Skip to main content
Log in

A comprehensive molecular analysis of bovine coronavirus strains isolated from Brazil and comparison of a wild-type and cell culture-adapted strain associated with respiratory disease

  • Veterinary Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

A Correction to this article was published on 07 March 2024

This article has been updated

Abstract

Bovine coronavirus (BCoV) has dual tropisms that can trigger enteric and respiratory diseases in cattle. Despite its global distribution, BCoV field strains from Brazil remain underexplored in studies investigating the virus's worldwide circulation. Another research gap involves the comparative analysis of S protein sequences in BCoV isolates from passages in cell lines versus direct sequencing from clinical samples. Therefore, one of the objectives of our study was to conduct a comprehensive phylogenetic analysis of BCoV strains identified from Brazil, including a respiratory strain obtained during this study, comparing them with global and ancestral BCoV strains. Additionally, we performed a comparative analysis between wild-type BCoV directly sequenced from the clinical sample (nasal secretion) and the cell culture-adapted strain, utilizing the Sanger method. The field strain and multiple cell passage in cell culture (HRT-18) adapted BCoV strain (BOV19 NS) detected in this study were characterized through molecular and phylogenetic analyses based on partial fragments of 1,448 nt covering the hypervariable region of the S gene. The analyses have demonstrated that different BCoV strains circulating in Brazil, and possibly Brazilian variants, constitute a new genotype (putative G15 genotype). Compared with the ancestral prototype (Mebus strain) of BCoV, 33 nt substitutions were identified of which 15 resulted in non-synonymous mutations (nine transitions and six transversions). Now, compared with the wild-type strain was identified only one nt substitution in nt 2,428 from the seventh passage onwards, which resulted in transversion, neutral-neutral charge, and one substitution of asparagine for tyrosine at aa residue 810 (N810Y).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

Change history

References

  1. ICTV (2022) International committee on taxonomy of viruses-virus taxonomy: release. https://talk.ictvonline.org/taxonomy/. Accessed 25 Jan 2023.

  2. Boileau MJ, Kapil S (2010) Bovine coronavirus associated syndromes. Vet Clin North Am Food Anim Pract 26:123–146. https://doi.org/10.1016/j.cvfa.2009.10.003

    Article  PubMed  PubMed Central  Google Scholar 

  3. Park SJ, Kim GY, Choy HE, Hong YJ, Saif LJ, Jeong JH, Park SI, Kim HH, Kim SK, Shin SS, Kang MI, Cho KO (2007) Dual enteric and respiratory tropisms of winter dysentery bovine coronavirus in calves. Arch Virol 152:1885–1900. https://doi.org/10.1007/s00705-007-1005-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cavanagh D (1995) The coronavirus surface glycoprotein. In: Siddell SG (ed) The coronaviridae. Springer US, Boston, pp 73–113

    Chapter  Google Scholar 

  5. Bidokhti MR, Traven M, Krishna NK, Munir M, Belak S, Alenius S, Cortey M (2013) Evolutionary dynamics of bovine coronaviruses: natural selection pattern of the spike gene implies adaptive evolution of the strains. J Gen Virol 94:2036–2049. https://doi.org/10.1006/viro.1996.8344

    Article  CAS  PubMed  Google Scholar 

  6. Peng G, Xu L, Lin YL, Chen L, Pasquarella JR, Holmes KV, Li F (2012) Crystal structure of bovine coronavirus spike protein lectin domain. J Biol Chem 287:41931–41938. https://doi.org/10.1074/jbc.M112.418210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alekseev KP, Vlasova AN, Jung K, Hasoksuz M, Zhang X, Halpin R, Wang S, Ghedin E, Spiro D, Saif LJ (2008) Bovine-like coronaviruses isolated from four species of captive wild ruminants are homologous to bovine coronaviruses, based on complete genomic sequences. J Virol 82:12422–12431. https://doi.org/10.1128/jvi.01586-08

    Article  CAS  PubMed  Google Scholar 

  8. Saif LJ, Jung K (2020) Comparative Pathogenesis of Bovine and Porcine Respiratory Coronaviruses in the Animal Host Species and SARS-CoV-2 in Humans. J Clin Microbiol 58(8):e01355-e1420. https://doi.org/10.1128/JCM.01355-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smith FL, Heller MC, Crossley BM, Clothier KA, Anderson ML, Barnum SS, Pusterla N, Rowe JD (2022) Diarrhea outbreak associated with coronavirus infection in adult dairy goats. J Vet Intern Med 36:805–811. https://doi.org/10.1111/jvim.16354

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ballesteros ML, Sanchez CM, Enjuanes L (1997) Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology 227:378–388. https://doi.org/10.1006/viro.1996.8344

    Article  CAS  PubMed  Google Scholar 

  11. Hasoksuz M, Sreevatsan S, Cho KO, Hoet AE, Saif LJ (2002) Molecular analysis of the S1 subunit of the spike glycoprotein of respiratory and enteric bovine coronavirus isolates. Virus Res 84:101–109. https://doi.org/10.1016/s0168-1702(02)00004-7

    Article  CAS  PubMed  Google Scholar 

  12. Rekik MR, Dea S (1994) Comparative sequence analysis of a polymorphic region of the spike glycoprotein S1 subunit of enteric bovine coronavirus isolates. Arch Virol 135:319–331. https://doi.org/10.1007/BF01310017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Suzuki T, Otake Y, Uchimoto S, Hasebe A, Goto Y (2020) Genomic characterization and phylogenetic classification of bovine coronaviruses through whole genome sequence analysis. Viruses 12(2):183. https://doi.org/10.3390/v12020183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu Q, Li B, Sun D (2022) Advances in bovine coronavirus epidemiology. Viruses 14(5):1109. https://doi.org/10.3390/v14051109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Malpica JM, Fraile A, Moreno I, Obies CI, Drake JW, Garcia-Arenal F (2002) The rate and character of spontaneous mutation in an RNA virus. Genetics 162:1505–1511. https://doi.org/10.1093/genetics/162.4.1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chung H, Noh JY, Koo BS, Hong JJ, Kim HK (2022) SARS-CoV-2 mutations acquired during serial passage in human cell lines are consistent with several of those found in recent natural SARS-CoV-2 variants. Comput Struct Biotechnol J 20:1925–1934. https://doi.org/10.1016/j.csbj.2022.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Borucki MK, Allen JE, Chen-Harris H, Zemla A, Vanier G, Mabery S, Torres C, Hullinger P, Slezak T (2013) The role of viral population diversity in adaptation of bovine coronavirus to new host environments. PLoS One 8:e52752. https://doi.org/10.1371/journal.pone.0052752

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takiuchi E, Alfieri AF, Alfieri AA (2008) Molecular analysis of the bovine coronavirus S1 gene by direct sequencing of diarrheic fecal specimens. Braz J Med Biol Res 41:277–282. https://doi.org/10.1590/s0100-879x2008000400004

    Article  CAS  PubMed  Google Scholar 

  19. Alfieri AA, Parazzi ME, Takiuchi E, Medici KC, Alfieri AF (2006) Frequency of group A rotavirus in diarrhoeic calves in Brazilian cattle herds, 1998–2002. Trop Anim Health Prod 38:521–526. https://doi.org/10.1007/s11250-006-4349-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Takiuchi E, Stipp DT, Alfieri AF, Alfieri AA (2006) Improved detection of bovine coronavirus N gene in faeces of calves infected naturally by a semi-nested PCR assay and an internal control. J Virol Methods 131:148–154. https://doi.org/10.1016/j.jviromet.2005.08.005

    Article  CAS  PubMed  Google Scholar 

  21. Hiscox JA, Cavanagh D, Britton P (1995) Quantification of individual subgenomic mRNA species during replication of the coronavirus transmissible gastroenteritis virus. Virus Res 36:119–130. https://doi.org/10.1016/0168-1702(94)00108-o

    Article  CAS  PubMed  Google Scholar 

  22. Frucchi APS, Dall Agnol AM, Bronkhorst DE, Beuttemmuller EA, Alfieri AA, Alfieri AF (2022) Bovine coronavirus co-infection and molecular characterization in dairy calves with or without clinical respiratory disease. Front Vet Sci 9:895492. https://doi.org/10.3389/fvets.2022.895492

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vilcek S, Jackova A, Kolesarova M, Vlasakova M (2017) Genetic variability of the S1 subunit of enteric and respiratory bovine coronavirus isolates. Acta Virol 61:212–216. https://doi.org/10.4149/av_2017_02_12

    Article  CAS  PubMed  Google Scholar 

  24. Hasoksuz M, Lathrop SL, Gadfield KL, Saif LJ (1999) Isolation of bovine respiratory coronaviruses from feedlot cattle and comparison of their biological and antigenic properties with bovine enteric coronaviruses. Am J Vet Res 60:1227–1233

    Article  CAS  PubMed  Google Scholar 

  25. Reynolds DJ, Debney TG, Hall GA, Thomas LH, Parsons KR (1985) Studies on the relationship between coronaviruses from the intestinal and respiratory tracts of calves. Arch Virol 85:71–83. https://doi.org/10.1007/BF01317007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tsunemitsu H, Yonemichi H, Hirai T, Kudo T, Onoe S, Mori K, Shimizu M (1991) Isolation of bovine coronavirus from feces and nasal swabs of calves with diarrhea. J Vet Med Sci 53:433–437. https://doi.org/10.1292/jvms.53.433

    Article  CAS  PubMed  Google Scholar 

  27. Zhang X, Herbst W, Kousoulas KG, Storz J (1994) Comparison of the S genes and the biological properties of respiratory and enteropathogenic bovine coronaviruses. Arch Virol 134:421–426. https://doi.org/10.1007/BF01310579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chouljenko VN, Kousoulas KG, Lin X, Storz J (1998) Nucleotide and predicted amino acid sequences of all genes encoded by the 3’ genomic portion (9.5 kb) of respiratory bovine coronaviruses and comparisons among respiratory and enteric coronaviruses. Virus Genes 17:33–42. https://doi.org/10.1023/A:1008048916808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chouljenko VN, Lin XQ, Storz J, Kousoulas KG, Gorbalenya AE (2001) Comparison of genomic and predicted amino acid sequences of respiratory and enteric bovine coronaviruses isolated from the same animal with fatal shipping pneumonia. J Gen Virol 82:2927–2933. https://doi.org/10.1099/0022-1317-82-12-2927

    Article  CAS  PubMed  Google Scholar 

  30. Hasoksuz M, Lathrop S, Al-dubaib MA, Lewis P, Saif LJ (1999) Antigenic variation among bovine enteric coronaviruses (BECV) and bovine respiratory coronaviruses (BRCV) detected using monoclonal antibodies. Arch Virol 144:2441–2447. https://doi.org/10.1007/s007050050656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin XQ, O’Reilly KL, Storz J, Purdy CW, Loan RW (2000) Antibody responses to respiratory coronavirus infections of cattle during shipping fever pathogenesis. Arch Virol 145:2335–2349. https://doi.org/10.1007/s007050070024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin XQ, O’Reilly KL, Storz J (2002) Antibody responses of cattle with respiratory coronavirus infections during pathogenesis of shipping fever pneumonia are lower with antigens of enteric strains than with those of a respiratory strain. Clin Diagn Lab Immunol 9:1010–1013. https://doi.org/10.1128/cdli.9.5.1010-1013.2002

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang X, Hasoksuz M, Spiro D, Halpin R, Wang S, Vlasova A, Janies D, Jones LR, Ghedin E, Saif LJ (2007) Quasispecies of bovine enteric and respiratory coronaviruses based on complete genome sequences and genetic changes after tissue culture adaptation. Virology 363:1–10. https://doi.org/10.1016/j.virol.2007.03.018

    Article  CAS  PubMed  Google Scholar 

  34. Temizkan SS, Alkan F (2021) Bovine coronavirus infections in Turkey: molecular analysis of the full-length spike gene sequences of viruses from digestive and respiratory infections. Arch Virol 166:2461–2468. https://doi.org/10.1007/s00705-021-05147-2

    Article  CAS  Google Scholar 

  35. Schaefer C, Rost B (2012) Predict impact of single amino acid change upon protein structure. BMC genomics 13(Suppl 4):S4. https://doi.org/10.1186/1471-2164-13-S4-S4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yoo D, Deregt D (2001) A single amino acid change within antigenic domain II of the spike protein of bovine coronavirus confers resistance to virus neutralization. Clin Diagn Lab Immunol 8:297–302. https://doi.org/10.1128/CDLI.8.2.297-302.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang XM, Kousoulas KG, Storz J (1991) Comparison of the nucleotide and deduced amino acid sequences of the S genes specified by virulent and avirulent strains of bovine coronaviruses. Virology 183:397–404. https://doi.org/10.1016/0042-6822(91)90154-4

    Article  CAS  PubMed  Google Scholar 

  38. Gelinas AM, Boutin M, Sasseville AM, Dea S (2001) Bovine coronaviruses associated with enteric and respiratory diseases in Canadian dairy cattle display different reactivities to anti-HE monoclonal antibodies and distinct amino acid changes in their HE, S and ns4.9 protein. Virus Res 76:43–57. https://doi.org/10.1016/s0168-1702(01)00243-x

    Article  CAS  PubMed  Google Scholar 

  39. Martínez N, Brandão PE, de Souza SP, Barrera M, Santana N, de Arce HD, Pérez LJ (2012) Molecular and phylogenetic analysis of bovine coronavirus based on the spike glycoprotein gene. Infect Genet Evol 12:1870–1878. https://doi.org/10.1016/j.meegid.2012.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jeong JH, Kim GY, Yoon SS, Park SJ, Kim YJ, Sung CM, Jang OJ, Shin SS, Koh HB, Lee BJ, Lee CY, Kang MI, Kim HJ, Park NY, Cho KO (2005) Detection and isolation of winter dysentery bovine coronavirus circulated in Korea during 2002–2004. J Vet Med Sci 67:187–189. https://doi.org/10.1292/jvms.67.187

    Article  PubMed  Google Scholar 

  41. Kanno T, Hatama S, Ishihara R, Uchida I (2007) Molecular analysis of the S glycoprotein gene of bovine coronaviruses isolated in Japan from 1999 to 2006. J Gen Virol 88:1218–1224. https://doi.org/10.1099/vir.0.82635-0

    Article  CAS  PubMed  Google Scholar 

  42. Thomas CJ, Hoet AE, Sreevatsan S, Wittum TE, Briggs RE, Duff GC, Saif LJ (2006) Transmission of bovine coronavirus and serologic responses in feedlot calves under field conditions. Am J Vet Res 67:1412–1420. https://doi.org/10.2460/ajvr.67.8.1412

    Article  PubMed  Google Scholar 

  43. Cho KO, Hasoksuz M, Nielsen PR (2001) Cross-protection studies between respiratory and calf diarrhea and winter dysentery coronavirus strains in calves and RT-PCR and nested PCR for their detection. Arch Virol 146:2401–2419. https://doi.org/10.1007/s007050170011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yoo D, Parker MD, Song J, Cov GJ, Deregt D, Babiuk LA (1991) Structural analysis of the conformational domains involved in neutralization of bovine coronavirus using deletion mutants of the spike glycoprotein S1 subunit expressed by recombinant baculoviruses. Virology 183:91–98. https://doi.org/10.1016/0042-6822(91)90121-q

    Article  CAS  PubMed  Google Scholar 

  45. Meitzler JL, Hinde S, Banfi B, Nauseef WM, Ortiz de Montellano PR (2013) Conserved cysteine residues provide a protein-protein interaction surface in dual oxidase (DUOX) proteins. J Biol Chem 288:7147–7157. https://doi.org/10.1074/jbc.M112.414797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Morand S, Agnandji D, Noel-Hudson MS, Nicolas V, Buisson S, Macon-Lemaitre L, Gnidehou S, Kaniewski J, Ohayon R, Virion A, Dupuy C (2004) Targeting of the dual oxidase 2 N-terminal region to the plasma membrane. J Biol Chem 279:30244–30251. https://doi.org/10.1074/jbc.M405406200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES/MEC) for granting a scholarship to the first author.

Funding

This work was supported by Universidade Federal do Paraná-UFPR, Universidade Estadual de Londrina-UEL, CAPES/MEC-Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, and National Institute of Science and Technology of Dairy Production Chain (INCT-Leite / CNPq, CAPES, and Araucaria Foundation-FAP/PR).

Author information

Authors and Affiliations

Authors

Contributions

Janaina Lustosa de Mello: Conceptualization, Methodology, Investigation, Data curation, Formal analysis, Writing-original draft. Daniela Lorencena: Investigation. Ruana Renostro Delai: Investigation, Data curation. Andressa Fernanda Kunz: Investigation, Validation. Flávia Possatti: Investigation, Data curation. Amauri Alcindo Alfieri: Visualization, Writing-review & editing. Elisabete Takiuchi: Conceptualization, Formal analysis, Supervision, Visualization, Writing-review & editing.

Corresponding author

Correspondence to Elisabete Takiuchi.

Ethics declarations

Ethics approval

This study was approved by the Ethics Committee for the Use of Animals of the Federal University of Paraná, under protocol nº. 34/2016.

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Wrong supplementary file 1 had been published.

Responsible Editor: Fernando R. Spilki

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14.9 KB)

Supplementary file2 (XLSX 39 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Mello, J.L., Lorencena, D., Delai, R.R. et al. A comprehensive molecular analysis of bovine coronavirus strains isolated from Brazil and comparison of a wild-type and cell culture-adapted strain associated with respiratory disease. Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01287-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01287-0

Keywords

Navigation