, Luchko & Pagnini [28] to obtain the first Green function of space-time 
fractional diffusion equations. These authors have inverted the relevant Fourier 
transforms by using the Mellin transform5. 

5 Let 

Mi [ {/(r); s} = / • ( * ) = / / M r - 1 * , 7 i < K ( s ) < 7 2 
Jo 

be the Mellin transform of a sufficiently well-behaved function f(r), and let 

M 
i p'y+ico 

1{r(s);r} = f(r) = 1— r(s)r-

be the inverse Mellin transform, where r > 0, 7 = K (s), 71 < 7 < 72. We refer to specialised 
treatises and/or handbooks, see e.g. [13], [31], [37], for more details and tables on the Mellin 
transform. Here, for our convenience we recall the main rules that are useful to adapt the formulae 
from the handbooks and, meantime, are relevant in the following. Denoting by <-> the juxtaposition 
of a function f(r) with its Mellin transform f(s), the main rules are: 

f(ar) tt a-°r(s),a>0; ra f(r) U f(s + a); f(r")Uy-r{s/p), p ^ O ; 

CO 

h(r) = j-f(p)g(rlp)dp U h*(s) = f'(s)g'(s). 

0 

The Mellin convolution formula is useful in treating integrals of Fourier type for x = \x\ > 0 as 
Ic{x) = i /0°° / ( K ) cos (nx)dK, when the Mellin transform f*(s) of / ( K ) is known. 

Referring to [28] for details, we get 

/ t ( i ) = - r / / * ( s ) r ( l - s ) s m ( — ) x'ds, x > 0 , 0 < 7 < 1 • 
7T X Z7TZ J^-ioo \ Z J 
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Here we follow the same approach based on Mellin transform. For this purpose we 
note that the Mittag-Leffler function admits a Mellin transform type representation, 
see e.g. [31], which will be used to get the Fourier anti-transform of (20) (with t = 1), 
namely 

(25) ^ ( - ^ 2 ) ^ ^ r ( r ^ ! ( ^ 2
S ) / 2 ) • 0 < / 3 < 2 , 0 < ! f t ( S ) < 2 . 

For the determination of the reduced Green functions Kp{x) = Gp{x, 1) we can 
restrict our attention to x > 0, and thus write in view of (20) and (25) 

(26) K{P (x) = - f°° cos (KX) ED J (-K2) <1K . 
IT JO ' \ J 

So, using the final result in footnote '6 ' and the reflection formula for the Gamma 
function, we obtain 

The integral at the RHS of (27), in that it contains only gamma functions in the 
fraction multiplying x", is a particular Mellin-Barnes integral according to a usual 
terminology. In this respect the interested reader can find in [12] the discussion on 
the general conditions of convergence for the typical Mellin-Barnes integral, based 
on the asymptotic representation (Stirling formula) of the gamma function. The 
names refer to the two authors, who in the first 1900's developed the theory of these 
integrals using them for a complete integration of the hypergeometric differential 
equation. However, as pointed out in [12], these integrals were first used by the 
Italian mathematician S. Pincherle in 1888, see Appendix B. 

Readers acquainted with the "higher transcendental" H functions (introduced 
by Fox [14] in 1961) can recognize in the R.H.S of (27) the representation of a certain 
function of this class see e.g. [22], [31], [32], [37], [40], [42]. Unfortunately, as far 
as we know, computing routines for this general class of special functions are not 
yet available. Here, following the approach adopted by Mainardi, Luchko & Pagnini 
[28], we intend to compute the (reduced) Green functions in any space domain 
by matching a convergent power series (suitable for small \x\) with an asymptotic 
representation (suitable for large |a;|). 

In order to obtain the convergent power series we transform the original contour 
in (27) to the loop L+00 encircling all the poles sn = 1 + n, n € iV0 of the function 
T(l — s) and apply the residue theorem. We obtain 

<28> ^"M°i£n:r[-^r4-OTl- '-1-2-
The asymptotic representation can be obtained by using the arguments by Braaksma 
[3] (see also [28]), and turns out to be 

(29) Kf (x) ~ Aj x ai exp ( -6 x c ) , x ->• +oo , 
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where 

(30) Aj = {2^(2 - ft 2f-40-D]/(2-« /?[2(2J-l)-2/3]/(2^)|-1/2 

(31) a3 =
 2P J}2j^ l)~, 6=(2^/3)2-2/(2-«/3^2^, c= 2 

2(2-/?) ' v ^' ^ ' 2 - £ ' 

We now can complement Mainardi's result (21) providing also the second Green 
function in the space-time domain in terms of a Wright-type function. Indeed, using 
(15) and (28) we can write 

(32) Gf)(x,t) = ^t1-V2P(i/2(\x\/tV2) , ~oo<x<+oo, t>0, 

where Pp/2 denotes a suitable Wright-type function briefly discussed in 6. 

4. - Concluding discussion and plots 

We conclude with a discussion about some general features occurring in the 
Cauchy problem of our time fractional diffusion equation (l)-(2). A first general 
feature concerns the scaling property of the two Green functions which allows us to 
express them in terms of functions of a single variable, the reduced Green functions 
K$\x), j = 1,2, see (15). In this paper we have focused our attention on deriving 
a computational form for Kp (x) in all of M. In this respect the representation 
of Kp\x) through the Mellin-Barnes integral, see (27), was found useful. More 
precisely, to compute the functions Kp (x) we used the series expansions (28) and 
asymptotic representations (29)-(31), which were derived from (27). 

Hereafter we shall exhibit some plots of the reduced Green functions KJ'(x) 
for some " characteristic" values of the parameter (3. All the plots were drawn by 
using the MATLAB system for the values of the independent variable x in the range 
\x\ < 5. To give the reader a better impression about the behaviour of the tails, 
the logarithmic scale was adopted. Both the reduced Green functions, being non-
negative and normalized are of the greatest interest in view of their interpretation 
as probability densities. However, only the first Green function Gp (x,i) keeps the 
normalization when it evolves in time, see Mainardi and Pagnini [30]. 

6The function Pv(z) is defined for any order v 6 (0,1) and Vz 6ff" by 

Pv{z):=Y ,„ ,„ u> 0 < £/ < 1, ze(T. 

It turns out that Pv{z] is an entire function of order p = 1/(1 — v), and is a special case of the 
Wright function being 

P„(2) = * - „ , 2 - „ ( - . z ) , 0 < i / < l . 
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Appendix A: The Caputo time-fractional derivative 

Now we present an introduction to the Caputo fractional derivative starting from 
its representation in the Laplace transform domain and contrasting it to the standard 
Riemann-Liouville fractional derivative. 

Let 

(A la ) f(s)=C{f(t);s} = e-stf(t)dt, S (s) > af, 
Jo 

be the Laplace transform of a function /(£) € Lc(0, T), VT > 0 and let 

{Alb) f{t) = C-1 {/(a); t} = — est f(s) ds, 5ft (s) = 7 > af , 

with t > 0 , be the inverse Laplace transform. 
For a sufficiently well-behaved function f(t) we define the Caputo time-fractional 

derivative of order /3 (m — 1 < /3 < m, m £ IN) through its Laplace transform 

771 — 1 

(A.2) £ { t ^ / ( t ) ; s } = S ^ / ( S ) - £ s ^ 1 - * / « ( 0 + ) , m - K / 3 < m . 

This leads us to define, see e.g. [6], [20], 

1 ft f(m){r)dT 

(A3) tD?f(t) 
I T(m - P) Jo (t - r)/3+1-

dm 

1 < P < m, 

P--

The operator defined by (A.2)-(A.3) has been referred to as the Caputo fractional 
derivative since it was introduced by Caputo in the late 1960's for modelling the 
energy dissipation in some anelastic materials with memory, see [5, 6]. A former 
review of the theoretical aspects of this derivative with applications in viscoelasticity 
was given in 1971 by Caputo and Mainardi [9], with special emphasis to the long-
memory effects. 

The reader should observe that the Caputo fractional derivative differs from the 
usual Riemann-Liouville fractional derivative which, defined as the left inverse of 
the Riemann-Liouville fractional integral, is here denoted as tD& f(t). We have, see 
e.g. [40], 

(A4) tDffit):--

dm 

dtm 

dm 

dtm 

\ 1 /" f(r)dr 1 
T{m-P) Jo {t-Ty+1-m_ 

(t), 

, m- 1< ft < m 

P = m. 
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When the order is not integer, Gorenflo and Mainardi have shown the following 
relationships between the two fractional derivatives (when both of them exist), see 
e.g. [20], 

(A.5) tD!f(t)=tDf> 
m-\ j.k 

/ ( i ) - £ / < * ) ( 0 + ) L m — 1 < B < m, 

or 

k~/3 
(A6) ^ / ( t ) = ^ / ( i ) - £ / ( * > ( 0 + ) - — - — , m-\<B<m. 

fc=o T{k-() +1) 

The Caputo fractional derivative, practically ignored in the mathematical trea
tises7, represents a sort of regularization in the time origin for the Riemann-Liouville 
fractional derivative. Recently, it has been extensively investigated by Gorenflo and 
Mainardi [20] and by Podlubny [36] in view of its major utility in treating physical 
and engineering problems which require standard initial conditions. Several appli
cations have been treated by Caputo himself up to nowadays, see e.g. [7, 8] and 
references therein. 

We point out that the Caputo fractional derivative satisfies the relevant property 
of being zero when applied to a constant, and, in general, to any power function of 
non-negative integer degree less than m, if its order /? is such that m — \ < f3 < m. 
Furthermore, since 

(A.7) tDf>v= J{l + l ) - t ^ , 8>0, 7 > - l , t>0, 
r ( 7 + 1 - p) 

we note that 

m 

(A8) tDl> f(t) = t£>" g(t) < = • f(t) = g(t) + £ Cj t ^ , 
j=l 

whereas, using also (A.5) or (A.6), 

m 

(A.9) tDi f{t) = tI%g{t) <=> f{t) = git) + j : CJ tm^ . 

In these formulae the coefficients c3- are arbitrary constants. We also note the dif
ferent behaviour of tD% at the end points of the interval (m — 1, m ) , 

(A.10) lim tDU(t) = f{m^)(t)-f{m-1)(0+), lim t£>f/(*) = / ( m ) ( * ) . 
/3->(m-,l)+ f)-*m-

The last limit can be formally obtained by recalling the formal representation of 
the m-th derivative of the Dirac function, 5<m>(t) = t~m-1/T{-m), t > 0, see [16]. 
As a consequence of (A. 10), with respect to the order, the Caputo derivative is an 
operator left-continuous at any positive integer. 

7According to Samko, Kilbas and Marichev[40] and Butzer and Westphal[4] the "regularized" 
fractional derivative was considered by Liouville himself (but then disregarded). 
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Appendix B: Pincherle and the Mellin-Barnes integrals 

In Vol. 1, p. 49 of Higher Transcendental Functions of the Bateman Project 
[12] we read "Of all integrals which contain gamma functions in their integrands 
the most important ones are the so-called Mellin-Barnes integrals. Such integrals 
were first introduced by S. Pincherle, in 1888 [35]; their theory has been developed 
in 1910 by H. Mellin (where there are references to earlier work) [33] and they were 
used for a complete integration of the hypergeometric differential equation by E.W. 
Barnes [2]." 

For a revisited analysis of the pioneering work of Pincherle we refer the interested 
reader to our recent paper [29]. Here we limit ourselves to give some biographical 
notes and to report the original quotations by Barnes and Mellin. This may help to 
recall the attention of mathematicians towards Pincherle. 

Salvatore Pincherle (1853 - 1936) was Professor of Mathematics at the Univer
sity of Bologna from 1880 to 1928. He retired from the University just after the 
International Congress of Mathematicians that he had organized in Bologna, follow
ing the invitation received at the previous Congress held in Toronto in 1924. He 
wrote several treatises and lecture notes on Algebra, Geometry, Real and Complex 
Analysis. His main book related to his scientific activity is entitled "Le Operazioni 
Distributive e loro Applicazioni all'Analisi"; it was written in collaboration with his 
assistant, Dr. Ugo Amaldi, and was published in 1901 by Zanichelli, Bologna. 

Pincherle can be considered one of the most prominent founders of Functional 
Analysis, as pointed out by J. Hadamard in his review lecture "Le developpement et 
le role scientifique du Calcul fonctionnel", given at the Congress of Bologna (1928). 

A description of Pincherle's works, requested to the author by Mittag-Lefrler, the 
Editor of Acta Mathematica, appeared (in French) in Vol. 46, pp. 341-362 (1925) 
of this prestigious journal under the title "Notice sur les travaux de S. Pincherle". 
Furthermore, a collection of selected papers (38 from 247 notes plus 24 treatises) 
was edited by Unione Matematica Italiana (UMI) on the occasion of the centenary 
of his birth, and published by Cremonese, Roma 1954. Note that S. Pincherle was 
the first President of UMI, from 1922 to 1936. 

Here we point out that the 1888 pioneering work of S. Pincherle on Generalized 
Hypergeometric Functions led him to introduce the later so named Mellin-Barnes 
integral to represent the solution of a hypergeometric differential equation investi
gated by Goursat in 1883. Pincherle's priority was explicitly recognized by Mellin 
and Barnes themselves, as reported below. 

In 1907 Barnes, see p. 63 in [1], wrote: "The idea of employing contour integrals 
involving gamma functions of the variable in the subject of integration appears to be 
due to Pincherle, whose suggestive paper was the starting point of the investigations 
of Mellin (1895) though the type of contour and its use can be traced back to 
Riemann." 

In 1910 Mellin, see p. 326 in [33], devoted a section (§10: Beweis eines Satzes 
von Pincherle = Proof of Theorems of Pincherle) to revisiting the original work of 
Pincherle; in particular, he wrote "Ehe wir zum Beweise dieses Satzes schreithen, 
welcher einen speziellen Fall eines noch allgemeinerem Satzes von Herrn Pincherle 
bildet, wollen wir die Linien L naher angeben, fiber welche die Integration vorzugs-
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Some results of pointwise stability 
for solutions to the Navier-Stokes system 

P. Maremonti 

1. - Introduction 

Let us assume that T is a viscous incompressible fluid whose motion m0, in a 
region fi of three-dimensional space B 3 , is governed by the Navier-Stokes equations. 
Denote by (v, ff) the kinetic and pressure fields of the motion mo, where m0 can be 
supposed steady or not. The study Of continuous dependence and of the stability of 
fluid motion is essentially based on the so called energy methods. More precisely, 
let (u, 7r) denote the perturbation to the kinetic and pressure field of the motion m0 

of the fluid T, Serrin in [11] proved that the perturbations, which have finite energy 
(say |uo|2 < oo) to the initial instant, consent to give, for suitable Reynolds number, 
a variational formulation of the stability, that ensures the stability in energy of the 
basic motion. The result of paper [11] for the stability in energy can be resumed in 
the following way: it is known that the perturbation (u, %) of the motion m0 is a 
solution to the system: 

ut + u • Vu + u • Vv + v • Vu + Vn = i/Au, 

(1) V u = 0, i n f i x (0,T), 

u(x, 0) = uo(a;) in ft, u(x, t) = 0 V(x, t) G dQ x (0, T), 

if Q is not bounded,Vt > 0, u(x, t) —>• 0 for |x| —¥ oo, 

u t = "^ ' " , a - V b = a/c^-ei; formally a solution of system (1) satisfies the relation: 

(2) \^Ht)\l + "I Vu( t ) | | = - / a n " ( z , t) • Vv(x, t) • u{x, t)dx, Vt G (0, T). 

In [11] the following functional is considered 

Jen ( u (M) • Vv(x,t) • u(x,t)dx 
F(u) = 

|Vu(i) |2 ,V<>0; 

if sup u F(u) = ^*(t) < v for any t > 0, then integrated version of relation (2) 
becomes the energy inequality: 

|u(t)H + 2J\v - I / ' ) | V U ( T ) | ^ T < |uoll,V£ > 0. 

'Department of Mathematics, Seconda Universita di Napoli 
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Therefore from the energy inequality the definition of stability is well posed and if 
v*(t) < v, uniformly in t, with v* < v, the asymptotic stability also, that is 

|u(*)ll< |uo|l,Vt>0; 

lim |u(i)|2 = 0. 
(->oo 

In [11] the energy stability is formulated in the hypothesis that the region of motion 
U is bounded, however it can be also formulated in more general context and in 
unbounded regions f2. For us the cases of an exterior domain or of the half-space 
1R+ (provided that the unperturbed motion satisfies suitable hypotheses for large 
spatial distances) are of particular interest. Subsequently to the paper [11], in [10] 
there is an extension to the magnetohydrodynamics in the case of fi bounded and 
it is proved that the variational formulation for the functional F(u), in order to 
deduce the existence of the maximum, is well posed in the function space ff^fl), 
which is a. e. in t the function space of the perturbations which are weak solutions 
to system (1), thus perturbations corresponding to any u0 & L2(Q). For the case of 
Q unbounded a variational formulation of the energy stability is given in [2], and in 
[6] results of asymptotic stability are given. In this connection in [7], sharp orders 
of decay of |u(i)|2 are also deduced for perturbations to the rest state. In the case 
of half-space the energy method is studied in [3]. 

The approach to the study of the continuous dependence and of the stability 
which is considered in the this note is quite different.1 We limit ourself to the 
case of IR^. In this case the study of the pointwise stability regards two different 
formulations (see definition 1 and 3). As far as we known, results of stability in the 
sense of definition 1 and 3, if we exclude the results of [12] and [4], are not known 
either for solutions to Stokes system or for solutions to the Navier-Stokes system. In 
[12] the problem of the maximum modulus for the initial boundary value problem 
of Stokes system is considered (the result is essentially stated). Instead in [4] the 
study of stability in the sense of the definition 3 is considered for Cauchy problem 
of Navier-Stokes system . Finally, results of continuous dependence for solutions 
to the Cauchy problem associated to the Navier-Stokes system can be found in the 
papers [1,4,5]. 

2. - Definition of stability in C(O) and of Pointwise Stability 

In the following definitions, the field u(x, t) can be interpreted as a perturbation 
to the kinetic field of the motion m0 of a fluid, and moreover this can be regarded 
indifferently as a solution to Stokes or Navier-Stokes system. 

DEFINITION_1 (Stability in C(U)) A motion m0 of a fluid T is said stable in the 
norm of C(fi) if 

Ve > 0, 35(e) > 0 such that Vu0(:r) with |u0(a;)| < 6, Vi e H, 

=> |u(x, i) | <e,V(x,t) e O x (0,T). 

1In this note we present some results which will be published in [8], 
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DEFINITION 2 (Asymptotic Stability in C(Q)) A motion m0 of a fluid T is said 
asymptotically stable if it is stable in C(Q.) and if 

37 € (0,00) such that Vu0(a;) with |u0(a;)| < 7, Vx e fi, 

=> Vx e f i , lim |u(x,t) | = 0 . 

DEFINITION 3 (Pointwise Stability) A motion m0 of a fluid T is said pointwise 
stable if there exists a constant A > 0 such that 

Vu0(:r) with \u0{x)\ < U0/(\x\ + l ) a , for some a G [0,3), 

(3) =!>V/3e (0,a] , |u(x, i ) | < A[/0/( |x| + l)a-^(f + l) = ,V(a;,t) G M+ x [0,oo), 

and for /? = 0, |u(x, *)| < ,4£/0/(|z| + 1)", V(x, i) 6 M+ x (0, T), 

and Vx G R^., lim u(x, t)(|x| + l ) a = 0. 

REMARK 1 Definition 3 of stability, which is of particular interest in the case of 
unbounded regions, gives the behavior of the solution in any point of the region of 
motion of the fluid. It ensures that, modulo a constant factor, the behavior of the 
perturbation, for any t, is not different, in any point of the space, from the one of the 
perturbation to the initial instant. Moreover, it gives asymptotic stability; indeed, it 
also gives an explicit order of decay of the kinetic field for large t. In this connection, 
analogously with the results of the Lp theory (cf. e. [7,9,13]), the order of decay 
with respect to t is connected with the spatial one following a suitable dimensional 
balance typical of the heat equation. Such a result was obtained for the first time 
in [4] for the solutions to the Cauchy problem of Navier-Stokes system. As far as 
we known, the results, in the sense of definition 1-3, concerning the initial boundary 
value problem either Stokes or Navier-Stokes system are new, in the particular case 
of half-space jR .̂ also. Among these results, the particular case of the maximum 
modulus theorem (with the exception of paper [12] already quoted) is also new. 

3. - The results obtained in the case of the half-space 

The following results concerns the Stokes and Navier-Stokes system (1) with 
v = 0 (in other words perturbations to the rest state): 

w ( + Vff = i/Aw, 

V - w = 0, i n I R ^ x ( 0 , T ) , 

w{x, 0) = w0(x) in n3
+, w(x, t) = 0, V(x, t) 6 x3 = 0 x (0, T), 

w(x, t) -4 0 per \x\ -J- 00, Vi > 0. 

v t + v • Vv + Vw = i>Av, 

V - v = 0, i n l R ^ x ( 0 , T ) , 

v{x, 0) = v0(a;) in Hljj., v(x, t) = 0, V(x, t) G x3 = 0 x (0, T), 

v(x, t) ->• 0 per \x\ ->• 00, Vi > 0. 

For the Stokes system we have 
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T H E O R E M 1 Assume w0(x) e C(R+), V • w0(a;) = 0, with w0(x)\X3=0 = 0 and 
Wo(i) —> 0 for \x\ —> oo. Then there exists a unique classical solution (w, -K) of 
Stokes system defined fort G (0,oo), such that 

w{x,t) G C([0,T) x I ' j n C f e T x M+), 

Vw(a:,i),7r(a;,i) G C(??,T;C1(Il+))!V7? > 0. 

Moreover, 

\w(x,t)\ <Cmax|w0(x) | ,V(a; , t ) G H+ x (0,oo) 

Mx G H + , lim |w(x,i) | = 0 . 

The following theorem concerns the pointwise stability 

T H E O R E M 2 Assume w0(x) G C ( R + ) , V • w0(x) = 0, with wo(x)\X3=0 = 0 and 
|wo(a;)| < W0/( |x| + 1)"; for some a G [0,3). Then there exists a unique classical 
solution (w, 7r) of Stokes system defined for t G (0, oo), such that 

vr{x,t) G C([0,T) x I l+) n C f e T x E + ) , 

Vw(a;,*),7r(a;,i) e C(??,T; C1(M+)), V?? > 0. 

Moreover, 

|w(x, t) | < i4max|w0(a;)|,V(a;,t) e l ' x (0, oo), 

AWn —3 

(|x| + l ) a ^ ( i + l ) f 

and for P = 0 Hm |w(x, t)|(|a;| + 1)Q = 0, Vx G H+, 

OT^/I 4̂ independent o/w0 . 

As far as Navier-Stokes system is concerned, we have 

T H E O R E M 3 Assume v0(x) G C ( K + ) , V • v0(x) = 0, v0(x)|X3=o = 0 and v0(x) - • 0 
/or |x| —• oo. Tften £ftere exists a unique solution (v(x,t),ir(x,t)) of Navier-Stokes 
system in some interval [0,T) with T = T(max=-3 |vo(x)|), such that 

\{x, t) G C([0, T) x E+) n C1 (n, T x M+), 

Vv(x,t),7r(x,i) G C(r?,T;C1(ni+)),V7? > 0. 

Moreover, 

l v0M)l — c(£)max|v0(x)|, V(x, f) G H+ x (0, 00), 

si 
(a priori c(t) —» oo /or i —> T.^ 
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The next result gives a sufficient condition for global (in time) solution to Navier-
Stokes system: 

T H E O R E M 4 Assume v0{x) e C(M+),V • v0(x) = 0, with v0(a;)|X3=o = 0 and 
|v0(x)| < Vb/(|a;| + 1), with V0 "sufficiently small". Then there exists a unique 
classical solution (v,7r) to Navier-Stokes system, defined fort e (0, oo), such that 

v(x,t) e C{[0,T) x M + ) n C 1 ( 7 ? , T x I l + ) , 

Vv( i , t ) , i r ( i 1 t ) € Ci^T-^^Ml)),^ > 0. 

Moreover, 

\v(x,t)\ < Cmax|v0(a;)|,V(a;,i) e l ' x (0,oo), 

\v(x, t)\ < CV0/(\x\ + 1), V(s, ( ) e l ' x (0, co), 

\v(x,t)\ < CVa/t-
ll2,M{x,t) e S ^ x (l ,oo). 

The following proposition contains an interesting result on the behavior of the 
solution in a neighborhood of t = 0. 

PROPOSITION 1 The solutions obtained in Theorem 1 satisfy the following proper
ties 

|Vw(x, t ) | < Cmax|w0(a;)|/t1/2,V(a;,t) e l ' x (0,oo), 
IR^. 

|w((a;,<)| + |V7r(x,<)| + |D2w(a;,t)| < Cmax|w0(a;)|A,V(x,f) e l ' x (0,oo), 

with C independent o/wo. 

REMARK 2 Theorems 3 and 4 can be obtained for solutions to system (1) also, 
where the unperturbed motion v can be assumed steady or not. In the case of 
Theorem 4 it is necessary to require that v satisfies suitable hypotheses of smallness 
and behavior for large spatial distances as 

|v(x,t) | < V0/(l + N ) 7 , 7 > l,V(a:,t) e l ' x (0,T), 

with VQ sufficiently small with respect to v. 
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Asymptotic behavior for a model 
of transverse vibration of a bar 

with linear memory 

Alfredo Marzocchi Elena Vuk * 

1. - I n t roduc t ion 

We want to study the asymptotic behavior of transverse vibrations of a bar 
slightly modifying a model proposed in 1950 by Woinowsky-Krieger [1], which we 
recall briefly. Let I be the length of the bar in the reference configuration supposed 
subjected to a given tension S0. Let furthermore p and B be two positive constants 
measuring the density of the bar and its rigidity. In the deformed configuration, the 
equation governing the motion t \-t u(x, t) of the bar is 

d2u „ 3 4 M , „ „ .d2u 

In order to evaluate the extra tension S\ due to the deflection, note that the length 
of the bar in the deformed configuration is 

so that, supposing small deformations, a series expansion bears 

We make the assumption that S\ = EA/S.l/1, where E is the Young modulus and A 
is the area of the section of the bar. 

Normalizing the constants, we get the equation 

d2u 94w / f'[du(Z,t)\2 \ 82u n 

W + aa*-{p + L{-ar) d^2=0 (i) 

to which the boundary conditions 

u(0, t) = u(l, t) = 0 = «'(0, t) = u'(l, t) 

'Department of Mathematics, University of Brescia 
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and the initial conditions 

du 
u(x,0) = u0(x), —{x,0) = Ui(x) 

are associated. 
In 1973 Ball [2] studied the problem 

d2u d*u ( rl fdu(U)\ , , r'dud2u ,A d2u dbu cdu r' {dutf,t)\' /•' du d2u \ d2u d5u .du n 

d4u r+°°,, , d 4 u ( M - s ) , < 9 5 M n ['{du(£,t)\,Ad2u „ 

where a, 7, a > 0, p\ 5 € 1R and with analogous boundary conditions, showing that 
under some assumptions on the constants the solutions of the problem tend to zero 
or remain bounded in the solution space. 

2. - Position of the problem 

We are thus interested in the addition of a linear memory term in equation (1), 
namely 

d2u nd
4u t f+co„,,^diu(x,t-s) ^^ t ^ a5 

(2) 
with the above initial-boundary value conditions. 

In order to study the asymptotic behavior of solutions to (2) it is useful to 
introduce the auxiliary variable 

w(t,s) = u(t)-u(t-s), (s > 0) 

so that, setting a^ = lims^,+<x a(s) and /J,(S) = —Q'(S), an integration by parts 
shows immediately that 

r+°°„ . a V M - s ) , , ^ d 4 u r°° , .&w(x,s\ , 

Therefore equation (2) becomes a system 

dw. . du,. dw, , 

(3) 
(where a = a ^ — a(0) + a > 0) with the same boundary conditions for w as for u 

(in view of the regularity), while the initial condition for w becomes 

w(0, s) = WQ(S) =U0- U(—S) 

which is supposed to be given. 
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We need now suitable assumptions on the kernel n, that is 

(4) fj, e C1(IR+) n L1^), n{s) > 0, fi'(s) < 0 Vs > 0 

(5) n'(s) + 6fj,{s) < 0 Vs > 0 and for some 5 > 0 

With the hypotheses given above (at this point it is enough, moreover, to suppose 
(4)) using standard techniques, it is possible to show that the above problem has a 
unique solution u 6 L°°(0,T;#0

2) such that du/dt 6 L°°(0,T; L 2 )nL 2 (0 ,T; F 2 ) and 
w e L2(0, T; L2(1R+; Hi)), where L 2 (R+; ff0

2) is just the Hilbert space of functions 
with values in HQ with weighted scalar product 

/ •oo 

<4>,i>>ll= n{s){<t>,i))Hids. 
Jo ° 

Furthermore, if u0 e Hi l~l H4 := K, m € Hi and w0 € L^K), then the solution 
is regular in the sense that u € L°°(0,T;K), du/dt 6 L°°(0,T;H0

2) n L 2 (0 ,T;K) , 
5 2u/at 2 e L2(0, T; L2) and finally w € L2(0, T; L2(IR+; K)). 

With these properties, we can define a semigroup 

S(t) : (u0,ui,w0) \-¥ (u(t),du/dt(t),w(t)) 

acting on the space % := Hi x L2 x L2 . 

3. - Results 

DEFINITION 1 A semigroup in a Banach space X is said to have an absorbing set 
A iff for all x0 e X 

| | a :o |U<i? => BT>0:\/t>T:S(t)xoeA. 

Intuitively, A is a set in the phase space into which every trajectory eventually 
enters. 

The main result of this contribution is the following, which generalizes some 
results of [3]. 

T H E O R E M 1 Under hypotheses (4)-(5), the semigroup associated to problem (3) pos
sesses an absorbing set in the space %. 

The proof relies on uniform estimates of the solution and its derivatives. More 
precisely, if e > 0 and if we set 

S£(i) = ||Wi + £U||2 + (a 0 0 - fc ) |K x | | 2 + £
2 |H|2+||U; | |2 + ^(/?+||«:c||

2)2 

(|| • || is the norm on L2 and || • ||M the norm on L2), then it is possible to show that 
for e sufficiently small, EE is a norm on "H and it holds 

Ee(t)<E£(0)e-£t+^-. 

It is therefore clear that for every r\ > 0, the sets {E < ff-je + r)} are absorbing. 
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Balance equations in two-fluid models of 
helium II 

A. Morro* M. Fabriziot 

I. — Introduction 

Superfluidity is the property of flowing without viscosity in narrow capillaries 
or gaps. This property is of quantum character and occurs at temperatures close 
to absolute zero. However, only helium remains a fluid down to absolute zero and 
all other fluids solidify well before quantum effects become noticeable. That is why 
superfluidity is associated with helium. 

Superfluidity was discovered by Kapitza in 1938. A theory of liquid helium II 
was set up by Landau in 1941. He assumed that the energy levels of liquid helium 
II, not of separate helium atoms, consisted of two sets of overlapping energy states. 
One state represents the levels of phonons (sound quanta), the other represents 
the levels of rotons (vortex motions). In this way Landau constructed a quantum 
hydrodynamics that was satisfactory for the properties of helium II. 

F. London envisaged the formation of liquid helium II from liquid helium I at the 
A-point as a peculiar type of quantum condensation known as Bose-Einstein con
densation. This phenomenon is framed in momentum space where the condensed 
particles have zero-point energy and momentum. Next Feynman succeeded in de
riving, on the basis of quantum statistics, the energy level and energy gap picture 
of Landau while at the same time retaining the Bose-Einstein condensation idea of 
London. 

Both Landau's and London's points of view were redescribed by Tisza within a 
phenomenological theory of liquid helium known as the two-fluid model. According 
to Tisza's papers, liquid helium II is to be viewed as a mixture of two liquids, 
one composed of normal atoms with normal viscosity, 
one composed of superfluid atoms with zero-point energy and zero entropy and 
capable of moving through the normal atoms without viscosity. 

Though Tisza's picture regards helium II as a mixture of two liquids, it was 
emphasized that the mixture of two liquids or fluids is no more than a convenient 
description of the phenomena which occur in a quantum fluid. Indeed, a quantum 
fluid, such as helium II, can undergo two motions at once each of which involves its 
own effective mass. One of these motions is normal, namely it has the properties of 
an ordinary viscous fluid, the other is the motion of a superfluid. The two motions 
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occur without the transfer of momentum from one to other. In other words, we 
might speak of superfluid flow and normal flow without associating them with the 
components of a mixture. It is essential, though, that the mathematical model 
accounts for the phenomena observed through experiments. 

In this paper we start from the equations of motion derived by F. London through 
a variational principle [1]. The derivation is briefly reviewed also because London's 
equations have been reconsidered in [2] and [3] through a quantum approach which 
traces back to Landau [4]. Next London's equations are framed in a consistent 
thermodynamic scheme for mixtures of fluids while allowing for heat conduction 
and viscosity of the normal component. Some consequences are examined for the 
thermomechanical effects and compared with known results. Also, the propagation 
modes and speeds are derived for the so-called first, second and fourth sounds. 

2. — Variational derivation of the equations of motion 

Helium II is regarded as a mixture of two fluids, the normal fluid and the super-
fluid, occupying a region fl of IR3. Throughout the subscripts n and s denote the 
quantities pertaining to the normal fluid and the superfluid. Hence, v„ and v s are 
the time-dependent velocity fields on, Q x IR, while pn and ps are the mass densities. 
We denote by p = pn + ps the mass density of the mixture and let x = pn/p € [0,1] 
be the fraction of normal fluid. Also we let t G IR be the time and dt the partial 
time differentiation. 

In view of the mixture model, the continuity equations for the two fluids are 
written in the form 

dtPs + V • {psv3) = x, dtPn + V • (p„v„) = -x 

as for chemically-reacting constituents. The non-conservation of mass for the con
stituents is not new. It traces back, e.g., to F. London [1] where the right-hand sides 
are called source density or (sink density) of the normal fluid and of the superfluid1 

The non-reacting mixture is recovered by letting x = 0. In any case, the continuity 
equation for the mixture can be written as 

dtp + V • (pnvn + psvs) = 0. 

A backward prime denotes the pertinent material or Lagrangian derivative, e.g., 
v s = 9 tv s + (vs • V)v s , v n = dtvn + (vn • V)v„. 

It is perhaps the essential feature of the superfluid that the specific entropy rjs 

is taken to vanish, 
% = 0. 

Accordingly, the superfluid motion involves no entropy transfer and then no heat 
transfer. The entropy density rj of the mixture is then given by 

PV = Pnln-
1 Recently Kosinski and Cimmelli [5] have considered liquid helium as a reacting mixture with 

internal state variables. 
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The entropy r\ is taken to satisfy 

dt(pv) + V • {prfVn) = 0, 

which means that dissipative processes are not allowed in the mixture (helium II). 
Let e(pn, ps, rf) be the internal energy per unit mass and 4> a given field of potential 

energy for external body forces. The lagrangian density C is taken as the kinetic 
energy minus the potential energy, namely 

£ = Pn^l/2 + psv
2
s/2 - pe(pn, ps, rf) - pcj>\. 

The variational principle is then taken as the assertion that 

I1 I {C- a[dtP + V • [pnvn + psvs)\ - P{dt(pr!) + V • {pr)vn)]}dv dt 
Jto Jn 

is stationary for all functions pn,Ps,il, vn, v s which take fixed values at the extreme 
times t = t0, ti and at the boundary dQ. The variation with respect to pn, ps, r/, vn , v s 

provide the associated five Euler-Lagrange equations in the form 

(1) v^/2 - e - pdPne - <j> + dta + v n • V a + r)(dtf5 + v n • V/3) = 0, 

(2) v^/2 - e - pdp,e - 4> + dta + v s • Va + r]{dtp + v n • V/3) = 0, 

(3) pi-d.e + dtP + vn • VP) = 0, 

(4) pn\n + pnVa + prjV/3 = 0, 

(5) p s(v s + Va) = 0. 

Equation (5) means that v s = —Va and hence 

V x v, = 0, 

the velocity field of the superfluid is irrotational. Meanwhile if we let 

T := d„e 

we see from (3) that 

It is natural to regard T as the temperature of the mixture. Equation (4) gives 

V/3 = ^ ( v s - v n ) . 
PV 

Consider (2) and replace V a with —vs and dtf3 + v„ • /3 with T. Apply then the 
gradient to obtain 

-dtv, - Vvs
2/2 = V(e + pdPse + </»)- V{VT). 

Incidentally, taking the curl gives 

5(V x vs = 0 
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and hence the irrotationality of vs is consistent with the equation of motion. 
Because v s is irrotational we have 

dtvs + VvJ/2 = 9fv, + (vs • V)v s = v s 

and the equation of motion for the superfluid becomes 

v s = V(e + ,9dPje + 0) -V(7?T) . 

Now, let f(pn, Ps) := (e + pdPae)\n, namely / is the function e + pdPae at constant r\. 
We have 

V(e + pdPae) = V / + (pdp.T + T)Vr,. 

In conclusion we have 

Psvs = p s V / + psp{dp,T)Vv + PsVVT - psV<j>. 

To obtain the equation of motion for the normal fluid we observe that, by (1) 
and (2), 

- v . • v n + V2J2 + v2
n/2 + p{dPae - dPne) = 0. 

Now 

dtvn = dtvs - dti^Vp) = - V v ? / 2 - V(e + pdPae + 0) + V ^ T ) - Vpdtr)n - r]nVdtp. 

Adding (v„ • V)vn and suitable manipulations yield 

pnvn = - p n V / - psr]VT - pnp(dPsT)Vr] 

+Pn[(v„ • V)vn - (vs • V)vs] + pr?V(vn • V/3) - Vj3[xv 

The contribution to pnvn by the density of mass production \ is 

V/frfoX = x(v n - v s) 

as in [1], p. 132. It may be reasonable that dPaT = 0. Hence, apart from the 
contributions of x and of the nonlinear terms in the velocities, it follows that the 
force on the normal fluid per unit volume is given by —pnVf — psr]VT. 

3. - Remarks about the balance equations 

It is worth reviewing the thermodynamical argument followed by Landau [4] to 
determine the force on the superfluid (cf. [3]). Let 

dU = TdS - pdV + jidM 

be the differential of the internal energy due to the variations dS, dV and dM of the 
entropy, volume, and mass. Here p is the chemical potential, namely the Gibbs free 
energy per unit mass. Assume that the mass of the region under consideration is 
changed by keeping the volume constant (dV = 0) and adding superfluid (dS = 0). 
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Hence dU/dM = p. Now consider a mass AM of superfluid at Xi subject to the 
force F(x i )AM. As the mass AM is displaced from xi to x2 we have 

At/ = [p(x2) - p{xl)}AM = V/i(xi) • (x2 - X l ) A M 

as x2 -> X! and A M —> 0. The force F , at xi , is such that 

F • (x2 - x i )AM = -AU = V/i(xi) • (x2 - x x )AM 

as x2 —> Xi and AM —> 0. Hence we have 

F = -Vp. 

Moreover, from p = e + p/p — Tr) and 

de = -{p/p2)dp + Tdr] 

we have 
dp, = {l/p)dp - rjdT 

which means that 
l/p = dpp(p,T), r] = -dTp{p,T). 

Consequently we can write the equation2 

v s = - ( l / p ) V p + ??VT. 

Really, Landau regards p as 

where Mn, M are the masses of normal fluid and total fluid while P = M„(v„ — v s) . 
Hence he takes p in the form 

P = Po- ^ - ( v „ - v s ) . 

We now deal with the case in which both components are present. The velocities 
are taken to be small and no force of interaction between the two fluids is considered. 
The entropy of He II is carried by the normal fluid and so the corresponding entropy 
current density equals prjvn. Sometimes3 the equations of motions are considered 
for incompressible flow in which ps, pn and r\ are all constant while V • v s and V • v„ 
vanish. Here we let the two components be compressible fluids. 

Viscosity properties are associated only to the normal fluid and are modelled by 
allowing for a stress tensor in the form 

< = 2 ^ D n + A n ( V - v n ) l 

2As it stands, the equation is not trivially compatible with V x vs = 0. 
3Cf., e.g. [2]. 
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in addition a pressure stress tensor. The symbol D n represents the symmetric part 
of the velocity gradient, vn and \ n are the viscosity coefficients. The motion of the 
whole fluid is taken to obey the Navier-Stokes equation 

p sv s + p„vn = - V p + %Av„ + (i/„ + An)V(V • v„). 

Once we account for the equation of motion for the superfiuid, 

PsVs = - (p s / p )Vp + ftijVT, 

we are left with 

PnVn = -(Pn/p)Vp - PsTjVT + l/nAvn + (l/n + A n ) V ( V - V„). 

Hence the motion of the normal fluid is governed by an equation of the Navier-Stokes 
type but contains an additional term —psr)VT. This unusual term occurs because 
psr)VT occurs in the equation for the superfiuid and because it is not allowed in the 
equation for the fluid as a whole. 

The balance equations are now examined in the context of mixtures of fluids. To 
this end we review the essential topics. 

4. — Entropy inequality for a two-fluid model 

According to the results of [1] and [2], the equations of motion for the superfiuid 
and the normal fluid are4 

(6) p sv s = - ( 1 - x)Vp + (1 - x)pqVT + x{l - x)V\vn ~ v s | 2 /2 + p.t., 

(7) p„vn = - x V p - (1 - x)priVT - x{l - x)V|v n - v s | 2 /2 + pjn, 

and essentially coincide with those proposed by Landau [4]. Here we have inserted 
the body forces p,fs and pnfn with a view to the next thermodynamic analysis. If the 
normal fluid is regarded as viscous then an additional force term vnV • Dn + AraV(V • 
v„) has to be inserted in the equation for v„. These equations are compatible with 
the form for the fluid components of a mixture provided we can write the pressure 
contributions as — Vps and — Vpn for suitable partial pressures ps,pn- One way to 
do this is to observe that 

- ( 1 - x)Vp + (1 - x)pr]VT = - V ( l - x)p + (1 - x)prjVT - pVx 

and 
- x V p + - ( 1 - x)prjVT = -Vxp - (1 - x)pr)VT + pVx. 

Hence we can make the identifications 

pa = (l-x)p, pn = xp, ms = -mn = (l-x)pr]VT-pVx+(l-x)xV\vn-vs\
2/2. 

We can then exploit the balance of energy and entropy as follows. Let qs = 0 and 

crs - - p s l , <rn = - p n l + 2f„Dn + An(V • v„) l . 

4We omit the body force term — V</> because it is inessential in our considerations. 
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The balances of energy become 

PsL = -P S V • v s + ls + ps(fs • v s + rs) - m s • v s - x(es - vs
2), 

Pnin = - p n V • v n - m n • v n + ln + pn{in • v n + rn) + x(en - v 2 /2 ) 

+2unBn • D n + An(V • v,,)2 - V • qn 

where ln + ls = 0. By replacing V • v n and V • v s through the continuity equations 
we obtain the entropy inequality in the form 

(8) -psi>s - pn{i>n + r]nTn) + PsPs/ps + PnPn/pn + 2 f n D n • D n + A n (V • V„)2 

+P(v s - v„) • Vx + x{l - x)(yn - v s) • V|v„ - v s | 2 /2 

-T^VT • [q„ + 7 ( v s - v„)] + X(Mn - li.) > 0 

where 
7 = T(l - x)pT), /J,n = ^n+ Pn/pn - V2J2 

and analogously for /j,s. Since pn/pn = ps/ps = p/p it follows that 

fin ~ V, = fn - i>s - V2/2 + V2/2. 

5. - Thermodynamic restrictions 

To obtain thermodynamic restrictions, as a consequence of the entropy inequality 
(8), we need specifying possible constraints. Both Bose-Einstein condensation (cf. 
[1], p. 40) and Andronikashvili's experiment (cf. [2], p. 7) indicate that, as T < T\, 
Psjp and pn/p are known monotone functions of T. Let 

p./p=l-x = h(T). 

Experiments show that h' := dh/dT < 0. This constraint results in a restriction on 
the mass production %• Time differentiation of ps/(ps + pn) = h(T) yields 

(1 + h)dtps + hdtpn = h%T. 

Comparison with the continuity equations in the form 

dtPs + V • (psVs) = X, dtPn + V • (yO„VB) = - \ 

allows us to express % in the form 

X = h%T - (1 + h)V • (psvs) - hV • (pnvn). 

This means that, given any pair of velocity functions vs, vn and temperature T, the 
mass production x and the derivatives dtps, dtp„ are determined. 

The occurrence of f s , f n , r s , r n , though practically inessential, allows us to say 
that the balance equations for momentum and energy place no restriction on the 
pertinent fields. 
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Sufficient conditions for the inequality (8) to hold are that 

Vn = -dr^Pn, Pn = P2„dPnipn, p3 = p2
sdPsips 

and 

2i/nD„ • D n + An(V • v n ) 2 + x(l - z)(v„ - v s) • V|v n - v s | 2 /2 

-T~XVT • [qn + C(vs - v„)] + X(j*n ~ Ps) > 0 

where ( := (psrj + ph')T. To investigate the possible negative definiteness of the 
term 

VT • [q„ + C(vs - v„)] 

we observe that the vector 

4> = YLP>*Trla{va - v) 
a 

can be viewed as a flux due to diffusion. Since r/s = 0 then 

<P = pnTrin{\n - v) . 

Because 
Pn^n + PSVS ps 

v„ - v = v n • = — (v„ - v s) 
Pn + Ps P 

we have 
4> = PsVT{v„ - v s) . 

Consequently <p/T is the convective entropy flux. 

Concerning the constitutive equation for qn there are a few simple cases. First, 

0 = q := qn - ((vn - v s) 

in which case the contribution to the entropy inequality is zero. Second, 

q = — K V T , re > 0, 

as for a Fourier-like case. Third, 

- V T = q/K + (T0/K)dtq. 

in which case the contribution to the entropy inequality is q2/re + (ro/K)9tq
2. It is 

worth mentioning that, e.g. in [4] and [6], 

qn = pTrjv„ 

which equals Tpsr](vn — v s) if ps\s + pnvn = 0 namely when the net mass flux is 
zero. 
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6. - Description of the main effects 

Since the VT terms are non-standard in the equations of motion, it is of inter
est to check that the two-fluid model is consistent with the experiments involving 
thermal gradients. 

Fountain effect. As observed first by Allen and Jones in 1938, the level of liquid 
in a vessel, communicating through a narrow capillary to a surrounding bath of 
liquid, raises above that of the surrounding bath when heat is supplied to the liquid 
in the vessel. Let T be the temperature in the vessel and T0 that in the surrounding. 
To fix ideas let T > T0. The superfluid in the vessel is subject to the equation of 
motion 

It is likely that at the beginning psrjVT prevails. Anyway the superfluid flow stops 
provided that 

-Vp + pnVT = 0. 

This means that, along the capillary, 

dp 

dT = pr>> 

which is called the fountain effect equation (H. London 1939) [7]; cf. [1], §12. Inci
dentally, this equation provides a way for evaluating entropy from data on dp/dT. 

Mechano-caloric effect. Two reservoirs, A and B, are connected by a narrow 
capillary and are enclosed in a constant-temperature bath at the temperature T. An 
excess pressure is applied to A, pA > pB. The pressure gradient so established makes 
the superfluid in A to pass through the capillary into B. Of course the superfluid 
carries no entropy. The liquid already in B possesses entropy pr/ per unit volume; 
to bring the newly arrived superfluid into equilibrium an amount of heat Q equal to 
prfT times the change of volum must be supplied to vessel B. Conversely, the same 
amount of heat must be extracted from A so that the liquid there remains at the 
same temperature. Thus the transfer of superfluid at constant temperature with the 
normal fluid stationary is accompanied by a flow of heat. This effect was checked 
experimentally by Brewer and Edwards (1958) [8]. 

Connected reservoirs. Two resevoirs A and B are connected by a channel in 
which the normal fluid can flow as well as the superfluid. If the temperature in B is 
raised then the normal fluid is subject to the force 

~(Pn/p)Vp-PsVVT. 

In stationary conditions Vp = pr/WT and hence the force equals 

-prjVT. 

Along the channel, the force, per unit length is —prjdT/dx. According to Poiseuille's 
law, the volume flow rate in A is 

dtVn - — pr]-— 
vn dx 
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where ft is a geometrical factor. Meanwhile the superfluid, in A, is subject to the 
opposite force which forces it to flow from A to B. Since the superfluid carries no 
entropy, the net entropy change in A is given by 

This equation traces back to F. London and Zilsel (1948) [6]. 
If —psr]VT does not occur in the equation of motion for the normal fluid then 

the force is -(pn/p)Vp and dp/dT = pr\ at equilibrium. Hence the force would be 

- (p»/p)Vp = -p„r?VT 

rather than —pr}VT. 

7. — The propagation of sound 

We examine the propagation of sound in helium II by neglecting viscosity. The 
linear approximation is used throughout. In particular we let 

PsdtVs = -(ps/p)Vps + PsV^T, PndtVn = ~(pn/p)Vp - /9S7?VT 

and write the continuity equation in the form 

dtp = - V • (psvs + p„v„). 

Summing the equations of motion we have 

PndtVn + PsdtVs = ~Vp 

or dtj = —Vp. Comparison gives 

d2
tp = Ap. 

If p is regarded as a function of p and r\ then 

Multiplying the equations of motion by pn and ps, respectively, and taking the 
difference we have 

PnPsdtiyn ~ v s) = -{p„ + ps)psriVT. 

We now consider the (linearized) balance of energy as 

pdte = - V • q„. 

Also q„ = q + C(vn - vs) and 

q + rd t q = - K V T . 
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If e = e{p, T) we have 
de de 

dte=dpdtp+WAT 

and hence the higher-order derivatives result in 

rp(|fl?P+S;a?T) = (K + TC^)AT. 

If also we let r\ be a function of p and T then we have a system of two equations 
in two unknowns. Let c denote the unknown speed, so that, e.g., dfp = c2Ap and 
look for approximate solutions. 

First sound. It corresponds to vanishing amplitudes for rj and VT and hence 
v n = v , . In such a case a speed C\ occurs such that 

2 dP, N 

Second sound. Because the ratio pn/ps depends (strongly) on the temperature, 
a rapid local temperature fluctuation is likely to originate a rapid local variation of 
pn/ps without altering the sum p = pn + ps. An ordinary sound wave is the propa
gation of fluctuations of p (first sound). Fluctuations of pn/ps without change of p 
were predicted by Tisza and Landau and are called second sound. Let Cm = de/dT 
be the specific heat (per unit mass). Taking only the terms in the perturbation of 
T we have 

^m lTp pn J 

If K = 0, h' = 0 then the second sound speed c2 is given by 

2 _ V2T ps 

^m Pn 

This simple expression for the speed of second sound was applied by Klerk, Hudson 
and Pellam to determine the temperature variation of pn/p and hence the function 
h. 

Fourth sound. In narrow capillaries it is possible that the wavelength of the 
fluctuations becomes comparable to or greater than the diameter of the pipe. In 
such a case the normal fluid is stationary and the sound propagation is due to the 
superfluid. These fluctuations are called fourth sound after Atkins. To find the 
speed of propagation we can argue as follows. 

Since v„ = 0 we have 
dtp + psV • v s = 0. 

Comparison with the equation of motion for the superfluid gives 

d2
tP = (p s/p)Ap - psrjAT. 

The approximation dt(prj) = 0 and neglect of thermal expansion (&rp — 0, dpr] ~ 0) 
yields 

AT = ~{rjIlpc\Cm)&p. 

Substitution and account of dfp = dfp/cf, Ap = d^p/c\ yield 

„2 _ P±J2 , Pn 2 
4 " P

 1+
 P

 2 ' 
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8. - Comments 

This paper provides a continuum account of a two-fluid model of helium II. 
Also, the condition is considered that the mass densities are given functions of the 
temperature. This constraint has consequences on the thermodynamic restrictions 
and on the speed of waves, specifically of second sound. It is at least of interest 
to investigate if the connection between mass densities and temperature may more 
conveniently be modelled in another way. This aspect is the subject of a future 
research. 
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Thermoelastic plate 
with thermal interior control 

Maria Grazia Naso * Assia Benabdallah^ 

1. - Introduction 

In this note we consider a thermoelastic plate in the light of [6]. The resulting 
model consists of an elastic motion equation and a heat equation, which are coupled 
in such a way that the energy transfer between them is taken into account. Trans
verse shear effects are neglected, and the plate is hinged on its edge. Accounting 
for thermal effects, we assume that the heat flux law involves only the temperature 
gradient by the Fourier law. The main result of this paper is to provide the null con
trollability for the model when the interior control (heat source) acts in the thermal 
equation. 

The variable u represents the vertical deflection of a plate occupying a two di
mensional domain Q with a sufficiently smooth boundary. The variable 6 describes 
the variation of temperature of the plate with respect to its reference temperature. 
Let w be any open subset of Q, T > 0 and set Q := (0,T) x fi, E := (0,T) x dQ. 
In absence of exterior forces, and with hinged mechanical and Dirichlet thermal 
boundary conditions, the system to look at is given by 

' utt + A2u + Ad = 0 in Q 

6t-A6- &ut = f in Q 

u = 0, Au = 0, 6 = 0 on E 

. u(0) = u° , ut{0) = u1, 0(0) = 6° on fi. 

where the control function f £ L2((0, T) x uS). The subscript -t denotes time deriva
tive, and u°, u1, 0° are initial data in a suitable space. 

Two results are obtained (see [5]). Firstly, we study the case when to = f2, and 
we find the null controllability at any time T > 0. Then, we prove the same result 
in the case w e e d and the closure of w does not intersect the boundary of fi. 

It will be said that (see, for instance, [7, 13]) that a system is exactly controllable 
at given time T > 0 if it can be driven from any state to any state belonging to the 
same space of states where the system evolves. A system is null controllable at time 
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T > 0 if an arbitrary state can be transferred to 0 in time T, or, equivalently any 
state can be joined to any trajectory (e.g. attainability of the trajectories). The 
null controllability does not yield the exact controllability of the system (see, for 
instance, the heat equation with distributed control in the domain CI [13]). 

2. - Preliminaries 

We introduce the Hilbert space H := (H2{Q) n H$(Q.)) xL2((]) xL2(Q.) equipped 
with the inner product 

{zi, Z2)H = / (A«i • Au2 + Vi • v2 + 6i • #2) dx , where z* 
Ui 

Vi z = 1,2. 

The induced norm is denoted by || • | |#. Putting v = ut and z(t) — 
u(t) 
v(t) 
9(t) 

, problem (1) can be rewritten as an abstract linear evolution equation 

in H of the form 

' zt = Az + Bf 
(2) 

z(0) =z° eH 

where we set the operator A : D(A) —> H by 

(3) 

0 / 0 

- A 2 0 - A 

0 A A 

with domain D(A) = {z € H: Au, v, 8 e r72(0) n HQ(Q)}, and the control operator 
B : L2(w) ^ H by 

(4) Bf 

Given T > 0, the problem of the null controllability of system (2) consists in to 
prove that, for any z° e H, there exists a control / g L2((0, T) x ui) such that the 
solution z(t; z°, f) of (2) satisfies z(T; z°, f) = 0. This property is equivalent to (see 
for instance [13], Theorem 2.6, p. 213): there exists a positive constant CV such 
that 

(5) 
4*Vl&<c r/V^VllW*. Veff. 
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We compute 

A* = 

0 - / 0 

A2 0 A 

0 - A A 

with domain D(A*) = D(A), and B* = [ 0 0 I ] . The adjoint system with 
respect to (1) is 

(6) 

<ptt + A2(p + Aw = 0 in Q 

wt — Aw — A(pt = 0 in Q 

<fi = 0, Atp = 0, w = 0 on £ 

<p(0) = <̂ ° , ipt(0) = <^x, w(0) = w° on 0 . 

Its solution can be written as 

(7) 
" <p(t)' 

M*) 
. v(t) . 

= eA't K l v1 

w° _ 

and 

B*eAn 
<PL w(t). 

Then, condition (5) is equivalent to require that there exists a positive constant CT 
such that 

(8) | |A^(T)| |£2(n ) + yt(T)\\lHn) + \HT)\\lHn) < CT£ \\w(t)\\lHLj)dt 

for any solution (7) of system (6). 

3 . - Resul t s 

Our main result is 

T H E O R E M 1 Problem (1) is null controllable at any time T > 0 on the space H 
within the class of L2((0,T) x w)-controls, when 

(a) u = £1; 

(b) UJ CC Q. and the closure ofw does not intersect the boundary o/O. 

REMARK 1 (a) In the case of Theorem l-(a), an analogous result was obtained 
by Lasiecka and Triggiani in [8]. Our procedure [2] is supported by introducing 
a quadratic function depending on the time. Multipliers method is applied to 
construct this function [1, 3, 4]. 
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(b) In the case of Theorem l-(b), by applying an iterative method and the observ
ability estimates on the eigenfunctions of the Laplacian operator due to Lebeau 
and Robbiano in [10] (see also [ l l ] j , we show that system (1) is null control
lable at any time T > 0. In our proof, the analyticity property of semigroup 
associated to the thermoelastic system (recall 7 = 0, see Lasiecka and Trig-
giani [9]), and the commutative property of the operators, which comes from 
the hinged boundary conditions, are crucial. 

Acknowledgment. Research performed under the auspices of G.N.F.M. - I.N.D.A.M. 
and partially supported by Italian M.U.R.S.T. through the project "Mathematical Models 
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A non-stationary model in 
superconductivity 

R. Nibbi * M. Fabrizio * 

1. — Introduction 

In this paper we analyze the Ginzburg-Landau model for the superconductivity. 
The first part is devoted to the stationary problem, while in the second part we 
consider the time-dependent case. In both cases, we formulate the system of equa
tions by means of observable variables, such as the density of the superconducting 
electrons / = \ip\, the magnetic field H or the superconducting current J s , instead 
of the complex order parameter tp and the vector and scalar potential A and <f> and 
for the time-dependent problem we obtain some uniqueness results. 

The approach we have followed allows a better macroscopic interpretation of the 
phenomenon and therefore gives the possibility to study the compatibility between 
the model and the principles of Thermodynamics. From this analysis it comes out 
that the time-dependent system of equations, introduced by Gor'kov and Eliashberg, 
needs to be studied in a deeper way. In fact, in this model the electric field E is 

<9E 
supposed to be such that — is negligible, so that the Ampere equation is written 
as 
(1) V x H = J = J n + J s , 

where J and J n are respectively the total and the normal currents. As a consequence 
of (1) and of the continuity equation, we have that 

p = - V - J = 0, 

therefore the charge density p results constant in time, that is 

p(x.,t) = p0(x), 

p0 being the initial charge density. Moreover, since eV • E = p0, we get 

V - J s = -po-
e 

This new relation implies a slight modification to the system proposed by Gor'kov 
and Eliashberg, which we present in the last section of this paper. 

'Department of Mathematics, University of Bologna, Italy 
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2. - S teady case 

Two main phenomena characterize the superconductivity: the absence of elec
trical resistence in stationary conditions and the so called Meissner effect, which 
consists in the expulsion of the magnetic field from the superconductor whenever 
the temperature is below a critical temperature Tc, characteristic of the considered 
metal. 

These two phenomena are well described by the two-fluids model of London 
([8, 7]), which makes use of the Maxwell equations and assumes the electric current 
J as the sum of a normal component 3n and a superconducting component J s , i.e. 

J = Jn + «»»• 

Since J„ represents the flux of the current due to the normal electrons, from the 
Ohm law we have 

J„ = CTE, 

where a is the conductivity. The constitutive law for J s is given by the London 
equation ([7]) 

V x AJS = - /xH, 

A being a scalar coefficient defined by the fraction 

e* n. 

where m*, e* ,ns are respectively the mass, the charge and the relative density of the 
superconducting electrons. Whenever T > Tc, i.e. when we are in presence of the 
normal state, then ns = 0, while ns = 1 if T = 0. 

This model allows to study the superconductivity when the temperature T is 
constant and far from the critical temperature Tc, i.e. T < Tc. In this case the 
relative density ns can be assumed to be constant and the evolution problem in a 
sufficiently regular domain fi is governed by the differential system 

V x H = 

V x E = 

' x AJS = 
J = 

T 9E 
= 3 + € ^ 

<3H 

= - /xH 

= J s + CTE 

together with the boundary conditions 

E • n b n = ° . H x n | a n = H ^ X "• 

REMARK 1 The last boundary condition means that H x n is continuous across 
the boundary. Hence, H e x € Tl(Q) = {A € L2(Q) : V x A e L2(fi)} is the applied 
magnetic field outside the superconducting sample and Hex x n stands for its trace. 
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When the temperature T is close to the critical temperature Tc or when the magnetic 
field is close to the critical value H c even if T < Tc, we are in presence of an 
intermediate phase between the normal and the superconducting state. This phase 
is described by the time independent Ginzburg-Landau equations ([5]) 

(2) - i ^ ( ? / ; * V V > - ^ V O - ^ r l V f A = - V x V x A , 
Zjffb Tib IX 

(3) ir~AihV + e * A ) 2 V - « ^ + % | V = 0, 

where h is the Planck's constant, the complex function ip = f exp(id) is such that 
its squared modulus f2 represents the relative density ns of the superconducting 
electrons of mass m* and charge e*, and A stands for the vector potential of the 
magnetic induction B, for which 

(4) B = / .H = V x A, A • n]an = 0. 

In the Ginzburg-Landau theory equations (2), (3) are obtained as stationary 
points of the Gibbs' free energy 

(5) E(Q) = j a ~\ihVi> + e*Ai>\2 + - ^ V x A| : 

2m* 2n 

i2+Jw4 d x — / A x Yiex • n d a. 
Jan 

System (2)-(3) must be combined with Maxwell equations which, in the stationary 
case, can be written as 

(6) V x E = 0 , V • E = 0, 

(7) V x H = J s + CTE , V • H = 0, 

and the following boundary condition, which is typical of the superconductivity, 

(8) E - n | a n = 0 

must be added. 
Equations (6) and (8) give the solution E = 0 on Cl. Therefore system (2)-(3) 

must be associated to the equations (4), (7)i, which becomes 

(9) V x H = J s , 

and to the boundary conditions 

(10) ( ^ V + e*A)^-n | s n = 0, (V x A) x n|8n =/*HCT x n, 

that can be obtained from the stationarity of the functional (5). 
System (2)-(3) can be rewritten in the non-dimensional form 

(11) J s = - - ( V * W > - v v v * ) - H 2 A , 

(12) 0 = ( ^ V + A ) rl>-1> + \1>\21>, 
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bra* 
where K = —5— .̂ Moreover it should be invariant under gauge transformations of 

ft e* 
the type 

(13) A' = A + - Vx, tp' = tp exp(iKx). 

In [3] it has been proved that, starting from the free energy 

1 f f l r& ,.9 T T9 . 1 
d x (14) fedx = J / [ i / 4 - / 2 - / . H 2 + l | V / | 2 - r 2 | V x H f 

Jn I Jet 12 K* 

- I / - 2 ( V x H ) x H e x - n d a , 
Jan 

where / a represents the assigned value of / = \4>\ on <9fi, it is possible to obtain a 
system, which is equivalent to (11)-(12) but is written in terms of the real variables 

/ and H = - V x A. 

The variations of (14) with respect to / and H lead to the system 

(16) - i v 2 / + / - a | V x H r - / + / 3 = 0, 

(15) V x ( /" 2 V x H) = - p H , 

I, 
s:2 

and to the boundary conditions 

(17) V / • nlan = 0 , H x n|en = Hex x n. 

Thanks to Maxwell equation (9) and by putting p s = /~ 2 J S , problem (15)-(17) can 
be rewritten as follows: 

(18) V x V x p , = - / i / 2 p s , 

(19) -ArV2/ + / p 2 - / + /3 = 0, 
(20) V / • n,an = 0 , (V x p s) x n,an = ^H e x x n. 

As observed in [3, 4], system (18)-(20) is equivalent to the system given by (10)-(12). 
In fact, equation (18) is exactly equation (11), while equation (19) is the real part 
of the coefficient of exp(i0) in equation (12). 

As for the imaginary part of the coefficient of exp(i#) in (12), it gives the relation 

(21) V - ( / 2 ( ^ W + A)) = V - J s = 0. 

This last equation is a direct consequence of the Maxwell equation (9). 

3. — Time-dependent problem 

The generalization of the Ginzburg-Landau theory to the non-stationary case 
has been proposed by Schmid ([9]) and then developed by Gor'kov and Eliashberg 
([6]) in the context of the BCS theory. This model holds under the hypothesis that 
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the temperature T be close to the critical temperature Tc. The Maxwell equations 
for this evolutive problem are written as 

(22) V x H = J , V • H = 0, 

(23) V x E = - / i ^ , e V - E = p, 

and the two-fluids model is considered for the current J , so that 

(24) J = J„ + J s . 

Actually, equation (22) i is obtained under the hypothesis of a slowly variating in 
<9E 

time electric field E, in such a way that —- is negligible. 

In the theory developed by Gor'kov and Eliashberg ([6, 10]), system (22)-(23) is 
combined with the equations 

(25) >y(^ + iK$A = - ( i v + A ) % + ( l - M 2 ) t f , 

(26) Js = -̂ W>*VV> - W ) - |V|2A, 

where 7 is a positive relaxation coefficient, while the function $ represents the scalar 
potential of the electromagnetic field. Therefore A and $ are such that 

(27) B = V x A , E = - ^ - - V $ . 

As one can see, equation (26) is the same as (2) and also the associated boundary 
conditions do not change from the ones in the stationary case, that is (10) still holds. 
The initial conditions are 

(28) i>{x, 0) = Vo(x), A(x, 0) = A0(x). 

System (25)-(26) must be invariant for gauge transformations of the type 

dy 
$ = V exp(iKx), A' = A + VX , # = $ - -^, 

where x is an arbitrary and regular function of space and time. 
In literature ([10, 11, 2]) different choices of gauge have been proposed. Among 

all we recall the London gauge 

V - A = 0, A - n | a n = 0, 

the Lorentz gauge 
0 = - V - A , 

and the zero electric potential gauge <f> = 0. 
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Also in the time-dependent case it is possible to study the problem through the 
unknowns / , H, p s , E. In fact, as a consequence of (22), (23), (25) and (26), we have 

(29) 7 § = ^ V 2 / - / P ? + / - / 3 , 

(30) V x p , = -(M, 

(31) V x H = / 2 p s + aE , 

(32) V x E = -ft—. 

A comparison between (30) and (32) gives the identity 

(33) ^ = E + V ^ , 

where <j>a is an arbitrary and regular function that we put equal to (—— <I>). 
K C/t 

System (29)-(32) can be therefore reduced to 

(34) 7 f = 4rV2/-/P? + / - / 3 , 

(35) -VxVxp s = -fps+a(-^+V<j>s). 
H at 

In order to study the evolution problem we must add a constitutive equation relating 
4>s, f and p s . A possible one is given by 

With such a choice, it can be proved ([1]) that system (34)-(36) is completely equiv
alent to the system introduced by Gor'kov and Eliashberg. 

We are now interested in obtaining some uniqueness results for problem (34)-(36) 
together with the boundary conditions 

(37) V / • n,8n = 0, / p s • nlgn = 0 , (V x p s) x n,an = /iHCT x n 

and the initial conditions 

(38) / (x ,0 ) = / 0 (x) , p s (x ,0) = p5 0(x). 

To this end, let first consider the decomposition 

Ps = A - -ve, 
K 

where V • A = —a$. Then system (34)-(36) can be rewritten in terms of / , A and 
9 as 

(39) - V x V x A = - / 2 ( A - -V6>) - a (^ + Vcj>) , 
H K \Ot J 

(40) 7 f = ^ V 2 / - / ( A - ^ ) 2 + / - / 3 , 

(41) 7 / W + ^ ) = - - [ 2 V / . ( A - - V 0 ) + / V - ( A - - V 0 ) ] , 

(36) - J V • ( / 2
P s ) = 7 A 
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or, in an equivalent way, as 

(42) - V x V x A = _ / 2 ( A - i v 0 ) - a ( ^ + V^ 

df 89 
(43) 7 ^ c o s 0 - 7 s i n 0 / ( — + K0) = V / - / P ; + / ( I - / 2 ; 

1 

cos# 

<9f fl/9 
(44) j-±sm6 + ycos9f{— + Kct>) = 

+ - [ 2 V / - p , + / V - p , ] s i n 6 

V/-/P?+/(i-/2: sin# 

1 
[ 2 V / - p s + / V - p s ] c o s 0 , 

while the boundary and the initial conditions (37)-(38) become 

(45) V / - n , a n = 0 , / ( A - i v » ) • n,an = 0, (V x A) x nlan = ^Hex x n, 

(46) / (x ,0 ) = / o (x) , ( A - - V 0 ) ( x , O ) = p S o ( x ) . 

In order to give a precise formulation of the problem, we introduce the following 
spaces: 

H^Sl) = { A e / / 1 ( n ) : A - n | s n = 0 } , 

K(Q) = {{f,0) : fcos9eH1(Q),fsm9eH1(Q)}, 

I(fi) = {(f,e):fcosee(H1(Q)yjSm9e(Hi(Q)y}, 

H(Q) = {u=((f,9),A):(f,9)eL2(0,T;IC(n))nH1(0,T;l(n)), 

A G L 2 ( 0 , T ; H ^ ) ) n F 1 ( 0 , T ; ( ^ ( f 2 ) ) ' ) } , 

where Q, C R 2 is a sufficiently regular domain and (X)' denotes the dual of the 
space X. 

DEFINITION 1 A pair u = (( / , 9), A) e H{Q) is a weak solution of problem (42)-
(44) with boundary conditions (45) if the relations 

(47) 

(48) 

L [ / ( / ^ S g ) - 7 ^ s i n f l + / ( / 2 - l)cos<? 

+ [ [/ cos 0(A - -V0) - -Vf sin e\-Ahdx 
Jil I K K 

+ f \\V(/ cos 6») • V/i + i / sin 0A • V/i 
Vn IK2 K 

J r 9(/ |£fl)+ M(9+ 2_ n(? 
Vn [ at 

+ /" | / s i n 0 ( A - - V 0 ) + ~Vfcos9 
Jfil K K 

h d x 

dx = Q 

d x 

• Ah d x 
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(49) 

+ / 1̂ 7 V ( / sin 9)-Vh- -f cos 6A • Vh 
Jn IK2 K 

f T dA 
if! 

a—- - a + - V x A - V x a + V- AV • a 
at n 

dx = 0 

d x 

+ f / 2 ( A V0) -adx+ f H e l x a - n d o = 0 
Jn K Jan 

hold for any (/i,a) G \ffx(Q) x H^(f2), together with the initial conditions 

(50) /(0) = /0 ) 0(0) = 0O, A(0) = Ao 

where A0 V0O = Ps0-

THEOREM 1 Let (( / , 0), A) fee a weak solution of problem (42)-(44) in the sense of 
the definition 1. Then for any T > 0 

(51) ll/(*)lk» + IIACOĤ  < C7, 0 < t < T , 

(52) / T ( | | ( / co s0 ) ( i ) | | H 1 + | | ( /s in0)( i ) | |w l + | |A(t)||H1) dt<C, 
Jo 

where C is a constant depending on ||/o||i,2(n)> | |AO||L2(«) and | |Hex x n\\H-i/2^any 

P R O O F . By choosing h = / cos 0 in (47), h = f sin 0 in (48) and then summing the 
two expressions, we get 

/ 
Jn 

I^2 + '4 + >' | 2 +^A->| 2 
d x J fdx, 

Jn 

from which it follows that for all 0 < t < T, 

lt2(n) ll/(*)ll?.»™ < C 

and also 

Jo 

i 
lL"(n) dt<C, £\\Vf(t)\\2mn)dt<C, 

T 1 
A l™«*»* :V0)/(t)ll L2(f!) dt<C. 

Now taking a = A in (49), we infer that 

Jn 
ff!AMV.Af + I|VxAP d x 

= - [ / ( A - - V 0 ) -fAdx+f Hex x A • n d a 
Jn K Jdn 

< c\\f(A - i v 0 ) | | | 2 ( n ) + c| |A||L2(n) | |A||Hl(n)| |/ | |2
L4(n) + c\\A\\HHa), 

which gives 

HA(t)||i,(n) < C, j * [||V x A(*)|||,(n) + ||V • A(t)||£,(n)] dt<C. 
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Finally, since 

| | / (A_IW) | |2 + l | | V / | | £ 2 ( n ) 

LH<1) = ^[ | |V(/cos^) | | | 2 ( n ) + ||V(/sin^)|| 

- - [ fV8-fAdx+ f f\A\2dx. 
K, Jn Jn 

we obtain that 

J0
T [||V(/coS0)(i)||22(o) + ||V(/sin0)(t)||£,(n)] dt<C. 

THEOREM 2 Let ((f,6),A) be a weak solution to problem (42)-(44) in the sense of 
the definition 1. Then it is unique. 

PROOF. Suppose that ui = (/i, 6\, Ai) and u2 = (f2,92, A2) are two weak solutions 
of problem (42)-(44) with the same initial data under the same applied magnetic 
field. Let us put 

5R — fi cos Q\ — f2 cos 02, 61 = f\ sin 0\ — f2 sin 02, 5 A = Ai — A2. 

Then the thesis is proved, as a consequence of the Gronwall lemma, if it exists 
C(t) eL\[Q,T\) such that 

(53) fa ^\{5Rf + (SI)2 + ||<5A||2] d x < C(t)(\\5R\\l2 + p/| |2
L , + ||*A| 

By considering the difference of (47)-(49) written for ui and u2 and then choosing 
respectively h = 8R, h = 81 and a = SA , we get that 

(54) 

(55) 

(56) 

where 

/ 
Jn 

f 
Jn 

f 
Jn 

l ^ ) 2
 + i | W * | 2 

^ | , 5 A | 2 + (V-5A)2 + i|Vx,5A>2 

dx= f (5R)2 dx + Ri + R2 + R3 + R4, 
Jn 

dx= f (6I)2 dx + h+I2 + h + h, 
Jn 

dx = 3\ + J2, J' 

#! = 7 f [/1sin01V-5A + V- A25I]5Rdx, 
Jn 

R2 = ~fQ [fKSRf + f2 cos Q2{fl - fi)6R] d x, 

R3 = - f [/1 cos ^(Ai + A2) • SA5R + |A2|2(«?)2] d : 
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h 

h 

h 

- - f [V(/isin^i)-(5A + A2- V{6I)]6Rdx, 
K, Jn 

Rt = - I V(5R) • [Ai(57 + h sin 925A] d x, 
K Jn 

h = - 7 /" [/! cos 6>i V • <5A + V • A26R] 61 d x, 

- jQ [/x2(<57)2 + h sin e2(/? - /2
2)57] d i , 

- | [flsmel{Al+A2)-5A8I^\A2\
2{6lf] dx 

+- f [V(/i cos 6>i) • <5A + A2 • V(5R)} SI d x, 
K Jn 

- - f V(5I) • [AtSR + fiCosfoSA] dx, 
K Jn 

- Jn [/2|5A|2 + A2(/2 - / | ) • <5A] d x, 

h = --[ [fiifiWi - f2V02) + hvhift - f2)] • 6A d x. 
K Jn 

By means of theorem 1 it is possible to prove that 

m < cwOiv^Aiii^ + iivc^iii^ + iiv^iii^) 
+C{t) (||Jfl||ay(n) + ||«||2

2(f i )) , 

lifel < C{e) (||V(<S#)||22(n) + ||V(57)||22(n)) + C(t) (\\SR\\l(a) + ||<SJ||£,(n)) , 

\R3\ < C(e) (||V • 5A\\h(a) + ||V x 6A\\lm + || V(«2)||£,(n) + ||V(<J/)||i,(n)) 

+C(t) (\\SR\\h{n) + \\6I\\hm + ||<5A||22(n)) , 

|i?4| < C(e) (||V • <5A||22(n) + ||V x 5A||22(n) + ||V(Mi)||£,(n) + ||V(«)||22{fi)) 

+C(t) (\\6R\\h{n) + \\SI\\lHn) + | |5A|| |2(n)), 

where e > 0 and C(e) is a positive constant. 
Hence (54) yields 

( 5 ? ) / „ 

Jn 
l>>!+>*'! 

d x 

< C(e) (||V • *A||£J(n) + ||V x 5A||2L2(fi) + ||V(<57?)||22(n) + ||V(<S7)||22(n)) 

+C(t) (||<57?|||2(n) + ||<57||22(n) + ||5A|| 

Proceeding in the same way, from (55) we obtain 

(58) f 
Jn Wt^2 + >^2 

< C(e) (||V • 5A||2L2(fi) + ||V x <5A||22(n) + ||V(*fl)||i2(n) + ||V(W)[|2L2(n)) 

+C(t) (\\6R\\lHn) + \\5I\\l2(n) + \\SA\\lHn)) 
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In order to estimate J\ and J2, we observe that 

I/1-/2I2 < \SR\2 + \SI\2, 
l/iVflx - /2W2 |2 < |V(5JR)|2 + |V(5/)|2. 

As a consequence of the former inequalities and theorem 1, we get that 

I J.I < C(e) (||V • <5A||22(n) + ||V x 5A||2L2(n) + ||V(<Sfl)||2L,(n) + ||V(«5/)||22(n)) 

+C(t) (\\SR\\h(n) + \\5I\\hin) + \\SA\\ 

for i = 1, 2 and equation (56) gives 

(59) / ?il<5A l2 + (V-£A)2 + i |Vx,5A| 2 dx 
Jn [2 at fj, 

< C(e) (||V • 5A\\lHn) + ||V x SA\\h{n) + | |V(^) | | | 2 ( n ) + ||V(<5/)||£,(n)) 

+C(t) (\\6R\\2
L>m + \\SI\\lHn) + \\5A\\lHn)). 

Finally, by putting together (57), (58), (59) and choosing a suitable C(e), we obtain 
the inequality (53). | 

4. - A new time-dependent model 

In this last paragraph we will use the approach, which lead us to system (34)-
(36), to show that the differential system developed by Gor'kov and Eliashberg needs 
to be modified. 

To this end, we first consider the divergence of equation (35) and get 

(60) V • (/2
Ps) = -CTV • E. 

On the other hand, thanks to (24), equation (60) can be rewritten as 

(61) 0 = V - J s + V - J n = V - J . 

An application of the continuity equation 

tells us that — = 0, so that p = po, po being the initial density. Consequently, from 

(39) and taking into account (23)2, we have 

(62) V-( / 2 p s ) = - % o . 

This result is in obvious disagreement with (36) since 

(63) f24>s = - - £ - p o 
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represents a new equation and problem (34)-(36) and (63) becomes overdetermined. 
In the following we will assume pa = 0, so that from (62) we have 

(64) v-(/2
Ps) = o. 

Therefore we substitute equation (36) with equation (64) and the dynamical problem 
is governed in Q = (0, T) x fl by the system 

(65) 

(66) 

(67) 

df 

-V x V x p , 

-2v
2f-fp2

s + f-f 

-fPs - O 
dps 

dt 
- V 0 ( 

V - ( / 2
P s ) = 0 

together with the boundary and initial conditions (37)-(38). 
Finally, it should be noticed that the dynamical model described by the equations 

(65)-(67) satisfies the Second Law of Thermodynamics if a > 0 and 7 > 0. In fact, 
under the hypotheses of processes near the transition temperature, it is well known 
that this law states that the inequality 

<9D 
0 

must hold for any closed cycle of duration d. 
Now, if we take into account the constitutive equations we get 

Jo Jn 
a|E|2 + / 2

P s - ( ^ - V ^ d x dt. 

Moreover, thanks to (67), the previous integral reduces to 

dp, 
Jo Jn 

T | E | 2 + / 2
P S 

dt 
dx dt 

and an integration by parts together with (65) gives 

In=ff 
Jo Jn *|E|2 + 7(f)2 

d x dt, 

which is nonnegative if a and 7 are nonnegative. 
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Counterexample to the exponential decay 
for systems with memory * 

Sergio Polidoro t 

1. - Introduction 

We study the asymptotic behavior of the solution u to the following initial-
boundary value problem 

( utt = G0Au + G' * Aw - aut in Q, x IR+ 
w(-,0) = w0 ut(;0) = ui in f2 
u(x,i)=0 o n 3 f i x ] R + 

where fi is a smooth bounded open subset of IR", u0 € H^(Q), u\ € L2(Q,), A denotes 
the Laplace operator in IR" and "*" is the convolution in the variable t: 

t 

G' * Au(x, t)= J G'(t - s)Au(x, s)ds. 
o 

We assume that 

i) G0, a are real constant coefficients, G0 > 0, a > 0, 

ii) G' € L1(M+) n L2(M+), G' < 0, 

in) GooSGo + J G'{t)dt > 0. 
0 

This kind of problem arises in linear viscoelasticity and the above assumption 
on Go, G' ensure that, when G' ^ 0, the system has the "fading memory property" 
and the problem (1) has a unique weak solution. 

In the case G' = 0 the asymptotic behavior depends on the coefficient a: when 
a = 0 the energy of the solution u is constant, thus u does not decay; on the other 
hand, when a > 0, the energy of the solution u decays exponentially. 

The problem (1), in the case G' ^ 0 and a = 0, was posed by Volterra and Graffi 
in their classical works, then it was systematically studied by many authors (we 
refer to Fabrizio and Morro [4] for a wide bibliography on this topic). Among other 

'Preview of the work [5], in collaboration with Mauro Fabrizio. 
tDipartimento di Matematica, Universita di Bologna 

Piazza di Porta S. Donato 5, 40127 Bologna (Italy). E-mail: polidoro@dm.unibo.it 
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known results, concerning existence, uniqueness an stability of the solution, let us 
recall the works by Dafermos [1] and Fabrizio and Lazzari [3], which prove that the 
exponential decay of G' is a sufficient condition in order to have the exponential 
decay of the solution u. Our aim is to show that the exponential decay of G' is also 
a necessary condition for the exponential decay of u and we are able to prove a much 
stronger result: the exponential decay of G' is necessary also when a is positive. 

Our methods also apply to the following problem, which arises in the theory of 
the heat conduction with memory: 

!

ut = K0Au + K' * Au - au in £2 x 1R+ 
u(-,0) = uo inf i 

u(x, t) = 0 on dQ. x IR+ 

under the assumptions 

i') Ko,a are non-negative constant coefficients, 

it') K' e Ll{B,+) nL2(M+), K' > 0. 

As problem (1), also problem (2) has been studied by many authors. Here we 
refer to the paper by Giorgi and Gentili [2]. Concerning problem (2), we are able to 
show that the exponential decay of K' is a necessary condition for the exponential 
decay of u also in this case. 

We next give some comments about our results. The aim of the present work is 
to point out that, although both terms aut and G' * Au in (1) produce a dissipation 
of the energy of the system, the presence of the first term is hidden by the presence 
of the second one. We stress that, when considering problem (2), our result is 
meaningful also in the case a = 0: indeed, if K' = 0 and a = 0, the solution u does 
exponentially decay, while for K' ^ 0 the asymptotic behavior of u is analogous to 
the behavior of K'. 

However we must say that our results are not completely unexpected. Indeed, 
let us consider problem (2) for K' = 0: it is easy to see that the function v(x, t) = 
eatu(x, t) is a solution to problem 

vt = K0Av in f2 x IR+ 
v(-,0) = u0 in £2 
v(x,t)=0 ondQ,xlR+ 

then clearly u decays exponentially. When K' ^ 0, the same change of function 
leads to 

f vt = K0Av + M' * Au in Q, x H+ 
< v(-,0) = u0 i n £2 
( v(x,t) = 0 on 5 0 xlR+ 

where M(t) = eatK'(t) does not necessarily satisfy condition (W), in other words 
the problem corresponding to K' =£ 0 has not the same features of the case K' = 0. 

This note is organized as follows: in Section 2 we find a counterexample to the 
exponential decay for a particular case of problem (2). The problem is chosen aiming 
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to avoid as many technical difficulties as possible, however it turns out that the main 
point (Lemma 1 below) does not requires such a simplification and our results can 
be extended to more general cases. In Section 3 we state our main results (Theorems 
1 and 2) and we outline their proof. Finally, in Section 4, we state some further 
results concerning the polynomial decay and we give some conclusive remarks. 

2. - A counterexample 

In this Section we find a counterexample to the exponential decay of the solution 
to a system with memory. We say that a function / £ L1(]R+) has the exponential 
decay property if a positive a exists such that 

oo 

feat\f{t)\dt<oo. 
o 

Aiming to consider the simplest situation, we study problem (2) in one space di
mension, namely 

{ ut = K0uxx + K' * uxx — au in ]0,7r[xlR+, 
u(x,0) = sin(x) f o r i £ [0,?r], 

u(0,t) = u{n,t) = Q f o r t € l R + , 
under the assumption (i') and (ii'). Let us note that the solution of the above 
problem must be a function in the form u(x, t) = sin(x) f(t), where / is the (unique) 
classical solution to 

(4) f'(t) = -K0f-K'*f(t)-af(t), /(0) = 1, 

thus we are allowed to say that u has the exponential decay property if, and only if, 
/ does. Our result is contained in the following 

PROPOSITION 1 Let u be the solution of the problem (3), under the assumptions 
(V), (ii'). If u has the exponential decay property, then also K' does. 

In order to prove Proposition 1 we consider the Laplace transform of the function 
/ , that will be denoted as 

oo 

f(z)= je'uf{t)dt. 
o 

We shall need the following result: 

LEMMA 1 Let [ /C(C be a neighborhood of 0 and let g : U —• (C be a holomorphic 
function. If G 6 L1(R+) is a non-negative function such that G(z) — g(z) for every 
z £ ( 7 n {SRe z > 0}, then G has the exponential decay property. 

P R O O F . Let us note that, since G G L1(JR+), both functions G and g are holomor
phic in the set {5Re z > 0} and 

oo 

g{k\x) = &k)(x) = (-l)k Jtke-xtG{t)dt 
o 
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for every positive real number x £ U and for any fc E IN U {0}. Since G is non-
negative, we can let a; go to 0 in the above identity and find 

oo 

s(
fc)(0) = ( - l ) f c | i f c G(t )d t . 

o 
Using again the fact that g is holomorphic in U we see that a positive r exists such 
that 

°° a(k)(C\\ °° rk °r 7 °° rktk 

Entr^-O'-Ep tkG{t)dt = /£ 
thus G has the exponential decay property. 

oo n(k)/n\ oo k °? 7 oo fc.fc °? 

P R O O F OF PROPOSITION 1. We assume that u has the exponential decay property, 
hence a positive a exists such that 

oo 

Jeat\f(t)\dt<oo, 
0 

then the Laplace transform of / is defined for any z e C such that Jte z > —a. By 
assumption (ii') the Laplace transform of K' is defined in {SRe z > 0} and 

f(z)(K0 + K'(z)+z + a) = l, 

for every z e {Sfte z > 0}. Note that, by the above identity, /(0) / 0, then / (z) / 0 
for every z in a suitable neighborhood U of 0. Hence 

K'(z) = ^--(K0 + z + a), 

for every z £ f such that 5Re z > 0. Our result then follows from Lemma 1. | 

3. - Genera l resul ts 

In this section we give the basic statements concerning the weak solutions to the 
problems (1) and (2), then we prove the main results. 

We say that a function u £ L2(M+,#o(fi)) D H1(JR+, L2(9)) is a weak solution 
of (1) if u(-, 0) = wo almost everywhere in fi and 

/ ut<t>tdxdt + / Ui4>(-,Q)dx = 
(51 JnxE+ Jsi 

J ( G 0 ( V M , V4>) + (G1 * Vu, V(j>) + aut4>) dxdt 

for every 0 £ L2(R+,if0
1(fi)) n H1 (B+, L2 (Q)). In (5) V and (•, •} are the gradi

ent and the inner product in H". We say that a function u £ L2(IR+,.ff0
1(fi)) n 

/f1(lR+ , L2{Q)) has the exponential decay property if a positive a exists such that 

f e2at (uAx^)2 + \Vu(x,t)\2) dxdt < oo. 
J(lxE+ V ' 

Our first result is contained in the following 
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T H E O R E M 1 Consider the problem (1), under the assumptions (i), (ii), (Hi) and let 
u be a non-trivial solution. If G' does not have the exponential decay property, then 
u does not have the exponential decay property. 

We next consider a function u e L2{TR+,H^(n)) n L°°(M+, L2(Q,)) which is a 
weak solution of (2). This means that 

/ ucj>tdxdt+ I Uo<t>{-, 0)dx = / {K0Nu, V</>) + (K' * Vu, V<j)) + aucj>) dxdt 
Vf!xiR+ Jn Jnxm.+ 
(6) 
for every <j> G CQ°(Q, X [0, oo[) and we say that u has the exponential decay property 
if a positive a exists such that 

f e2at\Vu(x,t)\2dxdt < o o . 

Our result about problem (2) is the following one. 

T H E O R E M 2 Consider the problem (2), under the assumptions (i'), (ii') and let u 
be a non-trivial solution. If K' does not have the exponential decay property, then u 
does not have the exponential decay property. 

We next outline the proof of Theorem 1, the proof of Theorem 2 follows the same 
lines and will be omitted. The details are contained in the paper [5]. 

P R O O F OF T H E O R E M 1. We assume that G' does not have the exponential decay 
property but, by contradiction, that the solution u to the problem (1) does. Thus a 
positive a exists such that 

(7) / e2at (ut(x, tf + \Vu(x, t) I2) dxdt < oo. 
Jnxm.+ v ' 

As a consequence, the Laplace transform 

oo 

/ e~ztu(x,t)dt, 

is defined for almost every x £ fi and for any z 6 (D such that 5Re z > —a and 
the same assertion is true for the derivatives dXju(x,t), for j = l , . . . ,n. We also 
note that the Laplace transform of G' is defined for every z e {5fte z > 0} and that 
the function 2(-, z), is a weak solution of the problem (G0 + G'(z))Au(-, z) = (z2 + 
az)u(-, z) — Mi — (a + z)u0 in Q, u(-, z) — 0, in dtt, in the sense that «(•, z) e HQ (U) 
and 

(G0 + G'{z)) / (V2(i , z), Vip{x))dx +(z2 + az) I u{x,z)-ip{x)dx = 
(8) Jn

 f
 Jn 

/ (ui(x) + (a + z)u0(x))ip(x)dx, 

for every ip € ^o (^ ) - We next have to consider two cases. 
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Suppose that ui+au0 ^ 0 (here and in the sequel, we mean that Ui(x)+au0(x) ^ 
0 for almost any x e Q). The identity (8) for z = 0 is 

(9) (Go + G'(0)) [ {Vu(x, 0), Vip{x))dx = f {Ul{x) + au0(x))ip(x)dx, 
•fit J 1 ' 

then Vw(-, 0 ) ^ 0 and, as a consequence, the function 

g(z) = J {Vu(x, z), Vu(x, 0)}dx 

is non-zero and holomorphic in some neighborhood U of 0. Hence, by using u(-,0) 
as a test function in (8), we obtain 

~ = Jn (MI(X) + (a + z)uQ(x) - (z2 + az)u{x, z))u{x, 0)dx _ 
{Z> Jn{Vu{x,z),Vu{x,0))dx °' 

for every z € U such that 5fte z > 0. Note that the right hand side of the above 
identity is holomorphic in U then, by Lemma 1 we get a contradiction with the 
assumption that G' does not have the exponential decay property. 

Suppose now that U\ + au0 = 0 for almost every i e ! l . In this case the identity 
(9) yields Vu(-, 0) = 0 and, consequently, u(-, 0) = 0. 

Since u is not the trivial solution of the problem (2), we have u0 ^ 0, then we 
can choose a test function ip such that 

/ u0(x)ip(x)d: ! x>0 . 

Aiming to find a contradiction as in the previous case, we compute the derivative of 
the function z >-> Jn(Vu(x, z), Vip{x))dx at z = 0: by using the fact that u(-, 0) = 0 
we obtain from (8) that 

— / (Vulx, 0), Vtp(x))dx = hm — K—LJl—Z±-LL— = 

fn (UQ(X) - (z + a)u{x, z))tp{x)dx _ fn u0(x)ip(x)dx 
2™ G0 + G'{z) ~ G ^ 

which is positive, by our choice of ip and by assumption (Hi). This means that there 
exists a neighborhood U of 0 such that the function z >-> fn(Vu(x, z),\7ip(x))dx 
is holomorphic in U, has a simple zero at z = 0 and is non zero in ?7\{0}. Being 
in (uQ(x) — (z + a)u(x, z)) tp{x)dx holomorphic, we conclude that the function 

zjn (u0(x) ~(Z + a)u(x, z))ip(x)dx _ 
n{Z> In(Vu(x,z),V1,{x))dx 

can be extended as a holomorphic function on U. As in the previous case, we can 
write G'{z) = h(z), for every z £ U such that !Re z > 0, and Lemma 1 yields a 
contradiction. • 
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4. - Conclusive remarks 

In this section we give some comments which have been inspired by some dis
cussion after the conference I held in Cortona. 

The first one concerns the polynomial decay of the solutions to the problems (1) 
and (2) and has been suggested by J. E. Muiioz Rivera. In order to deal with the 
problem of the polynomial decay, it is convenient to define rate of polynomial decay 
of a function g € L}0C(]R+) the following number 

oo 

po = sup L e IR : J{1 + t)v-l\g(t)\dt < oo} 
o 

provided that it is positive. To motivate our definition, we note that the rate of 
polynomial decay of the function g(t) = (1 + t)~po is exactly po- Since we also need 
to consider a function u 6 L2(IR+, HQ(H)), we define its rate of polynomial decay as 

Po = sup(p€]R: / {l + tf-^Vuix^^dxdt). 
I JnxJR.+ ) 

Our results concerning this problem can be summarized as follows 

PROPOSITION 2 Let u be a nontrivial solution to problem (1), under the assump
tions (i), (ii), (Hi). Denote by p0 the rate of polynomial decay of G' and by q$ the 
rate of polynomial decay of u. If qo > 1 and U\ + auo ^ 0, then p0 > go-

PROPOSITION 3 Let u be a nontrivial solution to problem (2), under the assump
tions (i'), (ii'). Denote by pQ the rate of polynomial decay of G' and by q0 the rate 
of polynomial decay of u. If q0 > 1, then p0 > q0. 

The proof of the above results is given in the paper [5]. 

The second remark has been pointed out by M. Grasselli and V. Pata and con
cerns a correlation with the following general result on the asymptotic behavior of 
a strongly continuous semigroup. 

T H E O R E M 3 (see Pazy [6], Ch. 4) LetT{t) be a C0 semigroup. If for some p £ [l,oo[ 

oo 

f \\T(t)x\\pdt < oo, forevery x e X, 
o 

then there are constants M > 1 and fj, > 0 such that ||T(t)a;|| < Me-*1'. 

We recall that Theorem 3 was used by Fabrizio and Lazzari in [3] to prove the 
asymptotic decay of the solution of the problem (1), under some suitable assumptions 
on the function G'. In [3] the authors consider the space X of all triples (u, ut, u^), 
where u(-, t) G ifg(f2), M((-, t) G L2(f2) and u^ belongs to a suitable function space Y 
related to the space of the past histories of the system up to time t. In that setting 
the norm || • ||y is connected with the free energy of the system, the norm of T(t)x 
is the energy of the system 

\\T(t)xf = E{tf = |K-,i)|||,(n) + ||«(-,t)||i,(n) + IKMI& 
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and is integrable over M + . 
In our case, Theorem 3 and our Theorem 1 yield that it is impossible to find a 

function space Y which contains the history of the system, such that the problem 
(1) can be treated by the semigroup theory in the space X = Hg(Q) x L2(fi) x Y 
and that 

oo 

f E(t)"dt < oo, 
0 

for some p £ [1, oo[ and for every initial data. 

Acknowledgment Investigation supported by the University of Bologna. Funds for se
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Convergence to the Stefan Problem of the 
Hyperbolic Phase Relaxation Problem 

and Error Estimates 

Vincenzo Recupero * 

1. - Introduction 

When we consider the evolution of a material contained in a bounded domain 
0 of IR™ (n G IN) during the time interval [0,T], the usual equation for the energy 
balance reads 

de 
(1) — + divq = fl i n Q : = t t x ( 0 , T ) , 

where e denotes the internal energy of the system, q is the heat flux, and g represents 
the heat supply. 

Let us suppose that the material is homogeneous and assume that it exhibits 
two phases. Then let us denote by 0 the relative temperature and by \ * n e phase 
variable (e.g. the concentration of the more energetic phase). Thus a widely used 
model for describing the phase transition dynamics is obtained from (1) assuming 
the constitutive laws 

(2) e = 9 + x, 
(3) q = - V 0 

(for simplicity we have normalized to 1 all the physical constants). The relation 
(3) is usually called Fourier heat conduction law. This choice leads to the following 
equation for the energy balance 

(4) W+£-tf=g inQ. 

In order to describe the evolution of the system, we have then to establish a 
further relation between the temperature and the phase. If 8 = 0 is the critical 
temperature of phase transition, we can take the following equilibrium condition of 
Stefan type (cf., e.g., [6, 9, 10] and their references) 

(5) x e H ( I ) i n Q 

*Dipartimento di Matematica, Universita di Trento, Via Sommarive 14, 
38050 Povo (Trento), Italy 
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where H is the Heaviside graph (i.e., H(r) = 0 if r < 0, H(0) = [0,1], H(r) = 1 if 
r > 0). 

The problem of finding 8 and \ satisfying (4-5) is the so called Stefan problem. It 
has been widely investigated and several existence and uniqueness results have been 
proved, provided that (4-5) is coupled with suitable initial and boundary conditions 
(cf, e.g., [1, 4, 6, 9, 10]). 

The inclusion (5) represents an equilibrium condition. If we want to take into 
account dissipation phenomena such as dynamical supercooling or superheating ef
fects, we have to replace condition (5) by a non-equilibrium one. In [9], Visintin 
proposed to use the following relaxation dynamics for the phase variable x, that is, 

(6) e ^ + rl-'ixjBO i n Q , 

e being a small kinetic positive constant. The system (4), (6) is usually called piase 
relaxation problem. In paper [9], after coupling both problems (4-5) and (4), (6) 
with suitable initial and boundary conditions, it is proved that the last problem 
is well-posed and its solution converges, in a suitable sense, to the solution of the 
Stefan problem (4-5) as the parameter s goes to 0. 

Let us observe now that the Fourier law (3) leads to the parabolic equation 
(4), and it is well known that it allows the thermal disturbances to propagate at 
infinite speed. The first approach in order to overcome this feature, is due to Catta-
neo, which in his work "Sulla conduzione del calore" [2], modified the Fourier law, 
originating the so-called Maxwell-Cattaneo law 

(7) Q g + q = -V5 inQ, 

in which a represents a small positive relaxation parameter. Observe that a trivial 
integration of (7) with respect to time gives 

(8) q(t) = --[texp(S-^)v9(s)ds, 
a Jo \ a J 

so that (7) can be considered as a particular model of a material with memory (for 
updated reviews of the theory of Cattaneo see [3] and [8, Chapter 2]). With the 
constitutive assumptions (2) and (7), the energy balance (1) yields a hyperbolic 
equation predicting finite speed of propagation for the temperature field. If we 
couple this equation with the Stefan equilibrium condition we get system (1-2), 
(5), (7), which is also known as the hyperbolic Stefan problem. The existence of 
solutions of such a system is still an open problem. If we take account of both the 
relaxations (6-7), the following hyperbolic phase relaxation problem follows: 

(9) fcx)+divq=«, i n Q , 

(10) a^+q = -Vd inQ, 

(11) E ^ + H^MBO inQ. 
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This system was proposed for the first time in [9], where an existence result has been 
outlined when (9-11) is coupled with some initial and boundary condition. Moreover 
it is stated there that its solutions converge to the solution of the analogous problem 
for (4), (6), as the parameter a goes to zero, whereas e is fixed. 

In [5] and in the present paper, (9-11) is supplied with rather general and mean
ingful initial-boundary conditions. More precisely, letting T0 and Vi denote two 
measurable subsets in which the boundary of fi is partitioned, we take 

(12) e = eD o n r 0 x ( o , T ) , 
(13) q n = ipN o n r i x ( 0 , T ) , 

(14) 0(; 0) = 0O, X(; 0) = Xo, q(-, 0) = q0 in fi, 

where 9D, tpff, 00, xo, q~o a r e given functions and n is the outward unit vector, normal 
to the boundary of fl. We assume that 0p is a sufficiently smooth function defined 
on the whole Q and that there exists a vector function qjv : Q —>• M™ such that 
qw • n = ifiN on Ti x (0, T) in a suitable sense. Hence, setting 90 := 90 — &D(0) 
and q0 := q(0) — qjv(O), we rewrite the problem (9-14) in terms of the unknowns 
0 = 6 — 9D, X> a n d Q = q — q^, obtaining the following equations and conditions: 

(15) v K' +divq = g -^-d iv q j v mQ, 

(16) a^ + q=-V9-V9D-a^--qN in Q, 

(17) e ^ + R-l(x)B0 + 0D mQ, 

(18) 0 = 0 o n r 0 x ( 0 , T ) , q - n = 0 on ^ x (0,T), 

(19) 9(; 0) = 9Q, X(; 0) = Xo, q(-, 0) = q„ in O. 

This new formulation turns out to be quite convenient to deal with, because of the 
homogeneous boundary conditions for 9 and q in (18). In the sequel the right hand 
side of (15) will be denoted by / and, noting that the right hand side of (16) contains 
a factor a, we will set 

(20) hQ = -V9D - a(dqN/dt) - qw , 

(21) h = -V9D - qN . 

However the theorems stated in this paper will be valid for more general data / , hQ, 
and h. 

In most of physical applications the relaxation parameters introduced in (6) and 
(7) are very small with respect to the used lenght scale, so that the Stefan problem is 
often considered as approximation for the relaxed systems. Therefore it seems quite 
important to know the asymptotic behaviour of phase relaxation problems based on 
(4), (6) as e goes to zero, as well as the asymptotic investigation of thermodynamic 
models including (7) as a approaches 0. 

In view of these facts it appears quite natural to wonder whether the solutions 
of the hyperbolic phase relaxation problem (15-19) converge, in a suitable topology, 
to the solution of the Stefan problem when both the two relaxation coefficients a 
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and e tend to zero. In paper [5] P. Colli and the author answer affirmatively to this 
question. After proving in a rigorous way that (15-19) admits at least one solution 
{9, x, q), they argue on a triplet (0a£, Xaei Que) which is any of its solutions, for a > 0 
and e > 0. Then, they show that, as a, e \ 0, the family (0a£, Xae) converges to the 
solution {9,x) of the Stefan problem (cf. (4-5) and (12-14)) 

(22) m+£-Aff = g-*Z + MD i n Q , 

(23) XeU(9 + 9D) i n Q , 

(24) 6 = 0 on To x (0,T), dn6 = 0 on Tx x (0,T), 

(25) (0 + x)(;O) = ea + Xo inf i , 

where <9n denotes the outward normal derivative to the boundary of Q and the 
initial condition (25) is the one agreeing with (22). It is worth noting that in the 
asymptotic analysis performed in [5], no relation is required between a and e as they 
tend to zero. 

In the present note we want to extend the asymptotic analysis studied in [5] 
deducing error estimates for the sequences 9ae — 9 and qQe — q with respect to 
the relaxation parameters a and e. To this aim in Section 2 we give the weak 
formulations of the Stefan problem and of the hyperbolic Stefan problem. Then we 
will recall the results obtained in paper [5] and we will exploit them in Section 3 to 
infer the desired error estimate. 

2. - Variational formulations, known theorems and new results 

In this section we give the variational formulations of the problems presented 
in the Introduction and we recall the related existence/uniqueness and convergence 
results proved in [5]. Finally we will state the theorem which is the object of our 
note. Concerning the data of the problems we assume that 

(HI) Q. is a bounded domain in H n , n 6 IN, with Lipschitz boundary T := cftl The 
outward normal unit vector will be denoted by n. 

(H2) £ 0 and r \ are open subsets of T such that r 0 U Fi = I \ r 0 n I \ = 0, and 
T0 n r \ is of Lipschitz class. 

(H3) Q : = f l x (0, T), where T is a positive number. 

(H4) a and e are positive numbers. 

(H5) / e L1(0,T;L2(n)) H L 2 ( 0 , T ; ( ^ o ( « ) ) ' ) , where H^(Q) = {v 6 H1^) : 
"Ir. = 0}. 

(H6) 9D € Hl{0,T;L2(Q)) n L2(0,T; i f 1 ^ ) ) = H\Q). 

(H7) h e L2(0,T; (L2(fi))n) and (h Q ) a > 0 is a family of functions in L2(0, T; (L2(Q))n) 
such that hQ -)• h in L2(0,T; (L2(tt))n) as a \ 0. 
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(H8) 0O e L2(ft), xo G L°°(ft) and 0 < xo < 1 a.e. in ft, q0 G (L2(ft))n. 

REMARK 1 Concerning the data of the system (15-19), we point out that the as
sumption (H6) on 9D and the regularities g e Ll{0,T; L2(Q)])n L2(0,T; (H^0(Q,))') 
and q,v G Hl(<d,T;(L2(Q))n) n L2(Q,T- L2^ (ft)) actually ensure that (H5)-(H7) 
hold (the definition of the space L2,- (ft) is recalled just below). Let us also observe 
that the (n — l)-dimensional Hausdorff measure of r 0 is not required to be strictly 
positive. 

Concerning the notation, we set H := L2(ft) and V := Hj. (Q,), endow H and 
V with the usual inner products, and identify H with its dual space. Then we 
have V C H C V with dense and compact embeddings. We define the operator 
AeC(V,V) by 
(26) v{Av1,v2)v •= [ Vi>! • Vu2, vuv2 € V, 

where the dot stands for the usual inner product in ]Rra. Next, we consider the 
spaces H := (L2(ft))" and L2^ (ft) := {v e H : d ivv e / /"}, the latter endowed 
with the inner product 

(27) (vi,v2)L2 ( n ) := (v1,v2)H + (divvi,divv2)ff, vi, v2 € L2.: (ft). 
div 

It is well-known that if v € L2,- (ft), then v • n G i2"-1/2(r) and the restriction 

v • n|r! makes sense in (HQQ (VI))' (see, e.g., [7]). In this functional framework we 
introduce the closed subspace of L\- (ft) 

(28) V : = { v e J & v ( n ) : v . n | r i = 0 } . 

If we identify H with its dual space, we get V C H C V with dense and continuous 
embeddings. Moreover, we will consider the operators B € £ (H, V ) and L e 
C(H, V ) defined by 

(29) v,{Bu,v)v := - [ u - Vv, u e H . s e V , 
Jn 

(30) v ' ( L w , v ) v : = / udivv, u £ H, v € V. 

We now recall some well-known statements that will be useful in the sequel. 

LEMMA 1 Let vo € H. If there exists a function Ug £ H such that Bv^ = uo, i.e., 

(31) V' (-Bv0, v)v = - J v0-Vv = J u0v VveV, 

then v0 £ V, div v0 = u0, and ||v0 | |v < | |V 0 | |H + ||«O||H-

LEMMA 2 Let Uo £ H. If there is a function v0 £ H such that LUQ = v0 , i.e., 

(32) v ' ( L u o i v ) v = / Wodivv = / v0 • v Vv £ V, 
Jn Jn 

then w0 G V, v0 = -Vu0, and \\u0\\v < \\u0\\H + | |V 0 | |H-
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Then the weak formulation of the problem (15-19) reads as follows. 

P r o b l e m (PQ e ) . Find a triplet {9ae,XaE,<\ae) satisfying the following conditions 

(33) 0 a s e t f 1 (O,T;V r ' )nL o °(O,T; f f ) . 

(34) XasZH\Q,T\H), 0 < X o e < l a.e. in Q, 

(35) q o e 6 H 1 ( 0 , r ; V ' ) n L o o ( 0 , T ; H ) ) 

(36) (9ae + xas)' + BqaE = / in V, a.e. in (0, T), 

(37) aq'Q£ + qQ£ = L9a£ + ha in V , a.e. in (0, T), 

(38) ex'ae + ^-~1(Xae)^9ae + eD a.e. in Q, 

(39) ea£(0)=e0 i n F ' , XaM = Xo inH, qQ£(0) = q0 in V . 

Here and in what follows the symbol " ' " will denote the derivative with respect 
to time of vector-valued functions. The boundary conditions in (18) are not included 
in (33) and (35), since the spaces V and V, respectively, do not appear there. On 
the other hand, the analoguos homogeneous boundary conditions for the integrated 
variables /„' 9ae, | 0 ' q M are collected into equations (36-37), and this can be easily 
checked with the help of integrations in time and using Lemmas 1-2. 

The following existence theorem for Problem (PQ£) was proved in [5, Theorem 
2.1]. 

T H E O R E M 1 Assume that (H1)-(H8) hold. Then Problem (PQE) admits at least one 
solution. Moreover there exists a constant C > 0, independent of a and e, such that 
for all solutions {9a£,Xae,<ias) of (Pae) there holds 

(40) ||MU°°(0,T;ff) + ||0ae + Xae\\w{0,T;V) + a1/2 | |qae||l/»(0,T;H) 

+ l|qQe|U
2(0,T;H) +a| |qaeIU2(0,T;V') +£1/2||X«E||ff'(0,T;ff) + ||Xae|U°°(Q) < C. 

We want to stress that a relevant feature of the analysis performed in [5] is that 
estimate (40) is fulfilled by any solution of Problem (P Q e ) . 

Now let us state the weak formulation of the Stefan problem. 

P r o b l e m ( P ) . Find a pair (9, x) satisfying the following conditions 

(41) 9€L°°(0,T]H)nL2(0,T;V), 

(42) X e L°°(Q), 

(43) e + X€H\0,T;V% 

(44) {e + x)' + A6 = f-Bh mV\ a.e. in (0,T), 

(45) X<=H(6» + 0D) a.e. in Q, 

(46) (9 + x)(O) = 0o + Xo mV. 

The next result can be easily deduced by slightly adapting the arguments re
ported, e.g., in [4] (see also [10, Chapter II]). 
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T H E O R E M 2 Assume that (H1)-(H8) hold. Then there exists a unique solution to 
Problem (P). 

Note that Problem (P) can be equivalently formulated saying that a triplet 
(6, x, q) is to be found in such a way that (41-43) and (45-46) are satisfied and 

(47) q e L 2 ( 0 , T ; H ) 

(48) (9 + X)' + Bq=f in V, a.e. in (0,T), 

(49) q = - V 0 + h a.e. in Q. 

Consequently Theorem 2 can be rephrased according to this equivalent formulation. 
As we recalled in the Introduction, the object of paper [5] is the asymptotic 

behaviour of the solutions of Problem (PQ e) , as a and e tend to zero. The precise 
result is the following 

T H E O R E M 3 Assume that hypoteses (H1)-(H8) hold. Let (9,x) be the unique solu
tion to Problem (P) and let q be defined by (49). Moreover for any pair a,e > 0 let 
($a£! Xae; 'iae) denote an arbitrary solution to Problem ( P a e ) . Then, as a,e \ 0, 
we have that 

(50) 6ae^0 inL™(0,T;H), 

(51) Xae^X in L°°{Q), 

(52) q Q e ^ q i n L 2 ( 0 , T ; H ) . 

We warn the reader that the part of the previous theorem concerning the con
vergence of OQJ, and Xas is stated in [5, Theorem 2.2]. Instead the convergence of qQe 

is proved in Section 5 of paper [5] where is exploited to prove (50-51). However, if 
we assume (50-51), then (52) can be easily inferred from (37), (40), (H7), and (41). 

Let us introduce a general notation which will hold throughout the sequel. For 
a map ij> e L^O,!1; X), where X is a Banach space, we define ip : [0,T] —> X by 

(53) V J ( t ) : = / % , te[0,T\. 
Jo 

Now we can state the theorem concerning the error estimate. In order to prove 
this theorem we need to prescribe a certain rate of convergence for the sequence 
hQ — h. Precisely we assume that there exists a constant Co > 0, independent of a 
and e, such that 
(54) ||hQ - h||L2 (0 ]T;H) < C0a

1'2 

for all a > 0. This assumption seems quite reasonable, in view of the fact that in 
applications the expression of h a and h are given respectively by (20) and (21). 

T H E O R E M 4 Assume that the hypoteses of Theorem 3 hold and that (54) is valid 
for some positive constant C0 independent of a and s. Then there exist a constant 
C\ > 0, independent of a and e, such that 

(55) \\0ae - e\\L.%T.iH) + ||qQ6 - q|Uoo(0;T.H) < ^ ( a 1 / 4 + e1/4). 
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3. — Proof of the error estimate 

This section is devoted to proof of the error estimate stated in Theorem 4. For 
any pair of positive numbers a and e let us choose an arbitrary solution (9ae, Xae-, <w) 
of Problem (PQ £) . In the sequel, the same symbol C will be employed to denote 
different positive constants which depends only on the data, but not on a and e. 
Let us start observing that an integration of the equation (36) shows that 

(56) zae := / + 90+Xo- &ae ~ Xae = Bqae, 

hence, thanks to (H5), (H8), and (40), we deduce that zae is uniformly bounded in 
L°°(0,T; H) with respect to a and e. Therefore 

(57) - f qQ£(t) • Vv = f zac(t)v Vv e V 

and applying Lemma 1 we deduce that ||qQe||z,°°(o,T,;V) is bounded independently of 
a,e, and we see that q e L°°(0,T; V) and 

(58) q a E
A q in L°°(0,T; V) . 

Now, for convenience, let us set Qas := 0ae—6, Xae := Xae~X> a n d *ae : = q«£—q, 
and let t e (0, T). Let us integrate in time the difference of equations (36) and (44). 
We get, thanks to (39) and (46), 

(59) 0OE + XaE + B * Q £ = 0 in V, in [0, T}. 

Let us note that * Q e = qa e - q e L°°(0 , r ;V) and B * a e = d i v * a 6 , thus 
equation (59) is in fact the following identity in H: 

(60) Qae + Xae + div * Q £ = 0 in H, in [0, T). 

Let us multiply (60) by 0QE G L°°(0,T;H) and integrate over (0, i) x f2. We get 

(6i) l i e Q £ | | l W ) + /o/n ^ | f i ( d i v * Q £ ) 0 Q £ = O. 

Now let us subtract the equation (49) from (37). We find that 

(62) o < E + * Q £ = L0 Q £ + hQ - h in V , a.e. in (0, T). 

Applying equation (62) to * a e € L°°(0,T; V) and integrating in time we have that 

(63) a f v<(q'Q£,*Q£}v + ^ I ^ W I I H = f I ©a ediv*Q £ + / ' / (hQ - h) • * Q e . 

Finally, observe that the inclusion (45) is equivalent to 

(64) H~1(x)BO + 0D a.e. in Q. 

If we subtract (64) from (38), we get the inclusion 

(65) £X'Q£ + H-x(Xae) - H-^X) 3 e a £ a.e. in Q. 
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Multiplying (65) by Xae and taking into account of the monotonicity of H : we infer 
that 

(66) S ff XL*™ < / ' / Qa^-
Jo Jn Jo Jn 

If we add equations (61), (63), and (66) and we observe that there are two 
cancellations, we obtain the following inequality: 

(67) l i e Q £ | | £ W ) + | | |* a e ( t ) | |^ 

< -a f v , (q'ae, * Q £ ) V + / / (ha - h ) • * Q e - S f J X'ae^-
Jo JoJn JoJn 

Now we are going to estimate the right hand side of (67).^Concerning the first 
integral, observe that qQE e ff^O.T; V ) n L°°(0,T;H) and * a e e Hx(Q,T\H) n 
L°°(0, T; V). Therefore [5, Lemma 5.1] applies and let us deduce that the function 
t K> w(<iae(t),^ae{t))v is absolutely continuous. Then we find a positive constant 
C such that 

(68) - a rv>(qa e ,*Q £)v 
Jo 

= -ay>(qas{t), * o e ( t ) ) v + a j {qae, * Q E ) H 
Jo 

< «| |qQ e(*)| |HJ|*Q E(*)|tH + a||qa£||z,2(o,i;H)||*ae||l/>(0,(;H) 

< a1/2||a1/2qa£||L»(o,t;H)||*ae||L<»(o,t|H) + a1/2||a1/2qQe||L2(o,*;H)||*a£||^(o,t;H) 

< Cax>\ 

the last inequality holding by virtue of (40), (58), and (52). The second integral in 
(67) can be controlled by observing that, thanks to (54), 

(69) jf_/,(ba " h ) • * « ^ Hh° - h||L»(o>tiH)ll*«||L>(o,tiH) < Caa
l'\ 

for some positive constant C. Finally, thanks to (40) and to (51) we have that 

(70) - £ L L ^ 

< Ce1'2. 

Hence collecting (68), (69), and (70), inequality (67) entails that 

(71) \\eQS - 0||£2(O,T;H) + ||qQe - q||ioo(0;T;H) < C(a^2 + e1'2), 

and (55) is proved. 

Acknowledgment The author would like to thank the organizers of the meeting "Modelli 
Matematici e Problemi Analitici per Materiali Speciali" held in Cortona in June 2001, for 
giving him the chance to share with all the participants a very stimulating atmosphere. 



282 

References 

[1] H. Brezis, "Operateurs maximaux monotones et semi-groupes de contractions 
dans les espaces de Hilbert", North-Holland, Amsterdam (1973). 

[2] C. Cattaneo, Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena 3 
(1948), 83-101. 

[3] G. Caviglia and A. Morro, Conservation laws in heat conduction with memory, 
Rend. Mat. Appl. (7) 9 (1989), 369-381. 

[4] P. Colli and M. Grasselli, Phase transition problems in materials with memory, 
J. Integral Equations Appl. 5 (1993), 1-22. 

[5] P. Colli and V. Recupero, Convergence to the Stefan problem of the phase 
relaxation problem with Cattaneo heat flux law, J. Evol. Equ. to appear. 

[6] A. Damlamian, Some results on the multi-phase Stefan problem, Comm. Partial 
Differential Equations 2 (1977), 1017-1044. 

[7] J. L. Lions and E. Magenes, "Nonhomogeneous boundary value problems and 
applications", Springer-Verlag, Berlin (1972). 

[8] I. Miiller and T. Ruggeri, "Rational extended thermodynamics", Second edi
tion. Springer-Verlag, New York (1998). 

[9] A. Visintin, Stefan problem with phase relaxation, IMA J. Appl. Math. 34 
(1985), 225-245. 

[10] A. Visintin, "Models of phase transitions", Birkhauser, Boston (1996). 



On a Thermodynamical Model for 
Type-II High-Tc Superconductors. 

Theory and applications. 

L. Restuccia* B. T. Maruszewski t 

1. — Introduction 

Type-II high-Tc superconductor materials find applications in many fundamen
tal technological sectors: in the field of optoelectronics for the realization of wave 
guides; in the field of electronic sensors, in the processes of fabrication of microwave 
devices, in the realization of SQUID sensors in a biomedical frame, in the field of 
electromagnetic screens mainly in biomagnetic measures, in applied computer sci
ence in the technology for integrated circuits VLSI (very large scale integration), 
in the realization of thin superconductor films in order to construct fixed memo
ries and also in the preparation of high critical current superconductors for future 
applications in the energy transport sector, in particular in preparation of supercon
ductors that create magnetic levitation and suspension. In this survey paper [12-14] 
some phenomenological aspects of superconductivity are considered and a thermo
dynamical model for a type-II high-Tc superconductor is presented, describing the 
properties of Abrikosov flux-line vortices both in lattice and fluid states. A spe
cific stress tensor is created. A method to linearize the obtained field equations has 
been applied and the magnetomechanical wave propagation problem is considered 
for vortex lattice both in the solid and liquid states. As an example the dispersion 
problem in YBCO-ceramics has been studied. 

2. — Phenomenological aspects of superconductivity 

Superconductors belong generally to two classes of such materials. At applied 
field strengths less the critical value Hc a type-I superconductor expels magnetic 
flux from the material and hence it is in the Meissner state. In contrast, a type-II 
superconductor behaves differently. There are two critical fields for these materials. 
For applied field strengths less than the lower critical field HCI that superconductor 
will exhibit the usual Meissner effect. Applied fields greater than the upper critical 
field HC2 destroy the superconductivity altogether. Between the lower HCl and upper 

'University of Messina, Department of Mathematics, Saiita Sperone 31, 98166 Messina, Italy 
tPoznari University of Technology, Institute of Applied Mechanics, 
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HC2 magnetic field strengths, the superconductor is in the mixed or vortex state [1-
6], and above the critical field HCl the magnetic field penetrates the superconductor 
on the London depth frequency-independent (see Figure 1). 

Figure 1: The H - T phase diagrams for type I and type II superconductors. 

If the superconductor is limited by a plane and the applied magnetic field is per
pendicular to this plane, magnetic flux penetrates the superconductor in the form 
of Abrikosov vortices (also called flux lines, flux tubes or fluxons) each carrying 
a quantum of magnetic flux. These tiny vortices of supercurrent tend to arrange 
themselves in a triangular flux-line lattice, which is more or less perturbed by ma
terial inhomogeneities that pin the flux lines. In the first picture of Figure 2 a 
type-II superconductor has been decorated with magnetic particles in the case that 
the applied field is perpendicular to the plane of the page. 

In classical low-Tc superconductors the vortex lattice is mostly consisted of a 
parallel straight vortex lines arrangement of which the crossection forms a triangu-

Fi gure 2: A triangular flux-line lattice (Abrikosov arrangement) and curved vortex lines 
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Figure 3: Structure of array of vortices (F - Lorentz force, J - supercurrent). 

lar (also hexagonal) or quadratic symmetry (cf. [3, 4]). However, recent research 
shows that the vortex lines can be curved or even tangled along the material [5, 
6]. Moreover, because the vortex lines can form, among others, sets called twisted 
triplets, twisted quadruplets, single loops or pairs, the vortex field can be considered 
within three dimensions. Because of the fact that each vortex line has a sign (has 
definite vorticity), lines of the opposite signs anihilate. So the density of the vortex 
field can vary. In the second picture of Figure 2 we see curved vortex lines and their 
projections to a normal plane. 

Inside each vortex there is a core in the normal phase, then outside that there is 
the superconducting phase. So, the supercurrent flows around each vortex. There 
exist also the Lorentz force interactions among them. Those interactions form an 
origin of an additional mechanical (stress, pressure, and the like) field occurring in 
the type-II superconductor (see Figure 3). 

As we have mentioned before vortices (hard vortices) are pinned, in general, on 
crystal lattice imperfections of the superconductor. However, if the Lorentz force 
between the vortices is greater than the pinning force, the vortex lattice behaves 
elastically [4, 5]. The vortex field near the lower critical magnetic intensity limit 
HC1 forms a lattice of the mentioned above symmetries. The "fluidity" of the vortex 
array is observed when the applied magnetic field tends to its upper critical limit HC2. 
In this way we meet a very interesting situation in a type-II superconductor. We can 
say, that there coexist two mechanical fields in the medium. One of them is of pure 
elastic character coming from the properties of crystal lattice of the superconductor . 
The second one comes from the vortex lattice, which, being of elastic character near 
the lower magnetic field strength limit HC1, transfers smoothly into "fluid" form near 
the upper magnetic field strength HC2. The vortex motion (creep) is accompanied 
by an energy dissipation. That motion is damped by a force proportional to the 
vortex velocity. Hence, except for the elastic properties the vortex field is also of 
a viscous character. The resistivity in the area of the vortex creep is the same as 
the resistivity of the current which would flow inside the vortex core. Hence, the 
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viscosity coefficient reads [4] 

Pn 

where $ 0 is the magnetic flux, fi0 denotes the permeability of vacuum and pn is the 
resistivity in the normal state. 

3 . — T h e r m o d y n a m i c a l model 

In order to obtain an extended-like thermodynamic model for the viscoelastic 
field of vortices in the type-II superconductor we assume that: the characteristic 
volume of the body is sufficiently large for averaging all the physical quantities taken 
into consideration (its dimensions are much greater than the London penetration 
depth A„ and the coherence length £, the diameter of a vortex line), only depinned 
(soft) vortices , averaged in characteristic volume are considered [5] and any creation 
or anihilation of the vortices is omitted, the mass density p of the vortex field is 
defined as the mass of the material in the normal state related to the total volume 
of the material, the interaction between vortices is due only to the Lorentz force, the 
energy dissipation occurs only because of the viscosity r\ of the vortex field caused 
by ohmic-like resistivity (normal-state resistivity) inside the vortex core [5], the 
relaxation feature of the thermal field is not taken into account, because of very low 
temperatures of the considered material, only small deformations of the vortex field 
are considered and they are described by the linear strain tensor e^ = | (u;j + Ujti), 
where ut denotes the displacement vector of a vortex, and the velocity of the vortex 
field point Vi = M; is also small. 

So, we confine ourselves to the linear theory of the vortex lattice and to create an 
extended-like thermodynamic model for the viscoelastic field of vortices we choose 
the following vector of state (the set of independent variables) (cf. [7, 12]): 

(2) C = ^eij,£ij,ip,Ai,T,Tti,ip,^,i>4,'ijjti,qi,if^, 

where £y indicates the viscoelastic character of the vortex field, ip and A{ are the 
scalar and vector electromagnetic potentials, respectively, T is the absolute temper
ature, qi is the heat flux and jf is the supercurrent density, ip is the order parameter 
(the wave function of a Cooper pair) and ip is its complex conjugate. ip(i, t) is 
interpreted as the probability that the single quantum particle would be located at 
r at time t, i.e. ip{v,t)ip{r,t) = ns(r,t), where ns is the local density of superelec-
trons. The gradients Tti , ipti , ipti concern possible nonlocal effects in the material. 
We have three groups of fundamental laws that govern the set (2). The first group 
concerns the mass density balance, the momentum balance (for a nonpolarized and 
nonmagnetized body) and the density of the internal energy balance, respectively 
[12] 

(3) p + pvk,k - 0 

(4) pvk - 0ik,i - £kij (j? + i f ) Bj -fk = Q, 
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(5) pe - aikvk,i - qk,k ~ ( j f + jf) Si - pr = 0. 

In (3)-(5) (Jik is the viscoelastic symmetric stress tensor, j f is the normal current 
which satisfies Ohm's law, j s is the supercurrent, Bj is the magnetic induction, fk is 
a given external body force, e is the internal energy density, £t is the electromotive 
intensity, according to the situation that the observer is in the moving point and r 
is the heat source distribution. 

The second group of laws deals with the electromagnetic field and concerns 
Maxwell's equations, the constitutive equations and London's first equation [3], re
spectively 

3 D . 

(6) eijkEk,j = —~wr , Bktk = 0, tijkHkj = j * + j , , Ekik = 0, 

QjS I 
(7) B{ = noHi, Dk = e0Ek, - ^ = j(Ek + ekisviBs), A = n0\

2
0. 

In (6)-(7) Ho is the permeability and eo is the permittivity of vacuum, the displace
ment current and the free charge density have been disregarded. Moreover, the 
following relations hold true 

£% — Ei + eijkVjBk, Ei — —ipi — , 
(8) ! & 

Bi = eijkAkij, - Aiikk - j f - j? = 0. 
Mo 

The third group of fundamental laws concerns the time evolution of fluxes and 
internal variables 

(9) 4k~Qk(C)=Q, js
k-J

s
k{C)=Q, 

(io) V - * (C) = 0, i> - * (C) = o. 

The use of the second law of thermodynamics in the form of the entropy inequal-

ity 

(11) ps + $ ^ - ^ > 0 

gives us a possibility to determine all the constitutive functions that in our case 
form the set 

(12) Z = [alk, e, s, $*, j f , Qk, * , * , J * } . 

The most effective way to do that is the use of Liu's theorem [9]. For the 
purpose of the paper we are only interested in the determination of mechanical 
phenomenological properties of the vortex lattice field versus H (HC1 < H < HC2) 
and to create a proper constitutive law for the stress tensor <7y. We choose it as 
based on isotropic polynomial representation of tensor function of tensor, vector and 
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scalar variables [10, 11]. We assume that the considered lattice is isotropic and we 
reduce for our purpose the set (2) to 

(13) C\ = {sij,iij,Bi} 

Then, we assume that <7y should be of a similar form like a viscoelastic isotropic 
body, i.e. 

(14) aij = 2Metj + LekkSij + 2Mitj + CekAj 

where M, L, M, C are the material coefficients. All of them concern both the lattice 
and fluid states and they are functions of the invariant BkBk [12]. 

Because the definition of aik concerns both the viscoelastic lattice and the viscous 
fluid, we split (14) into the trace and deviatoric parts: a0 = akk, Ty = <7y — \a05ij-
So, 

a0= (2M + 3L)ckk + {2M + 3C)ikk, 

W 2 2 
Tij = 2Meii - -Mekk8ij + 2M£ij - -Mikk5i:i. 

Now, we assume that the pure lattice exists only for Hc\ and the pure fluid exists 
only for Hc2. For magnetic field intensities HA < H < Hc2 the coexistence of the 
lattice and fluid occurs. In this way, the following superposition holds true: 

(16) ao = lattice + afluid ] Tij=Tlattice+Tfluid 

Hence, introducing the following parameters whose form suggests the invariant 
BSB. 

(17) 

(18) 

HC2 - H ' 

HC2 - -Hci, 

H-HC1" 

HC2 - HCl / 

\2 

) 

f 
1 

HC2 

HCl 

/ 0 if H = 
I 1 if H = 

f 0 if H = H, 
I 1 if H = H, 

we can rewrite (15)-(16) as follows 

(19) a'0
attice = a(2^ + 3A) ekk + a ( 2 ^ + 3AL) ikk, 

(20) rftice = 2/j.aSij - - /xae^Jy + 2/ii.aey - -\iLekAj , r^uid = pDcij, 

where A, [i are the Lame constants of the lattice, AL, [iL are the viscoelastic constants 
of the lattice, p is the pressure of the fluid and D is the viscosity of the fluid. We have 
assumed in (19) that the viscosity during compression is negligible so the viscous 
coefficient by ekk vanishes. Introducing tilt modulus K and shear modulus G both 
for elastic and viscous states of the vortex lattice as 

(21) 3if = 2^ + 3A, 3KL = 2fiL + 3AL, 
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(22) G = n, GL = iiL, KL = 3D = 3ri, GL = D = r], 

where 77 is defined by (1), from (14)-(21) we finally obtain the required form of the 

(23) cry 
1 2 \ 2 
-aK - -aG 1 ekk - ~ar)ikk 

6ij + 2aG£ij + 2 (a + 0) jj£y , 

(24) where a + / 
• { : 

= 1 

= f(H) 
if H = HCl or H = Hc 

if HC1<H< HK 

<C2 

l c 2 

We have assumed in (23) that the viscosity of the vortex lattice deals only with 
shear [4]. Therefore, we have put KL — 0 in (23). The final form of <7y for H — HC1 

concerns only the vortex lattice and for H = HC2 only the pure fluid. The transfer 
from the lattice state to the fluid one is continuous, not in the form of a phase 
transition. That problem is still open because there has not been any convincing 
proof whether the transfer is smooth or singular [5]. 

We apply now the proposed tensor (23) to the phenomenological field theory 
for the vortex field resulting from the thermodynamical model presented. Here,we 
confine ourselves only to the magnetomechanical features of the considered field. 
Now, using (4), (8) and the Maxwell equations we obtain (cf. [12]) 

(25) <?ik,k + £ikr£kuHsjBr ~ P^i 

Eliminating from (6), (7) and (25) Ek, j k , Bk, and Oik with the help of (23) and 
utilizing the definition of the linear strain tensor we arrive at the following set of 
the looked for field equations: 

a.G + (a + P) 7] 
dt 

(26) + 

1 

d 
ajG + ia + fi)^-

{K + G)a+{a + 3,9) -q 

(Uij + Ujj) 

+ - « , ; [K-2G- 277— ) uKk - (3pti - Ptip - Ho (Hr<i - Hi<r) HT = pm 

(27) \Hi,kk — Hi + Ui]kHk — uk,kHi = 0. 

Equations (26), (27) describe dynamics of the vortex field in the type-II super
conductor. 

Now, we linearize the nonlinear system (3), (26) and (27). Then, we assume that 
in the interval (HC1 ,HC2 ) the amplitude of magnetic field is subjected to a small 
perturbation starting from a constant magnetic field H0 and also the mass density 
and the displacement vector modulus of the vortex field are subjected to a small 
perturbation from the values taken in a uniform and stationary state. So, we have 

(28) H = H0 + i \h\ « \H0[ P = Po + P U = U() + U 
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In the sequel we continue to indicate p and u as p and u. 
Substituting (28) into (17) and (18) we obtain the linearized forms for a and P 

(the superimposed dash denotes the linearized parameters): 

(29) a = | (a - 2ft), P (c + 2ft), a + P = - [a2 + c2 + 2ft (c - a)] 

(30) HC2 — Hg, (He: Hr, c = H0- Hc 

a and P are not functions of H but are dependent on the parameter Ho and small 
perturbation ft. Using (23), (29), (30) in (26), (27) we arrive at the following linear 
form of the set of basic equations: 

(31) 

aG+(a + p) 77— 
dt 

u',jj + (K + G)a+(a + 3p)V-

Ui,kHok — Uk,kHoi + Agftĵ fc — ft; = 0, 
P + Povk,k = 0. 

',i — MO (ftr.i ~ fti.r) H$r — plii 

4. — Applications: magnetoacoustic waves in a vortex lattice and in a 
vortex fluid 

The set of equations (31) form a very good starting point to analyze magne-
tomechanical wave propagation along the vortex array both in the "lattice" and 
"fluid" states [13, 14]. Let us assume that the applied magnetic field is taken as 
HQ = [0,0, H03] very close to the limiting values Hn and HC2. Supposing that the 
superconducting body occupies the whole space and that vortices are parallel one 
to another in x3 direction we consider a propagation of magnetomechanical waves 
along xi direction. 

First, we confine ourselves only to the vortex lattice state of the vortex array. 
Taking into account H0 ^ HCl , c = 0 , a = HC2 — HCI using (20), (21) in (31), the 
linear field equations can be rewritten into the form 

(32) ^Ui'jj + ^''H + ^ + ^ Uj'ij + 3^ '>« _ ^° ^ r '* ~ ' l i ' r) H°r _ P"i = 0 
Ui,kHok — Uk,kHoi + \0hi:kk fn = 0. 

Stating that the looked for solutions are convergent in time, from dispersion 
relation two modes of propagation (both dispersive and damped) are obtained: a 
coupled longitudinal magnetomechanical wave and an uncoupled transverse wave 
(where there is no interaction between the elastic field and magnetic field). Solutions 
of (32) are looked for in the form 

(33) Mi = w0ie 
ikixi— vt) 

«2 — u02e 
ik{x\—vt) 

h03e 
,ik(x\—vt) 

Hence, the final form of the field equations is the following 

477 LI 71 
(34) c |ui ,n + —Mi,n °h3iH03 - «! = 0, c^u2,11 + -u2 , i i - «2 = 0, 

op p P 
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(35) - u u # 0 3 + Aj^3 i U -h3 = 0, [ where c\ = , 4 = ~ I • 
V P P J 

The dispersion relation for the coupled magnetomechanical ui wave is the fol
lowing 

Solving (36) we have 

V p [9flg3/io + 9c|pfl-4r,2fc V ] 
rte i> — — 

(37) 3pV9 
1 ' 2»A; / \ 

Imv = —i- I where 9 = k2X2
0 + 1 ) 

The dispersion relation for noncoupled mode u2 and its solutions are the following 

ir\ 

pk 
(38) v2 + ^v - 4 = 0, 

(39) R e v = ^ K y - T l 2 - , Imv- " 
2k p ' 2Kp 

In the case of long wave approximation the mode Ui is not damped and dispersed 
because 

(40) Rev=Vp[H^o + cM I m v = Qm 

P 

It is logical that the shortest possible wave u^ can propagate only if k = y- with the 
velocity 

V p [9Hlp0Xl + QcjpXlU - lfor W f [ 
lie v — T= , 

(41) ^ 3 ^ 
Im v = — ——, where II — Air2 + 1. 

3Ao 

The mode u2 behaves differently. There is no case of long wave for u2 because 
the damping in time is infinite (see (39)). But in the case k —> oo we observe a pure 
elastic-like transverse wave as follows: 
Re v = cT, Im v = 0. 

Now, we confine ourselves only to the fluid state of the vortex array. The basic 
set of field equations comes from (31), taking into account that H0 m HC2, a = 0 
and c = HC2 — HCl: 

(42) p + p 0 v k i k = 0, ryuijj + -Vvj,ij - P,i ~ A*o {K,i - Kr) H„ = poVi 
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(43) \lhi,kk -hi + Vi!kHok - vk,kH0i = 0. 

Solutions of (42)-(43) are looked for in the form 

(44) vl = vweik(xi-vt) p = p00e
ih^~vt) h3 = h30e

ik(xi-vt) . 

In (42) p = p(p) , p,i = ^p,i- So, to linearize (42) we expand j - into Taylor's 

series around the rest state of the fluid (indicated with the index "0" ) and we confine 

ourselves only to the first term of the expansion I ̂  J , which defines the acoustic 

wave speed called CQ. Hence, we have 

4T? / dp \ 
(45) — p,ii + iM>h3,uH03 + — p,n 

3p0 \dpJo 
AQ/13,11 ~h3-\ pH03 

Po 
0. 

Now, we calculate ( ^ ) . If the vortex field is modeled as an ideal gas, we use 

the constitutive law p = RT0p, where R is the gas constant and TQ < Tc (see cross 
section in the plane (xi, x2) in the first picture of Figure 4). 

o o o o o 
o o o o 

o o o o o 

Figure 4: Ideal gas and van der Waals gas models 

If we assume that the flow of vortices is adiabatic we have 

(46) 

dp 

P± 

El 
fti' 

-K, 

where K, = — 
cv 

dp 
dP Jo 

C0g = fcRTo 

If K,=l the processes in the fluid are not adiabatic ones. If we model the vortex field 
by van der Waals gas (see cross section in the plane (xi, x2) in the second picture 
of Figure 4), we consider the following equation p = RT0p (1 — bvp)~l — avp

2, where 
av is the pressure correction coming from interactions between vortex lines and bv 

is the volume correction coming from the sizes of the vortex cores and we obtain 

(47) 
dp 
dP Jo 

clv — RTo (1 - bvPa) 2 - 2a„p0-

For the liquid state of the vortex field we can also determine the acoustic wave speed 
from the general constitutive relations (7), (8). Putting /? = 1, a = 0 and assuming 
that there are no shear components in the total stress tensor, we obtain that the 

file:///dpJo
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pure acoustic wave speed for the fluid c0y is equal to the longitudinal elastic wave 
velocity, i.e. 

(48) ,$, = £ii = *±3i = J_, 
Po Po Ckpo 

where Ck denotes the compressibility of the fluid and Cn is the elastic bulk modulus. 
Now, using (44) in (45), we arrive at the following equation for amplitudes of the 
considered waves 

(49) f — ike - c2 + c2 J pQ0 - p,0Hmh3Q = 0 , 

(50) ^ p 0 0 - (1 + A0
2P) h30 = 0. 

Po 

From the dispersion relation it follows that only a real value of the speed of such 
waves leads to a convergent solution (representing dispersive and damped wave) and 
such a value depends on London's penetration depth. In fact, we have 

(51) 
3po / ; P 

„2 ^ . + CQ ike, 
1 + A2fc2 ° 3p0 

(52) CA = ( — I (where cA denotes Alfven velocity). 
V Po / 

Hence, we obtain 

Re ,c) = |gp| V - P o (4fc*^g/ioA§) + fe2 (4^/ip - QpJlpoA2,) -Hpjio 

3Pnpoy/ki\2
0 + l 

(53) 
2iH0hct>o(i0 

Im(c) = ——— . 
3pnPo 

Now, we introduce a ratio w defined in the following way 

volume of material in the normal state 
(54) w = 

total volume of material 

We assume that all vortices in the liquid state touch one to another forming the 
triangular structure of their circular cross sections. In the picture shown below we 
suggest how to calculate the ratio w. The left black figure concerns volume of the 
material in the normal state. Then the right black figure deals with the total volume 
of the material. Then, we have w = ^5= = 0.918. The radius of the circumference 
in the crossection shown in Figure 5 is the coherence length £. So the density p0 of 
the vortex field must be calculated as follows: p0 = PYBCO • w. 

If w—• 1 , po = PYBCO and the vortex cores are strongly overlapped. 
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Quantity 

A*o-ffo3 
Ao 

e 
To 
Pn 

Pa 
Mo 
$ 0 

C l l 

# 0 3 

Value 
120 T 

4 •10- 7 m 
1(T9 m 
< 9 2 K 

6 • 10"5Q-m 
5 • 103kg/m3 

4?r • 10"7T • m/A 
2.07 • 10_15T • m2 

120 • 0,955 • 108T -A-rrT1 

0.955 • lOM/m 

References 

[4] 
[4] 
[4] 
[4] 
[4] 
[4] 

[4] 
[6] 

Curves 
1 
2 
3 
4 
5 
6 

H03 values 

HC2 

0.8 HC2 

0.6 #C2 

0.4 HC2 

0.2 tfC2 

0.2 HC2 

w 
1 
1 
1 
1 
1 

7r/2x/3 

Tables: Quantity values and the family of dispersion curves. 

Now, the obtained results have been applied to the ceramic material YBa2Cu30y 
(YBCO). A family of dispersion curves c = c(k) are obtained for different values 
of #03 very close to HC2. For the acoustic wave speed c0 = caf = 1.51 • 103m/s 
and various values of w (see right table) the curves are shown in Figure 6. It is 
seen that the dispersion is observed only for long magnetoacoustic waves (for big k 
values the dispersion disappears) and that for H03 > 0, 2HC2 the vortex cores overlap 
and c velocity of the waves decreases (if the applied magnetic field is weakened by 
interactions among the vortices). 

Figure 5: Crossection of the vortex array. Determination of w. 
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Figure 6: Dispersion curves 
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Decay of the energy to partially 
viscoelastic materials * 

Jaime E. Munoz Rivera t Alfonso Peres Salvatierra* 

1. - Introduction 

Let us consider a n-dimensional body which in its reference configuration is 
homogeneous and occupies the open bounded set Q, C Rn with smooth boundary 
T. Let x H-> u(x, t) be the position of the material particle x at time t. Then the 
viscoelastic equation of motion is given by 

/*oo 

putt-K,Au+ g(s) div {a(x)Vu(-,£ — s)} ds = / in f2x]0,oo[ 

u(x, i) = 0 on 3flx]0, oo[= rx]0,oo[ 

u(x,0)— UQ(X), Ut(x,0) = Ut(x), in f2. 

where p is the mass density function, g is the relaxation function and / denotes 
the body force. Here we are mainly interested on the asymptotic behaviour of the 
solution u when t tends to infinity. Note that the above model is dissipative, and 
the dissipation is given by the memory term, where a > 0. The memory is effective 
only in a part of the body f2 where a > 0. In this paper we also consider locally 
distributed dissipation; but this dissipation does not appear by the introduction of 
any artificial mechanism. On the contrary, it arises because of the mixed structure of 
the material. That is, we consider a body consisting of an elastic and a viscoelastic 
part. So, the dissipation is due to the memory effect which works only over a portion 
of the material. 

Denoting by a the stress and by * the convolution product g * f = /g g{t — 
T)/(T) dr, the constitutive law we use in this paper is given by 

a — KVU + a(x)g * V«, 

*AMS classification code: 35B40, 35L05, 35L70 
Keywords and phrases: viscoelasticity, exponential decay, localized damping, materials 
with memory. 
Supported by a grant 305406/88-4 of CNPq-BRASIL 
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tNational Laboratory for Scientific Computation, Department of Research and Development, 
Rua Getulio Vargas 333, Quitandinha CEP 25651-070. Petropollis, RJ, Brasil, 
and IM, Federal University of Rio de Janeiro. 

'Universidad Nacional Mayor de San Marcos. Av. Venezuela s/n, Lima - Peru. 
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so that, the corresponding motion equation for K = 1 may be written as 

(1) utt - Au + J g(t- r)div {a(x)Vu} dr = 0, in ftxlO, oof 
Jo 

with initial data 

(2) u(x,0) = UQ(X), ut{x, 0) = U\{x) in SI. 

and Dirichlet's boundary condition 

(3) u(x,t) = Q, on rx]0,oo[. 

For materials with memory the stress depends not only on the present values but also 
on the entire temporal history of the motion. Therefore, we have also to prescribe 
the history of u prior to 0 as the initial data. Here we assume that u vanishes 
identically for t < 0, that is 

u(x, t) = 0, for t < 0. 

Let x >-> a(x) be a non negative C2-function defined over Q, and let us denote by uie 

the set 

wf = (uIffoB((i))nn, 
where Be(x) = {x £ 1RJ1; \\x\\ < e} and To is given by 

r 0 = {x € F; (x-x0)-v>0}, 

where v is the unitary external normal defined over T and x0 any point of Mn. For 
the one dimensional case we have that w£ =}L — e, L[. The hypotheses we use on a 
are the following 

(4) x M- a(x) e C2(Q.); a{x) 
0 on fl \ w£ 

1 on we/2. 

(5) |Vo(a;)|2 < c\a(x)\. 

In the next picture £1 is a rectangle, the set we denotes the viscoelastic part of the 

body. Note that u>e is behind the part that an observer can see when situated on 
Xo- This is a particular case in which the geometric requeriments of Bardos et al. 
[1] and Ralston [8, 9] are satisfied 

I 

I 
x0 
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Let us mention some other papers related to the problems we address. Dafermos 
in [2] proved that the solution to viscoelastic system goes to zero as time goes to 
infinity; but without giving explicit rate of decay. Lagnese in [3] considered the 
linear viscoelastic plate equation obtaining uniform rates of decay but introducing 
additional damping terms acting on the boundary. Uniform rates of decay for the 
solutions of linear viscoelastic system with memory were obtained recently by M. 
Rivera et al [5]. Unfortunately the method used to achieve uniform rates of decay in 
those works are based on second order estimates, which are time depending in our 
problem. Thus, the methods that have been used for establishing uniform rates of 
decay fail in the case of partially viscoelastic equation. Therefore a new asymptotic 
technique has to be devised. For nonlinear models see [6]. 

The aim of this paper is to show that in the geometrial setting above, the energy 
decays exponential provided the kernel g also decays exponentially. More especifi-
cally, we assume that g satisfies 

(6) 5 e C 3 ( ] 0 , o o [ ) , g(t)>0, \g"(t)\<cg(t), \g"'(t)\ < cg(t) 

(7) -Kog(t) < g'{t) < Klg{t) 
rOO 

(8) a := 1 - / g(r) dr < 1 
Jo 

To facilitate our analysis, we introduce the following binary operators 

guVu = / g(t — r) a(x)\Vu(x,t) -VU(X,T)\2 dxdr 
Jo Jn 

g n u = / gft — r) a(x)\u(x,t) — U(X,T)\2 dxdr 
Jo Jn 

Under the above conditions the main result of this paper is given by 

T H E O R E M 1 Under the above assumptions on Q,, ui and a and with the kernel g 
satisfying (6)-(8), the weak solution of the viscoelastic equation (l)-(3), decays ex
ponentially as time goes to infinity. That is, there exist positive constants c and y 
that do not depend on the initial data, such that 

E(t) < cE{Q)e-lt 

where by E(t) we are denoting the first order energy 

E(t) - i J \ut\
2 + { l - 0(1) J g(r) d r } |Vw|2 dx +-g a Vu. 

The method we use here is based on the construction of a functional C for which 
an inequality of the form 

jtC{t) < -cC(t) 

holds, with c > 0. 
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2. - Existence results and preliminaries 

Our starting point is given by the following Lemma 

LEMMA 1 For any v e C ^ O ^ / P ^ L ) ) we get 

f I git- T)a(i)Vw dr • Vvt dx = --g{i) [ a(a;)|V?;|2 dx + -g' n Vv 
Jn Jo 2 Jn 2 

J2Jt{9UVv-{fo9dT)La{x)MdX 

/ g{t- r)a(x)v dr • vt dx = --g{t) / a(x)\v\2 dx + -g' D v 
Jn Jo 2 Jn I 

-\jA9uv-(f0
9dT)La{xM2dx 

P R O O F . It is easy to see that 

d r rl 

a(x)Vv(r)dT • Vvt(x,t) drdx 
dt Jn Jo 

+2 J g(t - r ) dr f a(x)VvVvt dx 
Jo Jn 

= g' dVv-2 f f g(t- T)a{x)Vv(r) dr • Vvt dx 
Jn Jo 

+-r\ f ff(T) dr I a(x)\Vv\2 dx\ - git) f a(x)\\7v\2 dx 
dt [Jo Jn J Jn 

This shows our result, the proof of the other identity is similar. | 

It is not difficult to show that there exists only one solution to equation (l)-(3). 
We summarize the existence result in the following theorem 

T H E O R E M 2 Let us suppose that g is a C°-function and that the initial data satisfies 

(u0,ui) G H^fl) x £ 2 (0) , 

then, there exists only one weak solution u to equation (l)-(3) with the following 
regularity, 

u € L°°(0, oo; H^Q)), ut £ L°°(0, oo; L2{9)). 

In addition, if g e C1 and 

(u0 lui) e H2(Q)r\H^(Q)xH0
l(Q); 

then, there exist only one strong solution u of equation (l)-(3) satisfying 

ueC2~i(0,oo;H0
1(n)nHi{n)), i = 1,2. ueC 2 (0 ,oo ;L 2 ( f i ) ) . 

The dissipative property of the viscoelastic equation is summarized in the following 
Lemma: 
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LEMMA 2 Any strong solution of (l)-(3) satisfies 

jtE{t) = i s ' • Vu - ^g(t) f^a(x)\Vu\2 dx. 

PROOF. Multiplying equation (1) by ut and integration over 0 yields 

~r / ( K l 2 + l V u l 2 ) dx= f a(x)g * Vu • Vu t dx. 
dt Jay ' Jo. 

From Lemma 1 our conclusion follows. | 

Lemma 2 tells us that the dissipation given by the memory term is effective only 
on the support of the function a. We will show in section 4 that such dissipation is 
enough to produce the exponential decay of the energy, as time goes to infinity. 

3. — Regula r i ty of t h e convolut ion 

Let us denote by || • ||co the norm in C°(f2). The following Lemma will play an 
important role in the sequel. 

LEMMA 3 Let us suppose that g is a positive function satisfying condition (8), a g 
C°(Q) is such that \\a\\c° < 1 and finally let us take f g L?{Q, T; L2(Q,)) with 
1 < p < oo. In this conditions we have that there exists only one solution v of the 
Volterra's equation 

v{x,t)- f g(t-T)a(x)v(-,r)dT = f(x,t), a.e. (x,t) € fix]0,T[ 
Jo 

satisfying 
«6L p (0 ,T ;L 2 ( f i ) ) . 

Besides, there exists a positive constant c independent of T, such that 

\\V\\LP{0,T;L*) < c\\f\\LP(0,TiL*)-

P R O O F . (See [7]) I 

LEMMA 4 Let us suppose that 0 < a(x) < 1 satisfies conditions (6)-(8) and that g 
is a positive function satisfying (8). If u is a weak solution of (l)-(3) satisfying 

ut e L°"(0,T;L2(ty), u e L°°(0,T;Hl(n)), 

then we have that 
g*ueL2{0,T;H2(Q)) 

and 

(9) \\g * uH^o^iM) <cf E(t) dt + CE(0). 

where C is a positive constant independent ofT. 
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P R O O F . Applying convolution to equation (1) we have 

-Ag *u + g * g*div {a(x)Vu} = —g* utt. 

Performing an integration by parts over ]0, t[ we get 

g*utt = g{0)ut - g{t)ut{; 0) + / g'(t - r)ut dr := -F. 
Jo 

From the hypotheses we conclude that F € L2(Q, T; L2(Q)). Denoting by v = g*Au, 
and using the elliptic regularity our conclusion follows. • 

4. - Exponential Decay 

To show the exponential decay of the solution let us introduce the following 
functional 

I(t) := J^ a{x) | « ( (p * u)t - -s(0) |u |2 - f^ g dr\u\2 drrj dx 

--g" au + - J a2(x)\g* Vu|2 dx. 
Z 2 Jn 

In these conditions we have: 

LEMMA 5 Under the above conditions and for g £ C3 , satisfying conditions (6)-(8), 
we have that for any 5 > 0 there exists C$ satisfying 

-rHt) < -g{0) [ a(a:)M 2 dx + 5 [ a(x)\Vu\2 dx + Csg a V« 
at Jn Jn 

+Csg{t) [ a(x)\Vu\2 dx + C6 I I g(t-T)\u{x,t)~u(x,T)\2 dxdt 
Jn Jue Jo 

+CS I \u(x,t)\2 dx. 

Here Cg —>• oo when 5 —>• 0. 

P R O O F . Multiplying equation (1) by a(x)(g * u)t we get: 

/ utta(x)(g * u)t dx — I Aua(x)(g * u)t dx 
Jn Jn 

-JQa(x)g*Vu.V{a(x)(g*u)t}dx = 0, 
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from where we have: 

d 
h - 11 / uta(x)(g * u)t dx - / uta(x){g * u)tt dx 

at Jn Jn 

I uta{x){g *u)t dx — I uta(x)(g(0)u + g' * u)t dx 
d_ 

dt 
d_ 

It 
\ uta(x)(g * u)t dx - g(0) / a(x)\ut\

2 dx 
Jn Jn 

- / a{x)ut {g'(0)u + g" * u} dx 

= -T, I uta{x){g * u)t dx - g{0) [ a(x)\ut\
2 dx - ^ r ^ — / a{x)\u\2 dx 

at Jn Jn 2 dt Jn 

- / a(x)utg" * u dx. 
Jn 

Using Lemma 1 we get that 

/ a(x)utg" *udx = -g'" • u - - / a(x)|«|2 dx 
Jn 2 2 Jn 

±{g»Uu-[gdTJna(x)\u\Ux), 
1 d 

~2 

from where it follows that 

d 
I1(t) = JtI0(t) - 5(0) fa a(x)\ut\

2 dx + \g"{t) jna{x)\u\2 dx - \g>" • u, 

where by L0 we are denoting 

h = j n a{x) \ut{g* u)t - ^ > | 2 \ dx - -g" • u - J^ g dr J a(x)\u\2 dx. 

Using similar approach we estimate the others terms. 

LEMMA 6 With the same hypotheses as Lemma 5 we have that the solution of equa
tion (l)-(3) satisfies, 

I auut dx < I a(x)\ut\
2 dx — c0 a(x)\Vu\2 dx + c / \u\2 dx 

dt 

)0 Jut 

+CS f [ g(t-T)\u{-,t)-u(;T)\2dxdt. 
JO Jul. 

P R O O F . Let us multiply equation (1) by a(x)u(x,t) and uing |Aa(a:)| < C our 
conclusion follows. • 

LEMMA 7 Let us denote by qk a C1 -function, then any strong solution 
(u e C^O, T; H^^Q)) for i = 0,l, 2) of the wave equation 

(10) utt - Au = / , 
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u(x, t) = 0, on Fx]0, oo[, 

satisfies the following identity 

d f du f du If .du 2 

JtLUtqkdi-/X = LfqkdX-k
dX+2JrqkUk^ dF 

JT av oxk 2 Jn dxk
 ( > Jn oxk 

P R O O F . (See [4]) 

LEMMA 8 Let us take qk = a2(x)hk, where hk 6 C2(f2) is such that hk = vk on T. 
Then we have that 

+C / a(x)\h(x) div {ag * Vu} |2 dx, 
Jn 

for any solution of equation (l)-(3) 

P R O O F . From Lemma 7 applied to qk = a2(x)hk we have 

- - I T / a2hkut-r— dx = - fa2(x)hk-— dx - / a2 {x)hkvk\ — \2 dx 
dt Jn oxk Jn oxk Jr av 

1 J dja^l { j dx+[Vu- Va2hkp- dx. 
2 Jn axk

 v > Jn axk 

Since o = 1 on r 0 and hk = vk on T, using the Cauchy-Schwarz inequality, our 
conclusion follows. • 

CN{t) = NE(t) + lit) + — [ a(x)uut dx-S0 f a2(x)uthk-^- dx. 
2 Jn Jn axk 

Let us denote by Cft(t) the functional 

In these conditions, and using Lemma 5 and Lemma 6 we arrive to 

LEMMA 9 Under the above notations we have 

(11) jfCN(t) < -KoJna(x){\ut\
2 + \Vu\2} dx 

-^{gnVu + g(t)Jna(x)\Vu\2dx}-5jfr\^\2dT 

+Cd0 [ a(x)\h(x) div {ag * Vu} |2 dx + C f \u\2 dx 
Jn Jw<, 

+C [ I g(t-T)\u(x,t)-u(x,T)\2 dxdr. 
Jo Ju, 
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LEMMA 10 Let us suppose that u is the weak solution of (l)-(3), then there exists 
a positive constant C, independent ofT, such that 

(12) j j a{x)\A\v{ag*Vu}\2 dxdt < C F j a{x) {\ut\
2 + |V«|2} dxdt 

+C fTg(t) dtE{0), 
Jo 

(13) / f \div{ag*\'u}\2dxdt < cf E(t)dt + C f g(t) dtE(0). 
Jo Jn Jo Jo 

P R O O F . Note that 

div {ag * Vu} = Vfl • Vu + ag * AM. 

As in the proof of Lemma 4, v = ^/ag * Au satisfies 

—v + a(x)g * v = \/aG. 

Using similar arguments, we conclude that 

IMI iwj t f , ^ £ J^a(x)\G\2 dxdt 

< f f a(x){\ut\
2+\Vu\2} dxdt + C [ gdtE{0). 

Therefore it follows that 

/ / a{x)\ div {ag * Vu} |2 dxdt < C [ [ a(x) {\ut\
2 + |Vu|2} dxdt 

+C [T g(t) dtE(0), 
Jo 

for a positive constant C. The proof is now complete • 

LEMMA 1 1 Let us suppose that y> is a weak solution of the wave equation 

ifitt - Atp = 0 

<fi(x,0) = Ifio, ft = f\ 

<p(x,t) = Q, on E = rx]0,oo[. 

Then, for x0 € Rn and T > 2R(x0), there exists a positive constant C > 0 for which 
we have 

E{0) <C j j \?t\2 + |V</>|2 dxdt 
JO JIM 

for any (c/?0,^i) € #o(ft) x L2(Q.) where 

R(x0) = m*x\'£(xk-x
0
k)

i\1'* 
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P R O O F . See [4] Lemma 2.3, Chapter VIII, pag 411. | 

Our next step is to estimate the term / u \u\2 dx. To do this we will use the 
following Lemma 

LEMMA 12 Let us suppose that u is a weak solution of (l)-(3), then for any e > 0 
there exist a positive constant Ce for which we have 

\u\2 dxdt < Celfg 9(t) J^a(x)\Vu\2 dxdt + J^ g • Vu dt\ 

: f J a(x) {|Vu|2 + \ut\
2 + | div ag * Vw|2} dxdt, 

rT 

/ f \g*Vu\2 dxdt < cA f g{t) f a(x)\Vu\2 dxdt + f g D Vw dt\ 

+e J J a{x) {|V«|2 + \ut\
2 + | div ag * V M | 2 } dxdt, 

Jo 

and 

/ / / g(cr — t)\u(x,a) — u(x,t)\2 dxdadt < 
Jo Jo Jn 

cAj g(t)J a{x)\Vu\2 dxdt + j^ j O V u d t 

+e / I a{x) {|Vw|2 + \ut\
2 + | div ag * Vu|2} dxdt, 

provided T is large enough. 

P R O O F . We argue by contradiction. Suppose that there exists e0 > 0 and a sequence 
of functions such that 

/ / \uv\2 dxdt > vlf g(t) [ a(x)\Vuv\2 dxdt+ [TguVvT . 
Jo Jn [Jo Jn Jo 

(14) +e0 J
T J a{x) { | V u f + | < | 2 + | div ag * Vw|2} dxdt, 

for v —> co. By the linearity of the problem we may suppose that 

(15) f [ \u"\2 dxdt = 1, Vi/ € JN. 
Jo Jn 

So, we get that 

g{t)a{x)\Vu"\2+j a(-)5(i--r)|w"(-,r)-M"(-,i) |2dT ->• 0 strongly in Ll{]Q, oo[xQ). 

(16) 
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Let us decompose u" into: 
V V i V 

u -w +v , 

where 
< - Aw" = -div {ag * Vw"} (bounded in L2(0, T; L2(0))). 

w'/(a;,0) = 0, < ( z , 0 ) = 0, in Q 

w"(x,t) = 0, on rx]0,oo[, 

and 

u"(a;,0) =w"(a;,0), < ( z , 0 ) = uv
t(x,0), in fi 

v v ( a ; , t )=0 , on rx]0,oo[ 

From (14) and (15) it follows that uv is bounded in 

VK1 'o o(0,r;L2(w))nLo o(0,T;i71(w)). 

Note that w" is also bounded in 

WlfiO(0, T; L2{Q)) n L°°(0, T; H^{Q)). 

Thereby, we conclude that v" = u" — w" satisfies 

< is bounded in L2(0, T; L2{u)), 

v" is bounded in L2{Q,T;Hl{u)). 

Using Lemma 11 we have 

(«"(-, 0 )X( - , 0 ) ) = («"(•, 0) ,<(- ,0)) , is bounded in tf^fi) x L2(f2). 

which implies that 

t>" is bounded in W 1 ' o o (0 , r ;L 2 (n) )nL o o (0 ,T;H 0
1 (n) ) . 

Hence 

M" = « " + «" is bounded in W1 '°°(0,T; L2(fi)) n L ^ O . T ; ^ 1 ^ ) ) . 

Therefore there exists a subsequence (which we still denote in the same way) and a 
function u € W1'x(0,T;L2{Q,)) such that 

u" -» u weak* in W1 '°°(0,T; L2(fi)) 

and satisfying 

UH — AM = 0, 

u{x,Q) = u0(x), ut(x, 0) = Ui(x), in fi 

u(x,i) = 0, on Tx]0,T[ 
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From (16) we conclude that 

M = 0 on w£x]0,T[ 

Using the Holmgren's Theorem for T > 2diam (£l\u)e) we get that u = 0 on f2x]0, T[. 
But this is contradictory with (15) since due to the compactness of the embedding 
Hl{V,y.]0,T[) C L2(f2x]0,T[), the sequence u" converges stromgly in L2(Qx]0,T[). 
This contradiction proves the first inequality. To prove the other we use similar 
arguments. Thereby, our conclusion follows. • 

Using the inequalities (11), (13), Lemma 12 and taking e > 0 small enough we 
arrive at 

(17) CN{T) - £N(0) < -KQ f M{t)dt + CeE(0) + Ce f E{t) dt 
Jo Jo 

for N > 2C; where by M we are denoting 

M(t) = [ a(x) {\ut\
2 + \Vu\2} dx + gaVu+ f & 2 dr . 

Now we are in conditions to prove the main result of this paper. 

P R O O F O F T H E O R E M 1. We will suppose that the initial data belongs to 
H2(£l) fl HQ(Q.) x //o(fi). Our conclusion will follow using standard density argu
ments. Using Lemma 7 for q = x — x° we conclude that 

d f du , 
-"77 / utqk-— dx = 

at Jn oxk 

from where it follows 

d r du , 
-T7 / utqk-— dx 

at Jn oxk 

which implies that 

(18) -— utqk—— dx = 
dt Jn oxk 

- j O £ * + ij£,£{W-lv.r-}* 
f •-, «-, du , If ,du.0 

= -/B< i+j/nK-i^)^ 
+ !^u\2dx-\jvqkvkf^\2, 

-U«£k*+\llM-w)*° 
+ i / n i^ + i v U | ^ - | / r ^i | r . 

Multiplying by u equation (1) we get 

: / uutdx= / \\ut\
2 - IVMI2} dx + / ag * Vu • Vu dx. 

• Jn Jn l ' Jn 

d 

dt. 
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Inserting this identity into (18) we have 

du , r „ du , n — 1 d f du r du n-l d r 
/ utqk-— dx = - }qk-— dx -i — — / uut dx 
Jn dxk Ja dxk 2 at Jn 

ag * Vu • Vu dx + - \ut\ 
Jn 2 Jn 

dt Jll UXk JQ OXk 

n-l 

2 

r dv 

2 + |Vw|2 dx 

-\L%vk du 2 

from where we have 

d 
,. , / utqk— dx — uutdx\ = - / fqk-— dx 

dt I Jn dxk 2 Jn J Jn oxk 

:=X(t) 

- ^ ~ I ag*Vu-Vudx+- / \ut\
2 + \Vu\2 dx - - f qkvk\^\2. 

2 Ja 2 Jn 2 Jv dv 

Integrating over [0, T] we get 

(19)X(T) - X(0) = - fT [ fqk~dxdt-^—^ fT [ ag*Vu-Vudxdt 
Jo Jn dxk 2 Jo Jn 
1 r^1 r 1 r̂ 1 r du 

+ o / / H 2 + \Vu\2 dxdt-- / qkvk\ — |2 dt. 
I Jo Jn I Jo JT av 

Since 
X(T) < CE{T), X(0) < CE{Q), 

and using 

f E{t) dt<Cl f f \ut\
2 + |Vu|2 dxdt+ f g • Vu dt I , 

together with inequality (19) we conclude that 

/ E{t)dt<cJ M{t)dt + C{E{T) + E(0)}. 

From the energy identity we get 

(20) E(0) < E(T) + [ M{t) dt. 
Jo 

Therefore, there exist a positive constant C\ such that 

(21) / E(t) dt<d f M(t) dt + dE(T). 
Jo Jo 

Since E{t) is a decreasing function we have that 

1 fT 

E(T) <-[ E(t) dt. 
1 Jo 
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Inserting the above inequality into (21) we get 

(22) (1 - ^) f*E(t) dt < d [ M{t) alt. 

On the other hand, it is not difficult to see that 

(23) c0E{t) < C(t) < ClE(t). 

Therefore using (17), (22), and (23) we conclude that 

C(T)-C(0) < -KO f M(t)dt + CeE(0) + Ce f E{t) dt (using (20)) 
Jo Jo 

< -no I M{t)dt + CelE{T) + J M{t)dt\+Cef E{t) dt 

< -m J C(t) dt. 
Jo 

provided e small enough. Using inequality (23) we can establish that 

/ C(t) dt > c [ E(t) dt > cTE(T) > c2TC(T), 
Jo Jo 

which implies that 
C{T) - C(0) <-K!dTC(T). 

This is equivalent to 

C(T) < j^fCiO). 

From where our conclusion follows. I 
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Some Remarks on the Conserved 
Penrose-Fife 

Phase Field Model with Memory Effects 

E. Rocca * 

1. — Introduction 

This note is concerned with the study of the following initial-boundary value 
problem in the cylindrical domain Q := il x (0, T), where Q C R N (N < 3) is a 
bounded connected domain with a smooth boundary T and T > 0. Find a pair 
(tf, X) : Q -»• R2 satisfying 

(1) $(tf + A(X)) - A(</>(tf) + k * a{d)) = g in Q, 

(2) -dv{ip{d) + k * a(#)) = 7(^(»?) + k * a(i9) - h) on S := T x (0, T), 

(3) i9(-,0) = tf° inf i , 

(4) 9 t X - A ( - A X + e + a'(X) + ^ ) = 0 in Q, 

(5) ?G/5(X), i n Q , 

(6) a„X = 0, dv(-AX + $ + o'(X) + ?yp-)=e o n E , 

(7) X(- ,0)=X° inf2, 

with dt — d/dt, being A the Laplacian with respect to the space variables, and d„ 
denoting the outward normal derivative on T. 

In (1) there is a memory term given by the convolution product with respect to 
time, that is 

(8) (a * b){t) := f a(s)b(t - s)ds, t e [0,T], 

where a and 6 may also depend on the space variables. 
The system given by the partial differential equations (1) and (4) provides a 

quite general version of the phase-field model proposed by Penrose and Fife in [5-6] 
for the kinetics of phase transitions. 

'Dipartimento di Matematica "F. Casorati", Universita di Pavia, via Ferrata 1 
27100 Pavia, Italy - Phone: + 39 0382 50 5651 - Fax: + 39 0382 50 5602 
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This model describes the evolution of a material, with constant latent heat of 
fusion-solidification process (being it A'(X)), exhibiting two different phases (e.g., 
solid-liquid in melting phoenomena), in terms of the absolute temperature $ : Q —• 
(0, +00) and the order parameter X : Q -» R (representing, for instance, the fraction 
of one of the phases). The data g, h and £ (which is required to be here a zero-mean 
value function) stand for the heat supply, the outer temperature and the mass flux 
on the boundary; the functions A and a come from the smooth part of the free 
energy, while the multivalued map /? is derived from its non smooth but convex part 
(usually /? is the inverse of the Heaviside graph). To be more precise, the sum j3-\-a' 
stands for the derivative of the double-well part of a Ginzburg-Landau free energy 
potential (see e.g. [3, 6]). 

We may observe that we have coupled the second equation, which rules the 
evolution of the order parameter X, with Neumann homogeneous boundary condition 
on X and Neumann non-homogeneous boundary condition for the chemical potential 
w := - A X + f + cr'(X) + ^ p . This seems indeed to be of some physical interest. In 
any case, we have to take the "natural" homogeneous Neumann boundary condition 
for the concentration X (see [5] for a justification). 

In [7] the analogous system of equations, with Neumann homogeneous boundary 
conditions for the chemical potential w, was studied. 

Finally, k : [0,T] —>• R is an integration kernel, a : (0,+00) —> R is a concave 
function, which will be specified in the sequel, ip is a maximal monotone function 
and it is linked to a as detailed below, and 7 is a positive constant coefficient. 

The term —A(ij)(-d) + k* a(#)) in (1) represents the divergence of the heat flux, 
which is given by 
(9) q = -V(i/>(#) + k * a(t?)). 

In this work we are going to give an existence result of a weak solution to (1-7). 
For the proof of this result we will refer to [7], in which analogous statement are 
given for the same problem with Neumann-homogeneous boundary condition on w 
and with a more regular memory kernel k. Here we will see as this proof may be 
adapted to the case of a less regular k and Neumann non-homogeneous boundary 
condition on w. 

More regularity on the data and on the memory kernel is required here in order 
to get the uniqueness of the solution. 

2. - Main results 

Consider the initial-boundary value problem (1-7). We make the following gene
ral assumptions on the data of the system 

(10) fj is the subdifferential of a non-negative, proper, convex, 

and l.s.c. function (3 : R -4 [0, +00] satisfying 

j9(0) = 0, and D(j5) denotes its domain, 

(11) a € C2(R), a" e i °° (R) , 
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(12) A : R ->• R, and X(r) = Lr + L1, Vr G R, 

for some constant L, L' > 0, 

(13) V : (0) +°o) —> R a maximal monotone function, 
rj 

(14) a : (0, +oo) -> R, and a(r) = + C2r, 
r 

for some positive constants C\, C2 and Vr G (0, +oo), 

(15) a o •i/)"1, I/J o a"1 : R —> R are Lipschitz continuous, 

(16) k G L2(Q,T) n £?)OO(0,T), for some 77 G (0,1), 
(17) P GL 2 (0 ,T ;L 2 (O) ) , ft G L 2 ( 0 , T ; / ^ ( r ) ) , 

(18) £ G L2(E), and f £(t) = 0 for a.e. t G (0,T), 

(19) 0° G L2(fi), 0° > 0 a.e. in Q, u° := a(0°) G L2(fi), 

(20) X° G H^f i ) , ^(X0) G I 1 ^ ) . 

Let us now remark some properties of such an a as in (14), that will be useful in 
the sequel 
(21) a'>C2> 0; 

(22) l imr 2a ' ( r) = Ci; 

(23) lim a(r) = —oo and lim a(r) = +oo. 

Moreover, since a is invertible, we can set 

(24) p := oTl : R —> (0, +oo), that is increasing and Lipschitz continuous, 

because (21) gives p' < 1/C2. 

Now let us give a variational formulation of (1-7). To this end, we denote by 
(•,•) both the scalar product in H := L2(f2) and in (L2(£l))N, also denoted by H, 
and by | • | the corresponding norm. For the sake of convenience, V := H1^) will 
be endowed with the inner product ((•, •)), defined by 

(25) ((vi,v2)) •= [ VvtVv2 + 7 / vyv2, Vvu v2 € V, 

where 7 is the positive constant appearing in the boundary condition (2). Define 
W :— H2(Q) and let us also indicate by (-, •) the duality pairing between V and V. 
We identify H with a subspace of V, as usual, so that {u, v) = (w, v) for all u G H 
and for all v G V. 

Next, we define the Riesz isomorphism J : V —> V, and the scalar product in 
V, respectively, by 
(26) {Jvi,v2} :={(vuv2)), Vv!,v2eV, 

(27) ((wx, tua)). := (wu J " 1 ^ ) , Vtui, w2 G V. 

Let us observe that the norm in V related to the inner product defined above (which 
will be indicated as || • ||) is equivalent to the usual norm in V. Similar considerations 
holds also for V and we term || • ||* the norm in V related to the inner product (27). 
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REMARK 1 Thanks to (14), if we set u := a(i9), it is possible to write the right hand 
side of (4) in the form ^-(u-C2p{u)). Indeed, the role played by (14) is fundamental 
in view of the resolution of (1-7), and, in the following variational formulation, it is 
convenient to write the equations in terms of u rather than of &. 

Then our problem can be stated as follows 

P r o b l e m ( P ) . Find a pair (0,X) and (w,£) such that 

(28) deL2{0,T;V)nC°([0,T];H), i ) > 0 a . e . m Q ; 

(29) u:=a{d) e L2{0,T;V), k * u e L2(0,T; V); 

(30) XeH1{0,T;V')C\L°o(0,T;V)r\L'2{0,T;W), X e D{fi) a.e. in Q; 

(31) f G L 2 ( 0 , T ; H ) ; 

(32) ! o € l 2 ( 0 , r ; V ) ; 

(33) ££/3(X) a.e. in Q; 

(34) dt{p(u) + A(X)) + J(i){p{u))) + J(k*u) = f in V, a.e. in (0,T); 

(35) (dtX,v)+ / V w V » = [ £v, Vi; € V, a.e. in (0,T); 
Jfi Jr 

(36) {w, v)= J VXVv + U + <J'(X) ~^{u- C2p(u)),v), 

Vw e V, a.e. in (0,T); 

(37) tf(-,0) = #°, X(0) = X°, a.e. inQ. 

Let us now state our main results, which will be proven in the following sections. 

T H E O R E M 1 Suppose that (10-20) are satisfied and assume that the mean value of 
X° is an interior point of D{0), i.e., 

(38) m „ : = p ( X ° , l ) € m t ( D ( / 3 ) ) . 

Then, Problem (P) admits at least one solution. 

Concerning the uniqueness of solution, we have the following result 

T H E O R E M 2 Suppose that (10-20) and (38) are satisfied. Assume in addition that 

(39) fe Whl{0,T;V), eeW^iO^H-^T)) 

(40) u° € V, 

(41) X° e H3{Q), dvX
a = 0 on I \ 3£° e V s.t. £° E /3{X°) a.e. in Q, 

(42) fce^'tO.T), 

then there exists a solution ($, X, w, f) to Problem (P) satisfying the further regularity 

(43) tfeff'fO.Tiff), 



317 

(44) u:=a{d) e L°°(0,T;V), 

(45) X € W1,oo(0, T; V) n ^ ( 0 , T; F) n L°°(0, T; W), 

(46) ^ € L ° ° ( 0 , r ; / / ) , 

(47) w € L°°(0,T;V), 

and the components $ and X of such a solution are unique. 

R E M A R K 2 Let us observe that (17) and (39) are satisfied if g e Wl^(0,T;H) and 
h e L2(0,T; ff1/2^)) n W 1 ' 1 ( 0 , T ; f H ( r ) ) . Moreover (40) yields 0° = p(«°) 6 1/, 
because p is Lipschitz continuous. 

REMARK 3 Let us also note that testing (35) with v = 1 yields, thanks to (18), 

| ( X , 1 ) = 0 in (0 ,T) . 

This means that 

(x(t),i) = (x0,i) We[o,T], 
i.e., the mean value of X is conserved. This fact is often used in the sequel. 

3. — Exis tence-Uniqueness 

In this section, we present an implicit time discretization scheme for (28-37). 
As a first step, we prepare some results in the direction of a discrete convolution 
procedure. 

We start by fixing a partition of the time interval [0,T]. To this end, we choose 
a constant time step T := T/n, n € N . Let us assume r < 1. Our next aim is 
to introduce a discrete version of the convolution product in (0, t), for t € (0,T). 
Hence, we recall (cf., e.g., [7]) the following 

DEFINITION 1 Let o = {ai}"=i e En, and b = {6j}"=1 e En, where E stands for a 
real linear space. Then we define the vector {(a *T b)i}?=0 G En+1 as 

f 0 if i = 0 
<48) ^ ^ { r E ; ^ * - ^ if i = l , . . . ,„. 

We note that an equivalent definition is the one that calls (a*T6); := r Yl)=\ <k-j+ibj 
for any i = 0,...,n, with the convention (widely used in the sequel) that it is equal 
to zero when the sum is done on an empty set of indices. We stress also that, in the 
definition of (a*Tb)i only the values {a.j})=i and {bj}'j=1 are involved. 

Let us now introduce some convenient notations. 
For the (n + l)-tuple {zJ-Lo e En+1, let the functions zT, zT : (0,T) -> E be 

specified by 
(49) zT(t) := zu zT(t) := a>i(t)zi + (1 - a,-(f)).z,-_i, 

where ai(t) := (t - (i - l ) r ) / r , for t e {{i - l ) r , IT], i = l,...,n. 
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Let us also set 

(50) Szi := — — , for i = 1 , . . . , n. 
T 

Now a proof of Theorem 1, we may exactly follow [7, Section 3-4], except for the 
approximation of the kernel k and for [7, Lemma 3.2]. Indeed all the estimates can 
be repeated, taking as approximation for k the following one 

1 riT 

(51) ki := - / k(s)ds, for i — 1 , . . . ,n, 
T J(i-\)T 

and [7, Lemma 3.2] may be rewritten as done in the following Lemma 1 (see also [7, 
Remark 4.1]). 

In view of giving this Lemma 1, let we state this 

REMARK 4 We may observe that the hypothesis (16) (in particular k G BijOO(0, T), 
for some rj G (0,1)) may be rewritten in this form 

(52) fce(L1(0,T),BV(0)r))„iOO) for some 77 6 (0 ,1 ) , 

which means that A; belongs to the interpolation space between Lx(0,T) andBV(0,T) , 
of place 77, and BV(0,T) denotes the space of the functions with bounded total va
riation (see e.g. [2]). Recalling also (49), this mens that 

k = kT + (k — kT), where 

kTeBV(0,T), 

{k-kT) e i^O.T) , 

\\k~ &T||Z,1(0,T) < CTV, 

- C" 
PT| |BV(0,T) < ^JZ^, 

for some positive constants C, C", and with 77 G (0,1). 

Now we are ready to give the following 

LEMMA 1 Let (16) hold and {<7j}"=1 G En, where E denotes a linear space endowed 
with the norm \\-\\E- Moreover, let {ki}2=0, oy, and {{k*Ta)i}^=1 be defined as in (51), 
(49) and (48), respectively. Then, there exists a positive constant C, independent of 
T, such that 

(53) \\{k*T a)T - k *aT\\Lii0,T;E) < CTv\\UT\\Li(otT.B), 

for some 77 G (0,1). 

Proof. We have that 

(54) \\(k*Ta) -k* aT\\Li(0tT.E] 

< \\(k*Ta) -kT*vT\\Li{0,T;E) + \\(kT ~ k) *aT\\Li^T.E). 

For the second term, Young theorem ensures that 

\\(kT-k)*aT\\Li^T]E) < pT-&||z,i(o;r)||0v||Li(o,:r;i5) < ^ ^ ^ 1 ^ . ^ , for some 77 G (0,1), 
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thanks also to (16) and Remark 4 
As regards the first term in the right hand side of (54), we may see that, thanks 

to (48), (50), (16), and Remark 4, 

11 {k *T 3.) - kT * aT 11 Ll (0,T;B) 

n flT l~Z 

£ / \rhcTi + Y, r{k^j+l - ki-j)oj dt 
i = l J(I-I)T " j = 1 "& 

< T\kl\\\aT\\Ll{0tT;E) + T\\{5h*T S.)T\\L^(0,T;E) 

< T\ki\\\aT\\Li(otT.E) + T\\(Sk)T\\Li(otT)\\aT\\Li{0tT.E) 

< CT''||CTT||Z,I(O,T;B), for some rj € (0,1). 

This concludes the proof of Lemma 1. 

Regarding / and £, we set 

(55) ft:=- r f(t)dteV,iori = l...,n, 
T J(i-1)T 

(56) Hi := - (" e(t)dt eL2{T), fori = 1 . . . , n, 
T J(i-1)T 

J(i-1)T 

1 riT 

J(I-1)T 

Note that 

(57) ll7rlU2(0,T;V) < ll/IU2(0,r;V")> 

(58) WUmv < ||*||L»(E), 

Then, the approximation scheme may be formulated by making use of an auxiliary 
unknown & = /3T(Xj), where 

(59) /3T, for r > 0, is the Yosida approximation of /3, with constant r1/4, 

so that /3T is Lipschitz continuous with constant T " 1 / 4 . 
Then, the approximated problem takes the form 

(RQ) 1/4"' ~ "«-! , P("») ~ P(M ' -0 , TXi ~X'~1 
T T T 

+J(ip(p(ui))) + J(k *T u)i - fi, in V, for i = 1 , . . . , n; 

(61) (-1 —,v)+fvwiVv=feiV, VveV, fori = l , . . . , n ; 
T Jn Jr 

(62) (wi, v)= [ VXtVv + UiV+ fa'(Xi)v - — f (Ui - C2p{ui))v, 
Jn Jn Jn C^Jn 

Vv G V, for i = 1 , . . . ,n; 

(63) & = /3r(X0, fort = l , . . . , n ; 

(64) u0 = u°, X0 = X°. 

Next, we state and an existence and uniqueness result for the solution to scheme 
(60-64). 

file:///rhcTi
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T H E O R E M 3 Let assumptions (10-20) and (55-56) hold. Let the time step r be 
small enough. Then, there exists a unique quadruplet of vectors {fli, Xj, Wi,fj}7=o e 

#4("+ 1) , which fulfills relations (60-64). 

A proof of this Lemma may be done following exactly the proof of [7, Lemma 3.1]. 
Then, all the estimates done in [7, Section 4] may be repeated in this case, 

thanks to (15-16), (see also [7, Remark 4.1]). So, (as in [7, (4.24-4.31)]) one can 
infer that there exists at least a subsequence of time steps (still denoted by r ) , and 
some functions d, u, X, <p, such that 

(65) p ( « r ) A t f inL°°(0,T;ff) , 

(66) uT^u inL 2 (0 ,T ;V) , 

(67) XT^X mH\Q,T\V), 

(68) X T
A X mL°°{0,T;V), 

(69) {k *T u)T -± <p mL2{0,T;V). 

In addition, the generalized Ascoli theorem (see [8, Cor. 4, Sec. 8]) ensures that, 
thanks to (67-68), at least for a subsequence of r \ 0, 

(70) X T ->X inC°([0,T];ff), 

(71) T^UT + p(uT) -> •d inC°([0,T];H), 

(72) p(uT) -> ti in L2(0,T; V) and so a.e. in Q. 

Now, to deduce that p(u) = d and ip(p(u)) = V>($) w e c a n u s e [1> Prop. 1.1, p.42], 
with the maximal monotonicity of a and ip, and (72). 

Moreover, Lemma 1 and (66) lead to 

(73) {k *T u)T -k*uT-+0 in Lx{Q, T; V), and 

(74) k*uT-k*u^Q mL2(0,T;V). 

Thus, ip = k * u. 
Then, exactly like in [7, (4.34-4.36)], we may also recover 

(75) H?rlU'(0,T;fl) < C, 

(76) ||WT||Z,2(0,T;V) < C, 

(77) \\Xr\\L*(0,T;W) < C. 

Note that assumption (38) is used at this step. 
Thus, we can still take convergent subsequences by compactness, letting r \ 0. 

Finally, on account of (65-68) and (74-77), passing to the limit in (60-64), as r \ 0, 
we immediately recover (34-36) and the regularity (28-32). 

By (70) and (72), we get also (37). 
Next, we note that {/3T(XT)}r and {XT}T converge to some £ and X weakly in H, 

for instance, and we have to deduce (6). This can be done using [1, Prop. 1.1, p. 
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42], and the strong convergence of {XT}, given in (70). This concludes the proof of 
Theorem 2.1. 

A proof of Theorem 2.2 may be given following exactly [7, Section 5]. 
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Local solution to Fremond's full model 
for irreversible phase transitions 

G. Schimperna* F. Luterotti^ U. Stefanelli* 

1. - Introduction 

In this work, we aim to analyze the following system of PDE's: 

(1) et - 9Xt - A0 = X\, 

(2) Xt + a{Xt) -AX + p(X) 3 9-9c. 

The system above describes the irreversible phase transition process of a homoge
neous substance located inside a bounded container f2 C M3. The evolution of 
this material is ruled by two state variables, i.e., the absolute temperature 9 and the 
phase Geld X. We note that, in (1-2), 9C > 0 is the assigned phase transition temper
ature and a , / 3 c R x E are suitable maximal monotone graphs yielding the desired 
constraints for the behavior of X. More in detail, we assume that a = cW[0i+oo), so 
that Xt > 0, and j3 = S/[o,i], that gives 0 < X < 1. Indeed, X = 0 (X = 1) is assumed 
to stand for the pure solid phase (pure liquid, respectively) and 0 < X < 1 denotes 
the presence of a mixture. Of course, the irrevesibility of the process is accounted 
for by the constraint on Xt. 

The above model was derived by Fremond et al. [2, 4] starting from the consid
eration that the microscopic movements of molecula may significantly influence the 
phase transition process described by the macroscopic variables 9, X. Indeed, the 
papers quoted above present a detailed derivation of (1-2) starting from physical 
considerations and in particular give a proof of its thermodynamic consistence via 
the Clausius-Duhem inequality. 

Although much work has been devoted to the analysis of (1-2) and several vari
ants of it [1, 2, 3, 5, 8], up to now the existence of a (global in time) solution is known 
just in one space dimension [7] (see also [10] for the reversible case, i.e., for a = 0). 
The result of [7] is based on a physically meaningful approximation of (1-2), where 
a finite maximum speed A > 0 is imposed to the phase change process by taking 
a = <9/[O,A] in (2). Such a modified system is more accessible from the mathematical 
point of view since the above choice for a guarantees the uniform boundedness of 
Xt that is a useful tool for deriving suitable a priori estimates. Actually, a global 

*Dipartimento di Matematica, Universita di Pavia 
tDipartimento di Matematica, Universita di Brescia 
'Istituto di Analisi Numerica del C.N.R., Pavia 

323 



324 

existence result for the A-system is shown in the paper [9]. Starting from this ap
proximation, the authors of [7] prove global existence for the original system (1-2) 
by letting A —• +oo and mainly relying on a sharp A-independent estimate, origi
nally devised to Dafermos and Hsiao [6] for the study of thermoelasticity, that allows 
them to get a global L2 boundness for 9 despite of the quadratic growth of the right 
hand side of (2). Unfortunately, this argument (also exploited in [10]) is strongly 
dependent on the choice of the one dimensional setting and can not be adapted to 
our case. 

Hence, in this paper, we come back to the A-regularized system and derive local-
in-time a priori estimates, independent of A, for the solution of the approximating 
problem. The key point is the control of the high power terms resulting from the 
quadratic nonlinearities in (1); this is reached by performing an accurate choice of 
the test functions for (2) that permits us to express such terms in the right norms 
and control them for small times by an extended Gronwall inequality [12]. 

The rest of the paper is organized as follows: in the next section we present some 
mathematical preliminaries and detail the precise hypotheses of the problem and the 
existence theorem. Then, the proof is achieved in Section 3 by a priori estimates 
and a compactness argument. 

2. - Pre l iminar ies and main resul t 

We start by fixing some notations. Let CI c H 3 be a smooth and bounded 
domain and T > 0 be a final time. Then, set Qt := CI x (0, t) for all t e (0, T] 
and Q := QT. Letting n stand for the outer normal unit vector to dCl, we set 
H := L2{Cl), V := Hl{Cl), W := {u 6 H2(Ct) such that dnu = 0 on dCl}, endowed 
with the usual scalar products, and we denote by || • || the norm in H and by || • \\E 

the norm of the generic normed space E. Finally, we let V* be the dual of V. 
Next, we introduce our assumptions on data by requiring that 

(3) 6C > 0 is a prescribed constant, 

(4) a - dl[0,+oa), ax = <9/[O,A] for A > 0, 

(5) 0 = dlm, 

(6) 0O S V n L°°(Cl), 60>0 a.e. in CI, 

(7) X0 e W2'°°(ft), 0 < X0 < 1 a.e. in CI, 

(8) there exists rjo € L°°(ti) such that r]0 € P{X0) a.e. in CI. 

Our main task is the proof of the following existence theorem: 

T H E O R E M 1 There exists a final time T0, with 0 < T0 < T, and a quadruple 
(0,X,£,r}) of functions satisfying 

(9) 0£Hl(0,T0;H)nC0(lO,T0};V)nL2(0,TQ;W), 

(10) X G W1'00^, T0; L
3(Cl)) n L°°(0, T0; W), 

(11) £eL°°(0,T0;H), T,GL°°(0,T0;H), 

(12) 0 < 9, 0 < X < 1, and 0 < Xt a.e. in QTo 
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and such that the following relations hold a. e. in QT0 •' 

(13) et + ext - A0 = x2
t, 

(14) Xt + £ - AX + n = 9 - 9C: 

(15) £ 6 a(Xt) and n e /3(X). 

Moreover, the following initial conditions hold: 

(16) 9(x,0)=90(x) and X(x,0) = Xo(x) a.e. in Q. 

REMARK 1 We note that the regularity properties of the solution stated in (9-
10) are not optimal and one might easily improve them by deriving new a priori 
estimates and using bootstrap arguments. However, we prefer not to insist on this 
point and focus our attention just on the existence of a solution. 

Let us now recall the main theorem of [9]. Actually, we state it in the slighty 
modified version proved in [7, Thm. 3.1]. We note that, although this result was 
originally presented in the one dimensional setting, by looking at the proof one can 
easily convince that - for fixed A > 0 - it also holds in three space dimensions: 

T H E O R E M 2 There exists a quadruple (0\,X\,£x,ri\) of functions satisfying 

(17) 6X eH1(0,T-H)nC°([0,T};V)r\L2(0,T;W), 

(18) Xx e Whco{Q, T; H) n Hl(Q, T; V) n L°°(0, T; W), 

(19) £ » e r ( f l , T ; i f ) , T,xeL°°(Q,T;H), 

(20) 0 < Ox, 0 < Xx < 1, and 0 < Xxt < A a.e. in Q 

and such that the following relations hold a. e. in Q: 

(21) 6xt + OxXxt ~ A0A = X\t, 

(22) Xxt + £A - AXA +rix = 6x- 0C, 

(23) &eaA (XAt) and r,xe0(Xx). 

Moreover, the following initial conditions hold: 

(24) 9x(x,0) = 60(x) and Xx{x,0) = X0(x) a.e. in fi. 

3 . - P roof of T h e o r e m 1 

We consider a family (Ox, Xx,£,x, Vx) °f solutions to the A-approximated problem 
with the regularities stated in Theorem 2 and derive some a priori estimates, inde
pendent of A, in order to pass to the limit as A —> +00. We point out that some 
estimates turn out to be formal in this setting; however, they could be made rigor
ous by performing them, e.g., in the framework of a time discretization argument 
(cf. [7, Section 3]). Furthermore, we note that in the following the symbol c will 
stand for possibly different positive constants, that are assumed to depend only on 
fi, T, 9C, 9Q, X0, TjQ. In particular, c is not allowed to depend on A. 
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First estimate. Multiply (21) by 1 and (22) by X\t, sum the results and integrate 
in time over (0, t) for t <T. Owing to the nonnegativity of 8X and on the constraint 
0 < X\ < 1, and proceeding, e.g., as in [7, Subsec. 4.1], we get 

(25) II^AllL^to.T^tn)) + IIXAIU^CT;^) < c. 

Key estimate. Differentiate formally (22) with respect to time. Of course, this 
procedure can be made rigorous at a discrete level (or by using a difference quotiens 
argument). It follows 
(26) Xxtt + U - AXM + i]M = 0\t • 

Then, multiply (21) by 6t and (26) by X\t, sum the results and integrate in time 
over (0, t) for t < T. Noting that by the monotonicity of /3 and the nonnegativity 
of X\t it is rj\tX

2
M > 0 a.e. in Qt, easy computations yield 

(27) | |Ml*(0 l) + ^ I I W A W H 2 + \\\^t(t)\\h{n) + | | |V(X^2 )\\2
L2(Qt) 

<\\\W0\\
2 + l\\XM(0)\\lHn) + 2j*JjxtXlt 

- LLex9xtXxt~ L L i A 

so that we have to control the five terms on the right hand side. Of course, the first 
one is bounded by (6). For the second, we compute formally (22) for t = 0 and note 
that 

XAi(0) e ( id+aA)-1(AX0 - Vo + #o - <?c) a.e. in Q. 

Hence, noting that ( i d+a A ) _ 1 is a contraction, by (6-8) we derive that the L3 norm 
of XA((0) is uniformly bounded in A. 

Then, we have to work with the three integral terms. By the elementary Young 
inequality and Sobolev's embedding theorem, the first integral term gives 

and 

L3(n)-

(28) 2[[xit<2[\\X%2\\v\\X%2\\v. 
Jo Jn Jo 

<^l|xfllUc£||xf||i6/5(n) 

< ^l|X*ll£.W.) + |||V(X^2)\\lHQt) + cfQ \\XM\\\ 

As for the second integral on the right hand side of (27), we get 

l^^x.iaii^ii^^^xu^y^t 
whence the second term can be treated as in (28), while the third one yields 

"All4-
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Thus, using a three dimensional Gagliardo-Nirenberg inequality [11, p. 125] and 
recalling the first of (25), 

c [ \\6x\\4 < c f I N I ^ H V ^ H 1 2 / 5 + c / ' ||(?A||i1(n) 

< <>[ ll^l|8L/»(0,T;L1(n))HV^||12/5 + C<c[ I | W A | | 4 + C. 

Finally, we work on the latter term in (27) and note that, a.e., in Q, it is 

where (a^1) is easily seen to be a maximal monotone graph in IR x IR. Integrating 
by parts and proceeding similarly as in [7, Subsec. 4.4], we derive 

Jo Jn Jn Jn 

with ( • ) + standing for the positive part function. Now, the first integral on the 
right hand side above is clearly nonpositive, while the latter one can be controlled 
this way. First, note that, by formally computing (22) for t = 0, we have 

6 (0 ) € a*(XA(0)) = aA[(id+aA)^1(AX0 - % + 0o - 0c)]-

Then, by (6-8) it follows that the term inside the square brackets is bounded in 
L°°(Q) independently of A, so that for sufficiently large A, £A(0) is nonpositive and 
its positive part is zero. 

Now, taking all the above considerations into account, it is not difficult to deduce 
from (27) that, for A large enough, it is 

(29) \\\0xt\\h{Qt) + | | |WA(*)II2 + l\\X»(t)\\h{n) + ^|V(^f)| |I2(Q( ) 

- c + 1 r n*""^)+cio n**ny<n)+ct II™*"4-
Then, from the relation above one sees that the extended Gronwall lemma in the 
form of, e.g., [12, Thm. 7.1, p. 33] applies to the function 

t^l |XA f( i ) l l i3 ( n ) + ||v0A(i)| |2 

and this yields a finite time T0 > 0, possibly with T0 < T, such that the following 
bounds hold independently of A: 

(3°) ||0At|U2(O,To;H) + I|0A|U°°(O,TO;V) < C, 

(31) ||XAt||L»(o,To;L3(n)) + | |V(XAf) | | i 2 ( 0 , r o . f f )<C. 

Third e s t ima te . Multiply (22) by (—AX\+r]x)t and integrate over (0, <), as before. 
Owing to the first bound in (30), one can proceed exactly as in [7, Subsec. 4.6] to 
get the bounds 

( 3 2 ) | | X A | | L ° ° ( 0 , T O ; W ) + ||6i||L~(0,To;ff) + ||»7A||t~(0,Toiff) < C. 
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Fourth estimate. It remains to achieve the complete parabolic regularity (9) for 
9. With this aim, note that (21) can be rewritten as 

(33) ext - Aex = -exxxt + x\t, 

and we just need a A-uniform bound of the right hand side in L2(0,T0; H). As for 
the first term, this is an immediate consequence of the second of (30), the first of 
(31), and the Sobolev embedding V C L6(Q). The latter term is controlled upon 
noticing that (31) yields a bound of X2

Xi in 

L°°(0, T0; L
3l\n)) n L3/2(0, T0; L

9'2) C L4(0, T0; H), 

where of course the inclusion, given by elementary interpolation, is continuous. 

Passage to the limit. This last step of the procedure can be performed exactly 
as in [7, Sec. 5], since we have the same bounds on the approximating functions, 
albeit they are local in time in our setting. This concludes the proof of Theorem 1. 
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A scalar model of viscoelasticity wi th 
singular memory 

M. Seredynska * A. Hanyga^ 

1. — In t roduc t ion 

We shall consider a scalar partial differential equation with time delay 

(1) (1 + K*) Uft - V • (n(x)2V«) = 0 

with the initial conditions 

(2) u{t, x) = 0 for t < 0 

(3) u(0,x) = 0 )u, t(0,x) = «5(x) 

where the asterisk denotes the Volterra convolution operator 

/ •oo 

(4) K*u{t,x):= K(r)u{t-T,x)dT 
Jo 

The spatial part can also be replaced by a more general operator A on a Banach 
space Y (Sec. 6). The Laplace transform 

/ •oo 

u(s,x) = / e~ s*u(t,x)di 
Jo 

of the solution satisfies the equation 

(5) [l + A"(s)] [s2u - 5(x)} - V • [n(x)VS] = 0 

The operator 1 + K* is invertible and equation (1) can be recast in the form 

(6) uttt - (1 + R*) V • (n(x)2Vu) = [6{t) + R{t)] S(x) 

where (1 + R*)(l + K*)f = / or 1 + R(s) = [1 + K(s)}-1 

Eq. (6) is common in the theory of viscoelasticity but eq. (1) is more convenient 
for our purposes, as will be seen below. The function R(t) is the time derivative of 
the relaxation function [27, 10]. 
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In this paper we shall be interested in weakly singular convolution kernels Kit) ~ 
ct-i + . . . for t -> 0, with 0 < 7 < 1. It follows that K{s) ~ cT(l - 7) s7"1 for 
s —> 00 [9, 31]. Clearly, -ft(s) ~ —cT(l — 7) s7 _ 1 . Assuming that R is monotonic 
and non-increasing, R(t) ~ —c£~7 for t —» 0 by a Tauberian theorem [9, 31]. 

An example of such a kernel is provided by a Bagley-Torvik model in polymer 
rheology [1] with the Laplace transform of the memory kernel R 

1 + (s/wc) 

where wc is a characteristic frequency. 
As a rule, solutions of equations (1) are infinitely smooth at the characteristics. 

Intuitively, this results from the fact that the rate of exponential attenuation is 
unbounded in the high-frequency limit and the propagator spectrum decays expo
nentially. A rigorous statement of the smoothness property requires however some 
additional restrictions on the convolution kernels. Rigorous results for specific classes 
of equations (1) can be found in [25, 22, 23, 5]. Related results for linear viscoelas-
ticity can be found in [28, 20, 7, 6]. Little is known about non-linear equations with 
weakly singular memory, but smoothing has been demonstrated for scalar viscoelas-
ticity with completely monotonic kernels [16] as well as for fractional conservation 
laws [15, 4, 14]. In some cases though non-linearity can be an obstacle to smoothing 
of discontinuous initial data [13]. 

Our considerations will make use of a class of functions which we call basis func
tions [19]. These functions are a generalization of totally skewed stable probability 
distributions [29]. They appeared for the first time in asymptotic solutions of visco
elastic equations in one spatial dimension in the paper of Buchen and Mainardi [3] 
and, independently, in an analysis of exact solutions of eq. (1) in [23], particularly in 
the case of half-integer expansions. Furthermore, a connection between viscoelastic 
fluid dynamics and stable probability distributions was made in [21]. In [17, 18, 19] 
exact and asymptotic solutions for scalar partial differential equations with singular 
kernels and systems thereof were studied in some detail. 

In Sec. 2 a definition of the basis functions is given and their properties are 
studied. Some explicit expressions for basis functions are presented in Sees 3 and 4. 
In Sec. 5 equations (1) with explicit solutions are discussed. In Sec. 6 more general 
equations with the Laplacian replaced by a more general linear operator are studied 
by the methods of abstract Volterra equations. Well-posedness results are obtained. 

2. - Basis functions: General results 

In [17, 19] we constructed asymptotic solutions of equations (1) of the form 

/ JV \ 00 

(8) u(s,x) ~ exp -sS<0>(x) - ^ s > 5 ( r )(x) ^ « - a n "'"H*) 
\ r=l / n=0 

where u(s, x) denotes the Laplace transform of u(x, t) and the variable s is identified 
with —iui, 

70 = 1, 0 < 7 r < 71 < 1 for r > 1 
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0 < an < a n + i for n > 0 

5 (1 )(x) > 0 

Equation (8) can be understood in the sense that 

( N \ oo 

-s 5 (0 )(x) - J^ slr 5 ( r )(x) ~ ] T s~an M<n)(x) 
r=l / n=0 

is an asymptotic expansion in the sense of Poincare-Watson [8]. Asymptotic expan
sions with a similar phase function were introduced for the first time in [3] in a study 
of one-dimensional wave motion in a homogeneous viscoelastic medium. 

The termwise inverse Laplace transform of eq. (8) has the form of a formal 
expansion 

oo 

(9) u(t,x) = £ / „ . ( « - S ( ° > ( x ) , 7 , S(x))u<*°(x) 
71 = 0 

where 7 = {71 , . . . , 7 ^ } , 5(x) = {5 ( r )(x) | r = 1, . . .,N}, and the basis functions 
fa are defined by the formula 

(10) /a(*,7,A) = ̂ J/ts~a exP ( - i ^ s 7 ' ) ds 

where a e R+, 7 e]0, l [ x j v , A e R^, 0 < j k < j u Ax > 0. The fractional powers s _ a , 
s7 ' are taken in —7r < arg s < ir and i? denotes the Bromwich contour Re s = e > 0. 
Since Re sT1 > 0 on B, the functions /Q are defined for Ai > 0. 

In this paper the basis functions are used to construct exact solutions of initial 
and initial-boundary value problems. 

For t = 0 the Bromwich contour can be closed in the right half of the complex 
plane, where the integrand of 

(11) di^ = hl/tsn-a^{-t^s^)ds 

n 6 N, does not have singularities. Consequently, we have 

T H E O R E M 1 

/ « ( - , 7 , A ) e r ( R ) 

and 
fa{t,j,X)=0 fort<0 

where A = {Ai , . . . , XN} 

The following theorem follows easily from the definition: 

T H E O R E M 2 
/ • o o 

ldi = l 

POO 

/ /o(<,7,A)< 
Jo 
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Let 

\tp-l/T{P) f o r i > 0 
(12) Xa(t) , 
^ ' A f l y ' \ 0 otherwise 

The left-hand side is a holomorphic function of /? e C and X-n = # W for n 6 
"L+ U {0}, where <S(n) denotes the derivative of n-th order of 5[12]. 

T H E O R E M 3 For a G R+ 

in the sense of distributions for Xr —> 0+, r = 1 , . . . , N. 

P R O O F . Let <j> € 5(R), where <S(R) denotes the Schwartz space of test functions. 
By Parseval's theorem 

/

oo 

/a(*,7,A)0(t)dt 
-OO 

= ^ - /" e" iwf ( -k j )" Q exp ( - J2 Xr |wp' e " 1 ^ 2 J <£(w) dw 

where (ft denotes the Fourier transform of <j>, <j> e <S(R). We note that the argument 
of exp is non-positive for 0 < j r < 1, Ar > 0, r = 1 , . . . , N. By the Lebesgue 
dominated convergence theorem the right-hand side tends to 

1 Z"00 

- J e->"t(-iuj)-a<l>(Lo)duj=(xa,4>) 2?r 

for Ar —> 0, r = 1 , . . . , N, where the angular parentheses denote the pairing between 
5 and S'. Hence /„(-, 7, A) ->• Xa in S'(R). | 

T H E O R E M 4 Tfte fraszs functions satisfy the following recurrence relations 

(13) ^ = - / « - > 
dfa 
d\r 

and 

N 

(14) i / a( i ,7 ,A) = a / a + i ( t ,7 ,A) + ^ A r 7 r / a _ 7 r + 1 ( i , 7 , A ) 

P R O O F . Equation (14) can be proved by integration by parts in equation (10). | 

Non-negativity, monotonicity and unimodality are important properties of the 
basis functions. 
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T H E O R E M 5 Let \ k > 0 and 0 < j k < yt < 1 for k = 1 , . . . , N, Ai > 0. 

for a > 0 

/ a ( * , 7 , A ) > 0 

For a > 1 the functions fa(-,-f, A) are monotonic (increasing). 
For 0 < a < 1 raift Afc > 0 /or some \<k<Nand\l = Qforl<l<N,l^k 

the function fa{-,j, A) is unimodal. 

P R O O F . Let 

so that 

£-•> 

TV 

s 4>{s) = ^ Ar s
7 ' 

If we prove that 

Atip-sfa) 
(15) / n : = ( _ ! ) » _ _ _ > 0 

then the inequalities f1 > 0 and /0 — dfi/dt > 0 follow from Bernstein's theorem 
[9, 31]. Hence, for arbitrary a > 0 

fa(t, 1, A) = Xa * /o(<, 7> A) > 0 

For a > 1 
a / a - f > n 

whence / a , a > 1, are monotonic. 
We now prove eq. (15). For n = 0 eq. (15) is obvious. For n > 1 we shall use 

the following inequality 

dm+1s U(s)] 
(16) ( _ i ) ™ _ _ L _ J . > o f o r m e Z + U { 0 } 

Indeed, for m = 0 we have 

(17) (s4>(s))'=-[ t(j)'(t)e-stdt>Q 

because 

/

oo r /•oo 

<£(*) e~st dt = lim (j>(e)e-se+ </>'(t) e~st dt 
t(j)'(t) is integrable near 0 and S(f>{e) = o[l] and 0'(£) < 0. Eq (16) is now proved by 
repeated differentiations. 

The n-th derivative of e~s^ has the form e~ s^ s^Fn , where Yn is a sum of 
products of derivatives of —s<f>(s) whose orders add up to n. Eq. (16) implies (15). 
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/o(', 7,0, •. •, Afc, 0, . . . , 0) is a totally skewed yk-stab\e probability distribution 
[29, 30], and it is known to be unimodal (ibidem). For 0 < a < 1 the function Xa is 
strongly unimodal [30], hence 

/«(*, 7.0,. . . ,0, At) 0,...,0) = /o(t, 7,0,...,0,A fc)0,...,0)*xo(*) 

is unimodal. | 

For N = 1 and ji = 1/2 the basis functions are either unimodal (0 < a < 1) or 
mono tonic (a > 1). 

3. - Basis functions for half-integer power expansions 

The basis functions fa(t, 1/2, A) can be expressed in terms of elementary func
tions and the complementary error function 

(18) /0(U/2,A) = - ^ r 3 / 2 e - ™ 

(19) /1/2(t,i/2,A) = 4=r l /2<rA2/(4t ) 

V71" 

(20) /1( t , l /2,A)=erfc(A/(2Vt)) 

(21) /3/2(U/2,A) = A fi/2e-AV(«) + A e r f c (A/ ( 2 ^ ) ) 

for t > 0, with fa(t, 1/2, A) = 0 for t < 0. 
The functions /n/2 for n > 3 can be calculated from the recurrence relations (14). 

4. - Basis functions for expansions in inverse powers of s1?3 

For memory kernels with r - 1 /3 and r~2/3 singularities 
00 

(22) K{s) ~ Y, s"M/3 KM 

the solution is constructed in the form of the asymptotic expansion (9) with 

(23) U/3(t, 2/3,1/3, Ax, A2) = ^ j s~^ e5(e"Al sV3-^ s ' /3 ds 

The functions f0(t, 2/3,1/3, A), /1/3(i, 2/3,1/3, A), f2/3(t, 2/3,1/3, A) can be cal
culated in an explicit form. Substituting /i = 2, r = s1/3 — Ai/3£ in eq. (23) we 
have 

/2/3(t, 2/3,1/3,^2) = ^f S~2/3e s te^ s2 /3^-1 /3dS 

/

OO 

e i ( r 3 / 3+ 7 r ) 
• 0 0 

(24) 2/3 

2-Kt1^ 
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with 

7 = (3*)"1/3 ( A2 + 
3 t 

M 
'it 

\ 2Ail 
^2 + ^ r 1 

L 9i J 
whence 

/2 / 3(t , 2 / 3 , 1 / 3 ^ ^ 2 

(25) 32/3 

fi/3 
Ai((3«r»'(A! + |))exp(4(AI + 

2A| 

~9i~ 

(26) 

Two other basis functions can be determined from the formulae 

9/2/3 
f0(t,2/3,l/3,X1,X2) 

dX2 

(27) / 1 / 3( i ,2/3, l /3 ,A 1 ,A 2) = -
9/2/3 
dXx 

(28) 
d/1( t ,2/3, l /3,Ai,A2) 

dt 
/0( t ,2/3, l /3,A1 >A2) 

The basis functions /M/3 for // > 0 can be calculated by using the identity 

(29) A /(/*+3)/3 = 3 t /^/3 - 2 Ai /(M+l)/3 - A2 /(M+2)/3 

which can be derived by integrating eq. (23) by parts. 

5. — Exact fundamental solutions for scalar equations 

Explicit fundamental solutions of eqs (1) for odd spatial dimensions can be con
structed provided the coefficients of the convolution kernel satisfy appropriate con
straints. 

The solution is constructed with the following ansatz 

(30) u{s,-x) = w{s)U(s,r) 

where 

(31) U(s,r) = esr,p<-s)/(4Trr) 

Substituting (30) in the Laplace-transformed equation (1) and noting that 

(32) V2U = -<S(x) + s2 <^(s)2 U 

yields the equation 

(33) s2 [l + K - <p(s)2] u + [w(s) - 1 - K(s)] <5(x) = 0 
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whence 

(34) ip{s)2 = 1 + K(s) = w(s) 

The following ansatze lead to explicitly computable original functions: 

(35) </>(*) = l + a s - 1 / 2 ; K(s) = 2as" 1 / 2 + a V 1 

^(S) = l + a s - 1 / 3 + 6s- 2 / 3 ; 
( 3 6 ) K(s) = 2a s"1/3 + (26 + a2) s~2'3 + 2a 6 s"1 + b2 s^3 

Substitution of eqs (35) or (36) in eq. (30) followed by an inverse Laplace trans
formation yields the fundamental solution [18]: 

u(t, x) 
(37) 1 

= 477 [ / o ( t " V' 1/2'ar^ + 2 a - M * " r, 1/2,ar) + a2 h{t - r, 1/2, or)] 

for the convolution kernel (35) and 

(38) 

u(t,x) = -—[f0{t - r ,2 /3 ,1 /3 , or, 6r) + 2a f1/3(t - r, 2 /3 ,1 /3 ,o r ,6 r ) 
47rr 

+ (26 + a2) f2/3(t - r, 2 /3 ,1/3 , ar, br) 

+ 2a6 A(i - r, 2 /3 ,1/3,ar,br) + b2 fi/3(t - r, 2/3,1/3,ar,br)} 

for the kernel (36). 

6. — Well-posedness, regularity and solutions for more general equations 

In this section we shall consider eq. (1) with a special class of convolution ker
nels K and a rather general spatial operator. Some methods of abstract Volterra 
equations [26] will be applied. An abstract Volterra equation on a Banach space Y 

(39) u(t)=g(t)+ h{t-T)Au(r)dr 
Jo 

with a closed densely defined linear operator A on Y is said to be well-posed if for 
every constant y e T>{A) there is a unique solution u(t; y) and u(t, y) —> 0 for y —>• 0 
uniformly on compact subsets of t € R+. The integrals appearing here are Bochner 
integrals. Solutions u(t) € T>(A) of eq. (39) are called strong. 

The resolvent S(t) is a strongly continuous one-parameter family of bounded 
operators on Y satisfying the conditions 
(i) 5(0) = / ; 
(ii) S(t)V(A) C V{A) and A S(t)w = S{t)Aw for every w e V(A) ,t>0; 

(40) S(t)w = w+ / h(t-T)AS(r)wdT 
Jo 
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Eq. (39) is well-posed iff it has a resolvent [26]. 
A is an infinitesimal generator of a cosine family C(t) [11] if C(t) satisfies equa

tion (40) with h(t) = t. 
We shall consider the problem 

(41) uttt + K(t)*uttt = Au 

(42) u(t)=0 fori<0; u t ( 0 + , x ) = v0(x) 

in Y = C2 (R3), with a linear densely defined operator A on Y. An example of A is 
a closed extension of V • [n(x)2 V-] on a bounded or unbounded domain in K3, with 
appropriate boundary conditions. Such an operator is an infinitesimal generator 
of a cosine family if the associated initial-boundary value problem with K = 0 is 
well-posed in Y. The corresponding abstract Volterra equation is 

(43) u{t) =tv0+ [ dr(t-T) AU{T) + [ R{r - a) Au{a) da 
Jo L Jo 

where R(t) is defined by the formula 1 + R(s) = 1 + K(s) 

T H E O R E M 6 Let 1 + K(s) = [1 + 4>{s)f and suppose that ip(s) = s [1 + <j>{s)], s e 
R_i_ is a Bernstein function. Let A be the infinitesimal generator of a cosine family 
{C(t) 11 > 0}. 

There is a non-negative function v : R̂ _ —> R, non-decreasing with respect to the 
first argument such that 

/•oo 

(44) exp(-Til>(s))/s= / e"*st;(t,T)dt 

and v(Q, r ) = 0. The problem (43) is well posed and its resolvent is given by the 
Stieltjes integral 

/»oo 

(45) S(t) = - C(r)dTv(t,r) 
Jo 

P R O O F . Since ift is a Bernstein function, the function s —>• exp (-TIJJ(S)) is com
pletely monotonic [26]. By the Bernstein theorem [31] there is a non-negative func
tion v(t,r), non-decreasing with respect to the first argument, such that eq. (44) 
holds and v(0, r ) = 0. 

By Corollary 4.5 of [26] eq. (39) has a resolvent S(t) satisfying eq. (45). Conse
quently, eq. (39) is well-posed. | 

COROLLARY 1 Let 1 + K = [1 + </>(s)]2, 

N 

71=1 

with 0 < 7„ < 1, an > 0 for n = 1 , . . . , N. 
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Eq. (43) is well-posed, eq. (45) holds with 

v(t,r) = / i ( * - r , r a , 7 ) 

(46) S(t) = f 
Jo 

fo(t - r, ra, 7) + ^ an fJn (t - r, ra, 7) C{T) d r 

where T a = {T an \ n = I,.. .N} , 7 = {yn \ n = 1 , . . . iV}. 

S e C 0 0 ^ ; * ^ ) ) 

where B(Y) denotes the Banach space of bounded operators on Y. 

P R O O F . ip(s) = s + J2n=i a« s 7" ^s clearly a Bernstein function, hence Theorem 6 
applies with v expressed in terms of /1 as above. Eq. (46) is obtained by working 
out the derivative d/i(< — r, ra, 7 ) /dr . The explicit form of the resolvent shows its 
smoothness. | 

For A = closure of V2 in Y = £ 2 

1 
(C(*H)(x) 

47rr 

we have 

[ J ( t - r ) - < J ( i + r ) ] * x w„(x) 

where r = |x| and the convolution applies to the spatial variables. Since fa = 0 for 
t < 0, this implies that 

(5(*)«b)(x) = i J ; /o(t - r, ra, 7) + ^ an fln (t - r, ra, 7) *x Vo(X) 

in agreement with the results of the previous section. 

REMARK 1 The problem considered in the Corollary 1 can be formulated in terms 
of the Caputo fractional derivatives. In fact 

JV N N N 

(47) / r ( < ) = 2 ] T a n X i - 7 „ W + 2 ^ ^ anamXi-ln-jm(*) + X X Xi-**.(*) 

Using the definition of a Caputo fractional derivative 

D 7 / ( t ) = / r ^ " 7 " 1 a M / ( t - r ) / a t M d r / r ( M - 7) for M e N, M - 1 < 7 < M 
Jo 

as well as the identity D T D = D 1 + 7 [24], for K given by eq. (47), eq. (1) with the 
initial condition (2) is seen to be equivalent to the equation 

AT N N 

an am D7 n + 7 m u — A u = 0 
n = l n—X m—\ 

A related equation was studied in [2] as a mechanical damping model. 

REMARK 2 Theorem 6 can be applied to fractional powers of the Laplacian A = 
- ( - A ) " on Y = C? (Rd), d = 1, 2 , 3 , . . . , 0 < v < 1, since A generates a cosine family 
on Y (Hanyga, this volume). (A denotes the closure of the Laplacian A = V2 in 
Y.) 
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7. - Concluding remarks 

In mechanical applications one has to consider systems of equations with several 
different memory operators (up to six different memory kernels appear in anisotropic 
viscoelasticity). Scalar equations with singular memory offer however the possibility 
of a better insight into the structure of the solutions. The basis functions are very 
helpful in this respect. Basis functions also appear in the construction of asymptotic 
solutions for systems of integro-differential equations with weakly singular convolu
tion kernels [17, 19]. 
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An existence result for semilinear 
equations in viscoelasticity: 
the case of regular kernels 

D. Sforza * P. Cannarsa t 

1. - Introduction 

This paper is concerned with the abstract semilinear integro-differential equation 

(1) u(t)+Au(t)+[ B{t-s)u{s)ds = F(u(t)) + f{t) t>0, 

that may be regarded as a model problem for some elastic systems with memory, 
like the ones considered in [2, 3, 6]. Here, A is a positive operator on a Hilbert 
space X with domain D(A), B(t) is a self-adjoint linear operator on X with domain 
D(B(t)) D D(A), commuting with A, and F is a locally Lipschitz map defined on 
the domain of \fA. 

The linear version of (1) , that is for F = 0, can be reduced to an integral form 
and then solved applying known existence results, see [5]. Such a procedure, however, 
requires smooth initial conditions and provides no maximal regularity results that 
are needed to study the nonlinear problem. 

The purpose of the present paper is twofold. First, we shall complete the above 
mentioned procedure with the derivation of suitable maximal regularity estimates 
for the resolvent of the linear problem. Then, we shall apply the properties of such a 
resolvent to obtain a local existence result for (1) by standard fixed-point arguments. 

An important aspect of our analysis is that we require no sign condition on B(t). 
Instead, we assume that B(-)y is absolutely continuous in t for any y e D(A). We 
plan to study the case of singular kernels in a forthcoming paper. 

The outline of this paper is the following. In section 2 we recall some preliminar
ies and prove our maximal regularity result for the resolvent of the linear problem. 
Section 3 is devoted to the solution of the Cauchy problem for linear equations, 
while, in section 4, we obtain local existence results for the nonlinear problem. Fi
nally, in section 5, we describe a typical system in viscoelasticity that can be studied 
by our abstract approach. 
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2. - Existence of resolvent 

In this section, X will denote a real Hilbert space with scalar product (•, •) and 
norm || • ||. 

For any T > 0 we denote by L^OjT; X) the usual space of measurable functions 
u:[0,T]->X such that 

ll«lli,r:= f | |u(t) | |dt<oo. 
Jo 

For any u € L}{Q,T\X) and any ip € L1(0,T;1R) the symbol tp * u stands for 
convolution from 0 to t, that is 

ip*u(t)= [ ip(t-s)u(s)ds, t € [ 0 , T ] . 
Jo 

In the following we denote by W1 , 1(0,T;X) the Banach space of functions 
u e Ll{Q,T;X) such that u e L ^ T ; * ) and by W^1 (0, +oo;X) the space of 
functions belonging to W1'1^, T; X) for any T > 0. 

A and £?(£) are linear unbounded self-adjoint operators with domains D(A) and 
D(B(t)) respectively, such that D(A) C D(B{t)) for any t > 0 and £>(>!) is dense 
in X. Furthermore, we assume 

(2) (Ay,y)>a0\\y\\2, for any y £ D{A) (a0 > 0); 

(3) B(-)y g W ^ ( 0 , +co; X ) , for any y e D(A); 

S(i) commutes with ^4, that is 

(4) B(t)D{A2) C L>(^) and AB(i)?/ = B(t)Ay, y £ D(A2), t > 0. 

In the sequel, D(A) will be regarded as a Hilbert space with the norm ||^4a;||. 
The notion of resolvent is recalled below. 

DEFINITION 1 A family {S(t)}t>0 of bounded linear operators in X is called a 
resolvent for the equation 

(5) u(t) + Au{t) + [ B{t- s)u{s) ds = 0 
Jo 

if the following conditions are satisfied: 

(51) 5(0) = / and S(t) is strongly continuous on [0, +oo[, that is, for all x e X 
S{-)x is continuous on [0, +oo[; 

(52) S(t) commutes with A, which means that S{t)D(A) C D(A) and AS{t)y -
S{t)Ay for all y e D(A) and t > 0; 

(53) for any y e D(A) S(-)y is twice continuously differentiable in X on [0, +00) 
and 5(0) = 0; 
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(S4) for any y 6 D{A) and t > 0 the resolvent equation 

S{t)y + AS(t)y + [' B{t - r)S(T)y dr = 0 
Jo 

holds. 

REMARK 1 (i) The equation (5) is formally equivalent to the integral equation 

(6) u(t) = u(0) + u(0)t - [{t- s)Au(s)ds -J (f \ t - s - T)B{T) dr) u{s)ds. 

(ii) The uniqueness of the resolvent follows from that of the resolvent for integral 
equations (see, e.g., [5, Proposition 6.1]). 

The existence of resolvent follows from that for integral equations proved by 
Priiss in [5]. 

T H E O R E M 1 Assume (2)-(4). Then, there exists the resolvent S(t) for equation (5). 

P R O O F . TO simplify the notations, we introduce 

(7) A(t) = -tA- [ (t-s)B(s)ds, t>0, 
Jo 

denoting the kernel of the integral equation (6). 
We can apply [5, Corollaries 6.1 and 6.3] to (6): there exists a family {S(t)}t>o 

of bounded linear operators in X such that 

(i) 5(0) = / and S(t) is strongly continuous on [0, +oo[; 

(ii) for any y e D(A), S(-)y € D(A) a.e. and the function AS(-)y is locally bounded 
on (0, +oo); 

(iii) for any y £ D(A) and t > 0 the equations 

S{t)y = y+ [lA(t- r)S(r)y dr, S{t)y = y + f S(t - T)A{T)V dr, 
Jo Jo 

hold; 

(iv) the function / (i — s)S(s)x ds belongs to C([0, +oo); D(A)) for each x G X; 

(v) for all y € D(A) S(-)y is continuously differentiable in X and twice differentiable 
a.e. on [0, +oo). 

First, we observe that for any y e D{A) and t > 0 

JtS{t-T)A{T)ydT=-j\t-s)S(s)Ayds-£^~T{t-T-s)S(s)dsSjB{T)ydT 

file:///t-s-
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and so, by (iv) and the second equation in (iii) it follows that S(t)y € D{A) and 
AS(-)y is continuous. 

Now, we prove that S(t) commutes with A. In fact, if y € D(A2), then, thanks 
to (4), we have that 

A~1S(t)Ay = y + f A(t - ^A^S^Aydr , 
Jo 

A~lSit)Ay = y + f A~lS{t - r)AA{r)y dr; 
Jo 

by uniqueness of the resolvent it follows 

S(t)y = A-1S(t)Ay. 

Moreover, by density we have 

AS(t)y = S(t)Ay, for any y € D(A). 

Since S(i) commutes with A, the equations in (iii) are the same. In addition, if we 
differentiate two times one of the equations in (iii), then we obtain that the resolvent 
equation in (S4) holds. 

Finally, the family {S(t)}t>0 satisfies the properties (SI) - (S4), which charac
terize the resolvent of (5). | 

In the following proposition we list some properties about the resolvent, which 
will be useful in the sequel to solve non-homogeneous equations. 

T H E O R E M 2 In the same assumptions of theorem 1, the resolvent S(t) for equation 
(5) verifies the following properties. 

(i) The operators S(t) are self-adjoint. 

(ii) S(t) commutes with y/A, that is S(t)D(y/A) C D{\fA) and y/AS(t)y = 
S{t)VAy for all y G D(y/A) and t > 0. 

(iii) For any x 6 X the function t —> / S(r)xdT belongs to C([0, +oo[; D(\/A)) 

and 

(8) \\S{t)x\\+\y/I f* S(T)xdT\\<CT\\x\\ V T > 0 , t e [ 0 , T l . 
I Jo II 

(iv) For any y £ D{\fA) the function t-> S(r)y dr belongs to C([0, +oo[; D(A)) 
0 

and for any T > 0 

(9) | | x j f ' s ( r ) y d r | < C T llVIl/H, t e [0,T], 

(10) l | 5 ( t )y | |<C r ( | | y | | + | |>/Ay||), t€ [0,T], 

(11) S(t)y + A [ S(r)ydr + B*l*S{t)y = Q, t>0. 
Jo 
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(v) For any y g D(A) the function S(-)y belongs to C([0, +oo[; D(\fA)). 

Here CT denotes a positive constant depending only on T. 

P R O O F , (i) Since the operators A(t) are self-adjoint, for any y, z € D(A) we have 

(S(tyy, z) = (y, S(t)z) = (y, z) + f {A{t - r)y, S(T)Z) dr 
Jo 

= (V+ f S{T)*A(t-T)ydT,z)\ 
Jo 

by the density of D(A) in X and uniqueness of the resolvent, it follows 

s(t) = s(ty, 

that is the operators S(t) are self-adjoint. 
(ii) The statement follows from the integral rappresentation formula for the operator 
vC5 (see [4, Theorem 6.9]), taking into account that S(t) commutes with A. 
(iii) Fixed T > 0, we observe that by Banach-Steinhaus theorem it follows 

(12) \\S(t)x\\ < CT \\X\\ for any t € [0, T], x G X. 

To prove the other estimate in (8), set 

U(t)x= f SMxdr, xGX , 
Jo 

by the resolvent equation we obtain 

(13) AU(t)y = -S{t)y-B*U(t)y, for any y e D(A). 

Therefore 

^\\VAU(t)yf = (AU(t)y, U{t)y) = -±±\\S(t)y\\2 - {B * U{i)y, S(t)y), 

from which, integrating from 0 to t, we get 

(14) \\y/AU(t)y\\2 + \\S(t)y\\2 = \\yf - 2 l*(B * U{r)y, S(r)y) dr. 
Jo 

Now, to evaluate the term B * U(i)y we note that 

[ B(t - s)U(s)y ds = J B(0)A-1AU(s)y ds + f (j B(t - r) dr) U(s)y ds 

= ^ ( O ) ^ - 1 ! * AU(t)y + f B{t -r)(f U{s)y ds) dr 

= B(0)l*U(t)y + B*l*U(t)y. 

Since for x € X the function ^4(1 * U(t)x) = A / (t — s)S(s)x ds is continuous in t, 
Jo 

in view of the previous equality the operator B * U(t) can be extended to the whole 
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space X and for any x S X B * U(-)x is continuous on [0,+00). Therefore, again 
by Banach-Steinhaus theorem we have 

(15) \\B * U(t)x\\ < CT\\x\\, for any t€ [0,T], x e X; 

thanks also to (12), by (14) it follows 

\\VAU(t)y\\<CT\\y\\, for any t € [0,T], y e D(A). 

So, using again the density of D(A) in X (iii) is completely verified. 
(iv) First, we observe that if y G D(y/A), then by (ii) we have 

A [ SMydr = VJ [ S{T)VAydT, 
Jo Jo 

and hence, by (iii) the function t —» A I S(r)ydT is continuous and (9) holds. 
Jo 

Moreover, for y G D(A) by (13), (9) and (15) we get 

\\S(t)y\\ < \\A f S(r)ydr I + ||B * 1 * S(t)y\\ < CT {\\VAy\\ + \\y\\); 
II Jo I 

consequently, this inequality also holds for y e D{\fA), thanks to the density of 
D(A) in D(y/A). Finally, (11) follows again by (13) and the density of D(A) in 
D(\/~A), taking into account (9) and (10). 
(v) Fixed y € ^(^4), in view of (13) and (ii) we have 

y/AS(t)y = -A f S{r)\fAydr -B*l* S(t)\fAy, 
Jo 

and hence the continuity of -jAS(-)y follows by (iv). | 

REMARK 2 We observe that in the proof of theorem 2 (iii) we don't use the as
sumption that the operators B(t) commute with A. 

3. - Solvability of linear problems 

The existence of the resolvent S(t) allows us to solve the non-homogeneous equa
tion 

(16) u{t)+Au(t)+ f B(t-s)u{s)ds = f(t), t>0. 
Jo 

We recall the notions of mild and strong solutions for equation (16). 
Let T > 0 be given. 

DEFINITION 2 Let / e C([0,T\;X). We say that u is a strong solution of (16) on 
[0, T] if u e C2([0, T];X)r\ C([0, T]; D(A)) and u verifies (16) in [0, T}. 

Let / £ L\Q,T;X) and u0, ux £ X. The mild solution of (16) on [0,T] with 
initial conditions 

(17) M(0) = Mo , M(0) = « i , 

is the function u e C([0,T};X) defined by 

(18) u{t) = S{t)ua + J S(r)UldT + J 1 * S(t - T)f(r)dT , te[0,T}. 



349 

PROPOSITION 1 A strong solution of the equation (16) is also a mild one. 

P R O O F . A strong solution u of the equation (16) is also a strong solution of the 
integral equation 

u(t) = «(0) + u(0)i + 1 * 1 * f(t) + f A(t- s)u(s)ds, 
Jo 

where the operators A{t) are defined in (7). Therefore, by [5, Proposition 6.3 (i)] 
we have 

d /•' 
u(t) = — S{r)[u(0) +u{0)(t-r) +1*1* f(t-r)]dr 

= S{t)u(0) + [ S{r)u{0)dr + f S(r)l * fit - r)dr, 
Jo Jo 

which completes the proof. | 

T H E O R E M 3 Let f G Ll(0,T;X), u0 G D{\fA) and uj G X. Then, the mild 
solution o/(16)-(17) belongs to C([Q,T\;D(-/A)). 

PROOF. For w0 G D(\fA), in view of theorem 2 (ii) and (iii) the mild solution is 
continuous with values in D(\fA). | 

T H E O R E M 4 Let f £ W^iO^X), uQ G D{A) and m G D(y/A). Then, the 
mild solution of the Cauchy problem (16)-(17) is a strong solution and belongs to 
C\[Q,T\-D{VA)). 

P R O O F . First, the mild solution u of the Cauchy problem (16)-(17) is a strong 
solution thanks to theorem 2 (iv) and [5, Proposition 6.3 (iv)]. 

Concerning the regularity of u, since 

u(t) = S{t)u0 + S(t)Ul + f S(t- T)f{r)dT , i € [0, T ] , 
Jo 

we have that the functions y/AS(i)u0, y/AS(t)ui are continuous , thanks to (v) and 
(ii) of theorem 2 respectively. To complete the proof, we have to verify that the 

function VA~ / S(t — T)f{r)dr is continuous. In fact, 
Jo 

^AJl S(r)f(t - r)dr = y/A J* 5(r)/(0)rfr + | * y/A (f S{r)dA f{t - r) dr, 

and the statement follows again by theorem 2 (iii). | 
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4. - Semil inear problems 

We consider a map F : D(\fA) —>• X Lipschitz continuous from bounded subsets 
of D(y/A) to X, that is for all R > 0 there exists a constant L(R) > 0 such that for 
any yu y2 € D(</A), \\VAyi\\ < R, \\VAy2\\ < R, we have 

(19) \\F(yi) - F(y2)\\ < L(R) \\VAyi - VAy2\\. 

We now state an existence result for the semilinear equation 

(20) ii(t) + Au(t)+ f B(t-s)u{s)ds = F(u(t)) + f(t) t>0, 

Let T > 0 be given. 

T H E O R E M 5 Let f € Z / ^ T j X ) , u0 € D(y/A)) and «i e X. Then there exists 
T0 g (0,T] and a unique solution u e C([0,T0]; D(\/A)) of 

(21) u{t) = S{t)u0 + f S{T)uxdT + [\l *S){t- T)[F{U{T)) + f(r)]dT 
Jo Jo 

in [0, T0]. 

P R O O F . Set 

M = CV(||x/Zuoll + ||«i|| + H / lk r ) , R = 2M + | |F(0)| | , 

where CV > 0 is the positive constant in (8). 
We introduce the space 

E = {v€C([0,To];D(VA)), \\VAv(t)\\ < R V t e [0 ,T o ] } , 

where T0 e (0, T] is to be found. If we equip E with the distance generated by the 
norm of C([0,T0]; D(v / I ) ) , that is 

d(vi,v2) = max Wy/Av^t) - y/Av2(t)\\, 
U<t<.io 

then (E, d) is a complete metric space. Define a nonlinear operator r on E by 

(22) (Yv)(t) = S(t)u0 + f S(T)UldT + [\l * S){t - T)[F{V(T)) + / ( r ) ] d r , 
Jo Jo 

for any v e E and t € [0,T0]. Clearly, a function v € E is a solution of (21) in 
[0, To] if and only if v is a fixed point of I \ 

We shall show that T maps E into itself and it is a contraction, provided T0 is 
sufficiently small. 

First, we note that for any v G E and r e [0,T0] we have F(V(T)) = F(0) + 
F{V(T)) - F(0); by (19) it follows 

\\F(V(T))\\ < | |F(0)|| + RL(R) < M ^ i f ( 0 ) l 1 , 



351 

if we take 

m) T < M + llf(°)H 
1 ' °-CT(\\F(0)\\+RL(R))-

Then, by (8) we have 

\\^{Tv)m<M + CTf\\F(v{T))\\dT<M + tCT
M+^m<R, 

so r maps E into itself. Furthermore, again by (8) for any vi, v2 G E we have 

\\VA(Tv,)(t) - VA(Tv2)(t)\\ < f \\yfl{\ * S)(t - T)[F(VI{T)) - F(v2(T))}\\dr 
Jo 

(24) < CT f* Mv^r)) - F(v2(r))\\dT 

< CTL{R) f \\VAVI(T) - yfAv2(r)\\dT 
Jo 

< T0CTL{R)d(v1,v2)<^d(vuv2), 

if we also take 
(25) T0 < 

2CTL(R) ' 

Therefore, if T0 satisfies (23) and (25), then T is a contraction with Lipschitz constant 
1/2, and so T has a fixed point u e E, which is a solution of (21) in [0,T0]. So, the 
proof is complete. | 

THEOREM 6 Let f G Wl<l{Q,T\X), u0 G D(A) andm G D{yfA). Then, a solution 
u of equation (21) in [0, To], T0 G (0,T], is a strong solution of equation (2$), that 
is u e C2([0,T0];X) n C([0,To]; D{A)) and u verifies (20) in [0,To]. In addition 
ueC\[0,T0};D{^A)). 

PROOF. Let 0 < h < T0 and let t G [0, T0 - h\\ taking into account that \[~A 
commutes with S(t) (see theorem 2 (ii)), it is easy to check that 

rt+h . rt+h 
\fAu{t + h) - VAu(t) = f S(T)VAu0dr+ f S^yfAu^dr 

+ f VC4(1 * S){T) (£ f{t + s- T) ds\ dr 

+ [k yfA{\ * S)(t + h - T)[f{T) + F(u{T))}dT 
Jo 

+ f s/A{l * S)(r)[F(u{t + h-r))- F{u{t - r))]dr . 
Jo 

Set 
R= sup ||%/Zu(r)||. 

T £ [ 0 , T O ] 
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in view of (10), (8) and (19) we have 

\\VAu(t + h) - y/Au{t)\\ < /»Cr( | |«o| | + ||Xu0|| + | |VIu i | | + ||/||i,T) 

+hCT( sup | | / ( r ) | | + iiL(fl) + ||F(0)||) 
r€[0,T\ 

+CTMR) f \\VAU(T + h)- y/Au(r)\\dT 
Jo 

Applying Gronwall's lemma we get 

\\SAu{t + h)- VAu{t)\\ <C h, for any 0 < t < t + h < T0 , 

where C > 0 is a constant independent of t and h; hence, u : [0,T0] —> D(vA) 
is Lipschitz continuous. It follows that F(u) is also Lipschitz continuous, and con
sequently F{u) has bounded derivative on [0, T0]. Therefore, if we consider u as 
the mild solution of the linear equation (16) with non-homogeneous term given by 
F{u) + / , then we can conclude thanks to theorem 4. | 

5. - An application to viscoelasticity 

Let O be a bounded open domain in JRN, N > 1, with smooth boundary 90 . In 
this section we will consider the following semilinear history value problem, arising 
in the study of viscoelasticity (see [2, 3, 6]) 

d u d u ft d u 

(26) { = »(«(*, 0) + M*.0> t>o,£en, 
u{t,t)=v{t,Q, i < 0 , £efi, 

. u(f,f) = 0, tent, £edn. 

Here u(t, f) takes its values in IEt^. We employ the summation convention. 
We shall assume that for any i,j = 1,2, . . . , iV, Atj = {A^j} and Btj(t) = 

{Bij(t)}, t > 0, are N x N matrices, such that 

4? = 4 , B%(t)=B*(t), i>0 ; 

iV 

£ \MAijri\v) > v\r]\2\M2 , for any A , r, 6 JRN {v > 0); 

B$(-)eW£(0,+oo;B.). 

Moreover, the functions h and v are given, and g : ]RN —>• JRN is a function of class 
C1 satisfying a suitable growth condition, to be specified later. 

We can rewrite (26) as an abstract problem of the type (20). Let X = L2(Q,; MN) 
be endowed with the usual norm and scalar product, and consider the operators A, 

file:///MAijri/v


353 

B(t) : D(A) C l - f l defined by 

D{A) = H2(Q;MN) n H^(Q;JR.N) 

(Ay)(0 =-Aj^-iO , teQ,y€D(A), 

W)y)(Z) = B y ( t ) ^ - ( 0 , £€Q, ye D{A). 

Notice that A commutes with B(t) and verifies assumption (2) see, e.g., [1] . More
over, the fractional power \f~A~ of A is well defined and 

D(VX) = H^n-JR"). 

Next, if N > 3 we assume that g satisfies, for some constant c0 > 0, the growth 
condition 
(27) |V<?(7?)| < c0 ( l + \r]\7&) , for any j , e MN . 

We observe that no growth condition is required on Vg in the case of TV = 1. If 
N = 2, then the exponent ^ ^ m (27) can be replaced by any positive number. 
Then, standard arguments show that the composition operator 

F(x)(£) = g{x(S)), Zetl,xeX 

is well defined from D( \ /Z) into X and F fulfils (19). 
We note that if the term 

LB^-s^ikis>0ds> 
associated with the past history, is meaningful, then it can be absorbed into the 
forcing term h. Therefore, under suitable assumptions on v and h, theorems 5 and 
6 can be applied to derive similar existence, uniqueness and regularity results for 
problem (26). 
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Phase Transitions and Hysteresis in 
One-Dimensional Thermo-Plasticity 

U. Stefanelli* 

The present analysis is concerned with the mathematical modeling of the thermo-
mechanical evolution of a visco-plastic material which may undergo solid-solid phase 
transformations. 

On the one hand, we are interested in how the phase transformations at the 
microscopic level (for instance the possible change of geometric configuration of the 
crystal lattice) may affect the global thermo-visco-plastic behavior of the material. 

On the other hand, we want to describe the effect on some solid-solid phase 
transition driven by micro- and mesoscopic stresses. 

As for an example of an interesting class of materials which strongly exhibit the 
above described relations between phase changes and stresses one should consider 
the so called shape memory materials. The latter are metallic alloys that can be me
chanically deformed (avoiding fractures) and then be forced to recover their original 
shape just by thermal means. The motivation for such a surprising behavior relies 
indeed in a structural thermo-stress-driven transformation in the metallic lattices. 
In particular, the geometric configuration of the crystal lattice of the alloy changes 
between hi-regularity variants and low-regularity ones. Let us stress that this kind 
of phenomena are actually present in a large variety of ordinary materials (including 
steels) although to a smaller extent. 

Let us sketch a classical approach to this kind of problems in a one-dimensional 
setting. Henceforth let §, u, a, w, and ip denote absolute temperature, displacement, 
stress, phase variable (a so called generalized freezing index [10]) and the thermo
dynamic force the drives the phase transition, respectively. Moreover, let e := ux 

denote the linearized strain. 
Hence, we start by introducing a local free energy function of the form 

F{e,w,d) := CVtf( l - ln t f ) + Fi(e,to) + 0F2(e,w), 

where Cy > 0 stands for the specific heat (and will be taken to be 1 without 
loss of generality) while F\,Fi are suitable coupling terms. We remark that the 
complement of the purely caloric part of F, i.e. Fi + i?F2, is linear with respect to 
the temperature. Then, we perform the standard choices 

dF dF 
(1) a = — (e,w,tf), i> = —(E,w,tf), 

dF 
(2) S{e,w,0) := ~ — {e,w,d) (entropy), 
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(3) U{e,w,d) := (F + •&S)(e,w,'d) (internal energy), 

and we address the coupling of the conservation law for the momentum 

(4) utt~ax — f (a = a + viscous stress = a + et), 

the balance of internal energy (where the Fourier law for the heat flux is assumed) 

(5) Ut - &XX = auxt + g, 

and the evolution equation for the phase 

(6) wt = - 0 , 

where / and g are a load and an heat source density, respectively. 
Let us come to the second important issue of our modeling, i.e. the possibility 

of describing hysteresis effects in the evolution of the material. Indeed, it is well 
known that a strong temperature-dependent hysteretic behavior in the macroscopic 
stress-strain relation can be observed for a wide class of ordinary materials. On the 
other hand, phase transition phenomena may be accompanied by strong macroscopic 
hysteretic effects often related to the thermal and mechanical stresses acting on the 
micro- and mesoscales. 

Unfortunately relations like (1) are not suitable of describing hysteresis. Indeed, 
even when F{-,w,d) and F(e, •,•&) are non-convex, the latter relations may not 
ensure the occurrence of hysteresis. Moreover, position (1) obviously cannot take 
into the correct account the inherent memory structures that are responsible for 
the complicated loopings in the interior of the external hysteresis loops that are 
observed in the experiments. 

In order to avoid this difficulties, Krejci and Sprekels [8, 9, 10] have recently 
proposed to incorporate hysteresis directly in the model by replacing (1) by 

(7) a = H1[e,w] + dH2[e,wl 

(8) ^ = %[£ ,u ) ]+W 4 [£ ,w] -

If one chooses 

dFi dF2 

(9) %i[e, w] = —— (e, w), H2[s, w] = -g^(e, «0, 
dFi dFo 

(10) H3[e, w) = j±(e, w), U4[e, w] = -^(s, w), 

then (7)-(8) turn out to be exactly equivalent to (1). On the contrary, we are not 
going to assume (9)-(10) and we actually choose Hi for i = 1 , . . . , 4 to be no longer 
real valued functions but hysteresis operators acting on functions. In this regard, 
the use of square brackets will refer to a possible functional dependence on the 
arguments (see below). 

The idea of inserting hysteresis directly in the model has been successfully ap
plied to both one-dimensional thermo-plasticity without phase change [6, 7] and 



357 

multidimensional phase change without mechanical effects [3, 9, 8, 10, 11, 12, 15]. 
We now address the full coupling of the system. 

We shall now briefly recall some basic facts on the notion of hysteresis operator, 
referring indeed to the monographs [2, 4, 5, 16, 17] for the details. Let T > 0 denote 
some reference time. A mapping W from the set Map[0, T] := {w : [0, T] —»• 1R } into 
itself is called a hysteresis operator if it is causal, that is, if for all tu1; w2 £ Map[0, T] 
and t € [0, T] we have the implication 

wi(r) = w2(r) Vr 6 [0,t] => W[wi](t) = rl[w2)(t), 

and if it is rate-independent, that is, if for every w € Map[0, T] and every continuous 
increasing mapping a of [0,T] onto [0, T] we have 

W[»oo](t) = ?fH(a(f ) ) V t e [ 0 , T ] . 

In the case of partial differential equations, when the input functions not only depend 
on a time variable t 6 [0, T] but also on a space variable x, it is necessary to extend 
the above notion by simply putting 

H[w](x,t) := H[w(x,-)](t) 

and identify the operators H and H. The hysteresis operators in (7)-(8) have to 
be understood in this way. 

The mathematical treatment of such kind of nonlinearities is often very compli
cated. Indeed, the input-output behavior of hysteretic nonlinearities often cannot 
be explicitly described. Moreover, we shall observe that, due to rate independence, 
an hysteresis operator cannot be expressed in term of a convolution-type integral, 
i.e. the memory contained in an hysteretic process is not of fading type. Finally, 
hysteresis operators usually show only very restricted smoothness properties and the 
chain rule equality has to be replaced by suitable inequalities. 

In particular, for the purposes of our analysis we have to assume the existence 
of further hysteresis operators T\ and T2 such that, for all (e, w) € (W1 '1(0,T))2 it 
holds, for almost every t € (0,T), 

(11) -T^eMit) < « i [e , tu] ( i )e t ( t )+7*3[e ,H(*Mt) , 

(12) -F2[s,w](t) < H2[e,w}(t)et{t)+-H4[E,w}(t)wt{t). 

Then, we are led to define the free energy, entropy, and internal energy as the 
hysteresis operators 

(13) ^[e.w.i?] := ${l-\nti)+F1[e,w] + tiJr
2[e,w}, 

(14) S[e,w,ti] := lntf - T2[e, w], 

(15) U[e,w,d] := d + ^i[e,io], 

define a and ip as in (7)-(8) and make use of the constitutive equations (4)-(6) in 
order to obtain the system 

(16) uu - uxxt = ax + f, 
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(17) a = Hi[ux,w] + tfH2[ux,w], 

(18) (tf + Tx[ux, w])t - tixx = u2
xt + auxt + g{-, •d), 

(19) wt + H3[ux, w] + d'Hi{ux, w] = 0, 

to be fulfilled almost everywhere in the domain I x (0, T) where I := (0,1) and 
T > 0 . 

We are now in the position of complementing the latter system with initial and 
boundary conditions as 

(20) w(-,0) = «0, u*(-,0) = ui, tf(-,0)=i?o, io(- ,0)=wo a.e. in 7, 

(21) u(0, •) = 0, uxt(l, •) + <T(1, •) = 0, 0S(O, •) = tfs(l, ') = 0 a.e. in (0, T), 

namely our wire is thermally insulated, fixed in 0 and stress-free in 1. 
Let us now state our assumptions on data and operators: 

( H I ) wo e H2(I), ui e H\I), 0O e Hl(I), w0 e Hl(I), it holds 0o(a;) > 
5 > 0 for all x € 7 , and the compatibility condition u0(0) = Ui(0) = 0 is satisfied. 

(H2) It holds / € 771 (0, T; L2(I)). 

(H3) We assume that g : I x (0, T) x 1R —• 1R is a measurable function such 
that 

3 So £ i ° ° ( / x (0, T)) : 0 < 0 =>- <?(*, i, 0) = g0(x, t), 

g0(x,t) > 0 a.e. in 7 x (0 ,T) . 

37^ >0 < Ki a.e. in I x ( 0 , T ) x E , 

(H4) The operators Hj, 1 < j < 4, and J l are causal and map C[0, T] xC[0, T] 
into C[0,T] and ^ ^ ( O . T ) x W ^ O . T ) into Wl'\Q,T). Besides, the following 
conditions are satisfied: 

(i) 3 K2 > 0 : Ve, w 6 C[0, T] it holds 

max ^-[E.WIHOO < 7C2, * i [<?,«;](*) > -7sT2 V £ e [ 0 , T ] . 

(ii) 3K3 > 0 : Ve,w £ W ^ O . T ) it holds, for a.e. t € (0,T), 

max |7£j[£,i4(*)l + l ^ i M M * ) ! < ^ ( k t C O l + K(*) l ) -

(iii) 37Q > 0 : Vei ,«! ,e 2 , w2 <E C[0,T] it holds, for every te[Q,T],' 

max |Wj[ei,wi](i) - ft^HMI 

- ^ 0<r<t O ^ ~ £ 2 ^ l + \Wl^ ~ W2^) ' 

|^i[ei,wi](t) - Ji[<r2) u*](<)| < /Ci [ki(0) - e2(0)| + |wi(0) - w2(0)| 

+ J (|ei,tW - M O I + |wi,t(r) - w2,t(r)|) dr] . 
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(H5) There exist causal operators T2 : W1'l{0,T)xW1'1{0,T) -> W^&T), 
Q : W^{Q,T) -*• Whl{0,T), and a constant K5 > 0, such that the following 
conditions are satisfied: 

(i) For every e, w € Wx'l(0, T) it holds 

J i [ e , H t < etni[e,w] + g\w]tHz[e,w] a.e. i n ( 0 , T ) , 

T2[v,w]t < etn2[E,w) + g{w}tn4[e,w} a.e. i n ( 0 , T ) . 

(ii) For every w £ W1'1^, T) it holds 

\g[w\t{t)\2 < Kbwt{t)g[w)t{t) for a.e. t £ (0,T). 

A typical example where (H4), (H5) are fulfilled is given by Prandtl-Ishlinskii 
operators of the form 

« # > w] := ^°° <^(r) sr [a0/ , e] dr , j = 1,2 , 

Hj[e, w] := J ip^r) sr [a°r'
J, w\ dr, j = 3,4, 

where ofi € [—r, + r ] , 1 < j < 4 , are suitable initial values and the weight 
functions <pj are non-negative on [0, +oo) and satisfy 

/ •oo 

max / (1 + r2) ifjfr) dr < +oo . 
1<J<4 Jo 

The above operator sr stands for the so called stop operator or Prandtl's normalized 
elastic-perfectly plastic element i.e., for all e € Wl,1{Q,T) and all of G [—r, r], we 
define sr[a"°,£] := ar as the solution of the variational inequality 

ar{t) e [-r ,r] a.e. in (0,T), <rr(0) = a°, 

(et(t) ~ o-r,t(t))(o-r(t) -n)>0 V?? G [-r , r ] , a.e. in (0,T). 

Indeed, defining the (energy) operators 

^i[£'w] := \ f V ( r ) s* K'1'£]+ ^3(r) s* K0 ,3 - W D d r ' 

choosing g\w] = w, we easily verify the validity of (H4), (H5) . In particular 
relations (11)-(12) are exactly (H5.i) . For examples where the fij are not Prandtl-
Ishlinskii operators and g differs from the identity operator we refer to [10, 11]. 

We can now formulate a well-posedness result for the problem (16)-(19), (20)-
(21). 

T H E O R E M 1 Suppose that the hypotheses ( H I ) - (H5) are satisfied. Then the 
problem (16)-(19), (20)-(21) admits a unique strong solution (u,9,w) such that 

n a 2 ( 0 , T ; i 2 ( / ) ) nHl{0,T;H2{I)), 

w € H2(0,T;L2(I)) n # 1(0,7 , ; . f f 1( / ) ) , 

9eHl{0,T;L2(I)) n L2{0,T;H2(I)). 
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Besides, with the finite norms fa := \\uxt\\L\o,T;L^(i)) and fa := ||wt||c(/x[o,r]) ** 
holds 
(22) 6(x,t) > Se~^Kl+K2K'i^t + K^l) for all {x,t) € I x [0,T]. 

Of course we will not give the proof of this result here and we refer the inter
ested reader to [13] for the details. The idea of this proof relies indeed in a local 
existence - global a priori estimates - passage to the limit procedure and the key 
point is the careful use of a variable transformation due to Andrews [1]. The latter 
transformation forces us to consider the stress-free boundary condition of (21). In 
particular, let us stress that our analysis cannot extend to the case of zero boundary 
conditions. 

A second well-posedness result may be achieved by means of similar techniques 
for another model of one-dimensional thermo-visco-plasticity with phase change ob
tained replacing (16) with 

\£"J) lift ^xxt i ILxxxx — &x i /> 

namely including an additional curvature term and prescribing the boundary con
ditions for u 

u(0, •) = «(1, •) = uxx(0, •) = uxx{l, •) = 0 a.e. in (0, T). 

Let us stress that, in this situation, zero boundary conditions can be accepted as well 
other choices. Omitting the details about regularity and compatibility requirements 
to the ingredients of the problem, we just stress that an analogous to the latter 
Theorem holds for the system (17)-(19), (23). The reader is referred to the paper 
[14]) for the details. 

Let us conclude this discussion by remarking the crucial role of (H5.i)-(H5.ii) 
in connection with the thermodynamic consistency of our models. In particular, it 
is worth noting that, owing to (22), the temperature stays positive for all times. We 
now aim to prove the consistency with the Second Principle of Thermodynamics by 
obtaining the Clausius-Duhem inequality which is in the form (see (5)) 

d —S[s, w, ti] - —U[s, w, •d] > -aet a.e. in 7 x (0, T), 
QiL QITI 

where a = a + et is again the total stress. Indeed, we simply compute from (5), 
(13)-(15), and (H5.i)-(H5.ii) 

9S[e,w,9]t - U\e,w,d]t + aet = -0T2[e,w]t - Ti[e,w]t + aet + e\ 

> ~ (Hi[e,w] + en2[e,w])et - [n3[e,w] + OU^e, w]) Q[w]t + aet + e\ 

>e2
t+wt Q[w]t > 0 a. e. in I x (0, T). 

Hence, the Clausius-Duhem inequality is fulfilled. Let us remark that this thermo
dynamic consistency proof is still valid when referred to the second model containing 
the additional fourth order curvature term, i.e. relation (23) instead of (16). 
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Longterm dynamics of a conserved 
phase-field system with memory 

F. M. Vegni * 

1. - Introduction 

In the framework of phase-field theories (cf. Brokate-Sprekels [2], and its refer
ences), materials which exhibit phase transitions due to temperature variations are 
usually described by two state variables: the (absolute) temperature field 9 and the 
so-called order parameter (or phase variable) x accounting for phase changes. 

Here we introduce and analyze a phase transition model for a material with ther
mal memory. We recall that memory (or relaxation) effects in the heat propagation 
are related, e.g., to certain liquids of high viscosity (see Jackie [11]). 

Our model basically consists of an integrodifferential evolution equation ruling 
the temperature coupled with a nonlinear fourth-order evolution equation governing 
the order parameter. This system is phenomenologically derived combining the 
theory of heat conduction in materials with memory with the Ginzburg-Landau 
theory for phase transitions. We then associate with the evolution system a set of 
initial and boundary conditions. The well-posedness of the corresponding initial and 
boundary value problem as well as the longtime behavior analysis is investigated. 

Let 0 C R 3 be a fixed, bounded domain occupied by an isotropic, rigid and 
homogeneous heat conductor. We consider only small variations of the absolute 
temperature and its gradient, and we suppose that at each point x € Q and at each 
time t g (T, OO), T being a fixed initial time, the state of the material is described 
by the triplet ($,x> $*)• Here, -d is the temperature variation field, d = (9 — 9C)/9C, 
where 0C is the reference temperature at which transition occurs. Moreover, we 
recall that the phase variable x describes the macroscopic solid-liquid transition, 
and #'(s) = ${t — s) is the past history of -d up to time t. 

The evolution of the temperature dependent phenomenon is governed by the 
energy balance equation 
(1) dte + V • q = / 

where e is the internal energy, q is the heat flux vector, and / is the external heat 
supply. Taking into consideration a linearized version of the Coleman-Gurtin theory, 
we assume that e and q are described by the following constitutive equations 

/ •oo 

(2) e(x,t) = ec + cv9J(x,t)+ a(a)flt(x,o-)do- + 9c\(x(x,t)) 

*Dipartimento di Matematica, Universita degli Studi di Brescia, Italia 
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(3) q(x,t) = -kVd(x,t)-J b{a)Vdt(x,a)da 

for (x, () 6 f! x E . Here a, b are smooth positive functions such that a', a", b, U are 
summable and a(0) > 0. The positive constants ec, cv, and k are the internal energy 
at equilibrium, the specific heat and the instantaneous conductivity, respectively. As 
a consequence, the Fourier heat conduction law is recovered when the memory term 
in (3) is neglected. 

Using (2)-(3), the energy balance (1) reads 

/ •oo 

cv9cdt-d(t) + o(0)tf (t) + J a!{o)${t - o)do + GC\'(X(t))dtX(t) 
/•OO 

(4) -fcAtf(i) - / b{a)M(t - a)da = f(t) 
Jo 

We couple this equation with a Cahn-Hilliard type equation which rules the phase 
evolution (see, e.g., Brokate-Sprekels [2], and Novick-Cohen [13] for its justification) 

(5) dtX -Aw = 0 

where 
U) = - A x + X3 + 7'(X)-A'(x)tf 

represents the so-called chemical potential, being 7 a smooth function. 
Concerning initial conditions, given at time r , besides the values of •& and x, it 

will be necessary to know the past history of & as well 

I?(T) = •do inf i 
X(T) = XO in fi 

•d(r-s) = tf0(s) in fix (0,oo) 

Provided that x m a v represent the density of some substance (e.g., a component 
in an alloy), the total amount of the substance does not change in time, provided 
that the mass flux through the boundary is null. Then, the most natural boundary 
condition associated with (5) is the homogeneous Neumann condition for both x 
and the chemical potential w 

d„x = 0 on 9fi x (T, 00) 
dnw = 0 on <9fi x (r, 00) 

Therefore, a formal spatial integration of (5) yields the conservation of J ^d f i . 
Phase-field models displaying this feature are commonly called conserved models. 

As far as •& is concerned, we suppose that the Dirichlet homogeneous boundary 
condition is satisfied on T0 C 9fi, while the adiabatic boundary condition holds on 
r, = afi \ r0 

•d = 0 on r 0 x (T, 00) 
q • n = 0 on r x x (r, 00) 

Notice that the latter condition depends on the explicit expression of the heat flux 
vector, i.e., on the heat conduction law under consideration. 
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The longterm behavior of the standard (homogeneous) conserved phase-field sys
tem (4)-(5) without memory effects has been analyzed in Brochet-Hilhorst-Novick-
- Cohen [1]. In the hyperbolic case with a = 0, well-posedness results with more 
general nonlinearities are in Colli-Gilardi-Grasselli-Schimperna [4]. 

Nevertheless, in all the previous papers on models with memory effects, the 
problem is formulated by incorporating the given past history of the temperature in 
the heat source term. This approach does not allow to interpret the problem as a 
dynamical system. 

In order to construct a dynamical system associated with our initial and bound
ary value problem, we need to formulate the problem in a history space setting. 
Following an idea of Dafermos [5] (cf. also Giorgi-Grasselli-Pata [7]), we introduce 
an additional variable, the summed past history of -d 

rf{x,s) = l'dt{x,y)dy = f d(x,y)dy 
J0 Jt-s 

and we easily check that rj satisfies the first order linear evolution equation 

dtri\s) + dsrf(s) = d{t) in fi, (t, s) G (r, oo) x (0, oo) 

along with the initial and boundary conditions 

if = Vo i n f i x (0, oo) 
T?'(0) = 0 on fix (T,OO) 

where 
Vo(x,s) = / d0{x,y)dy 

Jo 
is the initial summed past history of $, and the homogeneous boundary condition is 
a direct consequence of the definition of 77. 

On account of (4), and making physically reasonable assumptions on the past 
history and the memory kernels, we observe that a formal integration by parts yields 

/•oo /*oo 

/ b(a)V^(a)da = - b'(a)Vrf{a)da infix(r,oo) 
Jo Jo 

poo roo 
/ a!{a)dHa)da = - / a"{a)Tf{o)do infix(r,oo) 

Jo Jo 
Then we set 

fi(s) = -b'(s) 

v0v{s) = -a"{s) 

for every s > 0, where z/0 = 1 or i/0 = — 1 if a is bounded, nondecreasing, and 
concave or if a is summable, nonincreasing, and convex, respectively. Both cases are 
thermodynamically consistent (see Giorgi-Grasselli-Pata [7], and references therein). 

For the sake of simplicity, we set all the constants appearing in equation (4), 
except k, equal to 1. In particular we have a(0) = 1, even though it will be clear 
that one can take o s O , provided that To has positive measure. We observe that the 
introduction of the summed past history as a third state variable, and the related 
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formulation in a history space setting, seems unavoidable if one is interested in a 
structural stability analysis with respect to the initial data and the heat supply 
(see [8]). 

Then we can formulate the original initial and boundary value problem as follows. 
Problem P. Find ($, x, v) solution to the system 

roo roo 

dt{$ + Hx)) + # - kAti + v0 \v{a)T]{a)da- n(a)Ar](a)da = f 
Jo Jo 

dtX-Aw = o 

w = -AX + X3 + 7'(x)-.V(x)tf 

dtV + dsrj = $ 

in Q, for any t > r, and any s > 0, which satisfies the initial conditions 

t?(r) = 
(6) X(r) = 

VT = 

and the boundary conditions 

•& 

9nX 
dnw 

V 
r;'(0) 

roo 
kdni9 + / n(a)dnr)(o)do 

Jo 

Observe that P includes two distinct models according to the possible choices of v0. 
Our goal is to analyze the well-posedness of problem P and the longtime be

havior of its solutions. More precisely, we prove some continuous dependence and 
uniqueness result, which allow to interpret P as a dynamical system. Then, we show 
the dissipativity of the dynamical system by constructing an absorbing set which is 
uniform with respect to / . Finally, we prove the existence of a uniform attractor of 
finite fractal dimension. 

This analysis extends to the so-called conserved case characterized by (5) the 
results obtained in Giorgi-Grasselli-Pata [7] for the nonconserved case, where (5) is 
substituted with 

dtX + w = 0 

2. - The existence and uniqueness 

We refer to [9]. With standard notation, we consider two functions v and /x 
(memory kernels), which satisfy the assumptions: 

(kl) v(a), n{a) e C^O.oo) nL^O.oo) 

(k2) u(a) > 0, n(a) > 0 V a € (0, oo) 

(k3) v'(a) < 0, fj!(a) < 0 V a € (0, oo) 

<?0 
Xo 
•no 

_ 

= 
= 
= 
= 

= 

0 
0 
0 
0 
0 

0 

in 
in 
in 

Q 

n 
fi x (0,oo) 

on r 0 x (r, oo) 
on dft x (r, oo) 
on dQ x (T, OO) 

on To x (T, OO) x (0, oo 
on f2 x (r, OO) 

on f i x (r, oo) x (0, oô  
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About initial data, we consider 

•d0 G H = L2(fi) 

VoeM = ^ ( 0 , o o ; J L 2 ( f i ) ) n ^ ( 0 , o o ; H ^ ( n ) ) 

The nonlinearities involved in the problem are taken 

(7) 7 G C*2(1R) with V, 7" G L°°(1R) 

and 

(8) A G C2(IR) with A" G L°°(]R) 

(9) / G L L ^ ^ + L ^ ^ n 

Then, problem P has a solution which is valued in the space HxVxM where initial 
data are set. We make use of a Faedo-Galerkin approximating scheme to project 
problem P on a finite dimensional space, where we can locally solve a Cauchy 
problem for a system of ordinary differential equations, having local solution, with 
standard techniques. Then, we provide some a priori estimates which guarantee 
that any local solution to the problem is actually global. Finally we prove that the 
approximating solutions converges to the actual solution to problem P , exploiting 
weak convergence properties in Banach spaces. 

We prove continuous dependence estimates for solutions to problems P (unique
ness straightforwardly follows from these results). Some restrictions on A and 7 are 
needed. More precisely, when (8) is replaced by 

(10) AeC 2 ( lR) with A',A"€L°°(IR) 

we can obtain a first continuous dependence results. A stronger one holds, when we 
take 
(11) A(r) = A0r V r € H 

(12) 7 G C*3(1R) with 7', 7", 7'" G L°°(3R) 

in place of (10) and (7), respectively. In this case the solution is such that 

9 G C{T, 00; H) x e C{T, 00; V) I ) £ C ( T , O O ; M ) 

The proof is given exploiting the completeness properties of Banach spaces, after 
having constructed some a priori estimates on the difference of two solutions with 
different initial data. 

3. - The longtime behavior 

The dissipative nature of a system is evident if the set of its solutions, depending 
on initial data, possesses an absorbing set, i.e. a set into which all the orbits corre
sponding to different initial data eventually enter. Referring to [10, 14] for a deeper 
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insight on properties of dynamical systems, we recall that, given a metric space X, 
a two-parameter family of operators 

W(t,r):X^X T€JR,t>T 

is a (strongly continuous) process, or a dynamical system, on X if the following 
properties are satisfied: 

(i) W{T,T)=I V r e E 

(ii) W(t,r) =W(t,s)W(s,r) VreE, t>s>r 

(iii) W{t,T)z0eC([r,oo);X) V r G l R , V z0 £ X 

(iv) W{t,T)£C(X;X) V r e E , t>T 

The process is the natural extension of the concept of semigroup. 
It is useful to highlight the dependence on a functional symbol ip G T, where the 

symbol space F is a complete metric space, and consider a family of processes 

{Wv{t,T),<peF} 

rather than a single process. The symbol commonly models an external force. A 
set B0 C X is a uniform absorbing set (with respect to <p 6 T) for the family 
{Wv(t, T), tp G JF} if for any bounded set B C X there exists tB > 0 such that 

(J Wv{t,T)BcBo 

for every r £ 1R and every t > T - M S -

3.1. - The process associated with problem P. - We introduce the product Hilbert 
space 

U = HxV xM 

For every a > 0, we also introduce the subset Ha of % defined by 

« a = { ( 0 , X , ' 7 ) e t t : | j [ l X d « | < « } 

Notice that Ha is a complete metric space with respect to the metric induced by 
the norm of T-L. We agree to denote by 

EWi,T)(l?o,Xo,»to) = (0(i)>x(t),'7 t) 

the solution to P at time t, with initial data (#o,Xo,%) given at time r < t, and 
forcing term / . Since we are working with a phase-field system which conserves the 
phase variable, {d0,Xo,Vo) € ria implies E//(i,r)(i?0,Xo,»7o) ^ %»• 

If we let (kl)-(k3), (7), (9) and (10) hold, then the two-parameter family U/(t, r ) , 
acting either on %a or on 7i, fulfills (i) and (ii). When A is linear, and 7" is lipschitz, 
we can also ensure that the continuity properties (iii) and (iv) are satisfied. Then, if 
we let (kl)-(k3), (9), (11) and (12) hold, the two-parameter family U;(t,r) defines 
a process, acting either on ~Ha or on %. 
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3.2. - The absorbing set. - The asymptotic behavior of solutions to problem P 
strongly depends on the decay properties of the memory kernels, and, in particular, 
on the choice of the parameter u0, i.e., on a (cf. Introduction of [7]). To prove 
the existence of an absorbing set, we consider first the case v0 = 1 and we require 
that the memory kernels v and \x satisfy, besides (kl)-(k3), the following exponential 
decay condition 

(k4) Z/'(CT) + Sv(a) < 0 fi'{a) + 6n{o) < 0 V a e IR+ 

for some 5 > 0. We point out that the exponential decay of the memory kernels 
is a standard assumption, even in the stability analysis of linear integrodifferential 
systems (see, e.g., [12]). To deal with the case I/Q — —1, we need to assume | r 0 | > 0 
in order to take advantage of Poincare inequality. Furthermore, besides a decay 
condition for /x, we require v to be suitably dominated by fi, that is, 

(k5) v{a) < -r%vH(o) n'(cr) + &n{o) < 0 V a e R+ 

for some 0 < 50 < 5. We remark that, if (k5) holds, we can take M = L^(M+; V). 
We need to introduce the space of lAtranslation bounded functions, valued in 

the Banach space X. We denote this space TP(X), where we use the norm 

r wmWxdq 
r J 

for every f e L\0C{R-X). 
We assume (7), (10), (kl)-(k3) and either (k4) [if v0 = 1] or (k5) [if | r 0 | > 0 and 

v0 = - 1 ] . Let T C Tl{H) + T^iV*) be a bounded set, and denote 

F = s u p | | / | | T i ( H ) + T 2 ( v . ) 

Then, for any fixed a > 0, there exists RQ = Ro{F) > 0 such that, given any R > 0 
and initial data 
(13) 0?o,Xo,??o)e-«Q 

satisfying ||(i9oi XO,VO)\\-H < R, there is i# = tR(F) > 0 such that 

(H) snp\\Uf{t,T)(0o,xo,Tio)\\n<Ro 

for every r 6 IR and almost every t > T + tp.. If (11)-(12) are also assumed, then any 
ball of 7ia centered at zero of radius strictly greater than R0 is a uniform absorbing 
set for the family of processes {Uf(t, r ) , / 6 F} acting on Ha. 

We prove the existence of the absorbing set by constructing some sharp and 
refined inequality concerning the behavior of the energy of the system. A Gronwall 
type lemma leads to (14). We point out that (13) is crucial, since the conservativity 
of the system. 
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3.3. - The attracting set. - Longtime behavior of a single solution to a well-posed 
initial value problem is often described by the so-called w-limit set, i.e., a set to 
which the orbit converges as t -¥ oo. We show that such sets exist for P , and that 
they are part of a bigger compact invariant set A which attracts all orbits. 

A set /C C X is said to be uniformly attracting for {Wv(t, r),ip G T} if, for any 
T £ R and any bounded set B in X, 

lim \sa-pSx(Wv(t,T)B,iq] = 0 

where 
5X(B1,B2)= sup inf distx(zi,z2) 

is the Hausdorff semidistance of two sets B\ and B2 in X. 
A family of processes that possesses a uniformly attracting compact set is said 

to be uniformly asymptotically compact. 
A closed set A C X is said to be a uniform attractor for the family {Wv(t, r),ip G 

J7} if it is at the same time uniformly attracting and contained in every closed 
uniformly attracting set. 

We recall also that a curve z(t) G X, t G IR, is a complete trajectory of a process 
W(t,r) if the identity 

W{t,r)z(T) = z(t) 

holds for every r € IR and every t > T and that we say that the kernel Ker[W] of 
a process W{t, r ) consists of all bounded complete trajectories of the process. The 
set 

Ker[W;s] = {z{s) : z{-) € Kei[W}) 

is the kernel section at time t = s, s G IR. 
We exploit the following fundamental abstract result, which gives sufficient con

ditions to existence of an attracting set and its characterization. It appears as 
Theorem 3.2 in [3]. 
- Theorem. - Let T be compact, {Wv(t,r),ip G J7} be uniformly asymptotically 
compact, and W.(t, r ) be continuous as a map from X x T to X for every r G IR 
and every t > r. In addition, assume that there exists a semigroup T(t) on T that 
satisfies the translation identity 

(15) Wv(t + s, T + s) = WT{s)lfi{t, T) 

for every ip G T, r G IR, s > 0. Then the semigroup E(i) on X x T, defined as 

E(t)(z, 4) = {Wv(t, 0), T{t)<p) (z,ip)GXxT 

possesses a compact global attractor A, which is fully invariant with respect to T,(t), 
that is, 

T,(t)A = A 

for every t > 0. Moreover, the following properties hold: 

1. The projection on the first component Hi A = A is the uniform attractor of 
{ ^ ( i , r ) , V £ f } o n I ; 
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2. The projection on the second component U2A = AT is the global attractor of 
T(t) on T\ 

3. A = U ( K e r [ W „ ; 0 ] x M ) . • 

In order to exploit this result, we consider a translation compact function 

(16) g€Llc(]R-H) 

We recall that a function g e Lfoc(lR;X) is said to be translation compact in 
Lf0C(lR; X) if the set {<7r}reiR of translates of g, where gr(-) = g{- + r), is relatively 
compact in Lf0C(IR; X). The set 

H(5) = {g\reWs 

(the closure in Lfoc(IR;X)) is called the hull of g. Then, the hull H(<?) is a compact 
metric space, on which it is naturally defined a strongly continuous semigroup, 
namely the translation semigroup T(i) 

T(t)f = f* V / e H(g) 

This semigroup satisfies the translation equality (15). Notice that the space H(g) is 
compact by construction. In particular, the global attractor of H(g) coincide with 
K(g) itself. 

In the sequel, we assume (11), (12), (kl)-(k3) and either (k4) [if vo = 1] or (k5) 
[if | r 0 | > 0 and va = —1]. For any given a > 0, we study the asymptotic behavior 
of the family of processes 

{Uf(t,T),feK(g)} 

acting on 7la, generated by the solutions to problem P . 
To exploit theorem above, and to prove that {Uf(t,r),f £ H(g)} is uniformly 

asymptotically compact, we need to decompose the solution to P in three parts: the 
first vanishing at infinity, and the other two belonging to a compact set. 

We introduce the triplets 

zo = (tfo,Xo,»?o) 
z(t) = (0(t),x{t),ri{t)) = Vf{t,T)zo 

with 
ZQ G BQ C %a 

where BQ is a bounded, uniform absorbing set, whose existence has been proved. 
Observe that z(t) 6 Tig whenever z0 e H0. We now decompose the solution to 
problem P as 

Z = ZL + ZE + ZN 
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where zL is the solutions to the system 

/•oo /*oo 

dtdL - - dL - X0dtXL + kML - i/0 / v{a)r)L{<y)da + / n(a)Ar)L(a)da 
Jo Jo 

dtXL = A ( - A X L - A O ^ L ) 

<%% = - 3S7?L + dL 

ZL(T) - (A,Xo-rnxo,rjQ) 

The linearity of this system allows to conclude that zL(t) vanishes at infinity in H. 
Instead, £#(£) is the solution to the system 

/•OO /"OO 

dt^E = -$E ~ \odtXB + kMB -VQ / v{a)r]E{a)da + / ix{a)Ar]E(a)da + f 
Jo Jo 

dtXE = A(-AXE - \®E) 

dtVE = - dsr)E + dE 

ZE(T) = (0,0,0) 

and we can show that there exists a relatively compact set K,E C HO such that 

U U U \JzE(t)dcE 

fen(g) z0eB0 rent t>r 

Finally, zN is the solution to the system 
/•oo roo 

dt'&N = - ^N - A03(XJV + kAtfN - v0 I v(a)r]N(a)da + / n{a)Ar]N(o)da 
Jo Jo 

dtXN = A(-AXN+X3 + 7'{X)-^N) 

dtr]N = -dsrjN + tfN 

ZN(T) = (0,mxo ,0) 

Along the lines of Lemma 7.7 in [6], we prove that zjv(i) belongs to a compact, 
bounded set K,N in Ti, depending only on sup^g^ ||2o||w and on g. 

Existence and uniqueness theorems ensure that the map 

U.(t,T):HaxH{g)^Ua 

is continuous. Therefore, as a consequence of all the previous results, for every a > 0 
the family of processes {Uf(t, r),f G H(g)} on Ha has a compact (and connected) 
uniform attractor given by 

A = A(a) = [J Ker[[//;0] 
/€H(9) 

If we consider the more restrictive condition 

in place of (16), we can proceed with a double decomposition of the solution z = 
ZL + ZN, where the external source is now included in the nonlinear part, and the 
related results are obtained as well. It follows that the boundedness properties of 
JCN are reflected on A-
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3.4. - The finite dimension of the attractor. - To prove that the uniform attractor 
of the family of processes {U;{t, r ) } has finite fractal and Hausdorff dimensions is 
of some importance for numerical simulations. This fact implies that the longterm 
system dynamics can be described by a finite number of parameters; in fact (we 
refer to [14]), if a subset X of the phase space has Hausdorff dimension less than or 
equal to N, then almost all projections of dimension 2iV + 1 are injective on X. If 
we assume that X be a subset of a metric space X, the Hausdorff dimension of X is 

dimnA" = sup <8 > 0 : supinf YVf < o o | 

where Ce — {Bi(ri)}i€J is a covering of X of balls of radii r; < e. 
The fractal dimension of X is 

dimpA" = sup \6 > 0 : limsup£'sn^(e) < oof 

where nx(e) is the minimum number of balls of radii e which is necessary to cover 
X. 

It is straightforward from the definitions that 

d inin^ < dimpA' 

We suppose now / G H, i.e. constant in time. Thus, we are dealing with an 
autonomous dynamical system, and Uf(t, 0) reduces to a strongly continuous semi
group acting either on 7ia or on ~H. We can prove he attractor A of the semigroup 
Uf(t,0) has finite fractal (and Hausdorff) dimension. 
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