Skip to main content

Advertisement

Log in

Pelletized Composite Wood Fiber Mixed with Plastic as Advanced Solid Biofuels: Thermo-Chemical Analysis

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Biomass pellets, as renewable multifunctional resources, cannot only be exploited for heating and power generation but also for greenhouse carbon dioxide enrichment. Composite pellets of plastics and wood fibers are one of the industrialized alternative biomass with improved multiphysical properties. In this study, thermal and chemical analysis along with the scanning electron microscope imaging were implemented. The bio-based fibers were mixed with several volume fractions of plastic in the form of pelletized advanced solid fuel. The pristine fiber pellet containing no plastic was tested as a baseline for the thermo-chemical properties of composite wood pellets. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used for the thermal analysis of pelletized samples. The TGA results were used to explore the thermal reactivity of fibers and plastics under high temperature conditions. The DSC results showed that the glass transition of the composite pellets, taking place under endothermic reactions, was activated by increasing the plastic content of composite pellets. Thermal conductivity of composite pellets was measured using the Hot-Disk transient plane source (TPS) technique. The TPS results showed that a composite pellet with a higher volume-fraction of plastics possessed a lower thermal conductivity. This is due to the lower thermal conductivity of shredded plastics than the blended fibers in the matrix of the pellets. The presence of plastic changed the thermal behavior of fiber by enhancing the energy content of composite pellets while altering the chemical composition of gas emission during the thermo-chemical conversion of biomass. Finally, the results of pelletized fiber-plastic composites were compared with undensified fibers and plastics to identify the accessible boundaries for the thermo-chemical properties of fiber-plastic solid fuels. The results of this study helped to improve the efficiency of the thermo-chemical conversion of the composite pellets through understanding the thermo-chemical behavior of the biomass within the reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shahrukh, H., Oyedun, A.O., Kumar, A., Ghiasi, B., Kumar, L., Sokhansanj, S.: Net energy ratio for the production of steam pretreated biomass-based pellets. Biomass Bioenergy 80, 286–297 (2015)

    Article  Google Scholar 

  2. Creutzig, F., Ravindranath, N., Berndes, G., Bolwig, S., Bright, R., Cherubini, F., Chum, H., Corbera, E., Delucchi, M., Faaij, A.: Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7(5), 916–944 (2015)

    Article  Google Scholar 

  3. Singh, R., Krishna, B.B., Kumar, J., Bhaskar, T.: Opportunities for utilization of non-conventional energy sources for biomass pretreatment. Bioresour. Technol. 199, 398–407 (2016)

    Article  Google Scholar 

  4. Zhang, Y., Zheng, Y., Yang, M., Song, Y.: Effect of fuel origin on synergy during co-gasification of biomass and coal in CO2. Bioresour. Technol. 200, 789–794 (2016)

    Article  Google Scholar 

  5. Nanda, S., Mohanty, P., Pant, K.K., Naik, S., Kozinski, J.A., Dalai, A.K.: Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenergy Res. 6(2), 663–677 (2013)

    Article  Google Scholar 

  6. Guest, G., Cherubini, F., Strømman, A.H.: Global warming potential of carbon dioxide emissions from biomass stored in the anthroposphere and used for bioenergy at end of life. J Ind. Ecol. 17(1), 20–30 (2013)

    Article  Google Scholar 

  7. Madadian, E., Lefsrud, M., Lee, C.P., Roy, Y., Orsat, V.: Gasification of pelletized woody biomass using a downdraft reactor and impact of material bridging. J. Energy Eng. 142(4), 04016001 (2016)

    Article  Google Scholar 

  8. Adrados, A., De Marco, I., Caballero, B., López, A., Laresgoiti, M., Torres, A.: Pyrolysis of plastic packaging waste: a comparison of plastic residuals from material recovery facilities with simulated plastic waste. Waste Manage. (Oxford) 32(5), 826–832 (2012)

    Article  Google Scholar 

  9. López, A., De Marco, I., Caballero, B., Laresgoiti, M., Adrados, A.: Influence of time and temperature on pyrolysis of plastic wastes in a semi-batch reactor. Chem. Eng. J. 173(1), 62–71 (2011)

    Article  Google Scholar 

  10. Miskolczi, N., Angyal, A., Bartha, L., Valkai, I.: Fuels by pyrolysis of waste plastics from agricultural and packaging sectors in a pilot scale reactor. Fuel Process. Technol. 90(7), 1032–1040 (2009)

    Article  Google Scholar 

  11. Lu, J.-J., Chen, W.-H.: Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Appl. Energy 160, 49–57 (2015)

    Article  Google Scholar 

  12. McKendry, P.: Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83(1), 37–46 (2002)

    Article  Google Scholar 

  13. López-González, D., Fernandez-Lopez, M., Valverde, J., Sanchez-Silva, L.: Kinetic analysis and thermal characterization of the microalgae combustion process by thermal analysis coupled to mass spectrometry. Appl. Energy 114, 227–237 (2014)

    Article  Google Scholar 

  14. Fernandez, A., Saffe, A., Pereyra, R., Mazza, G., Rodriguez, R.: Kinetic study of regional agro-industrial wastes pyrolysis using non-isothermal TGA analysis. Appl. Therm. Eng. 106, 1157–1164 (2016)

    Article  Google Scholar 

  15. Siddique, M., Amin, M.: Thermogravimetric analysis (TGA) of lignite coal, tree leaves and their blend. J. Appl. Emerg. Sci. 4(2), 118–121 (2016)

    Google Scholar 

  16. Romão, C., Pereira, C., Esteves, J.: DSC analysis of in situ polymerized poly (butylene terephthalate) flax fiber reinforced composites produced by RTM. In: Natural Fibres: Advances in Science and Technology Towards Industrial Applications, pp. 231–242. Springer, Dordrecht (2016)

    Chapter  Google Scholar 

  17. Fu, Q., Li, B., Zhang, D., Fang, M., Shao, J., Guo, M., Guo, Z., Li, M., Sun, J., Zhai, Y.: Comparative studies of the in vitro dissolution and in vivo pharmacokinetics for different formulation strategies (solid dispersion, micronization, and nanocrystals) for poorly water-soluble drugs: a case study for lacidipine. Coll. Surf. B 132, 171–176 (2015)

    Article  Google Scholar 

  18. Yaman, S.: Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers. Manag. 45(5), 651–671 (2004)

    Article  Google Scholar 

  19. Yin, C.-Y.: Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 90(3), 1128–1132 (2011)

    Article  Google Scholar 

  20. Bahng, M.-K., Mukarakate, C., Robichaud, D.J., Nimlos, M.R.: Current technologies for analysis of biomass thermochemical processing: a review. Anal. Chim. Acta 651(2), 117–138 (2009)

    Article  Google Scholar 

  21. Nadeem, R., Manzoor, Q., Iqbal, M., Nisar, J.: Biosorption of Pb(II) onto immobilized and native Mangifera indica waste biomass. J. Ind. Eng. Chem. 35, 185–194 (2016)

    Article  Google Scholar 

  22. Madadian, E., Lefsrud, M., Lee, C.A.P., Roy, Y.: Green energy production: the potential of using biomass gasification. J. Green Eng. 4(2), 101–116 (2014)

    Article  Google Scholar 

  23. Lugato, E., Vaccari, F.P., Genesio, L., Baronti, S., Pozzi, A., Rack, M., Woods, J., Simonetti, G., Montanarella, L., Miglietta, F.: An energy-biochar chain involving biomass gasification and rice cultivation in Northern Italy. GCB Bioenerg. 5(2), 192–201 (2013)

    Article  Google Scholar 

  24. Mabuda, A., Mamphweli, N., Meyer, E.: Model free kinetic analysis of biomass/sorbent blends for gasification purposes. Renew. Sustain. Energy Rev. 53, 1656–1664 (2016)

    Article  Google Scholar 

  25. Gašparovič, L., Koreňová, Z., Jelemenský, Ľ.: Kinetic study of wood chips decomposition by TGA. Chem. Pap. 64(2), 174–181 (2010)

    Google Scholar 

  26. Slopiecka, K., Bartocci, P., Fantozzi, F.: Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl. Energy 97, 491–497 (2012)

    Article  Google Scholar 

  27. Carrier, M., Loppinet-Serani, A., Denux, D., Lasnier, J.-M., Ham-Pichavant, F., Cansell, F., Aymonier, C.: Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35(1), 298–307 (2011)

    Article  Google Scholar 

  28. Naik, S., Goud, V.V., Rout, P.K., Jacobson, K., Dalai, A.K.: Characterization of Canadian biomass for alternative renewable biofuel. Renew. Energy 35(8), 1624–1631 (2010)

    Article  Google Scholar 

  29. Mottiar, Y., Vanholme, R., Boerjan, W., Ralph, J., Mansfield, S.D.: Designer lignins: harnessing the plasticity of lignification. Curr. Opin. Biotechnol. 37, 190–200 (2016)

    Article  Google Scholar 

  30. Lazaro, A., Peñalosa, C., Solé, A., Diarce, G., Haussmann, T., Fois, M., Zalba, B., Gshwander, S., Cabeza, L.F.: Intercomparative tests on phase change materials characterisation with differential scanning calorimeter. Appl. Energy 109, 415–420 (2013)

    Article  Google Scholar 

  31. Fu, J., Akbarzadeh, A., Chen, Z., Qian, L., Pasini, D.: Non-Fourier heat conduction in a sandwich panel with a cracked foam core. Int. J. Therm. Sci. 102, 263–273 (2016)

    Article  Google Scholar 

  32. Bartocci, P., Anca-Couce, A., Slopiecka, K., Nefkens, S., Evic, N., Retschitzegger, S., Barbanera, M., Buratti, C., Cotana, F., Bidini, G.: Pyrolysis of pellets made with biomass and glycerol: kinetic analysis and evolved gas analysis. Biomass Bioenerg. 97, 11–19 (2017)

    Article  Google Scholar 

  33. Barreneche, C., Fernández, A.I., Cabeza, L.F., Cuypers, R.: Thermophysical characterization and thermal cycling stability of two TCM:CaCl2 and zeolite. Appl. Energy 137, 726–730 (2015)

    Article  Google Scholar 

  34. ASTM: Standard test method for moisture analysis of particulate wood fuels. ASTM E871-82. West Conshohocken (2013)

  35. ASTM: Standard test method for volatile matter in the analysis of particulate wood fuels. ASTM E872-82. West Conshohocken (2013)

  36. ASTM: Standard test methods for analysis of wood fuels. ASTM E870-82. West Conshohocken (2013)

  37. ASTM: Standard test methods for determination of carbon, hydrogen and nitrogen in analysis samples of coal and carbon in analysis samples of coal and coke. ASTM D5373. West Conshohocken (2014)

  38. DIN: Solid Mineral Fuels—Determination of Sulfur Content—Part 3: Instrumental Methods, DIN 51724-3. German Institute for Standardization, Germany (2012)

    Google Scholar 

  39. Amorim, P.H.O.: Ferreira, A.P.G., Machado, L.C.M., Cervini, P., Cavalheiro, É.T.G.: Investigation on the thermal behavior of β-blockers antihypertensives atenolol and nadolol using TG/DTG, DTA, DSC, and TG–FTIR. J. Therm. Anal. Calorim. 120(1), 1035–1042 (2015)

    Article  Google Scholar 

  40. Basu, P.: Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. Academic Press, London (2013)

    Google Scholar 

  41. Akbarzadeh, A., Pasini, D.: Phase-lag heat conduction in multilayered cellular media with imperfect bonds. Int. J. Heat Mass Transfer. 75, 656–667 (2014)

    Article  Google Scholar 

  42. Ahadi, M., Andisheh-Tadbir, M., Tam, M., Bahrami, M.: An improved transient plane source method for measuring thermal conductivity of thin films: deconvoluting thermal contact resistance. Int. J. Heat Mass Transfer. 96, 371–380 (2016)

    Article  Google Scholar 

  43. Alkan, C., Sarı, A., Karaipekli, A., Uzun, O.: Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 93(1), 143–147 (2009)

    Article  Google Scholar 

  44. Sun, J., Simon, S.: The melting behavior of aluminum nanoparticles. Thermochim. Acta 463(1), 32–40 (2007)

    Article  Google Scholar 

  45. Akbarzadeh, A.H., Abedini, A., Chen, Z.T.: Effect of micromechanical models on structural responses of functionally graded plates. Compos. Struct. 119, 598–609 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank BioFuelNet Canada for the financial support throughout the Project No. 29. We also gratefully acknowledge the technical support by Thermtest thermophysical instruments in New Brunswick for conducting thermal conductivity tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Akbarzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madadian, E., Akbarzadeh, A.H. & Lefsrud, M. Pelletized Composite Wood Fiber Mixed with Plastic as Advanced Solid Biofuels: Thermo-Chemical Analysis. Waste Biomass Valor 9, 1629–1643 (2018). https://doi.org/10.1007/s12649-017-9921-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9921-1

Keywords

Navigation