Skip to main content
Log in

Oxygen Isotope Geochemistry as a Tool in the Exploration for BIF-hosted Iron Ore Occurrences within the Precambrian Mineral Belt of Southern Cameroon, Northwestern Margin of the Congo Craton: A Review

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

As a method for discovering the footprint of concealed iron ore enrichments, oxygen isotopes have revealed hydrothermal fluid sources and processes in Banded Iron Formation (BIF)-hosted iron ore provinces worldwide. This paper reviews the role oxygen isotopes play in exploring BIF-hosted iron ore bodies and discusses their application in southern Cameroon’s Precambrian mineral belt as an auxiliary exploration technique. Oxygen isotope analysis of iron ore species (e.g., BIFs, itabirites, and jaspilites) showed that the least altered BIFs had higher δ18O values than enriched ores. In the Nyong complex BIF sequence of southern Cameroon, δ18Omag values range from –3 to –1.8, while δ18Oqtz values range from 6.8 to 10.6, indicating a discernible shift between the δ18Omag-qtz values. Much higher δ18Omag values (2.89 to 9.30‰) have been observed for magnetite gneisses suggesting an evolved magmatic-hydrothermal fluid source. Quartz veins associated with early-stage hematite ores in the adjacent Ivindo basement complex display higher δ18O values (4.7 to 8.1%) than those associated with late-stage magnetite ores (–2.3 to –1.5%). It is evident from these values that there is an isotopic shift between early-stage and late-stage iron ores, supporting the relevance of oxygen isotope to understanding iron ore signatures within the NW margin of the Congo craton. However, since the Congo Basin is characterised by inaccessible equatorial vegetation cover and lacks superficial exposures, high-precision oxygen isotopes (δ18O and δ17O) in conjunction with other isotopic techniques (e.g., δ56Fe) and lithogeochemistry, will be more useful in constraining the isotopic signature of the BIF mineralisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Akame, J.M., Oliveira, E.P., Poujol, M., Hublet, G., and Debaille, V., LA–ICP–MS zircon U-Pb dating, Lu-Hf, Sm-Nd geochronology and tectonic setting of the Mesoarchean mafic and felsic magmatic rocks in the Sangmelima granite–greenstone terrane, Ntem Complex (South Cameroon), Lithos, 2020, vol. 372, pp. 105702. https://doi.org/10.1016/j.lithos.2020.105702

    Article  Google Scholar 

  2. Anderson, K.F.E., Wall, F., Rollinson, G.K., and Moon, C.J., Quantitative mineralogical and chemical assessment of the Nkout iron ore deposit, Southern Cameroon, Ore Geol. Rev., 2014, vol. 62, vol. 62, pp. 25–39. https://doi.org/10.1016/j.oregeorev.2014.02.015

  3. Bafon, T.G., Bolarinwa, A.T., Suh, C.E., Oljira, T., Bedada, B.A., Ngoran, G.N., and Ngang, C.T., Petrogenetic characterization of the host rocks of the Sanaga iron ore prospect, southern Cameroon, Acta Geochim., 2022, pp. 1–26. https://doi.org/10.1007/s11631-022-00574-7

  4. Bafon, T.G., Bolarinwa, A.T., Suh, C.E., Ngatcha, R.B., Mimba, M.E., and Harris, C., Texture and iron–oxygen isotope signatures of magnetite in the Sanaga iron ore prospect, Nyong Series, southwestern Cameroon: Implications for the origin of magnetite mineralization, Geol. J., 2023. https://doi.org/10.1002/gj.4727

  5. Banerjee, S., Richards, I., Ferguson, K., Basu, A.R., and Gregory, R.T., Oxygen and hydrogen isotope geochemistry of the Iron Ore Group (IOG), India: the stable isotopic composition of the Archean ocean, In AGU Fall Meeting Abstracts, vol. 2009, p. 43B–2240.

  6. Barker, S.L., Dipple, G.M., Hickey, K.A., Lepore, W.A., and Vaughan, J.R., Applying stable isotopes to mineral exploration: Teaching an old dog new tricks, Econ. Geol., 2013, vol. 108, pp. 1–9. https://doi.org/10.2113/econgeo.108.1.1

    Article  Google Scholar 

  7. Barley, M.E., Pickard, A.L., Hagemann, S.G., and Folkert, S.L., Hydrothermal origin for the 2–billion–year–old Mount Tom Price giant iron ore deposit, Hamersley Province, Western Australia, Miner. Deposita, 1999, vol. 34, no. 8, pp. 784–789. https://doi.org/10.1007/s001260050238

    Article  Google Scholar 

  8. Becker, J.S., Recent developments in isotope analysis by advanced mass spectrometric techniques Plenary lecture: J. Analyt. Atom. Spectrom., 2005, vol. 20, no. 11, pp. 1173–1184. https://doi.org/10.1039/B508895J

    Article  Google Scholar 

  9. Bessoles, B. and Trompette, M., Géologie de l’Afrique: la chaîne Panafricaine, Zone mobile d’Afrique centrale (partie sud) et Zone mobile soudanaise, Mémoire du BRGM, 1980, vol. 92, pp. 19–80.

    Google Scholar 

  10. Beukes, N.J., Gutzmer, J., and Mukhopadhyay, J., The geology and genesis of high–grade hematite iron ore deposits, Appl. Earth Sci., 2003, vol. 112, no. 1, pp. 18–25. https://doi.org/10.1179/037174503225011243

    Article  Google Scholar 

  11. Beukes, N.J., Mukhopadhyay, J., and Gutzmer, J., Genesis of high-grade iron ores of the Archean Iron Ore Group around Noamundi, India, Econ. Geol., 2008, vol. 103, no. 2, pp. 365–386. https://doi.org/10.2113/gsecongeo.103.2.365

    Article  Google Scholar 

  12. Bonda, B.M.M., Etame, J., Kouske, A.P., Bayiga, E.C., Ngon, G.F.N., Mbaï, S.J., and Gérard, M., Ore texture, mineralogy and whole rock geochemistry of the iron mineralization from Edea North Area, Nyong Complex, Southern Cameroon: implication for origin and enrichment process, Int. J. Geosci., 2017, vol. 8, no. 5, pp. 659–677. https://doi.org/10.4236/ijg.2017.85036

    Article  Google Scholar 

  13. Bouyo, M.H., Penaye, J., Mouri, H., and Toteu, S.F., Eclogite facies metabasites from the Paleoproterozoic Nyong Group, S.W. Cameroon: mineralogical evidence and implications for high–pressure metamorphism related to a subduction zone at the N.W. margin of the Archean Congo craton, J. Afr. Earth Sci., 2019, vol. 149, pp. 215–234. https://doi.org/10.1016/j.jafrearsci.2018.08.010

    Article  Google Scholar 

  14. Braga, F.C.S., Rosière, C.A., Santos, J.O.S., Hagemann, S.G., McNaughton, N.J., and Salles, P.V., The Horto–Baratinha itabirite–hosted iron ore: a basal fragment of the Espinhaço Basin in the eastern São Francisco Craton, J. S. Amer. Earth Sci., 2019, vol. 90, pp. 12–33. https://doi.org/10.1016/j.jsames.2018.11.013

    Article  Google Scholar 

  15. Chombong, N.N. and Suh, C.E., 2883 Ma commencement of BIF deposition at the northern edge of Congo craton, southern Cameroon: new zircon SHRIMP data constraint from metavolcanics, Episodes, 2013, vol. 36, no. 1, pp. 47–57. https://doi.org/10.18814/epiiugs/2013/v36i1/007

    Article  Google Scholar 

  16. Chombong, N.N., Suh, C.E., Lehmann, B., Vishiti, A., Ilouga, D.C., Shemang, E.M., and Kedia, A.C., Host rock geochemistry, texture, and chemical composition of magnetite in iron ore in the Neoarchaean Nyong unit in southern Cameroon, Appl. Earth Sci., 2017, vol. 126, no. 3, pp. 129–145. https://doi.org/10.1080/03717453.2017.1345507

    Article  Google Scholar 

  17. Clout, J.M.F. and Simonson, B.M., Precambrian iron formations and iron formations-hosted iron ore deposits, Econ. Geol., 2005, vol. 100, pp. 643–679.

    Google Scholar 

  18. Cope, I.L., Wilkinson, J.J., Boyce, A.J., Chapman, J.B., Herrington, R.J., and Harris, C.J., Genesis of the Pic de Fon iron oxide deposit, Simandou Range, Republic of Guinea, West Africa, In: Banded Iron Formation–Related High-Grade Iron Ore, Hagemann, S., Rosiere, C.A., Gutzmer, J. and Beukes, N.J., Eds., Rev. Econ. Geol., 2008, vol. 15, pp. 339–360. https://doi.org/10.5382/Rev.15.13

  19. Cope, I.L., Wilkinson, J.J., Boyce, A.J., and Herrington, R.J., Oxygen isotope composition of hematite: Pic de Fon Deposit, Republic of Guinea, West Africa, In Proceedings of the 10th Biennial SGA Meeting, Townsville, 2009, Townsville, 2009, pp. 17–20.

  20. Dalstra, H. and Guedes, S., Giant hydrothermal hematite deposits with Mg–Fe metasomatism: a comparison of the Carajás, Hamersley, and other iron ores, Econ. Geol., 2004, vol. 99, no. 8, pp. 1793–1800. https://doi.org/10.2113/gsecongeo.99.8.1793

    Article  Google Scholar 

  21. Dalstra, H.J. and Rosière, C.A., Structural controls on high–grade iron ores hosted by banded iron formation: a global perspective, Rev. Econ. Geol., 2008, vol. 15, pp. 73–106. https://doi.org/10.5382/Rev.15.03

    Article  Google Scholar 

  22. Dalstra, H., Harding, T., Riggs, T., and Taylor, D., Banded iron formation hosted high–grade hematite deposits, a coherent group, Appl. Earth Sci., 2003, vol. 112, no. 1, pp. 68–72. https://doi.org/10.1179/037174503225011199

    Article  Google Scholar 

  23. Deassou Sezine, E., Tamehe, L.S., Ganno, S., Tankwa, M.N., Lemdjou, Y.B., Djomo, H.D., and Bekker, A., Geochronological and geochemical constraints for the metavolcanosedimentary succession of the Nyong Complex, northwestern margin of the Congo craton: Implications for depositional age and tectonic setting of associated banded iron formations, Precambrian Res., 2022, vol. 383, pp. 106910. https://doi.org/10.1016/j.precamres.2022.106910

    Article  Google Scholar 

  24. De Waele, B., Lacorde, M., and Rivers, J., Banded iron formations and associated detrital iron deposits of the Western Congo Craton. In Proceedings of the SEG S015–World–Class Ore Deposits, Discovery to Recovery, Hobart: TAS, 2015, pp. 27–30.

  25. Djoukouo Soh, A.P., Ganno, S., and Zhang, L.C., Soh Tamehe, L., Wang, C.L., Peng, Z.D., Tong, X.X., and Nzenti, J.P., Geochemical and geochronological constraints on the origin of the Bibole banded iron formations, northwestern Congo Craton, Cameroon: Implications for their depositional age and tectonic environment, Geol. Mag., 2021, vol. 158, pp. 2245–2263. https://doi.org/10.1017/S0016756821000765

    Article  Google Scholar 

  26. Figueiredo e Silva, Silva, R.C., Lobato, L.M., Rosiere, C.A., Hagemann, S., Zucchetti, M., Baars, F.J., Morais, R., and Andrade, I., Hydrothermal origin for the jaspilite-hosted, giant Serra Norte iron ore deposits in the Carajás mineral province, Para State, Brazil, Rev. Econ. Geol., 2008, vol. 15, pp. 255−290. https://doi.org/10.5382/Rev.15.10

    Article  Google Scholar 

  27. Figueiredo e Silva, R.C., Hagemann, S., Lobato, L.M., Rosiere, C.A., Banks, D.A., Davidson, G.J., and Hergt, J., Hydrothermal fluid processes and evolution of the giant Serra Norte jaspilite–hosted iron ore deposits, Carajás Mineral Province, Brazil, Econ Geol., 2013, vol. 108, no. 4, pp. 739–779. https://doi.org/10.2113/econgeo.108.4.739

    Article  Google Scholar 

  28. Fuanya, C., Bolarinwa, A.T., Kankeu, B., Yongue, R.F., Tangko, E.T., and Nkepguep, F.Y., Geochemical characteristics and petrogenesis of basic rocks in the Ako’ozam–Njabilobe area, Southwestern Cameroon: implications for Au genesis, Appl. Sci., 2019, vol. 1, no. 8, pp. 1–12. https://doi.org/10.1007/s42452-019-0959-5

    Article  Google Scholar 

  29. Ganno, S., Timoleon, N., Djibril, K.N.G., Paul, N.J., and Marianne, N.F., Petrology and geochemistry of the banded iron–formations from Ntem complex greenstones belt, Elom area, Southern Cameroon: implications for the origin and depositional environment, Geochem., 2015, vol. 75, no. 3, pp. 375–387. https://doi.org/10.1016/j.chemer.2015.08.001

    Article  Google Scholar 

  30. Ganno, S., Moudioh, C., Nzina Nchare, A., Kouankap Nono, G.D., and Nzenti, J.P., Geochemical fingerprint and iron ore potential of the siliceous itabirite from Palaeoproterozoic Nyong series, Zambi area, southwestern Cameroon, Resource Geol., 2016, vol. 66, no. 1, https://doi.org/10.1111/rge.12081

  31. Ganno, S., Njiosseu Tanko, E.L., Kouankap Nono, G.D., Djoukouo Soh, A., Moudioh, C., Ngnotué, T., and Nzenti, J.P., A mixed seawater and hydrothermal origin of superior–type banded iron formation (BIF)–hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, Southwestern Cameroon: Constraints from petrography and geochemistry, Ore Geol. Rev., 2017, vol. 80, pp. 860–875. https://doi.org/10.1016/j.oregeorev.2016.08.021

    Article  Google Scholar 

  32. Ganno, S., Tsozué, D., Kouankap, N.G.D., Tchouatcha, M.S., Ngnotué, T., Takam, G.R., and Nzenti, J.P., Geochemical constraints on the origin of banded iron formation hosted iron ore from the Archaean Ntem Complex (Congo Craton) in the Meyomessi Area, Southern Cameroon, Resource Geol., 2018, vol. 68, no. 3, pp. 287–302. https://doi.org/10.1111/rge.12172

    Article  Google Scholar 

  33. Gatsé Ebotehouna, C., Xie, Y., Adomako-Ansah, K., and Pei, L., Fluid inclusion and oxygen isotope characteristics of vein quartz associated with the Nabeba iron deposit, Republic of Congo: Implications for the enrichment of hypogene ores, Minerals, 2019, vol. 9, no. 11, pp. 677. https://doi.org/10.3390/min9110677

    Article  Google Scholar 

  34. Gatsé Ebotehouna, C., Xie, Y., Adomako-Ansah, K., Gourcerol, B., and Qu, Y., Depositional Environment and Genesis of the Nabeba Banded Iron Formation (BIF) in the Ivindo Basement Complex, Republic of the Congo: Perspective from Whole-Rock and Magnetite Geochemistry, Minerals, 2021a, vol. 11, no. 6, pp. 579. https://doi.org/10.3390/min11060579

    Article  Google Scholar 

  35. Gatsé Ebotehouna, C., Xie, Y., Adomako-Ansah, K., and Qu, Y., Petrology, geochemistry, and zircon U–Pb-Lu–Hf isotopes of granitoids from the Ivindo Basement Complex of the Souanké Area, Republic of Congo, Insights into the evolution of Archean continental crust, Geol. J., 2021b, vol. 56, no. 9, pp. 4861–4887. https://doi.org/10.1002/gj.4219

    Article  Google Scholar 

  36. Gertner, I., Tishin, P., Vrublevskii, V., Sazonov, A., Zvyagina, E., and Kolmakov, Y., Neoproterozoic alkaline igneous rocks, carbonatites and gold deposits of the Yenisei Ridge, Central Siberia: Evidence of mantle plume activity and late collision shear tectonics associated with orogenic gold mineralisation, Resource Geol., 2011, vol. 61, no. 4, pp. 316–343. https://doi.org/10.1111/j.1751-3928.2011.00170.x

    Article  Google Scholar 

  37. Ghosh, R. and Baidya, T.K., Mesoarchean BIF and iron ores of the Badampahar greenstone belt, iron ore group, East Indian Shield, J. Asian Earth Sci., 2017, vol. 150, pp. 25–44. https://doi.org/10.1016/j.jseaes.2017.10.003

    Article  Google Scholar 

  38. Goodwin, A.M., Precambrian Geology : the Dynamic Evolution of the Continental Crust, New York : Academic Press, 1991.

    Google Scholar 

  39. Gutzmer, J., Mukhopadhyay, J., Beukes, N.J., Pack, A., Hayashi, K., and Sharp, Z.D., Oxygen isotope composition of hematite and genesis of high-grade BIF-hosted iron ores, Mem.–Geol. Soc. Am., 2006, vol. 198, pp. 257.

    Google Scholar 

  40. Hagemann, S., Fluid Inclusion Investigation on Selected Iron Oxide Samples. Consultant’s Report to Sundance Resources Ltd, In: Iron Ore, Exploration History of the Mbalam Iron Ore Project, Longley, R., Kitto, P., and Thornett, S., Eds., Perth: Sundance Resources Ltd., 2012 vol. 80.

    Google Scholar 

  41. Hagemann, S., Yardley, B.W.D., and Banks, D.A., A hydrothermal origin for the giant BIF–hosted Tom Price iron ore deposit, A Hydrothermal Origin for the Giant BIF–hosted Tom Price Iron Ore Deposit, Balkema: CRC Press, 1999, pp. 41–44.

    Google Scholar 

  42. Hagemann, S.H., Rosière, C.A., Lobato, L., Baars, F., and Zucchetti, M., Figueiredo e Silva, R.C., Controversy in genetic models for Proterozoic high–grade, banded iron formation (BIF) related iron—unifying or discrete model(s), Appl. Earth Sci., 2006, vol. 115, no. 4, pp. 147–151 https://doi.org/10.1179/174327506X138968

    Article  Google Scholar 

  43. Hagemann, S.G., Angerer, T., Duuring, P., and Rosière, C.A., e Silva, R.F., Lobato, L., and Walde, D. H.G., BIF-hosted iron mineral system: a review, Ore Geol. Rev., 2015, vol. 76, pp. 317–359. https://doi.org/10.1016/j.oregeorev.2015.11.004

    Article  Google Scholar 

  44. Harmsworth, R.A., Kneeshaw, M., Morris, R.C., Robinson, C.J., and Shrivastava, P.K., BIF-derived iron ores of the Hamersley iron basin, Geol. Miner. Depos. Aust. Papua New Guinea, 1990, pp. 617–642.

    Google Scholar 

  45. Hayashi, K.I., Naraoka, H., and Ohmoto, H., Oxygen isotope study of Paleoproterozoic banded iron formation, Hamersley Basin, Western Australia, Resource Geol., 2008, vol. 58, no. 1, pp. 43–51. https://doi.org/10.1111/j.1751-3928.2007.00047.x

    Article  Google Scholar 

  46. Hensler, A.S., Hagemann, S.G., Brown, P.E., and Rosière, C.A., Using oxygen isotope chemistry to track hydrothermal processes and fluid sources in itabirite–hosted iron ore deposits in the Quadrilátero Ferrífero, Minas Gerais, Brazil, Miner. Deposita, 2014, vol. 49, no. 3, pp. 293–311. https://doi.org/10.1007/s00126-013-0486-z

    Article  Google Scholar 

  47. Hensler, A.S., Hagemann, S.G., Rosière, C.A., Angerer, T., and Gilbert, S., Hydrothermal and metamorphic fluid–rock interaction associated with hypogene “hard” iron ore mineralisation in the Quadrilátero Ferrífero, Brazil: Implications from in-situ laser ablation ICP–MS iron oxide chemistry, Ore Geol. Rev., 2015, vol. 69, pp. 325–351. https://doi.org/10.1016/j.oregeorev.2015.02.023

    Article  Google Scholar 

  48. Hensler, A.S., Rosière, C.A., and Hagemann, S.G., Iron oxide mineralization at the contact zone between phyllite and itabirite of the Pau Branco deposit, Quadrilátero Ferrífero, Brazil–implications for fluid–rock interaction during iron ore formation, Econ. Geol., 2017, vol. 112, no. 4, pp. 941–982. https://doi.org/10.2113/econgeo.112.4.941

    Article  Google Scholar 

  49. Hitchon, B. and Friedman, I., Geochemistry and origin of formation waters in the western Canada sedimentary basin-I. Stable isotopes of hydrogen and oxygen, Geochim. Cosmochim. Acta, 1969, vol. 33, no. 11, pp. 1321–1349. https://doi.org/10.1016/0016-7037(69)90178-1

    Article  Google Scholar 

  50. Hoefs, J., Müller, G., and Schuster, A.K., Polymetamorphic relations in iron ores from the Iron Quadrangle, Brazil: the correlation of oxygen isotope variations with deformation history, Contrib. Miner. Petrol., 1982, vol. 79, no. 3, pp. 241–251. https://doi.org/10.1007/BF00371515

    Article  Google Scholar 

  51. Ilouga, D.C.I., Suh, C.E., and Tanwi, G.R., Textures and rare earth elements composition of banded iron formations (BIF) at Njweng prospect, Mbalam Iron Ore District, Southern Cameroon, Int. J. Geosci., 2013, vol. 4, pp. 146-165. https://doi.org/10.4236/ijg.2013.41014

    Article  Google Scholar 

  52. Ilouga, D.C.I., Ndong Bidzang, F., Bidias, Ziem A.L.A., Olinga, J.B., Tata, E., Minyem, D., Geochemical characterisation of a stratigraphic log bearing iron ore in the Sanaga prospect, Upper Nyong Unit of Ntem Complex, Cameroon, J. Geosci. Geomat., 2017, vol. 5, no. 5, pp. 218–228. https://doi.org/10.12691/JGG-5-5-1

    Article  Google Scholar 

  53. Jemmali, N., Souissi, F., Villa, I.M., and Vennemann, T.W., Ore genesis of Pb–Zn deposits in the Nappe zone of Northern Tunisia: constraints from Pb–S–C–O isotopic systems, Ore Geol Rev., 2011, vol. 40, no. 1, pp. 41–53. https://doi.org/10.1016/j.oregeorev.2011.04.005

    Article  Google Scholar 

  54. Kamga, G.T., Petrogenesis of the Neoproterozoic Ngondo plutonic complex (Cameroon, west central Africa): a case of late-collisional ferro-potassic magmatism, J. Afr. Earth Sci., 2003, vol. 36, no. 3, pp. 149–171. https://doi.org/10.1016/S0899-5362(03)00043-5

    Article  Google Scholar 

  55. Kamga, G.T., Mercier, E., Rossy, M., and N’Sifa, E.N., Synkinematic emplacement of the Pan–African Ngondo igneous complex (west Cameroon, central Africa), J. Afr. Earth Sci., 1999, vol. 28, no. 3, pp. 675-691. https://doi.org/10.1016/S0899-5362(99)00038-X

    Article  Google Scholar 

  56. Kamguia Woguia, B., Kouankap, N.G.D., Nga Essomba, T.P.E., Tanko Njiosseu, E.L., Ayonta Kenne, P., and Nzenti, J.P., Geochemistry and U–Pb zircon age of the Paleoproterozoic metasedimentary rocks from the Bidou I, Nyong Series, Cameroon: Implications for provenance and tectonic setting, Arab. J. Geosci., 2022, vol. 15, no. 2, pp. 1–21. https://doi.org/10.1007/s12517-022-09476-7

    Article  Google Scholar 

  57. Kneeshaw, M. and Kepert, D., Genesis of high-grade hematite orebodies of the Hamersley Province, Western Australia–a discussion, Econ. Geol., 2002, vol. 97, no. 1, pp. 173–173. https://doi.org/10.2113/gsecongeo.97.1.173

    Article  Google Scholar 

  58. Kondja, S.R., Ondo, S.M.N., Minko, A.E., and Mikolo, F.M., The Bélinga iron ore deposit (~2.8 Ga), NE-Gabon: Reactualization and new interpretations on crests, Eur. Sci. J., 2017, vol. 13, pp. 307-321.

    Google Scholar 

  59. Kondja, S.R., Ndong-Ondo, S.M., Edou–Minko, A., Sato, T., Musavu–Moussavou, B., and Moussavou, M., Archean Itabirites from Ovan, NE-Gabon, Petrography, Mineralogy And Elemental Mapping, 2021, vol. 17, no. 25, pp. 380. https://doi.org/10.19044/esj.2021.v17n25p380

    Article  Google Scholar 

  60. Kwamou, W.M.M., Kouankap, N.G.D., Nkouathio, D.G., and Ayonta, K.P., Petrogenesis and U–Pb zircon dating of amphibolite in the Mewengo iron deposit, Nyong series, Cameroon: fingerprints of iron depositional geotectonic setting, Arab. J. Geosci., 2021, vol. 14, no. 10, pp. 1–15. https://doi.org/10.1007/s12517-021-07235-8

    Article  Google Scholar 

  61. Lerouge, C., Cocherie, A., Toteu, S.F., Penaye, J., Milesi, J.P., Tchameni, R., and Deloule, E., Shrimp U–Pb zircon age evidence for Paleoproterozoic sedimentation and 2.05 Ga syntectonic plutonism in the Nyong Group, South-Western Cameroon: consequences for the Eburnean–Transamazonian belt of N.E. Brazil and Central Africa, J. Afr. Earth Sci., 2006, vol. 44, no. 4–5, pp. 413–427. https://doi.org/10.1016/j.jafrearsci.2005.11.010

    Article  Google Scholar 

  62. Li, X.H., Chen, Y., Li, J., Yang, C., Ling, X.X., and Tchouankoue, J.P., New isotopic constraints on age and origin of Mesoarchean charnockite, trondhjemite and amphibolite in the Ntem Complex of NW Congo Craton, southern Cameroon, Precambrian Res., 2016, vol. 276, pp. 14–23.

    Article  Google Scholar 

  63. Lobato, L.M., Figueiredo e Silva, R.C., Hagemann, S., and Thorne, W., Mineralising fluid evolution and REE patterns for the hydrothermal Carajas iron ores, Brazil, and for selected Hamersley iron deposits, Australia, Geol. Appl. Miner. Deposita, 2007, vol. 2, pp. 1227–1230.

    Google Scholar 

  64. Longley, R., Kitto, P., and Thornett, S., Iron Ore, Exploration History of the Mbalam Iron Ore Project, Perth: Sundance Resources Ltd. Australia, 2013, vol. 80.

    Google Scholar 

  65. Loose, D. and Schenk, V., Ga old eclogites in the Eburnian–Transamazonian orogen of southern Cameroon: significance for Palaeoproterozoic plate tectonics, Precambrian Res., 2018, vol. 304, pp. 1–11. https://doi.org/10.1016/j.precamres.2017.10.018

    Article  Google Scholar 

  66. Marion, K.W.M., Djibril, K.N.G., Guimollaire, N.D., and Patrick, A.K., Petrogenesis and U–Pb zircon dating of amphibolite in the Mewengo iron deposit, Nyong series, Cameroon: fingerprints of iron depositional geotectonic setting, Arab. J. Geosci., 2021, vol. 14, no. 10, pp. 1–15. https://doi.org/10.1007/s12517-021-07235-8

    Article  Google Scholar 

  67. Martini, J.E.J. and Makanga, J.F., Notice explicative de la carte métallogénique de la République Gabonaise à 1/1 000 000. Council for Geoscience, Direction Générale des Mines et de la Géologie, Ministère des Mines, de l’Energie, du Petrole et des Ressources Hydrauliques, République Gabonaise, 2002.

  68. Maurizot, P., Abessolo, A., Feybesse, J.L., and Johan Lecomte, P., Étude de prospection minière du Sud-Ouest Cameroun: Synthèse des travaux de 1978 à 1985, Rapport BRGM 85 CMR, 1986, vol. 66, pp. 274. https://doi.org/10.4236/ojped.2022.125086

  69. Mendes, M., Lobato, L.M., Kunzmann, M., Halverson, G.P., and Rosiere, C.A., Iron isotope and REE+ Y composition of the Caue banded iron formation and related iron ores of the Quadrilátero Ferrífero, Brazil, Miner. Deposita, 2017, vol. 52, no. 2, pp. 159–180. https://doi.org/10.1007/s00126-016-0649-9

    Article  Google Scholar 

  70. Morris, R.C., A textural and mineralogical study of the relationship of iron–ore to banded iron–formation in the Hamersley Iron Province of Western Australia, Econ. Geol., 1980, vol. 75, no. 2, pp. 184-209. https://doi.org/10.2113/gsecongeo.75.2.184

    Article  Google Scholar 

  71. Morris, R.C., Iron ore genesis and post–ore metasomatism at Mount Tom Price, Appl. Earth Sci., 2003, vol. 112, no. 1, pp. 56-67. https://doi.org/10.1179/037174503225011216

    Article  Google Scholar 

  72. Morris, R.C. and Kneeshaw, M., Genesis modelling for the Hamersley BIF–hosted iron ores of Western Australia: a critical review, Aust. J. Earth Sci., 2011, vol. 58, no. 5, pp. 417–451.

    Article  Google Scholar 

  73. Morris, R.C. and Wolff, K.H., Genesis of iron ore in banded iron–formation by supergene and supergene–metamorphic processes a conceptual model, Handbook of Strata-Bound and Stratiform Ore Deposits, 1985, vol. 13, pp. 73–235.

  74. Moudioh, C., Soh Tamehe, L., Ganno, S., Nzepang Tankwa, M., Brando Soares, M., Ghosh, R., Kankeu, K., Nzenti, J.P., Tectonic setting of the Bipindi greenstone belt, northwest Congo Craton, Cameroon: Implications for BIF deposition, J. Afr. Earth Sci., 2020, vol. 171, pp. 103971. https://doi.org/10.1016/j.jafrearsci.2020.103971

    Article  Google Scholar 

  75. Müller, S.G., Krapež, B., Barley, M.E., and Fletcher, I.R., Giant iron–ore deposits of the Hamersley province related to the breakup of Paleoproterozoic Australia: New insights from in situ SHRIMP dating of baddeleyite from mafic intrusions, Geol., 2005, vol. 33, pp. 577–580. https://doi.org/10.1130/G21482.1

    Article  Google Scholar 

  76. Nadoll, P., Mauk, J.L., Leveille, R.A., and Koenig, A.E., Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States, Miner. Deposita, 2015, vol. 50, no. 4, pp. 493-515. https://doi.org/10.1007/s00126-014-0539-y

    Article  Google Scholar 

  77. Ndema, M.J.L., Sigué, C., Nzenti, J.P., and Suh, C.E., Mineral chemistry (EMPA) of monazites in metamorphic rocks from Edea region: implications of the monazite chemistry on the metamorphic evolution of the Nyong Complex, Arab. J. Geosci., 2022, vol. 15, pp. 1665. https://doi.org/10.1007/s12517-022-10924-7

    Article  Google Scholar 

  78. Ndime Ekah, N., Ganno, S., Soh Tamehe, L., and Nzenti, J.P., Petrography, lithostratigraphy and major element geochemistry of Mesoarchean metamorphosed banded iron formation hosted Nkout iron ore deposit, northwestern Congo craton, Central West Africa, J. Afr. Earth Sci., 2018, vol. 148, pp. 80–98. https://doi.org/10.1016/j.jafrearsci.2018.06.007

    Article  Google Scholar 

  79. Ndime Ekah, N., Ganno, S., and Nzenti, J.P., Geochemistry and Pb–Pb geochronology of the Neoarchean Nkout West metamorphosed banded iron formation, southern Cameroon, Int. J. Earth Sci., 2019, vol. 108, no. 5, pp. 1551–1570. https://doi.org/10.1007/s00531-019-01719-5

    Article  Google Scholar 

  80. Nédélec, A., Nsifa, E.N., and Martin, H., Major and trace element geochemistry of the Archaean Ntem plutonic complex (South Cameroon): petrogenesis and crustal evolution, Precambrian Res., 1990, vol. 47, nos. 1–2, pp. 35–50.

    Article  Google Scholar 

  81. Nforba, M.T., Kabeyene, V.K., and Suh, C.E., Regolith geochemistry and mineralogy of the Mbalam itabirite–hosted iron ore district, southeastern Cameroon, J. Geol., 2011, vol. 1, no. 2, pp. 17. https://doi.org/10.4236/ojg.2011.12003

    Article  Google Scholar 

  82. Nga, Essomba T.P. and Ganno, S., Tanko Njiosseu, E.L., Ndema Mbongue, J.L., Kamguia Woguia, B., Soh Tamehe, L., and Nzenti, J.P., Geochemical constraints on the origin and tectonic setting of the serpentinised peridotites from the Paleoproterozoic Nyong series, Eseka area, S.W. Cameroon, Acta Geochim., 2020, vol. 39, no. 3, pp. 404–422. https://doi.org/10.1007/s11631-019-00368-4

  83. Ngako, V., Affaton, P., Nnange, J.M., and Njanko, T., Pan-African tectonic evolution in central and southern Cameroon: transpression and transtension during sinistral shear movements, J. Afr. Earth Sci., 2003, vol. 36, no. 3, pp. 207–214. https://doi.org/10.1016/S0899-5362(03)00023-X

    Article  Google Scholar 

  84. Ngako, V., Affaton, P., and Njonfang, E., Pan-African tectonics in northwestern Cameroon: implication for the history of western Gondwana, Gondwana Res., 2008, vol. 14, no. 3, pp. 509–522. https://doi.org/10.1016/j.gr.2008.02.002

    Article  Google Scholar 

  85. Njome, M.S. and Suh, C.E., Tectonic evolution of the Tombel graben basement, southwestern Cameroon, Episodes, 2005, vol. 28, no. 1, pp. 31–41. https://doi.org/10.18814/epiiugs/2005/v28i1/004

    Article  Google Scholar 

  86. Nsoh, F.E., Agbor, T.A., Etame, J., and Suh, E.C., Ore–textures and geochemistry of the Nkout iron deposit Southeast Cameroon, Sci. Technol. Dév., 2014, vol. 15, pp. 43–52. https://doi.org/10.12691/jgg-8-1-1

    Article  Google Scholar 

  87. Nzenti, J.P., Barbey, P., Macaudiere, J., and Soba, D., Origin and evolution of the late Precambrian high–grade Yaounde gneisses (Cameroon), Precambrian Res., 1988, vol. 38, no. 2, pp. 91–109. https://doi.org/10.1016/0301-9268(88)90086-1

    Article  Google Scholar 

  88. Nzepang Tankwa, M., Ganno, S., Okunlola, O.A., Tanko Njiosseu, E.L., Soh Tamehe, L., Kamguia Woguia, B., and Nzenti, J.P., Petrogenesis and tectonic setting of the Paleoproterozoic Kelle Bidjoka iron formations, Nyong group greenstone belts, southwestern Cameroon. Constraints from petrology, geochemistry, and LA-ICP-MS zircon U-Pb geochronology, Int. Geol. Rev., 2021, vol. 63, no. 14, pp. 1737–1757. https://doi.org/10.1080/00206814.2020.1793423

    Article  Google Scholar 

  89. Oliver, N.H.S., Dickens, G.R., and Stanley, C.J., Hematite ores of Australia are formed by syntectonic heated meteoric fluids, Miner. Depos. Processes to Processing, 1999, pp. 889–892.

    Google Scholar 

  90. Oliveira, E.P., Toteu, S.F., Araújo, M.N.C., Carvalho, M.J., Nascimento, R.S., Bueno, J.F., and Basilici, G., Geologic correlation between the Neoproterozoic Sergipano belt (NE Brazil) and the Yaounde belt (Cameroon, Africa), J. Afr. Earth Sci., 2006, vol. 44, nos. 4–5, pp. 470–478. https://doi.org/10.1016/j.jafrearsci.2005.11.014

    Article  Google Scholar 

  91. Oliver, N.H.S., Olivier, J.S., Cleverley, G.M., and Dipple, G.C., Broadbent, giant bif hosted haematite ores: geo chemical and isotopic modelling of meteoric and basinal fluid–rock reactions, Proceedings of Biennial Meeting of the Society for Geology Applied to Mineral Deposits, Dublin: 2007, pp. 1219–1222.

  92. Owona, S., Ondoa, J.M., Ratschbacher, L., Ndzana, S.P.M., Tchoua, F.M., and Ekodeck, G.E., The geometry of the Archean, Paleo- and Neoproterozoic tectonics in the Southwest Cameroon, Compt. Rendus Geosci., 2011, vol. 343, no. 4, pp. 312–322. https://doi.org/10.1016/j.crte.2010.12.008

    Article  Google Scholar 

  93. Owona, S., Ndzana, S.M., Ondoa, J.M., Ngapna, M.N., Nkabsaah, C., Ratschbacher, L., and Ekodeck, G.E., Geological control of geomorphologic units in the Southwest (SW) Cameroon (Central Africa), J. Geol. Mining Res., 2012, vol. 4, no. 7, pp. 152–167.

    Google Scholar 

  94. Owona, S., Ratschbacher, L., Afzal, M.G., Nsangou Ngapna, M., Mvondo Ondoa, J., and Ekodeck, G.E., New U–Pb zircon ages of Nyong Complex meta-plutonites: Implications for the Eburnean/Trans-Amazonian Orogeny in southwestern Cameroon (Central Africa), Geol. J., 2021, vol. 56, no. 4, pp. 1741–1755. https://doi.org/10.1002/gj.4022

    Article  Google Scholar 

  95. Pack, A. and Herwartz, D., The triple oxygen isotope composition of the Earth mantle and understanding ΔO17 variations in terrestrial rocks and minerals, Earth Planet. Sci. Lett., 2014, vol. 390, pp. 138–145. https://doi.org/10.1016/j.epsl.2014.01.017

    Article  Google Scholar 

  96. Pack, A., Tanaka, R., Hering, M., Sengupta, S., Peters, S., and Nakamura, E., The oxygen isotope composition of San Carlos olivine on the VSMOW-SLAP2 scale, Rapid Commun. Mass Spectrom., 2016, vol. 30, no. 13, pp. 1495–1504. https://doi.org/10.1002/rcm.7582

    Article  Google Scholar 

  97. Penaye, J., Toteu, S.F., Tchameni, R., Van Schmus, W.R., Tchakounté, J., Ganwa, A., and Nsifa, E.N., The 2.1 Ga West–central African belt in Cameroon: extension and evolution, J. Afr. Earth Sci., 2004, vol. 39, no. 3–5, pp. 159–164. https://doi.org/10.1016/j.jafrearsci.2004.07.053

    Article  Google Scholar 

  98. Peters, S.T., Alibabaie, N., Pack, A., McKibbin, S.J., Raeisi, D., Nayebi, N., and Lehmann, B., Triple oxygen isotope variations in magnetite from iron–oxide deposits, central Iran, record magmatic fluid interaction with evaporite and carbonate host rocks, Geology 2020, vol. 48, no. 3, pp. 211–215. https://doi.org/10.1130/G46981.1

    Article  Google Scholar 

  99. Pires, F.R.M., Distribution of hard hematite ore at the Quadrilatero Ferrifero, Minas Gerais, Brazil and its possible genetic significance, Appl. Earth Sci., 2003, vol. 112, no. 1, pp. 31–37. https://doi.org/10.1179/037174503250125

    Article  Google Scholar 

  100. Pouclet, A., Tchameni, R., Mezger, K., Vidal, M., Nsifa, E., Shang, C., and Penaye, J., Archaean crustal accretion at the northern border of the Congo Craton (South Cameroon): The charnockite–TTG link, Bull. Soc. Géol. France, 2007, vol. 178, no. 5, pp. 331–342. https://doi.org/10.2113/gssgfbull.178.5.331

    Article  Google Scholar 

  101. Powell, C.M., Oliver, N.H.S., Li, Z.X., Martin, D.M., and Ronaszeki, J., Synorogenic hydrothermal origin for giant Hamersley iron oxide orebodies, Geology, 1999, vol. 27, no. 2, pp. 175–178. https://doi.org/10.1130/0091-7613(1999)027<0175:SHOFGH>2.3.CO;2

    Article  Google Scholar 

  102. Ramanaidou, B., Wells, M., Belton, D., and Ryan, C., Mineralogical and microchemical methods for the characterisation of high–grade banded iron formation–derived iron ore, Econ. Geol. Rev., 2008, vol. 15, pp. 129–156. https://doi.org/10.5382/Rev.15.05

    Article  Google Scholar 

  103. Rasmussen, B., Fletcher, I.R., Muhling, J.R., Thorne, W.S., and Broadbent, G.C., Prolonged history of episodic fluid flow in giant hematite orebodies: Evidence from in situ U–Pb geochronology of hydrothermal xenotime, Earth Planet. Sci. Lett., 2007, vol. 258, nos. 1–2, pp. 249–259. https://doi.org/10.1016/j.epsl.2007.03.033

    Article  Google Scholar 

  104. Retonda-Kondja, S., Ndong-Ondo, S.M., Edou-Minko, A., Sato, T., Musavu-Moussavou, B., and Moussavou, M., Archean itabirites from Ovan, NE-Gabon: petrography, mineralogy and elemental mapping, Eur. Sci. J., 2021, vol. 17, no. 25, pp. 380. https://doi.org/10.19044/esj.2021.v17n25p380

    Article  Google Scholar 

  105. Rosière, C.A. and Rios, F.J., The origin of hematite in high–grade iron ores based on infrared microscopy and fluid inclusion studies: the example of the Conceicao mine, Quadrilatero Ferrifero, Brazil, Econ. Geol., 2004, vol. 99, no. 3, pp. 611–624. https://doi.org/10.2113/gsecongeo.99.3.611

    Article  Google Scholar 

  106. Rosière, C.A., Spier, C.A., Rios, F.J., and Suckau, V.E., The itabirites of the Quadrilatero Ferrifero and related high–grade iron ore deposits: an overview, Rev. Econ. Geol., 2008, vol. 15, pp. 223–254. https://doi.org/10.5382/Rev.15.09

    Article  Google Scholar 

  107. Rosiere, C.A., Bekker, A., Rolim, V.K., and Santos, J.O.S., Post–Great Oxidation Event Orosirian–Statherian iron formations on the Sao Francisco craton: Geotectonic implications, Island Arc, 2019, vol. 28, no. 4, pp. e12300. https://doi.org/10.2113/gsecongeo.99.3.61110.2113/gsecongeo.99.3.611https://doi.org/10.1111/iar.12300

  108. Rosière, C.A., Santos, J.O.S., Braga, F.S., Hensler, A., Rolim, V.K., and Bekker, A., Multiple Hydrothermal Iron–Formation Upgrading Events in Southeastern Sao Francisco Craton, J. Geol., 2021, vol. 129, no. 3, pp. 283–296.

    Article  Google Scholar 

  109. Schlüter, T., Geological Atlas of Africa. With Notes on Stratigraphy, Tectonics, Economic Geology, Geohazards, Geosites and Geoscientific Education of Each Country, Berlin : Springer–Verlag, 2008. https://doi.org/10.2113/gsecongeo.103.6.1379

  110. Sengupta, S., Peters, S.T., Reitner, J., Duda, J.P., and Pack, A., Triple oxygen isotopes of cherts through time, Chem. Geol., 2020, vol. 554, pp. 119789. https://doi.org/10.1016/j.chemgeo.2020.119789

    Article  Google Scholar 

  111. Shang, C.K., Satir, M., Siebel, W., Nsifa, E.N., Taubald, H., Liegeois, J.P., and Tchoua, F.M., TTG magmatism in the Congo craton; a view from major and trace element geochemistry, Rb–Sr and Sm–Nd systematics: the case of the Sangmelima region, Ntem complex, southern Cameroon, J. Afr. Earth Sci., 2004, vol. 40, no. 1–2, pp. 61–79. https://doi.org/10.1016/j.jafrearsci.2004.07.005

    Article  Google Scholar 

  112. Shang, C.K., Satir, M., Nsifa, E.N., Liégeois, J.P., Siebel, W., and Taubald, H., Archaean high–K granitoids produced by remelting of earlier tonalite–trondhjemite–granodiorite (TTG) in the Sangmelima region of the Ntem complex of the Congo craton, southern Cameroon, Int. J. Earth Sci., 2007, vol. 96, no. 5, pp. 817–841. https://doi.org/10.1007/s00531-006-0141-3

    Article  Google Scholar 

  113. Shang, C.K., Liégeois, J.P., Satir, M., Frisch, W., and Nsifa, E.N., Late Archaean high–K granite geochronology of the northern metacratonic margin of the Archaean Congo craton, Southern Cameroon: Evidence for Pb-loss due to non–metamorphic causes, Gondwana Res., 2010, vol. 18, no. 2–3, pp. 337–355. https://doi.org/10.1016/j.gr.2010.02.008

    Article  Google Scholar 

  114. Sharp, Z.D., Gibbons, J.A., Maltsev, O., Atudorei, V., Pack, A., Sengupta, S., and Knauth, L.P., A calibration of the triple oxygen isotope fractionation in the SiO2–H2O system and applications to natural samples, Geochim. Cosmochim. Acta, 2016, vol. 186, pp. 105–119. https://doi.org/10.1016/j.gca.2016.04.047

    Article  Google Scholar 

  115. Soh Tamehe, L., Nzepang Tankwa, M., Wei, C.T., Ganno, S., Ngnotue, T., Kouankap Nono G.D., Simon, S.J., Zhang, J.J., Nzenti, J.P., Geology and geochemical constraints on the origin and depositional setting of Kpwa–Atog Boga banded iron formations (BIFs), northwestern Congo craton, southern Cameroon, Ore Geol. Rev., 2018, vol. 95, pp. 620–638.

    Article  Google Scholar 

  116. Soh Tamehe, L., Wei, C.T., Ganno, S., Simon, S.J., Kouankap, N.G.D., Nzenti, J.P., and Lemdjou, Y.B., and Htun Lin, N., Geology of the Gouap iron deposit, Congo craton, southern Cameroon: Implications for iron ore exploration, Ore Geol. Rev., 2019, vol. 107, pp. 1097–1128. https://doi.org/10.1016/j.oregeorev.2019.03.034

    Article  Google Scholar 

  117. Soh Tamehe, L., Wei, C.T., Ganno, S., Rosière, C.A., and Nzenti, J.P., Gatse Ebotehouna, C., Lu, G.W., Depositional age and tectonic environment of the Gouap banded iron formations from the Nyong Group, S.W. Cameroon: Insights from isotopic, geochemical, and geochronological studies of drillcore samples, Geosci. Front., 2021, vol. 12, no. 2, pp. 549–572. https://doi.org/10.1016/j.gsf.2020.07.009

    Article  Google Scholar 

  118. Soh Tamehe, L., Wei, C., Ganno, S., Rosiere, C.A., Li, H., Soares, M.B., and Bekker, A., Provenance of metasiliciclastic rocks at the northwestern margin of the East Gabonian Block: Implications for deposition of BIFs and crustal evolution in southwestern Cameroon, Precambrian Res., 2022, vol. 376, pp. 106677. https://doi.org/10.1016/j.precamres.2022.106677

    Article  Google Scholar 

  119. Spier, C.A., de Oliveira, S.M.B., and Rosiere, C.A., Geology and geochemistry of the Águas Claras and Pico Iron Mines, Quadrilátero Ferrífero, Minas Gerais, Brazil, Miner. Deposita, 2003, vol. 38, no. 6, pp. 751–774. https://doi.org/10.1007/s00126-003-0371-2

    Article  Google Scholar 

  120. Spier, C.A., de Oliveira, S.M., Sial, A.N., and Rios, F.J., Geochemistry and genesis of the banded iron formations of the Cauê Formation, Quadrilátero Ferrífero, Minas Gerais, Brazil, Precambrian Res., 2007, vol. 152, nos. 3–4, pp. 170–206. https://doi.org/10.1016/j.precamres.2006.10.003

    Article  Google Scholar 

  121. Suh, C.E., Cabral, A.R., Shemang, E.M., Mbinkar, L., and Mboudou, G.G.M., Two contrasting iron–ore deposits in the Precambrian mineral belt of Cameroon, West Africa, Expl. Mining Geol., 2008, vol. 17, pp. 197–207. https://doi.org/10.2113/gsemg.17.3-4.197

    Article  Google Scholar 

  122. Suh, C.E., Cabral, A.R., and Ndime, E., Geology and ore fabrics of the Nkout high-grade haematite deposit, southern Cameroon, Smart Science for Exploration and Mining, Proceedings of the Tenth Biennial SGA Meeting, Society for Geology Applied to Mineral Deposit, Angerer, T., Hagemann, S., and Rosiere, C.A., Eds., Townsville, 2009, pp. 558–560.

  123. Swiffa Fajong, I., Nzepang Tankwa, M., Fossi, D.H., Ganno, S., Moudioh, C., Soh Tamehe, L., Suh, C.E., and Nzenti, J. P., Lithostratigraphy, origin, and geodynamic setting of iron formations and host rocks of the Anyouzok Region, Congo Craton, Southwestern Cameroon, Minerals, 2022, vol. 12, no. 10, pp. 1198. https://doi.org/10.3390/min12101198

    Article  Google Scholar 

  124. Takam, T., Arima, M., Kokonyangi, J., Dunkley, D.J., and Nsifa, E.N., Paleoarchaean charnockites in the Ntem complex, Congo craton, Cameroon: insights from SHRIMP zircon U–Pb ages, J. Mineral. Petrol. Sci., 2009, vol. 104, pp. 1–11. https://doi.org/10.2465/jmps.080624

    Article  Google Scholar 

  125. Taylor, D., Dalstra, H.J., Harding, A.E., Broadbent, G.C., and Barley, M.E., Genesis of high–grade hematite orebodies of the Hamersley Province, Western Australia, Econ. Geol., 2001, vol. 96, no. 4, pp. 837–873. https://doi.org/10.2113/gsecongeo.96.4.837

    Article  Google Scholar 

  126. Tchameni, R., Lerouge, C., Penaye, J., Cocherie, A., Milesi, J.P., Toteu, S.F., and Nsifa, N.E., Mineralogical constraint for metamorphic conditions in a shear zone affecting the Archean Ngoulemakong tonalite, Congo craton (Southern Cameroon) and retentivity of U–Pb SHRIMP zircon dates, J. Afr. Earth Sci., 2010, vol. 58, no. 1, pp. 67–80. https://doi.org/10.1016/j.jafrearsci.2010.01.009

    Article  Google Scholar 

  127. Teixeira, N.L., Caxito, F.A., Rosière, C.A., Pecoits, E., Vieira, L., Frei, R., and Poitrasson, F., Trace elements and isotope geochemistry (C, O, Fe, Cr) of the Caue iron formation, Quadrilátero Ferrífero, Brazil: Evidence for widespread microbial dissimilatory iron reduction at the Archean/Paleoproterozoic transition, Precambrian Res., 2017, vol. 298, pp. 39–55. https://doi.org/10.1016/j.precamres.2017.05.009

    Article  Google Scholar 

  128. Teutsong, T., Bontognali, T.R., Ndjigui, P.D., Vrijmoed, J.C., Teagle, D., Cooper, M., and Vance, D., Petrography and geochemistry of the Mesoarchean Bikoula banded iron formation in the Ntem complex (Congo craton), Southern Cameroon: implications for its origin, Ore Geol. Rev., 2017, vol. 80, pp. 267–288. https://doi.org/10.1016/j.oregeorev.2016.07.003

    Article  Google Scholar 

  129. Thiéblemont, D., Castaing, C., Billa, M., Bouton, P., and Préat, A., Explanatory note of the geological map and mineral resources of the Gabonese Republic at 1:1 000 000, Sysmin Program, 2009, vol. 8, pp. 384.

  130. Thorne, W.S., Hagemann, S.G., and Barley, M., Petrographic and geochemical evidence for hydrothermal evolution of the North Deposit, Mt Tom Price, Western Australia, Mineral. Deposita 2004, vol. 39, no. 7, pp. 766–783. https://doi.org/10.1007/s00126-004-0444-x

    Article  Google Scholar 

  131. Thorne, W., Hagemann, S., Webb, A., and Clout, J., Banded iron formation-related iron ore deposits of the Hamersley Province, Western Australia. In: Banded Iron Formation-Related High–Grade Iron Ore, Hagemann, S.G., Rosiere, C.A., Gutzmer, J., and Beukes, N.J., Eds., Rev. Econ. Geol., 2008, vol. 15, pp. 197–222. https://doi.org/10.5382/Rev.15.08

  132. Thorne, W., Hagemann, S., Vennemann, T., and Oliver, N., Oxygen isotope compositions of iron oxides from high–grade BIF–hosted iron ore deposits of the Central Hamersley Province, Western Australia: constraints on the evolution of hydrothermal fluids, Econ. Geol., 2009, vol. 104, no. 7, pp. 1019–1035. https://doi.org/10.2113/econgeo.104.7.1019

    Article  Google Scholar 

  133. Thorne, W.S., Hagemann, S.G., Sepe, D., Dalstra, H.J., and Banks, D.A., Structural control, hydrothermal alteration zonation, and fluid chemistry of the concealed, high–grade 4EE iron orebody at the Paraburdoo 4E deposit, Hamersley Province, Western Australia, Econ. Geol., 2014, vol. 109, no. 6, pp. 1529–1562. https://doi.org/10.2113/econgeo.109.6.1529

    Article  Google Scholar 

  134. Thornett, S., Longley, R., and Robertson, I., Meehan., D., Mbalam–Nabeba Iron Ore Project; 100–RG–GO–0009, Sundance Resources Ltd. Perth, Australia, 2013, vol. 479.

    Google Scholar 

  135. Toteu, S.F., Van Schmus, W.R., Penaye, J., and Nyobe, J.B., U-Pb and Sm-Nd evidence for Eburnian and Pan-African high–grade metamorphism in cratonic rocks of southern Cameroon, Precambrian Res., 1994, vol. 67, nos. 3–4, pp. 321–347. https://doi.org/10.1016/0301-9268(94)90014-0

    Article  Google Scholar 

  136. Toteu, S.F., Penaye, J., and Djomani, Y.P., Geodynamic evolution of the Pan–African belt in central Africa with special reference to Cameroon, Can. J. Earth Sci., 2004, vol. 41, no. 1, pp. 73–85. https://doi.org/10.1139/e03-079

    Article  Google Scholar 

  137. Toteu, S.F., Fouateu, R.Y., Penaye, J., Tchakounte, J., Mouangue, A.C.S., Van Schmus, W.R., and Stendal, H., U–Pb dating of plutonic rocks involved in the nappe tectonic in southern Cameroon: consequence for the Pan-African orogenic evolution of the central African fold belt, J. Afr. Earth Sci., 2006, vol. 44, nos. 4–5, pp. 479–493. https://doi.org/10.1016/j.jafrearsci.2005.11.015

    Article  Google Scholar 

  138. United Nations Development Programme, Gisement de Fer de Metzimevin (district de Mbalam) (The Metzimevin Iron Deposit—Mbalam District). Project de Recherches Minieres Sud–Est Cameroun CMR/81/005. Organisation des Nations Unies et Republique Du Cameroun, Raport, 1984, no. 60.

  139. United Nations Development Programme, Prospection géologique sur la colline Mbarga et alentours. (Geological Prospecting of Mbalam Hill and surroundings). Project de Recherché Minières Sud–Est Cameroun CMR/81/005, Organisation des Nations Unies et Republique Du Cameroun, Raport, 1985, no. 73.

  140. Van Schalkwyk, J.F. and Beukes, N.J., The Sishen iron ore deposit, griqualand West, Miner. Dep. S. Afr., 1986, pp. 931–956.

    Google Scholar 

  141. Van Schmus, W.R., Oliveira, E.P., Da, Silva., Filho, A.F., Toteu, S.F., Penaye, J., and Guimarães, I.P., Proterozoic links between the Borborema province, NE Brazil, and the central African fold belt, Geol. Soc. Lond. Spec. Publ., 2008, vol. 294, no. 1, pp. 69–99. https://doi.org/10.1144/SP294.5

    Article  Google Scholar 

  142. Vishiti, A., Ilouga, D.C.I., Bomyoymoah, N.C., and Suh, C.E., Petrology of banded iron formation–related country rocks at the northern limit of the Mbalam iron ore district, southeastern Cameroon, J. Cam. Acad. Sci., 2022, vol. 18, no. 2, pp. 447–472. https://doi.org/10.4314/jcas.v18i2.5

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This review paper is part of the first author’s PhD thesis. He is grateful to every anonymous reviewer for their time and constructive comments.

Funding

The African Union (AU) Commission through the Pan-African University Life and Earth Science Institute (PAULESI) Scholarship is funding this PhD research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. L. Ngiamte.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngiamte, G.L., Okunlola, O.A., Suh, C.E. et al. Oxygen Isotope Geochemistry as a Tool in the Exploration for BIF-hosted Iron Ore Occurrences within the Precambrian Mineral Belt of Southern Cameroon, Northwestern Margin of the Congo Craton: A Review. Geol. Ore Deposits 65, 605–624 (2023). https://doi.org/10.1134/S1075701523060077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701523060077

Keywords:

Navigation