Skip to main content
Log in

Regulation of Phytohormone Biosynthesis and Accumulation in Arabidopsis Following Treatment with Commercial Extract from the Marine Macroalga Ascophyllum nodosum

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

An Erratum to this article was published on 15 December 2012

Abstract

Seaweeds and their extracts have been used for centuries in agriculture to improve plant growth and impart stress tolerance. There has been historical evidence that phytohormones present in seaweeds lead to these effects, but questions of this mode of action have always been raised. By quantifying phytohormones in seaweed extracts coupled with the use of phytohormone biosynthetic and insensitive mutants, we conclude that the phytohormone levels present within the extracts are insufficient to cause significant effects in plants when extracts are applied at recommended rates. However, components within seaweed extracts may modulate innate pathways for the biosynthesis of phytohormones in plants. Phytohormone profiles of plant tissue extracts were analyzed following root application of a commercial seaweed extract produced from Ascophyllum nodosum (ANE) to in vitro-grown Arabidopsis plants. We found an increase in total concentration of cytokinins (CKs), in particular, of trans-zeatin-type CKs, 24 and 96 h after ANE application, with an increase in cis-zeatin-type CKs observed at 144 h. Concomitantly, increases in abscisic acid (ABA) and ABA catabolite levels were observed whereas auxin levels were reduced. Additionally, the profile of transcripts revealed that CK biosynthetic genes were upregulated, whereas the CK catabolic genes were repressed at 24 and 96 h following ANE application. Not surprisingly, the transcripts of ABA biosynthetic genes were increased whereas the auxin biosynthetic genes were repressed. These corroborated findings are the first to help explain the underlying physiological benefits derived from the application of ANE to plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abrams SR, Nelson K, Ambrose SJ (2003) Deuterated abscisic acid analogs for mass spectrometry and metabolism studies. J Label Compd Radiopharm 46:273–283

    Article  CAS  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    Article  PubMed  CAS  Google Scholar 

  • Argueso CT, Raines T, Kieber JJ (2010) Cytokinin signaling and transcriptional networks. Curr Opin Plant Biol 13:533–539

    Article  PubMed  CAS  Google Scholar 

  • Arthur GD, Stirk WA, van Staden J (2003) Effect of a seaweed concentrate on the growth and yield of three varieties of Capsicum annuum. S Afr J Bot 69:207–211

    Google Scholar 

  • Bartrina I, Otto E, Strnad M, Werner T, Schmulling T (2011) Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23:69–80

    Article  PubMed  CAS  Google Scholar 

  • Bishopp A, Benkova E, Helariutta Y (2011) Sending mixed messages: auxin-cytokinin crosstalk in roots. Curr Opin Plant Biol 14:10–16

    Article  PubMed  CAS  Google Scholar 

  • Blunden G, Jenkins T, Liu YW (1996) Enhanced leaf chlorophyll levels in plants treated with seaweed extract. J Appl Phycol 8:535–543

    Article  CAS  Google Scholar 

  • Boyer GL, Dougherty SS (1988) Identification of abscisic acid in the seaweed Ascophyllum nodosum. Phytochemistry 27:1521–1522

    Article  CAS  Google Scholar 

  • Chiwocha SD, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M, Ross AR, Kermode AR (2003) A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J 35:405–417

    Article  PubMed  CAS  Google Scholar 

  • Chiwocha SD, Cutler AJ, Abrams SR, Ambrose SJ, Yang J, Ross AR, Kermode AR (2005) The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J 42:35–48

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Craigie J (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393

    Article  CAS  Google Scholar 

  • Crouch IJ, van Staden J (1992) Effect of seaweed concentrate on the establishment and yield of greenhouse tomato plants. J Appl Phycol 4:291–296

    Article  Google Scholar 

  • Crouch IJ, van Staden J (1993) Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Regul 13:21–29

    CAS  Google Scholar 

  • D’Agostino IB, Deruere J, Kieber JJ (2000) Characterization of the response of the Arabidopsis Response Regulator gene family to cytokinin. Plant Physiol 124:1706–1717

    Article  PubMed  Google Scholar 

  • De Smet I, Signora L, Beeckman T, Inze D, Foyer CH, Zhang HM (2003) An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J 33:543–555

    Article  PubMed  Google Scholar 

  • De Smet I, Zhang HM, Inze D, Beeckman T (2006) A novel role for abscisic acid emerges from underground. Trends Plant Sci 11:434–439

    Article  PubMed  Google Scholar 

  • Fan D, Hodges DM, Zhang JZ, Kirby CW, Ji XH, Locke SJ, Critchley AT, Prithiviraj B (2011) Commercial extract of the brown seaweed Ascophyllum nodosum enhances phenolic antioxidant content of spinach (Spinacia oleracea L.) which protects Caenorhabditis elegans against oxidative and thermal stress. Food Chem 124:195–202

    Article  CAS  Google Scholar 

  • Fornes F, Sãnchez-Perales M, Guardiola JL (2002) Effect of a seaweed extract on the productivity of ‘de Nules’ Clementine Mandarin and Navelina Orange. Bot Mar 45:486–489

    Google Scholar 

  • Fukaki H, Tasaka M (2009) Hormone interactions during lateral root formation. Plant Mol Biol 69:437–449

    Article  PubMed  CAS  Google Scholar 

  • Gan SS, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    Article  PubMed  CAS  Google Scholar 

  • Ghanem ME, Albacete A, Smigocki AC, Frebort I, Pospisilova H, Martinez-Andujar C, Acosta M, Sanchez-Bravo J, Lutts S, Dodd IC, Perez-Alfocea F (2011) Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 62:125–140

    Article  PubMed  CAS  Google Scholar 

  • Guo JC, Duan RJ, Hu XW, Li KM, Fu SP (2010) Isopentenyl transferase gene (ipt) downstream transcriptionally fused with gene expression improves the growth of transgenic plants. Transgenic Res 19:197–209

    Article  PubMed  CAS  Google Scholar 

  • Havlova M, Dobrev PI, Motyka V, Storchova H, Libus J, Dobra J, Malbeck J, Gaudinova A, Vankova R (2008) The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. Plant, Cell Environ 31:341–353

    Article  CAS  Google Scholar 

  • Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Critchley AT, Craigie JS, Norrie J, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399

    Article  CAS  Google Scholar 

  • Khan W, Hiltz D, Critchley AT, Prithiviraj B (2011) Bioassay to detect Ascophyllum nodosum; extract-induced cytokinin-like activity in Arabidopsis thaliana. J Appl Phycol 23:409–414

    Article  Google Scholar 

  • Kieber JJ, Schaller GE (2010) The perception of cytokinin: a story 50 years in the making. Plant Physiol 154:487–492

    Article  PubMed  CAS  Google Scholar 

  • Kingman AR, Moore J (1982) Isolation, purification and quantitation of several growth-regulating substances in Ascophyllum nodosum. Bot Mar 25:149–153

    Google Scholar 

  • Kudo T, Kiba T, Sakakibara H (2010) Metabolism and long-distance translocation of cytokinins. J Integr Plant Biol 52:53–60

    Article  PubMed  CAS  Google Scholar 

  • Kumar G, Sahoo D (2011) Effect of seaweed liquid extract on growth and yield of Triticum aestivum var. Pusa Gold. J Appl Phycol 23:251–255

    Article  Google Scholar 

  • Kumari R, Kaur I, Bhatnagar A (2011) Effect of aqueous extract of Sargassum johnstonii Setchell on growth, yield and quality of Lycopersicon esculentum Mill. J Appl Phycol 23:623–633

    Article  Google Scholar 

  • Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H (2009) Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21:3152–3169

    Article  PubMed  CAS  Google Scholar 

  • Leclerc M, Caldwell CD, Lada RR, Norrie J (2006) Effect of plant growth regulators on propagule formation in Hemerocallis spp. and Hosta spp. HortScience 41:651–653

    CAS  Google Scholar 

  • MacKinnon SL, Hiltz D, Ugarte R, Craft CA (2010) Improved methods of analysis for betaines in Ascophyllum nodosum and its commercial seaweed extracts. J Appl Phycol 22:489–494

    Article  Google Scholar 

  • Mancuso S, Azzarello E, Mugnai S, Briand X (2006) Marine bioactive substances (IPA extract) improve foliar ion uptake and water stress tolerance in potted Vitis vinifera plants. Adv Hort Sci 20:156–161

    Google Scholar 

  • Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Vaclavikova K, Miyawaki K, Kakimoto T (2008) Cytokinins are central regulators of cambial activity. Proc Natl Acad Sci USA 105:20027–20031

    Article  PubMed  CAS  Google Scholar 

  • Merewitz EB, Gianfagna T, Huang BR (2011) Photosynthesis, water use, and root viability under water stress as affected by expression of SAG12-ipt controlling cytokinin synthesis in Agrostis stolonifera. J Exp Bot 62:383–395

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T (2006) Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci USA 103:16598–16603

    Article  PubMed  CAS  Google Scholar 

  • Moubayidin L, Di Mambro R, Sabatini S (2009) Cytokinin-auxin crosstalk. Trends Plant Sci 14:557–562

    Article  PubMed  CAS  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  PubMed  CAS  Google Scholar 

  • Nibau C, Gibbs DJ, Coates JC (2008) Branching out in new directions: the control of root architecture by lateral root formation. New Phytol 179:595–614

    Article  PubMed  CAS  Google Scholar 

  • Nooden LD, Kahanak GM, Okatan Y (1979) Prevention of monocarpic senescence in soybeans with auxin and cytokinin - antidote for self-destruction. Science 206:841–843

    Article  PubMed  CAS  Google Scholar 

  • Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141:97–107

    Article  PubMed  CAS  Google Scholar 

  • Okamoto M, Kushiro T, Jikumaru Y, Abrams SR, Kamiya Y, Seki M, Nambara E (2011) ABA 9′-hydroxylation is catalyzed by CYP707A in Arabidopsis. Phytochemistry 72:717–722

    Article  PubMed  CAS  Google Scholar 

  • Osmont KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root system architecture. Annu Rev Plant Biol 57:93–113

    Article  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  PubMed  CAS  Google Scholar 

  • Perilli S, Moubayidin L, Sabatini S (2010) The molecular basis of cytokinin function. Curr Opin Plant Biol 13:21–26

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed  CAS  Google Scholar 

  • Rayirath P, Jithesh MN, Farid A, Khan W, Palanisamy R, Hankins SD, Critchley AT, Prithiviraj B (2008) Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L.) Heynh. J Appl Phycol 20:423–429

    Article  Google Scholar 

  • Rayirath P, Benkel B, Hodges DM, Allan-Wojtas P, MacKinnon S, Critchley AT, Prithiviraj B (2009) Lipophilic components of the brown seaweed, Ascophyllum nodosum, enhance freezing tolerance in Arabidopsis thaliana. Planta 230:135–147

    Article  PubMed  CAS  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104:19631–19636

    Article  PubMed  CAS  Google Scholar 

  • Rivero RM, Gimeno J, Van Deynze A, Walia H, Blumwald E (2010) Enhanced cytokinin synthesis in tobacco plants expressing P-SARK:iPT prevents the degradation of photosynthetic protein complexes during drought. Plant Cell Physiol 51:1929–1941

    Article  PubMed  CAS  Google Scholar 

  • Ruzicka K, Simaskova M, Duclercq J, Petrasek J, Zazimalova E, Simon S, Friml J, Van Montagu MCE, Benkova E (2009) Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc Natl Acad Sci USA 106:4284–4289

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara H (2006a) Cytokinin biosynthesis and regulation. In: G.Litwack (ed) Plant hormones. Elsevier, San Diego, pp 271–287

  • Sakakibara H (2006b) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    Article  PubMed  CAS  Google Scholar 

  • Shani E, Ben-Gera H, Shleizer-Burko S, Burko Y, Weiss D, Ori N (2010) Cytokinin regulates compound leaf development in tomato. Plant Cell 22:3206–3217

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD, Raschke K (1980) Effects of phaseic acid and dihydrophaseic acid on stomata and the photosynthetic apparatus. Plant Physiol 65:291–297

    Article  PubMed  CAS  Google Scholar 

  • Shkolnik-Inbar D, Bar-Zvi D (2010) ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. Plant Cell 22:3560–3573

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Letham DS, Palni LMS (1992) Cytokinin biochemistry in relation to leaf senescence. Endogenous cytokinin levels and exogenous applications of cytokinins in relation to sequential leaf senescence of tobacco. Physiol Plant 86:388–397

    Article  CAS  Google Scholar 

  • Spann TM, Little HA (2011) Applications of a commercial extract of the brown seaweed Ascophyllum nodosum increases drought tolerance in container-grown ‘Hamlin’ Sweet Orange nursery trees. Hort Sci 46:577–582

    Google Scholar 

  • Stirk WA, van Staden J (1996) Comparison of cytokinin- and auxin-like activity in some commercially used seaweed extracts. J Appl Phycol 8:503–508

    Article  CAS  Google Scholar 

  • Stirk WA, Novák O, Strnad M, van Staden J (2003) Cytokinins in macroalgae. Plant Growth Regul 41:13–24

    Article  CAS  Google Scholar 

  • Stirk W, Arthur G, Lourens A, Novák O, Strnad M, van Staden J (2004) Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature. J Appl Phycol 16:31–39

    Article  CAS  Google Scholar 

  • Su YH, Liu YB, Zhang XS (2011) Auxin-cytokinin interaction regulates meristem development. Mol Plant 4:616–625

    Article  PubMed  CAS  Google Scholar 

  • To JPC, Deruere J, Maxwell BB, Morris VF, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2007) Cytokinin regulates type-A Arabidopsis response regulator activity and protein stability via two-component phosphorelay. Plant Cell 19:3901–3914

    Article  PubMed  CAS  Google Scholar 

  • Ton J, Davison S, van Wees SCM, van Loon LC, Pieterse CMJ (2001) The Arabidopsis ISR1 locus controlling rhizobacteria-mediated induced systemic resistance is involved in ethylene signaling. Plant Physiol 125:652–661

    Article  PubMed  CAS  Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frey NFD, Leung J (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Glazebrook J (2002) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Werner T, Schmulling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12:527–538

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmulling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98:10487–10492

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Kollmer I, Bartrina I, Holst K, Schmulling T (2006) New insights into the biology of cytokinin degradation. Plant Biol 8:371–381

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Nehnevajova E, Kollmer I, Novak O, Strnad M, Kramer U, Schmulling T (2010) Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 22:3905–3920

    Article  PubMed  Google Scholar 

  • Yokoya NS, Stirk WA, van Staden J, Novak O, Tureckova V, Pencik A, Strnad M (2010) Endogenous cytokinins, auxins, and abscisic acid in red algae from Brazil. J Phycol 46:1198–1205

    Article  CAS  Google Scholar 

  • Zaharia LI, Galka MM, Ambrose SJ, Abrams SR (2005) Preparation of deuterated abscisic acid metabolites for use in mass spectrometry and feeding studies. J Label Compd Radiopharm 48:435–445

    Article  CAS  Google Scholar 

  • Zhang XZ, Ervin EH (2004) Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Sci 44:1737–1745

    Article  CAS  Google Scholar 

  • Zhang XZ, Ervin EH (2008) Impact of seaweed extract-based cytokinins and zeatin riboside on creeping bentgrass heat tolerance. Crop Sci 48:364–370

    Article  Google Scholar 

  • Zhao YD (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research team graciously acknowledges funding received from the National Research Council (NRC), Industrial Research Assistance Program (IRAP), and particularly Dr. D. Douglas without whom this collaborative work would not have been possible. We also thank V. Cekic and M. Lafond (Plant Biotechnology Institute, National Research Council) for hormone-profiling sample preparation and Chaminda deSilva (Nova Scotia Agriculture College) for collection of mutant seeds. BP’s lab is supported by grants from the Natural Sciences and Engineering Research Council of Canada, Nova Scotia Department of Agriculture, and Acadian Seaplants Limited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balakrishnan Prithiviraj.

Electronic supplementary material

Below is the link to the electronic supplementary material.

344_2012_9301_MOESM1_ESM.tif

Supplementary Fig. 1: Root growth and development of abi4-1 and ipt1,3,5,7 mutants affected by ANE treatment. A Average length of primary roots in Col-0, abi4-1, and ipt1,3,5,7 seedlings 5 days after transfer to indicated media. The data represent the mean ± SE. B Number of lateral roots per centimeter of newly grown roots at all developmental stages (including lateral root primordial) in seedlings 5 days following transfer

344_2012_9301_MOESM2_ESM.tif

Supplementary Fig. 2: Effect of ANE on root growth of ABA and CK mutants. Representative photos of 12-day-old seedlings of abi4-1, wild-type Col-0, or quadruple ipt1,3,5,7 mutant Arabidopsis 8 days after transfer to control (A) or ANE (B) (0.01 % w/v) and ½ MS solid media

344_2012_9301_MOESM3_ESM.tif

Supplementary Fig. 3: Absolute IAA levels in ANE-treated plants. Endogenous IAA levels from two independent trials. Error bars represent mean ± SE

344_2012_9301_MOESM4_ESM.tif

Supplementary Fig. 4: Expression of the key CK one-step activating genes LOG1,7 and LOG8 at indicated time points following ANE application. Data represent the mean ± SE

344_2012_9301_MOESM5_ESM.tif

Supplementary Fig. 5: Expression of the key GA biosynthetic genes GA2ox2 and GA3ox1 at indicated time points following ANE application. Data represent the mean ± SE

Supplementary material 6: (DOCX 21 kb)

Supplementary material 7: (DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wally, O.S.D., Critchley, A.T., Hiltz, D. et al. Regulation of Phytohormone Biosynthesis and Accumulation in Arabidopsis Following Treatment with Commercial Extract from the Marine Macroalga Ascophyllum nodosum . J Plant Growth Regul 32, 324–339 (2013). https://doi.org/10.1007/s00344-012-9301-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-012-9301-9

Keywords

Navigation