Skip to main content

Weather Variability Control in Three Colombian Airports

  • Conference paper
  • First Online:
Advances in Tourism, Technology and Systems (ICOTTS 2020)

Abstract

The aeronautic sector has been economically affected by the closure of its operations with the appearance of the Covid-19. For reducing the impact of weather variables at airport operations, we present a predictive model for better planning. Better planning reduces operative costs and increase the level of client satisfaction. This paper uses hourly observation from 2011 to 2018 at three Colombian airports: The Dorado airport in Bogota, the Olaya Herrera airport in Medellin, and the Matecana airport in Pereira. We build prediction models with deep learning and machine learning methods. These models aim to forecast horizontal and vertical visibility variables with minimum errors. The Random Forest decision tree model performs better predicting theses variables in one, six, and twenty-four hours. This model has better results with the horizontal variable visibility forecasting for the three airports giving errors among 4% and 8%. This algorithm gave a flexible solution, and any airport can implement it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Semana: ¿En qué consiste la ley de quiebras a la que se sometió Avianca en EE. UU.?. Rev. Sem. (2020)

    Google Scholar 

  2. Aerocivil: En 9,1 por ciento aumentó el tráfico de pasajeros movilizados vía aérea en 2019, Grup. Counicación y Prensa - Unidad Adm. Espec. Aeronáutica Civ. vol. 2019, pp. 2019–2021 (2020)

    Google Scholar 

  3. Dietz, S.J., Kneringer, P., Mayr, G.J., Zeileis, A.: Correction to: forecasting low-visibility procedure states with tree-based statistical methods (Pure Appl. Geophys. 176(6), 2631–2644 (2019)). https://doi.org/10.1007/s00024-018-1914-x), Pure Appl. Geophys. 176(6), 2645–2658 (2019). https://doi.org/10.1007/s00024-018-1993-8

  4. Herman, G.R., Schumacher, R.S.: Using reforecasts to improve forecasting of fog and visibility for aviation. Weather Forecast. 31(2), 467–482 (2016). https://doi.org/10.1175/WAF-D-15-0108.1

    Article  Google Scholar 

  5. Zhu, L., Zhu, G., Han, L., Wang, N.: The application of deep learning in airport visibility forecast. Atmos. Clim. Sci. 07(03), 314–322 (2017). https://doi.org/10.4236/acs.2017.73023

    Article  Google Scholar 

  6. ISU Department of Agronomy: Iowa Enviromental Mesonet (2020). https://mesonet.agron.iastate.edu/request/download.phtml?network=CO__ASOS.

  7. Medina-Merino, R.F., Ñique-Chacón, C.I.: Bosques aleatorios como extensión de los árboles de clasificación con los programas R y Python. Interfases (010), 165 (2017). https://doi.org/10.26439/interfases2017.n10.1775

  8. Neira-Rodado, D., Nugent, C., Cleland, I., Velasquez, J., Viloria, A.: Evaluating the impact of a two-stage multivariate data cleansing approach to improve to the performance of machine learning classifiers: a case study in human activity recognition. Sensors (Switzerland) 20(7) (2020). https://doi.org/10.3390/s20071858

  9. Ali, J., Khan, R., Ahmad, N., Maqsood, I.: Random forests and decision trees. Int. J. Comput. Sci. Issues 9(5), 272–278 (2012)

    Google Scholar 

  10. Vargas, K., Gonzalez, A., Silva, J.: The Effect of Global Political Risk on Stock Returns: A Cross-Sectional and a Time-Series Analysis BT - Intelligent Computing, Information and Control Systems, pp. 540–548 (2020)

    Google Scholar 

  11. Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7(3), 1247–1250 (2014). https://doi.org/10.5194/gmd-7-1247-2014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Vargas-Daza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vargas-Daza, K., Misat-Gómez, G., Neira-Rodado, D. (2021). Weather Variability Control in Three Colombian Airports. In: de Carvalho, J.V., Rocha, Á., Liberato, P., Peña, A. (eds) Advances in Tourism, Technology and Systems. ICOTTS 2020. Smart Innovation, Systems and Technologies, vol 208. Springer, Singapore. https://doi.org/10.1007/978-981-33-4256-9_37

Download citation

Publish with us

Policies and ethics