Skip to main content
Log in

Stochastic Background of Gravitational Waves Generated by Black Hole MACHO Binaries in the Galaxy

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The interest in gravitational waves (GW) has increased since the recent detections of such signals announced by the LIGO Scientific Collaboration and the Virgo Collaboration. On the other hand, also interesting is the study of the stochastic backgrounds of GW (SBGW), which could in principle be generated by a variety of sources and astrophysical processes; particularly, in the present paper we are concerned with the SBGW from MACHO binaries in the Galaxy. In our scheme, we take into account only MACHOs which are black holes (BHMACHOs) and are located up to 50 kpc from the center of the Galaxy. Our spectra, which are calculated in the scenarios with \(\Omega h^{2}=0.1\) and \(\Omega h^{2}=1.0\), are parameterized by the fraction of the Galaxy’s dark halo mass which is in the form of BHMACHOs and are compared with some results found in the literature. Besides, we investigate in what situations the backgrounds are above the sensitivity curves of the Laser Interferometer Space Antenna (LISA), Einstein Telescope (ET), Advanced Virgo (AdV) and Advanced Laser Interferometer Gravitational-Wave Observatory Plus (LIGO A+).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Some authors refer to such a quantity as ‘strain amplitude’ [42].

References

  1. B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, et al., Phys. Rev. Lett. 116, 061102 (2016). https://link.aps.org/doi/10.1103/PhysRevLett.116.061102

  2. B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, et al., Phys. Rev. Lett. 116, 241103 (2016). https://link.aps.org/doi/10.1103/PhysRevLett.116.241103

  3. B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, et al., Phys. Rev. Lett. 118, 221101 (2017). https://link.aps.org/doi/10.1103/PhysRevLett.118.221101

  4. B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, et al., Phys. Rev. Lett. 119, 141101 (2017). https://link.aps.org/doi/10.1103/PhysRevLett.119.141101

  5. B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, et al., Phys. Rev. Lett. 119, 161101 (2017). https://link.aps.org/doi/10.1103/PhysRevLett.119.161101

  6. B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, et al., Astrophys. J. Lett. 851, L35 (2017). https://doi.org/10.3847/2041-8213/aa9f0c

  7. R. Abbott, T.D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams, et al., Phys. Rev. D 102, 043015 (2020). https://link.aps.org/doi/10.1103/PhysRevD.102.043015

  8. B.P. Abbott, R. Abbott, T.D. Abbott, S. Abraham, F. Acernese, K. Ackley, et al., Astrophys. J. Lett. 892, L3 (2020). https://doi.org/10.3847/2041-8213/ab75f5

  9. R. Abbott, T.D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams, et al., Astrophys. J. Lett. 896, L44 (2020). https://doi.org/10.3847/2041-8213/ab960f

  10. R. Abbott, T.D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams, et al., Phys. Rev. Lett. 125, 101102 (2020). https://link.aps.org/doi/10.1103/PhysRevLett.125.101102

  11. R. Abbott, T.D. Abbott, S. Abraham, F. Acernese, K. Ackley, et al., Astrophys. J. Lett. 915, L5 (2021). https://doi.org/10.3847/2041-8213/ac082e

  12. B.P. Abbott, R. Abbott, T.D. Abbott, S. Abraham, F. Acernese, K. Ackley, et al., Phys. Rev. X 9, 031040 (2019). https://link.aps.org/doi/10.1103/PhysRevX.9.031040

  13. R. Abbott, T.D. Abbott, S. Abraham, F. Acernese, K. Ackley, A. Adams, et al., Phys. Rev. X 11, 021053 (2021). https://link.aps.org/doi/10.1103/PhysRevX.11.021053

  14. B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, et al., Phys. Rev. Lett. 120, 091101 (2018). https://link.aps.org/doi/10.1103/PhysRevLett.120.091101

  15. Z.C. Chen, F. Huang, Q.G. Huang, Astrophys. J. 871, 97 (2019). https://doi.org/10.3847/1538-4357/aaf581

  16. I. Dvorkin, E. Barausse, Mon. Not. R. Astron. Soc. 470, 4547 (2017). https://doi.org/10.1093/mnras/stx1454

  17. T. Regimbau, Res. Astron. Astrophys. 11, 369 (2011). https://ui.adsabs.harvard.edu/abs/2011RAA....11..369R

  18. I. Dvorkin, J.P. Uzan, E. Vangioni, J. Silk, Phys. Rev. D 94, 103011 (2016). https://link.aps.org/doi/10.1103/PhysRevD.94.103011

  19. C. Périgois, C. Belczynski, T. Bulik, T. Regimbau, Phys. Rev. D 103, 043002 (2021). https://link.aps.org/doi/10.1103/PhysRevD.103.043002

  20. B.W. Carroll, D.A. Ostlie, An Introduction to Modern Astrophysics, 2nd edn. (Cambridge University Press, Cambridge, UK, 2017)

    Book  Google Scholar 

  21. J.A. Peacock, Cosmological Physics (Cambridge University Press, Cambridge, UK, 1998)

    Book  Google Scholar 

  22. C. Alcock, R.A. Allsman, D.R. Alves, T.S. Axelrod, A.C. Becker, D.P. Bennett, et al., Astrophys. J. 542, 281 (2000). https://doi.org/10.1086/309512

  23. P. Tisserand, L. Le Guillou, C. Afonso, J.N. Albert, J. Andersen, R. Ansari, et al., Astron. Astrophys. 469, 387 (2007). https://doi.org/10.1051/0004-6361:20066017

  24. S. Wang, Y.F. Wang, Q.G. Huang, T.G.F. Li, Phys. Rev. Lett. 120, 191102 (2018). https://link.aps.org/doi/10.1103/PhysRevLett.120.191102

  25. B.P. Abbott, R. Abbott, T.D. Abbott, S. Abraham, F. Acernese, K. Ackley, et al., Phys. Rev. Lett. 123, 161102 (2019). https://link.aps.org/doi/10.1103/PhysRevLett.123.161102

  26. W.A. Hiscock, Astrophys. J. 509, L101 (1998). https://doi.org/10.1086/311776

  27. K. Ioka, T. Tanaka, T. Nakamura, Phys. Rev. D 60, 083512 (1999). https://link.aps.org/doi/10.1103/PhysRevD.60.083512

  28. O.D. Aguiar, J.C.N. de Araujo, O.D. Miranda, AIP Conference Proceedings 873(1), 452 (2006). https://aip.scitation.org/doi/abs/10.1063/1.2405083

  29. E.F.D. Evangelista, J.C.N. de Araujo, Mod. Phys. Lett. A 28, 1350174 (2013). https://www.worldscientific.com/doi/abs/10.1142/S0217732313501745

  30. T. Nakamura, M. Sasaki, T. Tanaka, K.S. Thorne, Astrophys. J. 487, L139 (1997). https://doi.org/10.1086/310886

  31. P. Ajith, Class. Quantum Gravity 25, 114033 (2008). https://doi.org/10.1088/0264-9381/25/11/114033

  32. S. Marassi, R. Schneider, G. Corvino, V. Ferrari, S.P. Zwart, Phys. Rev. D 84, 124037 (2011). https://link.aps.org/doi/10.1103/PhysRevD.84.124037

  33. K.S. Thorne, in 300 Years of Gravitation, ed. by S. Hawking, W. Israel (Cambridge University Press, Cambridge, UK, 1987), chap. 9, p. 330

  34. J.F. Navarro, C.S. Frenk, S.D.M. White, Astrophys. J. 462, 563 (1996). https://ui.adsabs.harvard.edu/abs/1996ApJ...462..563N%2F

  35. P.J. McMillan, Mon. Not. R. Astron. Soc. 414, 2446 (2011). https://doi.org/10.1111/j.1365-2966.2011.18564.x

  36. V. Avila-Reese, C. Firmani, X. Hernández, Astrophys. J. 505, 37 (1998). https://doi.org/10.1086/306136

  37. L. Hui, Phys. Rev. Lett. 86, 3467 (2001). https://link.aps.org/doi/10.1103/PhysRevLett.86.3467

  38. J. Calcino, J. García-Bellido, T.M. Davis, Mon. Not. R. Astron. Soc. 479, 2889 (2018). https://doi.org/10.1093/mnras/sty1368

  39. D. Merritt, A.W. Graham, B. Moore, J. Diemand, B. Terzić, Astron. J. 132, 2685 (2006). https://doi.org/10.1086/508988

  40. C. Alcock, R.A. Allsman, T.S. Axelrod, D.P. Bennett, K.H. Cook, K.C. Freeman, et al., Astrophys. J. 461, 84 (1996). https://ui.adsabs.harvard.edu/abs/1996ApJ...461...84A

  41. A. Klypin, H. Zhao, R.S. Somerville, Astrophys. J. 573, 597 (2002). https://doi.org/10.1086/340656

  42. J.C.N. de Araujo, O.D. Miranda, O.D. Aguiar, Phys. Rev. D 61, 124015 (2000). https://link.aps.org/doi/10.1103/PhysRevD.61.124015

  43. R. Rebolo, R.A. Battye, P. Carreira, K. Cleary, R.D. Davies, R.J. Davis, et al., Mon. Not. R. Astron. Soc. 353, 747 (2004). https://doi.org/10.1111/j.1365-2966.2004.08102.x

  44. P.C. Peters, Phys. Rev. 136, B1224 (1964). https://link.aps.org/doi/10.1103/PhysRev.136.B1224

  45. S. Babak, J. Gair, A. Sesana, E. Barausse, C.F. Sopuerta, C.P.L. Berry, et al., Phys. Rev. D 95, 103012 (2017). https://link.aps.org/doi/10.1103/PhysRevD.95.103012

  46. C.J. Moore, R.H. Cole, C.P.L. Berry, Class. Quantum Gravity 32, 015014 (2015). https://doi.org/10.1088/0264-9381/32/1/015014

  47. B. Carr, M. Raidal, T. Tenkanen, V. Vaskonen, H. Veermäe, Phys. Rev. D 96, 023514 (2017). https://link.aps.org/doi/10.1103/PhysRevD.96.023514

  48. V. de Luca, G. Franciolini, A. Riotto, Phys. Lett. B 807, 135550 (2020). https://www.sciencedirect.com/science/article/pii/S0370269320303543

  49. B.J. Carr, S.W. Hawking, Mon. Not. R. Astron. Soc. 168, 399 (1974). https://doi.org/10.1093/mnras/168.2.399

  50. R.R. Caldwell, P. Casper, Phys. Rev. D 53, 3002 (1996). https://doi.org/10.1103/PhysRevD.53.3002

  51. S.W. Hawking, I.G. Moss, J.M. Stewart, Phys. Rev. D 26, 2681 (1982). https://doi.org/10.1103/PhysRevD.26.2681

  52. B. Carr, F. Kühnel, M. Sandstad, Phys. Rev. D 94, 083504 (2016). https://link.aps.org/doi/10.1103/PhysRevD.94.083504

  53. M. Trashorras, J. Garcia-Bellido, S. Nesseris, universe 7, 18 (2021). https://doi.org/10.3390/universe7010018

  54. A. Poveda, C. Allen, A. Hernandez-Alcantara, Proceedings of the International Astronomical Union 2(S240), 417 (2006). https://doi.org/10.1017/S1743921307004383

Download references

Acknowledgements

The author wishes to thank Dr. Odylio Denis de Aguiar for proposing the problem discussed in this paper and for the valuable discussions; the author acknowledges his former advisor Dr. José Carlos Neves de Araujo for the valuable instructions.

Funding

The author would like to thank the Brazilian agency Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support (grants 151967/2019-9 and 313563/2019-5)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgard F. D. Evangelista.

Ethics declarations

Conflicts of Interest

The author declares that he has no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Assuming that the halo is a sphere of radius \(R_\mathrm{m}\) with the Sun located at the distance \(R_\mathrm{sun}\) from its center and being R and r, respectively, the radial distances from the center of the halo and from the Sun, we can write the volume element as

$$\begin{aligned} dV=2\pi R^{2}\sin \theta d\theta dR, \end{aligned}$$
(30)

with

$$\begin{aligned} \cos \theta =\frac{R^{2}_\mathrm{sun}+R^{2}-r^{2}}{2R_\mathrm{sun}R}. \end{aligned}$$
(31)

Using Eqs. (30) and (31) and bearing in mind that \(R_\mathrm{m}>R_\mathrm{sun}\), Eq. (22) assumes the form

$$\begin{aligned} I&=\frac{2\pi R^{3}_\mathrm{s}(1\,{\mathrm{kpc}})^2}{R_\mathrm{sun}}\bigg \{\int ^{R_\mathrm{sun}}_{0}\int ^{R_\mathrm{sun}+R}_{R_\mathrm{sun}-R}\frac{drdR}{r(R_\mathrm{s}+R)^{2}}\,+ \nonumber \\& \int ^{R_\mathrm{m}}_{R_\mathrm{sun}}\int ^{R+R_\mathrm{sun}}_{R-R_\mathrm{sun}}\frac{drdR}{r(R_\mathrm{s}+R)^{2}}\bigg \} \therefore \nonumber \\&=\frac{2\pi R^{3}_\mathrm{s}(1\,{\mathrm{kpc}})^2}{R_\mathrm{sun}}\left\{ \int ^{R_\mathrm{m}}_{0}\frac{1}{(R_\mathrm{s}+R)^{2}}\ln {\frac{R+R_\mathrm{sun}}{|R-R_\mathrm{sun}|}}dR\right\} , \end{aligned}$$
(32)

where, for the sake of calculation, we divided the domain in two regions. Using the values \(R_\mathrm{m}=50\,{\mathrm{kpc}}\), \(R_\mathrm{sun}=8.29\,{\mathrm{kpc}}\) and \(R_\mathrm{s}=18\,{\mathrm{kpc}}\) in Eq. (32) and solving the integral, we have \(I\approx 213\,{\mathrm{kpc}^3}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evangelista, E.F.D. Stochastic Background of Gravitational Waves Generated by Black Hole MACHO Binaries in the Galaxy. Braz J Phys 52, 91 (2022). https://doi.org/10.1007/s13538-021-01014-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-021-01014-2

Keywords

Navigation