Skip to main content
Log in

Polymer-free gel electrolyte and its application in TiO2-based electrochromic devices

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochromic devices based on polymer-free gel electrolytes (PFGEs) offer several advantages over polymer electrolytes. The preparation and characterization of a novel fumed silica-based PFGE and its applications in TiO2 electrochromic devices (ECD) were the main aims of the present study. First, a series of liquid electrolytes were prepared by mixing lithium chloride (LiCl) and ethylene Glycol (EG) with different molar ratios and their ionic conductivities were measured to get an idea about the highest ionic conductivity composition. The total oxygen atoms of EG to lithium ions of LiCl molar ratio (O:Li+) was altered from 5:1 to 80:1. The highest ionic conductivity was observed for 15: 1 molar ratio with the value being the 1.28 × 10− 2 S cm− 1. This optimized composition was selected for preparing PFGE. In order to prepare PFGE, 10 wt% of fumed silica from the total weight of EG and LiCl were added to the optimized liquid electrolyte EG/LiCl as the polymer-free gelling agent. The maximum ionic conductivity was found in O:Li = 10: 1, with the value being 8.94 × 10− 3 S cm− 1. ECDs were prepared by sandwiching this PFGE between TiO2 electrochromic electrode and fluorine-doped tin oxide (FTO) counter-electrode with the configuration of FTO/TiO2/PFGE/FTO. Notable electrochromic properties of TiO2-coated FTO with higher optical modulation of 64% at 700 nm and 33% at 550 nm by applying 4.2 V and a switching speed of Tbleaching= 42.5 s and Tcoloring= 16.7 s were observed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li W, Zhang X, Chen X et al (2020) Effect of independently controllable electrolyte ion content on the performance of all-solid-state electrochromic devices. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125628

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li W, Zhang X, Chen X et al (2020) Lithiation of WO3 films by evaporation method for all-solid-state electrochromic devices. Electrochim Acta. https://doi.org/10.1016/j.electacta.2020.136817

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hadjoudis E, Mavridis IM (2004) Photochromism and thermochromism of Schiff bases in the solid state: structural aspects. Chem Soc Rev 33:579–588. https://doi.org/10.1039/b303644h

    Article  CAS  PubMed  Google Scholar 

  4. Khalifa ZS (2014) Electronic structure changes of TiO2 thin fi lms due to electrochromism. Solar Energy Mater Solar Cells 124:186–191. https://doi.org/10.1016/j.solmat.2014.02.005

    Article  CAS  Google Scholar 

  5. Mihelčič M, Šurca Vuk A, Jerman I et al (2014) Comparison of electrochromic properties of ni 1-x O in lithium and lithium-free aprotic electrolytes: from ni 1-x O pigment coatings to flexible electrochromic devices. Sol Energy Mater Sol Cells 120:116–130. https://doi.org/10.1016/j.solmat.2013.08.025

    Article  CAS  Google Scholar 

  6. Weng W, Higuchi T, Suzuki M et al (2010) A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity. Angewandte Chemie - International Edition 49:3956–3959. https://doi.org/10.1002/anie.200907008

    Article  CAS  PubMed  Google Scholar 

  7. Thotawatthage C, Sarangika M, Senadeera GKR, Dissanayake L (2013) Novel quasi solid state electrochromic smart windows based on TiO2 and SnO2 electrodes with PMMA gel electrolyte

  8. Lin W, Zhao Q, Sun H et al (2015) An electrochromic phosphorescent iridium(III) complex for information recording, encryption, and decryption. Adv Opt Mater 3:368–375. https://doi.org/10.1002/adom.201400396

    Article  CAS  Google Scholar 

  9. Liu Q, Chen Q, Zhang Q et al (2018) In situ electrochromic efficiency of a nickel oxide thin film: origin of electrochemical process and electrochromic degradation. J Mater Chem C Mater 6:646–653. https://doi.org/10.1039/c7tc04696k

    Article  CAS  Google Scholar 

  10. Weibin Z, Weidong W, Xueming W et al (2013) The investigation of NbO2 and Nb2O5 electronic structure by XPS, UPS and first principles methods. Surf Interface Anal 45:1206–1210. https://doi.org/10.1002/sia.5253

    Article  CAS  Google Scholar 

  11. Dinh NN, Oanh NTT, Long PD et al (2003) Electrochromic properties of TiO2 anatase thin films prepared by a dipping sol-gel method. Thin Solid Films 423:70–76. https://doi.org/10.1016/S0040-6090(02)00948-3

    Article  CAS  Google Scholar 

  12. Hsu CS, Chan CC, Huang HT et al (2008) Electrochromic properties of nanocrystalline MoO3 thin films. Thin Solid Films 516:4839–4844. https://doi.org/10.1016/j.tsf.2007.09.019

    Article  CAS  Google Scholar 

  13. Arvizu MA, Qu HY, Cindemir U et al (2019) Electrochromic WO 3 thin films attain unprecedented durability by potentiostatic pretreatment. J Mater Chem A Mater 7:2908–2918. https://doi.org/10.1039/c8ta09621j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sauvet K, Sauques L, Rougier A (2010) Electrochromic properties of WO3 as a single layer and in a full device: from the visible to the infrared. J Phys Chem Solids 71:696–699. https://doi.org/10.1016/j.jpcs.2009.12.069

    Article  CAS  Google Scholar 

  15. Lee KH, Fang YK, Lee WJ et al (2000) ž / ž / Novel electrochromic devices ECD of tungsten oxide WO thin film 3 integrated with amorphous silicon germanium photodetector for hydrogen sensor. Sens Actuators B Chem. https://doi.org/10.1016/S0925-4005(00)00420-2

    Article  Google Scholar 

  16. Nang Dinh N, Minh Quyen N, Chung DN et al (2011) Highly-efficient electrochromic performance of nanostructured TiO 2 films made by doctor blade technique. Sol Energy Mater Sol Cells 95:618–623. https://doi.org/10.1016/j.solmat.2010.09.028

    Article  CAS  Google Scholar 

  17. Chou J-C, Chiu Y-Y, Shih P-H, Yang S-Y (2011) Fabrication of Photoelectrochromic Cell on Flexible Substrate by Screen Printing Technique. In: The 4th IEEE International NanoElectronics Conference. pp. 1–2

  18. Shinde PS, Deshmukh HP, Mujawar SH et al (2007) Spray deposited titanium oxide thin films as passive counter electrodes. Electrochim Acta 52:3114–3120. https://doi.org/10.1016/j.electacta.2006.09.053

    Article  CAS  Google Scholar 

  19. Spurgeon JM, Walter MG, Zhou J et al (2011) Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays. Energy Environ Sci 4:1772–1780. https://doi.org/10.1039/c1ee01028j

    Article  CAS  Google Scholar 

  20. Gray F, Armand M (2007) Polymer electrolytes. Handbook of battery materials. Woodhead Publishing, Cambridge, pp 95–160

    Google Scholar 

  21. Desai SS (2012) Fabrication of dual layer conducting polymer electrochromic devices using novel electrolytes. University of Wollongong, Wollongong

    Google Scholar 

  22. Jitchum V, Chivin S, Wongkasemjit S, Ishida H (2001) Synthesis of spirosilicates directly from silica and ethylene glycol/ethylene glycol derivatives. Tetrahedron 57:3997–4003. https://doi.org/10.1016/S0040-4020(01)00275-7

    Article  CAS  Google Scholar 

  23. Raghavan SR, Walls HJ, Khan SA (2000) Rheology of silica dispersions in organic liquids: new evidence for solvation forces dictated by hydrogen bonding. Langmuir 16:7920–7930. https://doi.org/10.1021/la991548q

    Article  CAS  Google Scholar 

  24. Yoon H, Howlett PC, Best AS et al (2013) Fast Charge/Discharge of Li Metal Batteries using an ionic liquid Electrolyte. J Electrochem Soc 160:A1629–A1637. https://doi.org/10.1149/2.022310jes

    Article  CAS  Google Scholar 

  25. Ghandi K (2014) A review of ionic liquids, their limits and applications. Green and Sustainable Chemistry 04:44–53. https://doi.org/10.4236/gsc.2014.41008

    Article  CAS  Google Scholar 

  26. Ju H, Wu J, Xu Y (2013) Revisiting the electrochemical impedance behaviour of the LiFePO 4/C cathode. J Chem Sci 125:687–693. https://doi.org/10.1007/s12039-013-0407-9

    Article  CAS  Google Scholar 

  27. Di Noto V, Longo D, Münchow V (1999) Ion-oligomer interactions in poly(ethylene glycol)400/(LiCl)x electrolyte complexes. J Phys Chem B 103:2636–2646. https://doi.org/10.1021/jp983764y

    Article  Google Scholar 

  28. Krishnan K, Krishnan RS (1966) Raman and infrared spectra of ethylene glycol. Proc Indian Acad Sci - Sect A 64:111–122. https://doi.org/10.1007/BF03047675

    Article  CAS  Google Scholar 

  29. Pucić I, Jurkin T (2012) FTIR assessment of poly(ethylene oxide) irradiated in solid state, melt and aqeuous solution. Radiat Phys Chem 81:1426–1429. https://doi.org/10.1016/j.radphyschem.2011.12.005

    Article  CAS  Google Scholar 

  30. Bertasi F, Negro E, Vezzù K et al (2015) Single-ion-conducting Nanocomposite Polymer Electrolytes for Lithium Batteries based on lithiated-fluorinated-Iron oxide and poly(ethylene glycol) 400. Electrochim Acta 175:113–123. https://doi.org/10.1016/j.electacta.2015.03.149

    Article  CAS  Google Scholar 

  31. Vasudevan V, Wang M, Yuwono JA et al (2019) Ion agglomeration and transport in MgCl2-Based Electrolytes for rechargeable magnesium batteries. J Phys Chem Lett 10:7856–7862. https://doi.org/10.1021/acs.jpclett.9b03023

    Article  CAS  PubMed  Google Scholar 

  32. Aziz SB, Brza MA, Hamsan MH et al (2020) Effect of ohmic-drop on electrochemical performance of EDLC fabricated from PVA:dextran:NH4I based polymer blend electrolytes. J Mater Res Technol 9:3734–3745. https://doi.org/10.1016/j.jmrt.2020.01.110

    Article  CAS  Google Scholar 

  33. Perumal P, Abhilash KP, Selvin PSivaraj PC, (2019) Study on Mg-ion conducting solid biopolymer electrolytes based on tamarind seed polysaccharide for magnesium ion batteries. Mater Res Bull. https://doi.org/10.1016/j.materresbull.2019.05.015

    Article  Google Scholar 

  34. Capeletti LB, Zimnoch JH (2016) Fourier transform infrared and raman characterization of silica-based materials. Appl Mol Spectrosc Curr Res Chem Biol Sci. https://doi.org/10.5772/64477

    Article  Google Scholar 

  35. Seo D, Park J, Shin TJ et al (2015) Bathochromic shift in absorption spectra of conjugated polymer nanoparticles with displacement along backbones. Macromol Res 23:574–577. https://doi.org/10.1007/s13233-015-3078-1

    Article  CAS  Google Scholar 

  36. Scrosati B (1993) Laminated electro chromic displays and windows

  37. Jourdani R, Outzourhit A, Oueriagli A et al (2004) Active and Passive electronic components. 27:125–131

  38. He X, Shi Q, Zhou X et al (2005) In situ composite of nano SiO 2 – P ( VDF-HFP ) porous polymer electrolytes for Li-ion batteries. Electrochimica Acta 51:1069–1075. https://doi.org/10.1016/j.electacta.2005.05.048

    Article  CAS  Google Scholar 

  39. Moon HC, Kim CH, Lodge TP, Frisbie CD (2016) Multicolored, Low-Power, flexible Electrochromic Devices based on Ion Gels. ACS Appl Mater Interfaces 8:6252–6260. https://doi.org/10.1021/acsami.6b01307

    Article  CAS  PubMed  Google Scholar 

  40. Lee HJ, Lee C, Song J et al (2020) Electrochromic devices based on ultraviolet-cured poly(methyl methacrylate) gel electrolytes and their utilisation in smart window applications. J Mater Chem C Mater 8:8747–8754. https://doi.org/10.1039/d0tc00420k

    Article  CAS  Google Scholar 

  41. Sarangika HNM, Dissanayake MAKL, Senadeera GKR, Karunarathne WGMD (2019) Materials Today: Proceedings Low cost quasi solid state electrochromic devices based on F-doped tin oxide and TiO2. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.07.585

    Article  Google Scholar 

  42. Chen X, Dou S, Li W et al (2020) All solid state electrochromic devices based on the LiF electrolyte. Chem Commun 56:5018–5021. https://doi.org/10.1039/d0cc00697a

    Article  CAS  Google Scholar 

  43. Wu T-Y, Li W-B, Kuo C-W et al (2013) Study of poly(Methyl Methacrylate)-Based. Gel Electrolyte for Electrochromic Device

Download references

Author information

Authors and Affiliations

Authors

Contributions

HMBIG did the experimental part under the supervision of HNMS and VAS, HMBIG wrote the draft manuscript and HNMS, and VAS corrected the manuscript. HNMS prepared the figures and graphical abstract.

Corresponding author

Correspondence to H. N. M. Sarangika.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunathilaka, H.M.B.I., Seneviratne, V.A. & Sarangika, H.N.M. Polymer-free gel electrolyte and its application in TiO2-based electrochromic devices. J Appl Electrochem 53, 2185–2196 (2023). https://doi.org/10.1007/s10800-023-01912-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01912-0

Keywords

Navigation