Skip to main content
Log in

Fabrication and characterization of sol–gel-based coatings on quartz glass to obtain antireflective effect at 1054 nm for optics of high power Nd:phosphate glass laser

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In order to obtain higher laser-induced damage threshold (LIDT) and lower loss of laser radiation, the incident radiation must have an insignificant absorbance and high anti-reflectance. In this work, a single-layer porous SiO2-based anti-reflective (AR) coating for the optics of Nd:phosphate laser system has been developed on quartz glass optics adopting sol–gel dip coating technique, following quarter wavelength optical design. As measured by spectroscopic ellipsometer, the refractive index (RI) of the coated layer is found to be ~1.2. A maximum transmittance of ~99% in single-layer-coated quartz glass has been achieved at 1054 nm. In addition, the non-quarter wavelength-based double layer with an optical design (glass/ 0.7153 M / 1.134 L / air) and triple-layer AR coating with an optical design (glass / 0.28 H / 1.65 M / 1.03 L / air, where H, M and L indicate one-quarter wave thick layers of high, medium and low RI materials) have been fabricated. The deposition of M and H layers has been made from mixed metal oxide precursor sols of zirconia-silica, while L has been made from silica precursor sol to obtain porous silica coating. A maximum transmittance of about 98.1 and 97.6% was found at 1054 nm in double- and triple-layer AR-coated samples, respectively. The LIDT values have been measured on the AR coatings. Based upon the number of layers in the AR coatings, the LIDT values varied in the range of 8.7–2.4 J cm–2 starting from single to double to triple layer. The AR coatings developed by sol–gel dip coating technique could find application in Nd:phosphate high power laser system.

Graphical abstract

Schematic diagram of single (1LD), Double (2LD) and triple (3LD) layer design AR coated samples; Laser induced damage threshold (LIDT) values of each system mentioned below; Origin plot shows transmittance values of each system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Biswas P K 2011 J. Sol-Gel Sci. Technol. 59 456

    Article  CAS  Google Scholar 

  2. Moayedfar M and Assadi M K 2018 Rev. Adv. Mater. Sci. 53 187

    Article  CAS  Google Scholar 

  3. Schirone L, Sotgiu G and Califano F P 1997 Thin Solid Films 297 296

    Article  CAS  Google Scholar 

  4. Enger R C and Case S K 1983 Appl. Opt. 22 3220

    Article  CAS  Google Scholar 

  5. Chen Y W, Han P Y and Zhang X C 2009 Appl. Phys. Lett. 94 041106

    Article  Google Scholar 

  6. Papet P, Nichiporuk O, Kaminski A, Rozier Y, Kraiem J, Lelievre J F et al 2006 Sol. Energy Mater Sol. Cells 90 2319

    Article  CAS  Google Scholar 

  7. Thomas I M 1997 Proc. SPIE 3136 215

    Article  CAS  Google Scholar 

  8. Liu H, Jensen L, Ma P and Ristau D 2018 Adv. Opt. Technol. 7 23

    Article  CAS  Google Scholar 

  9. Zhu M, Xing H, Chai Y, Yi K, Sun J, Wang J et al 2016 Opt. Eng. 56 011003

    Article  Google Scholar 

  10. Park M S and Kim J K 2005 Langmuir 21 11404

    Article  CAS  Google Scholar 

  11. Joo W, Park M S and Kim J K 2006 Langmuir 22 7960

    Article  CAS  Google Scholar 

  12. Walheim S, Schaffer E, Mlynek J and Steiner U 1999 Science 283 520

    Article  CAS  Google Scholar 

  13. Wang J, Hu W, Han W, Zhu Q and Xu Y 2018 High Power Laser Sci. Eng. 6 26

    Article  Google Scholar 

  14. Liu X, Lu X, Wen P, Shu X and Chi F 2017 Appl. Surf. Sci. 420 180

    Article  CAS  Google Scholar 

  15. Mazur M, Wojcieszak D, Domaradzki J, Kaczmarek D, Song S and Placido F 2013 Opto-Electron Rev. 21 233

    Article  CAS  Google Scholar 

  16. Gil-Rostra J, García-García F J, Yubero F and González-Elipe A R 2014 Sol. Energy Mater. Sol. Cells 123 130

    Article  CAS  Google Scholar 

  17. Sabnis R W, Guerrero D J, Brewer T and Spencer J 2005 US Patent No. 6,869,747

  18. Druzhinin A, Ostrovskii I, Yerokhov V, Khoverko Y, Nichkalo S and Kogut I U 2012 Proceedings of international conference on modern problem of radio engineering, telecommunications and computer science p 484

  19. Eriksson T S and Granqvist C G 1983 Appl. Opt. 22 3204

    Article  CAS  Google Scholar 

  20. Sun X W and Kwok H S 1999 J. Appl. Phys. 86 408

    Article  CAS  Google Scholar 

  21. Deng C and Ki H 2016 Sol. Energy Mater. Sol. Cells 147 37

    Article  CAS  Google Scholar 

  22. Martinet C, Paillard V, Gagnaire A and Joseph J 1997 J. Non-Cryst. Solids 216 77

    Article  CAS  Google Scholar 

  23. Zhang S, Zhao X, Wang P, Xiao P, Luo J and Jiang B 2019 J. Sol-Gel Sci. Technol. 92 598

    Article  CAS  Google Scholar 

  24. Ye L, Zhang X, Zhang Y, Li Y, Zheng W and Jian B 2016 J. Sol-Gel Sci. Technol. 80 1

    Article  CAS  Google Scholar 

  25. Stöber W, Fink A and Bohn E 1968 J. Colloid Interface Sci. 26 62

    Article  Google Scholar 

  26. Khan H, Samanta S, Seth M and Jana S 2020 J. Mater. Sci. 94 141

    CAS  Google Scholar 

  27. Park S K, Kim K D and Kim H T 2002 Colloids Surf. A: Physicochem. Eng. Asp. 197 7

    Article  CAS  Google Scholar 

  28. Thomas I M 1992 Appl. Opt. 31 6145

    Article  CAS  Google Scholar 

  29. Ghazaryan L, Handa S, Schmitt P, Beladiya V, Roddatis V, Tünnermann A et al 2021 Nanotechnol. 32 095709

    Article  CAS  Google Scholar 

  30. Jerman M, Qiao Z and Mergel D 2005 Appl. Opt. 44 3006

    Article  CAS  Google Scholar 

  31. Musić S, Vinceković N F and Sekovanić L 2011 Braz. J. Chem. Eng. 28 89

    Article  Google Scholar 

  32. Bumajdad A, Nazeer A A, Sagheer F A, Nahar S and Zaki M I 2018 Sci. Rep. 8 3695

    Article  Google Scholar 

  33. Sunke V, Bukke G N and Suda U 2018 J. Nanomed. Res. 7 65

    Google Scholar 

  34. Trost M 2015 PhD Thesis (Friedrich-Schiller-Universität Jena)

  35. Khan H, Seth M, Samanta S and Jana S 2020 J. Sol-Gel Sci. Technol. 94 141

    Article  CAS  Google Scholar 

  36. Natoli J Y, Gallais L, Akhouayri H and Amra C 2002 Appl. Opt. 41 3156

    Article  CAS  Google Scholar 

  37. Wang X, Wu G, Zhou B and Shen J 2012 Opt. Express. 20 24482

    Article  CAS  Google Scholar 

  38. Balogh-Michels Z, Stevanovic I, Borzi A, Bächli A, Schachtler A, Gischkat T et al 2021 J. Eur. Opt. Soc.: Rapid Publ. 17 3

    Article  Google Scholar 

  39. Chambonneau M, Rullier J, Grua P and Lamaignère L 2018 Opt. Express. 26 21819

    Article  CAS  Google Scholar 

  40. Whitney D L, Fayon A K, Broz M E and Cook R F J. Geosci. Educ. 55 56

  41. Rodrıguez H A and Casanova H 2018 Hindawi J. Nanotech. Article ID 7589051 doi https://doi.org/10.1155/2018/7589051

  42. Carnegie M R, Sherine A, Sivagami D and Sakthivel S 2016 J. Sol-Gel Sci. Technol. 78 176

    Article  Google Scholar 

Download references

Acknowledgements

This study has been done under the project (GAP0624) sponsored by the Department of Atomic Energy (DAE), Government of India (vide Sanction No. 34/14/09/2018-BRNS). We thankfully acknowledge the help rendered by Materials Characterization and Instrumentation Division of CSIR-CGCRI, Kolkata for XRD, particle size distribution and FESEM characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunirmal Jana.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podder, S., Nath, A.M., Mukherjee, C. et al. Fabrication and characterization of sol–gel-based coatings on quartz glass to obtain antireflective effect at 1054 nm for optics of high power Nd:phosphate glass laser. Bull Mater Sci 45, 154 (2022). https://doi.org/10.1007/s12034-022-02732-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02732-2

Keywords

Navigation