Skip to main content

Carbon Nanomaterials in Electrochemical Biodevices

  • Chapter
  • First Online:
Advances in Bioelectrochemistry Volume 5

Abstract

A biosensor is a measuring system that contains a biological receptor unit that is highly selective for target analytes (DNA/RNA, proteins, or simple chemicals like glucose or hydrogen peroxide). Carbon nanomaterials (CNMs) are appealing possibilities for enhancing biosensor sensitivity while maintaining low detection limits due to their ability to immobilize a high number of bioreceptor units in a small space while also acting as a transducer. Furthermore, CNMs can be functionalized and conjugated with organic compounds or metallic nanoparticles; the generation of surface functional groups leads to the formation of nanomaterials with novel capabilities (electrical, physical, chemical, optical, and mechanical). CNMs have been frequently used in biosensor applications due to their fascinating features. Carbon nanotubes (CNTs) and carbon fibers (CFs) are used as scaffolds for biomolecule immobilization at their surfaces, as well as transducers for signal conversion involved in biological analyte recognition. This chapter provides an in-depth examination of the synthesis and functionalization of CNMs, as well as their potential applications in electrochemical devices (based primarily on the detection of current, potential, impedance, or other electrical property).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACF :

Activated Carbon Fibers

AuNPS :

Gold Nanoparticles

CB :

Carbon Black

CDs :

Carbon Dots

CFRPs :

Carbon Fiber Reinforced Polymer Composites

CFs :

Carbon Fibers

CND :

Carbon Nanodiamonds

CNH :

Carbon Nanohorns

CNM :

Carbon Nanomaterials

CNT :

Carbon Nanotubes

CPEs :

Carbon Paste Electrodes

CuNPs :

Cooper Nanoparticles

CVD :

Chemical Vapor Deposition

DA :

Dopamine

DNA :

Deoxyribonucleic Acid

DWCNTs :

Double-Walled Carbon Nanotubes

ECoG :

Electrocorticography

EIS :

Electrochemical Impedance Spectroscopy

FSCV :

Fast-Scan Cyclic Voltammetry

GCE :

Glassy Carbon Electrode

GNR :

Graphene Nanoribbons

GPCF :

General-Purpose Carbon Fibers

GQDs :

Graphene Quantum Dots

HBC :

Hydroxypropyl-B-Cyclodextrin

HM :

High Modulus

HPCF :

High-Performance Carbon Fibers

HT :

Standard Modulus

IM :

Intermediate Modulus

LM :

Low Modulus

LOD :

Limit Of Detection

LUMO :

Lowest Unoccupied Molecular Orbital

MIP :

Molecular Imprinted Polymer

MWCNT :

Multi-Walled Carbon Nanotubes

NCNTAs :

Nitrogen-Doped Carbon Nanotube Arrays

PAN :

Polyacrylonitrile

PB :

Prussian Blue Fe4[Fe(CN)6]3

POC :

Point-of-care

RNA :

Ribonucleic Acid

RSD :

Relative Standard Deviation

SWCNT :

Single-Walled Carbon Nanotubes

UA :

Uric Acid

UHM :

Ultra-High Modulus

References

  1. Putz MV (2011) Carbon bonding and structures, 1st edn. Springer Netherlands, Dordrecht

    Google Scholar 

  2. Maduraiveeran G, Jin W (2021) Carbon nanomaterials: synthesis, properties and applications in electrochemical sensors and energy conversion systems. Mater Sci Eng B 272:115341. https://doi.org/10.1016/j.mseb.2021.115341

    Article  CAS  Google Scholar 

  3. Jiang X, Kang Z, Guo X, Zhuang H (2019) Novel carbon materials and composites—synthesis, properties and applications, 1st edn. Wiley

    Google Scholar 

  4. Hazra A, Goswami R (2021) Carbon nanomaterial electronics: devices and applications. Springer Singapore, Singapore

    Google Scholar 

  5. Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115:4744–4822. https://doi.org/10.1021/cr500304f

    Article  CAS  Google Scholar 

  6. Kingston CT, Simard B (2003) Fabrication of carbon nanotubes. Anal Lett 36:3119–3145. https://doi.org/10.1081/AL-120026564

    Article  CAS  Google Scholar 

  7. Porto LS, Silva DN, de Oliveira AEF, Pereira AC, Borges KB (2020) Carbon nanomaterials: synthesis and applications to development of electrochemical sensors in determination of drugs and compounds of clinical interest. Rev Anal Chem 38:1–16. https://doi.org/10.1515/revac-2019-0017

    Article  CAS  Google Scholar 

  8. Barhoum A, Shalan AE, El-Hout SI, Ali GAM, Abdelbasir SM, Abu Serea ES, Ibrahim AH, Pal K (2019) A Broad family of carbon nanomaterials: classification, properties, synthesis, and emerging applications. Handbook of nanofibers. Springer International Publishing, Cham, pp 1–40

    Chapter  Google Scholar 

  9. Kour R, Arya S, Young S, Gupta V, Bandhoria P, Khosla A (2020) Review—recent advances in carbon nanomaterials as electrochemical biosensors. J Electrochem Soc 167:037555. https://doi.org/10.1149/1945-7111/ab6bc4

    Article  CAS  Google Scholar 

  10. Si Y, Lee HJ (2020) Carbon nanomaterials and metallic nanoparticles- incorporated electrochemical sensors for small metabolites: Detection methodologies and applications. Curr Opin Electrochem 22:234–243. https://doi.org/10.1016/j.coelec.2020.08.007

    Article  CAS  Google Scholar 

  11. Ehtesabi H (2020) Carbon nanomaterials for salivary-based biosensors: a review. Mater Today Chem 17:100342. https://doi.org/10.1016/j.mtchem.2020.100342

    Article  CAS  Google Scholar 

  12. Power AC, Gorey B, Chandra S, Chapman J (2018) Carbon nanomaterials and their application to electrochemical sensors: a review. Nanotechnol Rev 7:19–41. https://doi.org/10.1515/ntrev-2017-0160

    Article  CAS  Google Scholar 

  13. Wong H-SP, Akinwande D (2010) Carbon nanotube and graphene device physics, 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  14. Arnault J-C, Eder D (2021) Synthesis and applications of nanocarbons, 1st edn. Wiley

    Google Scholar 

  15. Evtugyn G, Porfireva A, Shamagsumova R, Hianik T (2020) Advances in electrochemical aptasensors based on carbon nanomaterials. Chemosensors 8. https://doi.org/10.3390/chemosensors8040096

  16. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  17. Wildgoose GG, Banks CE, Leventis HC, Compton RG (2006) Review chemically modified carbon nanotubes for use in electroanalysis. Microchim Acta 214:187–214. https://doi.org/10.1007/s00604-005-0449-x

  18. Saito Y, Nakahira T, Uemura S (2003) Growth conditions of double-walled carbon nanotubes in arc discharge. J Phys Chem B 107:931–934. https://doi.org/10.1021/jp021367o

    Article  CAS  Google Scholar 

  19. Cui H, Eres G, Howe JY, Puretkzy A, Varela M, Geohegan DB, Lowndes DH (2003) Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition. Chem Phys Lett 374:222–228. https://doi.org/10.1016/S0009-2614(03)00701-2

    Article  CAS  Google Scholar 

  20. Artyukhov VI, Penev ES, Yakobson BI (2014) Why nanotubes grow chiral. Nat Commun 5.https://doi.org/10.1038/ncomms5892

  21. Doi Y, Nakatani A (2016) Structure and stability of discrete breather in zigzag and armchair carbon nanotubes. Lett Mater 6:49–53. https://doi.org/10.22226/2410-3535-2016-1-49-53

  22. Wang Q (2004) Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes. Int J Solids Struct 41:5451–5461. https://doi.org/10.1016/j.ijsolstr.2004.05.002

    Article  Google Scholar 

  23. Endo M, Hayashi T, Ahm Kim Y, Terrones M, Dresselhaus MS (2004) Applications of carbon nanotubes in the twenty-first century. Philos Trans R Soc London Ser A Math Phys Eng Sci 362:2223–2238. https://doi.org/10.1098/rsta.2004.1437

    Article  CAS  Google Scholar 

  24. Tîlmaciu CM, Morris MC (2015) Carbon nanotube biosensors. Front Chem 3:1–21. https://doi.org/10.3389/fchem.2015.00059

    Article  CAS  Google Scholar 

  25. Salvetat J-P, Bonard J-M, Thomson NH, Kulik AJ, Forró L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A Mater Sci Process 69:255–260. https://doi.org/10.1007/s003390050999

    Article  CAS  Google Scholar 

  26. Zanin H, May PW, Fermin DJ, Plana D, Vieira SMC, Milne WI, Corat EJ (2014) Porous boron-doped diamond/carbon nanotube electrodes. ACS Appl Mater Interfaces 6:990–995. https://doi.org/10.1021/am4044344

    Article  CAS  Google Scholar 

  27. Sireesha M, Jagadeesh Babu V, Kranthi Kiran AS, Ramakrishna S (2018) A review on carbon nanotubes in biosensor devices and their applications in medicine. Nanocomposites 4:36–57. https://doi.org/10.1080/20550324.2018.1478765

    Article  CAS  Google Scholar 

  28. Gergeroglu H, Yildirim S, Ebeoglugil MF (2020) Nano-carbons in biosensor applications: an overview of carbon nanotubes (CNTs) and fullerenes—(C60). SN Appl Sci 2:1–22. https://doi.org/10.1007/s42452-020-2404-1

    Article  CAS  Google Scholar 

  29. Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–222. https://doi.org/10.1038/358220a0

    Article  CAS  Google Scholar 

  30. Sudha PN, Sangeetha K, Vijayalakshmi K, Barhoum A (2018) Chapter 12—Nanomaterials history, classification, unique properties, production and market. Elsevier

    Google Scholar 

  31. Laurila T, Sainio S, Caro MA (2017) Hybrid carbon based nanomaterials for electrochemical detection of biomolecules. Prog Mater Sci 88:499–594. https://doi.org/10.1016/j.pmatsci.2017.04.012

    Article  CAS  Google Scholar 

  32. Li Y, Maruyama S (2019) Single-walled carbon nanotubes: preparations, properties and applications, 1st edn. Springer Nature Switzerland, Cham, Switzerland

    Google Scholar 

  33. Santos H, Chico L, Brey L (2009) Carbon nanoelectronics: unzipping tubes into graphene ribbons. Phys Rev Lett 086801:24–27. https://doi.org/10.1103/PhysRevLett.103.086801

    Article  CAS  Google Scholar 

  34. Terrones M (2009) Nanotubes unzipped. Nature 458:845–846. https://doi.org/10.1038/458845a

    Article  CAS  Google Scholar 

  35. Li Y, Liao J, Wang S, Chiang W (2016) Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons. Nat Publ Gr 1–12.https://doi.org/10.1038/srep22755

  36. Pillai VK (2011) Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons. J Am Chem Soc, 4168–4171. https://doi.org/10.1021/ja1101739

  37. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–877. https://doi.org/10.1038/nature07872

    Article  CAS  Google Scholar 

  38. Zhang Y, Rhee KY, Hui D, Park SJ (2018) A critical review of nanodiamond based nanocomposites: synthesis, properties and applications. Compos Part B Eng 143:19–27. https://doi.org/10.1016/j.compositesb.2018.01.028

    Article  CAS  Google Scholar 

  39. Kazi S (2014) A review article on nanodiamonds discussing their properties and applications. Int J Pharm Sci Invent 3:40–45

    Google Scholar 

  40. Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K (1999) Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett 309:165–170. https://doi.org/10.1016/S0009-2614(99)00642-9

    Article  CAS  Google Scholar 

  41. Nelis JLD, Migliorelli D, Jafari S, Generelli S, Lou-Franco J, Salvador JP, Marco MP, Cao C, Elliott CT, Campbell K (2020) The benefits of carbon black, gold and magnetic nanomaterials for point-of-harvest electrochemical quantification of domoic acid. Microchim Acta 187. https://doi.org/10.1007/s00604-020-4150-x

  42. Wang J, Lin Y (2008) Functionalized carbon nanotubes and nanofibers for biosensing applications. TrAC 27:619–626. https://doi.org/10.1016/j.trac.2008.05.009

    Article  CAS  Google Scholar 

  43. Zhou Y, Fang Y, Ramasamy RP (2019) Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors (Switzerland) 19.https://doi.org/10.3390/s19020392

  44. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches. Deriv Appl. https://doi.org/10.1021/cr3000412

    Article  Google Scholar 

  45. Liu S (2019) Functionalization of carbon nanomaterials for biomedical applications. C—J Carbon Res 5:72. https://doi.org/10.3390/c5040072

  46. Shin SW, Song IH, Um SH (2015) Role of physicochemical properties in nanoparticle toxicity. Nanomaterials, 1351–1365. https://doi.org/10.3390/nano5031351

  47. Buzea C, Pacheco II, Robbie K, Buzea C (2016) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 17. https://doi.org/10.1116/1.2815690

  48. Hwang HS, Jeong JW, Kim YA, Chang M (2020) Carbon nanomaterials as versatile platforms for biosensing applications. Micromachines 11:814. https://doi.org/10.3390/mi11090814

    Article  Google Scholar 

  49. Arvand M, Hemmati S (2017) Magnetic nanoparticles embedded with graphene quantum dots and multiwalled carbon nanotubes as a sensing platform for electrochemical detection of progesterone. Sens Actuators, B Chem 238:346–356. https://doi.org/10.1016/j.snb.2016.07.066

    Article  CAS  Google Scholar 

  50. Sutradhar S, Patnaik A (2017) A new fullerene-C60—nanogold composite for non-enzymatic glucose sensing. Sens Actuators B Chem 241:681–689. https://doi.org/10.1016/j.snb.2016.10.111

    Article  CAS  Google Scholar 

  51. Jin ZH, Liu YL, Chen JJ, Cai SL, Xu JQ, Huang WH (2017) Conductive polymer-coated carbon nanotubes to construct stretchable and transparent electrochemical sensors. Anal Chem 89:2032–2038. https://doi.org/10.1021/acs.analchem.6b04616

    Article  CAS  Google Scholar 

  52. Sooraj MP, Nair AS, Pillai SC, Hinder SJ, Mathew B (2020) CuNPs decorated molecular imprinted polymer on MWCNT for the electrochemical detection of l-DOPA. Arab J Chem 13:2483–2495. https://doi.org/10.1016/j.arabjc.2018.06.002

    Article  CAS  Google Scholar 

  53. Anojčić J, Guzsvány V, Kónya Z, Mikov M (2019) Rapid, trace-level direct cathodic voltammetric determination of dopamine by oxidized multiwalled carbon nanotube-modified carbon paste electrode in selected samples of pharmaceutical importance. Ionics (Kiel) 25:6093–6106. https://doi.org/10.1007/s11581-019-03156-5

    Article  CAS  Google Scholar 

  54. Upadhyay SS, Srivastava AK (2019) Hydroxypropyl β-cyclodextrin cross-linked multiwalled carbon nanotube-based chiral nanocomposite electrochemical sensors for the discrimination of multichiral drug atorvastatin isomers. New J Chem 43:11178–11188. https://doi.org/10.1039/C9NJ02508A

    Article  CAS  Google Scholar 

  55. Zhang M, Li J (2020) Preparation of porphyrin derivatives and C60 supramolecular assemblies as a sensor for detection of dopamine. Dye Pigment 173:107966. https://doi.org/10.1016/j.dyepig.2019.107966

    Article  CAS  Google Scholar 

  56. McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108:2646–2687. https://doi.org/10.1021/cr068076m

    Article  CAS  Google Scholar 

  57. Frank E, Steudle LM, Ingildeev D, Spörl JM, Buchmeiser MR (2014) Carbon fibers: precursor systems, processing, structure, and properties. Angew Chemie Int Ed 53:5262–5298. https://doi.org/10.1002/anie.201306129

    Article  CAS  Google Scholar 

  58. Hiremath N, Mays J, Bhat G (2017) Recent developments in carbon fibers and carbon nanotube-based fibers: a review. Polym Rev 57:339–368. https://doi.org/10.1080/15583724.2016.1169546

    Article  CAS  Google Scholar 

  59. Choi D, Kil H-S, Lee S (2019) Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies. Carbon N Y 142:610–649. https://doi.org/10.1016/j.carbon.2018.10.028

    Article  CAS  Google Scholar 

  60. Szczurek A, Barcikowski M, Leluk K, Babiarczuk B, Kaleta J, Krzak J (2017) Improvement of interaction in a composite structure by using a sol-gel functional coating on carbon fibers. Materials (Basel) 10:990. https://doi.org/10.3390/ma10090990

    Article  CAS  Google Scholar 

  61. García-Ruíz J, Díaz Lantada A (2017) 3D printed structures filled with carbon fibers and functionalized with mesenchymal stem cell conditioned media as in vitro cell niches for promoting chondrogenesis. Materials (Basel) 11:23. https://doi.org/10.3390/ma11010023

    Article  CAS  Google Scholar 

  62. Wenrui Z, Fanxing M, Yanan Q, Fei C, Haitao Y, Minwei Z (2020) Fabrication and Specific functionalisation of carbon fibers for advanced flexible biosensors. Front Chem 8.https://doi.org/10.3389/fchem.2020.582490

  63. Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y (2019) Advanced carbon for flexible and wearable electronics. Adv Mater 31:1801072. https://doi.org/10.1002/adma.201801072

    Article  CAS  Google Scholar 

  64. Huang X (2009) Fabrication and properties of carbon fibers. Materials (Basel) 2:2369–2403. https://doi.org/10.3390/ma2042369

    Article  CAS  Google Scholar 

  65. Park S (2018) Carbon fibers, 2nd edn. Springer Singapore, Singapore

    Google Scholar 

  66. Joshi K, Arefev MI, Zhigilei LV (2019) Generation and characterization of carbon fiber microstructures by atomistic simulations. Carbon N Y 152:396–408. https://doi.org/10.1016/j.carbon.2019.06.014

    Article  CAS  Google Scholar 

  67. Conard J (2002) Electronic structure of various forms of solid state carbons. Graphite intercalation compounds. In: New trends in intercalation compounds for energy storage. Springer Netherlands, Dordrecht, pp 39–62

    Google Scholar 

  68. Kim M-A, Jang D, Tejima S, Cruz-Silva R, Joh H-I, Kim HC, Lee S, Endo M (2016) Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization. Sci Rep 6:22988. https://doi.org/10.1038/srep22988

    Article  CAS  Google Scholar 

  69. Newcomb BA (2016) Processing, structure, and properties of carbon fibers. Compos Part A Appl Sci Manuf 91:262–282. https://doi.org/10.1016/j.compositesa.2016.10.018

    Article  CAS  Google Scholar 

  70. Rahaman MSA, Ismail AF, Mustafa A (2007) A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab 92:1421–1432. https://doi.org/10.1016/j.polymdegradstab.2007.03.023

    Article  CAS  Google Scholar 

  71. Al Aiti M, Jehnichen D, Fischer D, Brünig H, Heinrich G (2018) On the morphology and structure formation of carbon fibers from polymer precursor systems. Prog Mater Sci 98:477–551. https://doi.org/10.1016/j.pmatsci.2018.07.004

    Article  CAS  Google Scholar 

  72. Saritas O, Sokolov A, Vishnevskiy K (2019) New materials: the case of carbon fibres. In: Meissner D, Gokhberg L, Saritas O (eds) Emerging technologies for economic development, 1 st edn. Springer Nature Switzerland AG 2019, Cham, Switzerland, pp 13–47

    Google Scholar 

  73. Nakajima T, Kajiwara K, McIntyre JE (1994) Advanced fiber spinning technology, 1st edn. Elsevier

    Google Scholar 

  74. Chen JY (2017) Activated carbon fiber and textiles, 1st edn. Elsevier

    Google Scholar 

  75. Beckman I, Lozano C, Freeman E, Riveros G (2021) Fiber selection for reinforced additive manufacturing. Polymers (Basel) 13:2231. https://doi.org/10.3390/polym13142231

    Article  CAS  Google Scholar 

  76. Baker DA, Rials TG (2013) Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci 130:713–728. https://doi.org/10.1002/app.39273

    Article  CAS  Google Scholar 

  77. Chung DDL (1994) Carbon fiber composites, 1st edn. Elsevier

    Google Scholar 

  78. Chen H, Wang S, Zhang X, Zhao Y, Zhang H (2021) A study of chemical structural evolution of thermally altered coal and its effect on graphitization. Fuel 283:119295. https://doi.org/10.1016/j.fuel.2020.119295

    Article  CAS  Google Scholar 

  79. Altin Karataş M, Gökkaya H (2018) A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Def Technol 14:318–326. https://doi.org/10.1016/j.dt.2018.02.001

    Article  Google Scholar 

  80. Chiang Y-C, Juang R-S (2017) Surface modifications of carbonaceous materials for carbon dioxide adsorption: a review. J Taiwan Inst Chem Eng 71:214–234. https://doi.org/10.1016/j.jtice.2016.12.014

    Article  CAS  Google Scholar 

  81. Ponchon JL, Cespuglio R, Gonon F, Jouvet M, Pujol JF (1979) Normal pulse polarography with carbon fiber electrodes for in vitro and in vivo determination of catecholamines. Anal Chem 51:1483–1486. https://doi.org/10.1021/ac50045a030

    Article  CAS  Google Scholar 

  82. Armstrong-James M, Millar J (1979) Carbon fibre microelectrodes. J Neurosci Methods 1:279–287. https://doi.org/10.1016/0165-0270(79)90039-6

    Article  CAS  Google Scholar 

  83. Deng L, Guo S, Zhou M, Liu L, Liu C, Dong S (2010) A silk derived carbon fiber mat modified with Au@Pt urchilike nanoparticles: a new platform as electrochemical microbial biosensor. Biosens Bioelectron 25:2189–2193. https://doi.org/10.1016/j.bios.2010.02.005

    Article  CAS  Google Scholar 

  84. Salazar P, O’Neill RD, Martín M, Roche R, González-Mora JL (2011) Amperometric glucose microbiosensor based on a Prussian Blue modified carbon fiber electrode for physiological applications. Sensors Actuators B Chem 152:137–143. https://doi.org/10.1016/j.snb.2010.11.056

    Article  CAS  Google Scholar 

  85. Du J, Yue R, Yao Z, Jiang F, Du Y, Yang P, Wang C (2013) Nonenzymatic uric acid electrochemical sensor based on graphene-modified carbon fiber electrode. Colloids Surf A Physicochem Eng Asp 419:94–99. https://doi.org/10.1016/j.colsurfa.2012.11.060

    Article  CAS  Google Scholar 

  86. Iost RM, Sales FCPF, Martins MVA, Almeida MC, Crespilho FN (2015) Glucose biochip based on flexible carbon fiber electrodes. In vivo diabetes evaluation in rats. ChemElectroChem 2:518–521. https://doi.org/10.1002/celc.201402339

    Article  CAS  Google Scholar 

  87. Zhang Y, Xiao J, Sun Y, Wang L, Dong X, Ren J, He W, Xiao F (2018) Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: in situ electrochemical detection in live cancer cells. Biosens Bioelectron 100:453–461. https://doi.org/10.1016/j.bios.2017.09.038

    Article  CAS  Google Scholar 

  88. Yuan H, Zhao J, Wang Q, Manoj D, Zhao A, Chi K, Ren J, He W, Zhang Y, Sun Y, Xiao F, Wang S (2020) Hierarchical core-shell structure of 2D VS 2 @VC@N-doped carbon sheets decorated by ultrafine Pd nanoparticles: assembled in a 3D rosette-like array on carbon fiber microelectrode for electrochemical sensing. ACS Appl Mater Interfaces 12:15507–15516. https://doi.org/10.1021/acsami.9b21436

    Article  CAS  Google Scholar 

  89. Vomero M, Gueli C, Zucchini E, Fadiga L, Erhardt JB, Sharma S, Stieglitz T (2020) Flexible bioelectronic devices based on micropatterned monolithic carbon fiber mats. Adv Mater Technol 5:1900713. https://doi.org/10.1002/admt.201900713

    Article  CAS  Google Scholar 

  90. Asrat TM, Cho W, Liu FA, Shapiro SM, Bracht JR, Zestos AG (2021) Direct detection of DNA and RNA on carbon fiber microelectrodes using fast-scan cyclic voltammetry. ACS Omega 6:6571–6581. https://doi.org/10.1021/acsomega.0c04845

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago da Costa Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

da Costa Oliveira, T., Nascimento, S.Q. (2023). Carbon Nanomaterials in Electrochemical Biodevices. In: Crespilho, F.N. (eds) Advances in Bioelectrochemistry Volume 5. Springer, Cham. https://doi.org/10.1007/978-3-031-10832-7_3

Download citation

Publish with us

Policies and ethics