Skip to main content

Advertisement

Log in

Lead-free cesium antimony halide perovskites: halide alloying, surfaces, interfaces, and clusters

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lead-free Cs3Sb2X9 (X = Cl, Br, I) perovskites have emerged as eco-friendly alternatives to traditional photovoltaic and optoelectronic materials. This research uses DFT for a comprehensive analysis, bridging knowledge gaps about halide alloying, structural changes, and surface properties on these materials. Analysis of enthalpy of formation and miscibility gap temperature pointed to which solid solutions of \({{\text{Cs}}}_{3}{{\text{Sb}}}_{2}{{\text{X}}}_{9-{\text{n}}}{\mathrm{X^{\prime}}}_{{\text{n}}}\) are more likely to be experimentally obtained. CsX-terminated low-index (1000) and (0001) surfaces present distinct electronic properties, underscoring the importance of surface control during materials preparation in fine-tuning for photovoltaic and photocatalytic applications. The properties of Cs3Sb2X9 nanocrystals were estimated through cluster simulations, shedding light on the role of geometry as a possible contributor to the high photoluminescence observed in previous experimental reports on Cs3Sb2Br9 nanocrystals. The study on halide perovskite interfaces suggested Cs3Sb2Br9|Cs3Sb2I9 for photovoltaics and Cs3Sb2Br9|Cs3Sb2Cl9 for photoluminescence, based on band alignment and electronic structure. Our findings not only advance the fundamental understanding of lead-free Cs3Sb2X9 perovskites but also provide practical guidance for experimentalists in designing cesium antimony halide perovskites with tailored optical and electronic properties. This contributing supports the development of sustainable energy solutions for optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

All data can be obtained from the corresponding authors upon reasonable request.

Code availability

Not applicable.

References

  1. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051

    Article  CAS  Google Scholar 

  2. ‘Interactive Best Research-Cell Efficiency Chart’. https://www.nrel.gov/pv/interactive-cell-efficiency.html. Accessed Apr. 27, 2023.

  3. Min H et al (2021) Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881):444–450. https://doi.org/10.1038/s41586-021-03964-8

    Article  CAS  Google Scholar 

  4. Li X et al (2021) Lead-free halide perovskites for light emission: recent advances and perspectives. Adv Sci 8(4):1–33. https://doi.org/10.1002/advs.202003334

    Article  CAS  Google Scholar 

  5. Dong H, Ran C, Gao W, Li M, Xia Y, Huang W (2023) Metal Halide Perovskite for next-generation optoelectronics: progresses and prospects. eLight 3(1):3. https://doi.org/10.1186/s43593-022-00033-z

    Article  Google Scholar 

  6. Mei X, Jia D, Chen J, Zheng S, Zhang X (2022) Approaching high-performance light-emitting devices upon perovskite quantum dots: Advances and prospects. Nano Today 43:101449. https://doi.org/10.1016/j.nantod.2022.101449

    Article  CAS  Google Scholar 

  7. Shirayama M et al (2016) Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3. Phys Rev Appl 5(1):014012. https://doi.org/10.1103/PhysRevApplied.5.014012

    Article  CAS  Google Scholar 

  8. Zhang M et al (2018) Mechanistic insights into alginate fouling caused by calcium ions based on terahertz time-domain spectra analyses and DFT calculations. Water Res 129:337–346. https://doi.org/10.1016/j.watres.2017.11.034

    Article  CAS  Google Scholar 

  9. Zou H et al (2022) Molecular-level insights into the mitigation of magnesium-natural organic matter induced ultrafiltration membrane fouling by high-dose calcium based on DFT calculation. Chemosphere 309:136734. https://doi.org/10.1016/j.chemosphere.2022.136734

    Article  CAS  Google Scholar 

  10. Jin H et al (2020) It’s a trap! On the nature of localised states and charge trapping in lead halide perovskites. Mater Horiz 7(2):397–410. https://doi.org/10.1039/C9MH00500E

    Article  CAS  Google Scholar 

  11. Bi E, Song Z, Li C, Wu Z, Yan Y (2021) Mitigating ion migration in perovskite solar cells. Trends Chem 3(7):575–588. https://doi.org/10.1016/j.trechm.2021.04.004

    Article  CAS  Google Scholar 

  12. Zhang S-F, Chen X-K, Ren A-M, Li H, Bredas J-L (2019) Impact of organic spacers on the carrier dynamics in 2D hybrid lead-halide perovskites. ACS Energy Lett 4(1):17–25. https://doi.org/10.1021/acsenergylett.8b01888

    Article  CAS  Google Scholar 

  13. Liu X et al (2020) Full defects passivation enables 21% efficiency perovskite solar cells operating in air. Adv Energy Mater 10(38):2001958. https://doi.org/10.1002/aenm.202001958

    Article  CAS  Google Scholar 

  14. Fu L, Li H, Wang L, Yin R, Li B, Yin L (2020) Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy Environ Sci 13(11):4017–4056. https://doi.org/10.1039/D0EE01767A

    Article  CAS  Google Scholar 

  15. Liu J et al (2020) Effects of compositional engineering and surface passivation on the properties of halide perovskites: a theoretical understanding. Phys Chem Chem Phys 22(35):19718–19724. https://doi.org/10.1039/D0CP02896G

    Article  CAS  Google Scholar 

  16. Xu F, Zhang T, Li G, Zhao Y (2017) Mixed cation hybrid lead halide perovskites with enhanced performance and stability. J Mater Chem A 5(23):11450–11461. https://doi.org/10.1039/C7TA00042A

    Article  CAS  Google Scholar 

  17. Tai Q, Tang K-C, Yan F (2019) Recent progress of inorganic perovskite solar cells. Energy Environ Sci 12(8):2375–2405. https://doi.org/10.1039/C9EE01479A

    Article  CAS  Google Scholar 

  18. Wang M et al (2021) Lead-free perovskite materials for solar cells. Nano-Micro Lett 13(1):62. https://doi.org/10.1007/s40820-020-00578-z

    Article  CAS  Google Scholar 

  19. Li J et al (2020) Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nat Commun 11(1):310. https://doi.org/10.1038/s41467-019-13910-y

    Article  CAS  Google Scholar 

  20. Schwenzer JA et al (2021) Thermal stability and cation composition of hybrid organic-inorganic perovskites. ACS Appl Mater Interfaces 13(13):15292–15304. https://doi.org/10.1021/acsami.1c01547

    Article  CAS  Google Scholar 

  21. Li N, Niu X, Chen Q, Zhou H (2020) Towards commercialization: the operational stability of perovskite solar cells. Chem Soc Rev 49(22):8235–8286. https://doi.org/10.1039/D0CS00573H

    Article  CAS  Google Scholar 

  22. Lee DE, Kim SY, Jang HW (2020) Lead-free all-inorganic halide perovskite quantum dots: review and outlook. J Korean Ceram Soc 57(5):455–479. https://doi.org/10.1007/s43207-020-00058-5

    Article  CAS  Google Scholar 

  23. Bello OO, Emetere ME (2022) Progress and limitation of lead-free inorganic perovskites for solar cell application. Sol Energy 243:370–380. https://doi.org/10.1016/J.SOLENER.2022.08.018

    Article  CAS  Google Scholar 

  24. Jin Z, Zhang Z, Xiu J, Song H, Gatti T, He Z (2020) A critical review on bismuth and antimony halide based perovskites and their derivatives for photovoltaic applications: recent advances and challenges. J Mater Chem A 8(32):16166–16188. https://doi.org/10.1039/D0TA05433J

    Article  CAS  Google Scholar 

  25. Babayigit A et al (2016) Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio. Sci Rep 6(1):18721. https://doi.org/10.1038/srep18721

    Article  CAS  Google Scholar 

  26. Xiao Z, Du K-Z, Meng W, Wang J, Mitzi DB, Yan Y (2017) Intrinsic instability of Cs 2 In(I)M(III)X 6 (M = Bi, Sb; X = Halogen) double perovskites: a combined density functional theory and experimental study. J Am Chem Soc 139(17):6054–6057. https://doi.org/10.1021/jacs.7b02227

    Article  CAS  Google Scholar 

  27. Park B-W, Philippe B, Zhang X, Rensmo H, Boschloo G, Johansson EMJ (2015) Bismuth Based hybrid perovskites A3Bi2I9 (A: Methylammonium or cesium) for solar cell application. Adv Mater 27(43):6806–6813. https://doi.org/10.1002/adma.201501978

    Article  CAS  Google Scholar 

  28. Chonamada TD, Dey AB, Santra PK (2020) Degradation studies of Cs3Sb2I9: a lead-free perovskite. ACS Appl Energy Mater 3(1):47–55. https://doi.org/10.1021/acsaem.9b01899

    Article  CAS  Google Scholar 

  29. Tan Z et al (2019) Inorganic antimony halide hybrids with broad yellow emissions. Sci Bull 64(13):904–909. https://doi.org/10.1016/j.scib.2019.05.016

    Article  CAS  Google Scholar 

  30. Thomas AS (2022) A review on antimony-based perovskite solar cells. Equilibrium 6(2):75. https://doi.org/10.20961/equilibrium.v6i2.64322

    Article  Google Scholar 

  31. Singh A et al (2021) Panchromatic heterojunction solar cells for Pb-free all-inorganic antimony based perovskite. Chem Eng J 419:129424. https://doi.org/10.1016/j.cej.2021.129424

    Article  CAS  Google Scholar 

  32. Wang A, Zuo C, Niu X, Ding L, Ding J, Hao F (2023) Recent promise of lead-free halide perovskites in optoelectronic applications. Chem Eng J 451:138926. https://doi.org/10.1016/j.cej.2022.138926

    Article  CAS  Google Scholar 

  33. Ma Z et al (2019) Electrically-driven violet light-emitting devices based on highly stable lead-free perovskite Cs3Sb2Br9 quantum dots. ACS Energy Lett 2020:394. https://doi.org/10.1021/acsenergylett.9b02096

    Article  CAS  Google Scholar 

  34. Lu C et al (2020) Synthesis of lead-free Cs3Sb2Br9 perovskite alternative nanocrystals with enhanced photocatalytic CO2 reduction activity. Nanoscale 12(5):2987–2991. https://doi.org/10.1039/C9NR07722G

    Article  CAS  Google Scholar 

  35. Wang Y, Zhou Q, Zhu Y, Xu D (2021) High efficiency reduction of CO2 to CO and CH4 via photothermal synergistic catalysis of lead-free perovskite Cs3Sb2I9. Appl Catal B 294:120236. https://doi.org/10.1016/j.apcatb.2021.120236

    Article  CAS  Google Scholar 

  36. Zheng Z et al (2019) Submillimeter and lead-free Cs 3 Sb 2 Br 9 perovskite nanoflakes: inverse temperature crystallization growth and application for ultrasensitive photodetectors. Nanoscale Horiz 4(6):1372–1379. https://doi.org/10.1039/C9NH00426B

    Article  CAS  Google Scholar 

  37. Liu P et al (2020) Lead-free Cs3Sb2Br9 single crystals for high performance narrowband photodetector, 2001072:1–9. https://doi.org/10.1002/adom.202001072.

  38. Luo F et al (2023) High-efficiency resistive switch and artificial synaptic simulation in antimony-based perovskite devices. Sci China Technol Sci. https://doi.org/10.1007/s11431-022-2309-1

    Article  Google Scholar 

  39. Malavasi L et al (2023) Band gap tuning through cation and halide alloying in mechanochemical synthesized Cs3(Sb1-xBix)2Br9 and Cs3Sb2(I1-xBrx)9 Solid Solutions. Chemistry, preprint. https://doi.org/10.26434/chemrxiv-2023-62vzx.

  40. Wu D et al (2022) Synthesis of stable lead-free Cs3Sb2(BrxI1–x) 9 (0 ≤ x ≤ 1) perovskite nanoplatelets and their application in CO2 photocatalytic reduction. Small 18(12):2106001. https://doi.org/10.1002/smll.202106001

    Article  CAS  Google Scholar 

  41. Jiang F et al (2018) Chlorine-incorporation-induced formation of the layered phase for antimony-based lead-free perovskite solar cells. J Am Chem Soc 140(3):1019–1027. https://doi.org/10.1021/jacs.7b10739

    Article  CAS  Google Scholar 

  42. Paul G, Pal AJ, Larson BW (2020) Structure, morphology, and photovoltaic implications of halide alloying in lead-free Cs3Sb2ClxI9-x 2D-layered perovskites. Solar RRL 2000422:1–8. https://doi.org/10.1002/solr.202000422

    Article  CAS  Google Scholar 

  43. Li J, Lv Y, Han H, Xu J, Yao J (2022) Two-dimensional Cs3Sb2I9-xClx film with (201) preferred orientation for efficient perovskite solar cells. Materials 15(8):2883. https://doi.org/10.3390/ma15082883

    Article  CAS  Google Scholar 

  44. Pradhan A, Jena MK, Samal SL (2022) Understanding of the band gap transition in Cs3Sb2Cl9–xBrx: anion site preference-induced structural distortion. ACS Appl Energy Mater 5(6):6952–6961. https://doi.org/10.1021/acsaem.2c00591

    Article  CAS  Google Scholar 

  45. Long Y, Zhang H, Cheng X (2022) Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B = Sb, Bi; X = Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3X9(B, B′ = Sb, Bi; X = Cl, Br, I). Chin Phys B 31(2):027102. https://doi.org/10.1088/1674-1056/ac2e5f

    Article  Google Scholar 

  46. Li X et al (2016) CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv Func Mater 26(15):2435–2445. https://doi.org/10.1002/adfm.201600109

    Article  CAS  Google Scholar 

  47. Zhang G et al (2020) CsPbBr3@CsPbBr3-xClx perovskite core-shell heterojunction nanowires via a postsynthetic method with HCl gas. ACS Omega 5(20):11578–11584. https://doi.org/10.1021/ACSOMEGA.0C00824

    Article  CAS  Google Scholar 

  48. Arakcheeva AV, Novikova MS, Zaitsev AI, Lubman GU, Academy R, Branch S (1999) Perovskite-like modification of Cs3Sb2I9 as a member of the 0D family A3B2X9. J Struct Chem 40(4):572–579

    Article  CAS  Google Scholar 

  49. Kun SV, Lazarev VB, Peresh EY, Kun AV, Voroshilov YV (1993) Phase equilibria in RbBr-Sb(Bi)Br3 systems and crystal structure of compounds of A31B25C97 (A1 - Rb, Cs; B5 -Sb, Bi; C7 - Br, I) type. Neorg Mater 29(3):410–413

    CAS  Google Scholar 

  50. Kihara K, Sudo T (1974) The crystal structures of beta-Cs3Sb2Cl9 and Cs3Bi2Cl9. Acta Cryst B30:1088–1093. https://doi.org/10.1107/S0365110X65003250

    Article  Google Scholar 

  51. Liu YL, Yang CL, Wang MS, Ma XG, Yi YG (2019) Theoretical insight into the optoelectronic properties of lead-free perovskite derivatives of Cs3Sb2X9 (X = Cl, Br, I). J Mater Sci 54(6):4732–4741. https://doi.org/10.1007/s10853-018-3162-y

    Article  CAS  Google Scholar 

  52. Giannozzi P et al (2009) ‘QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21(39):395502. https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  53. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  54. van Setten MJ et al (2018) The PSEUDODOJO: Training and grading a 85 element optimized norm-conserving pseudopotential table. Comput Phys Commun 226:39–54. https://doi.org/10.1016/j.cpc.2018.01.012

    Article  CAS  Google Scholar 

  55. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Article  Google Scholar 

  56. Billeter SR, Curioni A, Andreoni W (2003) Efficient linear scaling geometry optimization and transition-state search for direct wavefunction optimization schemes in density functional theory using a plane-wave basis. Comput Mater Sci 27(4):437–445. https://doi.org/10.1016/S0927-0256(03)00043-0

    Article  Google Scholar 

  57. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118(18):8207–8215. https://doi.org/10.1063/1.1564060

    Article  CAS  Google Scholar 

  58. Yang Y, Gao F, Gao S, Wei SH (2018) Origin of the stability of two-dimensional perovskites: a first-principles study. J Mater Chem A 6(30):14949–14955. https://doi.org/10.1039/c8ta01496e

    Article  CAS  Google Scholar 

  59. Nazari S, Azar YT, Doroudi A (2020) Surface-termination-dependent stability and band alignment in CsPbX3 (X = I, Br, Cl) perovskites: a first-principle study. Mater Today Commun 24:100961. https://doi.org/10.1016/j.mtcomm.2020.100961

    Article  CAS  Google Scholar 

  60. Di Liberto G, Fatale O, Pacchioni G (2021) Role of surface termination and quantum size in α-CsPbX3 (X = Cl, Br, I) 2D nanostructures for solar light harvesting. Phys Chem Chem Phys 23(4):3031–3040. https://doi.org/10.1039/D0CP06245F

    Article  Google Scholar 

  61. Weston L, Tailor H, Krishnaswamy K, Bjaalie L, Van de Walle CG (2018) Accurate and efficient band-offset calculations from density functional theory. Comput Mater Sci 151:174–180. https://doi.org/10.1016/j.commatsci.2018.05.002

    Article  CAS  Google Scholar 

  62. Chatzigoulas A, Karathanou K, Dellis D, Cournia Z (2018) NanoCrystal: a web-based crystallographic tool for the construction of nanoparticles based on their crystal habit. J Chem Inf Model 58(12):2380–2386. https://doi.org/10.1021/acs.jcim.8b00269

    Article  CAS  Google Scholar 

  63. Zhang J et al (2017) High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano 11(9):9294–9302. https://doi.org/10.1021/acsnano.7b04683

    Article  CAS  Google Scholar 

  64. Yamada K, Sera H, Sawada S, Tada H, Okuda T, Tanaka H (1997) Reconstructive phase transformation and kinetics of Cs3Sb2I9 by means of rietveld analysis of x-ray diffraction and 127 I NQR. 325(134):319–325

  65. Saparov B et al (2015) Thin-film preparation and characterization of Cs3Sb2I9: a lead-free layered perovskite semiconductor. Chem Mater 27(16):5622–5632. https://doi.org/10.1021/acs.chemmater.5b01989

    Article  CAS  Google Scholar 

  66. Blasse G (1983) The luminescence of Cs3Bi2Cl9 and Cs3Sb2Cl9. 233:222–233

  67. Brandt RE, Stevanović V, Ginley DS, Buonassisi T (2015) Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun 5(2):265–275. https://doi.org/10.1557/mrc.2015.26

    Article  CAS  Google Scholar 

  68. Peng Y et al (2020) Enhanced photoconversion efficiency in cesium-antimony-halide perovskite derivatives by tuning crystallographic dimensionality. Appl Mater Today 19:100637

    Article  Google Scholar 

  69. Shu Q et al (2013) Cu2Zn(Sn, Ge)Se4 and Cu2Zn(Sn, Si)Se4 alloys as photovoltaic materials: structural and electronic properties. Phys Rev B Condens Matter Mater Phys 87(11):1–6. https://doi.org/10.1103/PhysRevB.87.115208

    Article  CAS  Google Scholar 

  70. Yin WJ, Yan Y, Wei SH (2014) Anomalous alloy properties in mixed halide perovskites. J Phys Chem Lett 5(21):3625–3631. https://doi.org/10.1021/jz501896w

    Article  CAS  Google Scholar 

  71. Pramchu S, Jaroenjittichai AP, Laosiritaworn Y (2019) Effects of bromine substitution for iodine on structural stability and phase transition of CsPbI3. Appl Surf Sci 496:143593. https://doi.org/10.1016/j.apsusc.2019.143593

    Article  CAS  Google Scholar 

  72. Zhao ZY, Liu QL, Dai WW (2016) Structural, electronic, and optical properties of BiOX1-xYx (X, Y = F, Cl, Br, and I) solid solutions from DFT calculations. Sci Rep 6:1–12. https://doi.org/10.1038/srep31449

    Article  CAS  Google Scholar 

  73. Singh A, Boopathi KM, Mohapatra A, Chen YF, Li G, Chu CW (2018) Photovoltaic performance of vapor-assisted solution-processed layer polymorph of Cs3Sb2I9. ACS Appl Mater Interfaces 10(3):2566–2573. https://doi.org/10.1021/acsami.7b16349

    Article  CAS  Google Scholar 

  74. Lee J et al (2023) Mixed halide formation in lead-free antimony-based halide perovskite for boosted CO2 photoreduction: beyond band gap tuning. Adv Funct Mater. https://doi.org/10.1002/adfm.202303430

    Article  Google Scholar 

  75. Chen G et al (2020) Lead-free halide perovskite Cs3Bi2xSb2-2xI9 (x ≈ 0.3) possessing the photocatalytic activity for hydrogen evolution comparable to that of (CH3NH3)PbI3. Adv Mater 32(39):1–7. https://doi.org/10.1002/adma.202001344

    Article  CAS  Google Scholar 

  76. Sachchidanand, Garg V, Kumar A, Sharma P (2021) Numerical simulation of novel lead-free Cs3Sb2Br9 absorber-based highly efficient perovskite solar cell. Opt Mater 122:111715. https://doi.org/10.1016/j.optmat.2021.111715

    Article  CAS  Google Scholar 

  77. Zhang P et al (2018) Ultrafast interfacial charge transfer of cesium lead halide perovskite films CsPbX3 (X = Cl, Br, I) with different halogen mixing. J Phys Chem C 122(48):27148–27155. https://doi.org/10.1021/acs.jpcc.8b07237

    Article  CAS  Google Scholar 

  78. Park YR et al (2021) Luminance efficiency roll-off mechanism in CsPbBr3-xClx mixed-halide perovskite quantum dot blue light-emitting diodes. J Mater Chem C 9(10):3608–3619. https://doi.org/10.1039/d0tc05514j

    Article  CAS  Google Scholar 

  79. Kleinman L (1981) Comment on the average potential of a Wigner solid. Phys Rev B 24(12):7412

    Article  CAS  Google Scholar 

  80. Van De Walle CG, Martin RM (1987) Theoretical study of band offsets at semiconductor interfaces. Phys Rev B 35(15):8154–8165. https://doi.org/10.1103/PhysRevB.35.8154

    Article  Google Scholar 

  81. Hinuma Y, Grüneis A, Kresse G, Oba F (2014) Band alignment of semiconductors from density-functional theory and many-body perturbation theory. Phys Rev B 90(15):155405

    Article  Google Scholar 

  82. Koliogiorgos A, Garoufalis CS, Galanakis I, Baskoutas S (2018) Electronic and optical properties of ultrasmall ABX3 (A = Cs, CH3NH3/B = Ge, Pb, Sn, Ca, Sr/X = Cl, Br, I) perovskite quantum dots. ACS Omega 3(12):18917–18924. https://doi.org/10.1021/acsomega.8b02525

    Article  CAS  Google Scholar 

  83. Dvorak M, Wei SH, Wu Z (2013) Origin of the variation of exciton binding energy in semiconductors. Phys Rev Lett 110(1):1–5. https://doi.org/10.1103/PhysRevLett.110.016402

    Article  CAS  Google Scholar 

  84. Vaugier L, Jiang H, Biermann S (2012) Hubbard U and Hund exchange J in transition metal oxides: screening versus localization trends from constrained random phase approximation. Phys Rev B Condens Matter Mater Phys 86(16):1–21. https://doi.org/10.1103/PhysRevB.86.165105

    Article  CAS  Google Scholar 

  85. Varrassi L, Liu P, Yavas ZE, Bokdam M, Kresse G, Franchini C (2021) Optical and excitonic properties of transition metal oxide perovskites by the Bethe-Salpeter equation. Phys Rev Mater 5(7):1–17. https://doi.org/10.1103/PhysRevMaterials.5.074601

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian funding agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). We gratefully acknowledge access to various computational resources: Centro Nacional de Supercomputação (CESUP, UFRGS), Laboratório Nacional de Computação Científica (LNCC) and Cloud Credits for Research (AWS/CNPq and CNPq process 407810/2022-6). CVS would like to acknowledge support from Natural Sciences and Engineering Research Council of Canada (NSERC), and the University of Toronto.

Author information

Authors and Affiliations

Authors

Contributions

RAG: conceptualization, methodology, software, data curation, writing—original draft, visualization, investigation, writing review & editing. MLM and CVS: conceptualization, methodology, visualization, investigation, writing—review & editing. MJLS: conceptualization, methodology, visualization, investigation, writing—review & editing, funding acquisition.

Corresponding authors

Correspondence to Rogério Almeida Gouvêa or Marcos José Leite Santos.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Ethical approval was not required for this research.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3168 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouvêa, R.A., Moreira, M.L., Singh, C.V. et al. Lead-free cesium antimony halide perovskites: halide alloying, surfaces, interfaces, and clusters. J Mater Sci 59, 142–160 (2024). https://doi.org/10.1007/s10853-023-09228-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09228-2

Navigation