Skip to main content

Genomic Designing for Climate-Smart Pea

  • Chapter
  • First Online:
Genomic Designing of Climate-Smart Pulse Crops

Abstract

Pea (Pisum sativum L.), a diploid (2n = 2x = 14) annual cool-season legume crop adapted to a wide range of climates and altitudes, plays a very important role for sustainable agriculture as rotation and cash crops for food, vegetable, fodder, manure, etc. The genome size of a pea is estimated at 4.45 Gb comprising large amount of repetitive sequences with high complexity, so that the complete reference genome sequence of pea has not been published yet, which hindered the development of genome-assisted breeding in pea. This chapter discussed the challenges, priorities, and prospects of pea as climate-smart (CS) crop, in food, nutrition, energy, and environment security, effects on global warming and climate change to the industry and breeding of pea. For details, studies on CS agronomic traits of peas like flowering time, root characters, nutrient-use efficiency, water use efficiency, carbon and nitrogen sequestration, greenhouse gas emission, genome plasticity, as well as specific traits for vegetable purposes, were reviewed; CS stress tolerance/resistance traits studies of peas, like cold tolerance, drought tolerance, salinity tolerance, disease resistance, insect resistance were also reviewed. Pea-hosted biological nitrogen fixation (BNF) and soil resources, rhizobium for nodulation, characterization for rhizobium, interaction between pea and its anchored rhizobium, interaction between rhizobium and soil, optimized operation for rhizobium fertilization were illustrated. Utilizations of primary gene pool, secondary gene pool, tertiary gene pool, artificially induced/incorporated traits/genes in CS pea genetic development were reviewed. Of CS pea studies, classical mapping efforts, classical breeding achievements (yield, quality, stress resistance, etc.), limitations of traditional breeding and rationale for molecular breeding, genetic diversity analysis of Pisum genus using various means, such as association mapping studies between important traits and markers, molecular mapping of CS genes and QTLs, marker-assisted breeding for CS traits, genomic-aided breeding for CS traits, were all reviewed. Social, political, and regulatory issues concerning CS peas, for concerns and compliances, patent and IPR issues, disclosure of sources of GRs, access and benefit sharing, famers’ rights, traditional knowledge, treaties and conventions, participatory breeding, in China and elsewhere were discussed. Peas, especially green pea production dramatically expanded and became increasingly important from the beginning of this century. Achievements on pea studies will lead to genomics, phenomics, and genome editing exploration to assist CS pea breeding purpose in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdurakhmonov IY, Abdukarimov A (2008) Application of association mapping to understanding the genetic diversity of plant germplasm resources. Intl J Plant Genom 574927

    Google Scholar 

  • Ahmad P, Jaleel CA, Sharma S (2010) Antioxidative defence system, lipid peroxidation, proline metabolizing enzymes and biochemical activity in two genotypes of Morus alba L. subjected to NaCl stress. Russ J Plant Physiol 57:509–517

    Article  CAS  Google Scholar 

  • Ahmad P, Jeleel CA, Azooz MM, Nabi G (2009) Generation of ROS and non-enzymatic antioxidants during abiotic stress in plants. Bot Res Intl 2:11–20

    CAS  Google Scholar 

  • Ali SM, Sharma B, Ambrose MJ (1993) Current status and future strategy in breeding pea to improve resistance to biotic and abiotic stresses. Euphytica 1:115–126

    Google Scholar 

  • Ali Z, Ullah N, Naseem S, Haq, MIU, Jacobsen HJ (2015) Soil bacteria conferred a positive relationship and improved salt stress tolerance in transgenic pea (Pisum sativum L.) harboring Na+/H+ antiporter. Turk J Bot 39(6):962–972

    Google Scholar 

  • Ali Z, Qureshi AS, Ali W, Gulzar H, Nisar M, Ghafoor A (2007) Evaluation of genetic diversity present in pea (Pisum sativum L.) germplasm based on morphological traits, resistance to powdery mildew and molecular characteristics. Pak J Bot 39:2739–2747

    Google Scholar 

  • Ali Z, Saeed W, Naseem S, Ahmad F, Akrem A, Yasmeen N, Jacobsen HJ (2018) Phenotypic evaluation of transgenic peas (Pisum sativum L.) harboring AtNHX1 demonstrates stable gene expression and conserved morphology in subsequent generations. Turk J Bot 42(2):150–158

    Google Scholar 

  • Alikhani HA, Saleh-Rastin N, Antoun H (2006) Phosphate solubilization activity of rhizobia native to Iranian soils. Plant Soil 287:35–41

    Article  CAS  Google Scholar 

  • Alves-Carvalho S, Aubert G, Carrere S, Cruaud C, Brochot AL, Jacquin F, Klein A, Martin C, Boucherot K, Kreplak J, da Silva C, Moreau S, Gamas P, Wincker P, Gouzy J, Burstin J (2015) Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. Plant J 84:1–19

    Article  CAS  PubMed  Google Scholar 

  • Andrade M, Abe Y, Nakahara KS, Uyeda I (2009) The cyv-2 resistance to clover yellow vein virus in pea is controlled by the eukaryotic initiation factor 4E. J Gen Plant Pathol 75:241–249

    Article  CAS  Google Scholar 

  • Anthony JB (2017) Peas and beans. In: Atherton J (ed) Crop production science in horticulture (series). CABI, Nosworthy Way, Wallingford, Oxfordshire OX10 8DE, UK, pp 1–14

    Google Scholar 

  • Armstead I, Donnison I, Aubry S, Harper J, Hörtensteiner S, James C, Mani J, Moffet M, Ougham H, Roberts L, Thomas A, Weeden N, Thomas H, King I (2007) Cross-species identification of Mendel’s I locus. Science 315:73

    Article  CAS  PubMed  Google Scholar 

  • Arraouadi S, Badri M, Abdelly C, Huguet T, Aouani ME (2012) QTL mapping of physiological traits associated with salt tolerance in Medicago truncatula recombinant inbred lines. Genomics 9:118–125

    Article  CAS  Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18(5):611–620

    Google Scholar 

  • Aryamanesh N, Byrne O, Hardie DC, Khan T, Siddique KHM, Yan G (2012) Large-scale density-based screening for pea weevil resistance in advanced backcross lines derived from cultivated field pea (Pisum sativum) and Pisum fulvum. Crop Pasture Sci 63(7):612–618

    Article  Google Scholar 

  • Aryamanesh N, Zeng Y, Byrne O, Hardie DC, Al-Subhi AM, Khan T, Siddique KHM, Yan G (2014) Identification of genome regions controlling cotyledon, pod wall/seed coat and pod wall resistance to pea weevil through QTL mapping. Theor Appl Genet 127(2):489–497

    Article  Google Scholar 

  • Attanayake KPR, Glawe N, McPhee DA, Dugan KE, Chen W (2010) Erysiphe trifolii—a newly recognized powdery mildew pathogen of pea. Plant Pathol 59:712–720

    Article  CAS  Google Scholar 

  • Aubert G, Morin J, Jacquin F, Loridon K, Quillet MC, Petit A, Rameau C, Lejeune-Hénaut I, Huguet T, Burstin J (2006) Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor Appl Genet 112:1024–1041

    Article  CAS  PubMed  Google Scholar 

  • Awale R, Machado S, Rhinhart K (2018) Soil carbon, nitrogen, pH, and crop yields in winter wheat-spring pea systems. Agron J 110(4):1523–1531

    Article  CAS  Google Scholar 

  • Aznar-Fernández T, Carrillo-Perdomo E, Flores F, Rubiales D (2018a) Identification and multi-environment validation of resistance to pea weevil (Bruchus pisorum) in Pisum germplasm. J Pest Sci 91(2):505–514

    Google Scholar 

  • Aznar-Fernández T, Rubiales D (2018b) Identification and characterisation of antixenosis and antibiosis to pea aphid (Acyrthosiphon pisum) in Pisum spp. germplasm. Ann Appl Biol 172(3):268–281

    Google Scholar 

  • Baggett JR, Hampton RO (1991) Inheritance of viral bean leaf roll tolerance in peas. J Amer Soc Hort Sci 116(4):728–731

    Article  Google Scholar 

  • Baranger AG, Aubert G, Arnau G, Lainé AL, Deniot G, Potier J, Weinachter C, Lejeune-Hénaut J, Lallemand J, Burstin J (2004) Genetic diversity within Pisum sativum using protein- and PCR-based markers. Theor Appl Genet 108:1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Barilli E, Sillero JC, Serrano A, Rubiales D (2009a) Differential response of pea (Pisum sativum) to rusts incited by Uromyces viciae-fabae and U. pisi. Crop Protec 28:980–986

    Google Scholar 

  • Barilli E, Sillero JC, Fernández-Aparicio M, Rubiales D (2009b) Identification of resistance to Uromyces pisi (Pers.) Wint. in Pisum spp. germplasm. Field Crop Res 114:198–203

    Google Scholar 

  • Barilli E, Cobos MJ, Carrillo E, Kilian A, Carling J, Rubiales D (2018). A high-density integrated DArTseq SNP-based genetic map of Pisum fulvum and identification of QTLs controlling rust resistance. Front Plant Sci 9:167

    Google Scholar 

  • Bani M, Rubiales D, Rispail N (2012) A detailed evaluation method to identify sources of quantitative resistance to Fusarium oxysporum f. sp. pisi race 2 within a Pisum spp, germplasm collection. Plant Pathol 61(3):532–542

    Google Scholar 

  • Barilli E, Satovic Z, Rubiales D, Torres AM (2010) Mapping of quantitative trait loci controlling partial resistance against rust incited by Uromyces pisi (Pers.) Wint. in a Pisum fulvum L. intraspecific cross. Euphytica 175:151–159

    Article  CAS  Google Scholar 

  • Barilli E, Sillero JC, Prats E, Rubiales D (2014) Resistance to rusts (Uromyces pisi and U. viciae-fabae) in pea. Czech J Genet Plant Breed 50(2):135–143

    Google Scholar 

  • Bateson W (1901) Experiments in plant hybridization by Gregor Mendel. J Roy Hort Soc 26(1):1–32

    Google Scholar 

  • Bhattacharyya MK, Smith AM, Ellis TH, Hedley C, Martin C (1990) The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell 60:115–22

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya S, Malleshi NG (2012) Physical, chemical and nutritional characteristics of premature-processed and matured green legumes. J Food Sci Technol 49(4):459–466

    Article  CAS  PubMed  Google Scholar 

  • Biddle AJ, Cattlin ND (2007) Pests, diseases and disorders of peas and beans, a coloured handbook. Academic Press, Elsevier, Boston, USA

    Google Scholar 

  • Blixt S (1972) Mutation genetics in Pisum. Agri Hort Genet 30:1–293

    Google Scholar 

  • Bretag TW, Keane PJ, Price TV (2006) The epidemiology of ascochyta blight in field peas: a review. Aus J Agri Res 57:883–902

    Article  Google Scholar 

  • Bevan MW, Uauy C, Wulff BBH, Zhou J, Krasileva K, Clark MD (2017) Genomic innovation for crop improvement. Nature 543:346

    Article  CAS  PubMed  Google Scholar 

  • Bodah ET, Porter LD, Chaves B, Dhingra A (2016) Evaluation of pea accessions and commercial cultivars for Fusarium root rot resistance. Euphytica 208(1):63–72

    Article  CAS  Google Scholar 

  • Bouchenak M, Lamri-Senhadji M (2013) Nutritional quality of legumes, and their role in cardiometabolic risk prevention: a review. J Med Food 16(3):185–198

    Article  CAS  PubMed  Google Scholar 

  • Bourdillon A (1998) Advantages and constraints of grain legumes for the feed market. In: 3rd European conference on grain legumes, AEP, Valladolid, Spain, 14–19 Nov 1998, pp 5–6

    Google Scholar 

  • Bourion V, Lejeune-Hénaut I, Munier-Jolain N, Salon C (2003) Cold acclimation of winter and spring peas: carbon partitioning as affected by light intensity. Eur J Agron 19:535–548

    Google Scholar 

  • Bourion V, Rizvi SMH, Fournier S, de Larambergue H, Galmiche F, Marge P (2010) Genetic dissection of nitrogen nutrition in pea through a QTL approach of root, nodule, and shoot variability. Theor Appl Genet 121:71–86

    Article  PubMed  Google Scholar 

  • Boutte G, Alves Carvalho S, Falque M, Peterlongo P, Lhuillier E, Bouchez O, Lavaud C, Pilet-Nayel M-L, Rivière N, Baranger A (2016) SNP discovery and genetic mapping using genotyping by sequencing of whole genome genomic DNA from a pea RIL population. BMC Genom 17:121

    Article  CAS  Google Scholar 

  • Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155

    Google Scholar 

  • Brewin NJ, van Kammen A, Horvanth B (1991) Development of the legume root nodule. Annu Rev Cell Biol 7:191–226

    Article  CAS  PubMed  Google Scholar 

  • Brockwell J, Pilka A, Holliday RA (1991) Soil PH is a major determinant of the numbers of naturally-occurring Rhizobium meliloti in non-cultivated soils in Central New South Wales. Aust J Exp Agri 31:211–219

    Article  Google Scholar 

  • Burghardt LT, Guhlin J, Chun CL, Liu JQ, Sadowsky MJ, Young ND, Tiffin P (2017) Transcriptomic basis of genome by genome variation in a legume-rhizobia mutualism. Mol Ecol 26:6122–6135

    Google Scholar 

  • Burstin J, Salloignon P, Chabert-Martinello M, Magnin-Robert J-B, Siol M, Jacquin F, Chauveau A, Pont C, Aubert G, Delaitre C, Truntzer C, Duc G (2015) Genetic diversity and trait genomic prediction in a pea diversity panel. BMC Genom 16:105

    Article  Google Scholar 

  • Busheva M, Apostolova E (1997) Influence of saccharides and glycine betaine on freezing of photosystem 2 enriched particles: a chlorophyll fluorescence study. Photosynthetica 34:591–594

    Article  CAS  Google Scholar 

  • Byrne PF, Volk GM, Gardner C, Gore MA, Simon PW, Smith S (2018) Sustaining the future of plant breeding: the critical role of the USDA-ARS national plant germplasm system. Crop Sci 58:451–468

    Article  Google Scholar 

  • Cambrolle J, Redondo-Gomez S, Mateos-Naranjo E, Luque T, Figueroa ME (2011) Physiological responses to salinity in the yellow-horned poppy, Glaucium flavum. Plant Physiol Biochem 49:186–194

    Article  CAS  PubMed  Google Scholar 

  • Carpenter MA, Shaw M, Cooper RD, Frew TJ, Butler RC, Murray SR, Moya L, Coyne CJ, Timmerman-Vaughan GM (2017) Association mapping of starch chain length distribution and amylose content in pea (Pisum sativum L.) using carbohydrate metabolism candidate genes. BMC Plant Biol 17:132

    Google Scholar 

  • Carrillo E, Satovic Z, Aubert G, Boucherot K, Rubiales D, Fondevilla S (2014) Identification of quantitative trait loci and candidate genes for specific cellular resistance responses against Didymella pinodes in pea. Plant Cell Rep 33:1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Carvalho RF, PiottoI FA, SchmidtI D (2011) Seed priming with hormones does not alleviate induced oxidative stress in maize seedlings subjected to salt stress. Sci Agri (Braz) 68(5):598–602

    Article  CAS  Google Scholar 

  • Cassman KG, Munns DN, Beck DP (1981a) Phosphorus nutrition of rhizobium japonicum: strain differences in phosphorus storage and utilization. Soil Sci Soc Amer J 45(3):517–520

    Article  CAS  Google Scholar 

  • Cassman KG, Whitney AS, Fox RL (1981b) Phosphorus requirements of soybean and cowpea as affected by mode of N nutrition. Agron J 73(1):17–22

    Article  CAS  Google Scholar 

  • Castillejo MÁ, Iglesias-García R, Wienkoop S, Rubiales D (2016) Labelfree quantitative proteomic analysis of tolerance to drought in Pisum sativum. Proteomics 16:2776–2787

    Article  CAS  PubMed  Google Scholar 

  • Cerda A, Caro M, Fernandez FG (1982) Salt tolerance of two pea cultivars. Agron J 74(5):796–798

    Article  CAS  Google Scholar 

  • Chai Q, Qin A, Gan Y, Yu A (2013) Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas. Agron Sustain Dev 34:535–543

    Article  CAS  Google Scholar 

  • Chapagain T, Riseman A (2014) Barley–pea intercropping: effects on land productivity, carbon and nitrogen transformations. Field Crops Res 166(9):18–25

    Article  Google Scholar 

  • Chattopadhyay A, Subba P, Pandey A, Bhushan D, Kumar R, Datta A, Chakraborty S, Chakraborty N (2011) Analysis of the grasspea proteome and identification of stress-responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. Phytochemistry 72:1293–1307

    Article  CAS  PubMed  Google Scholar 

  • Chand R, Srivastava CP, Singh BD, Sarode SB (2006) Identification and characterization of slow rusting components in pea (Pisum sativum L.). Genet Resour Crop Evol 53:219–224

    Article  Google Scholar 

  • Chang HX, Sang H, Wang J, McPhee K, E, Zhuang X, Porter LD, Chilvers MI (2018) Exploring the genetics of lesion and nodal resistance in pea (Pisum sativum L) to Sclerotinia sclerotiorum using genome-wide association studies and RNA-Seq. Plant Direct 2(6): e00064

    Google Scholar 

  • Charity JA, Anderson MA, Bittisnich DJ, Whitecross M, Higgins TJV (1999) Transgenic tobacco and peas expressing a proteinase inhibitor from Nicotiana alata have increased insect resistance. Mol Breed 5(4):357–365

    Article  CAS  Google Scholar 

  • Chen WX, Chen WF (2016) The leguminous plants-rhizobium symbiosis nitrogen fixation plays an important role in ecological agriculture. In: Chinese research society of well-off construction (eds), Worrying about China's food security and the way out (in Chinese). Tsinghua University Press, Beijing, pp 120–137

    Google Scholar 

  • Chen MJ, Liu GF, Yu H, Wang B, Li JY (2018) Towards molecular design of rice plant architecture and grain quality (in Chinese). Chin Sci Bull 63:1276–1289

    Google Scholar 

  • Chen W, Wang E, Chen W (2004) The relationship between the symbiotic promiscuity of rhizobia and legumes and their geographical environments. China Agri Sci 37(1):81–86

    Google Scholar 

  • Chen D, Zeng Z, Shui X (2002) Screening of highly effective symbiotic rhizobia of alfalfa. Pratacult Sci 19(6):27–31

    Google Scholar 

  • Cheng X, Wang S (2009) Food legumes breeds in China. China Agricultural Science and Technology Press, Beijing, pp 333–377

    Google Scholar 

  • Cheng P, Holdsworth W, Ma Y, Coyne CJ, Mazourek M, Grusak MA, Fuchs S, McGee RJ (2015) Association mapping of agronomic and quality traits in USDA pea single-plant collection. Mol Breed 35:75

    Article  Google Scholar 

  • Choudhury PR, Tanveer H, Dixit GP (2007) Identification and detection of genetic relatedness among important varieties of pea (Pisum sativum L.) grown in India. Genetica 130(2):183–191

    Google Scholar 

  • Chowrira GM, Cavileer TD, Gupta SK, Lurquin PF, Berger PH (1998) Coat protein-mediated resistance to pea enation mosaic virus in transgenic Pisum sativum L. Transgen Res 7(4):265–271

    Article  CAS  Google Scholar 

  • Christoph F, Bisseling T (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387(7):394–401

    Google Scholar 

  • Clement SL, Hardie DC, Elberson LR (2002) Variation among accessions of Pisum fulvum for resistance to pea weevil. Crop Sci 42(6):2167–2173

    Article  Google Scholar 

  • Cole CV, Duxbury J, Freney J, Heinemeyer O, Minami K, Mosier A (1997) Global estimates of potential mitigation of greenhouse gas emissions by agriculture. Nutr Cycl Agroecosyst 49(1–3):221–228

    Article  CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans Roy Soc B-Biol Sci 363:557–572

    Article  CAS  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460

    Article  CAS  PubMed  Google Scholar 

  • Congdon BS, Coutts BA, Renton M, Banovic M, Jones RAC (2016) Pea seed-borne mosaic virus in field pea: widespread infection genetic diversity and resistance gene effectiveness. Plant Dis 100(12):2475–2482

    Article  CAS  PubMed  Google Scholar 

  • Coyne CJ, Inglis DA, Whitehead SJ, McClendon MT, Muehlbauer FJ (2000) Chromosomal location of Fwf the Fusarium wilt race 5 resistance gene in Pisum sativum. Pisum Genet 32:20–22

    Google Scholar 

  • Coyne CJ, Pilet-Nayel ML, McGee RJ, Porter LD, Smýkal P, Grünwald NJ (2015) Identification of QTL controlling high levels of partial resistance to Fusarium solani f. sp. pisi in pea. Plant Breed 134(4):446–453

    Google Scholar 

  • Cristina M, Leandro P, Carlos M, Erick Z (2010) Greenhouse gas (CO2 and N2O) emissions from soils: a review. Chil J Agri Res 70(3)

    Google Scholar 

  • Crossa J, Perez-Rodriguez P, Cuevas J, Montesinos-Lopez O, Jarquin D, de los Campos G, Burgueno J, Gonzalez-Camacho JM, Perez-Elizalde S, Beyene Y, Dreisigacker S, Singh R, Zhang X, Gowda M, Roorkiwal M, Rutkoski J, Varshney RK (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:961–975

    Google Scholar 

  • Cutforth HW, McConkey BG, Ulrich D, Miller PR, Angadi SV (2002) Yield and water use efficiency of pulses seeded directly into standing stubble in the semiarid Canadian prairie. Can J Plant Sci 82:681–686

    Article  Google Scholar 

  • Cutforth HW, Mcginn SM, Mcphee KE, Miller PR (2007) Adaptation of pulse crops to the changing climate of the northern great plains. Agron J 99:1684–1699

    Article  Google Scholar 

  • David WE, Hari K (eds) (2009) Nitrogen fixation in crop production. GRDC Publication, Australia, pp 349–385

    Google Scholar 

  • Davidson JA, Hartley D, Priest M, Herdina MKK, Mckay A, Scott ES (2009) A new species of Phoma causes ascochyta blight symptoms on field peas (Pisum sativum) in South Australia. Mycologia 101:120–128

    Article  CAS  PubMed  Google Scholar 

  • DeCaire J, Coyne CJ, Brumett S, Shultz JL (2012) Additional pea EST-SSR markers for comparative mapping in pea (Pisum sativum L.). Plant Breed 131:222–226

    Article  CAS  Google Scholar 

  • del Val C, Rivas E, Torres-Quesada O, Toro N, Jiménez-Zurdo JI (2007) Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics. Mol Microbiol 66(5):1080–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dénarié J, Roche P (1991) Rhizobium nodulation signals. In: Verma DPS (eds), Molecular signals in plant-microbe communications. CRC Press, London, pp 295–324

    Google Scholar 

  • Deulvot C, Charrel H, Marty A, Jacquin F, Donnadieu C, Lejeune-Hénaut I, Burstin J, Aubert G (2010) Highly-multiplexed SNP genotyping for genetic mapping and germplasm diversity studies in pea. BMC Genom 11:468

    Article  CAS  Google Scholar 

  • Desgroux A, Baudais VN, Aubert V, Le Roy G, de Larambergue H, Miteul H, Aubert G, Boutet G, Duc G, Baranger A, Burstin J, Manzanares-Dauleux M, Pilet-Nayel M-L, Bourion V (2018) Comparative genome-wide-association mapping identifies common loci controlling root system architecture and resistance to Aphanomyces euteiches in pea. Front Plant Sci 8:2195

    Article  PubMed  PubMed Central  Google Scholar 

  • Desgroux A, L’Anthoene V, Roux-Duparque M, Riviere JP, Aubert G, Tayeh N, Moussart A, Mangin P, Vetel P, Piriou C, McGee RJ, Coyne CJ, Burstin J, Baranger A, Manzanares-Dmytruk MV, Vasyliv NV, Derkach IV, Mykiyevych IM, Romanyuk ND (2016a) Effects of seed priming with growth regulator biolan on salt tolerance of Pisum sativum L. Бioлoгiчнi cтyдiї 10(3–4):107–118

    Google Scholar 

  • Desgroux A, L’anthoëne V, Roux-Duparque M, Rivière, JP, Aubert G, Tayeh N, Moussart A, Mangin P, Vetel P, Piriou C, McGee RJ, Coyne CJ, Burstin J, Alain Baranger A, Manzanares-Dauleux M, Virginie Bourion V, Pilet-Nayel ML (2016b). Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea. BMC Genomics 17(1):1–21

    Google Scholar 

  • Devi J, Mishra GP, Sanwal SK, Dubey RK, Singh PM, Singh B (2018) Development and characterization of penta-flowering and triple-flowering genotypes in garden pea (Pisum sativum L. var. hortense). PLoS ONE 13(7):e0201235

    Google Scholar 

  • Diapari M, Sindhu A, Warkentin TD, Bett K, Tar’an B (2015) Population structure and marker-trait association studies of iron, zinc and selenium concentrations in seed of field pea (Pisum sativum L.). Mol Breed 35:30

    Google Scholar 

  • Ding W (1992) Analysis of ecological factors influencing nodule formation of rhizobia. Chin J Ecol 11(4):50–54

    Google Scholar 

  • Dmytruk VM, Vasyliv VN, Derkach VI, Mykiyevych MI, Romanyuk N (2016) Effects of seed priming with growth regulator biolan on salt tolerance of Pisum sativum L. Studia Biologica 10:107–118

    Google Scholar 

  • Doležel J, Greilhuber J (2010) Nuclear genome size: are we getting closer? Cytometry Part A 77A(7):635–642

    Article  CAS  Google Scholar 

  • Dolezel J, Greilhuber J, Lucretti S, Meister A, Lysak MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Ann Bot 82:17–26

    Article  CAS  Google Scholar 

  • Drijfhout E (1968) Testing for pea leafroll virus and inheritance of resistance in peas. Euphytica 17(2):224–235

    Google Scholar 

  • Druery CT, Bateson W (1901) Experiments in plant hybridization. J Roy Hort Soc 26:1–32

    Google Scholar 

  • Duarte J, Riviere N, Baranger A, Aubert G, Burstin J, Cornet L, Lavaud C, Lejeune-Henaut I, Martinant JP, Pichon JP, Pilet-Nayel ML, Boutet G (2014) Transcriptome sequencing for high throughput SNP development and genetic mapping in pea. BMC Genom 15:126

    Article  Google Scholar 

  • Dumont E, Fontaine V, Vuylsteker C, Sellier H, Bodèle S, Voedts N, Devaux R, Frise M, Avia K, Hilber JL, Bahrman N, Hanocq E, Lejeune-Hénaut I, Delbreil B (2009) Theor Appl Genet 118:1561–1571

    Article  CAS  PubMed  Google Scholar 

  • Durieu P, Ochatt SJ (2000) Efficient intergeneric fusion of pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.) protoplasts. J Exp Bot 51(348):1237–1242

    Google Scholar 

  • Duzdemir O, Kurunc A, Unlukara A (2009) Response of pea (Pisum sativum) to salinity and irrigation water regime. Bulg J Agri Sci 15(5):400–409

    Google Scholar 

  • Dwivedi SL, Sahrawat KL, Upadhyaya HD, Mengoni A, Galardini M, Bazzicalupo M, Biondi EG, Hungria M, Kaschuk G, Blair MW, Ortiz R (2015) Chapter One-Advances in host plant and rhizobium genomics to enhance symbiotic nitrogen fixation in grain legumes. In: Sparks DL (eds), Advances in Agronomy. Academic Press, New York, pp 1–116

    Google Scholar 

  • Dyachenko EA, Ryzhova NN, Vishnyakova MA, Kochieva EZ (2014) Molecular genetic diversity of the pea (Pisum sativum L.) from the Vavilov Research Institute collection detected by the AFLP analysis. Russ J Genet 50(9):916–924

    Google Scholar 

  • Ehab AI (2016) Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol 192(15):38–46

    Google Scholar 

  • El-Esawi M, Al-Ghamdi A, Ali H, Alayafi A, Witczak J, Ahmad M (2018) Analysis of genetic variation and enhancement of salt tolerance in French pea (Pisum Sativum L.). Intl J Mol Sci 19(8):2433

    Google Scholar 

  • Ellis THN, Hofer JMI, Timmerman-Vaughan GM, Coyne CJ, Hellens RP (2011) Mendel, 150 years on. Trends Plant Sci 16(11):590–596

    Article  CAS  PubMed  Google Scholar 

  • Ellis TH, Turner L, Hellens RP, Lee D, Harker CL, Enard C, Domoney C, Davies DR (1992) Linkage maps in pea. Genetics 130:649–663

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis THN, Poyser SJ (2002) An integrated and comparative view of pea genetic and cytogenetic maps. New Phytol 153:17–25

    Article  CAS  Google Scholar 

  • Ellis THN, Poyser SJ, Knox MR, Vershinin AV, Ambrose MJ (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet 260:9–19

    CAS  PubMed  Google Scholar 

  • Elvira-Recuenco M, Bevan JR, Taylor JD (2003) Differential responses to pea bacterial blight in stems, leaves and pods under glasshouse and field conditions. Eur J Plant Pathol 109(6):555–564

    Article  CAS  Google Scholar 

  • Eujayl I, Erskine W, Baum M, Pehu E (1999) Inheritance and linkage analysis of frost injury in lentil. Crop Sci 39:639–642

    Article  Google Scholar 

  • Farahani HJ, Peterson GA, Westfall DG (1998) Dryland cropping intensification: a fundamental solution to efficient use of precipitation. Adv Agron 64:197–223

    Article  Google Scholar 

  • FAO (2012) International year of pulses-nutritious seeds for a sustainable future. www.fao.org/pulses-2012

  • FAO (2013) International year of pulses-nutritious seeds for a sustainable future. www.fao.org/pulses-2013

  • FAOSTAT (2018). http://www.fao.org/faostat/en/#data

  • Feng J, Hwang R, Chang KF, Conner L, Hwang SF, Strelkov SE, Gossen BD, McLaren DL, Xue AG (2011) Identification of microsatellite markers linked to quantitative trait loci controlling resistance to Fusarium root rot in field pea. Can J Plant Sci 91:199–204

    Article  Google Scholar 

  • Flavell RB, Bennett MD, Smith JB, Smith DB (1974) Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet 12:257–269

    Article  CAS  PubMed  Google Scholar 

  • Flores-Félix JD, Silva LR, Rivera LP, Marcos-Garía M, Garcia-Fraile P, Martínez-Molina E, Mateos PF, Velázquez E, Andrade P, Rivas R (2015) Plants probiotics as a tool to produce highly functional fruits: the case of Phyllobacterium and vitamin C in strawberries. PLoS ONE 10(4):e0122281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fondevilla S, Satovic Z, Rubiales D, Moreno MT, Torres AM (2008) Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp syriacum. Mol Breed 21:439–454

    Article  CAS  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, pp 129–234

    Google Scholar 

  • Foucher F, Morin J, Courtiade J, Cadioux S, Ellis N, Banfield MJ, Rameau C (2003) Determinate and late flowering are two terminal FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell 15:2742–2754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francois LE, Maas EV (1994) Crop response and management on salt-affected soils. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 149–181

    Google Scholar 

  • Franssen SU, Shrestha RP, Bräutigam A, Bornberg-Bauer E, Weber AP (2011a) Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC Genom 12:227

    Article  CAS  Google Scholar 

  • Franssen SU, Shrestha RP, Brautigam A, Bornberg-Bauer E, Weber APM (2011b) Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC Genomics 12

    Google Scholar 

  • Fondevilla S, ÅVila CM, Cubero JI, Rubiales D (2005) Response to Mycosphaerella pinodes in a germplasm collection of Pisum spp. Plant Breed 124(3):313–315

    Google Scholar 

  • Fondevilla S, Carver TLW, Moreno MT, Rubiales D (2006) Macroscopic and histological characterisation of genes er1 and er2 for powdery mildew resistance in pea. Eur J Plant Pathol 115:309–321

    Article  Google Scholar 

  • Fondevilla S, Carver TLW, Moreno MT, Rubiales D (2007a) Identification and characterization of sources of resistance to Erysiphe pisi Syd in Pisum spp. Plant Breed 126(2):113–119

    Article  Google Scholar 

  • Fondevilla S, Torres AM, Moreno MT, Rubiales D (2007b) Identification of a new gene for resistance to powdery mildew in Pisum fulvum, a wild relative of pea. Breed Sci 57(2):181–184

    Article  Google Scholar 

  • Fondevilla S, Fernández-Aparicio M, Satovic Z, Emeran AA, Torres AM, Moreno MT, Rubiales D (2010). Identification of quantitative trait loci for specific mechanisms of resistance to Orobanche crenata Forsk. in pea (Pisum sativum L.). Mol Breed 25(2):259–272

    Google Scholar 

  • Fondevilla S, Martín-Sanz A, Satovic Z, Fernández-Romero MD, Rubiales D, Caminero C (2012) Identification of quantitative trait loci involved in resistance to Pseudomonas syringae pv. syringae in pea (Pisum sativum L.). Euphytica 186(3):805–812

    Google Scholar 

  • Furones-Pérez P, Fernández-López J (2009) Usefulness of 13 morphological and phenological characteristics of sweet chestnut (Castanea sativa Mill.) for use in the DUS test. Euphytica 167:1–21

    Article  Google Scholar 

  • Gali K, K, Liu Y, Sindhu A, Diapari M, Shunmugam A, S, Arganosa G, Daba K, Caron C, Lachagari RVB, Tar’an B, Warkentin TD (2018) Construction of high-density linkage maps for mapping quantitative trait loci for multiple traits in field pea (Pisum sativum L). BMC Blant Biol 18(1):172

    Google Scholar 

  • Gan Y, Liang C, Wang X, Mcconkey B (2011) Lowering carbon footprint of durum wheat by diversifying cropping systems. Field Crops Res 122(3):199–206

    Article  Google Scholar 

  • Gao Y, Duan AW, Sun JS, Li FS, Liu ZG, Liu H, Liu ZD (2009) Crop coefficient and water-use efficiency of winter wheat/spring maize strip intercropping. Field Crops Res 111:65–73

    Article  Google Scholar 

  • Gao Z, Johansen E, Eyers S, Thomas CL, Ellis THN, Maule AJ (2004) The Potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J 40:376–385

    Article  CAS  PubMed  Google Scholar 

  • Gaulin E, Jacquet C, Bottin A, Dumas B (2007) Root rot disease of legumes caused by Aphanomyces euteiches. Mol Plant Pathol 8:539–548

    Article  PubMed  Google Scholar 

  • Genetic diversity in European Pisum germplasm collections (2012). Theor Appl Genet 125:367–380

    Google Scholar 

  • Ghafoor A, McPhee K (2012) Marker assisted selection (MAS) for developing powdery mildew resistant pea cultivars. Euphytica 186:593–607

    Article  CAS  Google Scholar 

  • Gibson AH, Newton WE (1981) Current perspectives in nitrogen fixation. Elsevier/North Holland Biomedical Press, Canberra, Australia and New York, USA, pp 14–30

    Google Scholar 

  • Gilpin BJ, McCallum JA, Frew TJ, Timmerman-Vaughan GM (1997) A linkage map of the pea (Pisum sativum L.) genome containing cloned sequences of known function and expressed sequence tags (ESTs). Theor Appl Genet 95:1289–1299

    Article  CAS  Google Scholar 

  • Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • Golubev AA (1990) Habitats, collection, cultivation and hybridization of Vavilovia formosa Fed. Bull Appl Bot Genet Plant Breed 135:67–75

    Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant J, Cooper P (1997) Peas (pisum sativum L.). Field Crops Res 53:111–130

    Article  Google Scholar 

  • Grewal HS (2010) Water uptake, water use efficiency, plant growth and ionic balance of wheat, barley, canola and chickpea plants on a sodic vertosol with variable subsoil NaCl salinity. Agri Water Manag 97:148–156

    Article  Google Scholar 

  • Grünwald NJ, Coffman VA, Kraft JM (2003) Sources of partial resistance to Fusarium root rot in the Pisum core collection. Plant Dis 87:1197–1200

    Article  PubMed  Google Scholar 

  • Gupta PK, Langridge P, Mir RR (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26:145–161

    Article  Google Scholar 

  • Gurung AM, Pang ECK, Taylor PWJ (2002) Examination of Pisum and Lathyrus species as sources of ascochyta blight resistance for field pea (Pisum sativum). Australas Plant Pathol 31(1):41–45

    Article  Google Scholar 

  • Haglund WA, Kraft JM (1979) Fusarium oxysporum f. sp. pisi race 6: occurrence and distribution. Phytopathology 69:818–820

    Article  Google Scholar 

  • Hamblin MT, Buckler ES, Jannink J-L (2011) Population genetics of genomics-based crop improvement methods. Trends Genet 27:98–106

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Hasan SA, Yusuf M, Hayat Q, Ahmad A (2010) Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environ Exp Bot 69:105–112

    Article  CAS  Google Scholar 

  • Hamon C, Baranger A, Coyne CJ, McGee RJ, Le Goff I, L’Anthoene V, Esnault R, Riviere JP, Klein A, Mangin P, McPhee KE, Roux-Duparque M, Porter L, Miteul H, Lesne A, Morin G, Onfroy C, Moussart A, Tivoli B, Delourme R, Pilet-Nayel ML (2011) New consistent QTL in pea associated with partial resistance to Aphanomyces euteiches in multiple French and American environments. Theor Appl Genet 123:261–281

    Article  PubMed  Google Scholar 

  • Hamon C, Coyne CJ, McGee RJ, Lesné A, Esnault R, Mangin P, Hervé M, Le Goff I, Deniot G, Roux-Duparque M, Morin G, McPhee KE, Delourme R, Alain Baranger A, Pilet-Nayel ML (2013) QTL meta-analysis provides a comprehensive view of loci controlling partial resistance to Aphanomyces euteiches in four sources of resistance in pea. BMC Plant Biol 13:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handerson C, Noren SK, Wricha T, Meetei NT, Khanna VK, Pattanayak A, Datt S, Choudhury PR, Kumar M (2014) Assessment of genetic diversity in pea (Pisum sativum L.) using morphological and molecular markers. Indian J Genet 74:205–212

    CAS  Google Scholar 

  • Hardie DC, Baker GJ, Marshall DR (1995) Field screening of Pisum accessions to evaluate their susceptibility to the pea weevil (Coleoptera: Bruchidae). Euphytica 84(2):155–161

    Article  Google Scholar 

  • Hecht V, Knowles CL, Vander Schoor JK, Liew LC, Jones SE, Lambert MJ, Weller JL (2007) Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs. Plant Physiol 144:648–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellens RP, Moreau C, Lin-Wang K, Schwinn KE, Thomson SJ, Fiers MWEJ, Frew TJ, Murray SR, Hofer JMI, Jacobs JME, Davies KM, Allan AC, Bendahmane A, Coyne CJ, Timmerman-Vaughan GM, Ellis THN (2010) Identification of Mendel’s white flower character. PLoS ONE 5:e13230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herridge D (2002) Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR Proc 109e. www.aciar.gov.au/publications. ISBN: 1 86320 335 4

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Google Scholar 

  • He CB, Zong XX (2011) Genetic diversity of pea (Pisum sativum L.) germplasm resources revealed by morphological traits. J Plant Genet Resour 12(1):42–48

    Google Scholar 

  • Hollaway GJ, Bretag TW, Price TV (2007) The epidemiology and management of bacterial blight (Pseudomonas syringae pv. pisi) of field pea (Pisum sativum) in Australia: a review. Aust J Agri Res 58(11):1086–1099

    Google Scholar 

  • Hu F, Gan Y, Chai Q, Feng F, Zhao C, Yu A (2016) Boosting system productivity through the improved coordination of interspecific competition in maize/pea strip intercropping. Field Crop Res 198:50–60

    Article  Google Scholar 

  • Hu F, Zhao C, Feng F, Chai Q, Mu Y, Zhang Y (2017) Improving N management through intercropping alleviates the inhibitory effect of mineral N on nodulation in pea. Plant Soil 412:235–251

    Article  CAS  Google Scholar 

  • Hu Z, Ma Z, Bao X, Zhang J (2010) Effect of regulated deficient irrigation (RDI) on yield and water consumption of major crops in Shiyang river area. Water Sav Irrig 7:10–13 (in Chinese with English abstract)

    Google Scholar 

  • Huesing JE, Shade RE, Chrispeels MJ, Murdock LL (1991) α-amylase inhibitor, not phytohemagglutinin, explains resistance of common bean seeds to cowpea weevil. Plant Physiol 96(3):993–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humplík JF, Lazár D, Fürst T, Husičková A, Hýbl M, Spíchal L (2015) Automated integrative high-throughput phenotyping of plant shoots: a case study of the cold-tolerance of pea (Pisum sativum L.). Plant Methods 11(1):20

    Google Scholar 

  • Humphry M, Reinstädler A, Ivanov S, Bisseling T, Panstruga R (2011) Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol 12:866–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hungria M, Franchini JC, Campo RJ, Crispino CC, Moraes JZ, Sibaldelli RNR, Mendes IC, Arihara J (2006) Nitrogen nutrition of soybean in Brazil: contributions of biological N2 fixation and N fertilizer to grain yield. Can J Plant Sci 86(4):927–939

    Article  Google Scholar 

  • Hunter PJ, Ellis N, Taylor JD (2001) Association of dominant loci for resistance to Pseudomonas syringae pv. pisi with linkage groups II, VI and VII of Pisum sativum. Theor Appl Genet 103:129–135

    Article  CAS  Google Scholar 

  • Husen A, Iqbal M, Aref IM (2016) IAA-induced alteration in growth and photosynthesis of pea (Pisum sativum L.) plants grown under salt stress Pisum sativum. J Environ Biol 37:421–429

    CAS  Google Scholar 

  • Iglesias-García R, Prats E, Rubiales D (2012a) Use of physiological parameters as tools to discriminate water stress tolerance in pea. In: International conference on bioscience: biotechnology and biodiversity, Novi Sad, Serbia, 18–20 June 2012, p 107

    Google Scholar 

  • Iglesias-García R, Prats E, Rubiales D (2012b) Identification and characterization of drought resistance sources in pea. University of Córdoba, Córdoba, Spain

    Google Scholar 

  • Iglesias-García R, Prats E, Flores F, Amri M, Mikić A, Rubiales D (2017) Assessment of field pea (Pisum sativum L.) grain yield, aerial biomass and flowering date stability in Mediterranean environments. Crop Pasture Sci 68(11):915–923

    Google Scholar 

  • Iglesias-García R, Prats E, Fondevilla S, Satovic Z, Rubiales D (2015) Quantitative trait loci associated to drought adaptation in pea (Pisum sativum L.). Plant Mol Biol Rep 33(6):1768–1778

    Google Scholar 

  • Irar S, González EM, Arrese-Igor C, Marino D (2014) A proteomic approach reveals new actors of nodule response to drought in split-root grown pea plants. Physiol Plant 152(4):634–645

    Article  CAS  PubMed  Google Scholar 

  • Isaac I, Rogers WG (1974) Verticillium wilt of pea (Pisum sativum). Ann Appl Biol 76:27–35

    Article  Google Scholar 

  • Irzykowska L, Wolko B, Swiecicki W (2002) Interval mapping of QTLs controlling some morphological traits in pea. Cell Mol Biol Lett 7:417–422

    CAS  PubMed  Google Scholar 

  • Irzykowska L, Wolko B (2004) Interval mapping of QTLs controlling yield-related traits and seed protein content in Pisum sativum. J Appl Genet 45:297–306

    PubMed  Google Scholar 

  • Jacob C, Carrasco B, Schwember AR (2016) Advances in breeding and biotechnology of legume crops. Plant Cell Tiss Org Cult 127:561–584

    Article  CAS  Google Scholar 

  • Rana JC, Rana M, Sharma V, Nag A, Chahota RK, Sharma TR (2017) Genetic diversity and structure of pea (Pisum sativum L.) germplasm based on morphological and SSR markers. Plant Mol Biol Rep 35(1):118–129

    Google Scholar 

  • Jain S, Weeden NF, Porter LD, Eigenbrode SD, McPhee K (2013) Finding linked markers to En for efficient selection of pea enation mosaic virus resistance in pea. Crop Sci 53(6):2392–2399

    Article  Google Scholar 

  • Jain S, Kumar A, Mamidi S, McPhee K (2014) Genetic diversity and population structure among pea (Pisum sativum L.) cultivars as revealed by simple sequence repeat and novel genic markers. Mol Biotechnol 56:925–938

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Weeden NF, Kumar A, Chittem K, McPhee K (2015) Functional codominant marker for selecting the Fw gene conferring resistance to Fusarium wilt race 1 in pea. Crop Sci 55(6):2639–2646

    Article  CAS  Google Scholar 

  • Janzen HH, Angers DA, Boehm M, Bolinder M, Wang H (2006) A proposed approach to estimate and reduce net greenhouse gas emissions from whole farms. Can J Soil Sci 86(3):401–418

    Article  CAS  Google Scholar 

  • Javid M, Noy D, Sudheesh S, Forster JW, Kaur S (2017) Identification of QTLs associated with metribuzin tolerance in field pea (Pisum sativum L.). Euphytica 213:91

    Google Scholar 

  • Jensen ES, Hauggaard-Nielsen H (2003) How can increased use of biological N2 fixation in agriculture benefit the environment? Plant Soil 252:177–186

    Article  CAS  Google Scholar 

  • Jeuffroy MH, Baranger E, Carrouee B, de Chezelles E, Gosme M et al (2013) Nitrous oxide emissions from crop rotations including wheat, oilseed rape and dry peas. Biogeosciences 10:1787–1797

    Article  CAS  Google Scholar 

  • Jha AB, Gali KK, Tar’an B, Warkentin TD (2017) Fine mapping of QTLs for Ascochyta Blight resistance in pea using heterogeneous inbred families. Front Plant Sci 8

    Google Scholar 

  • Jha AB, Warkentin TD, Gurusamy V, Tar’an B, Banniza S (2012) Identification of mycosphaerella blight resistance in wild Pisum species for use in pea breeding. Crop Sci 52(6):2462–2468

    Google Scholar 

  • Jha AB, Tar’an B, Diapari M, Sindhu A, Shunmugam A, Bett K, Warkentin TD (2015) Allele diversity analysis to identify SNPs associated with ascochyta blight resistance in pea. Euphytica 202(2):189–197

    Google Scholar 

  • Jha AB, Tar’an B, Stonehouse R, Warkentin TD (2016) Identification of QTLs associated with improved resistance to ascochyta blight in an interspecific pea recombinant inbred line population. Crop Sci 56(6):2926–2939

    Google Scholar 

  • Jia K-P, Luo Q, He S-B, Lu X-D, Yang H-Q (2014) Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis. Mol Plant 7:528–540

    Article  CAS  PubMed  Google Scholar 

  • Jiang YF, Diapari M, Bueckert RA, Tar’an B, Warkentin TD (2017) Population structure and association mapping of traits related to reproductive development in field pea. Euphytica 213:20

    Article  Google Scholar 

  • Jing R, Ambrose MA, Knox MR, Smykal P, Hybl M, Ramos A, Caminero C, Burstin J, Duc G, van Soest LJM, Swiecicki WK, Pereira MG, Vishnyakova M, Davenport GF, Flavell AJ, Ellis THN (2012) Genetic diversity in European Pisum germplasm collections. Theor Appl Genet 125:367–380

    Google Scholar 

  • Jin J, Lauricella D, Armstrong R, Sale P, Tang C (2014) Phosphorus application and elevated CO2 enhance drought tolerance in field pea grown in a phosphorus-deficient vertisol. Ann Bot 116(6):975–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johal GS, Balint-Kurti P, Well CF (2008) Mining and harnessing natural variation: a little MAGIC. Crop Sci 48:2066–2073

    Article  Google Scholar 

  • Jones AL, Johansen IE, Bean SJ, Bach I, Maule AJ (1998) Specificity of resistance to pea seed-borne mosaic potyvirus in transgenic peas expressing the viral replicase (Nlb) gene. J Gen Virol 79(12):3129–3137

    Article  CAS  PubMed  Google Scholar 

  • Kankanen J (2015) Reducing use of fossil energy by biological N fixation. Legume Perspect 8:24–25

    Google Scholar 

  • Karataş İ, Öztürk L, Demir Y, Ünlükara A, Kurunç A, Düzdemir O (2014) Alterations in antioxidant enzyme activities and proline content in pea leaves under long-term drought stress. Toxicol Indust Health 30(8):693–700

    Article  CAS  Google Scholar 

  • Karkanis A, Ntatsi G, Kontopoulou CK, Pristeri A, Bilalis D, Savvas D (2016) Field pea in European cropping systems: adaptability, biological nitrogen fixation and cultivation practices. Not Bot Hort Agrobot 44(2):325–336

    Article  CAS  Google Scholar 

  • Katiyar RP, Ram RS (1987) Genetics of rust resistance in pea. Indian J Genet 47:46–48

    Google Scholar 

  • Katoch V, Sharma S, Pathania S, Banayal DK, Sharma SK, Rathour R (2010) Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group III. Mol Breed 25:229–237

    Article  CAS  Google Scholar 

  • Kaur S, Pembleton LW, Cogan NO, Savin KW, Leonforte T, Paull J, Materne M, Forster JW (2012) Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers. BMC Genom 13:104

    Article  CAS  Google Scholar 

  • Kav NNV, Srivastava S, Goonewardende L, Blade SF (2004) Proteome-level changes in the roots of Pisum sativum in response to salinity. Ann Appl Biol 145:217–230

    Article  CAS  Google Scholar 

  • Kaya MD, Okçu G, Atak M, Çıkılı Y, Kolsarıcı Ö (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24(4):291–295

    Google Scholar 

  • Keneni G, Bekele E, Getu E, Imtiaz M, Damte BM, Dagne K (2011) Breeding food legumes for resistance to storage insect pests: potential and limitations. Sustainability 3:1399–1415

    Article  Google Scholar 

  • Keneni G, Jarso M, Wolabu T, Dino G (2005) Extent and pattern of genetic diversity for morpho-agronomic traits in ethiopian highland pulse landraces: i. field pea (Pisum sativum L.). Genet Resour Crop Ev 52:539–549

    Google Scholar 

  • Khan TN, Timmerman-Vaughan GM, Rubiales D, Warkentin TD, Siddique KHM, Erskine W, Barbetti MJ (2013) Didymella pinodes and its management in field pea: challenges and opportunities. Field Crop Res 148:61–77

    Google Scholar 

  • Kosová K, Vítámvás P, Urban MO, Klíma M, Roy A, Prášil IT (2015) Biological networks underlying abiotic stress tolerance in temperate crops—a proteomic perspective. Intl J Mol Sci 16:20913–20942

    Article  CAS  Google Scholar 

  • Kouchi H, Shimomura K, Hata S, Hirota A, Wu GJ, Kumagai H, Tajima S, Suganuma N, Suzuki A, Aoki T, Hayashi M, Yokoyama T, Ohyama T, Asamizu E, Kuwata C, Shibata D, Tabata S (2004) Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus. DNA Res 11(4):263–274

    Google Scholar 

  • Koyama ML, Levesley A, Koebner RM, Flowers TJ, Yeo AR (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 125:406–422. https://doi.org/10.1104/pp.125.1.406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft JM (1994) Fusarium wilt of peas (a review). Agronomie 14:561–567

    Article  Google Scholar 

  • Kraft JM, Pfleger FL (2001) Compendium of pea diseases and pests. American Phytopathological Society, St. Paul, MN, USA

    Google Scholar 

  • Kraft JM, Boge W (2001) Root characteristics in pea in relation to compaction and Fusarium root rot. Plant Dis 85:936–940

    Article  PubMed  Google Scholar 

  • Kühn C, Grof CP (2010) Sucrose transporters of higher plants. Curr Opin Plant Biol 13:287–297

    Article  CAS  Google Scholar 

  • Kumar S, Sharma V, Chaudhary S, Kumari R, Kumari N, Mishra P (2011a) Interaction between COCHLEATA and UNIFOLIATA genes enables normal flower morphogenesis in the garden pea, Pisum sativum. J Genet 90:309–314

    Article  PubMed  Google Scholar 

  • Kumar J (2011a) Effect of phosphorus and sulphur application on performance of vegetable ea (Pisum sativum L.) CV. Pant matar-2. Legume Res 34 (4):292–295

    Google Scholar 

  • Kumar J, Choudhary AK, Solanki RK, Pratap A (2011b) Towards marker-assisted selection in pulses: a review. Plant Breed 130:297–313

    Article  CAS  Google Scholar 

  • Kumari J, Dikshit HK, Singh B, Singh D (2015) Combining ability and character association of agronomic and biochemical traits in pea (pisum sativum L.). Sci Hort 181:26–33

    Article  CAS  Google Scholar 

  • Kushwaha C, Chand R, Srivastava C (2006) Role of aeciospores in outbreaks of pea (Pisum sativum) rust (Uromyces fabae). Eur J Plant Pathol 115:323–330

    Article  Google Scholar 

  • Konečná E, Šafářová D, Navrátil M, Hanáček P, Coyne C, Flavell A, Vishnyakova M, Ambrose M, Redden R, Smýkal P (2014) Geographical gradient of the eIF4E alleles conferring resistance to potyviruses in pea (Pisum) germplasm. PLoS ONE 9(3):e90394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krajewski P, Bocianowski J, Gawłowska M, Kaczmarek Z, Pniewski T, Święcicki W, Wolko B (2012) QTL for yield components and protein content: a multienvironment study of two pea (Pisum sativum L.) populations. Euphytica 183:323–336

    Article  CAS  Google Scholar 

  • Kwon S-J, Brown AF, Hu J, McGee R, Watt C, Kisha T, Timmerman-Vaughan G, Grusak M, McPhee KE, Coyne CJ (2012) Genetic diversity, population structure and genome-wide marker-trait association analysis emphasizing seed nutrients of the USDA pea (Pisum sativum L.) core collection. Genes Genom 34:305–320

    Article  CAS  Google Scholar 

  • Kwon YS, Kim KM, Kim DH, Eun MY, Sohn JK (2002) Marker-assisted introgression of quantitative trait loci associated with plant regeneration ability in anther culture of rice (Oryza sativa L.). Mol Cells 14:24–28

    CAS  PubMed  Google Scholar 

  • Kwon YS, Lee JM, Yi GB, Yi SI, Kim KM, Soh EH, Bae KM, Park EK, Song IH, Kim BD (2005) Use of SSR markers to complement tests of distinctiveness, uniformity, and stability (DUS) of pepper (Capsicum annuum L.) varieties. Mol Cells 19:428–435

    CAS  PubMed  Google Scholar 

  • Kwon SJ, Smýkal P, Hu J, Wang M, Kim SJ, McGee RJ, McPhee K, Coyne CJ (2013) User-friendly markers linked to Fusarium wilt race 1 resistance Fw gene for marker-assisted selection in pea. Plant Breed 132(6):642–648

    Article  CAS  Google Scholar 

  • Lang C, Long SR (2015) Transcriptomic analysis of Sinorhizobium meliloti and Medicago truncatula symbiosis using nitrogen fixation-deficient nodules. Mol Plant Microbe Interact 28(8):856–868

    Google Scholar 

  • Larrainzar E, Riely BK, Kim SC, Carrasquilla-Garcia N, Yu HJ, Hwang HJ, Oh M, Kim GB, Surendrarao AK, Chasman D, Siahpirani AF, Penmetsa RV, Lee GS, Kim N, Roy S, Mun JH, Cook DR (2015) Deep sequencing of the Medicago truncatula root transcriptome reveals a massive and early interaction between nodulation factor and ethylene signals. Plant Physiol 169(1):233–265

    Google Scholar 

  • Laucou V, Haurogne K, Ellis N, Rameau C (1998) Genetic mapping in pea. 1. RAPD-based genetic linkage map of Pisum sativum. Theor Appl Genet 97:905–915

    Article  CAS  Google Scholar 

  • Lavaud C, Lesne A, Piriou C, Le Roy G, Boutet G, Moussart A, Poncet C, Delourme R, Baranger A, Pilet-Nayel ML (2015) Validation of QTL for resistance to Aphanomyces euteiches in different pea genetic backgrounds using near-isogenic lines. Theor Appl Genet 128(11):2273–2288

    Article  CAS  PubMed  Google Scholar 

  • Lavaud C, Baviere M, Le Roy G, Hervé MR, Moussart A, Delourme R, Pilet-Nayel ML (2016) Single and multiple resistance QTL delay symptom appearance and slow down root colonization by Aphanomyces euteiches in pea near isogenic lines. BMC Plant Biol 16(1):166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lejeune-Hénaut I, Hanocq E, Be´thencourt L, Fontaine V, Delbreil B, Morin J, Petit A, Devaux R, Boilleau M, Stempniak JJ, Thomas M, Laine´ AL, Foucher F, Baranger A, Burstin J, Rameau C, Giauffret C (2008) The flowering locus Hr colocalizes with a major QTL affecting winter frost tolerance in Pisum sativum L. Theor Appl Genet 116(8):1105–1116

    Google Scholar 

  • Lejeune-Hénaut I, Bourion V, Eteve G, Cunot E, Delhaye K, Desmyter C (1999) Floral initiation in field grown forage peas is delayed to a greater extent by short photoperiods, than in other types of European varieties. Euphytica 109:201–211

    Google Scholar 

  • Lejeune-Hénaut I, Morin J, Fontaine V, Etévé G, Devaux R, Thomas M, Boilleau M, Stempniak JJ, Petit A, Rameau C, Baranger A (2004) Towards genes to breed for freezing resistance in pea. In: AEP (ed) AEP Conference 2004, Dijon, AEP, Paris, France, p 127

    Google Scholar 

  • Leonforte A, Forster JW, Redden, RJ, Nicolas ME, Salisbury PA (2013a) Sources of high tolerance to salinity in pea (Pisum sativum L.). Euphytica 189(2):203–216

    Google Scholar 

  • Leonforte A, Sudheesh S, Cogan NO, Salisbury PA, Nicolas, ME, Materne M, Kaur S (2013b) SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Biol 13(1):161

    Google Scholar 

  • Lester DR, Ross JJ, Davies PJ, Reid JB (1997) Mendel’s stem length gene (Le) encodes a gibberellin 3b-hydroxylase. Plant Cell 9:1435–1443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levenfors JP, Wikstrom M, Persson L, Gerhardson B (2003) Pathogenicity of Aphanomyces spp. from different leguminous crops in Sweden. Eur J Plant Pathol 109:535–543

    Article  Google Scholar 

  • Li L, Yang T, Liu R, Redden B, Maalouf F, Zong XX (2017) Food legume production in China. Crop J 5(2):115–126

    Article  Google Scholar 

  • Li X, Dou X, Liu Q, Wang Y (1997) Study on the quantity distribution and colonization ability of soybean rhizobium in Heilongjiang province. Heilongjiang Agri Sci 5:24–27

    Google Scholar 

  • Li Y, Li Y, Yang Q, Zhang J, Zhang J, Qiu L, Wang T (2015) Genomics-based crop germplasm research: Advances and perspectives. Sci Agri Sin 48:3333–3353

    CAS  Google Scholar 

  • Liew LC, Hecht V, Sussmilch FC, Weller JL (2014) The pea photoperiod response gene STERILE NODES is an ortholog of LUX ARRHYTHMO. Plant Physiol 165:648–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipper L, Thornton P, Campbell BM, Baedeker T, Braimoh A, Bwalya M, Caron P, Cattaneo A, Garrity D, Henry K, Hottle R, Jackson L, Jarvis A, Kossam F, Mann W, McCarthy N, Meybeck A, Neufeldt H, Remington T, Pham Thi S, Sessa R, Shula R, Tibu A, Torquebiau EF (2014) Climate-smart agriculture for food security. Nat Clim Change 4:1068–1072

    Article  Google Scholar 

  • Liu J, Diamond J (2005) China’s environment in a globalizing world. Nature 435:1179–1186

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Zhang G, Xu S, Mao W, Hu Q, Gong Y (2015) Comparative transcriptomic analyses of vegetable and grain pea (Pisum sativum L.) seed development. Front Plant Sci 6:1039

    Google Scholar 

  • Liu R, Fang L, Yang T, Zhang X, Hu J, Zhang H, Han W, Hua Z, Hao J, Zong X (2017) Marker-trait association analysis of frost tolerance of 672 worldwide pea (Pisum sativum L.) collections. Sci Rep 7(1):5919

    Google Scholar 

  • Liu X, Li L, Li Y, Fang W (2018) Crop germplasm resources: Adv Trends J Agri 8:1–6

    Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620

    Article  CAS  PubMed  Google Scholar 

  • Lohar DP, Sharopova N, Endre G, Peñuela S, Samac D, Town C, Silverstein KA, VandenBosch KA (2006) Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol 40(1):221–234

    Google Scholar 

  • Long SR (1989) Rhizobium-legume nodulation: life together in the underground. Cell 56(2):203–217

    Article  CAS  PubMed  Google Scholar 

  • Loridon K, McPhee K, Morin J, Dubreuil P, Pilet-Nayel ML, Aubert G, Rameau C, Baranger A, Coyne C, Lejeune-Hénaut I, Burstin J (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111:1022–1031

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Knox MR, Ambrose MJ, Brown JKM, Ellis THN (1996) Comparative analysis of genetic diversity in pea assessed by RFLP and PCR-based methods. Theor Appl Genet 93:1103–1111

    Google Scholar 

  • Lutsenko EK, Marushko YA, Kononenko TG (2005) Influence of fusicoccin on early growth of sorgo under high NaCl concentrations. Plant Physiol 52(3):378–383

    Google Scholar 

  • Lyon DJ, Peterson GA (2005) Continuous dryland cropping in the Great Plains: What are the limits? Agron J 97:347–348

    Article  Google Scholar 

  • Ma Y, Coyne CJ, Grusak MA, Mazourek M, Cheng P, Main D, McGee RJ (2017) Genome-wide SNP identification, linkage map construction and QTL mapping for seed mineral concentrations and contents in pea (Pisum sativum L.). BMC Plant Biol 17:17

    Google Scholar 

  • Ma Y, Clarice J, Coyne CJ, Main D, Pavan S, Sun S, Zhu Z, Zong X, José Leitão J, McGee RJ (2017) Development and validation of breeder-friendly KASPar markers for er1 a powdery mildew resistance gene in pea (Pisum sativum L.). Mol Breed 37:151

    Google Scholar 

  • Macas J, Neumann P, Navrátilová A (2007) Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 8, 427

    Google Scholar 

  • Macwilliam S, Wismer M, Kulshreshtha S (2014) Life cycle and economic assessment of Western Canadian pulse systems: The inclusion of pulses in crop rotations. Agri Syst 123(2):43–53

    Article  Google Scholar 

  • Malvick DK, Percich JA (1999) Identification of Pisum sativum germ plasm with resistance to root rot caused by multiple strains of Aphanomyces euteiches. Plant Dis 83(1):51–54

    Article  CAS  PubMed  Google Scholar 

  • Mao LL, Zhang LZ, Li WQ, van der Werf W, Sun JH, Spiertz H, Li L (2012) Yield advantage and water saving in maize/pea intercrop. Field Crops Res 138:11–20

    Article  Google Scholar 

  • Margesin R, Neuner G, Storey KB (2007) Cold-loving microbes, plants, and animals-fundamental and applied aspects. Naturwissenschaften 94:77–99

    Article  CAS  PubMed  Google Scholar 

  • Martins I (2010) Tabela da Composição de Alimentos. Instituto Nacional de Saúde Ricardo Jorge, Lisboa, Portugal

    Google Scholar 

  • Martín-Sanz A, Palomo JL, de la Vega MP, Caminero C (2011) Identification of pathovars and races of Pseudomonas syringae, the main causal agent of bacterial disease in pea in North-Central Spain, and the search for disease resistance. Eur J Plant Pathol 129(1):57–69

    Article  Google Scholar 

  • Martín-Sanz A, Pérez de la Vega M, Caminero C (2012) Resistance to Pseudomonas syringae in a collection of pea germplasm under field and controlled conditions. Plant Pathol 61(2):375–387

    Article  Google Scholar 

  • Martín-Sanz A, Aparicio T, Santana JC, García P, Winter P, Caminero C, de la Vega MP (2016) Mapping genes for resistance to bacterial blight (Pseudomonas syringae pv. pisi) in pea and identification of genes involved in resistance by DeepsuperSAGE transcriptome profiling. Euphytica 210(3):375–392

    Google Scholar 

  • Marx GA, Weeden NF, Provvidenti R (1985) Linkage relationships among markers in chromosome 3 and En, a gene conferring virus resistance. Pisum Newsl 17:57–60

    Google Scholar 

  • Matthews P, Ambrose MJ. Development and use of a “core” collection for the John Innes Pisum Collection. In: Proceedings of 2nd European conference on grain legumes, Copenhagen, Denmark, 1995, pp 194–195

    Google Scholar 

  • Mathieu S, Jacquin F, Chabert-Martinello M, Smýkal P, Paslier MCL, Aubert G, Burstin J (2017) Patterns of genetic structure and linkage disequilibrium in a large collection of pea germplasm. Genes Genomes Genet 7:2461–2471

    Google Scholar 

  • Martin DN, Proebsting WM, Hedden P (1997) Mendel’s dwarfing gene: cDNAs from the Le alleles and function of the expressed proteins. Proc Natl Acad Sci USA 94:8907–8911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLean AM, Finan TM, Sadowsky MJ (2007) Genomes of the symbiotic nitrogen-fixing bacteria of legumes. Plant Physiol 144:615–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McPhee KE, Muehlbauer FJ (2007) Registration of ‘specter’ winter feed pea. J Plant Regist 1:118–119

    Article  Google Scholar 

  • McPhee KE, Tullu A, Kraft JM, Muehlbauer FJ (1999) Resistance to Fusarium wilt race 2 in the Pisum core collection. J Amer Soc Hort Sci 124(1):28–31

    Article  Google Scholar 

  • McPhee KE, Inglis DA, Gundersen B, Coyne CJ (2012) Mapping QTL for Fusarium wilt race 2 partial resistance in pea (Pisum sativum). Plant Breed 131(2):300–306

    Article  CAS  Google Scholar 

  • McCouch S, Baute GJ, Bradeen J, Bramel P, Bretting PK, Buckler E, Burke JM, Charest D, Cloutier S, Cole G, Dempewolf H, Dingkuhn M, Feuillet C, Gepts P, Grattapaglia D, Guarino L, Jackson S, Knapp S, Langridge P, Lawton-Rauh A, Lijua Q, Lusty C, Michael T, Myles S, Naito K, Nelson RL, Pontarollo R, Richards CM, Rieseberg L, Ross-Ibarra J, Rounsley S, Hamilton RS, Schurr U, Stein N, Tomooka N, van der Knaap E, van Tassel D, Toll J, Valls J, Varshney RK, Ward J, Waugh R, Wenzl P, Zamir D (2013) Feeding the future. Nature 499:23–24

    Google Scholar 

  • Mendel JG (1866) Versuche uber Pflanzenhybriden Verhandlungen des naturforschenden Vereines. In: Brunn, Bd. IV fur das Jahr, 1865 Abhandlungen 3–47 English translation, see: Druery CT, Bateson W (1901) Experiments in plant hybridization. J Roy Hort Soc 26:1–32

    Google Scholar 

  • Mikić A, Mihailović V, Ćupina B, Đorđević V, Milić D, Duc G, Stoddard FL, Lejeune-Hénaut I, Marget P, Hanocq E (2011) Achievements in breeding autumn-sown annual legumes for temperate regions with emphasis on the continental Balkans. Euphytica 180:57–67

    Google Scholar 

  • Mikić A, Smýkal P, Kenicer G, Sarukhanyan N, Akopian J, Gabrielyan I, Vanyan A, Sinjushin A, Demidenko N, Ć upina B, Mihailović V, Vishnyakova M, Ambrose M (2010) Achievements in research on vavilovia (Vavilovia formosa (Stev.) Fed.), a legume crop wild relative. Ratar Povrt 47:387–394

    Google Scholar 

  • Mikić A, Smýkal P, Kenicer G, Vishnyakova M, Sarukhanyan N, Akopian JA, Vanyan A, Gabrielyan I, Smýkalová I, Sherbakova E, Zorić L, Atlagić J, Zeremski-Škorić T, Ćupina B, Krstić Ð, Jajić I, Antanasović S, Ðordević V, Mihailović V, Ivanov A, Ochatt S, Toker C, Zlatković B, Ambrose M (2014) Beauty will save the world, but will the world save beauty? The case of the highly endangered Vavilovia formosa (Stev.). Fed Planta 240(5):1139–1146

    Google Scholar 

  • Miles CA, Sonde M (2003) Pea Shoots. Pacific Northwest Extension Publications, PNW 567:1–8

    Google Scholar 

  • Miljus-Djukic J, Stanisavljevic N, Radovic S, Jovanovic Z, Mikic A, Maksimovic V (2013) Differential response of three contrasting pea (Pisum arvense, P. sativum and P. fulvum) species to salt stress: assessment of variation in antioxidative defence and miRNA expression. Aust J Crop Sci 7(13):2145–2153

    Google Scholar 

  • Mishra RK, Gangadhar BH, Nookaraju A, Kumar S, Park SW (2012) Development of EST-derived SSR markers in pea (Pisum sativum) and their potential utility for genetic mapping and transferability. Plant Breed 131:118–124

    Article  CAS  Google Scholar 

  • Moazzam-Jazi M, Ghasemi S, Seyedi SM, Niknam V (2018) COP1 plays a prominent role in drought stress tolerance in Arabidopsis and Pea. Plant Physiol Biochem 130:678–691

    Article  CAS  PubMed  Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgante M, Salamini F (2003) From plant genomics to breeding practice. Curr Opin Biotechnol 14:214–219

    Article  CAS  PubMed  Google Scholar 

  • Morton RL, Schroeder HE, Bateman KS, Chrispeels MJ, Armstrong E, Higgins TJ (2000) Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci USA 97(8):3820–3825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murfet IC (1971) Flowering in Pisum: a three-gene system. Heredity 27:93–110

    Article  Google Scholar 

  • Murfet IC (1985) Pisum sativum. In: Halevy AH (ed) Handbook of flowering, vol IV. CRC Press. Boca Raton, Florida, pp 97–126

    Google Scholar 

  • Murfet IC (1990) Flowering genes in pea and their use in breeding. Pisum Newsl 22:78–86

    Google Scholar 

  • Murray MG, Peters DL, Thompson WF (1981) Ancient repeated sequences in the pea and mung bean genomes and implications for genome evolution. J Mol Evol 17:31–42

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Naim-Feil E, Toren M, Aubert G, Rubinstein M, Rosen A, Eshed R, Sherman A, Ophir R, Saranga Y, Abbo S (2017) Drought response and genetic diversity in Pisum fulvum, a wild relative of domesticated pea. Crop Sci 57(3):1145–1159

    Article  Google Scholar 

  • Najafi F, Khavari-Nejad RA, Rastgar-jazii F, Sticklen M (2007) Growth and some physiological attributes of pea (Pisum sativum L.) as affected by salinity. Pak J Biol Sci 10:2752–2755

    Article  CAS  PubMed  Google Scholar 

  • Noreen Z, Ashraf M (2009) Assessment of variation in antioxidative defense system in salt- treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. J Plant Physiol 166:1764–1774

    Article  CAS  PubMed  Google Scholar 

  • Novák P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform 11:378

    Article  CAS  Google Scholar 

  • Ntatsi G, Gutiérrez-Cortines ME, Karapanos I, Barros A, Weiss J, Balliu A (2018) The quality of leguminous vegetables as influenced by preharvest factors. Sci Hort 232:191–205

    Article  Google Scholar 

  • Ochatt S, Conreux C, Smýkalová I, Smýkal P, Mikić A (2016) Developing biotechnology tools for ‘beautiful’vavilovia (Vavilovia formosa), a legume crop wild relative with taxonomic and agronomic potential. Plant Cell Tiss Org Cult 127(3):637–648

    Article  CAS  Google Scholar 

  • O’Hara GW, Boonkerd N, Dilworth MJ (1988) Mineral constraints to nitrogen fixation. Plant Soil 108:93–110

    Article  Google Scholar 

  • O’Hara GW (2001) Nutritional constraints on root nodule bacteria affecting symbiotic nitrogen fixation: a review. Aust J Exp Agri 41:417–433

    Article  Google Scholar 

  • Okçu G, Kaya MD, Atak M (2005) Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turk J Agri For 29(4):237–242

    Google Scholar 

  • Ondřej M, Dostálová R, Odstrčilová L (2005) Response of Pisum sativum germplasm resistant to Erysiphe pisi to inoculation with Erysiphe baeumleri, a new pathogen of peas. Plant Protect Sci 41:95–103

    Article  Google Scholar 

  • Oono R, Anderson CG, Denison RF (2011) Failure to fix nitrogen by non-reproductive symbiotic rhizobia triggers host sanctions that reduce fitness of their reproductive clonemates. Proc Biol Sci 278:2698–2703

    Google Scholar 

  • Osman HS (2015) Enhancing antioxidant–yield relationship of pea plant under drought at different growth stages by exogenously applied glycine betaine and proline. Ann Agri Sci 60(2):389–402

    Article  Google Scholar 

  • Osterlund MT, Hardtke CS, Wei N, Dong XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462

    Article  CAS  PubMed  Google Scholar 

  • Pan H, Wang D (2017) Nodule cysteine-rich peptides maintain a working balance during nitrogen-fixing symbiosis. Nat Plants 3(5):17048

    Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut R 22(6):4056–4075

    Article  CAS  Google Scholar 

  • Patanè C, Cavallaro V, Cosentino SL (2009) Germination and radicle growth in unprimed and primed seeds of sweet sorghum as affected by reduced water potential in NaCl at different temperatures. Ind Crop Prod 30(1):1–8

    Article  CAS  Google Scholar 

  • Pathak AR, Pithia MS, Javia RM, Mehta DR (2017) Challenges and options for meeting the needs of pulses-A review. Agri Rev 38:103–111

    Article  Google Scholar 

  • Pavan S, Schiavulli A, Appiano M, Marcotrigiano AR, Cillo F, Visser RGF, Yuling Bai Y, Lotti C, Luigi Ricciardi L (2011) Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. Theor Appl Genet 123:1425–1431

    Article  PubMed  Google Scholar 

  • Pavan S, Schiavulli A, Appiano M, Miacola C, Visser RGF, Bai YL, Lotti C, Ricciardi L (2013) Identification of a complete set of functional markers for the selection of er1 powdery mildew resistance in Pisum sativum L. Mol Breed 31:247–253

    Article  CAS  Google Scholar 

  • Pearce SR, Knox M, Ellis THN, Flavell AJ, Kumar A (2000) Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Mol Gen Genet 263:898–907

    Article  CAS  PubMed  Google Scholar 

  • Peoples MB, Bell MJ, Bushby HVA (1992) Effect of rotation and inoculation with Bradyrhizobium on nitrogen fixation and yield of peanut (Arachis hypogaea L., cv. Virginia Bunch). Aust J Agri Res 43(3):595–607

    Google Scholar 

  • Peoples MB, Ladha JK, Herridge DF (1995) Enhancing legume N2 fixation through plant and soil management. Plant Soil 174:83–101

    Article  Google Scholar 

  • Pereira G, Marques C, Ribeiro R, Formiga S, Dâmaso M, Sousa T, Farinhó M, Leitão JM (2010) Identification of DNA markers linked to an induced mutated gene conferring resistance to powdery mildew in pea (Pisum sativum L.). Euphytica 171:327–335

    Article  CAS  Google Scholar 

  • Pérez-de-Luque A, Jorrín J, Cubero JI, Rubiales D (2005) Orobanche crenata resistance and avoidance in pea (Pisum spp.) operate at different developmental stages of the parasite. Weed Res 45(5):379–387

    Google Scholar 

  • Perez-Perez JG, Robles JM, Tovar JC, Botia P (2009) Response to drought and salt stress of lemon ‘Fino 49’ under field conditions: water relations, osmotic adjustment and gas exchange. Sci Hort 122:83–90

    Article  Google Scholar 

  • Pesho GR, Muehlbauer FJ, Harberts WH (1977) Resistance of pea introductions to the pea weevil. J Econ Entomol 70(1):30–33

    Article  Google Scholar 

  • Peterson GA, Halvorson AD, Havlin JL, Jones OR, Lyon DJ, Tanaka DL (1998) Reduced tillage and increasing cropping intensity in the Great Plains conserves soil C. Soil Till Res 47:207–218

    Article  Google Scholar 

  • Petrović G, Jovičić D, Nikolić Z, Tamindžić G, Ignjatov M, Milošević D, Milošević B (2016) Comparative study of drought and salt stress effects on germination and seedling growth of pea. Genetika 48(1):373–38

    Article  Google Scholar 

  • Piha MI, Munns DN (1987) Sensitivity of the common bean (Phaseolus vulgaris L.) symbiosis to high soil temperature. Plant Soil 98:183–194

    Article  Google Scholar 

  • Pilet-Nayel ML, Muehlbauer FJ, McGee RJ, Kraft JM, Baranger A, Coyne CJ (2002) Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theor Appl Genet 106:28–39

    Article  CAS  PubMed  Google Scholar 

  • Pilet-Nayel ML, Muehlbauer FJ, McGee RJ, Kraft JM, Baranger A, Coyne CJ (2005) Consistent quantitative trait loci in pea for partial resistance to Aphanomyces euteiches isolates from the United States and France. Phytopathology 95:1287–1293

    Article  CAS  PubMed  Google Scholar 

  • Poland J (2018) Breeding-assisted genomics. Curr Opin Plant Biol 24:119–24

    Article  CAS  Google Scholar 

  • Porter LD, Hoheisel G, Coffman VA (2009) Resistance of peas to Sclerotinia sclerotiorum in the Pisum core collection. Plant Pathol 58(1):52–60

    Article  Google Scholar 

  • Porter L (2012) Selection of pea genotypes with partial resistance to Sclerotinia sclerotiorum across a wide range of temperatures and periods of high relative humidity. Euphytica 186(3):671–678

    Article  Google Scholar 

  • Praça-Fontes MM, Carvalho CR, Clarindo WR (2014) Karyotype revised of Pisum sativum using chromosomal DNA amount. Plant Syst Evol 300:1621–1626

    Article  Google Scholar 

  • Prioul S, Frankewitz A, Deniot G, Morin G, Baranger A (2004) Mapping of quantitative trait loci for partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.), at the seedling and adult plant stages. Theor Appl Genet 108:1322–1334

    Article  CAS  PubMed  Google Scholar 

  • Prioul-Gervais S, Deniot G, Receveur EM, Frankewitz A, Fourmann M, Rameau C, Pilet-Nayel ML, Baranger A (2007) Candidate genes for quantitative resistance to Mycosphaerella pinodes in pea (Pisum sativum L.). Theor Appl Genet 114:971–984

    Article  CAS  PubMed  Google Scholar 

  • Provvidenti R, Muehlbauer FJ (1990) Evidence of a cluster of linked genes for resistance to pea seedborne mosaic virus and clover yellow vein virus on chromosome 6. Pisum Newsl 22:43–45

    Google Scholar 

  • Provvidenti R, Hampton RO (1991) Chromosomal distribution of genes for resistance to seven potyviruses in Pisum sativum. Pisum Genet 23:26–28

    Google Scholar 

  • Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

    Article  CAS  PubMed  Google Scholar 

  • Rai R, Singh AK, Singh BD, Joshi AK, Chand R, Srivastava CP (2011) Molecular mapping for resistance to pea rust caused by Uromyces fabae (Pers.) de-Bary. Theor Appl Genet 123:803–813

    Article  PubMed  Google Scholar 

  • Rai R, Singh AK, Chand R, Srivastava CP, Joshi AK, Singh BD (2016) Genomic regions controlling components of resistance for pea rust caused by Uromyces fabae (Pers.) de-Bary. J Plant Biochem Biotechnol 25(2):133–141

    Google Scholar 

  • Rani S, Kumar P, Kumar A, Sewhag M (2016) Effect of biofertilizers on nodulation, nutrient uptake, yield and energy use efficiency of field pea (Pisum sativum L.). J Agrometeorol 18(2):330–332

    Google Scholar 

  • Redecker D, von Berswordt-Wallrabe P, Beck DP, Werner D (1997) Influence of inoculation with arbuscular mycorrhizal fungi on stable isotopes of nitrogen in Phaseolus vulgaris. Biol Fertil Soils 24:344–346

    Article  CAS  Google Scholar 

  • Reid J, Ross J (2011) Mendel’s genes: toward a full molecular characterization. Genetics 189(1):3–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribchenko ZI, Palladina TA (2012) The action of adaptogenic preparations on vacuolar proto n pumps activity in corn root cells under salt stress conditions. Ukr Biochem J 84(3):88–93

    CAS  Google Scholar 

  • Rice WA, Olsen PE (1988) Root-temperature effects on competition for nodule occupancy between two Rhizobium meliloti strains. Biol Fertil Soils 6:137–140

    Article  Google Scholar 

  • Rico D, Martín-Diana AB, Barat JM, Barry-Ryan C (2007) Extending and measuring the quality of fresh-cut fruit and vegetables: a review. Trends Food Sci Technol 18(7):0–386

    Google Scholar 

  • Rodda MS, Kant P, Lindbeck KD, Gnanasambandam A, Hollaway GJ (2015) A high-throughput glasshouse based screening method to evaluate bacterial blight resistance in field pea (Pisum sativum). Australas Plant Pathol 44(5):515–526

    Article  CAS  Google Scholar 

  • Roughley RJ (1970) The influence of root temperature, Rhizobium strain and host selection on the structure and nitrogen-fixing efficiency of the root nodules of Trifolium subterraneum. Ann Bot 34(3):631–646

    Article  Google Scholar 

  • Rozov SM, Kosterin Borisov AY, Tsyganov V (1999) The history of the pea gene map: last revolutions and the new symbiotic genes. Pisum Genet 31:55–56

    Google Scholar 

  • Rubiales D, Fondevilla S, Chen W, Gentzbittel L, Higgins TJV, Castillejo MA, Singh KB, Rispail N (2015) Achievements and challenges in legume breeding for pest and disease resistance. Crit Rev Plant Sci 34:195–236

    Article  CAS  Google Scholar 

  • Rubiales D, Moreno MT, Sillero JC (2005) Search for resistance to crenate broomrape (Orobanche crenata Forsk.) in pea germplasm. Genet Resour Crop Evol 52(7):853–861

    Google Scholar 

  • Rubiales D, Fernández‐Aparicio M, Pérez‐de‐Luque A, Castillejo MA, Prats E, Sillero JC, Rispaila N, Fondevilla S (2009) Breeding approaches for crenate broomrape (Orobanche crenata Forsk.) management in pea (Pisum sativum L.). Pest Manage Sci 65(5):553–559

    Google Scholar 

  • Ruisi P, Giambalvo D, Di Miceli G, Frenda AS, Saia S, Amato G (2012) Tillage effects on yield and nitrogen fixation of legumes in mediterranean conditions. Agron J 104:1459–1466

    Article  Google Scholar 

  • Saha U, Vann RA, Chris Reberg-Horton S, Castillo MS, Mirsky SB, McGee RJ, Sonon L (2018) Near-infrared spectroscopic models for analysis of winter pea (Pisum sativum L.) quality constituents. J Sci Food Agri 98(11):4253–4267

    Google Scholar 

  • Sahrawat KL, Abekoe MK, Diatta S (2001) Application of inorganic phosphorus fertilizer. Soil Science Society of America and American Society of Agronomy, Madison, WI53711, USA, Soil Science Society of America Special Publication no. 58

    Google Scholar 

  • Salon C, Munier-Jolain N (2010) Carbon and nitrogen fluxes within the plant. In: Munier-Jolain N, Biarnès V, Chaillet I, Lecoeur J, Jeuffroy MH (eds) Physiology of the Pea Crop. CRC Press, Boca Raton, FL, pp 88–95

    Chapter  Google Scholar 

  • Sanderman J, Farquharson R, Baldock J (2010) Soil carbon sequestration potential: a review for Australian agriculture. CSIRO

    Google Scholar 

  • Santalla Ferradás M, Amurrio JM, Ron Pedreira AMD (2001) Food and feed potential breeding value of green, dry and vegetable pea germplasm. Can J Plant Sci 81(4):601–610

    Google Scholar 

  • Sánchez FJ, Manzanares M, de Andres EF, Tenorio JL, Ayerbe L (1998) Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crop Res 59(3):225–235

    Article  Google Scholar 

  • Sanginga N, Wirkom LE, Okogun A, Akobundu IO, Carsky RJ, Tian G (1996) Nodulation and estimation of symbiotic nitrogen fixation by herbaceous and shrub legumes in Guinea savanna in Nigeria. Biol Fertil Soils 23:441–448

    Article  CAS  Google Scholar 

  • Santo T, Rashkova M, Alabaça C, Leitão J (2013) The ENU-induced powdery mildew resistant mutant pea (Pisum sativum L.) lines S (er1mut1) and F (er1mut2) harbour early stop codons in the PsMLO1 gene. Mol Breed 32(3):723–727

    Google Scholar 

  • Sardana S, Mahajan RK, Gautam NK, Ram B (2007) Genetic variability in pea (Pisum sativum L.) germplasm for utilization. SABRAO J Breed Genet 39:31–41

    Google Scholar 

  • Sarıkamış G, Yanmaz R, Ermiş S, Bakir M, Yüksel C (2010) Genetic characterization of pea (Pisum sativum) germplasm from Turkey using morphological and SSR markers. Genet Mol Res 9(1):591–600

    Article  CAS  PubMed  Google Scholar 

  • Sarikamis G, Yanmaz R, Ermis S, Bakir M, Yuksel C (2010) Genetic characterization of pea (Pisum sativum) germplasm from Turkey using morphological and SSR markers. Genet Mol Res 9:591–600

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Morita R, Nishimura M, Yamaguchi H, Kusaba M (2007) Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc Natl Acad Sci USA 104:14169–14174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheben A, Edwards D (2018) Towards a more predictable plant breeding pipeline with CRISPR/Cas-induced allelic series to optimize quantitative and qualitative traits. Curr Opin Plant Biol 45:218–225

    Article  CAS  PubMed  Google Scholar 

  • Schroeder HE, Gollasch S, Moore A, Tabe LM, Craig S, Hardie DC, Chrispeels MJ, Spencer D, Higgins TJ (1995) Bean α-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiol 107(4):1233–1239

    Google Scholar 

  • Sellstedt A, Stahl L. Mattsson U, Josson K, Hogborg P (1993) Can the 15N dilution technique be used to study N2 fixation in tropical tree symbioses as affected by water deficit? J Exp Bot 44:1749–1755

    Google Scholar 

  • Semagn K, rnstad B, Ndjiondjop M (2006) Principles, requirements and prospects of genetic mapping in plants. Afr J Biotechnol 5:2569–2587

    Google Scholar 

  • Seyyedi M, Timko MP, Sundqvist C (1999) Protochlorophyllide, NADPH-protochlorophyllide oxidoreductase, and chlorophyll formation in the lip1mutant of pea. Physiol Plant 106:344–354

    Google Scholar 

  • Shabab M, Arnold MF, Penterman J, Wommack AJ, Bocker HT, Price PA, Griffitts JS, Nolan EM, Walker GC (2016) Disulfide cross-linking influences symbiotic activities of nodule peptide NCR247. Proc Natl Acad Sci USA 113(36):10157–10162

    Google Scholar 

  • Shade RE, Schroeder HE, Pueyo JJ, Tabe LM, Murdock LL, Higgins TJ, Chrispeels MJ (1994) Transgenic pea seeds expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles. Nat Biotechnol 12(8):793–796

    Article  CAS  Google Scholar 

  • Shahid MA, Pervez MA, Balal RM, Abbas T, Ayyub CM, Mattson NS, Riaz A, Iqbal Z (2012) Screening of pea (Pisum sativum L.) genotypes for salt tolerance based on early growth stage attributes and leaf inorganic osmolytes. Aust J Crop Sci 6(9):1324

    Google Scholar 

  • Shafiq S, Mather DE, Ahmad M, Paull J (2012) Variation in tolerance to radiant frost at reproductive stages in field pea germplasm. Euphytica 186:831–845. https://doi.org/10.1007/s10681-012-0625-0

    Article  CAS  Google Scholar 

  • Shanmugasundaram (1991) Mungbean varietal improvement. Asian Vegetable Research and Development Center, Shanhua, Taiwan, pp 30–77

    Google Scholar 

  • Sharma V, Kumar S (2012) Roles of stipules include determination of flowering time and pod harvest index in garden pea grain Legume Pisum sativum. Natl Acad Sci Lett 35(5):449–456

    Article  Google Scholar 

  • Sharma A, Rathour R, Plaha P, Katoch V, Khalsa G, S, Patial V, Singh Y, Pathania NK (2010) Induction of Fusarium wilt (Fusarium oxysporum f. sp. pisi) resistance in garden pea using induced mutagenesis and in vitro selection techniques. Euphytica 173(3):345–356

    Google Scholar 

  • Shen S, Jing Y (2003) Research and prospect of biological nitrogen fixation in China. Chin Sci Bull 48(6):532–540

    Google Scholar 

  • Shereena J, Salim N (2006) Chilling tolerance in Pisum sativum L. seeds: an ecological adaptation. Asian J Plant Sci 5:1047–1050

    Article  Google Scholar 

  • Sherrod LA, Peterson GA, Westfall DG, Ahuja LR (2003) Cropping intensity enhances soil organic carbon and nitrogen in a no-till agroecosystem. Soil Sci Soc Amer J 67:1533–1543

    Article  CAS  Google Scholar 

  • Siddique KHM, Regan KL, Tennant D, Thomson BD (2001) Water use and water use efficiency of cool season grain legumes in low rainfall Mediterranean-type environments. Eur J Agron 15:267–280

    Article  Google Scholar 

  • Siddique KHM, Erskine W, Hobson K, Knights EJ, Leonforte A, Khan TN, Paull JG, Redden R, Materne M (2013) Cool-season grain legume improvement in Australia—Use of genetic resources. Crop Pasture Sci 64:347–360

    Article  CAS  Google Scholar 

  • Sindhu A, Ramsay L, Sanderson L-A, Stonehouse R, Li R, Condie J, Shunmugam ASK, Liu Y, Jha AB, Diapari M, Burstin J, Aubert G, Tar’an B, Bett KE, Warkentin TD, Sharpe AG (2014) Gene-based SNP discovery and genetic mapping in pea. Theor Appl Genet 127:2225–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AK, Rai R, Singh BD, Chand R, Srivastava CP (2015) Validation of SSR markers associated with rust (Uromyces fabae) resistance in pea (Pisum sativum L.). Physiol Mol Biol Plants 21(2):243–247

    Google Scholar 

  • Singh DK, Singh AK, Singh SK, Singh M, Srivastava O (2015) Effect of balanced nutrition on yield and nutrient uptake of pea (Pisum stivum L.) under Indo-gangetic plains of India. The Bioscan 10(3):1245–1249

    Google Scholar 

  • Skiba B, Ford R, Pang ECK (2004) Genetics of resistance to Mycosphaerella pinodes in Lathyrus sativus. Aust J Agri Res 55(9):953–960

    Article  CAS  Google Scholar 

  • Slattery JF, Pearce DJ, Slattery WJ (2004) Effects of resident Rhizobial communities and soil type on the effective nodulation of pulse legumes. Soil Biol Biochem 36(8):1339–1346

    Article  CAS  Google Scholar 

  • Smirnova O, Stepanenko I, Shumny V (2012) Mechanism of action and activity regulation of COP1, a constitutive repressor of photomorphogenesis. Russ J Plant Physiol 59:155–166

    Article  CAS  Google Scholar 

  • Smith RI, Harvey FJ, Cannell MGR (1990) Pattern of tea shoot growth. Exp Agr 26(2):197–208

    Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O (2007) Agriculture. In: Metz B et al. (eds) Climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 498–540

    Google Scholar 

  • Smith PH, Foster EM, Boyd LA, Brown JKM (1996) The early development of Erysiphe pisi on Pisum sativum L. Plant Pathol 45:302–309

    Article  Google Scholar 

  • Smýkal P, Aubert G, Burstin J, Coyne CJ, Ellis NTH, Flavell AJ, Ford R, Hýbl M, Macas J, Neumann P, McPhee KE, Redden RJ, Rubiales D, Weller JL, Warkentin TD (2012) Pea (Pisum sativum L.) in the genomic era. Agronomy 2:74–115

    Article  Google Scholar 

  • Smýkal P, Kenicer G, Flavell A, J, Corander J, Kosterin O, Redden RJ, Ford R, Coyne CJ, Maxted N, Ambrose MJ, Ellis NTH (2011) Phylogeny phylogeography and genetic diversity of the Pisum genus. Plant Genet Resour 9(1):4–18

    Google Scholar 

  • Smýkal P, Coyne CJ, Ambrose MJ, Maxted N, Schaefer H, Blair MW, Berger J, Greene SL, Nelson MN, Besharat N, Vymyslický T, Toker C, Saxena RK, Roorkiwal M, Pandey MK, Hu J, Li YH, Wang LX, Guo Y, Qiu LJ, Redden RJ, Varshney RK (2015) Legume crops phylogeny and genetic diversity for science and breeding. Crit Rev Plant Sci 34:43–104

    Article  Google Scholar 

  • Smýkal P, Horáèek J, Dostálová R, Hýbl M (2008a) Variety discrimination in pea (Pisum sativum L.) by molecular, biochemical and morphological markers. J Appl Genet 49(2):155–166

    Google Scholar 

  • Smýkal P, Hybl M, Corander J, Jarkovsky J, Flavell AJ, Griga M (2008b) Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theor Appl Genet 117:413–424

    Google Scholar 

  • Smýkal P, Konečná E (2014) Advances in pea genomics. In: Gupta S, Nadarajan N, Gupta DS (eds) Legumes in the Omic Era. Springer, New York, NY, pp 301–338

    Chapter  Google Scholar 

  • Smýkal P, Šafářová D, Navrátil M, Dostalová R (2010) Marker assisted pea breeding: eIF4E allele specific markers to pea seed-borne mosaic virus (PSbMV) resistance. Mol Breed 26(3):425–438

    Article  Google Scholar 

  • Sogut T, Oztturk F, Temiz G, Toncer O, Zaimoglu B (2013) The effects of rhizobial inoculation and nitrogen fertilizer application on nodulation, yield and yield components of groundnut (Arachis hypogaea L.). Glob J Adv Pure Appl Sci 1:156–165

    Google Scholar 

  • Srinivasan A, Johansen C, Saxena NP (1998) Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.): characterisation of stress and genetic variation in pod set. Field Crops Res 57:181–193

    Article  Google Scholar 

  • Souci SW, Fachman W, Kraut M (2001) Food composition and nutrition tables. MEDPHARM Scientific Publishers, Stuttgart, Germany, p 1091

    Google Scholar 

  • Starker CG, Parra-Colmenares AL, Smith L, Mitra RM, Long SR (2006) Nitrogen fixation mutants of Medicago truncatula fail to support plant and bacterial symbiotic gene expression. Plant Physiol 140(2):671–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steppuhn H, Volkmar KM, Miller PR (2001) Comparing canola, field pea, dry bean, and durum wheat crops grown in saline media. Crop Sci 41(6):1827–1833

    Article  Google Scholar 

  • Stoddard FL, Balko C, Erskine W, Khan HR, Link W, Sarker A (2006) Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147:167–186

    Article  Google Scholar 

  • Stokkermans TJ, Peters NK (1994) Bradyrhizobium elkanii lipo-oligosaccharide signals induce complete nodule structures on Glycine soja Siebold et Zucc. Planta 193(3):413–433

    Article  CAS  PubMed  Google Scholar 

  • Stoop-Myer C, Torii KU, McNellis TW, Coleman JE, Deng XW (1999) The N-terminal fragment of Arabidopsis photomorphogenic repressor COP1 maintains partial function and acts in a concentration-dependent manner. Plant J 20:713–717

    Article  CAS  PubMed  Google Scholar 

  • Sudheesh S, Lombardi M, Leonforte A, Cogan NOI, Materne M, Forster JW, Kaur S (2015a) Consensus genetic map construction for field pea (Pisum sativum L.), trait dissection of biotic and abiotic stress tolerance and development of a diagnostic marker for the er1 Powdery mildew resistance gene. Plant Mol Biol Rep 33:1391–1403

    Article  CAS  Google Scholar 

  • Sudheesh S, Rodda M, Kennedy P, Verma P, Leonforte A, Cogan NOI, Materne M, Forster JW, Kaur S (2015b) Construction of an integrated linkage map and trait dissection for bacterial blight resistance in field pea (Pisum sativum L.). Mol Breed 35:185

    Google Scholar 

  • Sullivan JA, Gray JC (2000) The pea light-independent photomorphogenesis1 mutant results from partial duplication of COP1 generating an internal promoter and producing two distinct transcripts. Plant Cell 12:1927–1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun HY, Liu CM, Zhang XY, Shen YJ, Zhang YQ (2006) Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agri Water Manag 85:211–218

    Article  Google Scholar 

  • Sun X, Yang T, Hao J, Zhang X, Ford R, Jiang J, Wang F, Guan J, Zong X (2014) SSR genetic linkage map construction of pea (Pisum sativum L.) based on Chinese native varieties. Crop J 2:170–174

    Article  Google Scholar 

  • Sun S, Deng D, Wang Z, Duan C, Wu X, Wang X, Zong X, Zhu Z (2016a) A novel er1 allele and the development and validation of its functional marker for breeding pea (Pisum sativum L.) resistance to powdery mildew. Theor Appl Genet 129(5):909–919

    Google Scholar 

  • Sun S, Fu H, Wang Z, Duan C, Zong X, Zhu Z (2016b) Discovery of a novel er1 allele conferring powdery mildew resistance in Chinese pea (Pisum sativum L.) landraces. PLoS ONE 11(1):e0147624

    Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Tar’an B, Warkentin T, Somers DJ, Miranda D, Vandenberg A, Blade S, Bing D (2004) Identification of quantitative trait loci for grain yield, seed protein concentration and maturity in field pea (Pisum sativum L.). Euphytica 136:297–306

    Article  Google Scholar 

  • Tar’an B, Warkentin T, Somers DJ, Miranda D, Vandenberg A, Blade S, Woods S, Bing D, Xue A, DeKoeyer D, Penner G (2003) Quantitative trait loci for lodging resistance plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.). Theor Appl Genet 107(8):1482–1491

    Google Scholar 

  • Taylor JD, Bevan JR, Crute IR, Reader SL (1989) Genetic relationship between races of Pseudomonas syringae pv. pisi and cultivars of Pisum sativum. Plant Pathol 38:364–375

    Article  Google Scholar 

  • Tayeh N, Bahrman N, Devaux R, Bluteau A, Prosperi JM, Delbreil B, Lejeune-Hénaut I (2013) A high-density genetic map of the Medicago truncatula major freezing tolerance QTL on chromosome 6 reveals colinearity with a QTL related to freezing damage on Pisum sativum linkage group VI. Mol Breed 32:279–289

    Article  CAS  Google Scholar 

  • Tayeh N, Aubert G, Pilet-Nayel ML, Lejeune-Hénaut I, Warkentin TD, Burstin J (2015a) Genomic tools in pea breeding programs: status and perspectives. Front Plant Sci 6:1037

    PubMed  PubMed Central  Google Scholar 

  • Tayeh N, Aluome C, Falque M, Jacquin F, Klein A, Chauveau A, Berard A, Houtin H, Rond C, Kreplak J, Boucherot K, Martin C, Baranger A, Pilet-Nayel M-L, Warkentin TD, Brunel D, Marget P, Le Paslier M-C, Aubert G, Burstin J (2015b) Development of two major resources for pea genomics: the GenoPea 13.2 K SNP array and a high-density, high-resolution consensus genetic map. Plant J 84:1257–1273

    Article  CAS  PubMed  Google Scholar 

  • Tayeh N, Klein A, Le Paslier M-C, Jacquin F, Houtin H, Rond C, Chabert-Martinello M, Magnin-Robert J-B, Marget P, Aubert G, Burstin J (2015c) Genomic prediction in pea: effect of marker density and training population size and composition on prediction accuracy. Front Plant Sci 6:941–941

    PubMed  PubMed Central  Google Scholar 

  • Teshome A, Bryngelsson T, Dagne K, Geleta M (2015a) Assessment of genetic diversity in Ethiopian field pea (Pisum sativum L.) accessions with newly developed EST-SSR markers. BMC Genetics 16:102

    Google Scholar 

  • Teshome A, Mendesil E, Geleta M, Andargie D, Anderson P, Rämert B, Seyoum E, Hillbur Y, Dagne K, Bryngelsson T (2015b) Screening the primary gene pool of field pea (Pisum sativum L. subsp. sativum) in Ethiopia for resistance against pea weevil (Bruchus pisorum L). Genet Resour Crop Evol 62(4):525–538

    Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Thomas DW, Smýkal P, Coyne CJ, Weeden N, Domoney C, Bing DJ, Leonforte A, Zong XX, Dixit GP, Boros L, McPhee KE, McGee RJ, Burstin J, Ellis THN (2015) Chapter 2. Pea. In: De Ron AM (ed) Grain legumes: handbook for plant breeding. Springer, New York, Heidelberg, Dordrecht, London, pp 37–84

    Google Scholar 

  • Tivoli B, Banniza S (2007) Comparison of the epidemiology of ascochyta blights on grain legumes. Eur J Plant Pathol 119:59–76

    Article  Google Scholar 

  • Tivoli B, Baranger A, Avila CM, Banniza S, Barbetti M, Chen W, Davidson J, Lindeck K, Kharrat M, Rubiales D, Sadiki M, Sillero JC, Sweetingham M, Muehlbauer FJ (2006) Screening techniques and sources of resistance to foliar diseases caused by major neurotrophic fungi in grain legumes. Euphytica 147(1–2):223–253

    Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108:20260–20264

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmerman-Vaughan GM, Frew TJ, Russell AC, Khan T, Butler R, Gilpin M, Murray S, Falloon K (2002) QTL mapping of partial resistance to field epidemics of ascochyta blight of pea. Crop Sci 42:2100–2111

    Article  CAS  Google Scholar 

  • Timmerman-Vaughan GM, Mills A, Whitfield C, Frew T, Butler R, Murray S, Lakeman M, McCallum J, Russell A, Wilson D (2005) Linkage mapping of QTL for seed yield, yield components, and developmental traits in pea. Crop Sci 45:1336–1344

    Article  CAS  Google Scholar 

  • Timmerman-Vaughan GM, Moya L, Frew TJ, Murray SR, Crowhurst R (2016) Ascochyta blight disease of pea (Pisum sativum L.): defence-related candidate genes associated with QTL regions and identification of epistatic QTL. Theor Appl Genet 129:879–896

    Article  CAS  PubMed  Google Scholar 

  • TimmermanVaughan GM, McCallum JA, Frew TJ, Weeden NF, Russell AC (1996) Linkage mapping of quantitative trait loci controlling seed weight in pea (Pisum sativum L). Theor Appl Genet 93:431–439

    Article  CAS  Google Scholar 

  • Timmerman-Vaughan GM, Pither-Joyce MD, Cooper PA, Russell AC, Goulden DS, Butler R, Grant JE (2001) Partial resistance of transgenic peas to alfalfa mosaic virus under greenhouse and field conditions. Crop Sci 41(3):846–853

    Article  CAS  Google Scholar 

  • Timmerman-Vaughan GM, Frew TJ, Butler R, Murray S, Gilpin M, Falloon K, Johnston P, Lakeman MB, Russell A, Khan T (2004) Validation of quantitative trait loci for Ascochyta blight resistance in pea (Pisum sativum L.) using populations from two crosses. Theor Appl Genet 109(8):1620–1631

    Google Scholar 

  • Tiwari KR, Penner GA, Warkentin TD (1997) Inheritance of powdery mildew resistance in pea. Can J Plant Sci 77:307–310

    Article  Google Scholar 

  • Toker C (2005) Preliminary screening and selection for cold tolerance in annual wild Cicer species. Genet Resour Crop Evol 52:1–5

    Article  Google Scholar 

  • Tran HS, You MP, Lanoiselet V, Khan TN, Barbetti MJ (2014a) First report of Phoma glomerata associated with the ascochyta blight complex on field pea (Pisum sativum) in Australia. Plant Dis 98(3):437

    Article  Google Scholar 

  • Tran HS, You MP, Khan TN, Pritchard I, Barbetti MJ (2014b) Resistance in field pea (Pisum sativum) to the black spot disease complex in Western Australia. Eur J Plant Pathol 140(3):597–605

    Article  CAS  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu JC (1981) Effect of salinity on Rhizobium-root hair interaction, nodulation and growth of soybean. Can J Plant Sci 61(2):231–239

    Article  Google Scholar 

  • Upadhyaya HD, Gowda CLL, Buhariwalla HK, Crouch JH (2006) Efficient use of crop germplasm resources: identifying useful germplasm for crop improvement through core and mini-core collections and molecular marker approaches. Plant Genet Resour Characteriz Utiliz 4:25–35

    Article  CAS  Google Scholar 

  • Upadhyay V, Kushwaha KPS, Pandey P (2017) Molecular screening of pea germplasm for rust disease resistance using SSR Marker. J Pure Appl Microbiol 11(1):343–348

    Article  Google Scholar 

  • Urbatzka P, Graß R, Haase T, Schüler C, Trautz D, Heß J (2011) Grain yield and quality characteristics of different genotypes of winter pea in comparison to spring pea for organic farming in pure and mixed stands. Org Agri 1(2011):187–202

    Article  Google Scholar 

  • Urbatzka P, Graß R, Haase T, Schüler C, Heß J (2012) Influence of different sowing dates of winter pea genotypes on winter hardiness and productivity as either winter catch crop or seed legume. Eur J Agron 40:112–119

    Article  Google Scholar 

  • Ussiri DAN, Lal R, Jarecki MK (2009) Nitrous oxide and methane emissions from long-term tillage under a continuous corn cropping system in ohio. Soil Till Res 104(2):247–255

    Article  Google Scholar 

  • Vanhala T, Normann KR, Lundström M, Weller JL, Leino MW, Hagenblad J (2016) Flowering time adaption in Swedish landrace pea (Pisum sativum L.). BMC Genetics 17:117

    Google Scholar 

  • Vann RA, Reberg-Horton SC, Castillo MS, Mirsky SB, McGee RJ (2018) Winter pea cultivar/breeding line screening for grain crop potential in the Southeastern United States. Agron J 110:1217–1225

    Article  CAS  Google Scholar 

  • Vargas MAT, Mendes IC, Hungria M (2000) Response of field-grown bean (Phaseolus vulgaris L) to Rhizobium inoculation and nitrogen fertilization in two Cerrados soils. Biol Fertil Soils 32(3):228–233

    Article  Google Scholar 

  • Varshney RK, Roorkiwal M, Sorrells ME (eds) Genomic selection for crop improvement: new molecular breeding strategies for crop improvement. Springer International, Cham, Swirzerland, pp 131–147

    Google Scholar 

  • Vaz Patto MC, Rubiales D (2009) Identification and characterization of partial resistance to rust in a germplasm collection of Lathyrus sativus L. Plant Breed 128(5):495–500

    Article  Google Scholar 

  • Via S (1993) Adaptive phenotypic plasticity: target or by-product of selection in a variable environment? Am Nat 142(2):352–365

    Google Scholar 

  • Via S, Conner J (1995) Evolution in heterogeneous environments: genetic variability within and across different grains in Tribolium castaneum. Heredity 74(1):80–90

    Google Scholar 

  • Vijayalakshmi S, Yadav K, Kushwaha C, Sarode SB, Srivastava CP, Chand R, Singh BD (2005) Identification of RAPD markers linked to the rust (Uromyces fabae) resistance gene in pea (Pisum sativum). Euphytica 144:265–274

    Article  CAS  Google Scholar 

  • Vincent JM (1982) Nitrogen fixation in legumes. Academic Press, New York, pp 1–284

    Google Scholar 

  • Visscher PM, Haley CS, Thompson R (1996) Marker-assisted introgression in backcross breeding programs. Genetics 144:1923–1932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vito MD, Perrino P (1978) Reaction of Pisum spp. to the attacks of Heterodera goettingiana. Nematol Mediterr 6(1):113–118

    Google Scholar 

  • Vocanson A, Jeuffroy MH (2008) Agronomic performance of different pea cultivars under various sowing periods and contrasting soil structures. Agron J 100(3):748–759

    Article  Google Scholar 

  • Voican V, Scurtu I, Voican AV, Racaru V (1995) Features of seed germination and growth of young pea plants in conditions of moisture and thermal stress. II. Effect of frost on the plants. An Inst Cercetari pentru Legumicult Floricult Vidra 13:387–396 (English summary)

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh KB (1995) Physiology of the legume nodule and its response to stress. Soil Biol Biochem 27(4):637–655

    Article  CAS  Google Scholar 

  • Wang J, Sainju UM (2014) Soil carbon and nitrogen fractions and crop yields affected by residue placement and crop types. PLoS ONE 9(8):e105039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhu Z, Duan C, Zong X (2007) Identification and control technology of disease and pest on faba bean and pea. China Agricultural Science and Technology Press, Beijing, pp 54–101

    Google Scholar 

  • Weeden NF, Marx GA (1987) Further genetic analysis and linkage relationships of isozyme loci in the pea: Confirmation of the diploid nature of the genome. J Hered 78:153–159

    Article  Google Scholar 

  • Weeden NF, Porter L (2008) The genetic basis of Fusarium root rot tolerance in the ‘Afghanistan’ pea. Pisum Genet 39:35–36

    Google Scholar 

  • Weeden NF (2018) Domestication of pea (Pisum sativum L.): the case of the Abyssinicum pea, Front Plant Sci 9:515

    Google Scholar 

  • Weeden NF, Ellis THN, Timmerman-Vaughan GM, Swiêcicki WK, Rozov SM, Berdnikov VA (1998) A consensus linkage map for Pisum staivum. Pisum Genet 30:1–4

    Google Scholar 

  • Weeden NF, Moffet M (2002) Identification of genes affecting root mass and root/shoot ratio in a JI1794 x “Slow” RILL population. Pisum Genet 34:28–31

    Google Scholar 

  • Weeden NF, Swiêcicki WK, Ambrose M, Timmerman GM (1993) Linkage groups of pea. Pisum Genet 25:4

    Google Scholar 

  • Weightman RM (2005) The rise and fall of grain legumes and their predicted yields in UK agriculture. In: Wiseman J, Sylvester-Bradley R (eds) Yields of farmed species: constraints and opportunities in the 21st century. Nottingham University Press, Nottingham, Chap 12, pp 261–288

    Google Scholar 

  • Weisany W, Raei Y, Allahverdipoor KH (2013) Role of some mineral nutrients in biological nitrogen fixation. Bull Environ Pharmacol Life Sci 2(4):77–84

    CAS  Google Scholar 

  • Weiser CJ, Walner SJ, Waddell JW (1990) Cell wall and extensin mRNA changes during cold acclimation of pea seedlings. Plant Physiol 93:1021–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welbaum GE, Bian D, Hill DR, Grayson RL, Gunatilaka MK (1997) Freezing tolerance, protein composition and abscisic acid localization and content of pea epicotyl, shoot, and root tissue in response to temperature and water stress. J Exp Bot 48:643–654

    Article  CAS  Google Scholar 

  • Weller JL, Hecht V, Liew LC, Sussmilch FC, Wenden B, Knowles CL, Vander Schoor JK (2009) Update on the genetic control of flowering in garden pea. J Exp Bot 60:2493–24999

    Article  CAS  PubMed  Google Scholar 

  • Weller JL, Liew LC, Hecht VF, Rajandran V, Laurie RE, Ridge S, Wenden B, Vander Schoor JK, Jaminon O, Blassiau C et al (2012) A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proc Natl Acad Sci USA 109:21158–21163

    Article  PubMed  PubMed Central  Google Scholar 

  • Wicker E, Moussart A, Duparque M, Rouxel F (2003) Further contributions to the development of a differential set of pea cultivars (Pisum sativum) to investigate the virulence of isolates of Aphanomyces euteiches. Eur J Plant Pathol 109(1):47–60

    Article  CAS  Google Scholar 

  • Witte CP (2011) Urea metabolism in plants. Plant Sci 180:431–438

    Article  CAS  PubMed  Google Scholar 

  • Worrall VS, Roughley RJ (1976) The effect of moisture stress on infection of Trifolium subterraneum L. by Rhizobium trifolii Dang. J Exp Bot 27(6):1233–1241

    Google Scholar 

  • Wu L, Chang KF, Conner RL, Strelkov S, Fredua-Agyeman R, Hwang SF, Feindel D (2018a) Aphanomyces euteiches: a threat to Canadian field pea production. Engineering 4:542–551

    Article  CAS  Google Scholar 

  • Wu L, Chang KF, Hwang SF, Conner R, Fredua-Agyeman R, Feindel D, Strelkov SE (2018) Evaluation of host resistance and fungicide application as tools for the management of root rot of field pea caused by Aphanomyces euteiches. Crop J. https://doi.org/10.1016/j.cj.2018.07.005

  • Wu XB, Li NN, Hao JJ, Hu JG, Zhang XY, Blair MW (2017) Genetic diversity of Chinese and global pea (Pisum sativum L.) collections. Crop Sci 57:1–11

    Article  CAS  Google Scholar 

  • Xiao GJ, Zhang Q, Yao, YB Yang, SM, Wang, RY, Xiong, YC, Sun ZJ (2007) Effects of temperature increase on water use and crop yields in a pea-spring wheat-potato rotation. Agri Water Manage 91:86–91

    Google Scholar 

  • Xu YB, Li ZK, Thomson MJ (2012) Molecular breeding in plants: moving into the mainstream. Mol Breed 29(4):831–832

    Article  Google Scholar 

  • Yandell M, Ence D (2012) A beginner’s guide to eukaryotic genome annotation. Nat Rev Genet 13:329

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Yang J, Yin K (2009) Study on effects of barley Vicia faba intercropping on control the Liriomyza sativae. China Seed Ind S1:66–67

    Google Scholar 

  • Yang T, Fang L, Zhang X, Hu J, Bao S, Hao J, Li L, He Y, Jiang J, Wang F, Tian S, Zong X (2015) High-throughput development of SSR markers from pea (Pisum sativum L.) based on next generation sequencing of a purified Chinese commercial variety. PLoS ONE 10:e0139775

    Google Scholar 

  • Yan H, Cao M, Liu J, Tao B (2007) Potential and sustainability for carbon sequestration with improved soil management in agricultural soils of china. Agri Ecosyst Environ 121(4):325–335

    Article  CAS  Google Scholar 

  • Yeboah S, Zhang R, Cai L, Song M, Li LL, Xie J (2016) Greenhouse gas emissions in a spring wheat–field pea sequence under different tillage practices in semi-arid northwest china. Nutr Cycl Agroecosyst 106(1):77–91

    Article  CAS  Google Scholar 

  • Zabran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe condition and in arid climate. Microbiol Mol Biol Rev 63:968–989

    Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in arid climate. Microbiol Mol Biol Rev 63(4):968–989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18(5):958–963

    CAS  PubMed  Google Scholar 

  • Zdeněk P, Miroslav G (2000) Utilization of isozyme polymorphism for cultivar identification of 45 commercial peas (Pisum sativum L.). Euphytica 113(3):249–256

    Google Scholar 

  • Zentner RP, Wall DD, Smith DG, Young DL, Miller PR, Campbel CA, Lafond GP, Brandt SA, Johnston AM (2002) Economics of crop diversification opportunities for the northern Great Plains. Agron J 94:216–230

    Article  Google Scholar 

  • Zhang R, Hwang SF, Gossen BD, Chang KF, Turnbull GD (2007) A quantitative analysis of resistance to Mycosphaerella blight in field pea. Crop Sci 47(1):162–167

    Article  Google Scholar 

  • Zhang XY, Wan SW, Hao JJ, Hu JG, Yang T, Zong XX (2016) Large-scale evaluation of pea (Pisum sativum L.) germplasm for cold tolerance in the field during winter in Qingdao. Crop J 4:377–383

    Article  Google Scholar 

  • Zhang X, Ma L, Zheng J (2017) Characteristics of genes selected by domestication and intensive breeding in crop plants. Acta Agron Sin 43:157–170

    Article  Google Scholar 

  • Zheng ZJ, Zong XX, Liu FY (1998) Questions and answers on the cultivation techniques of legume (in Chinese). China Agricultural Press, Beijing, pp 34–67

    Google Scholar 

  • Zhu CS, Gore M, Buckler ES, Yu JM (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

  • Zohary D, Hopf M (1973) Domestication of pulses in the Old World. Science 182:887–894

    Article  CAS  PubMed  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world, 3rd edn. Oxford University Press, Oxfod, UK

    Google Scholar 

  • Zong XX (ed) (2002) High-yielding cultivation and food processing of food legumes, 1st edn. China Agricultural Science and Technology Press, Beijing, China, pp 56–144

    Google Scholar 

  • Zong XX, Guan JP, Wang SM, Liu QC, Redden RJ, Ford R (2008a) Genetic diversity and core collection of alien Pisum sativum L. germplasm. Acta Agron Sin 34(9):1518–1528

    Google Scholar 

  • Zong XX, Guan JP, Wang SM, and Liu QC (2008b) Genetic diversity among Chinese Pea (Pisum sativum L.) landraces revealed by SSR markers. Acta Agron Sin 34(8):1330–1338

    Google Scholar 

  • Zong XX, Ford R, Redden RJ, Jian-ping G, Wang SM (2009a) Identification and analysis of genetic diversity structure within Pisum genus based on microsatellite markers. Sci Agri Sin 42(1):36–46

    CAS  Google Scholar 

  • Zong XX, Redden RJ, Liu QC, Wang SM, Guan JP, Liu J, Xu YH, Liu XJ, Gu J, Yan L, Ades P, Ford R (2009b) Analysis of a diverse global Pisum sp collection and comparison to a Chinese local P. sativum collection with microsatellite markers. Theor Appl Genet 118(2):193–204

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuxiao Zong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zong, X. et al. (2019). Genomic Designing for Climate-Smart Pea. In: Kole, C. (eds) Genomic Designing of Climate-Smart Pulse Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-96932-9_6

Download citation

Publish with us

Policies and ethics