Skip to main content
Log in

Conductive fabric patch with controllable porous structure and elastic properties for tissue engineering applications

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

A Correction to this article was published on 09 October 2020

This article has been updated

Abstract

Cardiovascular disease has gradually become a kind of lifestyle disease in modern society, and the construction of an engineered cardiac patch (ECP) through tissue engineering means is a promising treatment for myocardial infarction in clinical practice. In this study, polyamide fabric was used as scaffold material. Hydrochloric acid, aniline (AN), and ammonium persulfate (APS) were used as main modification reagents. The knitted ECP was constructed by straight in situ polymerization. Respectively, by using a single variable method to change the concentration of APS and base fabric knit method, through a series of tests analyzing the effect of APS concentration and knitting methods on ECP properties, the optimal preparation of ECP was summarized: under the experimental conditions of hydrochloric acid, AN, and APS solution concentrations of 0.7 mol L−1, the ECP showed the best performance for potential cardiac therapy application: the conductivity can reach 2.63–2.79 S m−1, porosity is 60–62%, average pore size is in the range of 16.4–21.65 μm, and elongation is up to 181.43%, showing superior properties of textiles cardiac patch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Change history

  • 09 October 2020

    In the original article the name of author Jianyong Feng was spelled incorrectly.

References

  1. Benjamin EJ, Blaha MJ, Chiuve SE et al (2017) Heart disease and stroke statistics-2017 update a report from the American Heart Association. Circulation 135:E146–E603. https://doi.org/10.1161/cir.0000000000000485

    Article  Google Scholar 

  2. Hamdi H, Boitard SE, Planat-Benard V et al (2013) Efficacy of epicardially delivered adipose stroma cell sheets in dilated cardiomyopathy. Cardiovasc Res 99:640–647. https://doi.org/10.1093/cvr/cvt149

    Article  CAS  Google Scholar 

  3. Foëx P (2017) Innovations in management of cardiac disease: drugs, treatment strategies and technology. Br J Anaesth 119:i23–i33. https://doi.org/10.1093/bja/aex327

    Article  CAS  Google Scholar 

  4. Pasumarthi KB, Field LJ (2002) Cardiomyocyte cell cycle regulation. Circ Res 90:1044–1054. https://doi.org/10.1161/01.res.0000020201.44772.67

    Article  CAS  Google Scholar 

  5. Frati C, Graiani G, Barbani N et al (2019) Reinforced alginate/gelatin sponges functionalized by avidin/biotin-binding strategy: a novel cardiac patch. J Biomater Appl. https://doi.org/10.1177/0885328219886029

    Article  Google Scholar 

  6. Ma YX, Mu JS, Zhang JQ, Bo P (2016) Myocardial patch formation by three-dimensional 3-hydroxybutyrate-co-4-hydroxybutyrate cultured with mouse embryonic stem cells. J Biomater Tissue Eng 6:629–634. https://doi.org/10.1166/jbt.2016.1484

    Article  Google Scholar 

  7. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926. https://doi.org/10.1126/science.8493529

    Article  CAS  Google Scholar 

  8. Norahan MH, Mohadeseh P, Saeb MR, Bakhshi B, Zomorrod MS, Baheiraei N (2019) Electroactive cardiac patch containing reduced graphene oxide with potential antibacterial properties. Mater Sci Eng C Mater Biol Appl 104:109921. https://doi.org/10.1016/j.msec.2019.109921

    Article  CAS  Google Scholar 

  9. Dvir T, Timko BP, Brigham MD et al (2011) Nanowired three-dimensional cardiac patches. Nat Nanotechnol 6:720–725. https://doi.org/10.1038/nnano.2011.160

    Article  CAS  Google Scholar 

  10. Gao L, Gregorich ZR, Zhu WQ et al (2018) Large cardiac muscle patches engineered from human induced-pluripotent stem cell-derived cardiac cells improve recovery from myocardial infarction in swine. Circulation 137:1712–1730. https://doi.org/10.1161/circulationaha.117.030785

    Article  Google Scholar 

  11. Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T (2019) 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci 6:1900344. https://doi.org/10.1002/advs.201900344

    Article  CAS  Google Scholar 

  12. Kameli SM, Khorramirouz R, Eftekharzadeh S et al (2018) Application of tissue-engineered pericardial patch in rat models of myocardial infarction. J Biomed Mater Res Part A 106:2670–2678. https://doi.org/10.1002/jbm.a.36464

    Article  CAS  Google Scholar 

  13. Xing YJ, Shi S, Zhang Y et al (2019) Construction of engineered myocardial tissues in vitro with cardiomyocyte-like cells and a polylactic-co-glycolic acid polymer. Mol Med Rep 20:2403–2409. https://doi.org/10.3892/mmr.2019.10434

    Article  CAS  Google Scholar 

  14. Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17:S467–S479. https://doi.org/10.1007/s00586-008-0745-3

    Article  Google Scholar 

  15. Wei R, Yang J, Gao M et al (2016) Infarcted cardiac microenvironment may hinder cardiac lineage differentiation of human embryonic stem cells. Cell Biol Int 40:1235–1246. https://doi.org/10.1002/cbin.10679

    Article  CAS  Google Scholar 

  16. Ratri AK, Suryawan IGR, Andrianto FA Rantam, Sudiana K (2019) Impact of fibronectin addition for adipose derived mesenchymal stem cells (AMSCs) attachment onto polytetrafluoroethylene (PTFE) cardiac patch. Eur Heart J Suppl 21:F50–F50

    Google Scholar 

  17. Karam J-P, Muscari C, Montero-Menei CN (2012) Combining adult stem cells and polymeric devices for tissue engineering in infarcted myocardium. Biomaterials 33:5683–5695. https://doi.org/10.1016/j.biomaterials.2012.04.028

    Article  CAS  Google Scholar 

  18. Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15:2327–2346. https://doi.org/10.1021/bm500524s

    Article  CAS  Google Scholar 

  19. Pawan KC, Hong Y, Zhang G (2019) Cardiac tissue-derived extracellular matrix scaffolds for myocardial repair: advantages and challenges. Regen Biomater 6:185–199. https://doi.org/10.1093/rb/rbz017

    Article  CAS  Google Scholar 

  20. Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 59:1392–1412. https://doi.org/10.1016/j.addr.2007.04.021

    Article  CAS  Google Scholar 

  21. Froidevaux V, Negrell C, Caillol S, Pascault JP, Boutevin B (2016) Biobased amines: from synthesis to polymers; present and future. Chem Rev 116:14181–14224. https://doi.org/10.1021/acs.chemrev.6b00486

    Article  CAS  Google Scholar 

  22. Teo AJT, Mishra A, Park I, Kim YJ, Park WT, Yoon YJ (2016) Polymeric biomaterials for medical implants and devices. ACS Biomater Sci Eng 2:454–472. https://doi.org/10.1021/acsbiomaterials.5b00429

    Article  CAS  Google Scholar 

  23. Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci Part B Polym Phys 49:832–864. https://doi.org/10.1002/polb.22259

    Article  CAS  Google Scholar 

  24. Vasiljevic J, Colovic M, Jerman I et al (2019) In situ prepared polyamide 6/DOPO-derivative nanocomposite for melt-spinning of flame retardant textile filaments. Polym Degrad Stabil 166:50–59. https://doi.org/10.1016/j.polymdegradstab.2019.05.011

    Article  CAS  Google Scholar 

  25. Garcia JM, Garcia FC, Serna F, de la Pena JL (2010) High-performance aromatic polyamides. Prog Polym Sci 35:623–686. https://doi.org/10.1016/j.progpolymsci.2009.09.002

    Article  CAS  Google Scholar 

  26. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloid Surf B Biointerfaces 79:5–18. https://doi.org/10.1016/j.colsurfb.2010.03.029

    Article  CAS  Google Scholar 

  27. Kim M, Kim G (2015) 3D multi-layered fibrous cellulose structure using an electrohydrodynamic process for tissue engineering. J Colloid Interface Sci 457:180–187. https://doi.org/10.1016/j.jcis.2015.07.007

    Article  CAS  Google Scholar 

  28. Nemoto S, Konishi H, Shimada R et al (2018) In situ tissue regeneration using a warp-knitted fabric in the canine aorta and inferior vena cava. Eur J Cardio Thorac Surg 54:318–327. https://doi.org/10.1093/ejcts/ezy045

    Article  Google Scholar 

  29. Akbari M, Tamayol A, Bagherifard S et al (2016) Textile technologies and tissue engineering: a path toward organ weaving. Adv Healthc Mater 5:751–766. https://doi.org/10.1002/adhm.201500517

    Article  CAS  Google Scholar 

  30. Dahesh MB, Asayesh A, Jeddi AAA (2019) The effect of fabric structure on the bursting characteristics of warp-knitted surgical mesh. J Text Inst. https://doi.org/10.1080/00405000.2019.1693808

    Article  Google Scholar 

  31. Yu S, Ma PB, Cong HL, Jiang GM (2019) Preparation and performances of warp-knitted hernia repair mesh fabricated with chitosan. Fiber Polym 11:595. https://doi.org/10.3390/polym11040595

    Article  CAS  Google Scholar 

  32. Xu P, Zheng DY, Xie ZY, He QL, Yu J (2020) The degradation of ibuprofen in a novel microbial fuel cell with PANi@CNTs/SS bio-anode and CuInS 2 photocatalytic cathode: property, efficiency and mechanism. J Clean Prod 265:121872. https://doi.org/10.1016/j.jclepro.2020.121872

    Article  CAS  Google Scholar 

  33. Wu K, Tao J, Liao Q, Chen SX, Wan WB (2020) Intracellular microtubules as nano-scaffolding template self-assembles with conductive carbon nanotubes for biomedical device. Mater Sci Eng C Mater Biol Appl 113:110971. https://doi.org/10.1016/j.msec.2020.110971

    Article  CAS  Google Scholar 

  34. Ramakrishnan S, Rajakarthihan S (2020) Antimicrobial study on gamma-irradiated polyaniline-aluminum oxide (PANI-Al2O3) nanoparticles. Int Nano Lett. https://doi.org/10.1007/s40089-020-00299-6

    Article  Google Scholar 

  35. Williams L, Prasad AR, Sowmya P, Joseph A (2020) Characterization and temperature dependent DC conductivity study of bio templated nickel oxide nanoparticles (NiO) and their composites using polyaniline (PANI). Mater Chem Phys 242:122469. https://doi.org/10.1016/j.matchemphys.2019.122469

    Article  CAS  Google Scholar 

  36. Guan X, Zheng G, Dai K et al (2016) Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Appl Mater Interfaces 8:14150–14159. https://doi.org/10.1021/acsami.6b02888

    Article  CAS  Google Scholar 

  37. Du Y, Shen SZ, Cai KF, Casey PS (2012) Research progress on polymer-inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37:820–841. https://doi.org/10.1016/j.progpolymsci.2011.11.003

    Article  CAS  Google Scholar 

  38. Green AG, Woodhead AE (1910) CCXLIII.—Aniline-black and allied compounds. Part I. J Chem Soc Trans 97:2388–2403. https://doi.org/10.1039/CT9109702388

    Article  Google Scholar 

  39. Letheby H (1862) On the production of a blue substance by the electrolysis of sulphate of aniline. J Chem Soc 15:161–163. https://doi.org/10.1039/JS8621500161

    Article  Google Scholar 

  40. Tyuftin AA, Kerry JP (2020) Review of surface treatment methods for polyamide films for potential application as smart packaging materials: surface structure, antimicrobial and spectral properties. Food Packag Shelf Life 24:100475. https://doi.org/10.1016/j.fpsl.2020.100475

    Article  Google Scholar 

  41. Armes SP, Miller JF (1988) Optimum reaction conditions for the polymerization of aniline in aqueous solution by ammonium persulphate. Synth Met 22:385–393. https://doi.org/10.1016/0379-6779(88)90109-9

    Article  CAS  Google Scholar 

  42. Guo DD, Wang S, Yin YX et al (2019) Preparation of three-dimensional multilayer ECM-simulated woven/knitted fabric composite scaffolds for potential tissue engineering applications. Text Res J 1:0040517519883958. https://doi.org/10.1177/0040517519883958

    Article  CAS  Google Scholar 

  43. Schwach V, Passier R (2019) Native cardiac environment and its impact on engineering cardiac tissue. Biomater Sci 7:3566–3580. https://doi.org/10.1039/c8bm01348a

    Article  CAS  Google Scholar 

  44. Qazi TH, Rai R, Dippold D et al (2014) Development and characterization of novel electrically conductive PANI-PGS composites for cardiac tissue engineering applications. Acta Biomater 10:2434–2445. https://doi.org/10.1016/j.actbio.2014.02.023

    Article  CAS  Google Scholar 

  45. Walker BW, Lara RP, Yu CH et al (2019) Engineering a naturally-derived adhesive and conductive cardiopatch. Biomaterials 207:89–101. https://doi.org/10.1016/j.biomaterials.2019.03.015

    Article  CAS  Google Scholar 

  46. Bao R, Tan BY, Liang S, Zhang N, Wang W, Liu WG (2017) A pi–pi conjugation-containing soft and conductive injectable polymer hydrogel highly efficiently rebuilds cardiac function after myocardial infarction. Biomaterials 122:63–71. https://doi.org/10.1016/j.biomaterials.2017.01.012

    Article  CAS  Google Scholar 

  47. Atashrouz S, Hatampoor A, Yadegari A, Ghasemi H, Tayebi L, Rasoulianboroujeni M (2019) Mathematical modeling of oxygen transfer in porous scaffolds for stem cell growth: the effects of porosity, cell type, scaffold architecture and cell distribution. Mater Chem Phys 222:377–383. https://doi.org/10.1016/j.matchemphys.2018.10.016

    Article  CAS  Google Scholar 

  48. Lai W-F, Huang E, Lui K-H (2020) Alginate-based complex fibers with the Janus morphology for controlled release of co-delivered drugs. Asian J Pharm Sci. https://doi.org/10.1016/j.ajps.2020.05.003

    Article  Google Scholar 

  49. Valério A, Mancusi E, Ferreira F, Guelli Ulson de Souza SMA, de Souza AAU, González SYG (2019) Biopolymer-hydrophobic drug fibers and the delivery mechanisms for sustained release applications. Eur Polym J 112:400–410. https://doi.org/10.1016/j.eurpolymj.2019.01.016

    Article  CAS  Google Scholar 

  50. Ma Z, Jiang M, Zhu Q et al (2020) A porous hollow fiber sensor for detection of cellular hydrogen peroxide release based on cell-in-lumen configuration. Sens Actuators B Chem 321:128516. https://doi.org/10.1016/j.snb.2020.128516

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the help of knitted fabric structure analysis from Ming Weng and financial support from the Education Department of Zhejiang Province (Y201738858), Natural Science Foundation of Zhejiang Province (LY20E030004), Zhejiang Sci-Tech University Scientific Research Project (2019Q025).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Jiangyong Feng.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Mo, J. & Feng, J. Conductive fabric patch with controllable porous structure and elastic properties for tissue engineering applications. J Mater Sci 55, 17120–17133 (2020). https://doi.org/10.1007/s10853-020-05219-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05219-9

Navigation