Skip to main content
Log in

Integrated Quantitative Calcareous Plankton Bio-Magnetostratigraphy of the Early Miocene from IODP Leg 342, Hole U1406A, Newfoundland Ridge, NW Atlantic Ocean

  • Published:
Stratigraphy and Geological Correlation Aims and scope Submit manuscript

Abstract

High-resolution quantitative analyses of the planktonic foraminifera and calcareous nannofossil content have been carried out on IODP Leg 342, Hole U1406A (Northwest Atlantic Ocean) in the core interval 10H2–2H4, plotting the abundance distributions of the biostratigraphically and quantitatively most significant species. Qualitative analyses have been used to identify the precise depth of marker bioevents. For almost the whole succession, relevant magnetostratigraphic data were provided by previous studies. All chrons and subchrons in the interval C6Cn–C6AAr were recognised in core interval 10H2–4H1 and calibrated to the GPTS 2012, but no magnetostratigraphic data are available for the highest portion (above 35 m). The investigated succession falls between Sphenolithus delphix FO (First Occurrence)—uppermost Chattian bioevent—in core 10H2 and the Sphenolithus belemnos LO (Last Occurrence)–Burdigalian bioevent – in core 2H5, embracing the Zone O7 (uppermost part)–M3 foraminiferal zone interval and the Zone CNO6–CNM5 calcareous nannofossil zone interval. A calcareous plankton biochronological framework has been produced integrating calcareous plankton and magnetostratigraphic data. Calculated ages for the most significant recognised bioevents are S. delphix FO 23.35 Ma, S. delphix LO 23.02 Ma, Paragloborotalia kugleri FO 23.00 Ma, Globoquadrina dehiscens FO 22.59 Ma, Sphenolitus disbelemnos FO 22.56 Ma, Helicosphaera carteri FCO (First Common Occurrence) 22.18 Ma, P. kugleri LO 21.23 Ma. Two hiatuses have been recognised within core 4H, whereas only one was recognised in previous studies. The first one in core 4H5 spans the interval 21.17–19.01 Ma and coincides with a phosphate-rich layer; the second in core 4H2 spans the interval from 18.87 to 18.21 Ma and corresponds to a glauconite-rich layer. The results obtained from Hole U1406A allow some considerations about potential reference bioevents concerning the still open issue of Burdigalian GSSP (Global Stratotype Section and Point).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Pälike, H., Backman, J., and Rio, D., Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes, Newsl. Stratigr., 2014, vol. 47, no. 2, pp. 131–181.

    Article  Google Scholar 

  2. Aubry, M.P. and Villa, G., Calcareous nannofossil stratigraphy of the Lemme-Carrosio Paleogene/Neogene Global Stratotype Section and Point, Giornale Geol., 1996, vol. 58, nos. 1–2, pp. 51–69.

    Google Scholar 

  3. Backman, J., Raffi, I., Rio, D., Fornaciari, E., and Pälike, H., Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes, Newsl. Stratigr., 2012, vol. 45, no. 3, pp. 221–244.

    Article  Google Scholar 

  4. Berggren, W.A., Kent, D.V., Flynn, J.J., and Van Couvering, J.A., Cenozoic geochronology, Geol. Soc. Am. Bull., 1985, vol. 96, no. 11, pp. 1407–1418.

    Article  Google Scholar 

  5. Berggren, W.A. and Kent, D.V., Swisher, III, C.C., and Aubry, M.P., A revised Cenozoic geochronology and chronostratigraphy, in Geochronology Time Scales and Global Stratigraphic Correlation, Spec. Publ.—SEPM (Soc. Sediment. Geol.), 1995, no. 54, pp. 129–212

  6. Blow, W.H., Late Middle Eocene to recent planktonic foraminiferal biostratigraphy, Proc. First Int. Conf. on Planktonic Microfossils, Geneva, 1969, vol. 1, pp. 199–422.

  7. Blow, W.H., The Cainozoic Globigerinida. Atlas, vol. 3, Brill Archive, 1979.

    Google Scholar 

  8. Bolli, H.M., Planktonic foraminifera from the Oligocene–Miocene Cipero and Lengua formation, Trinidad, Bull. U.S. Nat. Mus., 1957, vol. 215, pp. 97–124.

    Google Scholar 

  9. Boyle, P.R., Romans, B.W., Tucholke, B.E., Norris, R.D., Swift, S.A., and Sexton, P.F., Cenozoic North Atlantic deep circulation history recorded in contourite drifts, offshore Newfoundland, Canada, Mar. Geol., 2017, vol. 385, pp. 185–203.

    Article  Google Scholar 

  10. Chaisson, W.P. and Leckie, R.M., High-resolution Neogene planktonic foraminifer biostratigraphy of Site 806, Ontong Java Plateau (western equatorial Pacific), Proc. Ocean Drill. Program: Sci. Results, 1993, vol. 130, pp. 137–178.

    Google Scholar 

  11. Cifelli, R. and Scott, G., Stratigraphic record of the Neogene globorotalid radiation (Planktonic Foraminiferida), Smithsonian Contrib. Paleobiol., 1986, vol. 58.

    Book  Google Scholar 

  12. Egger, L.M., Bahr, A., Friedrich, O., Wilson, P.A., Norris, R.D., van Peer, T.E., Lippert, P.C., Liebrand, D., and Pross, J., Sea-level and surface-water change in the western North Atlantic across the Oligocene–Miocene Transition: a palynological perspective from IODP Site U1406 (Newfoundland margin), Mar. Micropaleontol., 2018, vol. 139, pp. 57–71.

    Article  Google Scholar 

  13. Finlay, H.J. and Marwick, J., The division of the upper Cretaceous and Tertiary in New Zealand, Trans. Roy. Soc. N.Z., 1940, vol. 70, pp. 77–135.

    Google Scholar 

  14. Foresi, L.M., Iaccarino, S., Mazzei, R., Salvatorini, G., and Bambini, A.M., Il plancton calcareo (foraminiferi e nannoplancton) del Miocene delle Isole Tremiti, Paleontogr. Ital., 2001, vol. 88.

    Google Scholar 

  15. Foresi, L.M., Bonomo, S., Caruso, A., Di Stefano, E., Salvatorini, G., and Sprovieri, R., Calcareous plankton high resolution biostratigraphy (foraminifera and nannofossils) of the uppermost Langhian–lower Serravallian Ras il-pellegrin section (MALTA), Riv. Ital. Paleontol. Stratigr., 2002, vol. 108, no. 2.

  16. Foresi, L.M., Verducci, M., Baldassini, N., Lirer, F., Mazzei, R., Salvatorini, G., Ferraro, G., and Da Prato, S., Integrated stratigraphy of St. Peter’s Pool section (Malta): new age for the Upper Globigerina Limestone Member and progress towards the Langhian GSSP, Stratigraphy, 2011, vol. 8, nos. 2–3, pp. 125–143.

    Google Scholar 

  17. Foresi, L.M., Baldassini, N., Sagnotti, L., Lirer, F., Di Stefano, A., Caricchi, Ch., Verducci, M., Salvatorini, G., and Mazzei, R., Integrated stratigraphy of the St. Thomas section (Malta Island): a reference section for the lower Burdigalian of the Mediterranean Region, Mar. Micropaleontol., 2014, vol. 111, pp. 66–89.

    Article  Google Scholar 

  18. Fornaciari, E. and Rio, D., Latest Oligocene to early middle Miocene quantitative calcareous nannofossil biostratigraphy in the Mediterranean region, Micropaleonology, 1996, vol. 42, pp. 1–36.

    Article  Google Scholar 

  19. Fornaciari, E., Backman, J., and Rio, D., Quantitative distribution patterns of selected lower to middle Miocene calcareous nannofossils from the Ontong Java Plateau, in Proc. Ocean Drill. Program: Sci. Results, 1993, vol. 130, pp. 245–256.

    Google Scholar 

  20. Fox, L.R. and Wade, B.S., Systematic taxonomy of early–middle Miocene planktonic foraminifera from the equatorial Pacific Ocean: integrated Ocean Drilling Program, Site U1338, J. Foraminiferal Res., 2013, vol. 43, no. 4, pp. 374–405.

    Article  Google Scholar 

  21. Gartner, S., Miocene nannofossil chronology in the North Atlantic, DSDP Site 608, Mar. Micropaleontol., 1992, vol. 18, no. 4, pp. 307–331.

    Article  Google Scholar 

  22. Gennari, R., Persico, D., Turco, E., Villa, G., Iaccarino, S.M., Florindo, F., Lurcock, P.C., and Santana dos Anjos Zerfass, G., High-resolution integrated calcareous plankton biostratigraphy and magnetostratigraphy at the Oligocene–Miocene transition in Southwestern Atlantic Ocean, Geol. J., 2017, vol. 53. https://doi.org/10.1002/gj.2945

  23. Gradstein, F.M., Ogg, J.G., Smith, A.G., Bleeker, W., and Lourens, L.J., A new Geologic Time Scale, with special reference to Precambrian and Neogene, Episodes, 2004, vol. 27, no. 2, pp. 83–100.

    Google Scholar 

  24. Gradstein, F.M., Ogg, J.G., Schmitz, M., and Ogg, G., The Geologic Time Scale 2012, Elsevier, 2012.

    Google Scholar 

  25. Haq, B.U. and Lohmann, G.P., Early Cenozoic calcareous nannoplankton biogeography of the Atlantic Ocean, Mar. Micropaleontol., 1976, vol. 1, pp. 119–194.

    Article  Google Scholar 

  26. Haq, B.U., Hardenbol, J.A.N., and Vail, P.R., Chronology of fluctuating sea levels since the Triassic, Science, 1987, vol. 235, no. 4793, pp. 1156–1167.

    Article  Google Scholar 

  27. Hilgen, F.J., Lourens, L.J., Van Dam, J.A., Beu, A.G., Boyes, A.F., Cooper, R.A., Krijgsman, W., Ogg, J.G., Piller, W.E., and Wilson, D.S., The Neogene period, in The Geologic Time Scale, Gradstein, F.M., Ogg, J.G., Schmitz, M., and Ogg, G., Eds., Elsevier, 2012, pp. 923–978.

    Google Scholar 

  28. Iaccarino, S., Mediterranean Miocene and Pliocene planktic foraminifera, Plankton Stratigr., 1985, vol. 1, pp. 283–314.

    Google Scholar 

  29. Iaccarino, S. and Salvatorini, G., A framework of planktonic foraminiferal biostratigraphy for Early Miocene to Late Pliocene Mediterranean area, Paleontol. Stratigr. Evol., 1982, vol. 2, pp. 115–125.

    Google Scholar 

  30. Jenkins, D.G., Preliminary account of the type Aquitanian–Burdigalian planktonic Foraminifera, Contrib. Cushman Found. Foraminiferal Res., 1964, vol. 15, pp. 28–29.

    Google Scholar 

  31. Jenkins, D.G., Planktonic foraminifera from the type Aquitanian–Burdigalian of France, Contrib. Cushman Found. Foraminiferal Res., 1966, vol. 17, pp. 1–15.

    Google Scholar 

  32. Jenkins, D.G., New Zealand Cenozoic planktonic foraminifera, N. Z. Geol. Surv. Palaeont. Bull., 1971, vol. 42, pp. 1–278.

    Google Scholar 

  33. Jenkins, D. G., Neogene planktonic foraminifers from DSDP Leg 40 Sites 360 and 362 in the southeastern Atlantic, Initial Rep. Deep Sea Drill. Proj., Bolli, H.M. and Ryan, W.B.F., Eds., 1978, vol. 40, pp. 723–739.

    Google Scholar 

  34. Kennett, J.P. and Srinivasan, M.S., Neogene Planktonic Foraminifera: A Phylogenetic Atlas, Hutchinson Ross, 1983.

    Google Scholar 

  35. Li, Q. and McGowran, B., The Miocene Foraminifera from Lakes Entrance Oil Shaft, Southeastern Australia, Assoc. Australas. Palaeontol. Mem., 2000, vol. 22.

    Google Scholar 

  36. Lourens, L.J., Revised tuning of Ocean Drilling Program Site 964 and KC01B (Mediterranean) and implications for the δ18O, tephra, calcareous nannofossil, and geomagnetic reversal chronologies of the past 1.1 Myr, Paleoceanography, 2004, vol. 19, no. 3.

  37. Maiorano, P. and Monechi, S., Revised correlations of Early and Middle Miocene calcareous nannofossil events and magnetostratigraphy from DSDP Site 563 (North Atlantic Ocean), Mar. Micropaleontol., 1998, vol. 35, no. 3, pp. 235–255.

    Article  Google Scholar 

  38. Martini, E., Standard Tertiary and Quaternary calcareous nannoplankton zonation, Proc. II Planktonic Conf., Roma, 1970, Roma: Tecnoscienza, 1971, vol. 2, pp. 739–785.

  39. Miller, K.G., Aubry, M.P., Khan, M.J., Melillo, A.J., Kent, D.V., and Berggren, W.A., Oligocene–Miocene biostratigraphy, magnetostratigraphy, and isotopic stratigraphy of the western North Atlantic, Geology, 1985, vol. 13, no. 4, pp. 257–261.

    Article  Google Scholar 

  40. Miller, K.G., Figenson, M.D., Wright, J.D., and Bradford, M.C., Miocene isotope reference section, Deep Sea Drilling Project Site 608: an evaluation of isotope and biostratigraphic resolution, Paleoceanography, 1991, vol. 6, pp. 33–52.

    Article  Google Scholar 

  41. Norris, R.D., Wilson, P.A., and Blum, P., and the Expedition 342 Scientists, Paleogene Newfoundland sediment drifts and MDHDS test, in Proc. Integrated Ocean Drilling Program, 2014, vol. 342.

    Google Scholar 

  42. Okada, H. and Bukry, D., Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975), Mar. Micropaleontol., 1980, vol. 5, pp. 321–325.

    Article  Google Scholar 

  43. Olsson, R.K. and Hemleben, C., Taxonomy, biostratigraphy, and phylogeny of Eocene Globanomalina, Planoglobanomalina n. gen and Pseudohastigerina, in Atlas of Eocene Planktonic Foraminifera, Pearson, P.N., Olsson, R.K., Huber, B.T., Hemleben, C., and Berggren, W.A., Eds., Spec. Publ.—Cushman Found. Foraminiferal Res., 2006, vol. 41, pp. 257–326.

    Google Scholar 

  44. Oszczypko, N., Oszczypko-Clowes, M., Golonka, J., and Marko, F., Oligocene–Lower Miocene sequences of the Pieniny Klippen Belt and adjacent Magura Nappe between Jarabina and the Poprad River (East Slovakia and South Poland): their tectonic position and paleogeographic implications, Geol. Q., 2005, vol. 49, no. 4, pp. 379–402.

    Google Scholar 

  45. Pearson, P.N. and Chaisson, W.P., Late Paleocene to middle Miocene planktonic foraminifer biostratigraphy of the Ceara Rise, in Proc. Ocean Drill. Program: Sci. Results, 1997, vol. 154, pp. 33–68.

    Google Scholar 

  46. van Peer, T.E., Xuan, C., Lippert, P.C., Liebrand, D., Agnini, C., and Wilson, P.A., Extracting a detailed magnetostratigraphy from weakly magnetized, Oligocene to early Miocene sediment drifts recovered at IODP Site U1406 (Newfoundland Margin, Northwest Atlantic Ocean), Geochem., Geophys., Geosyst., 2017a. https://doi.org/10.1002/2017GC007185

  47. van Peer, T.E., Liebrand, D., Xuan, C., Lippert, P.C., Agnini, C., Blum, N., Blum, P., Bohaty, S.M., Bown, P.R., Greenop, R., Kordesch, W.E.C., Leonhardt, D., Friedrich, O., and Wilson, P.A., Data report: revised composite depth scale and splice for IODP Site U1406, in Proc. Integrated Ocean Drilling Program, 2017b, vol. 342.

    Google Scholar 

  48. Poignant, A., Pujol, C., Ringeade, M., and Londeix, L., The Burdigalian historical stratotype. Miocene stratigraphy—An integrated approach, Developments Palaeontol. Stratigr., 1997, vol. 15, pp. 17–24.

    Google Scholar 

  49. Premoli Silva, I. and Spezzaferri, S., Paleogene planktonic foraminifer biostratigraphy and paleoenvironmental remarks on Paleogene sediments from Indian Ocean sites, Leg 115, in Proc. Ocean Drill. Program: Sci. Results, 1990, vol. 115, pp. 277–314.

    Google Scholar 

  50. Pujol, C., Cenozoic planktonic foraminiferal biostratigraphy of the southwestern Atlantic (Rio Grande Rise), Deep Sea Drilling Project Leg 72, in Initial Rep. Deep Sea Drill. Proj., vol. 72, Barker, P.F., Carlson, R.L., and Johnson, D.A., Eds., Washington, D.C.: U.S. Governm. Print. Office, 1983, pp. 673–623.

    Google Scholar 

  51. Raffi, I., Backman, J., Fornaciari, E., Pälike, H., Rio, D., Lourens, L., and Hilgen, F., A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years, Quat. Sci. Rev., 2006, vol. 25, nos. 23–24, pp. 3113–3137.

    Article  Google Scholar 

  52. Rio, D., Raffi, I., and Villa, G., Pliocene–Pleistocene calcareous nannofossil distribution patterns in the western Mediterranean, in Proc. Ocean Drill. Program: Sci. Results, 1990, vol. 107, pp. 513–533.

    Google Scholar 

  53. Scott, G.H., Bishop, S., and Burt, B.J., Guide to some Neogene Globorotalids (Foraminiferida) from New Zealand, N. Z. Geol. Surv. Paleontol. Bull., 1990, vol. 61.

    Google Scholar 

  54. Shackleton, N.J., Crowhurst, S.J., Weedon, G.P., and Laskar, J., Astronomical calibration of Oligocene–Miocene time, Philos. Trans. R. Soc., A, 1999, vol. 357, pp. 1907–1929.

  55. Spezzaferri, S., Evolution and taxonomy of the Paragloborotalia kugleri (Bolli) lineage, J. Foram. Res., 1991, vol. 21, no. 4, pp. 313–318.

    Article  Google Scholar 

  56. Spezzaferri, S., Planktonic foraminiferal biostratigraphy and taxonomy of the Oligocene and lower Miocene in the oceanic record. An overview, Palaeontogr. Ital., 1994, vol. 81, pp. 1–187.

    Google Scholar 

  57. Spezzaferri, S., Planktonic foraminifer biostratigraphy and paleoenvironmental implications of Leg 152 Sites (East Greenland Margin), in Proc. Ocean Drill. Program: Sci. Results, 1998, vol. 152, pp. 161–190.

    Google Scholar 

  58. Spezzaferri, S., Coric, S., and Stingl, K., Palaeoenvironmental reconstruction of the Karpatian–Badenian (Late Burdigalian–Early Langhian) transition in the Central Paratethys. A case study from the Wagna Section (Austria), Acta Geol. Polon., 2009, vol. 59, no. 4, pp. 523–544.

    Google Scholar 

  59. Spezzaferri, S., Kucera, M., Pearson, P.N., Wade, B.S., Rappo, S., Poole, C.R., Morard, R., and Stalder, C., Fossil and genetic evidence for the polyphyletic nature of the planktonic foraminifera “Globigerinoides”, and description of the new genus Trilobatus, PLoS One, 2015, vol. 10, no. 5, e0128108.

    Article  Google Scholar 

  60. Srinivasan, M.S. and Kennett, J.P., Neogene planktonic foraminiferal biostratigraphy and evolution: equatorial to subantarctic, South Pacific, Mar. Micropaleontol., 1981, vol. 6, nos. 5–6, pp. 499–533.

    Article  Google Scholar 

  61. Stainforth, R.M., Lamb, J.L., Luterbacher, H., Beard, J.H., and Jeffords, R.M., Cenozoic planktonic foraminiferal zonation and characteristics of index forms, Univ. Kansas Paleontol. Contrib., 1975, vol. 425, no. 62.

  62. Di Stefano, A., Baldassini, N., Maniscalco, R., Speranza, F., Maffione, M., Cascella, A., and Foresi, L.M., New bio-magnetostratigraphic data on the Miocene Moria section (Northern Apennines, Italy): connections between the Mediterranean region and the North Atlantic Ocean, Newsl. Stratigr., 2015, vol. 48, no. 2, pp. 135–152.

    Article  Google Scholar 

  63. Di Stefano, A., Verducci, M., Cascella, A., and Iaccarino, S.M., Calcareous plankton events at the Early/Middle Miocene transition of DSDP Hole 608: comparison with Mediterranean successions for the definition of the Langhian GSSP, Stratigraphy, 2011, vol. 8, no. 2.

  64. Steininger, F.F., Aubry, M.P., Berggren, W.A., Biolzi, M., Borsetti, A.M., Cartlidge, J.E., Cati, F., et al., The global stratotype section and point (GSSP) for the base of the Neogene, Episodes, 1997, vol. 20, pp. 23–28.

    Google Scholar 

  65. Thunell, R.C., Optimum indices of calcium carbonate dissolution, in deep-sea sediments, Geology, 1976, vol. 4, no. 9, pp. 525–528.

    Article  Google Scholar 

  66. Vandenberghe, N., Hilgen, F.J., Speijer, R.P., Ogg, J.G., Gradstein, F.M., Hammer, O., Hollis, C.J., and Hooker, J.J., The Paleogene period, in The Geologic Time Scale, Elsevier, 2012, pp. 855–921.

    Google Scholar 

  67. Wade, B.S., Pearson, P.N., Berggren, W.A., and Pälike, H., Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale, Earth-Sci. Rev., 2011, vol. 104, nos. 1–3, pp. 111–142.

    Article  Google Scholar 

  68. Wade, B.S., Pearson, P.N., Olsson, R.K., Premoli, SilvaI., Berggren, W., Spezzaferri, S., Huber, B.T., and Coxall, H.K., Premec Fućek, V., Hernitz Kucenjak, M., Hemleben, C., Leckie, R.M., and Smart, C.W., The Atlas of Oligocene Foraminifera, Spec. Publ.—Cushman Found. Foraminiferal Res., 2018, no. 46.

  69. Walters, R., The Globorotalia zealandica and G. miozea lineages, N. Z. J. Geol. Geophys., 1965, vol. 8, no. 1, pp. 109–127.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fabbrini.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabbrini, A., Baldassini, N., Caricchi, C. et al. Integrated Quantitative Calcareous Plankton Bio-Magnetostratigraphy of the Early Miocene from IODP Leg 342, Hole U1406A, Newfoundland Ridge, NW Atlantic Ocean. Stratigr. Geol. Correl. 27, 259–276 (2019). https://doi.org/10.1134/S0869593819020023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869593819020023

Keyword

Navigation