Skip to main content
Log in

Ni–Nb-Based Mixed Oxides Precursors for the Dry Reforming of Methane

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Perovskite-related mixed-oxides based on La Ni Nb and La Sr Ni Nb were synthesized by the auto combustion method to use as precursors materials for the catalytic reforming of methane at 700 ºC, atmospheric pressure, CH4:CO2 = 1:1. LaNiO3 and LaNbO4 were used as reference. XRD analysis show that the synthesis method produce a new series of precursor family formed by a mixture of oxides where Ni crystallized as part of a perovskite and Ruddlesden–Popper structure while Nb formed lanthanum orthoniobate LaNbO4, a scheelite-type structure alternating with oxide layers, with phase distribution depending on niobium content. For Nb (x ≤ 0.3) Ni crystallizes as LaNiO3 perovskite-type oxide while for Nb (x ≥ 0.7) it forms mainly the orthoniobate phase LaNbO4 a scheelite-type structure. At higher calcined temperatures (~1100 °C) La2Ni0.8Nb0.2O4 was formed with a Ruddlesden–Popper structure consisting of three perovskite type layers along the c-axis alternating with a layer of the rock salt type phase. TEM analysis showed the presence of cubic particles with sizes varying between 5 and 60 nm depending on the extent of substitution of Ni by Nb. Reduction of the perovskite-related precursor oxides produced a series of Ni0/La2O3–NbOx oxides with high metallic dispersion which favors the activity and stability of the catalysts. Introduction of doping quantities of Sr into LaNi0.8Nb0.2O3±λ structure produced a mixture of oxides with Sr dissolved in the lanthanum orthoniobate LaNbO4 scheelite-type structure due to the similarity of ionic radii of La and Sr. Under the reaction conditions conversions near the thermodynamic equilibrium were attained which remains for long periods of time assessing the stability of the synthesized catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Somorjai GA, McCrea K (2001) Appl Catal A Gen 222:3–18

    Article  CAS  Google Scholar 

  2. Lira E, Lopez CM, Oropeza F, Bartolini M, Alvarez J, Goldwasser MR, Lopez Linares F, Lamonier Jean-François, Josefina Perez Zurita M (2008) J Mol Catal A Chem 281:146–153

    Article  CAS  Google Scholar 

  3. Nagaoka K, Jentys A, Lercher JA (2005) J Catal 229:185–196

    Article  CAS  Google Scholar 

  4. Basini L (2005) Catal Today 106:34–40

    Article  CAS  Google Scholar 

  5. Rivas ME, Fierro JLG, Guil-López R, Peña MA, La Parola V, Goldwasser MR (2008) Catal Today 133–135:367–373

    Article  Google Scholar 

  6. Rivas ME, Fierro JLG, Goldwasser MR, Pietri E, Perez Zurita MJ, Griboval-Constant A, Leclercq G (2008) Appl Catal A Gen 344:10–19

    Article  CAS  Google Scholar 

  7. Hori C, Rivas ME, Fierro JLG, Goldwasser MR, Griboval A (2008) J Power Source 184:265–275

    Article  Google Scholar 

  8. Erdohelyi A, Fodor K, Szailer T (2004) Appl Catal B Environ 53:153–160

    Article  CAS  Google Scholar 

  9. Goldwasser MR, Rivas ME, Pietri E, Pérez Zurita MJ, Cubeiro ML, Griboval-Constant A, Leclercq G (2005) J Mol Catal A Chem 228:325–331

    Article  CAS  Google Scholar 

  10. Goldwasser MR, Dorantes V, Pérez-Zurita MJ, Sojo PR, Cubeiro ML, Pietri E, González-Jiménez F, Lee Ng, Moronta D (2003) J Mol Catal A Chem 193:227–236

    Article  CAS  Google Scholar 

  11. Martinez R, Romero E, Guimon C, Bilbao R (2004) Appl Catal A Gen 274:139–149

    Article  CAS  Google Scholar 

  12. Batiot-Dupeyrat C, Valderrama G, Meneses A, Martínez F, Barrault J, Tatibouët JM (2003) Appl Catal A Gen 248:143–151

    Article  CAS  Google Scholar 

  13. Goldwasser MR, Rivas ME, Pietri E, Pérez Zurita MJ, Cubeiro ML, Griboval-Constant A, Leclercq L, Leclercq G (2003) Appl Catal A Gen 225:45–57

    Article  Google Scholar 

  14. Pereira MM, Pereira EB, Lam YL, dos Santos T, Schmal M (2000) Stud Surf Sci Catal 130:2339–2344

    Article  Google Scholar 

  15. Tanabe K (2003) Catal Today 78:65–77

    Article  CAS  Google Scholar 

  16. Parlinski K, Hashi Y, Tsunekawa S, Kawazoe Y (1997) J Mater Res 12(9):2428–2437

    Article  CAS  Google Scholar 

  17. Amow G, Davidson IJ, Skinner SJ (2006) Solid State Ionics 177:1205–1210

    Article  CAS  Google Scholar 

  18. Valderrama G, Goldwasser MR, de Navarro C Urbina, Tatibouët JM, Barrault J, Batiot-Dupeyrat C, Martinez F (2005) Catal Today 107–108:785–791

    Article  Google Scholar 

  19. Valderrama G, Kiennemann A, Goldwasser MR (2010) J Power Sources 195:1765–1771

    Article  CAS  Google Scholar 

  20. Goldwasser MR, Rivas ME, Lugo ML, Pietri E, Pérez-Zurita J, Cubeiro ML, Griboval-Constant A, Leclercq G (2005) Catal Today 107–108:106–113

    Article  Google Scholar 

  21. Rivas I, Álvarez J, Pietri E, Pérez Zurita MJ, Goldwasser MR (2010) Catal Today 149(3–4):388–393

    Article  CAS  Google Scholar 

  22. Sleight AW (1977) In: Burton JJ, Garten RL (eds) Advanced materials in catalysis. Academic Press, San Diego, p 181

  23. Maschio S, Bachiorrini A, Di Monte R, Montanaro L (1995) J Mater Sci 30:5433–5437

    Article  CAS  Google Scholar 

  24. Weng X, Boldrin P, Abrahams I, Skinner SJ, Kellici S, Wenga Xiaole, Darr JA (2008) J Solid State Chem 181:1123–2123

    Article  CAS  Google Scholar 

  25. Mogni L, Prado F, Ascolani H, Abbate M, Moreno M, Manthiram A, Caneiro A (2005) J Solid State Chem 178:1559–1568

    Article  CAS  Google Scholar 

  26. Xiancai Li, Min Wu, Zhihua Lai, Fei He (2005) Appl Catal A Gen 290:81–86

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Brazilian Metallurgy and Mineral Company CBMM, Araxá, MG-Brazil, for the Niobium samples supplied and the Council of Scientific and Humanistic Development of Venezuelan Central University (UCV-CDCH) and the Draft Law on Science and Technology (LOCTI), through projects PG-03-00-6504-2006 and LOCTI-2008-2009 respectively, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireya R. Goldwasser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, J., Valderrama, G., Pietri, E. et al. Ni–Nb-Based Mixed Oxides Precursors for the Dry Reforming of Methane. Top Catal 54, 170–178 (2011). https://doi.org/10.1007/s11244-011-9636-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-011-9636-7

Keywords

Navigation