Skip to main content
Log in

Observation of spin glass behavior in spinel compound CoGa2O4

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recently, it has been reported that doped Ga ferrite has potential application value in spintronics devices. Therefore, experimental study of the magnetic properties and potential physical mechanisms is essential for the realization of related spin-tronics devices. In this work, the synthesis process, crystal structure, and physical properties of spinel compound CoGa2O4 have been investigated. The competition between antiferromagnetism (AFM) and ferromagnetism (FM) is considered to be the crucial elements for resulting in spin glass (SG) behavior due to magnetic frustration. The observed SG behavior is determined by the temperature dependence of magnetization M(T) curves under the ZFC (zero-field-cooled) and FCC (field-cooled) processes, where the intense irreversibility divergence is formed. Moreover, the corresponding fitting parameters (the freezing temperature T0 = 9.32 K, the flipping time τ0 = 4.49 × 10–10 s, and the dynamical exponent  = 4.46) strongly indicate the existence of the SG behavior. Meanwhile, as another specific characteristic for SG, in our present work, frequency (f) and magnetic field (H) have a strong influence on the peaks of AC susceptibility. From where, with the increase of f and H, the freezing temperature follows a corresponding peak shift. All the above phenomena and relevant analyses of magnetic frustration behavior confirm the typical SG behavior in CoGa2O4 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. W. Yang, X.C. Kan, X.S. Liu, Z.Z. Wang, Z.H. Chen, Z. Wang, R.W. Zhu, M. Shezad, Spin glass behavior in Zn0.8-xNixCu0.2Fe2O4 (0 ≤ x ≤ 0.28) ferrites. Ceram. Int. 45, 23328–23332 (2019)

    Article  CAS  Google Scholar 

  2. K.F. Wang, Y. Wang, L.F. Wang, S. Dong, Cluster-glass state in manganites induced by A-site cation-size disorder. Phys. Rev. B 73, 134411 (2006)

    Article  Google Scholar 

  3. S. Mahana, D. Topwal, Complex spin glass behavior in Ga2-xFexO3. Appl. Phys. Lett. 110, 102907 (2017)

    Article  Google Scholar 

  4. D.L. Stein, A model of protein conformational substates. Proc. Natl. Acad. Sci. USA 82, 3670 (1985)

    Article  CAS  Google Scholar 

  5. A.G. Hudetz, C.J. Humphries, J.R. Binder, Spin-glass model predicts metastable brain states that diminish in anesthesia. Front. Syst. Neurosci. 8, 234 (2014)

    Article  Google Scholar 

  6. B.S. Wang, P. Tong, Y.P. Sun, X.B. Zhu, Z.R. Yang, W.H. Song, J.M. Dai, Observation of spin-glass behavior in antiperovskite compound SnCFe3. Appl. Phys. Lett. 97, 042508 (2010)

    Article  Google Scholar 

  7. J.C. Lin, P. Tong, D.P. Cui, C. Yang, S. Lin, W.J. Lu, B.S. Wang, B.C. Zhao, Y.P. Sun, Exchange bias induced after zero-field cooling in antiperovskite compounds Ga1–xNMn3+x. Phys. Status Solidi B 252, 582 (2015)

    Article  CAS  Google Scholar 

  8. H.Y. Playford, A.C. Hannon, M.G. Tucker, M.R. Lees, R.I. Walton, Total neutron scattering investigation of the structure of a cobalt gallium oxide spinel prepared by solvothermal oxidation of gallium metal. J. Phys.: Condens. Matter 25, 454212 (2013)

    Google Scholar 

  9. Z.H. He, J.F. Gao, L.B. Kong, Polycationic bimetallic oxide CoGa2O4 with spinel structure: dominated pseudocapacitance, dual-energy storage mechanism, and Li-ion hybrid supercapacitor application. Ionics 26, 1379–1388 (2020)

    Article  CAS  Google Scholar 

  10. L. Personnaz, I. Guyon, G. Dreyfus, Information storage and retrieval in spin-glass like neural networks. J. Phys. Lett. 46, 359 (1985)

    Article  Google Scholar 

  11. L. Ding, C. Wang, Y. Sun, C.V. Colin, L.H. Chu, Spin-glass-like behavior and negative thermal expansion in antiperovskite Mn3Ni1-xCuxN compounds. J. Appl. Phys. 117, 213915 (2015)

    Article  Google Scholar 

  12. I. Mindru, D. Gingasu, G. Marinescu, L. Patron, L. Diamandescu, M. Feder, J.M. Calderon-Moreno, N. Stanica, Tartarate precursors to CoxZn1−xGa2O4 spinel oxides. Mater. Chem. Phys. 134, 478–483 (2012)

    Article  CAS  Google Scholar 

  13. H. Chen, G.D. Li, M.H. Fan, Q. Gao, J.B. Hu, S. Ao, C.D. Wei, X.X. Zou, Electrospinning preparation of mesoporous spinel gallate (MGa2O4; M=Ni, Cu, Co) nanofibers and their M(II) ions-dependent gas sensing properties. Sens. Actuator B 240, 689–696 (2017)

    Article  CAS  Google Scholar 

  14. H. Li, C.X. Su, C.Q. Wang, Z. Lü, Electrochemical performance evaluation of FeCo2O4 spinel composite cathode for solid oxide fuel cells. J. Alloys Compd. 829, 154493 (2020)

    Article  CAS  Google Scholar 

  15. M.M. Can, T. Karaman, S. Shawuti, Optical and structural modification of boron-doped CoGa2O4 particles. Ceram. Int. 46, 13025–13032 (2020)

    Article  CAS  Google Scholar 

  16. X.Y. Hu, F.G. Li, D.M. Shi, Y. Xie, Z. Li, F.C. Yin, A design of self-generated Ti-Al-Si gradient coatings on Ti-6Al-4V alloy based on silicon concentration gradient. J. Alloys Compd. 830, 154670 (2020)

    Article  CAS  Google Scholar 

  17. A.H. Nassajpour-Esfahani, R. Emadi, A. Alhaji, A. Bahrami, M.R. Haftbaradaran-Esfahani, Towards high strength MgAl2O4/Si3N4 transparent nanocomposite, using spark plasma sintering. J. Alloys Compd. 830, 154588 (2020)

    Article  CAS  Google Scholar 

  18. Y.L. Zhai, Y.Z. Dai, J. Guo, L.L. Zhou, M.X. Chen, H.T. Yang, L.P. Peng, Novel biochar@CoFe2O4/Ag3PO4 photocatalysts for highly efficient degradation of bisphenol a under visible-light irradiation. J. Colloid Interface Sci. 560, 111–121 (2020)

    Article  CAS  Google Scholar 

  19. K. Zhang, D.D. Sun, C. Ma, G.L. Wang, X.L. Dong, X.X. Zhang, Activation of peroxymonosulfate by CoFe2O4 loaded on metal-organic framework for the degradation of organic dye. Chemosphere 241, 125021 (2020)

    Article  CAS  Google Scholar 

  20. J.Y. Wang, Z. Yang, M.L. Zhang, Y.Q. Gong, Vertically stacked bilayer heterostructure CoFe2O4@Ni3S2 on a 3D nickel foam as a high-performance electrocatalyst for the oxygen evolution reaction. New J. Chem. 44, 1455–1462 (2020)

    Article  CAS  Google Scholar 

  21. D. Liu, X.P. Mo, K.X. Li, Y. Liu, J.J. Wang, T.T. Yang, The performance of spinel bulk-like oxygen-deficient CoGa2O4 as an air-cathode catalyst in microbial fuel cell. J. Power Sources 359, 355–362 (2017)

    Article  CAS  Google Scholar 

  22. M. Kashif, M.H. Yuan, M. Abduallah, Y.X. Su, Fully selective catalytic oxidation of NO to NO2 over most active Ga-PCH catalyst. J. Environ. Chem. Eng. 8, 103524 (2020)

    Article  CAS  Google Scholar 

  23. H.X. Zhang, L.C.Z. Neng, Y. Liu, Y.J. Gao, X.W. Cheng, Efficient removal of organic pollutant by activation of persulfate with magnetic Co3O4/CoFe2O4 composite. Arab. J. Chem. 13, 5332–5344 (2020)

    Article  CAS  Google Scholar 

  24. Y.B. Zhang, J. Wang, Z.J. Su, M.M. Lu, S. Liu, F.Q. Gu, J.C. Liu, Y.K. Tu, T. Jiang, Spinel MnFe2O4 nanoparticles (MFO-NPs) for CO2 cyclic decomposition prepared from ferromanganese ores. Ceram. Int. 46, 14206–14216 (2020)

    Article  CAS  Google Scholar 

  25. X.C. Kan, B.S. Wang, L. Zhang, L. Zu, S. Lin, J.C. Lin, P. Tong, W.H. Song, Y.P. Sun, Critical behavior in tetragonal antiperovskite GeNFe3 with a frustrated ferromagnetic state. Phys. Chem. Chem. Phys. 19, 13703–13709 (2017)

    Article  CAS  Google Scholar 

  26. S. Karmakar, S. Taran, E. Bose, B.K. Chaudhuri, Evidence of intrinsic exchange bias and its origin in spin-glass-like disordered L0.5Sr0.5MnO3 manganites (L = Y, Y0.5Sm0.5, and Y0.5La0.5). Phys. Rev. B 77, 144409 (2008)

    Article  Google Scholar 

  27. A. Malinowski, V.L. Bezusyy, R. Minikayev, P. Dziawa, Y. Syryanyy, M. Sawicki, Spin-glass behavior in Ni-doped La1.85Sr0.15CuO4. Phys. Rev. B 84, 024409 (2011)

    Article  Google Scholar 

  28. C.C. Liu, X.Y.N. Tao, X.C. Kan, X.S. Liu, C.H. Zhang, S.J. Feng, Y.J. Yang, Q.R. Lv, J.Y. Hu, M. Shezad, Spin-glass behavior in Co-based antiperovskite compound SnNCo3. Appl. Phys. Lett. 116, 052401 (2020)

    Article  CAS  Google Scholar 

  29. S. Lin, D.F. Shao, J.C. Lin, L. Zu, X.C. Kan, B.S. Wang, Y.N. Huang, W.H. Song, W.J. Lu, P. Tong, Y.P. Sun, Spin-glass behavior and zero-field-cooled exchange bias in a Cr-based antiperovskite compound PdNCr3. J. Mater. Chem. C 3, 5683–5696 (2015)

    Article  CAS  Google Scholar 

  30. X.H. Zhang, Q. Yuan, J.C. Han, J.G. Zhao, J.K. Jian, Z.H. Zhang, B. Song, Observation of spin-glass behavior in antiperovskite compound Mn3Cu0.7Ga0.3N. Appl. Phys. Lett. 103, 022405 (2013)

    Article  Google Scholar 

  31. A. Aharoni, E.P. Wohlfarth, The isothermal remanence (IRM) and the thermoremanence (TRM) of spin glasses. J. Appl. Phys. 55, 1664 (1984)

    Article  CAS  Google Scholar 

  32. B. Song, J.K. Jian, H.Q. Bao, M. Lei, H. Li, G. Wang, Y.P. Xu, X.L. Chen, Observation of spin-glass behavior in antiperovskite Mn3GaN. Appl. Phys. Lett. 92, 192511 (2008)

    Article  Google Scholar 

  33. M.G. Brik, First-principles calculations of electronic, optical and elastic properties of ZnAl2S4 and ZnGa2O4. J. Phys. Chem. Solids 71, 1435–1442 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by the National Natural Science Foundation of China (Grant Nos. U19A2093 and 51802002) and the open fund for Discipline Construction, Institute of Physical Science and Information Technology, Anhui University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongqing Ma or Xucai Kan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Ma, Y., Kan, X. et al. Observation of spin glass behavior in spinel compound CoGa2O4. J Mater Sci: Mater Electron 32, 14592–14600 (2021). https://doi.org/10.1007/s10854-021-06018-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06018-x

Navigation