Skip to main content
Log in

An integrated approach for assessing surface water quality: Case of Beni Haroun dam (Northeast Algeria)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this paper, we use an integrated approach to carry out a comprehensive evaluation of water quality in the Beni Haroun (BH) dam, the largest surface water resource in Algeria. Several techniques have been employed under the same framework, including the Canadian Council Ministers Environment Water Quality Index (CCME-WQI), principal component analysis and factor analysis (PCA/FA), the K-means clustering, and the ordinary least square (OLS) analysis. A data set of 22 physicochemical parameters has been collected, over a period of 11 years, from three sampling stations: Ain Smara (ST1) and Menia (ST2), both located upstream of “Wadi Rhumel,” and BH dam station (ST3), located at the dam site. The PCA/FA enables the identification of seven key factors that influence significantly BH dam water quality. The average values of CCME indices at the BH dam were 17, 40, 42, and 32 for drinking, irrigation, industry, and aquatic life purposes, respectively, which indicate poor water quality, according to the CCME categorization scheme. Besides, the K-means algorithm has been proven to be a very useful machine learning tool to detect that the major source of BH dam pollution is “Wadi Rhumel.” Finally, OLS analysis, along with the Mann-Kendall test, highlighted the positive trend of BH dam’s water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AI:

artificial intelligence

ALWQI:

aquatic life WQI

ANOVA:

analysis of variance

ANRH:

Agence Nationale des Resources Hydrauliques

BCWQI:

British Columbia WQI

BH:

Beni Haroun

BOD:

biochemical oxygen demand

CA:

cluster analysis

CCME-WQI:

Canadian Council Ministers Environments WQI

CEC:

Commission of European Committees

COD:

chemical oxygen demand

CWQI:

Canadian WQI

DA:

discriminant analysis

DO:

dissolved oxygen

DWAF:

Department of Water Affairs and Forestry

DWQI:

drinking WQI

EC:

electrical conductivity

FA:

factor analysis

FAO:

Food and Agriculture Organization

InWQI:

industrial WQI

IWQI:

irrigation WQI

KMO:

Kaiser-Meyer-Olkin

NSF-WQI:

National Sanitation Foundation WQI

OLS:

ordinary least square

PCA:

principal component analysis

PCs:

principal components

pH:

power of hydrogen

ST1:

Ain Smara station

ST2:

Menia station

ST3:

Grarem station

T:

water temperature

TSS:

total suspended solid

VFs:

Varifactors

WE:

Wadi Endja

WHO:

World Health Organization

WQI:

Water Quality Index

WR:

Wadi Rhumel

References

  • Abbasi, T., & Abbasi, S. A. (2012). Water quality indices. Amsterdam: Elsevier.

  • Areerachakul, S., & Sanguansintukul, S. (2010). Clustering analysis of water quality for canals in Bangkok, Thailand. In D. Taniar, O. Gervasi, B. Murgante, E. Pardede, & B. O. Apduhan (Eds.), International Conference of Computational Science and Its Applications – ICCSA 2010, Fukuoka, Japan, March 23–26, 2010, Proceedings (Vol. 2010, pp. 215–227). Springer Heidelberg.

  • Ay, M., & Kisi, O. (2014). Modelling of chemical oxygen demand by using ANNs, ANFIS and k-means clustering techniques. Journal of Hydrology, 511, 279–289. https://doi.org/10.1016/j.jhydrol.2014.01.054.

    Article  CAS  Google Scholar 

  • Benahmed, L., & Houichi, L. (2018). The effect of simple imputations based on four variants of PCA methods on the quantiles of annual rainfall data. Environmental monitoring and assessment, 190, 569. https://doi.org/10.1007/s10661-018-6913-y.

    Article  Google Scholar 

  • Bouaroudj, S., Menad, A., Bounamous, A., Ali-Khodja, H., Gherib, A., Weigel, D. E., & Chenchouni, H. (2019). Assessment of water quality at the largest dam in Algeria (Beni Haroun Dam) and effects of irrigation on soil characteristics of agricultural lands. Chemosphere, 219, 76–88. https://doi.org/10.1016/j.chemosphere.2018.11.193.

    Article  CAS  Google Scholar 

  • Bouguerne, A., Boudoukha, A., Benkhaled, A., & Mebarkia, A.-H. (2017). Assessment of surface water quality of Ain Zada dam (Algeria) using multivariate statistical techniques. International Journal of River Basin Management, 15, 133–143. https://doi.org/10.1080/15715124.2016.1215325.

    Article  Google Scholar 

  • Brown, R. M., McClelland, N. I., Deininger, R. A., Tozer, R. G. (1970). A Water Quality Index- do were dare.

  • Canadian Council Ministers of Environment (CCME). (2001). Canadian water quality guidelines for the protection of aquatic life: CCME Water Quality Index 1.0, User’s manual, Canadian Environmental Quality Guidelines (p. 5). Winnipeg: Canadian Council of Ministers of the Environment.

    Google Scholar 

  • Commission of European Committees (CEC) (1978). Council Directive of 18 July 1978 on the quality of fresh waters needing protection or improvement in order to support fish life, (78/659/EEC). Official J L/222:1–10.

  • Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1, 224–227. https://doi.org/10.1109/tpami.1979.4766909.

    Article  Google Scholar 

  • Department of Water Affairs and Forestry (DWAF) (1996). South African Water Quality Guidelines, 2nd ed., Industrial Use, vol. 3. Department of Water Affairs and Forestry, Pretoria, South Africa.

  • Dinius, S. H. (1972). Social accounting system for evaluating water resources. Water Resources Research, 8, 1159–1177. https://doi.org/10.1029/WR008i005p01159.

    Article  Google Scholar 

  • Djeddi, H., Kherief Nacereddine, S., Keddari, D., & Afri-Mehennaoui, F.-Z. (2018). Content of trace metallic elements Cu, Zn and Pb sediments of the Béni Haroun Dam (North-East Algeria). European Scientific Journal, ESJ, 14, 269. https://doi.org/10.19044/esj.2018.v14n15p269 (in French).

    Article  Google Scholar 

  • Djelita, B., Bouzid-Lagha, S., & NEHAR, K. C. (2016). Spatial and temporal patterns of the water quality in the Hammam Boughrara Reservoir in Algeria. In P. Grammelis (Ed.), Energy, Transportation and Global Warming (pp. 635–653). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Dunn, J. C. (1974). Well-Separated Clusters and Optimal Fuzzy Partitions. Journal of Cybernetics, 4, 95–104. https://doi.org/10.1080/01969727408546059.

    Article  Google Scholar 

  • Farzadkia, M., Djahed, B., Shahsavani, E., & Poureshg, Y. (2015). Spatio-temporal evaluation of Yamchi Dam basin water quality using Canadian Water Quality Index. Environmental monitoring and assessment, 187, 168. https://doi.org/10.1007/s10661-015-4379-8.

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization (FAO) (1994). Water quality for agriculture. 29 Rev. 1. pp. 174.

  • González, S. O., Almeida, C. A., Calderón, M., Mallea, M. A., & González, P. (2014). Assessment of the water self-purification capacity on a river affected by organic pollution: Application of chemometrics in spatial and temporal variations. Environmental Science and Pollution Research, 21, 10583–10593. https://doi.org/10.1007/s11356-014-3098-y.

    Article  CAS  Google Scholar 

  • Hafsi, R., Ouerdachi, L., Kriker, A. E. O., & Boutaghane, H. (2016). Assessment of urbanization/impervious effects on water quality in the urban river Annaba (Eastern Algeria) using physicochemical parameters. Water Science and Technology, 74, 2051–2059. https://doi.org/10.2166/wst.2016.350.

    Article  CAS  Google Scholar 

  • Hamil, S., Arab, S., Chaffai, A., Baha, M., & Arab, A. (2018). Assessment of surface water quality using multivariate statistical analysis techniques: A case study from Ghrib dam, Algeria. Arabian Journal of Geosciences, 11, 754.

    Article  Google Scholar 

  • Hamlat, A., Tidjani, A. E.-B., Yebdri, D., Errih, M., & Guidoum, A. (2013). Water quality analysis of reservoirs within Western Algeria catchment areas using Water Quality Index CCME WQI. Journal of Water Supply: Research and Technology—AQUA, 63, 311–324.

    Article  Google Scholar 

  • Hamlat, A., Guidoum, A., & Koulala, I. (2016). Status and trends of water quality in the Tafna catchment: A comparative study using water quality indices. Journal of Water Reuse and Desalination, 7, 228–245. https://doi.org/10.2166/wrd.2016.155.

    Article  Google Scholar 

  • Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28, 100–108.

    Google Scholar 

  • Heddam, S., Lamda, H., & Filali, S. (2016). Predicting effluent biochemical oxygen demand in a wastewater treatment plant using generalized regression neural network based approach: A comparative study. Environmental Processes, 3, 153–165. https://doi.org/10.1007/s40710-016-0129-3.

    Article  CAS  Google Scholar 

  • Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research, 34, 807–816. https://doi.org/10.1016/S0043-1354(99)00225-0.

    Article  CAS  Google Scholar 

  • Horton, R. K. (1965). An index number system for rating water quality. Journal of Water Pollution Control Federation, 37, 300–306.

    Google Scholar 

  • Javadi, S., Hashemy, S. M., Mohammadi, K., Howard, K. W. F., & Neshat, A. (2017). Classification of aquifer vulnerability using K-means cluster analysis. Journal of Hydrology, 549, 27–37. https://doi.org/10.1016/j.jhydrol.2017.03.060.

    Article  CAS  Google Scholar 

  • Kateb, Z., Bouchelkia, H., Benmansour, A., & Belarbi, F. (2020). Sediment transport modeling by the SWAT model using two scenarios in the watershed of Beni Haroun dam in Algeria. Arabian Journal of Geosciences, 13, 653. https://doi.org/10.1007/s12517-020-05623-0.

    Article  Google Scholar 

  • Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis (Vol. 725). Hoboken: Wiley Inc.

    Book  Google Scholar 

  • Kendall, M. (1975). Rank Correlation Methods. Charles Griffin, 202, 15.

    Google Scholar 

  • Kherief Nacereddine, S., Djeddi, H., Benayache, N. Y., & Afri-Mehennaoui, F. Z. (2018). Nutrient and phytoplankton dynamics in the Beni Haroun dam in Eastern Algeria. European Scientific Journal, ESJ, 14, 111. https://doi.org/10.19044/esj.2018.v14n12p111 (in French).

    Article  Google Scholar 

  • Kükrer, S., & Mutlu, E. (2019). Assessment of surface water quality using Water Quality Index and multivariate statistical analyses in Saraydüzü Dam Lake, Turkey. Environmental monitoring and assessment, 191, 71. https://doi.org/10.1007/s10661-019-7197-6.

    Article  CAS  Google Scholar 

  • Ledesma, M. M., Bonancea, M., Ledesma, C. R., Rodríguez, M. C., & Pinotti, L. (2018). Water quality assessment of the Cassaffousth Reservoir using multivariate statistical techniques. Ab Intus, 1, 27–38.

    Google Scholar 

  • Liu, C.-W., Lin, K.-H., & Kuo, Y.-M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of The Total Environment, 313, 77–89. https://doi.org/10.1016/S0048-9697(02)00683-6.

    Article  CAS  Google Scholar 

  • Lumb, A., Halliwell, D., & Sharma, T. (2006). Application of CCME Water Quality Index to monitor water quality: A case study of the Mackenzie River Basin, Canada. Environmental monitoring and assessment, 113, 411–429. https://doi.org/10.1007/s10661-005-9092-6.

    Article  CAS  Google Scholar 

  • MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations (pp. 281–297). Oakland: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability.

    Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245–259. https://doi.org/10.2307/1907187.

    Article  Google Scholar 

  • Marouf, N. (2012). Study of water quality and sediment transport in the Beni-Haroun dam (MILA): Its impact on the environment of the region. Biskra: Mohamed Khider University 242 pp, (in French).

    Google Scholar 

  • Marouf, N., & Remini, B. (2016). Study of Beni Haroun dam pollution (Algeria). Desalination and Water Treatment, 57, 2766–2774. https://doi.org/10.1080/19443994.2014.982192.

    Article  CAS  Google Scholar 

  • Matta, G., Kumar, A., Naik, P. K., Tiwari, A., & Berndtsson, R. (2018a). Ecological analysis of nutrient dynamics and phytoplankton assemblage in the Ganga River System, Uttarakhand. Taiwan Water Conservancy, 66, 1–12.

    Google Scholar 

  • Matta, G., Naik, P. K., Machell, J., Kumar, A., Gjyli, L., Tiwari, A. K., & Kumar, A. (2018b). Comparative study on seasonal variation in hydro-chemical parameters of Ganga River water using comprehensive pollution index (CPI) at Rishikesh (Uttarakhand) India. Desalination and Water Treatment, 118, 87–95. https://doi.org/10.5004/dwt.2018.22487.

    Article  CAS  Google Scholar 

  • Matta, G., Kumar, A., Tiwari, A. K., Naik, P. K., & Berndtsson, R. (2020). HPI appraisal of concentrations of heavy metals in dynamic and static flow of Ganga River System. Environment, Development and Sustainability, 22, 33–46. https://doi.org/10.1007/s10668-018-0182-3.

    Article  Google Scholar 

  • Mebarki, A. (2000). Low water flows, effluents and protection of water resources in the Mediterranean basins of eastern Algeria (in French). Geocarrefour Revue de Geogaphie de Lyon (France).

  • Mebarki, A. (2005). Hydrology of the Algerian Eastern basins: Water resources, development and environment. Algeria: University of Constantine 360 pp, (in French).

    Google Scholar 

  • Mebarki, A., Benabbas, C., & Grecu, F. (2008). “Beni-Haroun” (Oued Kébir-Rhumel, Algeria) system: Hydraulic developments and morpho-geological constraints (in French). Analele Universitatii Bucuresti: Geografie, 57, 37–51.

    Google Scholar 

  • Moskowitz, C. (2008). What makes earth special compared to other planets? online: https://www.space.com/5595-earth-special-compared-planets.html. Accessed 16 April 2020.

  • Müller, B., Berg, M., Yao, Z. P., Zhang, X. F., Wang, D., & Pfluger, A. (2008). How polluted is the Yangtze river? Water quality downstream from the Three Gorges Dam. Science of The Total Environment, 402, 232–247. https://doi.org/10.1016/j.scitotenv.2008.04.049.

    Article  CAS  Google Scholar 

  • Official Journal of the Algerian Republic (OJAR) (2011). The guidelines for Algerian drinking water quality. Off. J. Algerian Rep. 34, 17 Rajab 1432, 19 June 2011.

  • Remini, B., Toumi, A. (2017). The Beni Haroun reservoir (Algeria) is it threatened by siltation? LARHYSS Journal P-ISSN 1112-3680/E-ISSN 2521-9782, 249-263.

  • Rodier, J., Legube, B., Merlet, N. (2009). Water analysis (In French).

  • RStudio Team. (2019). RStudio: Integrated development for R. Boston: RStudio, Inc..

    Google Scholar 

  • Samiotis, G., Trikoilidou, E., Tsikritzis, L., & Amanatidou, E. (2018). Comparative water quality assessment between a young and a stabilized hydroelectric reservoir in Aliakmon River, Greece. Environmental monitoring and assessment, 190, 234. https://doi.org/10.1007/s10661-018-6602-x.

    Article  CAS  Google Scholar 

  • Shi, W., & Zeng, W. (2014). Application of k-means clustering to environmental risk zoning of the chemical industrial area. Frontiers of Environmental Science & Engineering, 8, 117–127. https://doi.org/10.1007/s11783-013-0581-5.

    Article  CAS  Google Scholar 

  • Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling & Software, 22, 464–475. https://doi.org/10.1016/j.envsoft.2006.02.001.

    Article  Google Scholar 

  • Shrestha, S., Kazama, F., & Nakamura, T. (2008). Use of principal component analysis, factor analysis and discriminant analysis to evaluate spatial and temporal variations in water quality of the Mekong River. Journal of Hydroinformatics, 10, 43–56. https://doi.org/10.2166/hydro.2008.008.

    Article  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research, 38, 3980–3992. https://doi.org/10.1016/j.watres.2004.06.011.

    Article  CAS  Google Scholar 

  • Smith, D. G. (1990). A better water quality indexing system for rivers and streams. Water Research, 24, 1237–1244. https://doi.org/10.1016/0043-1354(90)90047-A.

    Article  CAS  Google Scholar 

  • Stoner, J. D. (1978). Water-quality indices for specific water uses. Department of the Interior, Geological Survey.

  • Terrado, M., Barceló, D., Tauler, R., Borrell, E., & Sd, C. (2010). Surface-water-quality indices for the analysis of data generated by automated sampling networks. TrAC Trends in Analytical Chemistry, 29, 40–52. https://doi.org/10.1016/j.trac.2009.10.001.

    Article  CAS  Google Scholar 

  • Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63, 411–423.

    Article  Google Scholar 

  • Tiri, A., Belkhiri, L., & Mouni, L. (2018). Evaluation of surface water quality for drinking purposes using fuzzy inference system. Groundwater for Sustainable Development, 6, 235–244. https://doi.org/10.1016/j.gsd.2018.01.006.

    Article  Google Scholar 

  • Tukey, J. W. (1977). Exploratory data analysis. Reading: Addison-Wesley.

  • Varol, M., & Şen, B. (2008). Assessment of surface water quality using multivariate statistical techniques: A case study of Behrimaz Stream, Turkey. Environmental monitoring and assessment, 159, 543–553. https://doi.org/10.1007/s10661-008-0650-6.

    Article  CAS  Google Scholar 

  • Varol, M., Gökot, B., Bekleyen, A., & Şen, B. (2012). Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. Catena, 92, 11–21. https://doi.org/10.1016/j.catena.2011.11.013.

    Article  CAS  Google Scholar 

  • Wang, X., Cai, Q., Ye, L., & Qu, X. (2012). Evaluation of spatial and temporal variation in stream water quality by multivariate statistical techniques: A case study of the Xiangxi River basin, China. Quaternary International, 282, 137–144. https://doi.org/10.1016/j.quaint.2012.05.015.

    Article  Google Scholar 

  • Weatherill, G., & Burton, P. W. (2009). Delineation of shallow seismic source zones using K-means cluster analysis, with application to the Aegean region. Geophysical Journal International, 176, 565–588.

    Article  Google Scholar 

  • Wei, G., Yang, Z., Cui, B., Li, B., Chen, H., Bai, J., & Dong, S. (2009). Impact of dam construction on water quality and water self-purification capacity of the Lancang River, China. Water Resources Management, 23, 1763–1780.

    Article  Google Scholar 

  • World Health Organization (WHO) (2004). Guidelines for drinking water quality, vol. 1, 540 pp.

  • World Health Organization (WHO). (2008). Guidelines for drinking water quality, Recommendations (Vol. 1). Geneva: WHO.

    Google Scholar 

  • Zarei, H., & Pourreza Bilondi, M. (2013). Factor analysis of chemical composition in the Karoon River basin, southwest of Iran. Applied Water Science, 3, 753–761. https://doi.org/10.1007/s13201-013-0123-0.

    Article  CAS  Google Scholar 

  • Zotou, I., Tsihrintzis, V. A., & Gikas, G. D. (2019). Performance of seven Water Quality Indices (WQIs) in a Mediterranean River. Environmental monitoring and assessment, 191, 505. https://doi.org/10.1007/s10661-019-7652-4.

    Article  Google Scholar 

  • Zou, H., Zou, Z., & Wang, X. (2015). An enhanced K-means algorithm for water quality analysis of the Haihe River in China. International journal of environmental research and public health, 12, 14400–14413.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Agence Nationale des Resources Hydrauliques (ANRH) for their assistance in providing the necessary data. They also are grateful to Professor Abderrahmane BOUDOUKHA of the University of Batna, Algeria, for his pertinent information and valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Oukil.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, A.A., Bermad, A., Boutaghane, H. et al. An integrated approach for assessing surface water quality: Case of Beni Haroun dam (Northeast Algeria). Environ Monit Assess 192, 630 (2020). https://doi.org/10.1007/s10661-020-08572-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08572-z

Keywords

Navigation