Skip to main content
Log in

Cretaceous–Eocene Flysch of the Sochi Synclinorium (Western Caucasus): Sources of Clastic Material Based on the Results of U–Th–Pb Isotope Dating of Detrital Zircons

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

The first results of the U–Th–Pb isotope dating of detrital zircons (dZr, N = 130, n = 91) from the middle Danian sandstones (63.9–65.3 Ma) of the Cretaceous–Eocene Novorossiisk–Anapa flysch widely developed in the Sochi synclinorium (southern slope of the Western Caucasus) are presented. The maximum and minimum dZr age is 2973 ± 12 Ma and 318 ± 3 Ma, respectively; weighted average age of the four youngest dZr is ~322 ± 7 Ma. There are no signs of erosion products of the Jurassic magmatites involved in the structure of the Greater Caucasus and Crimean Mountains into the sedimentary basin, where the Novorossiisk–Anapa flysch was formed. The results have revealed a high degree of similarity between the provenance signals of the Danian sandstones from the Novorossiisk–Anapa flysch, some Paleogene–Neogene and Early Quaternary (Early Pleistocene) sandstones of the Western Caucasus and Western Cis-Caucasia, red-colored Upper Permian and Lower Triassic sandstones of the Moscow syneclise, as well as Late Quaternary alluvium at lower reaches of the Don and Volga rivers draining vast expanses of the Russian Plate. These facts suggest: (1) the absence of eroded mountain structures of the Greater Caucasus and Crimea in the middle Danian; (2) the main volume of detrital material composing the Novorossiisk–Anapa flysch was formed due to the recycling of Permian–Triassic and younger sequences of the Russian Plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Afanasenkov, A.P., Nikishin, A.M., and Obukhov, A.N., Geological structure and hydrocarbon potential of the eastern Black Sea region, Moscow: Nauchn. Mir, 2007.

    Google Scholar 

  2. Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Palike, H., Backman, J., and Rio, D., Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes, Newslett. Stratigr., 2014, vol. 47, no. 2, pp. 131–181. https://doi.org/10.1127/0078-0421/2014/0042

    Article  Google Scholar 

  3. Aleksandrova, G.N., Erofeeva, K.G., Kuznetsov, N.B., Romanyuk, T.V., Sheshukov, V.S., Dubenskii, A.S., Lyapunov, S.M., Yakovleva, A.I., and Pan’kov, V.N., The First Results of U–Pb Dating of Detrital Zircons from the Oligocene of the Southeastern Part of the Voronezh Anteclise and Their Importance for Paleogeography, Dokl. Earth Sci., 2020, vol. 494, no. 1, pp. 675–679. https://doi.org/10.31857/S2686739720090042

    Article  ADS  CAS  Google Scholar 

  4. Allen, M.B., Morton, A.C., Fanning, C.M., Ismail-Zadeh, A.J., and Kroonenberg, S.B., Zircon age constraints on sediment provenance in the Caspian region, J. Geol. Soc. London, 2006, vol. 163, pp. 647–655.

    Article  CAS  Google Scholar 

  5. Almendinger, O.A., Mityukov, A.V., Myasoedov, N.K., and Nikishin A.M., Dokl. Earth Sci., 2011, vol. 439, no. 1, pp. 899–901.

    Article  ADS  CAS  Google Scholar 

  6. Andersen, T., Correction of common lead in U–Pb analyses that do not report 204Pb, Chem. Geol., 2002, vol. 192, pp. 59–79.

    Article  ADS  CAS  Google Scholar 

  7. Andersen, T., Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation, Chem. Geol., 2005, vol. 216, pp. 249–270.

    Article  ADS  CAS  Google Scholar 

  8. Andersen, T., ComPbCorr—Software for common lead correction of U‒Th‒Pb analyses that do not report 204Pb in LA-ICP-S in the Earth Sciences: Principles and aplications, Sylvester, P.J., Ed., Miner. Ass. Canada, Short Course Ser., 2008, vol. 40, pp. 312‒314.

  9. Baskakova, G.V., Vasil’eva, N.A., Nikishin, A.M., Doronina, M.S., and Ikhsanov, B.I., Identification of the main tectonic events by using 2D–3D seismic data in the eastern Black Sea, Mosc. Univ. Geol. Bull., 2022, no. 5, pp. 466–478.

  10. Bol’shoi Kavkaz v al’piiskuyu epokhu (The Greater Caucasus during the Alpine Epoch), Leonov, Yu. G., Ed., Moscow: GEOS, 2007.

    Google Scholar 

  11. Bouma, A.H., Sedimentology of Some Flysch Deposits, Amsterdam: Elsevier, 1962.

    Google Scholar 

  12. Chistyakova, A.V., Veselovskii, R.V., Semenova, D.V., Kovach, V.P., Adamskaya, E.V., and Fetisova, A.M., Stratigraphic correlation of Permian–Triassic red beds, Moscow Basin, East European Platform: First detrital zircon U–Pb dating results, Dokl. Earth Sci., 2020, vol. 492, no. 1, pp. 306–310.

    Article  CAS  Google Scholar 

  13. Cowgill, E., Forte, A.M., Niemi, N., et al., Relict basin closure and crustal shortening budgets during continental collision: An example from Caucasus sediment provenance, Tectonics, 2016, vol. 35, pp. 2918–2947. https://doi.org/10.1002/2016TC004295

    Article  ADS  Google Scholar 

  14. Elhlou, S., Belousova, E.A., Griffin, W.L., Pearson, N.J., and O’Reily, S.Y., Trace element and isotopic composition of GJ-red zircon standard by laser ablation, Geochim. Cosmochim. Acta, 2006, vol. 70, no. 18, p. A158.

    Article  Google Scholar 

  15. Geologiya SSSR (Geology of the Soviet Uniomn, Andrushchuk, V.L, Dubinskii, A.Ya, and Khain, V. E., Eds., Moscow: Nedra, 1968, vol. 9 (North Caucasus).

  16. Gerasimov, V.Yu., Ul’yanov, A.A., Snezhko, V.A., Mozar, D., Lavrishchev, V.A., Gazeev, V.M., and Gurbanov, A.G., Zircon isotope dating of Jurassic basalts from the Goitkh volcanic region of the Western Caucasus, Mosc. Univ. Geol. Bull., 2022, no. 2, pp. 192–197.

  17. Griffin, W.L., Powell, W.J., Pearson, N.J., and Reilly, S.Y., GLITTER: data reduction software for laser ablation ICP-MS, in Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues, Sylvester, P.J., Ed., Miner. Ass. Can. Short Course, 2008, vol. 40, pp. 308‒311.

    Google Scholar 

  18. Gurbanov, A.G., Gazeev, V.M., Leksin, A.Yu., and Khess, Yu.S., The Lower Jurassic island-arc basal–andesite–dacite magmatism in the Central Caucasus (Karachaevo volcanic region): Petrological-geochemical and isotopic features and genesis, Vestn. Vladikavkaz. Nauchn. Tsentra, 2011, vol. 11, no. 2, pp. 15–32.

    Google Scholar 

  19. Harrison, T.M., Watson, E.B., and Aikman, A.B., Temperature spectra of zircon crystallization in plutonic rocks, Geology, 2007, vol. 35(7), pp. 635–638. https://doi.org/10.1130/G23505A.1

    Article  ADS  Google Scholar 

  20. Hoskin, P.W. and Schaltegger, U., The composition of zircon and igneous and metamorphic petrogenesis, Rev. Miner. Geochem., 2003, vol. 53(1), pp. 27–62.

    Article  CAS  Google Scholar 

  21. Horstwood, M.S.A., Kosler, J., Gehrels, G., Jackson, S.E., McLean, N.M., Paton, Ch., Pearson, N.J., Sircombe, K., Sylvester, P., Vermeesch, P., Bowring, J.F., Condon, D.J., and Schoene, B., Community–derived standards for LA-ICP-MS U–(TH–)Pb geochronology – uncertainty propagation, age interpretation and data reporting, Geostand. Geoanal Res., 2016, vol. 40, no. 1, pp. 311–332.

    Article  CAS  Google Scholar 

  22. Jackson, S.E., Pearson, N.J., Griffin, W.L., and Be-lousova, E.A., The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology, Chem. Geol., 2004, vol. 211, pp. 47–69.

    Article  ADS  CAS  Google Scholar 

  23. Kaczmarek, M.A., Müntener, O., and Rubatto, D., Trace element chemistry and U–Pb dating of zircons from oceanic gabbros and their relationship with whole rock composition (Lanzo, Italian Alps), Contrib. Mineral. Petrol., 2008, vol. 155(3), pp. 295–312. https://doi.org/10.1007/s00410-007-0243-3

    Article  ADS  CAS  Google Scholar 

  24. Kaigorodova, E.N. Geological features of the Raduzhnoe gold–sulfide deposit (Greater Caucasus and its geological setting), Extended Abstract, PhD (Geol.–Miner.) Dissertation, Moscow: IGEM RAN, 2022.

  25. Kaigorodova, E.N. and Lebedev V.A. Age, petrological-geochemical characteristics, and origin of igneous rocks of the Middle Jurassic igneous rocks in the Khulam volcanoplutonic complex (North Caucasus), Vulkanol. Seismol., 2022, no. 2, pp. 38–65. https://doi.org/10.31857/S0203030622020031

  26. Kirkland, C.L., Smithies, R.H., Taylor, R.J.M., Evans, N., and McDonald, B., Zircon Th/U ratios in magmatic environs, Lithos, 2015, vol. 212–215, pp. 397–414.

    Article  ADS  Google Scholar 

  27. Koltringer, C., Stevens, T., Lindner, M., Baykaa, Y., Ghafarpour, A., Khormali, F., Taratunina, N., and Kurbanov, R., Quaternary sediment sources and loess transport pathways in the Black Sea–Caspian Sea region identified by detrital zircon U–Pb geochronology, Global Planet. Change, 2022, vol. 209, p. 103736. https://doi.org/10.1016/j.gloplacha.2022.103736

    Article  Google Scholar 

  28. Korsakov, S.G., Semenukha, I.N., Gorbova, S.M., Zarubin, V.V., Sokolov, V.V., Tuzikov, G.R., Chernykh, V.I., Tereshchenko, L.A., and Andreev, V.M., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii masshtaba 1 : 200 000 (State Gological Map of the Russian Federation), St. Petersburg: Izd-vo Kartfabriki VSEGEI, 2002, Ser. Caucasus, Sheet K-37-XXXIV (Tuapse), Explanatory Note.

  29. Korsakov, S.G., Gorbova, S.M., Kamenev, S.A., Semenukha, I.N., Chernykh, V.I., Sokolov, V.V., Tuzikov, G.R., Saakov, V.G., Prokuronov, P.V., Andreev, V.M., Shel’ting, S.K., Romanova, G.E., Gross, E.G., and Sivukha, N.M., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii masshtaba 1 : 200 000 (State Geological Map of the Russian Federation. Scale 1 : 200 000, St. Petersburg, 2021, Ser. Caucasus, Sheet L-37-XXXIV (Gelendzhik), Explanatory Note.

  30. Kuznetsov, N.B. and Romanyuk, T.V., Peri-Gondwanan blocks in the structure of the southern and southeastern framing of the East European Platform, Geotectonics, 2021, no. 4, pp. 439–472.

  31. Kuznetsov, N.B., Belousova, E.A., Griffin, W.L., O’Reilly, S.Y., Romanyuk, T.V., and Rud’ko, S.V., Pre-Mesozoic Crimea as a continuation of the Dobrogea platform: Insights from detrital zircons in Upper Jurassic conglomerates, Mountainous Crimea, Int. J. Earth Sci., 2019, vol. 108, no. 7, pp. 2407–2428. https://doi.org/10.1007/s00531-019-01770-2

    Article  CAS  Google Scholar 

  32. Kuznetsov, N.B., Romanyuk, T.V., Strashko, A.V., and Novikova, A.S., The ophiolite association on Cape (western Crimean Mountains)—upper age limite based on results of the U–Pb isotope dating of plagiorhyolites (Monakh Clift), Zap. Gorn. Inst., 2022, no. 4, pp. 3–15.

  33. Linnemann, U., Ouzegane, K., Drareni, A., Hofmann, M., Becker, S., Gärtner, A., and Sagawe, A., Sands of West Gondwana: an archive of secular magmatism and plate interactions – a case study from the Cambro-Ordovician section of the Tassili Ouan Ahaggar (Algerian Sahara) using U–Pb-LA-ICP-MS detrital zircon ages, Lithos, 2011, vol. 123(1–4), pp. 188–203. https://doi.org/10.1016/j.lithos.2011.01.010

  34. Ludwig, K.R., User’s Manual for Isoplot 3.75. A Geochronological Toolkit for Microsoft Excel, Berkeley Geochron. Center. Spec. Publ., 2012, no. 5.

  35. Marinin, A.V. and Rastsvetaev, L.M., Structural paragenesis in the northwestern Caucasus, in Problemy tektonofiziki (Problems in Tectonophysics), Moscow: IFZ RAN, 2008, pp. 191–224 (Collection of Works).

  36. Marinin, A.V., Stupin, S.I., and Kopaevich, L.F., The structure and stratigraphic position of the Agoi Olistostrome, Northwest Caucasus, Mosc. Univ. Geol. Bull., 2017, no. 5, pp. 405–415.

  37. Martini, E., Standard Tertiary and Quaternary calcareous nannoplankton zonation, Frinacci, A., Ed., Proc. 2nd Plankt. Conf. Plankt. Microfossils, Roma: Tecnoscienza, 1971, vol. 2, pp. 739–785.

  38. Mityukov, A.V., Al’mendinger, O.A., Myasoedov, N.K., Nikishin, A.M., and Gaiduk, V.V., The sedimentation model of the Tuapse Trough (Black Sea), Dokl. Earth Sci., 2011, vol. 440, no. 3, pp. 1245–1248.

    Article  ADS  CAS  Google Scholar 

  39. Morozova, E.B., Sergeev, S.A., and Savel’ev, A.D., Cretaceous and Jurassic intrusions in the Crimean Mountains: Fist data on the U–Pb (SIMS SHRIMP) dating, Dokl. Earth Sci., 2017, vol. 474, no. 1, pp. 530–534.

    Article  ADS  CAS  Google Scholar 

  40. Nikishin, A.M., Ershov, A.V., and Nikishin, V.A., Geological history of Western Caucasus and adjacent foredeeps based on analysis of the regional balanced section, Dokl. Earth Sci., 2010, vol. 430, no. 4, pp. 155–157.

    Article  ADS  CAS  Google Scholar 

  41. Nikishin, A.M., Wannier, M., Alekseev, A.S., Almendinger, O.A., Fokin, P.A., Gabdullin, R.R., Khudoley, A.K., Kopaevich, L.F., Mityukov, A.V., Petrov, E.I., and Rubtsova, E.V., Mesozoic to recent geological history of southern Crimea and the eastern Black Sea region, Sosson, M., Stephenson, R.A., and Adamia, S.A., Eds., Tectonic Evolution of the Eastern Black Sea and Caucasus, Geol. Soc. London. Spec. Publ., 2015a. https://doi.org/10.1144/SP428.1

  42. Nikishin, A.M., Okay, A., Tüysüz, O., Demirer, A., Wannier, M., Amelin, N., and Petrov, E., The Black Sea Basins structure and history: new model based on new deep penetration regional seismic data. Part 1. Basins structure, Mar. Petrol. Geol., 2015b, vol. 59, pp. 638–655. https://doi.org/10.1016/j.marpetgeo.2014.08.017

    Article  ADS  Google Scholar 

  43. Nikishin, A.M., Okay, A., Tüysüz, O., Demirer, A., Wannier, M., Amelin, N., and Petrov, E., The Black Sea Basins structure and history: new model based on new deep penetration regional seismic data. Part 2. Tectonic history and paleogeography, Mar. Petrol. Geol., 2015c, vol. 59, pp. 656–670. https://doi.org/10.1016/j.marpetgeo.2014.08.018

    Article  ADS  Google Scholar 

  44. Nikishin, A.M., Romanyuk, T.V., Moskovskii, D.V., Kuznetsov, N.B., Kolesnikova, A.A., Dubenskii, A.S., Sheshukov, V.S., and Lyapunov, S.M., Upper Triassic sequences in the Crimean Mountains: First results of the U–Pb dating of detrital zircons, Mosc. Univ. Geol. Bull.. 2020, no. 2, pp. 18–33.

  45. Okay, A.I. and Nikishin, A.M., Tectonic evolution of the southern margin of Laurasia in the Black Sea region, Int. Geol. Rev., 2015, vol. 57, no. 5–8, pp. 1051–1076. https://doi.org/10.1080/00206814.2015.1010609

    Article  Google Scholar 

  46. Okay, A.I., Tanzel, I., and Tüysüz, O., Obduction, subduction and collision as reflected in the Upper Cretaceous–Lower Eocene sedimentary record of Western Turkey, Geol. Mag., 2001. https://doi.org/10.1017/S0016756801005088

  47. Okay, A.I., Sunal, G., Sherlock, S., Altiner, D., Tüysüz, O., Kylander–Clark, A.R.C., and Aygul, M., Early Cretaceous sedimentation and orogeny on the southern active margin of Eurasia: Central Pontides, Turkey, Tectonics, 2013. https://doi.org/10.1002/tect.20077

  48. Palcu, D.V., Patina, I.S., Sandric, I., et al., Late Miocene megalake regressions in Eurasia, Sci. Rep., 2021, no. 11, p. 11471.

  49. Patina, I.S. and Popov, S.V., Seismostratigraphy of regressive phases in the Maikop and Trkhan complexes on northern shelf of East Para-Tethys, in Tektonika i geodinamika Zemnoi kory i mantii: fundamental’nye problemy–2023 (Tectonics and Geodynamics of the Earth’s crust and Mantle: Fundamental Problems–2023), Moscow: GEOS, 2023, vol. 2, pp. 68–72.

  50. Popov, S.V., Rögl, S., Rozanov, A.Y., Steininger, F.F., Shcherba, I.G., and Kovac, M., Lithological-palaeogeographic maps of the Paratethys, Courier Forsch.–Inst. Senckenberg, 2004, no. 250, p. 73.

  51. Popov, S.V., Akhmet’ev, M.A., Lopatin, A.V., Bugrova, E.M., Sychevskaya, E.K., and Shcherba, I.G., Paleogeografiya i biogeografiya basseinov Paratetisa (Paleogeography and Biogeography of Basins in Para-Tethys), Moscow: Nauchn. Mir, 2009, part 1 (Late Eocene–Early Miocene).

  52. Popov, S.V., Antipov, M.P., Zastrozhnov, A.S., Kurina, E.E., and Pinchuk, T.N., Sea-level fluctuations on the northern shelf of the Eastern Paratethys in the Oligocene–Neogene, Stratigr. Geol. Correl., 2010, vol.18, no. 2, pp. 200–224.

    Article  ADS  Google Scholar 

  53. Popov, D.V., Brovchenk, V.D., Nekrylov, N.A., et al., Removing a mask of alteration: geochemistry and age of the Karadag volcanic sequence in SE Crimea, Lithos, 2019, vol. 324, pp. 371–384.

    Article  ADS  Google Scholar 

  54. Romanyuk, T.V., Kuznetsov, N.B., Rud’ko, S.V., Kolesnikova, A.A., Moskovskii, D.V., Dubenskii, A.S., Sheshukov, V.S., and Lyapunov, S.M., Isotopic-geochemical characteristics of the Carboniferous–Triassic magmatism in the Balck Sea region based on the study of detrital zircon grains from Jurassic coarse-clastic sequences of the Mountainous Crimea, Geodinam. Tektonofiz., 2020, vol. 11, no. 3, pp. 453–473. https://doi.org/10.5800/GT-2020-11-3-0486

    Article  Google Scholar 

  55. Rubatto, D., Zircon: The metamorphic mineral, Rev. Miner. Geochem., 2017, vol. 83(1), pp. 261–295.

    Article  CAS  Google Scholar 

  56. Rud’ko, S.V., Kuznetsov, N.B., Romanyuk, T.V., and Belousova, E.A., Structure and the age of conglomerates in Mount Southern Demerdzhi based on the first U/Pb dating of detrital zircons (Upper Jurassic, Crimean Mountains), Dokl. Earth Sci., 2018, vol. 483, no. 3, pp. 1423–1426. https://doi.org/10.31857/S086956520003254-2

    Article  ADS  Google Scholar 

  57. Rud’ko, S.V., Kuznetsov, N.B., Belousova, E.A., and Romanyuk T.V. Age, Hf-isotope systematics of detrital zircons and the sources of conglomerates in the southern Demerdzhi Mountain, Crimean Mountains, Geotectonics, 2019, no. 5, pp. 569–587. https://doi.org/10.31857/S0016-853X2019536-61

  58. Shanmugam, G., The turbidite–contourite–tidalite–baroclinite–hybridite problem: orthodoxy vs. empirical evidence behind the “Bouma Sequence”, J. Palaeogeogr., 2021, vol. 10, no. 9, pp. 1–32. https://doi.org/10.1186/s42501-021-00085-1

    Article  Google Scholar 

  59. Skublov, S.G., Berezin, A.V., and Berezhnaya, N.G., General relations in the trace-element composition of zircons from eclogites with implications for the age of eclogites in the Belomorian mobile belt, Petrology, 2012, vol. 20(5), pp. 427–449.

    Article  CAS  Google Scholar 

  60. Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., and Whitehouse, M.J., Plešovice zircon— A new natural reference material for U–Pb and Hf isotopic microanalysis, Geol. Mag., 2008, vol. 249, pp. 1–35.

    Google Scholar 

  61. Speijer, R.P., Pälike, H., Hollis, C.J., Hooker, J.J., and Ogg, J.G., Chapter 28 – the Paleogene Period, in Geologic Time Scale, 2020, vol. 2, pp. 1087–1140. https://doi.org/10.1016/B978-0-12-824360-2.00028-0

  62. Teipel, U., Eichhorn, R., Loth, G., Rohrmuller, J., Holl, R., and Kennedy, A., U–Pb SHRIMP and Nd isotopic data from the western Bohemian Massif (Bayerischer Wald, Germany): implications for Upper Vendian and Lower Ordovician magmatism, Int. J. Earth Sci. (Geol. Rundsch.), 2004, vol. 93, pp. 782–801.

    CAS  Google Scholar 

  63. Tye, A.R., Niemi, N.A., Safarov, R.T., Kadirov, F.A., and Babayev, G.R., Sedimentary response to a collision orogeny recorded in detrital zircon provenance of Greater Caucasus foreland basin sediments, Basin Res., 2021, vol. 33, no. 2, pp. 933–967. https://doi.org/10.1111/BRE.12499

    Article  ADS  Google Scholar 

  64. Vasey, D.A., Cowgill, E., Roeske, S.M., Niemi, N., Godoladze, T., Skhirtladze, I., and Godoladze, S., Evolution of the Greater Caucasus basement and formation of the Main Caucasus Thrust, Georgia, Tectonics, 2020, vol. 6, pp. 1–26. https://doi.org/10.1029/2019TC005828

    Article  Google Scholar 

  65. Vermeesch, P., How many grains are needed for a provenance study?, Earth Planet. Sci. Lett., 2004, vol. 224, pp. 351–441.

    Article  Google Scholar 

  66. Vermeesch, P., On the visualization of detrital age distributions, Chem. Geol., 2012, vol. 312–313, pp. 190–194.

    Article  ADS  Google Scholar 

  67. Vincent, S.J., Carter, A., Lavrishev, V.A., Rice, S.P., Barabadze, T.G., and Hovius, N., The exhumation of the western Greater Caucasus: a thermochronometric study, Geol. Mag., 2011, vol. 148(1), pp. 1–21. https://doi.org/10.1017/S0016756810000257

    Article  ADS  CAS  Google Scholar 

  68. Wanless, V.D., Perfit, M.R., Ridley, W.I., Wallace, P.J., Grimes, C.B., and Klein, E.M., Volatile abundances and oxygen isotopes in basaltic to dacitic lavas on mid–ocean ridges: the role of assimilation at spreading centers, Chem. Geol., 2011, vol. 287(1–2), pp. 54–65. https://doi.org/10.1016/j.chemgeo.2011.05.017

    Article  ADS  CAS  Google Scholar 

  69. Wiedenbeck, M., Allen, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Vonquadt, A., Roddick, J.C., and Speigel, W., Three natural zircon standards for U–Th–Pb, Lu–Hf, trace-element and REE analyses, Geostand. Newsletter, 1995, vol. 19, pp. 1–23.

    Article  CAS  Google Scholar 

  70. Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J.P., Greenwood, R.C., Hinton, R., Kita, N., Mason, P.R.D., Norman, M., Ogasawara, M., Piccoli, R., Rhede, D., Satoh, H., Schulz–Dobrick, B., Skar, O., Spicuzza, M.J., Terada, K., Tindle, A., Togashi, S., Vennemann, T., Xie, Q., and Zheng, Y.F., Further characterization of the 91 500 zircon crystal, Geostand. Geoanal. Res., 2004, vol. 28, pp. 9–39.

    Article  CAS  Google Scholar 

  71. Wilhem, C. (Compiler), Maps of the Callovian and Tithonian Paleogeography of the Caribbean, Atlantic, and Tethyan Realms: Facies and Environments, Geol. Soc. Am. Digit. Map Chart Ser., 2014a, vol. 17, 3 sheets.

  72. Wilhem, C., Notes on Maps of the Callovian and Tithonian Paleogeography of the Caribbean, Atlantic, and Tethyan Realms: Facies and Environments, Geol. Soc. Am. Digit. Map Chart Ser., 2014b, vol. 17, p. 9. https://doi.org/10.1130/2014.DMCH017

    Article  Google Scholar 

  73. Yuan, H.-L., Gao, S., Dai, M.-N., Zong, C.-L., Gunther, D., Fontaine, G.H., Liu, X.-M., and Diwu, C.-R., Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS, Chem. Geol., 2008, vol. 247, pp. 100–118.

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work was accomplished in accordance with research plans, project RNF-23-27-00409 (T.V. Romanyuk, supervisor).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Kuznetsov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by D. Sakya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, N.B., Romanyuk, T.V., Shatsillo, A.V. et al. Cretaceous–Eocene Flysch of the Sochi Synclinorium (Western Caucasus): Sources of Clastic Material Based on the Results of U–Th–Pb Isotope Dating of Detrital Zircons. Lithol Miner Resour 59, 47–69 (2024). https://doi.org/10.1134/S0024490223700384

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490223700384

Keywords:

Navigation