Skip to main content

Wechselwirkungen im Reifen-Boden-System

  • Chapter
  • First Online:
Terramechanik und Geländefahrzeuge

Part of the book series: ATZ/MTZ-Fachbuch ((ATZMTZ))

  • 251 Accesses

Zusammenfassung

Die Wechselwirkungen zwischen dem Fahrelement und der Fahrbahn hängen im Allgemeinen sowohl von der Konstruktion und den Parametern dieses Elements als auch von der Art der Fahrbahn und ihrem momentanen Zustand ab. Bei einer starren Fahrbahn (Beton, Asphalt, Bitumen) wirkt die Reifenlauffläche reibschlüssig mit der Straßenoberfläche zusammen, wobei die Laufflächenblöcke periodisch hyperelastischen Auslenkungen ausgesetzt sind. Daraus resultiert ein spezifisches Verhalten des Reifens, seine Leistung sowie das Fahrverhalten des gesamten Fahrzeugs mit einer definierten Auslegung eines Systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Abd El-Gawwad, K. A., Crolla, D. A., Soliman, A. M. A., & El-Sayed, F. M. (1999). Off-road tyre modeling. Parts I – IV. Journal of Terramechanics, 36(1), 2.

    Google Scholar 

  2. Watyotha, C., & Salokhe, V. M. (2001). Pull, lift and side force characteristic of cage wheels with opposing circumferential lugs. Soil and Tillage Research, 60, 123–134.

    Article  Google Scholar 

  3. Labanda, J., & Llorens, A. (2006). Structural model for thixxotropy of colloidal dispersions. Rheological Acta, 45, 305–314.

    Article  Google Scholar 

  4. Pukos, A. (1985). The size of elementary deformation of soil medium. Zeszyty Problemowe Postępów Nauk Rolniczych, 304, 57–63. (auf Englisch).

    Google Scholar 

  5. Söhne, W. (1952). Die Kraftübertragung zwischen Schlepperreifen und Ackerboden. Grundlagen der Landtechnik, Heft, 3/1952, 75–87.

    Google Scholar 

  6. Steiner, M. (1978). Messungen für Triebkraft – Schlupf – Kurven verschiedener Ackerschlepperreifen in der Bodenrinne. Grundlagen der Landtechnik. VDI, 28(5), 169–208.

    Google Scholar 

  7. Tiwari, V. K., Pandey, K. P., & Pranav, P. K. (2010). A review on traction prediction equations. Journal of Terramechanics, 47(3), 191–199.

    Article  Google Scholar 

  8. Wismer, R. D., & Luth, H. J. (1973). Off-road traction prediction for wheeled vehicles. Journal of Terramechanics, 10, 49–61.

    Article  Google Scholar 

  9. Turnage, G. W. (1972). Tire selection and performance prediction for off-road wheeled vehicle operations. Proceedings of the ISTVS conference (Bd. 1, S. 61).

    Google Scholar 

  10. Rummer, R., & Ashmore, C. (1986). Factors affecting the rolling resistance of rubber – Tired skidders (ASAE Paper No. 86-1611, St. Joseph (MI) 49085).

    Google Scholar 

  11. Vechinski, C. R., Johnson, C. E., & Raper, R. L. (1998). Evaluation of an empirical traction prediction for forestry tires. Journal of Terramechanics, 35, 55–67.

    Article  Google Scholar 

  12. Brixius, W. W. (1987). Traction prediction equations for bias ply tires (ASAE Paper No. 87 – 1622, St. Joseph (MI) 49085-9659).

    Google Scholar 

  13. Wong, J. Y. (2010). Terramechanics and off-road vehicle engineering. Elsevier.

    Google Scholar 

  14. Bekker, M. G. (1966). Theory of land locomotion. Ann Arbor Michigan Press.

    Google Scholar 

  15. Janosi, Z., & Hanamoto, B. (1961). Analytical determination of draw bar pull as a function of slip for tracked vehicles in deformable soils. Proceedings of the 1st international ISTVS conference, Turin.

    Google Scholar 

  16. Wong, J. Y., & Asnani, V. M. (2008). Study of the correlation between the performances of lunar vehicle wheels predicted by the Nepean wheeled vehicle performance model and test data. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 222(11), 1939–1954.

    Google Scholar 

  17. Chan, B. J., & Sandu, C. (2014). Development of a 3-D Quasi-static tire model for on-road and off-road vehicle dynamics simulations: Part I–on-road flexible tire model. International Journal of Vehicle Systems Modelling and Testing, 9(1), 77–105.

    Article  Google Scholar 

  18. Schmid, I. C. (1995). Interaction of vehicle and terrain results from 10 years research at IKK. Journal of Terramechanics, 32(1), 3–26.

    Article  Google Scholar 

  19. Krenn, R., & Gibbesch, A. (2011). Soft soil contact modeling technique for multi-body system simulation. Trends in Computational Contact Mechanics, 58, 135–155.

    Article  Google Scholar 

  20. Aubel, T. (1994). Simulationsverfahren zur Untersuchung der Wechselwirkung zwischen Reifen und nachgiebiger Fahrbahn auf der Basis der Finite Elemente Methode. Doctoral Thesis at the Institute of Automotive Engineering of the University of Federal Armed Forces, Hamburg.

    Google Scholar 

  21. Fervers, W. (2004). Improved FEM simulation model for tire-soil interaction. Journal of Terramechanics, 41(2–3), 87–100.

    Article  Google Scholar 

  22. Hiroma, T., Wanjii, S., Kataoka, T., & Ota, Y. (1997). Stress analysis using FEM on stress distribution under a wheel considering friction and adhesion between a wheel and soil. Journal of Terramechnics, 34(4), 225–233.

    Article  Google Scholar 

  23. Lee, J. H. (2011). Finite element modeling of interfacial forces and contact stresses of pneumatic tire on fresh snow for combined longitudinal and lateral slips. Journal of Terramechanics, 48, 171–197.

    Article  Google Scholar 

  24. Shoop, S. A. (2001). Finite element modeling of tire terrain interaction (ERDC/CRREL Technical Report TR – 01–16).

    Google Scholar 

  25. Yong, R. N., & Fattah, E. A. (1976). Prediction of wheel-soil interaction and performance using the finite element method. Journal of Terramechanics, 13(4), 227–240.

    Article  Google Scholar 

  26. Yong, R. N., Fattah, E. A., & Boonsinsuk, R. N. (1978). Analysis and prediction of tyre-soil interaction and performance using finite elements. Journal of Terramechanics, 15(1), 43–63.

    Article  Google Scholar 

  27. Wanjii, S., Hiroma, T., Ota, Y., & Kataoka, T. (1997). Prediction of wheel performance by analysis of normal and tangential stress distribution under the wheel-soil interface. Journal of Terramechanics, 34(3), 165–186.

    Article  Google Scholar 

  28. Nakashima, H., & Oida, A. (2004). Algorithm and implementation of soil–tire contact analysis code based on dynamic FE–DE method. Journal of Terramechanics, 41(2–3), 127–137.

    Article  Google Scholar 

  29. Smith, W., & Peng, H. (2013). Modeling of wheel-soil interaction over rough terrain using the discrete element method. Journal of Terramechanics, 50(5–6), 277–287.

    Article  Google Scholar 

  30. Zhou, L., Gao, J., Li, Q., & Hu, C. (2020). Simulation study on tractive performance of off-road wheel based on discrete element method. Mathematical Biosciences and Engineering, 17(4), 3869–3893.

    Article  Google Scholar 

  31. Kongo, K. A., Rosu, I., Lebonb, F., Brardoa, O., & Devésa, B. (2013). On the modeling of aircraft tire. Aerospace Science and Technology, 27, 67–75.

    Article  Google Scholar 

  32. Diserens, E. (2002). Ermittlung der Reifen-Kontaktfläche im Feld mittels Rechenmodell. Bericht der Eidgenössischen Forschungsanstalt für Agrarwissenschaft und Landtechnik (FAT), Nr. 613

    Google Scholar 

  33. Diserens, E. (2004). Wechselwirkung zwischen Fahrwerk und Ackerboden. FAT-Berichte, 613, 1–16.

    Google Scholar 

  34. Abeels, P. F. J. (1981). Interactions between tyre and soil, relations for the design of flexible toric casings. Proceedings of the 7th ISTVS conference, Calgary.

    Google Scholar 

  35. Hallonborg, U. (1996). Super ellipse as tyre – Ground contact area. Journal of terramechanics, 33(3), 125.

    Article  Google Scholar 

  36. Błaszkiewicz, Z. (1990). A method for determination of the contact area between a tyre and the ground. Journal of Terramechanics, 27(4), 263–282.

    Article  Google Scholar 

  37. Mc, P. W., & Phee, J. (2010). A study of volumetric contact modelling approaches in rigid tire simulation for planetary rover application. International Journal of Vehicle Design, 64(2–4), 262–279.

    Google Scholar 

  38. Mohsenimanesh, A., & Ward, S. M. (2010). Estimation of a three-dimensional tyre footprint using dynamic soil–tyre contact pressures. Journal of Terramechanics, 47, 415–421.

    Article  Google Scholar 

  39. Farhadi, P., Golmohammadi, A., Shafiri, A., & Shahgholi, G. (2018). Potential of three – Dimensional footprint mold in investigating the effect of tractor tire contact volume changes on rolling resistance. Journal of Terramechanics, 78, 63–72.

    Article  Google Scholar 

  40. Mikhail, E. M., Bethel, J. S., & MecGlone, J. C. (2001). Introduction to modern photogrammetry. Wiley.

    Google Scholar 

  41. Botha, T., Johnson, D., Els, S., & Sally Shoop, S. A. (2019). Real time rut profile measurement in varying terrain types using digital image correlation. Journal of Terramechanics, 82, 53–61.

    Article  Google Scholar 

  42. Guthrie, A. G., Botha, T. R., & Els, P. S. (2017). 3D Contact Patch Measurement Inside Rolling Tyres. Journal of Terramechanics, 69, 13–21.

    Article  Google Scholar 

  43. Hammel, K. (1994). Soil stress distribution under lugged tyres. Soil and Tillage Research, 32(1994), 163–181.

    Article  Google Scholar 

  44. Nishiyama, K., Nakashima, H., Shimizu, H., Miyasaka, J., & Ohdoi, K. (2017). 2D FE–DEM analysis of contact stress and tractive performance of a tire driven on dry sand. Journal of Terramechanics, 74, 25–33.

    Article  Google Scholar 

  45. Raper, R. L., & Bailey, A. C. (1995). The effect of reduced inflation pressure on soil – tire interface stresses and soil strength. Journal of Terramechanics, 32(1), 43–51.

    Article  Google Scholar 

  46. Higa, S., Nagaoka, K., Nagatani, K., & Yoshida, K. (2015). Measurement and modeling for two-dimensional normal stress distribution of wheel on loose soil. Journal of Terramechanics, 62, 63–73.

    Article  Google Scholar 

  47. Nguyen, V. N., Matsuo, T., Inaba, S., & Koumoto, T. (2008). Experimental analysis of vertical soil reaction and soil stress distribution under off-road tires. Journal of Terramechanics, 45, 25–44.

    Article  Google Scholar 

  48. Sandu, C., Worley, M. E., & Morgan, J. P. (2010). Experimental study on the contact patch pressure and sinkage of a lightweight vehicle on sand. Journal of Terramechanics, 47, 343–359.

    Article  Google Scholar 

  49. Pytka, J., & Tarkowski, P. (2011). A non-linear model for a turning wheel on deformable surfaces, 17th International Conference of the International Society for Terrain-Vehicle Systems – September 18–22, Blacksburg, Virginia, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pytka, J. (2024). Wechselwirkungen im Reifen-Boden-System. In: Terramechanik und Geländefahrzeuge. ATZ/MTZ-Fachbuch. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-32013-3_3

Download citation

Publish with us

Policies and ethics