Skip to main content

Advertisement

Log in

Arl13b controls basal cell stemness properties and Hedgehog signaling in the mouse epididymis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Epithelial cells orchestrate a series of intercellular signaling events in response to tissue damage. While the epididymis is composed of a pseudostratified epithelium that controls the acquisition of male fertility, the maintenance of its integrity in the context of tissue damage or inflammation remains largely unknown. Basal cells of the epididymis contain a primary cilium, an organelle that controls cellular differentiation in response to Hedgehog signaling cues. Hypothesizing its contribution to epithelial homeostasis, we knocked out the ciliary component ARL13B in keratin 5-positive basal cells. In this model, the reduced size of basal cell primary cilia was associated with impaired Hedgehog signaling and the loss of KRT5, KRT14, and P63 basal cell markers. When subjected to tissue injury, the epididymal epithelium from knock-out mice displayed imbalanced rates of cell proliferation/apoptosis and failed to properly regenerate in vivo. This response was associated with changes in the transcriptomic landscape related to immune response, cell differentiation, cell adhesion, and triggered severe hypoplasia of the epithelium. Together our results indicate that the ciliary GTPase, ARL13B, participates in the transduction of the Hedgehog signaling pathway to maintain basal cell stemness needed for tissue regeneration. These findings provide new insights into the role of basal cell primary cilia as safeguards of pseudostratified epithelia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All data generated during this study are included in either the published article or its additional files. All raw data used for the microarray study can be found online on the Gene Expression Omnibus (GEO) repository (GSE206700).

References

  1. Abdelmohsen SM, Osman MA, Takrouney MH, El Debeiky M, Hassan ABG, Shalaby MMAE-A, Baky Fahmy MA (2021) A spectrum of epididymis and vas deferens anomalies among children with cryptorchidism: a retrospective multi-center study. Ann Pediatr Surg 17:55. https://doi.org/10.1186/s43159-021-00111-w

    Article  Google Scholar 

  2. Abe K, Takano H, Ito T (1982) Response of the epididymal duct in the corpus epididymidis to efferent or epididymal duct ligation in the mouse. J Reprod Fertil 64:69–72

    Article  CAS  PubMed  Google Scholar 

  3. Aram R, Chan PTK, Cyr DG (2020) Beta-defensin126 is correlated with sperm motility in fertile and infertile men†. Biol Reprod 102:92–101. https://doi.org/10.1093/biolre/ioz171

    Article  PubMed  Google Scholar 

  4. Arrighi S (2013) Primary cilia in the basal cells of equine epididymis: a serendipitous finding. Tissue Cell 45:140–144. https://doi.org/10.1016/j.tice.2012.10.003

    Article  PubMed  Google Scholar 

  5. Bangs FK, Schrode N, Hadjantonakis A-K, Anderson KV (2015) Lineage specificity of primary cilia in the mouse embryo. Nat Cell Biol 17:113–122. https://doi.org/10.1038/ncb3091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barral DC, Garg S, Casalou C, Watts GFM, Sandoval JL, Ramalho JS, Hsu VW, Brenner MB (2012) Arl13b regulates endocytic recycling traffic. Proc Natl Acad Sci USA 109:21354–21359. https://doi.org/10.1073/pnas.1218272110

    Article  PubMed  PubMed Central  Google Scholar 

  7. Belgacemi R, Luczka E, Ancel J, Diabasana Z, Perotin J-M, Germain A, Lalun N, Birembaut P, Dubernard X, Mérol J-C et al (2020) Airway epithelial cell differentiation relies on deficient Hedgehog signalling in COPD. EBioMedicine 51:102572. https://doi.org/10.1016/j.ebiom.2019.11.033

    Article  PubMed  Google Scholar 

  8. Bernet A, Bastien A, Soulet D, Jerczynski O, Roy C, Bianchi-Rodrigues-Alves M, Lecours C, Tremblay M-È, Bailey JL, Robert C et al (2018) Cell-lineage specificity of primary cilia during postnatal epididymal development. Hum Reprod 33:1829–1838. https://doi.org/10.1093/humrep/dey276

    Article  CAS  PubMed  Google Scholar 

  9. Björkgren I, Alvarez L, Blank N, Balbach M, Turunen H, Laajala TD, Toivanen J, Krutskikh A, Wahlberg N, Huhtaniemi I et al (2016) Targeted inactivation of the mouse epididymal beta-defensin 41 alters sperm flagellar beat pattern and zona pellucida binding. Mol Cell Endocrinol 427:143–154. https://doi.org/10.1016/j.mce.2016.03.013

    Article  CAS  PubMed  Google Scholar 

  10. Boonekamp KE, Kretzschmar K, Wiener DJ, Asra P, Derakhshan S, Puschhof J, López-Iglesias C, Peters PJ, Basak O, Clevers H (2019) Long-term expansion and differentiation of adult murine epidermal stem cells in 3D organoid cultures. Proc Natl Acad Sci USA 116(29):14630-14638. https://doi.org/10.1073/pnas.1715272116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Caspary T, Larkins CE, Anderson KV (2007) The graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell 12:767–778. https://doi.org/10.1016/j.devcel.2007.03.004

    Article  CAS  PubMed  Google Scholar 

  12. van de Casseye M, Schoysman R (1988) Epididymal diseases and repercussions on testicular function. Reprod Nutr Dev 28:1347–1356

    PubMed  Google Scholar 

  13. Centonze A, Lin S, Tika E, Sifrim A, Fioramonti M, Malfait M, Song Y, Wuidart A, Van Herck J, Dannau A et al (2020) Heterotypic cell-cell communication regulates glandular stem cell multipotency. Nature 584:608–613. https://doi.org/10.1038/s41586-020-2632-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cevik S, Hori Y, Kaplan OI, Kida K, Toivenon T, Foley-Fisher C, Cottell D, Katada T, Kontani K, Blacque OE (2010) Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport in Caenorhabditis elegans. J Cell Biol 188:953–969. https://doi.org/10.1083/jcb.200908133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Croyle MJ, Lehman JM, O’Connor AK, Wong SY, Malarkey EB, Iribarne D, Dowdle WE, Schoeb TR, Verney ZM, Athar M et al (2011) Role of epidermal primary cilia in the homeostasis of skin and hair follicles. Development 138:1675–1685. https://doi.org/10.1242/dev.060210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cyr DG, Pinel L (2022) Emerging organoid models to study the epididymis in male reproductive toxicology. Reprod Toxicol 112:88-99. https://doi.org/10.1016/j.reprotox.2022.07.001

    Article  CAS  PubMed  Google Scholar 

  17. Cyr DG, Dufresne J, Gregory M (2018) Cellular junctions in the epididymis, a critical parameter for understanding male reproductive toxicology. Reprod Toxicol 81:207–219. https://doi.org/10.1016/j.reprotox.2018.08.013

    Article  CAS  PubMed  Google Scholar 

  18. Das A, Tanigawa S, Karner CM, Xin M, Lum L, Chen C, Olson EN, Perantoni AO, Carroll TJ (2013) Stromal-epithelial crosstalk regulates kidney progenitor cell differentiation. Nat Cell Biol 15:1035–1044. https://doi.org/10.1038/ncb2828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gigante ED, Long AB, Ben-Ami J, Caspary T (2018) Hypomorphic Smo mutant with inefficient ciliary enrichment disrupts the highest level of vertebrate Hedgehog response. Dev Biol 437:152–162. https://doi.org/10.1016/j.ydbio.2018.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gigante ED, Taylor MR, Ivanova AA, Kahn RA, Caspary T (2020) ARL13B regulates Sonic hedgehog signaling from outside primary cilia. Elife 9:e50434. https://doi.org/10.7554/eLife.50434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Girardet L, Augière C, Asselin M-P, Belleannée C (2019) Primary cilia: biosensors of the male reproductive tract. Andrology. https://doi.org/10.1111/andr.12650

    Article  PubMed  Google Scholar 

  22. Girardet L, Bernet A, Calvo E, Soulet D, Joly-Beauparlant C, Droit A, Cyr DG, Belleannée C (2020) Hedgehog signaling pathway regulates gene expression profile of epididymal principal cells through the primary cilium. FASEB J 34:7593–7609. https://doi.org/10.1096/fj.202000328R

    Article  CAS  PubMed  Google Scholar 

  23. Goetz SC, Anderson KV (2010) The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11:331–344. https://doi.org/10.1038/nrg2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gregory M, Dufresne J, Hermo L, Cyr D (2001) Claudin-1 is not restricted to tight junctions in the rat epididymis. Endocrinology 142(2):854-863. https://doi.org/10.1210/endo.142.2.7975

    Article  CAS  PubMed  Google Scholar 

  25. Grisanti L, Revenkova E, Gordon RE, Iomini C (2016) Primary cilia maintain corneal epithelial homeostasis by regulation of the Notch signaling pathway. Development 143:2160–2171. https://doi.org/10.1242/dev.132704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guen VJ, Chavarria TE, Kröger C, Ye X, Weinberg RA, Lees JA (2017) EMT programs promote basal mammary stem cell and tumor-initiating cell stemness by inducing primary ciliogenesis and Hedgehog signaling. Proc Natl Acad Sci USA 114:E10532–E10539. https://doi.org/10.1073/pnas.1711534114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haidl G, Allam JP, Schuppe H-C (2008) Chronic epididymitis: impact on semen parameters and therapeutic options. Andrologia 40:92–96. https://doi.org/10.1111/j.1439-0272.2007.00819.x

    Article  CAS  PubMed  Google Scholar 

  28. Hanoun M, Arnal-Estapé A, Maryanovich M, Zahalka AH, Bergren SK, Chua CW, Leftin A, Brodin PN, Shen MM, Guha C et al (2019) Nestin+NG2+ cells form a reserve stem cell population in the mouse prostate. Stem Cell Reports 12:1201–1211. https://doi.org/10.1016/j.stemcr.2019.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hassounah NB, Nagle R, Saboda K, Roe DJ, Dalkin BL, McDermott KM (2013) Primary cilia are lost in preinvasive and invasive prostate cancer. PLoS ONE 8:e68521. https://doi.org/10.1371/journal.pone.0068521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Higginbotham H, Guo J, Yokota Y, Umberger NL, Su C-Y, Li J, Verma N, Hirt J, Ghukasyan V, Caspary T et al (2013) Arl13b-regulated cilia activities are essential for polarized radial glial scaffold formation. Nat Neurosci 16:1000–1007. https://doi.org/10.1038/nn.3451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Humbert MC, Weihbrecht K, Searby CC, Li Y, Pope RM, Sheffield VC, Seo S (2012) ARL13B, PDE6D, and CEP164 form a functional network for INPP5E ciliary targeting. Proc Natl Acad Sci USA 109:19691–19696. https://doi.org/10.1073/pnas.1210916109

    Article  PubMed  PubMed Central  Google Scholar 

  32. Joiner AM, Green WW, McIntyre JC, Allen BL, Schwob JE, Martens JR (2015) Primary cilia on horizontal basal cells regulate regeneration of the olfactory epithelium. J Neurosci 35:13761–13772. https://doi.org/10.1523/JNEUROSCI.1708-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim B, Breton S (2020) Androgens are essential for epithelial cell recovery after efferent duct ligation in the initial segment of the mouse epididymis†. Biol Reprod 102:76–83. https://doi.org/10.1093/biolre/ioz152

    Article  PubMed  Google Scholar 

  34. Kim B, Roy J, Shum WWC, Da Silva N, Breton S (2015) Role of testicular luminal factors on Basal cell elongation and proliferation in the mouse epididymis. Biol Reprod 92:9. https://doi.org/10.1095/biolreprod.114.123943

    Article  CAS  PubMed  Google Scholar 

  35. Kinchen J, Chen HH, Parikh K, Antanaviciute A, Jagielowicz M, Fawkner-Corbett D, Ashley N, Cubitt L, Mellado-Gomez E, Attar M et al (2018) Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell 175:372-386.e17. https://doi.org/10.1016/j.cell.2018.08.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kinzler KW, Vogelstein B (1990) The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol Cell Biol 10:634–642

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kong JH, Siebold C, Rohatgi R (2019) Biochemical mechanisms of vertebrate hedgehog signaling. Development. https://doi.org/10.1242/dev.166892

    Article  PubMed  PubMed Central  Google Scholar 

  38. Larkins CE, Aviles GDG, East MP, Kahn RA, Caspary T (2011) Arl13b regulates ciliogenesis and the dynamic localization of Shh signaling proteins. Mol Biol Cell 22:4694–4703. https://doi.org/10.1091/mbc.E10-12-0994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li Q, Alsaidan OA, Rai S, Wu M, Shen H, Beharry Z, Almada LL, Fernandez-Zapico ME, Wang L, Cai H (2018) Stromal Gli signaling regulates the activity and differentiation of prostate stem and progenitor cells. J Biol Chem 293:10547–10560. https://doi.org/10.1074/jbc.RA118.003255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Y, Tian X, Ma M, Jerman S, Kong S, Somlo S, Sun Z (2016) Deletion of ADP ribosylation factor-like GTPase 13B leads to kidney cysts. J Am Soc Nephrol 27:3628–3638. https://doi.org/10.1681/ASN.2015091004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Machold R, Hayashi S, Rutlin M, Muzumdar MD, Nery S, Corbin JG, Gritli-Linde A, Dellovade T, Porter JA, Rubin LL et al (2003) Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39:937–950. https://doi.org/10.1016/s0896-6273(03)00561-0

    Article  CAS  PubMed  Google Scholar 

  42. Mandon M, Hermo L, Cyr DG (2015) Isolated rat epididymal basal cells share common properties with adult stem cells1. Biol Reprod. https://doi.org/10.1095/biolreprod.115.133967

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mariani LE, Bijlsma MF, Ivanova AA, Suciu SK, Kahn RA, Caspary T (2016) Arl13b regulates Shh signaling from both inside and outside the cilium. Mol Biol Cell. https://doi.org/10.1091/mbc.E16-03-0189

    Article  PubMed  PubMed Central  Google Scholar 

  44. McCormick TS, Weinberg A (2010) Epithelial cell-derived antimicrobial peptides are multifunctional agents that bridge innate and adaptive immunity. Periodontol 2000(54):195–206. https://doi.org/10.1111/j.1600-0757.2010.00373.x

    Article  Google Scholar 

  45. Meade KG, O’Farrelly C (2019) β-defensins: farming the microbiome for homeostasis and health. Front Immunol 9:3072. https://doi.org/10.3389/fimmu.2018.03072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mitchell EH, Serra R (2014) Normal mammary development and function in mice with Ift88 deleted in MMTV- and K14-Cre expressing cells. Cilia 3:4. https://doi.org/10.1186/2046-2530-3-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mou H, Vinarsky V, Tata PR, Brazauskas K, Choi SH, Crooke AK, Zhang B, Solomon GM, Turner B, Bihler H, Harrington J, Lapey A, Channick C, Keyes C, Freund A, Artandi S, Mense M, Rowe S, Engelhardt JF, Hsu YC, Rajagopal J (2016) Dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells. Cell Stem Cell 19(2):217-231. https://doi.org/10.1016/j.stem.2016.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Narciandi F, Fernandez-Fuertes B, Khairulzaman I, Jahns H, King D, Finlay EK, Mok KH, Fair S, Lonergan P, Farrelly CO et al (2016) Sperm-coating beta-defensin 126 is a dissociation-resistant dimer produced by epididymal epithelium in the bovine reproductive tract. Biol Reprod 95:121. https://doi.org/10.1095/biolreprod.116.138719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nazari-Shafti TZ, Freisinger E, Roy U, Bulot CT, Senst C, Dupin CL, Chaffin AE, Srivastava SK, Mondal D, Alt EU et al (2011) Mesenchymal stem cell derived hematopoietic cells are permissive to HIV-1 infection. Retrovirology 8:3. https://doi.org/10.1186/1742-4690-8-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nigg EA, Stearns T (2011) The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13:1154–1160. https://doi.org/10.1038/ncb2345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ning G, Bijron JG, Yamamoto Y, Wang X, Howitt BE, Herfs M, Yang E, Hong Y, Cornille M, Wu L et al (2014) The PAX2-null immunophenotype defines multiple lineages with common expression signatures in benign and neoplastic oviductal epithelium. J Pathol 234:478–487. https://doi.org/10.1002/path.4417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nozaki S, Katoh Y, Terada M, Michisaka S, Funabashi T, Takahashi S, Kontani K, Nakayama K (2017) Regulation of ciliary retrograde protein trafficking by the Joubert syndrome proteins ARL13B and INPP5E. J Cell Sci 130:563–576. https://doi.org/10.1242/jcs.197004

    Article  CAS  PubMed  Google Scholar 

  53. Pala R, Alomari N, Nauli SM (2017) Primary cilium-dependent signaling mechanisms. Int J Mol Sci. https://doi.org/10.3390/ijms18112272

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. https://doi.org/10.1093/nar/29.9.e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pinel L, Cyr DG (2021) Self-renewal and differentiation of rat epididymal basal cells using a novel in vitro organoid model†. Biol Reprod 105:987–1001. https://doi.org/10.1093/biolre/ioab113

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pinel L, Mandon M, Cyr DG (2019) Tissue regeneration and the epididymal stem cell. Andrology 7:618–630. https://doi.org/10.1111/andr.12635

    Article  CAS  PubMed  Google Scholar 

  57. Rinaldi VD, Donnard E, Gellatly K, Rasmussen M, Kucukural A, Yukselen O, Garber M, Sharma U, Rando OJ (2020) An atlas of cell types in the mouse epididymis and vas deferens. Elife 9:e55474. https://doi.org/10.7554/eLife.55474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  59. Schuppe H-C, Pilatz A, Hossain H, Diemer T, Wagenlehner F, Weidner W (2017) Urogenital infection as a risk factor for male infertility. Dtsch Arztebl Int 114:339–346. https://doi.org/10.3238/arztebl.2017.0339

    Article  PubMed  PubMed Central  Google Scholar 

  60. Seiler P, Wenzel I, Wagenfeld A, Yeung CH, Nieschlag E, Cooper TG (1998) The appearance of basal cells in the developing murine epididymis and their temporal expression of macrophage antigens. Int J Androl 21:217–226. https://doi.org/10.1046/j.1365-2605.1998.00116.x

    Article  CAS  PubMed  Google Scholar 

  61. Seixas C, Choi SY, Polgar N, Umberger NL, East MP, Zuo X, Moreiras H, Ghossoub R, Benmerah A, Kahn RA et al (2016) Arl13b and the exocyst interact synergistically in ciliogenesis. Mol Biol Cell 27:308–320. https://doi.org/10.1091/mbc.E15-02-0061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shum WWC, Da Silva N, McKee M, Smith PJS, Brown D, Breton S (2008) Transepithelial projections from basal cells are luminal sensors in pseudostratified epithelia. Cell 135:1108–1117. https://doi.org/10.1016/j.cell.2008.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Szczepny A, Hime GR, Loveland KL (2006) Expression of hedgehog signalling components in adult mouse testis. Dev Dyn 235:3063–3070. https://doi.org/10.1002/dvdy.20931

    Article  CAS  PubMed  Google Scholar 

  64. Sztul E, Chen P-W, Casanova JE, Cherfils J, Dacks JB, Lambright DG, Lee F-JS, Randazzo PA, Santy LC, Schürmann A et al (2019) ARF GTPases and their GEFs and GAPs: concepts and challenges. Mol Biol Cell 30:1249–1271. https://doi.org/10.1091/mbc.E18-12-0820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Todoric J, Strobl B, Jais A, Boucheron N, Bayer M, Amann S, Lindroos J, Teperino R, Prager G, Bilban M et al (2011) Cross-talk between interferon-γ and hedgehog signaling regulates adipogenesis. Diabetes 60:1668–1676. https://doi.org/10.2337/db10-1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tong CK, Han Y-G, Shah JK, Obernier K, Guinto CD, Alvarez-Buylla A (2014) Primary cilia are required in a unique subpopulation of neural progenitors. Proc Natl Acad Sci USA 111:12438–12443. https://doi.org/10.1073/pnas.1321425111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Turner TT (2006) Sonic Hedgehog pathway inhibition alters epididymal function as assessed by the development of sperm motility. J Androl 27:225–232. https://doi.org/10.2164/jandrol.05114

    Article  CAS  PubMed  Google Scholar 

  68. Turner TT, Bomgardner D, Jacobs JP (2004) Sonic Hedgehog pathway genes are expressed and transcribed in the adult mouse epididymis. J Androl 25:514–522. https://doi.org/10.1002/j.1939-4640.2004.tb02822.x

    Article  CAS  PubMed  Google Scholar 

  69. Turner TT, Johnston DS, Finger JN, Jelinsky SA (2007) Differential gene expression among the proximal segments of the rat epididymis is lost after efferent duct ligation. Biol Reprod 77:165–171. https://doi.org/10.1095/biolreprod.106.059493

    Article  CAS  PubMed  Google Scholar 

  70. Zhou CX, Zhang Y-L, Xiao L, Zheng M, Leung KM, Chan MY, Lo PS, Tsang LL, Wong HY, Ho LS et al (2004) An epididymis-specific beta-defensin is important for the initiation of sperm maturation. Nat Cell Biol 6:458–464. https://doi.org/10.1038/ncb1127

    Article  CAS  PubMed  Google Scholar 

  71. Zhu M, Iwano T, Takeda S (2020) Fallopian tube basal stem cells reproducing the epithelial sheets in vitro-stem cell of fallopian epithelium. Biomolecules 10:E1270. https://doi.org/10.3390/biom10091270

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sylvie Breton, Ph.D., for providing the V-ATPase and AQP9 antibody, Sabine Elowe, Ph.D., for providing access to the confocal microscope and Sonia Francoeur and Sophie Vachon for their technical support at the animal facility.

Funding

This work was supported by a CIHR operating grant and an FRQS-Junior 2 salary award to CB. LG is a recipient of FRQS, CRDSI, RQR and CHU Foundation fellowships. DGC is a recipient of CIHR operating Grant 84576 and funding from the FRQNT-Réseau de recherche en Reproduction.

Author information

Authors and Affiliations

Authors

Contributions

LG conducted the experiments, analysis and drafted the manuscript. DC and CB contributed to the study design and manuscript preparation. All authors have approved the final version and submission of this article.

Corresponding author

Correspondence to Clémence Belleannée.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

All experimental procedures involving mice were approved by the ethical committee of the Institutional Review Board of the Centre Hospitalier Universitaire de Québec (CHUQ; CPAC licenses 18-029 and 2016051-1, C. Belleannée) and were conducted in accordance with the requirements defined by the Guide for the Care and Use of Laboratory Animals. Mice were housed and reproduced in the elite animal facility of the CHU de Quebec research Center under a controlled lighting regimen (16 L: 8 D) at 21–22 °C and supplied with food and water ad libitum. Prior to dissection, animals were sacrificed via CO2 inhalation.

Consent for publication

All authors have given consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5376 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girardet, L., Cyr, D.G. & Belleannée, C. Arl13b controls basal cell stemness properties and Hedgehog signaling in the mouse epididymis. Cell. Mol. Life Sci. 79, 556 (2022). https://doi.org/10.1007/s00018-022-04570-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04570-1

Keywords

Navigation