Skip to main content
Log in

Effects of Indium on Wetting and Interfacial Features of a Sn-40Bi Alloy in a Copper Substrate

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The influence of In on the solidification path, microstructure, wettability, tensile properties, and interfacial features of a Sn-40Bi alloy was studied using Computer Coupling of Phase Diagrams and Thermochemistry (CALPHAD) calculations, differential scanning calorimetry, scanning electron microscopy, x-ray diffraction, wettability testing and tensile testing. The microstructures were composed of Sn-rich matrixes with Sn-Bi and BiIn-Bi constituents. Significant sensitivity of the microstructural scale to the solidification cooling rate was also demonstrated by employing different processing conditions. Because of the relatively high BiIn fraction on the microstructure, a limited elongation of approximately 7% was achieved, with ultimate tensile strength of 65 MPa. Cu6(Sn, In)5 was the intermetallic phase of the reaction film for the Sn-Bi-In/Cu interface under all tested conditions, including as-soldered and aged at 100°C and 120°C for 120 h, 240 h, and 360 h. Wetting angles for the ternary Sn-Bi-In alloy were maintained at approximately 20°, which is smaller than usual for Sn-Bi alloys. The new phase, Cu6(Sn, In)5, produced instead of Cu6Sn5, showed a lower growth rate than that observed in In-free couples. The mechanisms of wetting and the Cu6(Sn, In)5-layer growth are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K.R. Chandan, S. Bhavnani, M.C. Hamilton, R.W. Johnson, J.L. Nguyen, R.W. Knight, and D.K. Harris, Investigation into the application of low melting temperature alloys as wet thermal interface materials. Int. J. Heat Mass Transf. 85, 996 (2015).

    Article  Google Scholar 

  2. S.H. Fuller and L.I. Millett, Computing performance: game over or next level? IEEE Comput. Soc. 44, 31 (2011).

    Article  Google Scholar 

  3. D.D.L. Chung, Thermal interface materials. JMEPEG 10, 56 (2001).

    Article  CAS  Google Scholar 

  4. A.J. Mcnamara, Y.J. Zhuomin, and M. Zhang, Characterization of nanostructured thermal interface materials—a review. Int J Thermal Sci 62, 2 (2012).

    Article  CAS  Google Scholar 

  5. K.J. Puttlitz, and K.A. Stalter, High-Temperature Lead-Free Solders with Dispersoids. Handbook of Lead-Free Solder Technology for Microelectronic (New York: Marcel Dekker, 2004).

    Book  Google Scholar 

  6. W. Zhang, J. Zhao, Z. Yin, N. Zhou, L. Tang, and C. Suo, Study on wettability of low-melting alloy material on copper substrates. Ferroelectrics 549, 160 (2019).

    Article  CAS  Google Scholar 

  7. C.K. Roy, S. Bhavnani, M. Hamilton, W.R. Johnson, R.W. Knight, D.K. Harris, Performance of Low Melt Alloys as Thermal Interface Materials. IEEE 31st SEMI-THERM Symposium (2015).

  8. R. Aspandiar, K. Byrd, K.K. Tang, L. Campbell, S. Mokler, Investigation of low-temperature solders to reduce reflow temperature, improve SMT yields and realize energy savings. IPC APEX EXPO, San Diego, California, (2015)

  9. K. Wang, F. Wang, Y. Huang, and K. Qi, Comprehensive properties of a novel quaternary Sn–Bi–Sb–Ag solder: wettability, interfacial structure and mechanical properties. Metals 9, 791 (2019).

    Article  CAS  Google Scholar 

  10. R.S. Sidhu, M.P. Renavikar, A.A. Dani, M.A. Dudek, Solder paste material technology for elimination of high warpage surface mount assembly defects. U.S. Patent, 0175160 A1 (2014).

  11. L. Shen, P. Septiwerdani, and Z. Chen, Elastic modulus, hardness and creep performance of SnBi alloys using nanoindentation. Mater. Sci. Eng. A 558, 253 (2012).

    Article  CAS  Google Scholar 

  12. W. Zhu, W. Zhang, W. Zhou, and P. Wu, Improved microstructure and mechanical properties for SnBi solder alloy by addition of Cr powders. J. Alloys Compd. 789, 805 (2019).

    Article  CAS  Google Scholar 

  13. Y. Goh, A.S.M.A. Haseeb, and M.F.M. Sabri, Effects of hydroquinone and gelatin on the electrodeposition of Sn–Bi low temperature Pb-free solder. Electrochim. Acta 90, 265 (2013).

    Article  CAS  Google Scholar 

  14. P. Vianco, J. Rejent, and R. Grant, Development of Sn-based, low melting temperature Pbfree solder alloys. Mater. Trans. 45, 765 (2004).

    Article  CAS  Google Scholar 

  15. H. Takao, A. Yamada, and H. Hasegawa, Mechanical properties and solder joint reliability of low-melting Sn–Bi–Cu lead free solder alloy. R&D Rev. Toyota CRDL 39, 41 (2004).

    CAS  Google Scholar 

  16. X. Chen, F. Xue, J. Zhou, and Y. Yao, Effect of In on microstructure, thermodynamic characteristic and mechanical properties of Sn–Bi based lead-free solder. J. Alloys. Compd. 633, 377 (2015).

    Article  CAS  Google Scholar 

  17. W.R. Osório, D.R. Leiva, L.C. Peixoto, L.R. Garcia, N. Mangelinck-Noël, and A. Garcia, Microstructure and mechanical properties of Sn–Bi, Sn–Ag and Sn–Zn lead-free solder alloys. J. Alloys Compd. 572, 97 (2013).

    Article  Google Scholar 

  18. X. Wu, J. Wu, X. Wang, J. Yang, M. Xia, and B. Liu, Effect of In addition on microstructure and mechanical properties of Sn–40Bi alloys. J Mater Sci 55, 3092 (2020).

    Article  CAS  Google Scholar 

  19. R.M. Shalaby, Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi–Sn based lead-free solder alloys. Mater. Sci. Eng. A 560, 86 (2013).

    Article  CAS  Google Scholar 

  20. Q. Li, N. Ma, Y. Lei, J. Lin, H. Fu, and J. Gu, Characterization of low-melting-point Sn-Bi-In lead-free solders. J. Electron. Mater. 45, 5800 (2016).

    Article  Google Scholar 

  21. A. Sharif and Y.C. Chan, Effect of indium addition in Sn-rich solder on the dissolution of Cu metallization. J. Alloys Compd. 390, 67 (2005).

    Article  CAS  Google Scholar 

  22. O. Mokhtari and H. Nishikawa, Effects of In and Ni addition on microstructure of Sn-58Bi solder joint. J. Electron. Mater. 43, 4158 (2014).

    Article  CAS  Google Scholar 

  23. S.W. Yoon, B. Rho, H.M. Lee, C. Kim, and B.J. Lee, Investigation of the phase equilibria in the Sn-Bi-In alloy system. Metall. Mater. Trans. A 30, 1503 (1999).

    Article  Google Scholar 

  24. I. Manasijević, Study of microstructure and thermal properties of the low melting Bi-In-Sn eutectic alloys. Mater. Res. 21, e20180501 (2018).

    Article  Google Scholar 

  25. L. Ratke, P.W. Voorhees, Growth and coarsening: Ostwald ripening in material processing. Springer, Berlin, p. 117 (2002).

  26. V.T. Witusiewicz, U. Hecht, B. Bottger, and S. Rex, Thermodynamic re-optimisation of the Bi–In–Sn system based on new experimental data. J. Alloys Compd. 428, 115 (2007).

    Article  CAS  Google Scholar 

  27. M.A. Ruggiero and J.W. Rutter, Origin of microstructure in 350 K eutectic of Bi–In–Sn ternary system. J. Mater. Sci. Technol. 11, 136 (1995).

    Article  CAS  Google Scholar 

  28. H. Kabassis, J.W. Rutter, and W.C. Winegard, Microstructure of one of the ternary eutectic alloys in the Bi-In-Sn system. Metall. Trans. A 15A, 1515 (1984).

    Article  CAS  Google Scholar 

  29. H. Kabassis, J.W. Rutter, and W.C. Winegard, Phase relationships in Bi–In–Sn alloy system. Mater. Sci. Technol. 2, 985 (1986).

    Article  CAS  Google Scholar 

  30. B.L. Silva, G. Reinhart, H. Nguyen-Thi, N. Mangelinck-Noël, A. Garcia, and J.E. Spinelli, Microstructural development and mechanical properties of a near-eutectic directionally solidified Sn-Bi solder alloy. Mater. Char. 107, 43 (2015).

    Article  CAS  Google Scholar 

  31. Z. Fang-qiu, Z. Bing, Z. Xian-fen, Y. Xu, C. Yi-ping, and S. Qi-qiang, Effect of liquid–liquid structure transition on solidification of Sn–Bi alloys. Trans. Nonferr. Met. Soc. 17, 893 (2007).

    Article  Google Scholar 

  32. X. Chen, F. Xue, J. Zhou, and Y. Yao, Effect of In on microstructure, thermodynamic characteristic and mechanical properties of Sn-Bi based lead-free solder. J. Alloys Compd. 633, 377 (2015).

    Article  CAS  Google Scholar 

  33. T. Siewert, Database for solder properties with emphasis on new lead-free solders. NIST & Colorado School of Mines, Release 4, 1 (2002).

    Google Scholar 

  34. V.C.E. Silva, G.L. Gouveia, R. Garcia, A. Garcia, and J.E. Spinelli, Sn-Bi(-Ga) TIM alloys: microstructure, tensile properties, wettability and interfacial reactions. J. Electron. Mater. 48, 1 (2019).

    Article  Google Scholar 

  35. L. Zang, Z. Yuan, H. Zhao, and X. Zhang, Wettability of molten Sn–Bi–Cu solder on Cu substrate. Mater. Lett. 63, 2067 (2009).

    Article  CAS  Google Scholar 

  36. K.N.P. Satyanarayan, Reactive wetting, evolution of interfacial and bulk IMCs and their effect on mechanical properties of eutectic Sn-Cu solder alloy. Adv. Colloid Interfac 166, 87 (2011).

    Article  CAS  Google Scholar 

  37. E. Hodúlová, M. Palcut, E. Lechovic, B. Simekova, and K. Ulrich, Kinetics of intermetallic phase formation at the interface of Sn–Ag–Cu–X (X=Bi, In) solders with Cu substrate. J. Alloys Compd. 509, 7052 (2011).

    Article  Google Scholar 

  38. Z. Mei and J.W. Morris Jr., Characterization of eutectic Sn–Bi solder joints. J. Electron. Mater. 21, 599 (1992).

    Article  CAS  Google Scholar 

  39. M. Mostofizadeh, J. Pippola, and L. Frisk, Reliability and microstructural evolution of SnBi-Ag solder paste during salt spray test. Carts Int. 2163, 1 (2012).

    Google Scholar 

  40. T.H. Chuang and H.F. Wu, Effects of Ce addition on the microstructure and mechanical properties of Sn–58Bi solder joints. J. Electron. Mater. 40, 71 (2011).

    Article  CAS  Google Scholar 

  41. F. Wang, Y. Huang, Z. Zhang, and C. Yan, Interfacial reaction and mechanical properties of Sn-Bi solder joints. Materials (Basel) 10, 920 (2017).

    Article  Google Scholar 

  42. S. Tian, S. Li, and J. Zhou, Effect of indium addition on interfacial IMC growth and bending properties of eutectic Sn–0.7Cu solder joints. J. Mater. Sci.: Mater. Electron. 28, 16120 (2017).

    CAS  Google Scholar 

  43. M.J. Rizvi, Y.C. Chan, C. Bailey, H. Lu, and M.N. Islam, Effect of adding 1 wt% Bi into the Sn–2.8Ag–0.5Cu solder alloy on the intermetallic formations with Cu-substrate during soldering and isothermal aging. J. Alloys Compd. 407, 208 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge FAPESP (grants #2019/23673-7 and #2021/08436-9) and CNPq. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Eduardo Spinelli.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Leal, J.R., Reyes, R.A.V., de Gouveia, G.L. et al. Effects of Indium on Wetting and Interfacial Features of a Sn-40Bi Alloy in a Copper Substrate. J. Electron. Mater. 52, 2957–2970 (2023). https://doi.org/10.1007/s11664-023-10258-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10258-4

Keywords

Navigation