Skip to main content

Advertisement

Log in

Soil Factors Affecting Sulfadiazine Sorption in Brazilian Soils

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The role of metal (oxy)hydroxides in sulfadiazine (SDZ) sorption is poorly understood despite their high contents in many highly weathered tropical soils. Therefore, this work evaluated soil attributes affecting SDZ sorption to several Brazilian soils having contrasting metal (oxy)hydroxide contents. Samples of 23 soils were collected from the upper soil layer (0-20 cm) in the São Paulo State, Brazil, and characterized according to their texture (silt, sand, and clay), pH-H2O, point of zero charge (PZC), organic matter (OM), exchangeable cations (Ca, Mg, K, and Al), potential acidity (H+Al), CEC, well (Fed) and poorly (Feo and Alo) crystallized Fe and Al (oxy)hydroxides, and amorphous Mn oxides (MnO), respectively. Batch sorption studies were performed and related to the soil attributes to group them according with their soil mobility. SDZ sorption coefficients were high (Kd = 15.7–24.0 L kg-1) in soils having high clay (> 500 g kg-1), OM (> 55 g kg-1), and metal (oxy)hydroxide [Fed > 150; Alo > 5; and MnO > 10.0 g kg-1] contents; but they were low (Kd = 0.7–4.9 L kg-1) in soils having low clay (< 250 g kg-1), OM (< 25 g kg-1), and metal (oxy)hydroxide (Fed < 30 and MnO < 2.0 g kg-1) contents. Kd values could be estimated by a regression equation based on CEC as well as Fe and Mn (oxy)hydroxide contents. Acidic tropical soils favor SDZ-neutral species and formation of neutral or positively charged surface sites on pedogenic (oxy)hydroxides that should favor H-bond and surface complexation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ABIEC. (2020). Beef report: Brazilian livestock profile. Brazilian Beef Exporters Association - ABIEC.

    Google Scholar 

  • Alleoni, L. R. F., & Camargo, O. A. (1995). Iron and aluminium oxides and the mineralogy of iron free clay fraction of acric oxisols. Scientia Agricola, 52(3), 416–421. https://doi.org/10.1590/s0103-90161995000300002

    Article  CAS  Google Scholar 

  • Alleoni, L. R. F., Mello, J. W. V., & Rocha, W. S. (2009). Eletroquímica, adsorção e troca iônica no solo. In Melo, V.F, & Alleoni (Eds.), Química e Mineralogia do Solo - Parte 2: Aplicações (1st ed., pp. 69–129). Viçosa - MG: Sociedade Brasileira de Ciência do Solo.

  • Andriamalala, A., Vieublé-Gonod, L., Dumeny, V., & Cambier, P. (2018). Fate of sulfamethoxazole, its main metabolite N-ac-sulfamethoxazole and ciprofloxacin in agricultural soils amended or not by organic waste products. Chemosphere, 191, 607–615. https://doi.org/10.1016/j.chemosphere.2017.10.093

    Article  CAS  Google Scholar 

  • Anjos, L. H. C., Santos, H. G., & Schaefer, C. E. (2018). Brazilian Soil. In R. B. A. Fernandes, R. B. Cantarutii, & C. E. Schaefer (Eds.), Bulletin of the Brazilian Soil Science Society (Vol. 4, 4th ed., pp. 8–15). Brazilian Soil Science Society.

    Google Scholar 

  • Arsand, J. B., Hoff, R. B., Jank, L., Bussamara, R., Dallegrave, A., Bento, F. M., et al. (2020). Presence of antibiotic resistance genes and its association with antibiotic occurrence in Dilúvio River in southern Brazil. Science of the Total Environment, 738, 139781. https://doi.org/10.1016/j.scitotenv.2020.139781

    Article  CAS  Google Scholar 

  • Aust, M. O., Thiele-Bruhn, S., Seeger, J., Godlinski, F., Meissner, R., & Leinweber, P. (2010). Sulfonamides leach from sandy loam soils under common agricultural practice. Water, Air, and Soil Pollution, 211(1–4), 143–156. https://doi.org/10.1007/s11270-009-0288-1

    Article  CAS  Google Scholar 

  • Bastos, M. C., dos Santos, D. R., Aubertheau, É., de Lima, J. A. M. C., Le Guet, T., Caner, L., et al. (2018). Antibiotics and microbial resistance in Brazilian soils under manure application. Land Degradation & Development, 29(8), 2472–2484. https://doi.org/10.1002/ldr.2964

    Article  Google Scholar 

  • Benites, V. M., Corrêa, J. C., Menezes, J. F. S., Polidoro, J. C., & Campos, D. V. B. (2010). Production of granulated organomineral fertilizer from pig slurry and poultry litter in Brazil. In 15th WORLD FERTILIZER CONGRESS OF THE INTERNATIONAL SCIENTIFIC CENTRE FOR FERTILIZERS 2010 and MEETING THE FERTILIZER DEMAND ON A CHANGING GLOBE: BIOFUELS, CLIMATE CHANGE & CONTAMINANTS (pp. 245–251). Bucareste: Academiei Române.

  • Bialk, H. M., Simpson, A. J., & Pedersen, J. A. (2005). Cross-coupling of sulfonamide antimicrobial agents with model humic constituents. Environmental Science and Technology, 39(12), 4463–4473. https://doi.org/10.1021/es0500916

    Article  CAS  Google Scholar 

  • Bonfleur, E. J., Kookana, R. S., Tornisielo, V. L., & Regitano, J. B. (2016). Organomineral interactions and herbicide sorption in Brazilian tropical and subtropical oxisols under no-tillage. Journal of Agricultural and Food Chemistry, 64(20), 3925–3934. https://doi.org/10.1021/acs.jafc.5b04616

    Article  CAS  Google Scholar 

  • de Camargo, O. A., Moniz, A. C., Jorge, J. A., & Valadares, J. M. A. S. (2009). Métodos de Análise Química, Mineralógica e Física de Solos do Instituto Agronômico de Campinas (2nd ed.). Instituto Agronômico de Campinas.

    Google Scholar 

  • Chen, Z., Zhang, W., Yang, L., Stedtfeld, R. D., Peng, A., Gu, C., et al. (2019). Antibiotic resistance genes and bacterial communities in cornfield and pasture soils receiving swine and dairy manures. Environmental Pollution, 248, 947–957. https://doi.org/10.1016/j.envpol.2019.02.093

    Article  CAS  Google Scholar 

  • Conde-Cid, M., Fernández-Calviño, D., Nóvoa-Muñoz, J. C., Arias-Estévez, M., Díaz-Raviña, M., Núñez-Delgado, A., et al. (2018). Degradation of sulfadiazine, sulfachloropyridazine and sulfamethazine in aqueous media. Journal of Environmental Management, 228(June), 239–248. https://doi.org/10.1016/j.jenvman.2018.09.025

    Article  CAS  Google Scholar 

  • Conde-Cid, M., Ferreira-Coelho, G., Fernández-Calviño, D., Núñez-Delgado, A., Fernández-Sanjurjo, M. J., Arias-Estévez, M., & Álvarez-Rodríguez, E. (2020). Single and simultaneous adsorption of three sulfonamides in agricultural soils: Effects of pH and organic matter content. Science of the Total Environment, 744, 140872. https://doi.org/10.1016/j.scitotenv.2020.140872

    Article  CAS  Google Scholar 

  • Conde-Cid, M., Nóvoa-Muñoz, J. C., Fernández-Sanjurjo, M. J., Núñez-Delgado, A., Álvarez-Rodríguez, E., & Arias-Estévez, M. (2019). Pedotransfer functions to estimate the adsorption and desorption of sulfadiazine in agricultural soils. Science of the Total Environment, 691(November), 933–942. https://doi.org/10.1016/j.scitotenv.2019.07.166

    Article  CAS  Google Scholar 

  • Cruz, A. C., dos Pereira, F. S., & Figueredo, V. S. (2017). Fertilizantes organominerais de resíduos do agronegócio: avaliação do potencial econômico brasileiro. Indústria Química: BNDES Setorial, 45, 137–187.

    Google Scholar 

  • Cycoń, M., Mrozik, A., & Piotrowska-Seget, Z. Antibiotics in the soil environment - degradation and their impact on microbial activity and diversity. (2019). Frontiers in microbiology, 10, 338. (2019). 10.3389/fmicb.2019.00338

  • de Souza, A. J., de Pereira, A. P. A., Andreote, F. D., Tornisielo, V. L., Tizioto, P. C., Coutinho, L. L., & Regitano, J. B. (2021). Sulfadiazine dissipation as a function of soil bacterial diversity. Environmental Pollution, 271(February), 116374. https://doi.org/10.1016/j.envpol.2020.116374

    Article  CAS  Google Scholar 

  • Doretto, K. M., Peruchi, L. M., & Rath, S. (2014). Sorption and desorption of sulfadimethoxine, sulfaquinoxaline and sulfamethazine antimicrobials in Brazilian soils. Science of the Total Environment, 476–477(April), 406–414. https://doi.org/10.1016/j.scitotenv.2014.01.024

    Article  CAS  Google Scholar 

  • Doretto, K. M., & Rath, S. (2013). Sorption of sulfadiazine on Brazilian soils. Chemosphere, 90(6), 2027–2034. https://doi.org/10.1016/j.chemosphere.2012.10.084

    Article  CAS  Google Scholar 

  • Dubus, I. G., Barriuso, E., & Calvet, R. (2001). Sorption of weak organic acids in soils: Clofencet, 2,4-D and salicylic acid. Chemosphere, 45(6–7), 767–774. https://doi.org/10.1016/S0045-6535(01)00108-4

    Article  CAS  Google Scholar 

  • Embrapa. (2018). In H. G. dos Santos, P. K. T. Jacomine, L. H. C. dos Anjos, V. Á. de Oliveira, J. F. Lumbreras, M. R. Coelho, et al. (Eds.), Brazilian Soil Classification System (5th ed.). Brasília: Brazilian Agricultural Research Corporation.

    Google Scholar 

  • Fontes, M. P. F., & Alleoni, L. R. F. (2006). Electrochemical attributes and availability of nutrients, toxic elements, and heavy metals in tropical soils. Scientia Agricola, 63(6), 589–608 (2006). Scientia Agricola. https://doi.org/10.1590/s0103-90162006000600014

  • Förster, M., Laabs, V., Lamshöft, M., Groeneweg, J., Zühlke, S., Spiteller, M., et al. (2009). Sequestration of manure-applied sulfadiazine residues in soils. Environmental Science & Technology, 43(6), 1824–1830. https://doi.org/10.1021/es8026538

    Article  CAS  Google Scholar 

  • Furlan, J. P. R., dos Santos, L. D. R., Moretto, J. A. S., Ramos, M. S., Gallo, I. F. L., de Alves, G. A. D., et al. (2020). Occurrence and abundance of clinically relevant antimicrobial resistance genes in environmental samples after the Brumadinho dam disaster, Brazil. Science of the Total Environment, 726, 138100. https://doi.org/10.1016/j.scitotenv.2020.138100

    Article  CAS  Google Scholar 

  • Gambrell, R. P. (1996). Manganese. In J. M. Bigham (Ed.), Methots of Soil Analysis: Chemical Methods (pp. 66–682). Soil Science Society of America. American Society of Agronomy.

    Google Scholar 

  • Gao, J., & Pedersen, J. A. (2005). Adsorption of sulfonamide antimicrobial agents to clay minerals. Environmental Science and Technology, 39(24), 9509–9516. https://doi.org/10.1021/es050644c

    Article  CAS  Google Scholar 

  • Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics, 27(4), 857. https://doi.org/10.2307/2528823

    Article  Google Scholar 

  • Gulkowska, A., Thalmann, B., Hollender, J., & Krauss, M. (2014). Nonextractable residue formation of sulfonamide antimicrobials: New insights from soil incubation experiments. Chemosphere, 107, 366–372. https://doi.org/10.1016/j.chemosphere.2013.12.093

    Article  CAS  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm. Accessed 28 March 2020

  • Hu, S., Zhang, Y., Shen, G., Zhang, H., Yuan, Z., & Zhang, W. (2019). Adsorption/desorption behavior and mechanisms of sulfadiazine and sulfamethoxazole in agricultural soil systems. Soil and Tillage Research, 186(November 2018), 233–241. https://doi.org/10.1016/j.still.2018.10.026

    Article  Google Scholar 

  • Jackson, M. L. (1969). Soil chemical analysis: advanced course. University of Wisconsin.

    Google Scholar 

  • Jiang, W. T., Chang, P. H., Wang, Y. S., Tsai, Y., Jean, J. S., & Li, Z. (2015). Sorption and desorption of tetracycline on layered manganese dioxide birnessite. International Journal of Environmental Science and Technology, 12(5), 1695–1704. https://doi.org/10.1007/s13762-014-0547-6

    Article  CAS  Google Scholar 

  • Kämpf, N., Curi, N., & Marques, J. J. (2019). Óxidos de alumínio, silício manganês e titânio. In V. de F. Melo & L. R. F. Alleoni (Eds.), Química e Mineralogia do Solo (3rd ed., pp. 573–610). Viçosa - MG: SBCS.

  • Kämpf, N., & Schwertmann, U. (1982). The 5-M-NaOH concentration treatment for iron oxides in soils. Clays and Clay Minerals, 30, 401–408. https://doi.org/10.1346/CCMN.1982.0300601

    Article  Google Scholar 

  • Keng, J.C.W., & Uehara, G. (1974). Chemistry, mineralogy and taxonomy of Oxisols and Ultisols. Proceedings of Soil and Crop Sciences Society, 33(1), 119-126, 1974.

  • Kotzerke, A., Sharma, S., Schauss, K., Heuer, H., Thiele-Bruhn, S., Smalla, K., et al. (2008). Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure. Environmental Pollution, 153(2), 315–322. https://doi.org/10.1016/j.envpol.2007.08.020

    Article  CAS  Google Scholar 

  • Kreuzig, R., & Höltge, S. (2005). Investigations on the fate of sulfadiazine in manured soil: Laboratory experiments and test plot studies. Environmental Toxicology and Chemistry, 24(4), 771–776. https://doi.org/10.1897/03-582R.1

    Article  CAS  Google Scholar 

  • Leal, R. M. P., Alleoni, L. R. F., Tornisielo, V. L., & Regitano, J. B. (2013). Sorption of fluoroquinolones and sulfonamides in 13 Brazilian soils. Chemosphere, 92(8), 979–985. https://doi.org/10.1016/j.chemosphere.2013.03.018

    Article  CAS  Google Scholar 

  • Lertpaitoonpan, W., Ong, S. K., & Moorman, T. B. (2009). Effect of organic carbon and pH on soil sorption of sulfamethazine. Chemosphere, 76(4), 558–564. https://doi.org/10.1016/j.chemosphere.2009.02.066

    Article  CAS  Google Scholar 

  • Merha, O. P. P., & Jackson, M. L. L. (1960). Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. In National Conference on Clays and Minerals, New York, 1960. Proceedings. (pp. 317–327). New York: Pergamin Press. https://doi.org/10.1016/b978-0-08-009235-5.50026-7

  • R Core Team. (2021). R: A language and environment for statistical computing. Viena, Autria: R Foundation for Statistical Computing. https://www.r-project.org/. Accessed 10 Feb 2021.

  • Raij, B., Andrade, J. C., Cantarella, H., & Quaggio, J. A. (2001). Análise Química para Avaliação da Fertilidade de Solos Tropicais, 1st Edn. Campinas: IAC.

  • Rath, S., Fostier, A. H., Pereira, L. A., Dioniso, A. C., de Oliveira Ferreira, F., Doretto, K. M., et al. (2019). Sorption behaviors of antimicrobial and antiparasitic veterinary drugs on subtropical soils. Chemosphere, 214, 111–122. https://doi.org/10.1016/j.chemosphere.2018.09.083

    Article  CAS  Google Scholar 

  • Regitano, J. B., Bischoff, M., Lee, L. S., Reichert, J. M., & Turco, R. F. (1997). Retention of imazaquin in soil. Environmental Toxicology and Chemistry, 16(3), 397–404. https://doi.org/10.1002/etc.5620160302

    Article  CAS  Google Scholar 

  • Regitano, J. B., Rocha, D., Bonfleur, W. S., Milori, E. J., F Alleoni, L. R., Rocha, W. S. D., et al. (2016). Effect of soil water content on the distribution of diuron into organomineral aggregates of highly weathered tropical soils. Journal of Agricultural and Food Chemistry, 64(20), 3935–3941. https://doi.org/10.1021/acs.jafc.5b04664

    Article  CAS  Google Scholar 

  • Regitano, J. B., & Leal, R. M. P. (2010). Performance and environmental impact of antibiotics in animal production in Brazil. Revista Brasileira de Ciência do Solo, 34(3), 601–616. https://doi.org/10.1590/S0100-06832010000300002

    Article  CAS  Google Scholar 

  • Reia, M. Y., Leal, R. M. P., Tornisielo, V. L., Viana, D. G., & Regitano, J. B. (2020). Sulfadiazine dissipation in acidic tropical soils. Environmental Science and Pollution Research, 27(17), 21243–21251. https://doi.org/10.1007/s11356-020-08456-2

    Article  CAS  Google Scholar 

  • Reis, C. E. S., Dick, D. P., da Caldas, J. S., & Bayer, C. (2014). Carbon sequestration in clay and silt fractions of Brazilian soils under conventional and no-tillage systems. Scientia Agricola, 71(4), 292–301. https://doi.org/10.1590/0103-9016-2013-0234

    Article  Google Scholar 

  • Rocha, W. S. D., Regitano, J. B., Alleoni, L. R. F., & Tornisielo, V. L. (2002). Sorption of imazaquin in soils with positive balance of charges. Chemosphere, 49(3), 263–270. https://doi.org/10.1016/S0045-6535(02)00281-3

    Article  CAS  Google Scholar 

  • Sarmah, A. K., Meyer, M. T., & Boxall, A. B. A. A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725–759. https://doi.org/10.1016/j.chemosphere.2006.03.026

    Article  CAS  Google Scholar 

  • Shi, W., Zhang, H., Li, J., Liu, Y., Shi, R., Du, H., & Chen, J. (2019). Occurrence and spatial variation of antibiotic resistance genes (ARGs) in the Hetao Irrigation District. China. Environmental Pollution, 251(August), 792–801. https://doi.org/10.1016/j.envpol.2019.04.119

    Article  CAS  Google Scholar 

  • Soares, M. R. (2005). Coeficiente de distribuição (Kd) de metais pesados em solos do estado de São Paulo. [Biblioteca Digital de Teses e Dissertações da Universidade de São Paulo]. 10.11606/T.11.2005.TDE-31052005-170719

  • Soares, M. R., & Alleoni, L. R. F. (2008). Contribution of soil organic carbon to the ion exchange capacity of tropical soils. Journal of Sustainable Agriculture, 32(3), 439–462. https://doi.org/10.1080/10440040802257348

    Article  Google Scholar 

  • Sollins, P., Homann, P., & Caldwell, B. A. (1996). Stabilization and destabilization of soil organic matter: Mechanisms and controls. Geoderma, 74(1–2), 65–105. https://doi.org/10.1016/S0016-7061(96)00036-5

    Article  Google Scholar 

  • Spielmeyer, A., Höper, H., & Hamscher, G. (2017). Long-term monitoring of sulfonamide leaching from manure amended soil into groundwater. Chemosphere, 177, 232–238. https://doi.org/10.1016/j.chemosphere.2017.03.020

    Article  CAS  Google Scholar 

  • Srinivasan, P., Sarmah, A. K., & Manley-Harris, M. (2014). Sorption of selected veterinary antibiotics onto dairy farming soils of contrasting nature. Science of the Total Environment, 472(February), 695–703. https://doi.org/10.1016/j.scitotenv.2013.11.104

    Article  CAS  Google Scholar 

  • Sukul, P., Lamshöft, M., Zühlke, S., & Spiteller, M. (2008). Sorption and desorption of sulfadiazine in soil and soil-manure systems. Chemosphere, 73(8), 1344–1350. https://doi.org/10.1016/j.chemosphere.2008.06.066

    Article  CAS  Google Scholar 

  • Thiele-Bruhn, S., & Aust, M. O. (2004). Effects of pig slurry on the sorption of sulfonamide antibiotics in soil. Archives of Environmental Contamination and Toxicology, 47(1), 31–39. https://doi.org/10.1007/s00244-003-3120-8

    Article  CAS  Google Scholar 

  • USDA. (2020). Brazil: livestock and products annual report 2019. (USDA, Ed.) (Washington.). United States Department of Agriculture - Foreign Agricultural Service.

  • Wang, B., Zhang, Y., Zhu, D., & Li, H. (2020). Assessment of bioavailability of biochar-sorbed tetracycline to escherichia coli for activation of antibiotic resistance genes. Environmental Science and Technology, 54(20), 12920–12928. https://doi.org/10.1021/acs.est.9b07963

    Article  CAS  Google Scholar 

  • Xu, J., Yu, H.-Q. Q., & Sheng, G.-P. P. (2016). Kinetics and thermodynamics of interaction between sulfonamide antibiotics and humic acids: Surface plasmon resonance and isothermal titration microcalorimetry analysis. Journal of Hazardous Materials, 302, 262–266. https://doi.org/10.1016/J.JHAZMAT.2015.09.058

    Article  CAS  Google Scholar 

  • Yang, J.-F. F., Ying, G.-G. G., Yang, L.-H. H., Zhao, J.-L. L., Liu, F., Tao, R., et al. (2009). Degradation behavior of sulfadiazine in soils under different conditions. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 44(3), 241–248. https://doi.org/10.1080/03601230902728245

    Article  CAS  Google Scholar 

  • Yu, J., Wang, H., & Ji, Q. (2019). Investigating adsorption mechanism and surface complex formation modeling for aqueous sulfadiazine bonding on Fe/Mn binary oxides. Environmental Science and Pollution Research, 26(22), 23162–23172. https://doi.org/10.1007/s11356-019-05611-2

    Article  CAS  Google Scholar 

  • Zhang, Y., Hu, S., Zhang, H., Shen, G., Yuan, Z., & Zhang, W. (2017). Degradation kinetics and mechanism of sulfadiazine and sulfamethoxazole in an agricultural soil system with manure application. Science of the Total Environment, 607–608, 1348–1356. https://doi.org/10.1016/j.scitotenv.2017.07.083

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the São Paulo Research Foundation (FAPESP) for research financial support (grant number 2009/01596-9) and to Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil, Finance Code 001) for granting scholarship to the second and third authors; and to Carlos Alberto Dorelli and Rodrigo Pompinato for their technical support.

Data Availability

The authors of the manuscript “Soil factors affecting sulfadiazine sorption in Brazilian soils” declare that all data generated and analyzed in this study were not submitted for publication in other scientific journals. In addition, the manuscript was reviewed, verified, and approved by all authors.

Funding

São Paulo Research Foundation (FAPESP), grant number 2009/01596-9), and Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil, Finance Code 001).

Author information

Authors and Affiliations

Authors

Contributions

RMPL contributed to data analysis and manuscript writing. AJS contributed to data analysis and reviewed manuscript writing. MYR contributed to all essay assembles and research proposal. LRFA contributed to soils selection and collection and manuscript revision. VTL contributed to radiometric test assembles and data collection. JBR contributed to study design, data analysis, manuscript writing and revision, and overall project coordination.

Corresponding author

Correspondence to Jussara Borges Regitano.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leal, R.M.P., de Souza, A.J., Reia, M.Y. et al. Soil Factors Affecting Sulfadiazine Sorption in Brazilian Soils. Water Air Soil Pollut 233, 113 (2022). https://doi.org/10.1007/s11270-022-05588-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05588-8

Keywords

Navigation