Skip to main content
Log in

Genetic implications from textures, mineralogy, and geochemistry: the case of Zona Basal–a singular polymetallic occurrence in the Quadrilátero Ferrífero, Brazil

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

High-temperature conditions for ore deposition and anomalous abundances of base metals in orogenic gold deposits are frequently attributed to magmatic-hydrothermal fluids instead of metamorphic orogenic fluids. Zona Basal is a shear zone-related gold and base metals-rich mineral occurrence recently discovered in the northwestern portion of the Quadrilátero Ferrífero mining district in southeast Brazil. Mineralogical and geochemical characterization has revealed a two-stage mineralizing system. An Au-W-As stage is marked by a late- to post-tectonic arsenopyrite-pyrrhotite-pyrite assemblage (crystallized from ca. 491 to 404 °C), associated with native gold and scheelite, which was formed during the transition from the peak of greenschist facies metamorphism to retrograde metamorphism. A following, clearly post-tectonic stage comprises a pyrrhotite-pyrite-sphalerite-chalcopyrite-galena-ullmannite ± meneghinite ± fahlore ± miargyrite ± pyrargyrite assemblage crystallized from ca. 400 to < 170 °C, corresponding to the Ag and base metals stage. Fahlores from the Zona Basal mineral occurrence have been found to be sufficiently enriched in Ag, due to the Ag–Cu cation-exchange reaction 13PbS (galena) + 10AgSbS2 (in galena) = 3Ag3SbS3 (pyrargyrite) + Ag(Cu)−1 (exchange in fahlore) + CuPb13Sb7S24 (meneghinite), to jump across the (Cu, Ag)10(Fe,Zn)2Sb4S13 miscibility gap. Two mechanisms may explain the abrupt chemical change between the two mineralization stages: (1) participation of magmatic-hydrothermal fluids of relatively low temperature (acting mostly as a chemical source for fluids) associated with a syn- to late tectonic granite intrusion; or (2) local re-concentration of base metals by unmixing of an early metamorphic orogenic fluid due to fluid immiscibility after the transition from ductile to brittle conditions, generating coexisting fluids with different salinities (i.e., extremely low and moderate salinity). The findings in this paper illustrate the importance of considering retrograde or cooling reactions and mineral re-equilibrium while addressing complex ore-formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Notes

  1. The term “fahlore” throughout the text refers to “tetrahedrite group minerals”, which is the new name of the fahlore group approved by the Commission on New Minerals of the International Mineralogical Association (Biagioni et al. 2020).

References

  • Aguilar C, Alkmim FF, Lana C, Farina F (2017) Paleoproterozoic assembly of the São Francisco craton, SE Brazil: new insights from U–Pb titanite and monazite dating. Precambr Res 289:95–115

    Article  Google Scholar 

  • Alkmim FF, Marshak S (1998) Transamazonian orogeny in the southern São Francisco Craton, Minas Gerais, Brazil: evidence for paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. Precambr Res 90:29–58

    Article  Google Scholar 

  • Alkmim FF, Teixeira W (2017) The Paleoproterozoic mineiro belt and the Quadrilátero Ferrífero. In: Heilbron M, Cordani UG, Alkmin FF (eds) São Francisco Craton, Eastern Brazil: tectonic genealogy of a miniature continent, 1st edn. Springer, pp 71–94

    Chapter  Google Scholar 

  • ALS (2021) Schedule of services & fees – Geochemistry CAD. ALS. https://www.alsglobal.com/-/media/als/resources/services-and-products/geochemistry/fee-schedules/als-geochemistry-fee-schedule-cad.pdf. Accessed 18 May 2021

  • Angiboust S, Harlov D (2017) Ilmenite breakdown and rutile-titanite stability in metagranitoids: natural observations and experimental results. Am Miner 102:1696–1708

    Article  Google Scholar 

  • Baltazar OF, Lobato LM (2020) Structural evolution of the Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil: influence of proterozoic orogenies on its western Archean gold deposits. Minerals 10:983

    Article  Google Scholar 

  • Baltazar OF, Zucchetti M (2007) Lithofacies associations and structural evolution of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil: a review of the regional setting of gold deposits. Ore Geol Rev 32:471–499

    Article  Google Scholar 

  • Barton PB Jr (1978) Some ore textures involving sphalerite from the Furutob mine, Akita Prefecture, Japan. Min Geol 28:293–300

    Google Scholar 

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Miner Petrol 123:323–333

    Article  Google Scholar 

  • Berger H (1986) Study of Kα emission spectrum of copper. X-Ray Spectrom 15:241–243

    Article  Google Scholar 

  • Biagioni C, George LL, Cook NJ, Makovicky E, Moëlo Y, Pasero M, Sejkora J, Stanley CJ, Welch MD, Bosi F (2020) The tetrahedrite group: nomenclature and classification. Am Mineral 105:109–122

    Article  Google Scholar 

  • Bodnar RJ, Lecumberri-Sanchez P, Moncada D, Steele-MacInnis M (2014) Fluid inclusions in hydrothermal ore deposits. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, pp 119–142

    Chapter  Google Scholar 

  • Borba RP (1998) O magmatismo ácido e sua relação com a mineralização aurífera de Bico de Pedra, greenstone belt Rio das Velhas, Quadrilátero Ferrífero, Minas Gerais, Brasil. Dissertation, Universidade Estadual de Campinas

  • Brando-Soares M, Corrêa Neto AV, Zeh A, Cabral AR, Pereira LF, Prado MGB, Almeida AM, Manduca LG, Silva PHM, Araújo RO, Schlichta TM (2017) Geology of the Pitangui greenstone belt, Minas Gerais, Brazil: stratigraphy, geochronology and BIF geochemistry. Precambr Res 291:17–41

    Article  Google Scholar 

  • Brando-Soares M, Corrêa Neto AV, Bertolino LC, Alves FEA, de Almeida AM, da Silva PHM, Mabub ROA, Manduca LG, Araújo IMCP (2018) Multistage mineralization at the hypozonal São Sebastião gold deposit, Pitangui greenstone belt, Minas Gerais, Brazil. Ore Geol Rev 102:618–638

    Article  Google Scholar 

  • Brando-Soares M, Selby D, Robb L, Corrêa Neto AV (2021) Sulfide recrystallization and gold remobilization during the 2.0 Ga stage of the Minas Orogeny: implications for gold mineralization in the Quadrilátero Ferrífero area, Brazil. Econ Geol 116:1455–1466

    Article  Google Scholar 

  • Brando-Soares M, Alves FEA, Corrêa Neto AV, Bertolino LC, Araújo IMCP, Gopon P, Mozart MS (2022) Gold refinement by the fractionation of Bi-enriched partial melts at the Quadrilátero Ferrífero, Brazil: implications on the formation of hypozonal deposits. Miner Depos. https://doi.org/10.1007/s00126-022-01098-z

    Article  Google Scholar 

  • Brueckner SM, Piercey SJ, Pilote JL, Layne GD, Sylvester PJ (2016) Mineralogy and mineral chemistry of the metamorphosed and precious metal-bearing Ming deposit, Canada. Ore Geol Rev 72:914–939

    Article  Google Scholar 

  • Buerger NW (1934) The unmixing of chalcopyrite from sphalerite. Am Miner 19:525–530

    Google Scholar 

  • Carneiro MA (1992) O Complexo Metamórfico Bonfim setentrional (Quadrilátero Ferrífero, MG): litoestratigrafia e evolução geológica de um segmento de crosta continental do Arqueano. Dissertation, Universidade de São Paulo.

  • Cave BJ, Pitcairn IK, Craw D, Large RS, Thompson JM, Johnson SC (2017) A metamorphic mineral source for tungsten in the turbidite-hosted orogenic gold deposits of the Otago Schist, New Zealand. Miner Depos 52:515–537

    Article  Google Scholar 

  • Cheary RW, Coelho A (1992) A fundamental parameters approach to X-ray line-profile fitting. J Appl Crystallogr 25:109–121

    Article  Google Scholar 

  • Chemale F, Rosière CA, Endo I (1994) The tectonic evolution of the Quadrilátero Ferrífero, Minas Gerais, Brazil. Precambr Res 65:25–54

    Article  Google Scholar 

  • Chinchilla D, Ortega L, Piña R, Merinero R, Moncada D, Bodnar RJ, Quesada C, Valverde A, Lunar R (2016) The Patricia Zn–Pb–Ag epithermal ore deposit: an uncommon type of mineralization in northeastern Chile. Ore Geol Rev 73:104–126

    Article  Google Scholar 

  • Chutas NI, Kress VC, Ghiorso MS, Sack RO (2008) A solution model for high-temperature PbS–AgSbS2-AgBiS2 galena. Am Miner 93:1630–1640

    Article  Google Scholar 

  • Cook NJ, Spry PG, Vokes FM (1998) Mineralogy and textural relationships among sulphosalts and related minerals in the Bleikvassli Zn–Pb–(Cu) deposit, Nordland, Norway. Miner Depos 34:35–56

    Article  Google Scholar 

  • Cox SF, Knackstedt MA, Brown J (2001) Principles of structural control on permeability and fluid flow in hydrothermal systems. Rev Econ Geol 14:1–24

    Google Scholar 

  • Craig JR, Lees WR (1972) Thermochemical data for sulfosalt ore minerals: formation from simple sulfides. Econ Geol 67:373–377

    Article  Google Scholar 

  • Criss RE, Fleck RJ (1990) Oxygen isotope map of the giant metamorphic-hydrothermal system around the northern part of the Idaho batholith, USA. Appl Geochem 5:641–655

    Article  Google Scholar 

  • de Melo-Silva P, da Silva AW, Oliveira EP (2020) Geochronological evolution of the Pitangui greenstone belt, southern São Francisco craton, Brazil: constraints from U–Pb zircon age, geochemistry and field relationships. J S Am Earth Sci 99:102380

    Article  Google Scholar 

  • Desborough GA, Carpenter RH (1965) Phase relations of pyrrhotite. Econ Geol 60:1431–1450

    Article  Google Scholar 

  • Dobbe RTM (1991) Ullmannite, cobaltian ullmannite and willyamite from Tunaberg, Bergslagen, central Sweden. Can Miner 29:199–205

    Google Scholar 

  • Dorr JVN (1969) Physiographic, stratigraphic, and structural development of the Quadrilatero Ferrifero, Minas Gerais, Brazil. US Geological Survey Professional Paper 614-A.

  • Fabricio-Silva W, Rosière CA, Bühn B (2018) The shear zone-related gold mineralization at the Turmalina deposit, Quadrilátero Ferrífero, Brazil: structural evolution and the two stages of mineralization. Miner Depos 54:347–368

    Article  Google Scholar 

  • Fabricio-Silva W, Frimmel HE, Shutesky ME, Rosière CA, Massucatto AJ (2021) Temperature-controlled ore evolution in orogenic gold systems related to synchronous granitic magmatism: an example from the Iron Quadrangle Province, Brazil. Econ Geol 116:937–962

    Article  Google Scholar 

  • Farina F, Albert C, Lana C (2015) The Neoarchean transition between medium- and high-K granitoids: clues from the southern São Francisco Craton (Brazil). Precambr Res 266:375–394

    Article  Google Scholar 

  • Fleck RJ, Criss RE, Eaton GF, Cleland RW, Wavra CS, Bond WD (2002) Age and origin of base and precious metal veins of the Coeur D’Alene mining district, Idaho. Econ Geol 97:23–42

    Article  Google Scholar 

  • Frenzel M, Hirsch T, Gutzmer J (2016) Gallium, germanium, indium, and other trace and minor elements in sphalerite as a funcation of deposit type—a meta-analysis. Ore Geol Rev 76:52–78

    Article  Google Scholar 

  • Genkin A (1971) Some replacement phenomena in copper–nickel sulphide ores. Miner Depos 6:348–355

    Article  Google Scholar 

  • Ghosal S, Sack RO (1999) Bi–Sb energetics in sulfosalts and sulfides. Mineral Mag 63:723–733

    Article  Google Scholar 

  • Graham AR (1969) Quantitative determination of hexagonal and monoclinic pyrrhotites by X-ray diffraction. Can Mineral 10(1):4–24

    Google Scholar 

  • Grazulis S, Chateigner D, Downs RT, Yokochi AT, Quiros M, Lutterotti L, Manakova E, Butkus J, Moeck P, Le Bail A (2009) Crystallography Open Database—an open-access collection of crystal structures. J Appl Crystallogr 42:726–729

    Article  Google Scholar 

  • Groves DI, Goldfarb RJ, Gebre-Mariam M, Hagemann SG, Robert F (1998) Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol Rev 13:7–27

    Article  Google Scholar 

  • Hartmann LA, Delgado IM (2001) Cratons and orogenic belts of the Brazilian Shield and their contained gold deposits. Miner Depos 36:207–217

    Article  Google Scholar 

  • Hartmann LA, Endo I, Suita MTF, Santos JOS, Frantz JC, Carneiro MA, McNaughton NJ, Barley ME (2006) Provenance and age delimitation of Quadrilátero Ferrífero sandstones based on zircon U–Pb isotopes. J S Am Earth Sci 20:273–285

    Article  Google Scholar 

  • Hoda SN, Chang LLY (1975) Phase relations in the pseudo-ternary system PbS–Cu2S–Sb2S3 and the synthesis of meneghinite. Can Mineral 13:388–393

    Google Scholar 

  • Hölzer G, Fritsch M, Deutsch M, Hawtwig J, Forster E (1997) Kα1,2 and Kβ1,3 X-ray emission lines of the 3d transition metals. Phys Rev A 56:4554–4568

    Article  Google Scholar 

  • Kissin SA, Scott SD (1982) Phase relations involving pyrrhotite below 350 °C. Econ Geol 77:1739–1754

    Article  Google Scholar 

  • Kojima S, Sugaki A (1985) Phase relations in the Cu–Fe–Zn–S system between 500° and 300 °C under hydrothermal conditions. Econ Geol 80:158–171

    Article  Google Scholar 

  • Kresse C, Lobato LM, Silva RCF, Hagemann SG, Banks D, Vitorino ALA (2020) Fluid signature of the shear zone-controlled Veio de Quartzo ore body in the world-class BIF-hosted Cuiabá gold deposit, Archean Rio das Velhas greenstone belt, Brazil: a fluid inclusion study. Miner Depos 55:1441–1466

    Article  Google Scholar 

  • Kretschmar U, Scott SD (1976) Phase relations involving arsenopyrite in the system Fe–As–S and their application. Can Mineral 14:364–386

    Google Scholar 

  • Kübler L (1982) A continuous phase gradient in a “monocrystalline” pyrrhotite. Phys Chem Miner 8:8–13

    Article  Google Scholar 

  • Lana C, Alkmim FF, Armstrong R, Scholz R, Romano R, Nalini HA (2013) The ancestry and magmatic evolution of Archean TTG rocks of the Quadrilátero Ferrífero province, southeast Brazil. Precambr Res 230:1–30

    Google Scholar 

  • Leach DL, Landis GP, Hofstra AH (1988) Metamorphic origin of the Coeur d’Alene base- and precious metal veins in the Belt basin, Idaho and Montana. Geology 16:122–125

    Article  Google Scholar 

  • Lobato LM, Vieira FWR (1998) Styles of hydrothermal alteration and gold mineralization associated with the Nova Lima group of the Quadrilátero Ferrífero: part II, the Archean mesothermal gold-bearing hydrothermal system. Revista Brasileira De Geociências 28:355–366

    Article  Google Scholar 

  • Lobato LM, Ribeiro-Rodrigues LC, Zucchetti M, Noce CM, Baltazar OF, da Silva LC, Pinto CP (2001a) Brazil’s premier gold province. Part I: the tectonic, magmatic, and structural setting of the Archean Rio das Velhas greenstone belt. Quadrilátero Ferrífero Mineralium Deposita 36:228–248

    Article  Google Scholar 

  • Lobato LM, Ribeiro-Rodrigues LC, Vieira FWR (2001b) Brazil’s premier gold province. Part II: geology and genesis of gold deposits in the Archean Rio das Velhas greenstone belt. Quadrilátero Ferrífero Mineralium Deposita 36:249–277

    Article  Google Scholar 

  • Lueth VW, Megaw PKM, Pingitore NE, Goodell PC (2000) Systematic variation in galena solid solution compositions at Santa Eulalia, Chihuahua, Mexico. Econ Geol 95:1673–1687

    Google Scholar 

  • Machado N, Carneiro MA (1992) U–Pb evidence of Late Archean tectonothermal activity in the southern São Francisco shield, Brazil. Can J Earth Sci 29:2341–2346

    Article  Google Scholar 

  • Marinho MS, Silva MA, Lombello JC, Di Salvio LP, Silva RN, Féboli WL, Brito DC (2018) Projeto ARIM—Áreas de Relevante Interesse Mineral—Noroeste do Quadrilátero Ferrífero: Mapa Geológico Integrado do Sinclinório Pitangui, 1 mapa colorido, Escala 1:75.000, 1p

  • Martins BS, Lobato LM, Rosière CA, Hagemann SG, Santos JO, Villanova FL, Silva RCF, Lemos LH (2016) The Archean BIF-hosted Lamego gold deposit, Rio das Velhas greenstone belt, Quadrilátero Ferrífero: evidence for Cambrian structural modification of an Archean orogenic gold deposit. Ore Geol Rev 72:963–988

    Article  Google Scholar 

  • Monecke T, Mercier-Langevin P, Dubé B (2017) Archean base and precious metal deposits, southern Abitibi greenstone belt. Society of Economic Geologists, Reviews in Economic Geology, p 9

    Google Scholar 

  • Morales MJ, Silva RCF, Lobato LM, Gomes SD, Gomes CCCO, Banks DA (2016) Metal source and fluid-rock interaction in the Archean BIF-hosted Lamego gold mineralization: Microthermometric and LA-ICP-MS analyses of fluid inclusions in quartz veins, Rio das Velhas greenstone belt, Brazil. Ore Geol Rev 72:510–531

    Article  Google Scholar 

  • Moreira H, Lana C, Nalini HA (2016) The detrital zircon record of an Archean convergent basin in the southern São Francisco craton, Brazil. Precambr Res 275:84–99

    Article  Google Scholar 

  • Noce CM, Tassinari CCG, Lobato LM (2007) Geochronological framework of the Quadrilátero Ferrífero, with emphasis on the age of gold mineralization hosted in Archean greenstone belts. Ore Geol Rev 32:500–510

    Article  Google Scholar 

  • O’Leary MJ, Sack RO (1987) Fe–Zn exchange reaction between tetrahedrite and sphalerite in natural environments. Contrib Miner Petrol 96:415–425

    Article  Google Scholar 

  • Pereira SLM, Lobato LM, Ferreira JE, Jardim EC (2007) Nature and origin of the BIF-hosted São Bento gold deposit, Quadrilátero Ferrífero, Brazil, with special emphasis on structural controls. Ore Geol Rev 32:571–595

    Article  Google Scholar 

  • Phillips GN, Powell R (2010) Formation of gold deposits: a metamorphic devolatilization model. J Metamorph Geol 28:689–718

    Article  Google Scholar 

  • Plyusina LP, Ivanov IP (1978) P–T limits and fluid balance of prehnite-pumpellyite facies of metamorphism from experimental data. Int Geol Rev 20:791–801

    Article  Google Scholar 

  • Polat A, Hofmann AW, Rosing MT (2002) Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early earth. Chem Geol 184:231–254

    Article  Google Scholar 

  • Pringle IJ, Kawachi Y (1980) Axinite mineral group in low-grade regionally metamorphosed rocks in southern New Zealand. Am Miner 65:1119–1129

    Google Scholar 

  • Renger FS, Noce CM, Romano AW, Machado N (1994) Evolução sedimentar do Supergrupo Minas: 500 Ma de registro geológico no Quadrilátero Ferrífero, Minas Gerais, Brasil. Geonomos 2:1–11

    Google Scholar 

  • Ribeiro Y, Silva RCF, Lobato LM, Lima LC, Rios FJ, Hagemann SG, Cliff J (2015) Fluid inclusion and sulfur and oxygen isotopes studies on quartz-carbonate-sulfide veins of the Carvoaria Velha deposit, Córrego do Sítio gold lineament, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geol Rev 67:11–33

    Article  Google Scholar 

  • Ribeiro-Rodrigues LC, Oliveira CG, Friedrich G (2007) The Archean BIF-hosted Cuiabá gold deposit, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geol Rev 32:543–570

    Article  Google Scholar 

  • Rice CM, Darke KE, Still JW, Lachowski EE (1998) Tungsten-bearing rutile from the Kori Kollo gold mine, Bolivia. Mineral Mag 62(3):421–429

    Article  Google Scholar 

  • Robb L (2004) Introduction to ore forming processes. Blackwell, Oxford

    Google Scholar 

  • Robert F, Kelly WC (1987) Ore-forming fluids in Archean gold-bearing quartz veins at the Sigma mine, Abitibi greenstone belt, Quebec, Canada. Econ Geol 82:1464–1482

    Article  Google Scholar 

  • Romano AW (1993) O Supergrupo Rio das Velhas da faixa Mateus Leme-Pitangui—parte meridional do Cráton do São Francisco, MG—e seu sistema de alteração hidrotermal. Geonomos 1:16–32

    Google Scholar 

  • Romano AW (2007) Folha Pará de Minas, SE-23-Z-CI. Escala 1:100.000, relatório final. UFMG—CPRM, Belo Horizonte. Programa Geologia do Brasil 72

  • Romano R, Lana C, Alkmim FF, Stevens G, Armstrong R (2013) Stabilization of the southern portion of the São Francisco Craton, SE Brazil, through a long-lived period of potassic magmatism. Precambr Res 224:143–159

    Article  Google Scholar 

  • Sack RO (2005) Internally consistent database for sulfides and sulfosalts in the system Ag2S–Cu2S–ZnS–FeS–Sb2S3–As2S3: update. Geochim Cosmochim Acta 69:1157–1164

    Article  Google Scholar 

  • Sack RO (2017) Fahlore thermochemistry: gaps inside the (Cu, Ag)10(Fe, Zn)2(Sb, As)4S13 cube. Petrology 25(5):498–515

    Article  Google Scholar 

  • Sack RO, Kuehner SM, Hardy LS (2002) Retrograde Ag-enrichment in fahlores from the Coeur d’Alene mining district, Idaho, USA. Mineral Mag 66:215–229

    Article  Google Scholar 

  • Sack RO, Lynch JVG, Foit F Jr (2003) Fahlore as a petrogenetic indicator: Keno Hill Ag–Pb–Zn district, Yukon Canada. Mineral Mag 67(5):1023–1038

    Article  Google Scholar 

  • Sack RO, Fredericks R, Hardy LS, Ebel DS (2005) Origin of high-Ag fahlores from the Galena Mine, Wallace, Idaho, USA. Am Miner 90:1000–1007

    Article  Google Scholar 

  • Sack RO, Lyubimtseva NG, Bortnikov NS, Anikina EY, Borisovsky SE (2022) Sulfur vacancies in fahlores from the Ag–Pb–Zn Mangazeyskoye ore deposit (Sakha, Russia). Contributions to Mineralogy and Petrology (submitted)

  • Schwartz GM (1931) Textures due to unmixing of solid solutions. Econ Geol 26:739–763

    Article  Google Scholar 

  • Scott SD, Barnes HL (1971) Sphalerite geothermometry and geobarometry. Econ Geol 66:653–669

    Article  Google Scholar 

  • Scott SD, Kissin SA (1973) Sphalerite composition in the Zn–Fe–S system below 300 °C. Econ Geol 68:475–479

    Article  Google Scholar 

  • Sepp J, Pressacco R, Patel A (2019) Technical report on the Turmalina mine complex, Minas Gerais state, Brazil. Rock solid resources. Proven advice. http://sedar.com. Accessed 18 May 2021

  • Sharp TG, Buseck PR (1993) The distributions of Ag and Sb in galena: inclusions vs. solid solution. Am Miner 78:85–95

    Google Scholar 

  • Sharp ZD, Essene EJ, Kelly WC (1985) A re-examination of the arsenopyrite geothermometer; pressure considerations and applications to natural assemblages. Can Mineral 23(4):517–534

    Google Scholar 

  • Sibson RH, Robert F, Poulsen KH (1988) High-angle reverse faults fluid-pressure cycling and mesothermal gold-quartz deposits. Geology 16:551–555

    Article  Google Scholar 

  • Silva GPA, Carneiro MA (2009) The metatholeiitic suite of the Rio Manso metavolcanosedimentary sequence, Iron Quadrangle (MG). Revista Da Escola De Minas De Ouro Preto 62:423–430

    Google Scholar 

  • Sugaki A, Shima H, Kitakaze A, Harada H (1975) Isothermal phase relations in the system Cu–Fe–S under hydrothermal conditions at 350 °C and 300 °C. Econ Geol 70:806–823

    Article  Google Scholar 

  • Tassinari CCG, Mateus AM, Velásquez ME, Munhá JMW, Lobato LM, Bello RM, Chiquini AP, Campos WF (2015) Geochronology and thermochronology of gold mineralization in the Turmalina deposit, NE of the Quadrilátero Ferrífero region, Brazil. Ore Geol Rev 67:368–381

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) Continental Crust: its composition and evolution—an examination of the geochemical record preserved in sedimentary rocks. Blackwell Scientific Publications, London

    Google Scholar 

  • Teixeira W, Carneiro MA, Noce CM, Machado N, Sato K, Taylor PN (1996) Pb, Sr and Nd isotope constraints on the Archaean evolution of gneissic-granitoid complexes in the southern São Francisco Craton, Brazil. Precambr Res 78:151–164

    Article  Google Scholar 

  • Teixeira W, Ávila CA, Dussin IA, Corrêa Neto AV, Bongiolo EM, Santos JO, Barbosa NS (2015) A juvenile accretion episode (2.35–2.32 Ga) in the Mineiro belt and its role to the Minas accretionary orogeny: Zircon U–Pb–Hf and geochemical evidences. Precambr Res 256:148–169

    Article  Google Scholar 

  • Teixeira W, Oliveira EP, Marques LS (2017a) Nature and evolution of the Archean crust of the São Francisco Craton. In: Heilbron M, Cordani UG, Alkmin FF (eds) São Francisco Craton, Eastern Brazil: tectonic genealogy of a miniature continent, 1st edn. Springer, pp 29–56

    Chapter  Google Scholar 

  • Teixeira W, Oliveira EP, Peng P, Dantas EL, Hollanda MHBM (2017b) U-Pb geochronology of the 2.0 Ga Itapecerica graphite-rich supracrustal succession in the São Francisco Craton: tectonic matches with the North China Craton and paleogeographic inferences. Precambr Res 293:91–111

    Article  Google Scholar 

  • Thorman CH, DeWitt E, Maron MAC, Ladeira EA (2001) Major Brazilian gold deposits—1982 to 1999. Miner Depos 36:218–227

    Article  Google Scholar 

  • van der Maaten LJP, Postma EO, van den Herik HJ (2009) Dimensionality reduction: a comparative review. Tilburg University Technical Report, TiCC-TR 2009-005.

  • Vaughan DJ, Craig JR (1978) Mineral chemistry of metal sulphides. Cambridge University Press, Cambridge

    Google Scholar 

  • Vial DS, Abreu GC, Schubert G, Ribeiro-Rodrigues LC (2007) Smaller gold deposits in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil. Ore Geol Rev 32:651–673

    Article  Google Scholar 

  • Warr LN (2021) IMA-CNMNC approved mineral symbols. Mineral Mag 85(3):291–320

    Article  Google Scholar 

  • Wen N, Ashworth JR, Ixer RA (1991) Evidence for the mechanism of the reaction producing a bournonite-galena symplectite from meneghinite. Mineral Mag 55:153–158

    Article  Google Scholar 

  • Wernick JH (1960) Constitution of the AgSbS2–PbS, AgBiS2–PbS, and AgBiS2–AgBiSe2 systems. Am Miner 45:591–598

    Google Scholar 

  • Wiggins LB, Craig JR (1980) Reconnaissance of the Cu–Fe–Zn–S system: sphalerite phase relationship. Econ Geol 75:742–751

    Article  Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical classification of different magma series and their differentiated products using immobile elements. Chem Geol 20:325–343

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jaguar Mining Inc., especially AJ Massucatto, WA Gasparotto, and MAS Pereira, for all support and financial assistance for this research. FEA Alves (Grant 140648/2019-4) acknowledges National Council for Scientific and Technological Development (CNPq) for financial support. The authors thank Regional Centre for Innovation and Technological Development (CRTI) for electron probe microanalysis, Centre for Mineral Technology (CETEM) for SEM and XRD facilities, the Laboratory of Petrology (UERJ), and Laboratory of Sedimentary Geology (LAGESED—UFRJ) for the optical microscopy facilities. We also acknowledge Dr. RO Sack for valuable discussions, insights, and reading recommendations, and Dr. OFM Gomes from CETEM for assistance with MATLAB. Finally, we gratefully acknowledge the critical reviews by two anonymous reviewers and the careful editorial handling by Dr. MS Ghiorso.

Funding

This research was funded by National Council for Scientific and Technological Development (CNPq—Grant 140648/2019-4). Jaguar Mining Inc. supported this research by funding the field trips and geochemical analyses. Centre for Mineral Technology (CETEM) supported this work providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Emerson André Alves.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Mark S Ghiorso.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, F.E.A., Corrêa Neto, A.V., Brando Soares, M. et al. Genetic implications from textures, mineralogy, and geochemistry: the case of Zona Basal–a singular polymetallic occurrence in the Quadrilátero Ferrífero, Brazil. Contrib Mineral Petrol 177, 48 (2022). https://doi.org/10.1007/s00410-022-01913-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-022-01913-w

Keywords

Navigation