Skip to main content

Cav3 Calcium Channel Interactions with Potassium Channels

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Voltage-Gated Calcium Channels

Abstract

The influence of potassium channels on cell activity is markedly enhanced by exhibiting the low voltage for activation, fast activation, and fast inactivation that characterize an A-type channel profile. Previous work had identified only a subset of members of the voltage-gated Kv1, Kv3, and Kv4 families in which alpha subunits are able to exhibit A-type biophysical properties. Recent work has shown that Cav3 channels closely associate with different potassium channels to impart their biophysical and kinetic properties and effectively create three new forms of A-type potassium channel. Cav3-K channel interactions identified to date include Cav3-Kv4, Cav3-IK, and Cav3-BK that enable novel aspects of synaptic processing and spike discharge in cerebellar granule, stellate, Purkinje, and medial vestibular neurons. This chapter will highlight data obtained in each of these cell classes of how Cav3 associations with different potassium channels extend the number of channels capable of exhibiting an A-type phenotype to control cell activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguado, C., GarcĂ­a-Madrona, S., Gil-Minguez, M., & Luján, R. (2016). Ontogenic changes and differential localization of T-type Ca(2+) channel subunits Cav3.1 and Cav3.2 in mouse hippocampus and cerebellum. Frontiers in Neuroanatomy, 10(83), 1–16.

    Google Scholar 

  • Ait Ouares, K., Filipis, L., Tzilivaki, A., Poirazi, P., & Canepari, M. (2019). Two distinct sets of Ca2+ and K+ channels are activated at different membrane potentials by the climbing fiber synaptic potential in Purkinje neuron dendrites. The Journal of Neuroscience, 39, 1969–1981.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson, D., Mehaffey, W. H., Iftinca, M., Rehak, R., Engbers, J. D., Hameed, S., Zamponi, G. W., & Turner, R. W. (2010a). Regulation of neuronal activity by Cav3-Kv4 channel signaling complexes. Nature Neuroscience, 13, 333–337.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, D., Rehak, R., Hameed, S., Mehaffey, W. H., Zamponi, G. W., & Turner, R. W. (2010b). Regulation of the KV4.2 complex by CaV3.1 calcium channels. Channels, 4, 163–167.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, D., Engbers, J. D., Heath, N. C., Bartoletti, T. M., Mehaffey, W. H., Zamponi, G. W., & Turner, R. W. (2013). The Cav3-Kv4 complex acts as a calcium sensor to maintain inhibitory charge transfer during extracellular calcium fluctuations. The Journal of Neuroscience, 33, 7811–7824.

    Google Scholar 

  • Berkefeld, H., & Fakler, B. (2008). Repolarizing responses of BKCa-Cav complexes are distinctly shaped by their Cav subunits. The Journal of Neuroscience, 28, 8238–8245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berkefeld, H., Sailer, C. A., Bildl, W., Rohde, V., Thumfart, J.-O., Eble, S., Klugbauer, N., Reisinger, E., Bischofberger, J., Oliver, D., Knaus, H.-G., Schulte, U., & Fakler, B. (2006). BKCa-Cav channel complexes mediate rapid and localized Ca2+-activated K+ signaling. Science, 314, 615–620.

    Article  CAS  PubMed  Google Scholar 

  • Berkefeld, H., Fakler, B., & Schulte, U. (2010). Ca2+-activated K+ channels: From protein complexes to function. Physiological Reviews, 90, 1437–1459.

    Article  CAS  PubMed  Google Scholar 

  • Bossu, J. L., Fagni, L., & Feltz, A. (1989). Voltage-activated calcium channels in rat Purkinje cells maintained in culture. PflĂĽgers Archiv, 414, 92–94.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C.-C., Lamping, K. G., Nuno, D. W., Barresi, R., Prouty, S. J., Lavoie, J. L., Cribbs, L. L., England, S. K., Sigmund, C. D., Weiss, R. M., Williamson, R. A., Hill, J. A., & Campbell, K. P. (2003). Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. Science, 302, 1416–1418.

    Article  CAS  PubMed  Google Scholar 

  • Cueni, L., Canepari, M., Lujan, R., Emmenegger, Y., Watanabe, M., Bond, C. T., Franken, P., Adelman, J. P., & Luthi, A. (2008). T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nature Neuroscience, 11, 683–692.

    Article  CAS  PubMed  Google Scholar 

  • Cueni, L., Canepari, M., Adelman, J. P., & Luthi, A. (2009). Ca(2+) signaling by T-type Ca(2+) channels in neurons. PflĂĽgers Archiv, 457, 1161–1172.

    Article  CAS  PubMed  Google Scholar 

  • Davie, J. T., Clark, B. A., & Hausser, M. (2008). The origin of the complex spike in cerebellar Purkinje cells. The Journal of Neuroscience, 28, 7599–7609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engbers, J. D., Anderson, D., Asmara, H., Rehak, R., Mehaffey, W. H., Hameed, S., McKay, B. E., Kruskic, M., Zamponi, G. W., & Turner, R. W. (2012). Intermediate conductance calcium-activated potassium channels modulate summation of parallel fiber input in cerebellar Purkinje cells. Proceedings of the National Academy of Sciences of the United States of America, 109, 2601–2606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engbers, J. D. T., Fernandez, F. R., & Turner, R. W. (2013a). Bistability in Purkinje neurons: Ups and downs in cerebellar research. Neural Networks, 47, 18–31.

    Article  PubMed  Google Scholar 

  • Engbers, J. D., Zamponi, G. W., & Turner, R. W. (2013b). Modeling interactions between voltage-gated Ca (2+) channels and KCa1.1 channels. Channels, 7, 524–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez, F. R., Engbers, J. D., & Turner, R. W. (2007). Firing dynamics of cerebellar purkinje cells. Journal of Neurophysiology, 98, 278–294.

    Article  PubMed  Google Scholar 

  • Gittis, A. H., Moghadam, S. H., & du Lac, S. (2010). Mechanisms of sustained high firing rates in two classes of vestibular nucleus neurons: Differential contributions of resurgent Na, Kv3, and BK currents. Journal of Neurophysiology, 104, 1625–1634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg, J. A., & Wilson, C. J. (2005). Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium-activated potassium currents in striatal cholinergic interneurons. The Journal of Neuroscience, 25, 10230–10238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grundemann, J., & Clark, B. A. (2015). Calcium-activated potassium channels at nodes of Ranvier secure axonal spike propagation. Cell Reports, 12, 1715–1722.

    Article  CAS  PubMed  Google Scholar 

  • Grunnet, M., & Kaufmann, W. A. (2004). Coassembly of big conductance Ca2+-activated K+ channels and L-type voltage-gated Ca2+ channels in rat brain. The Journal of Biological Chemistry, 279, 36445–36453.

    Article  CAS  PubMed  Google Scholar 

  • Heath, N. C., Rizwan, A. P., Engbers, J. D., Anderson, D., Zamponi, G. W., & Turner, R. W. (2014). The expression pattern of a Cav3-Kv4 complex differentially regulates spike output in cerebellar granule cells. The Journal of Neuroscience, 34, 8800–8812.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hildebrand, M. E., Isope, P., Miyazaki, T., Nakaya, T., Garcia, E., Feltz, A., Schneider, T., Hescheler, J., Kano, M., Sakimura, K., Watanabe, M., Dieudonne, S., & Snutch, T. P. (2009). Functional coupling between mGluR1 and Cav3.1 T-type calcium channels contributes to parallel fiber-induced fast calcium signaling within Purkinje cell dendritic spines. The Journal of Neuroscience, 29, 9668–9682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isope, P., & Murphy, T. H. (2005). Low threshold calcium currents in rat cerebellar Purkinje cell dendritic spines are mediated by T-type calcium channels. The Journal of Physiology, 562, 257–269.

    Article  CAS  PubMed  Google Scholar 

  • Isope, P., Hildebrand, M. E., & Snutch, T. P. (2012). Contributions of T-type voltage-gated calcium channels to postsynaptic calcium signaling within Purkinje neurons. Cerebellum, 11, 651–665.

    Article  CAS  PubMed  Google Scholar 

  • Khaliq, Z. M., & Raman, I. M. (2005). Axonal propagation of simple and complex spikes in cerebellar Purkinje neurons. The Journal of Neuroscience, 25, 454–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khaliq, Z. M., Gouwens, N. W., & Raman, I. M. (2003). The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: An experimental and modeling study. The Journal of Neuroscience, 23, 4899–4912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latorre, R., & Brauchi, S. (2006). Large conductance Ca2+-activated K+ (BK) channel: Activation by Ca2+ and voltage. Biological Research, 39, 385–401.

    Article  CAS  PubMed  Google Scholar 

  • Lee, U. S., & Cui, J. (2010). BK channel activation: Structural and functional insights. Trends in Neurosciences, 33, 415–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima, P. A., & Marrion, N. V. (2007). Mechanisms underlying activation of the slow AHP in rat hippocampal neurons. Brain Research, 1150, 74–82.

    Article  CAS  PubMed  Google Scholar 

  • Loane, D. J., Lima, P. A., & Marrion, N. V. (2007). Co-assembly of N-type Ca2+ and BK channels underlies functional coupling in rat brain. Journal of Cell Science, 120, 985–995.

    Article  CAS  PubMed  Google Scholar 

  • Ly, R., Bouvier, G., Szapiro, G., Prosser, H. M., Randall, A. D., Kano, M., Sakimura, K., Isope, P., Barbour, B., & Feltz, A. (2016). Contribution of postsynaptic T-type calcium channels to parallel fibre-Purkinje cell synaptic responses. The Journal of Physiology, 594, 915–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcantoni, A., Vandael, D. H., Mahapatra, S., Carabelli, V., Sinnegger-Brauns, M. J., Striessnig, J., & Carbone, E. (2010). Loss of Cav1.3 channels reveals the critical role of L-type and BK channel coupling in pacemaking mouse adrenal chromaffin cells. The Journal of Neuroscience, 30, 491–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrion, N. V., & Tavalin, S. J. (1998). Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature, 395, 900–905.

    Article  CAS  PubMed  Google Scholar 

  • McKay, B. E., McRory, J. E., Molineux, M. L., Hamid, J., Snutch, T. P., Zamponi, G. W., & Turner, R. W. (2006). Ca(V)3 T-type calcium channel isoforms differentially distribute to somatic and dendritic compartments in rat central neurons. The European Journal of Neuroscience, 24, 2581–2594.

    Article  PubMed  Google Scholar 

  • McKay, B. E., Engbers, J. D. T., Mehaffey, W. H., Gordon, G. R. J., Molineux, M. L., Bains, J. S., & Turner, R. W. (2007). Climbing fiber discharge regulates cerebellar functions by controlling the intrinsic characteristics of purkinje cell output. Journal of Neurophysiology, 97, 2590–2604.

    Article  CAS  PubMed  Google Scholar 

  • Molineux, M. L., Fernandez, F. R., Mehaffey, W. H., & Turner, R. W. (2005). A-type and T-type currents interact to produce a novel spike latency-voltage relationship in cerebellar stellate cells. The Journal of Neuroscience, 25, 10863–10873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molineux, M. L., McRory, J. E., McKay, B. E., Hamid, J., Mehaffey, W. H., Rehak, R., Snutch, T. P., Zamponi, G. W., & Turner, R. W. (2006). Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar nuclear neurons. Proceedings of the National Academy of Sciences of the United States of America, 103, 5555–5560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monsivais, P., Clark, B. A., Roth, A., & Hausser, M. (2005). Determinants of action potential propagation in cerebellar Purkinje cell axons. The Journal of Neuroscience, 25, 464–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouginot, D., Bossu, J. L., & Gahwiler, B. H. (1997). Low-threshold Ca2+ currents in dendritic recordings from Purkinje cells in rat cerebellar slice cultures. The Journal of Neuroscience, 17, 160–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MĂĽller, A., Kukley, M., Uebachs, M., Beck, H., & Dietrich, D. (2007). Nanodomains of single Ca2+ channels contribute to action potential repolarization in cortical neurons. The Journal of Neuroscience, 27, 483–495.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohtsuki, G., Piochon, C., Adelman, J. P., & Hansel, C. (2012). SK2 channel modulation contributes to compartment-specific dendritic plasticity in cerebellar Purkinje cells. Neuron, 75, 108–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poolos, N. P., & Johnston, D. (1999). Calcium-activated potassium conductances contribute to action potential repolarization at the soma but not the dendrites of hippocampal CA1 pyramidal neurons. The Journal of Neuroscience, 19, 5205–5212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakriya, M., & Lingle, C. J. (1999). BK channel activation by brief depolarizations requires Ca2+ influx through L- and Q-type Ca2+ channels in rat chromaffin cells. Journal of Neurophysiology, 81, 2267–2278.

    Article  CAS  PubMed  Google Scholar 

  • Rehak, R., Bartoletti, T. M., Engbers, J. D., Berecki, G., Turner, R. W., & Zamponi, G. W. (2013). Low voltage activation of KCa1.1 current by Cav3-KCa1.1 complexes. PLoS One, 8, e61844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizwan, A. P., Zhan, X., Zamponi, G. W., & Turner, R. W. (2016). Long-term potentiation at the mossy fiber-granule cell relay invokes postsynaptic second-messenger regulation of Kv4 channels. The Journal of Neuroscience, 36, 11196–11207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robitaille, R., Garcia, M. L., Kaczorowski, G. J., & Charlton, M. P. (1993). Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release. Neuron, 11, 645–655.

    Article  CAS  PubMed  Google Scholar 

  • Sahu, G., & Turner, R. W. (2021). The molecular basis for the calcium-dependent sAHP in CA1 hippocampal pyramidal cells. Frontiers in Physiology, 1, 1–25.

    Google Scholar 

  • Sahu, G., Asmara, H., Zhang, F. X., Zamponi, G. W., & Turner, R. W. (2017). Activity-dependent facilitation of CaV1.3 calcium channels promotes KCa3.1 activation in hippocampal neurons. The Journal of Neuroscience, 37, 11255–11270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu, G., Wazen, R.-M., Colarusso, P., Chen, S. R. W., Zamponi, G. W., & Turner, R. W. (2019). Junctophilin proteins tether a Cav1-RyR2-KCa3.1 tripartite complex to regulate neuronal excitability. Cell Reports, 28, 2427–2442.e6.

    Article  CAS  PubMed  Google Scholar 

  • Schmolesky, M. T., Weber, J. T., De Zeeuw, C. I., & Hansel, C. (2002). The making of a complex spike: Ionic composition and plasticity. Annals of the New York Academy of Sciences, 978, 359–390.

    Article  PubMed  Google Scholar 

  • Shao, L. R., Halvorsrud, R., Borg-Graham, L., & Storm, J. F. (1999). The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells. The Journal of Physiology, 521(Pt 1), 135–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, M. R., Nelson, A. B., & Du Lac, S. (2002). Regulation of firing response gain by calcium-dependent mechanisms in vestibular nucleus neurons. Journal of Neurophysiology, 87, 2031–2042.

    Article  PubMed  Google Scholar 

  • Sun, X., Gu, X. Q., & Haddad, G. G. (2003). Calcium influx via L- and N-type calcium channels activates a transient large-conductance Ca2+-activated K+ current in mouse neocortical pyramidal neurons. The Journal of Neuroscience, 23, 3639–3648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swensen, A. M., & Bean, B. P. (2003). Ionic mechanisms of burst firing in dissociated Purkinje neurons. The Journal of Neuroscience, 23, 9650–9663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talley, E. M., Cribbs, L. L., Lee, J. H., Daud, A., Perez-Reyes, E., & Bayliss, D. A. (1999). Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. The Journal of Neuroscience, 19, 1895–1911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner, R. W., & Zamponi, G. W. (2014). T-type channels buddy up. Invited review for Special issue, T-type (Cav3) Calcium channels in health and disease, European Journal of Physiology, 466(4), 661–675.

    Google Scholar 

  • Vandael, D. H., Marcantoni, A., Mahapatra, S., Caro, A., Ruth, P., Zuccotti, A., Knipper, M., & Carbone, E. (2010). Ca(v)1.3 and BK channels for timing and regulating cell firing. Molecular Neurobiology, 42, 185–198.

    Article  CAS  PubMed  Google Scholar 

  • Wolfart, J., & Roeper, J. (2002). Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. The Journal of Neuroscience, 22, 3404–3413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfart, J., Neuhoff, H., Franz, O., & Roeper, J. (2001). Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. The Journal of Neuroscience, 21, 3443–3456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Womack, M. D., & Khodakhah, K. (2002). Characterization of large conductance Ca2+-activated K+ channels in cerebellar Purkinje neurons. The European Journal of Neuroscience, 16, 1214–1222.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge J. Forden, L. Chen, and M Kruskic for their technical assistance in these studies and numerous trainees in the Turner lab who contributed to this work. These studies were supported by operating grants from the Canadian Institutes for Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray W. Turner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Turner, R.W. (2022). Cav3 Calcium Channel Interactions with Potassium Channels. In: Zamponi, G.W., Weiss, N. (eds) Voltage-Gated Calcium Channels . Springer, Cham. https://doi.org/10.1007/978-3-031-08881-0_10

Download citation

Publish with us

Policies and ethics