Skip to main content

Lateral Capacity Assessment of the Main Pyramid of Huaca de la Luna (Peru) Using 2D Finite Element Macroblock Model

  • Conference paper
  • First Online:
Structural Analysis of Historical Constructions (SAHC 2023)

Part of the book series: RILEM Bookseries ((RILEM,volume 46))

Abstract

This study contributes to the structural assessment of the main pyramid in the archaeological complex of Huaca de la Luna, Peru. Built with millions of adobe bricks by the Moche civilization (200–850 A.D.), the monument is one of the largest adobe structures in the world. Located in a seismically active area, the monument shows signs of severe natural and anthropogenic damage. The pyramid was built as a succession of taller and larger platforms, each formed by erecting adjacent but disconnected vertical piers made of adobe masonry. A multiscale 2D nonlinear FE model is introduced for assessing the contribution of this pier architecture to the dynamic response of the pyramid. A representative cross-section of the pyramid is analyzed under plane strain conditions. Critical regions are modelled with individual piers represented by macroblocks separated by frictional interfaces, while a continuous description is adopted for the remaining part of the model. The analysis is performed in Abaqus/CAE Explicit using concrete-damaged plasticity and Mohr-Coulomb formulation for adobe construction and soft soils, respectively. The time-evolution of elastic strain and dissipative plastic energy is used to follow the development of local damage conditions up to structural collapse. The structural assessment includes (i) a quasi-static analysis aiming to predict the stress state due to gravitational loads, and (ii) dynamic analysis to identify lateral capacity and failure mechanisms triggered by monotonically increasing ground acceleration. Sensitivity analyses was conducted to evaluate the effect of the contact friction coefficient and the number of macro-blocks used to discretize the critical area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castillo, L.J., Uceda, S.: The Mochicas. Handbook of South American Archaeology, Springer, New York, pp. 707–729 (2008)

    Google Scholar 

  2. Uceda, S., Morales, R.: Moche: Pasado y presente. Patronato del Valle de Moche, Trujillo, Peru (2010)

    Google Scholar 

  3. Roca, P., Lourenço, P.B.: Introduction to masonry mechanics and modeling techniques. In: Advanced Master in Structural Analysis of Historical Constructions and Monuments Lecture Notes, Spain (2018)

    Google Scholar 

  4. Milani, G., Cecchi, A.: Compatible model for herringbone bond masonry: Linear elastic homogenization, failure surfaces and structural implementation, Int. J. Solids Struct. 50 (2013), 3274–3296 (2013). https://doi.org/10.1016/j.ijsolstr.2013.05.032

  5. Funari, M.F., Mehrotra, A., Lourenço, P.B.: A tool for the rapid seismic assessment of historic masonry structures based on limit analysis optimisation and rocking dynamics. Appl. Sci. 11, 1–22 (2021). https://doi.org/10.3390/app11030942

    Article  Google Scholar 

  6. G. Milani, M,. Valente, M., Fagone, T., Rotunno, C.: Alessandri, Advanced non-linear numerical modeling of masonry groin vaults of major historical importance: St John Hospital case study in Jerusalem, Eng. Struct. 194, 458–476 (2019). https://doi.org/10.1016/j.engstruct.2019.05.021

  7. Funari, M.F., Pulatsu, B., Szabó, S., Lourenço, P.B.: A solution for the frictional resistance in macro-block limit analysis of non-periodic masonry, Structures. 43, 847–859 (2022). https://doi.org/10.1016/j.istruc.2022.06.072

  8. Turco, C., Funari, M.F., Spadea, S., Ciantia, M., Lourenço, P.B.: A digital tool based on genetic algorithms and limit analysis for the seismic assessment of historic masonry buildings. Procedia Struct. Integr. (2020). https://doi.org/10.1016/j.prostr.2020.10.124

    Article  Google Scholar 

  9. Fortunato, G., Funari, M.F., Lonetti, P.: Survey and seismic vulnerability assessment of the Baptistery of San Giovanni in Tumba (Italy). J. Cult. Herit. 26, 64–78 (2017). https://doi.org/10.1016/j.culher.2017.01.010

    Article  Google Scholar 

  10. Aşıkoğlu, A., Avşar, Ö., Lourenço, P.B., Silva, L.C.: Effectiveness of seismic retrofitting of a historical masonry structure: Kütahya Kurşunlu Mosque, Turkey. Bull. Earthq. Eng. 17(6), 3365–3395 (2019). https://doi.org/10.1007/s10518-019-00603-6

    Article  Google Scholar 

  11. Savalle, N., Vincens, É., Hans, S.: Experimental and numerical studies on scaled-down dry-joint retaining walls: Pseudo-static approach to quantify the resistance of a dry-joint brick retaining wall. Bull. Earthq. Eng. 17, 1–26 (2019). https://doi.org/10.1007/s10518-019-00670-9

    Article  Google Scholar 

  12. Lemos, J.V.: Discrete element modeling of the seismic behavior of masonry construction, Buildings. 9 (2019). https://doi.org/10.3390/buildings9020043

  13. Bui, T.T., Limam, A., Sarhosis, V., Hjiaj, M.: Discrete element modelling of the in-plane and out-of-plane behaviour of dry-joint masonry wall constructions. Eng. Struct. 136, 277–294 (2017). https://doi.org/10.1016/j.engstruct.2017.01.020

    Article  Google Scholar 

  14. Pietruszczak, S., Ushaksaraei, R.: Description of inelastic behaviour of structural masonry. Int. J. Solids Struct. 40, 4003–4019 (2003). https://doi.org/10.1016/S0020-7683(03)00174-4

    Article  MATH  Google Scholar 

  15. Lourenço, P.B., Rots, J.G., Blaauwendraad, J.: Continuum model for masonry: parameter estimation and validation. J. Struct. Eng. 124, 642–652 (1998). https://doi.org/10.1061/(ASCE)0733-9445(1998)124:6(642)

    Article  Google Scholar 

  16. Lourenço, P.B.: Recent advances in masonry modelling: micromodelling and homogenization. in: Galvanetto, U., Ferri Alibadi, M.H.: (eds.), Multiscale Modelling in Solid Mechanics: Computational Approaches, Imperial College Press, London (2010)

    Google Scholar 

  17. Lourenço, K.J., Krakowiak, F.M., Fernandes, L.F.: Ramos, Failure analysis of Monastery of Jerónimos, Lisbon: How to learn from sophisticated numerical models. Eng. Fail. Anal. 14, 280–300 (2007). https://doi.org/10.1016/j.engfailanal.2006.02.002

    Article  Google Scholar 

  18. Funari, M.F., Silva, L.C., Mousavian, E., Lourenço, P.B.: Real-time structural stability of domes through limit analysis: application to st. peter’s dome. Int. J. Archit. Herit. 1–23 (2021). https://doi.org/10.1080/15583058.2021.1992539

  19. Talebi, H., Silani, M., Rabczuk, T.: Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Adv. Eng. Softw. 80, 82–92 (2015). https://doi.org/10.1016/j.advengsoft.2014.09.016

    Article  Google Scholar 

  20. de Bellis, M.L., Addessi, D.: A cosserat based multi-scale model for masonry structures. Int. J. Multiscale Comput. Eng. 9, 543–563 (2011). https://doi.org/10.1615/INTJMULTCOMPENG.2011002758

    Article  Google Scholar 

  21. Funari, M.F., Silva, L.C., Savalle, N., Lourenço, P.B.: A concurrent micro/macro FE-model optimized with a limit analysis tool for the assessment of dry-joint masonry structures. Int. J. Multiscale Comput. Eng. 20, 65–85 (2022). https://doi.org/10.1615/IntJMultCompEng.2021040212

    Article  Google Scholar 

  22. Giresini, L.: Energy-based method for identifying vulnerable macro-elements in historic masonry churches. Bull. Earthq. Eng. 14(3), 919–942 (2015). https://doi.org/10.1007/s10518-015-9854-7

    Article  Google Scholar 

  23. Iannuzzo, A., Block, P., Angelillo, M., Gesualdo, A.: A continuous energy-based numerical approach to predict fracture mechanisms in masonry structures: CDF method, Comput. Struct. 257 (2021) 106645. https://doi.org/10.1016/j.compstruc.2021.106645

  24. Aguilar, R., et al.: Structural damage assessment of Huaca de la Luna, Perú: Preliminary results from ongoing multidisciplinary study. In: International Conference on Structural Analysis of Historical Constructions, SAHC 2016. pp. 465–472 (2016), https://doi.org/10.1201/9781315616995-62F

  25. Zanchetta, L.M., Quattrone, M., Aguilar, R., Kahn, H., Coelho, A.C.V., John, V.M.: Microstructures of building materials from Huaca De La Luna, Peru. Int. J. Archit. Herit. 14, 256–273 (2020). https://doi.org/10.1080/15583058.2018.1531181

    Article  Google Scholar 

  26. Hastings, C., Moseley, M.E.: The Adobes of Huaca del Sol and Huaca de la Luna. Am. Antiq. 40(2), 196–203 (1975)

    Article  Google Scholar 

  27. Zvietcovich, B., Castaneda, R.: Perucchio, 3D solid model updating of complex ancient monumental structures based on local geometrical meshes. Digit. Appl. Archaeol. Cult. Herit. 2, 12–27 (2014). https://doi.org/10.1016/j.daach.2015.02.001

    Article  Google Scholar 

  28. Aguilar, R., Montesinos, M., Uceda, S.: Mechanical characterization of the structural components of Pre-Columbian earthen monuments: Analysis of bricks and mortar from Huaca de la Luna in Perú, Case Stud. Constr. Mater. 6, 16–28 (2017). https://doi.org/10.1016/j.cscm.2016.11.003

    Article  Google Scholar 

  29. Zavala, G., et al.: Geotechnical and geophysical exploration in archaeological heritage: Initial assessment at Huaca de la Luna. In: 15th Panamerican Conference on Soil Mechanics and Geotechnical Engineering, Buenos Aires, Argentina, pp. 557–564 (2015)

    Google Scholar 

  30. Aguilar, R., et al.: Structural and geotechnical engineering assessment of Huaca de la Luna – a massive earthen Moche culture pyramid in Northern Peru. J. Cult. Herit. 34, 83–94 (2018). https://doi.org/10.1016/j.culher.2018.04.006

    Article  Google Scholar 

  31. S. Tezcan, M.A. Pando, R. Aguilar, B. Castañeda, C. Rojas, R. Perucchio, Preliminary nonlinear static and dynamic analysis of the main pyramid of Huaca de la Luna, Peru, COMPDYN Proc. 2021-June (2021). https://doi.org/10.7712/120121.8478.18791

  32. Tezcan, S., Pando, M.A., Aguilar, R., Perucchio, R.: Nonlinear 2D and 3D finite element static and dynamic analysis of the main pyramid of Huaca de la Luna, Peru. In: Endo, Y., Hanazato, T. (eds.) 13th International Conference on Structural Analysis of Historical Constructions (SAHC 2023), Kyoto, Japan (2023)

    Google Scholar 

  33. Dassault System Simulia - Abaqus, (2020)

    Google Scholar 

  34. Lubliner, J., Oliver, J., Oller, S., Oñate, E.: A plastic-damage model for concrete. Int. J. Solids Struct. 25, 299–326 (1989). https://doi.org/10.1016/0020-7683(89)90050-4

    Article  Google Scholar 

  35. Lee, J., Fenves, G.L.: Plastic-damage model for cyclic loading of concrete structures. J. Eng. Mech. 124, 892–900 (1998). https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)

    Article  Google Scholar 

  36. Lourenço, P.B., Silva, L.C.: Computational applications in masonry structures: from the Meso-scale to the super-large/super-complex. Int. J. Multiscale Comput. Eng. 18, 1–30 (2020). https://doi.org/10.1615/IntJMultCompEng.2020030889

    Article  Google Scholar 

  37. da Silva, L.C.M., Milani, G.: A FE-based macro-element for the assessment of masonry structures: linear static, vibration, and non-linear cyclic analyses, Appl. Sci. 12 (2022). https://doi.org/10.3390/app12031248

  38. Tezcan, S., Tambe, N., Muir, C., Aguilar, R., Perucchio, R.: Nonlinear FE analysis of the response to lateral accelerations of the triumphal arch of the church of Andahuaylillas, Peru. In: Aguilar, R., Torrealva, D., Moreira, S., Pando, M.A., Ramos, L.F. (eds.) Structural Analysis of Historical Constructions. RB, vol. 18, pp. 1301–1309. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99441-3_139

    Chapter  Google Scholar 

  39. Sun, J., Tezcan, S., Perucchio, R.: The structural function of the Dutch buttressing of the east curtain wall of Elmina Castle, Elmina, Ghana. In: Roca, P., Pelà, L., Molins, C. (eds.) Proceedings of 12th International Conference on Structural Analysis of Historical Construction, SAHC 2021, pp. 457–468 (2021)

    Google Scholar 

  40. Faleri, F., Grillanda, N., Tezcan, S., Perucchio, R., Milani, G.: Role of repeted seismic events on the collapse of two calidaria in Rome dating back to Imperial age. In: COMPDYN Proceedings 2021-June, pp. 406–414 (2021)

    Google Scholar 

  41. Remus, A., Yılmaz, L., Tezcan, S., Perucchio, R.: Effect of eastern architecture and sloping foundation conditions on the structural response of the adobe pyramid Huaca de la Luna (Perú). In: Endo, Y., Hanazato, T. (eds.) 13th International Conference on Structural Analysis of Historical Constructions (SAHC 2023), Kyoto, Japan (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Perucchio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Riccio, C., Remus, A., Tezcan, S., Silva, L.C., Milani, G., Perucchio, R. (2024). Lateral Capacity Assessment of the Main Pyramid of Huaca de la Luna (Peru) Using 2D Finite Element Macroblock Model. In: Endo, Y., Hanazato, T. (eds) Structural Analysis of Historical Constructions. SAHC 2023. RILEM Bookseries, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-031-39450-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39450-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39449-2

  • Online ISBN: 978-3-031-39450-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics