Skip to main content
Log in

Coupling thermodynamic simulation and thermal analysis to select Sn–Bi alloys for semisolid additive manufacturing

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

One of the most used additive manufacturing (AM) techniques is fused filament fabrication (FFF), which is primarily used for processing polymers. An interesting strategy to utilize this technique in metal processing is to adapt semisolid processing principles. Herein, low-melting Sn–Bi alloys were investigated to identify the ideal composition and processing conditions for semisolid AM using FFF. For this purpose, thermodynamic simulations were used to characterize the evolution of liquid fractions with temperature, and the results led to the selection of Sn-38Bi alloy (mass/%) for experimental validation. This composition was prepared by casting in an inert environment, followed by thermal analysis. The differential scanning calorimetry results were reasonably consistent with the simulated results. The as-cast Sn-38Bi was extruded to produce a metallic filament. To investigate the microstructural evolution in the semisolid state, samples from the filament were subjected to multiple heat treatments at different temperatures. Semisolid AM for the selected alloy was successfully performed at 170 °C. This process included extrusion and deposition without nozzle clogging or discontinuity formation. Various geometries were successfully fabricated, and the results demonstrated the efficacy of the FFF technique for processing metallic materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. SS Crump. Apparatus and method for creating three-dimensional objects. United States of America; 1992. p. 15.

  2. Mohamed OA, Masood SH, Bhowmik JL. Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf. 2015;3:42–53.

    Article  CAS  Google Scholar 

  3. Murr LE, Martinez E, Amato KN, Gaytan SM, Hernandez J, Ramirez DA, et al. Fabrication of metal and alloy components by additive manufacturing: examples of 3d materials science. J Mater Res Technol. 2012;1:42–54.

    Article  CAS  Google Scholar 

  4. Guo N, Leu MC. Additive manufacturing: technology, applications and research needs. Front Mech Eng. 2013;8:215–43.

    Article  Google Scholar 

  5. Joly PA, Mehrabian R. The rheology of a partially solid alloy. J Mater Sci. 1976;11:1393–418.

    Article  CAS  Google Scholar 

  6. Flemings MC. Behavior of metal alloys in the semisolid state. Metall Trans A. 1991;22:957–81.

    Article  Google Scholar 

  7. Barnes HA. Thixotropy a review. J Non-Newtonian Fluid Mech. 1997;70:1–33.

    Article  CAS  Google Scholar 

  8. Rice CS, Mendez PF, Brown SB. Metal solid freeform fabrication using semi-solid slurries. JOM. 2000;52:31–3.

    Article  CAS  Google Scholar 

  9. Finke S, Feenstra FK. Solid freeform fabrication by extrusion and deposition of semi-solid alloys. J Mater Sci. 2002;7:3101–6.

    Article  Google Scholar 

  10. Chen W, Thornley L, Coe HG, Tonneslan SJ, Vericella JJ, Zhu C, et al. Direct metal writing: controlling the rheology through microstructure. Appl Phys Lett. 2017;110:094104.

    Article  Google Scholar 

  11. Jabbari A, Abrinia K. A metal additive manufacturing method: semi-solid metal extrusion and deposition. Int J Adv Manuf Technol. 2017;94:3819–28.

    Article  Google Scholar 

  12. Jabbari A, Abrinia K. Developing thixo-extrusion process for additive manufacturing of metals in semi-solid state. J Manuf Process. 2018;35:664–71.

    Article  Google Scholar 

  13. Lima DD, Campo KN, Button ST, Caram R. 3D thixo-printing: a novel approach for additive manufacturing of biodegradable Mg-Zn alloys. Mater Des. 2020;196: 109161.

    Article  CAS  Google Scholar 

  14. Englert L, Klumpp A, Ausländer A, Schulze V, Dietrich S. Semi-solid wire-feed additive manufacturing of AlSi7Mg by direct induction heating. Addit Manuf Lett. 2022;3:100067.

    Article  Google Scholar 

  15. Chang Z, Wang X, Wu Y, Peng L, Ding W. Review on criteria for assessing the processability of semisolid alloys. Mater Lett. 2021;282:128835.

    Article  CAS  Google Scholar 

  16. Liu D, Atkinson HV, Jones H. Thermodynamic prediction of thixoformability in alloys based on the Al–Si–Cu and Al–Si–Cu–Mg systems. Acta Mater. 2005;53:3807–19.

    Article  CAS  Google Scholar 

  17. Maciel Camacho A, Atkinson HV, Kapranos P, Argent BB. Thermodynamic predictions of wrought alloy compositions amenable to semi-solid processing. Acta Mater. 2003;51:2319–30.

    Article  Google Scholar 

  18. Han Q, Viswanathan S. The use of thermodynamic simulation for the selection of hypoeutectic aluminum-silicon alloys for semi-solid metal processing. Mater Sci Eng A. 2004;364:48–54.

    Article  Google Scholar 

  19. Li YD, Apelian D, Xing B, Ma Y, Hao Y. Commercial AM60 alloy for semisolid processing: alloy optimization and thermodynamic analysis. Trans Nonferrous Met Soc China. 2010;20:1572–8.

    Article  Google Scholar 

  20. Liu YQ, Das A, Fan Z. Thermodynamic predictions of Mg-Al-M (M = Zn, Mn, Si) alloy compositions amenable to semisolid metal processing. Mater Sci Technol. 2004;20:35–41.

    Article  CAS  Google Scholar 

  21. Campo KN, de Lima DD, Lopes ÉSN, Caram R. On the selection of Ti–Cu alloys for thixoforming processes: phase diagram and microstructural evaluation. J Mater Sci. 2015;50:8007–17.

    Article  CAS  Google Scholar 

  22. Kattner UR, Boettinger WJ. On the Sn–Bi–Ag ternary phase diagram. J Electron Mater. 1994;23:603–10.

    Article  CAS  Google Scholar 

  23. Zhang Q, Li H, Han B, Huang K, Fang X, Chen Z. A distinctive Pb-Sn semi-solid additive manufacturing using wire feeding and extrusion. J Manuf Process. 2022;80:247–58.

    Article  Google Scholar 

  24. Gülseren MK, Kovan V, Tezel T. Three-dimensional printability of bismuth alloys with low melting temperatures. J Manuf Process. 2023;92:238–46.

    Article  Google Scholar 

  25. Zoqui EJ, Benati DM, Proni CTW, Torres LV. Thermodynamic evaluation of the thixoformability of Al-Si alloys. Calphad. 2016;52:98–109.

    Article  CAS  Google Scholar 

  26. Mireles J, Espalin D, Roberson D, Zinniel B, Medina F, Wicker R. Fused deposition modeling of metals. In Proceedings solid free fabrication symposium 2012;6–8.

  27. Brabazon D, Browne DJ, Carr AJ. Mechanical stir casting of aluminium alloys from the mushy state: process, microstructure and mechanical properties. Mater Sci Eng A. 2002;326:370–81.

    Article  Google Scholar 

  28. Lashkari O, Ghomashchi R. The implication of rheology in semi-solid metal processes: an overview. J Mater Process Technol. 2007;182:229–40.

    Article  CAS  Google Scholar 

  29. Lashkari O, Ghomashchi R. The implication of rheological principles for characterization of semi-solid Al–Si cast billets. J Mater Sci. 2006;41:5958–65.

    Article  CAS  Google Scholar 

  30. Campo KN, Lopes ESN, Parrish CJ, Caram R. Rapid quenching of semisolid Ti–Cu alloys: insights into globular microstructure formation and coarsening. Acta Mater. 2017;139:86–95.

    Article  CAS  Google Scholar 

  31. Hitchcock M, Wang Y, Fan Z. Secondary solidification behaviour of the Al–Si–Mg alloy prepared by the rheo-diecasting process. Acta Mater. 2007;55:1589–98.

    Article  CAS  Google Scholar 

  32. Annavarapu S, Doherty RD. Inhibited coarsening of solid-liquid microstructures in spray casting at high volume fractions of solid. Acta Metall Mater. 1995;43:3207–30.

    Article  CAS  Google Scholar 

  33. Fan L, Zhou M, Zhang Y, Tang Q, Quan G, Liu B. The semi-solid microstructural evolution and coarsening kinetics of AZ80-0.2Y-0.15Ca magnesium alloy. Mater Charact. 2019;154:116–26.

    Article  CAS  Google Scholar 

  34. Fu J, Wang S, Wang K. Influencing factors of the coarsening behaviors for 7075 aluminum alloy in the semi-solid state. J Mater Sci. 2018;53:9790–805.

    Article  CAS  Google Scholar 

  35. Kim HS, Stone IC, Cantor B. Microstructural evolution in semi-solid AA7034. J Mater Sci. 2008;43:1292–304.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from CNPq (National Council for Scientific and Technological Development), Grant 405054/2016-5, and Fapesp (São Paulo State Research Foundation), Grant 2018/18293-8.

Author information

Authors and Affiliations

Authors

Contributions

DDdeL: Conceptualization, Investigating, Formal Analysis, Writing—Review & Editing. KNC: Conceptualization, Formal analysis, Writing—Original Draft. RC: Writing—Original Draft, Supervision, Funding acquisition.

Corresponding author

Correspondence to Kaio Niitsu Campo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima, D.D., Campo, K.N. & Caram, R. Coupling thermodynamic simulation and thermal analysis to select Sn–Bi alloys for semisolid additive manufacturing. J Therm Anal Calorim 148, 9423–9433 (2023). https://doi.org/10.1007/s10973-023-12337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12337-4

Keywords

Navigation