Skip to main content

Advertisement

Log in

Fundamental functions of physical and chemical principles in the polishing of titanium alloys: mechanisms and problems

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Titanium alloys have excellent specific strength, outstanding corrosion resistance, and good biocompatibility, which are widely used in mechanical and medical fields such as compressor disc, blade, stator, and hip and knee joint. Titanium alloy workpieces must be machined to obtain specific shapes. However, the machining marks inevitably exist on the titanium alloy surface, which have a poor effect on the performance of workpieces. Therefore, polishing is scheduled at the subsequent process to remove the machining marks. Because titanium alloys are typically difficult-to-polish materials, the polishing surface quality and efficiency require to be improved further. To have an in-depth and comprehensive understanding of the polishing technology of titanium alloys, this paper reviews systematically the material’s polishing mechanisms and processes. To date, various fundamental mechanisms, including mechanics, heat, optic, electricity, magnetism, ultrasound, and chemistry, are employed to polish titanium alloy surface. On this basis, four types of polishing techniques were developed (i.e., mechanical polishing, high-energy beam polishing, chemical polishing, and compound polishing) to improve the high surface integrity of titanium alloys. Furthermore, the advantages and disadvantages of each polishing technique are discussed in detail from the views of model, optimization, equipment, efficiency, surface quality, and cost. Finally, this paper proposes the future development directions of the polishing techniques of titanium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig.15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availability

Not applicable

Code availability

Not applicable

References

  1. Veiga C, Davim JP, Loureiro AJR (2012) Properties and applications of titanium alloys: a brief review. Rev Adv Mater Sci 32(2):133–148

    Google Scholar 

  2. Kang LM, Yang C (2019) A review on high-strength titanium alloys: microstructure, strengthening, and properties. Adv Eng Mater 1801359:1–27

    Google Scholar 

  3. Gomez-Gallegos A, Mandal P, Gonzalez D, Zuelli N, Blackwell P (2018) Studies on titanium alloys for aerospace application. Superplasticity in Advanced Materials, ICSAM 385:419–423

    Google Scholar 

  4. Boyer RR (1995) Titanium for aerospace: rationale and applications. Adv Perform Mater 2(4):349–368

    Article  Google Scholar 

  5. Putyrskii SV, Yakovlev AL, Nochovnaya NA (2018) Benefits and applications of high-strength titanium alloys. Russ Eng Res 38(12):945–948

    Article  Google Scholar 

  6. Koizumi H, Takeuchi Y, Imai H, Kawai T, Yoneyama T (2019) Application of titanium and titanium alloys to fixed dental prostheses. J Prosthodont Res 63(3):266–270

    Article  Google Scholar 

  7. Elias CN, Lima JHC, Valiev R, Meyers MA (2008) Biomedical applications of titanium and its alloys. Biol Mater Sci 60(3):46–49

    Google Scholar 

  8. Ai J, Li M, Qin H, Dou S, Huang W (2008) Fatigue failure analysis of XX type helicopter main rotor hub Ti023 central components. Helicopter technique 156(4):33–36

    Google Scholar 

  9. Huang W, Yu J, Zhang X, Dou S, Li M (2010) Failure analysis and manufacturing technology for titanium central component of helicopter rotor hub. Aeronaut Manuf Technol 20:68–72

    Google Scholar 

  10. Bao J, Xu E (1981) Polishing of TC4 titanium alloy blade. Aeronaut Manuf Technol 11:7–9

    Google Scholar 

  11. Xu S (2014) Measures to solve the ablation problem of titanium alloy blade in aeroengine during polishing. China New Technol Prod 3:105–106

    Google Scholar 

  12. Cui W, Li X, Su G, Hu C (2017) Experiment on surface integrity of polishing for titanium TB6. Aeronaut Manuf Technol 4:73–78

    Google Scholar 

  13. Chen Y, Cui W, Li X, Chen Z, Li X (2015) Experiment of rubber wheel CNC polishing for superalloy and titanium alloy. Aeronaut Manuf Technol S2:146–149

    Google Scholar 

  14. Miao M (2016) Research on surface roughness and surface topography of titanium alloy in polishing. Machine Tool and Hydraulics 44(15):122–125

    Google Scholar 

  15. Tian M (2015) Influence of polishing parameters on surface metamorphic layer in polishing titanium alloy. Tool Eng 49(11):71–74

    Google Scholar 

  16. Xiao G, Huang Y (2017) Experimental research and modelling of life-cycle material removal in belt finishing for titanium alloy. J Manuf Process 30:255–267

    Article  Google Scholar 

  17. Axinte DA, Kritmanorot M, Axinte M, Gindy NNZ (2005) Investigations on belt polishing of heat-resistant titanium alloys. J Mater Process Technol 166(3):398–404

    Article  Google Scholar 

  18. Chai H, Huang Y, Zhao Y, Zhang XD (2012) Experimental research on the abrasive belt grinding titanium alloy blade of aviation engine. Adv Mater Res 565:64–69

    Article  Google Scholar 

  19. Huang Y, Liu S, Xiao G, He Y, Dai W (2020) Prediction of surface residual stress on titanium alloy generated by belt grinding using molecular system dynamics. Procedia CIRP 87:480–484

    Article  Google Scholar 

  20. Huo W, Xu J, Fu Y (2012) Study on surface integrity of Ti6Al4V alloy by dry grinding with superhard abrasive wheel. J Shandong Univ (Engineering Edition) 42(3):100–104

    Google Scholar 

  21. Xu C, Xu J, Fu YL (2008) Study on abrasive wear of titanium alloy abrasive belt grinding. Aviat Manuf Technol 16:74–76

    Google Scholar 

  22. Luo G, Zou L, Huang Y and Gong M (2020) Study on material removal and surface quality in grinding of titanium alloy with alumina hollow-ball belt. China Mech Eng 31(19):1–11

  23. Yang Y, Zhang Y, Liang Q (2016) Research on application of barrel finishing technology in manufacture of aeroengine. Aeronaut Manuf Technol 11:69–71

    Google Scholar 

  24. Li X, Li W, Wang C, Yang S, Shi H (2018) Surface integrity and anti-fatigue performance of TC4 titanium alloy by mass finishing. China Surf Eng 31(1):15–25

    Google Scholar 

  25. Zhang X, Li X, Li W, Yang S (2014) Numerical simulation analysis of the centrifugal roll finishing of titanium alloy. Surf Technol 43(5):11–15

    Google Scholar 

  26. Wang X, Zhang J (2019) Research on surface tissue and fatigue properties of Ti-6Al-4V titanium alloy under grinding and finishing. Machine Building Automation 4(7):30–32

    Google Scholar 

  27. Yang Q (2006) Experiment studies on polishing titanium alloy blade by vibration. Aviat Precis Manuf Technol 42(3):14–16

    Google Scholar 

  28. Zeng G (2008) Research on process of strengthening and polishing titanium alloy blades. Tool Engineering 42(6):14–17

    Google Scholar 

  29. Zhang J, He S, Yang Q (2019) Research on influence of vibratory finishing on improving surface integrity of TC17 alloy after shot peening. Hot Working Technol 48(24):68–74

    Google Scholar 

  30. Xiao Y, Sun Y, Chen G (2017) Experimental study of magnetic abrasive finishing of TC11 titanium alloy in permanent magnetic field. Surf Technol 46(2):229–234

    Google Scholar 

  31. Guo W, Wu M (2013) Study on magnetic finishing of titanium alloy blisk. Mech Eng Autom 178(3):89–91

    Google Scholar 

  32. Zhao K, Chen H, Li W, Wang H (2014) Experimental study of magnetic abrasive finishing titanium alloy plate. Mach Des Manuf 7:139–141

    Google Scholar 

  33. Tan X, Wang S (2020) Investigating the ability of iron nitride particles to polish titanium plate. Powder Technol 366:653–660

    Article  Google Scholar 

  34. Fan Z, Tian Y, Liu Z, Shi C, Zhao Y (2019) Investigation of a novel finishing tool in magnetic field assisted finishing for titanium alloy Ti-6Al-4V. J Manuf Process 43(7):74–82

    Article  Google Scholar 

  35. Ma F, Luan S, Luo Q, Liu Y, Sha Z, Zhang S (2019) Effects of ultrasonic assisted magnetic abrasive finishing on surface integrity of titanium alloy. China Surf Eng 32(2):128–136

    Google Scholar 

  36. Ma F, Jiang T, Liu Y, Yang D, Sha Z, Zhang S (2020) Material removal rule and removal function for ultrasonic assisted magnetic abrasive finishing of titanium alloy curved surface. Surf Technol 49(3):290–299

    Google Scholar 

  37. Deng C, Han B, Chen Y (2015) Study of inner surface polishing of titanium alloy elbow pipe by magnetic abrasive finishing. Aeronaut Manuf Technol 3:61–63

    Google Scholar 

  38. Zhang L, Yuan Z, Qi Z, Cai D, Cheng Z, Qi H (2018) CFD-based study of the abrasive flow characteristics within constrained flow passage in polishing of complex titanium alloy surfaces. Powder Technol 333:209–218

    Article  Google Scholar 

  39. Barman A, Das M (2018) Nano-finishing of bio-titanium alloy to generate different surface morphologies by changing magnetorheological polishing fluid compositions. Precis Eng 51:145–152

    Article  Google Scholar 

  40. Liu Z, Sun H, Hou Z, Sang Y, Duan H, Ji G (2020) Experimental study on TC4 titanium alloy by fluid magnetic abrasive finishing. Modern Manuf Eng 1:29–34

    Google Scholar 

  41. Xia Z, Fang F, Ahearne E, Tao M (2020) Advances in polishing of optical freeform surfaces: a review. J Mater Process Technol 286(116828):1–17

    Google Scholar 

  42. Li Z. (2017) Study on mechanism and process of laser polishing of 6H-SiC single crystal and YBCO superconducting thin films. Beijing University of Technology

  43. Perry T, Werschmoeller D, Li X, Pfefferkorn F, Duffie N (2009) Pulsed laser polishing of micro-milled Ti6Al4V samples. J Manuf Process 11(2):74–81

    Article  Google Scholar 

  44. Kumstela J, Kirsch B (2013) Polishing titanium- and nickel-based alloys using cw-laser radiation. Phys Procedia 41:362–371

    Article  Google Scholar 

  45. Jaritngam P, Tangwarodomnukun V, Qi H, Dumkum C (2020) Surface and subsurface characteristics of laser polished ti6al4v titanium alloy. Opt Laser Technol 126(106102):1–12

    Google Scholar 

  46. Trtica M, Gakovic B, Batani D, Desai T, Radak B (2006) Surface modifications of a titanium implant by a picosecond nd:yag laser operating at 1064 and 532nm. Appl Surf Sci 253(5):2551–2556

    Article  Google Scholar 

  47. Yang Q, Wang H, Huang Y, Cheng J, Liu D (2019) Experimental study on nanosecond laser polishing of Ti6Al4V alloy. Optical Technique 45(2):245–250

    Google Scholar 

  48. Bai H, Wang Y, Dong X, Wang B, Liu H, Lu B (2015) Mechanism and size characteristics of microcrack on polished Ti6Al4V. J Xi’an Jiaotong Univ 49(12):117–123

    Google Scholar 

  49. Deng T, Li J, Zheng Z (2019) Fundamental aspects and recent developments of metal surface polishing with energy beam irradiation. Int J Mach Tools Manuf 148(103472):1–26

    Google Scholar 

  50. Gao Y, Lu F, Wang Q (2009) Influence of pulsed electron beam polishing modification on surface morphologies of TC21 titanium alloy. Heat Treat Met 34(5):38–40

    Google Scholar 

  51. Okada A, Uno Y, Yabushita N, Uemura K, Raharjo P (2004) High efficient surface finishing of bio-titanium alloy by large-area electron beam irradiation. J Mater Process Technol 149(1–3):506–511

    Article  Google Scholar 

  52. Okada A, Uno Y, Iio A, Fujiwara K, Doi K (2008) New surface modification method of bio-titanium alloy by eb polishing. J Adv Mech Des Syst Manuf 2(4):694–700

    Article  Google Scholar 

  53. Tokunaga J, Kojima T, Kinuta S, Wakabashi K, Nakamura T, Yatani H, Sohmura T (2009) Large-area electron beam irradiation for surface polishing of cast titanium. Dent Mater J 28(5):571–577

    Article  Google Scholar 

  54. Okada A, Uno Y, Uemura K, Raharjo P, Mcgeough JA (2007) Surface modification for orthopaedic titanium alloy by wide-area electron beam. Proc Inst Mech Eng B J Eng Manuf 221(2):173–178

    Article  Google Scholar 

  55. Allen DM, Shore P, Evans RW, Fanara C, Brien WO, Marson S, Neill WO (2009) Ion beam, focused ion beam, and plasma discharge machining. CIRP Ann Manuf Technol 58(2):647–662

    Article  Google Scholar 

  56. Mayr SG, Ashkenazy Y, Albe K, Averback RS (2003) Mechanisms of radiation-induced viscous flow: role of point defects. Phys Rev Lett 90(5):055505

    Article  Google Scholar 

  57. Dienes GJ, Damask AC (1958) Radiation enhanced diffusion in solids. J Appl Phys 29(12):1713–1721

    Article  Google Scholar 

  58. De Rooij-Lohmann VITA, Kozhevnikov IV, Peverini L et al (2010) Roughness evolution of Si surfaces upon Ar ion erosion. Appl Surf Sci 256(16):5011–5014

    Article  Google Scholar 

  59. Zhou G, Bi Y, Ma Y, Wang L, Wang X, Yu Y, Mutzke A (2019) Large current ion beam polishing and characterization of mechanically finished titanium alloy (Ti6Al4V) surface. Appl Surf Sci 476:905–913

    Article  Google Scholar 

  60. Zhu XP, Lei MK, Ma TC (2003) Surface morphology of titanium irradiated by high-intensity pulsed ion beam. Nucl Instrum Methods Phys Res 211(1):69–79

    Article  Google Scholar 

  61. Teixeira A (2011) Development of an electropolishing method for titanium materials. Concordia University

  62. Bao S, Wu M, Zhang N, Zhang Z (2003) A study of pulse electrochemical polishing technology for titanium alloy. Electromachining and Mould 3:47–50

    Google Scholar 

  63. Md ARK, Rahman MM (2017) Surface finish characteristics of titanium alloy in a non conventional technique. Materials Today: Proceedings 4(9):9352–9355

    Google Scholar 

  64. Yu M, Xu Y, Li S, Yi J, Wu G, Liu J (2009) Environment-friendly electropolishing of titanium alloys. J Univ Sci Technol Beijing 31(1):68–73

    Google Scholar 

  65. Piotrowski O, Madore C, Landolt D (1998) Electropolishing of titanium and titanium alloys in perchlorate-free electrolytes. Plat Surf Finish 85(5):115–119

    Google Scholar 

  66. He C, Tang J, Cheng S, Wang L, Bu Z, Chen M, Geng Y, Sun L (2014) Effect of different electrolyte compositions on the electrolytic plasma polishing of titanium alloy. J Yunnan Normal Univ 34(6):56–61

    Google Scholar 

  67. Balyakin A, Goncharov E, Zhuchenko E (2019) The effect of preprocessing on surface quality in the chemical polishing of parts from titanium alloy produced by SLM. Materials Today: Proceedings 19:2291–2294

    Google Scholar 

  68. Wang L, Jiang X, Liu H, Huang N (2012) Study on chemical polishing technics of titanium alloy (TC4). Materials Reports 26(20):364–391

    Google Scholar 

  69. Bao S, Wu M, Liu Z (2005) Electrochemical polishing for biomedical titanium alloy (T i–6Al-4V) implants with action of ultrasonic waves. Surf Technol 34(6):25–27

    Google Scholar 

  70. Uchida T, Kikuchi T, Setoyama Y, Kawashima N, Takeuchi S (2006) Improvement of dispersion of nanometer-sized diamond particles for precise polishing by ultrasound exposure. J Acoust Soc Am 120(5):3369

    Article  Google Scholar 

  71. Liao M, Han B, Chen Y, Yu Z (2016) Inner surface of titanium alloy tube by electrochemical magnetic abrasive compound finishing. China Surf Eng 29(3):123–131

    Google Scholar 

  72. Tian T, Chen Y, Tan Y, Liu Y (2017) Optimization of process parameters for electrolytic magnetic abrasive grinding of titanium alloy. Plating and Finishing 40(1):27–30

    Google Scholar 

  73. Ozdemir Z, Ozdemir A, Basim GB (2016) Application of chemical mechanical polishing process on titanium based implants. Mater Sci Eng C 68:383–396

    Article  Google Scholar 

  74. Liang C, Liu W, Li S, Kong H, Zhang Z, Song Z (2016) A nano-scale mirror-like surface of Ti-6Al-4V attained by chemical mechanical polishing. Chinese Physics B 25(5):058301

    Article  Google Scholar 

  75. Zhang Z, Shi Z, Du Y, Yu Z, Guo L, Guo D (2018) A novel approach of chemical mechanical polishing for a titanium alloy using an environment-friendly slurry. Appl Surf Sci 427:409–415

    Article  Google Scholar 

  76. Zou L, Li H, Yang Y, Huang Y (2020) Feasibility study of minimum quantity lubrication assisted belt grinding of titanium alloys. Mater Manuf Process 35(9):961–968

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 51905356 and 52005351, Doctoral Start-up Foundation of Liaoning Province under Grant No. 2020-BS-178, and Open Fund of Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process of Shenyang Aerospace University under Grant No. SHSYS202002.

Author information

Authors and Affiliations

Authors

Contributions

The authors discussed each reference paper together and contributed useful ideas for this manuscript.

Corresponding authors

Correspondence to Ning Hou or Minghai Wang.

Ethics declarations

Consent to participate

The authors consent to participate.

Consent for publication

Yes.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, N., Wang, M., Wang, B. et al. Fundamental functions of physical and chemical principles in the polishing of titanium alloys: mechanisms and problems. Int J Adv Manuf Technol 118, 2079–2097 (2022). https://doi.org/10.1007/s00170-021-08100-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08100-4

Keywords

Navigation