Skip to main content

Spectroscopic and Microscopic Characterizations of Functionalized Carbon Nanostructures

  • Living reference work entry
  • First Online:
Handbook of Functionalized Carbon Nanostructures

Abstract

To create unique nanoscopic structures with real-world applications in the field of materials science, it is fundamentally necessary to comprehend and regulate the biochemical activity of functionalized carbon nanostructures. We report an extensive microscopic and spectroscopic characterization of chemically altered carbon nanotubes in this chapter. Electron microscopic techniques have gained enormous attention for analyzing structural morphologies of functionalized carbon nanostructures owing to its high precision electronic laser beam technology as compared to optical microscopy. Apart from the surface morphology, there are various biological activities governed by the presence of functional groups on the nanostructures. We have briefly reviewed a few spectroscopic techniques for qualitative and quantitative structural behavior of functionalized carbon nanostructures. Therefore, we discuss different characterization techniques for functionalized carbon nanostructures and deliberately list out the subsequent use of these nanostructures for their applications in the field of biomedicine and healthcare.

Author Contributions

Conceptualization, S.G, P.K, M.S.; investigation, S.G, P.K, M.S.; writing—original draft preparation, P.K and M.S.; writing-review and editing M.S., and P.K; supervision, S.G.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Georgakilas, V., Perman, J.A., Tucek, J., Zboril, R.: Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115(11), 4744–4822 (2015). https://doi.org/10.1021/CR500304F

    Article  CAS  Google Scholar 

  2. Partha, R., Conyers, J.L.: Biomedical applications of functionalized fullerene-based nanomaterials. Int. J. Nanomedicine. 4, 261–275 (2009). https://doi.org/10.2147/ijn.s5964

    Article  CAS  Google Scholar 

  3. Zheng, X.T., Ananthanarayanan, A., Luo, K.Q., Chen, P.: Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small. 11(14), 1620–1636 (2015). https://doi.org/10.1002/SMLL.201402648

    Article  CAS  Google Scholar 

  4. Iijima, S.: Helical microtubules of graphitic carbon. Nature. 354, 56–58 (1991). https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  5. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field in atomically thin carbon films. Science. 306(5696), 666–669 (2004). https://doi.org/10.1126/SCIENCE.1102896

    Article  CAS  Google Scholar 

  6. Chouhan, R.S., Jerman, I., Heath, D., Bohm, S., Gandhi, S., Sadhu, V., Baker, S., Horvat, M.: Emerging tri-s-triazine-based graphitic carbon nitride: a potential signal-transducing nanostructured material for sensor applications. Nano Select. 2(4), 712–743 (2021). https://doi.org/10.1002/NANO.202000228

    Article  CAS  Google Scholar 

  7. Liu, W., Speranza, G.: Functionalization of carbon nanomaterials for biomedical applications. C J. Carbon Res. 5(4), 72 (2019). https://doi.org/10.3390/C5040072

    Article  CAS  Google Scholar 

  8. Banerjee, S., Wong, S.S.: Synthesis and characterization of carbon nanotube-nanocrystal heterostructures. Nano Lett. 2(3), 195–200 (2002). https://doi.org/10.1021/NL015651N

    Article  CAS  Google Scholar 

  9. Czerniak-Reczulska, M., Niedzielski, P., Balcerczyk, A., Bartosz, G., Karowicz-Bilińska, A., Mitura, K.: Biological properties of different type carbon particles in vitro study on primary culture of endothelial cells. J. Nanosci. Nanotechnol. 10(2), 1065–1071 (2010). https://doi.org/10.1166/JNN.2010.1851

    Article  CAS  Google Scholar 

  10. Kim, S.W., Kyung Lee, Y., Yeon Lee, J., Hee Hong, J., Khang, D.: PEGylated anticancer-carbon nanotubes complex targeting mitochondria of lung cancer cells. Nanotechnology. 28(46), 465102 (2017). https://doi.org/10.1088/1361-6528/AA8C31

    Article  Google Scholar 

  11. Pirsaheb, M., Mohammadi, S., Salimi, A., Payandeh, M.: Functionalized fluorescent carbon nanostructures for targeted imaging of cancer cells: a review. Microchim. Acta. 186, 231 (2019). https://doi.org/10.1007/S00604-019-3338-4

    Article  Google Scholar 

  12. Cui, L., Wang, M., Sun, B., Ai, S., Wang, S., Zhang, C.Y.: Substrate-free and label-free electrocatalysis-assisted biosensor for sensitive detection of microRNA in lung cancer cells. Chem. Comm. 55(8), 1172–1175 (2019). https://doi.org/10.1039/C8CC09688K

    Article  CAS  Google Scholar 

  13. Loh, K.P., Ho, D., Chiu, G.N.C., Leong, D.T., Pastorin, G., Chow, E.K.H.: Clinical applications of carbon nanomaterials in diagnostics and therapy. Adv. Mater. 30(47), 1802368 (2018). https://doi.org/10.1002/ADMA.201802368

    Article  Google Scholar 

  14. Jiang, B.P., Zhou, B., Lin, Z., Liang, H., Shen, X.C.: Recent advances in carbon nanomaterials for cancer phototherapy. Chem. Eur. J. 25(16), 3993–4004 (2019). https://doi.org/10.1002/CHEM.201804383

    Article  CAS  Google Scholar 

  15. Zhou, L., Jing, Y., Liu, Y., Liu, Z., Gao, D., Chen, H., Song, W., Wang, T., Fang, X., Qin, W., Yuan, Z., Dai, S., Qiao, Z.A., Wu, C.: Mesoporous carbon nanospheres as a multifunctional carrier for cancer theranostics. Theranostics. 8(3), 663–675 (2018). https://doi.org/10.7150/THNO.21927

    Article  CAS  Google Scholar 

  16. Tabish, T.A., Zhang, S., Winyard, P.G.: Developing the next generation of graphene-based platforms for cancer therapeutics: the potential role of reactive oxygen species. Redox Biol. 15, 34–40 (2018). https://doi.org/10.1016/J.REDOX.2017.11.018

    Article  CAS  Google Scholar 

  17. Guo, C.Y., Sun, L., Chen, X.P., Zhang, D.S.: Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res. 8(21), 2003–2014 (2013). https://doi.org/10.3969/J.ISSN.1673-5374.2013.21.009

    Article  CAS  Google Scholar 

  18. Mendes, R.G., Bachmatiuk, A., Büchner, B., Cuniberti, G., Rümmeli, M.H.: Carbon nanostructures as multi-functional drug delivery platforms. J. Mater. Chem. B. 1(4), 401–428 (2012). https://doi.org/10.1039/C2TB00085G

    Article  Google Scholar 

  19. Bartelmess, J., Quinn, S.J., Giordani, S.: Carbon nanomaterials: multi-functional agents for biomedical fluorescence and Raman imaging. Chem. Soc. Rev. 44(14), 4672–4698 (2015). https://doi.org/10.1039/C4CS00306C

    Article  CAS  Google Scholar 

  20. Kaushik, A., Khan, R., Solanki, P., Gandhi, S., Gohel, H., Mishra, Y.K.: From nanosystems to a biosensing prototype for an efficient diagnostic: a special issue in honor of professor Bansi D. Malhotra. Biosensors. 11(10), 359 (2021). https://doi.org/10.3390/BIOS11100359

    Article  Google Scholar 

  21. Roberts, A., Mahari, S., Shahdeo, D., Gandhi, S.: Label-free detection of SARS-CoV-2 spike S1 antigen triggered by electroactive gold nanoparticles on antibody coated fluorine-doped tin oxide (FTO) electrode. Anal. Chim. Acta. 1188, 339207 (2021). https://doi.org/10.1016/J.ACA.2021.339207

    Article  CAS  Google Scholar 

  22. Shahdeo, D., Roberts, A., Archana, G.J., Shrikrishna, N.S., Mahari, S., Nagamani, K., Gandhi, S.: Label free detection of SARS CoV-2 receptor binding domain (RBD) protein by fabrication of gold nanorods deposited on electrochemical immunosensor (GDEI). Biosens. Bioelectron. 212, 114406 (2022). https://doi.org/10.1016/J.BIOS.2022.114406

    Article  CAS  Google Scholar 

  23. Roberts, A., Mahari, S., Gandhi, S.: Signal enhancing gold nanorods (GNR) and antibody modified electrochemical nanosensor for ultrasensitive detection of Japanese encephalitis virus (JEV) secretory non-structural 1 (NS1) biomarker. J. Electroanal. Chem. 919, 116563 (2022). https://doi.org/10.1016/J.JELECHEM.2022.116563

    Article  CAS  Google Scholar 

  24. Mahari, S., Roberts, A., Gandhi, S.: Probe-free nanosensor for the detection of salmonella using gold nanorods as an electroactive modulator. Food Chem. 390, 133219 (2022). https://doi.org/10.1016/J.FOODCHEM.2022.133219

    Article  CAS  Google Scholar 

  25. Mishra, P., Banga, I., Tyagi, R., Munjal, T., Goel, A., Capalash, N., Sharma, P., Suri, C.R., Gandhi, S.: An immunochromatographic dipstick as an alternate for monitoring of heroin metabolites in urine samples. RSC Adv. 8(41), 23163–23170 (2018). https://doi.org/10.1039/C8RA02018C

    Article  CAS  Google Scholar 

  26. Kasoju, A., Shrikrishna, N.S., Shahdeo, D., Khan, A.A., Alanazi, A.M., Gandhi, S.: Microfluidic paper device for rapid detection of aflatoxin B1 using an aptamer based colorimetric assay. RSC Adv. 10(20), 11843–11850 (2020). https://doi.org/10.1039/D0RA00062K

    Article  CAS  Google Scholar 

  27. Shahdeo, D., Kesarwani, V., Suhag, D., Ahmed, J., Alshehri, S.M., Gandhi, S.: Self-assembled chitosan polymer intercalating peptide functionalized gold nanoparticles as nanoprobe for efficient imaging of urokinase plasminogen activator receptor in cancer diagnostics. Carbohydr. Polym. 266, 118138 (2021). https://doi.org/10.1016/J.CARBPOL.2021.118138

    Article  CAS  Google Scholar 

  28. Cardenas-Benitez, B., Djordjevic, I., Hosseini, S., Madou, M.J., Martinez-Chapa, S.O.: Review—covalent functionalization of carbon nanomaterials for biosensor applications: an update. J. Electrochem. Soc. 165, B103–B117 (2018). https://doi.org/10.1149/2.0381803JES

    Article  CAS  Google Scholar 

  29. Huang, W., Taylor, S., Fu, K., Lin, Y., Zhang, D., Hanks, T.W., Rao, A.M., Sun, Y.P.: Attaching proteins to carbon nanotubes via Diimide-activated Amidation. Nano Lett. 2(4), 311–314 (2002). https://doi.org/10.1021/NL010095I

    Article  CAS  Google Scholar 

  30. Diez-Pascual, A.M.: Chemical functionalization of carbon nanotubes with polymers: a brief overview. Macromolecules. 1, 64–83 (2021). https://doi.org/10.3390/MACROMOL1020006

    Article  CAS  Google Scholar 

  31. Karfa, P., De, S., Majhi, K.C., Madhuri, R., Sharma, P.K.: Andrews, L.D., Lipson, R.H., Nann, T. (eds.): Functionalization of Carbon Nanostructures. Comprehensive Nanoscience and Nanotechnology, pp. 123–144. https://doi.org/10.1016/B978-0-12-803581-8.11225-1

  32. Qing, S.Y., DeWeerd, N.J., Matsnev, A.V., Strauss, S.H., Thrasher, J.S., Boltalina, O.V.: Synthesis and characterization of pentafluorosulfanyl-functionalized fullerenes. J. Fluor. Chem. 211, 52–59 (2018). https://doi.org/10.1016/J.JFLUCHEM.2018.04.004

    Article  CAS  Google Scholar 

  33. Anafcheh, M., Khodadadi, Z., Ektefa, F., Ghafouri, R.: Functionalization of pentagon–pentagon edges of fullerenes by cyclic polysulfides: a DFT study. J. Phys. Chem. Solids. 92, 26–31 (2016). https://doi.org/10.1016/J.JPCS.2015.12.004

    Article  CAS  Google Scholar 

  34. Rambabu, G., Nagaraju, N., Bhat, S.D.: Functionalized fullerene embedded in Nafion matrix: a modified composite membrane electrolyte for direct methanol fuel cells. Chem. Eng. J. 306, 43–52 (2016). https://doi.org/10.1016/J.CEJ.2016.07.032

    Article  CAS  Google Scholar 

  35. Shan, C., Yen, H.J., Wu, K., Lin, Q., Zhou, M., Guo, X., Wu, D., Zhang, H., Wu, G., Wang, H.L.: Functionalized fullerenes for highly efficient lithium ion storage: structure-property-performance correlation with energy implications. Nano Energy. 40, 327–335 (2017). https://doi.org/10.1016/J.NANOEN.2017.08.033

    Article  CAS  Google Scholar 

  36. Ye, Q., Yan, F., Kong, D., Zhang, J., Zhou, X., Xu, J., Chen, L.: Constructing a fluorescent probe for specific detection of catechol based on 4-carboxyphenylboronic acid-functionalized carbon dots. Sens. Actuators B. Chem. 250, 712–720 (2017). https://doi.org/10.1016/J.SNB.2017.03.081

    Article  CAS  Google Scholar 

  37. Pooja, D., Saini, S., Thakur, A., Kumar, B., Tyagi, S., Nayak, M.K.: A “turn-on” thiol functionalized fluorescent carbon quantum dot based chemosensory system for arsenite detection. J. Hazard. Mater. 328, 117–126 (2017). https://doi.org/10.1016/J.JHAZMAT.2017.01.015

    Article  CAS  Google Scholar 

  38. Cui, X., Wang, Y., Liu, J., Yang, Q., Zhang, B., Gao, Y., Wang, Y., Lu, G.: Dual functional N- and S-co-doped carbon dots as the sensor for temperature and Fe3+ ions. Sens. Actuators B. Chem. 242, 1272–1280 (2017). https://doi.org/10.1016/J.SNB.2016.09.032

    Article  CAS  Google Scholar 

  39. Khalilnezhad, P., Sajjadi, S.A., Zebarjad, S.M.: Effect of nanodiamond surface functionalization using oleylamine on the scratch behavior of polyacrylic/nanodiamond nanocomposite. Diam. Relat. Mater. 45, 7–11 (2014). https://doi.org/10.1016/J.DIAMOND.2014.03.002

    Article  CAS  Google Scholar 

  40. Karousis, N., Suarez-Martinez, I., Ewels, C.P., Tagmatarchis, N.: Structure, properties, functionalization, and applications of carbon nanohorns. Chem. Rev. 116(8), 4850–4883 (2016). https://doi.org/10.1021/ACS.CHEMREV.5B00611

    Article  CAS  Google Scholar 

  41. Chechetka, S.A., Zhang, M., Yudasaka, M., Miyako, E.: Physicochemically functionalized carbon nanohorns for multi-dimensional cancer elimination. Carbon. 97, 45–53 (2016). https://doi.org/10.1016/J.CARBON.2015.05.077

    Article  CAS  Google Scholar 

  42. Thakur, S., Das, G., Raul, P.K., Karak, N.: Green one-step approach to prepare sulfur/reduced graphene oxide nanohybrid for effective mercury ions removal. J. Phys. Chem. C. 117(15), 7636–7642 (2013). https://doi.org/10.1021/JP400221K

    Article  CAS  Google Scholar 

  43. Ju, M.J., Jeon, I.Y., Lim, K., Kim, J.C., Choi, H.J., Choi, I.T., Eom, Y.K., Kwon, Y.J., Ko, J., Lee, J.J., Baek, J.B., Kim, H.K.: Edge-carboxylated graphene nanoplatelets as oxygen-rich metal-free cathodes for organic dye-sensitized solar cells. Energy Environ. Sci. 7(3), 1044–1052 (2014). https://doi.org/10.1039/C3EE43732A

    Article  CAS  Google Scholar 

  44. Lin, P.C., Lin, S., Wang, P.C., Sridhar, R.: Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv. 32(4), 711–726 (2014). https://doi.org/10.1016/J.BIOTECHADV.2013.11.006

    Article  Google Scholar 

  45. Thakur, V.K., Thakur, M.K.: Chemical Functionalization of Carbon Nanomaterials: Chemistry and Applications. CRC Press (2015). https://doi.org/10.1201/b18724

    Book  Google Scholar 

  46. Shanks, R.A.: In: Thomas, S., Shanks, R.A., Sarathchandran, C. (eds.) Characterization of Nanostructured Materials. Nanostructured Polymer Blends, pp. 15–31 (2014). https://doi.org/10.1016/B978-1-4557-3159-6.00002-X

    Chapter  Google Scholar 

  47. Egerton, R.F.: Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM. Springer US (2005). https://doi.org/10.1007/b13649

    Book  Google Scholar 

  48. Inkson, B.J.: Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. In: Hübschen, G., Altpeter, I., Tschuncky, R., Herrmann, H.-G. (eds.) Materials Characterization Using Nondestructive Evaluation (NDE) Methods, pp. 17–43. Woodhead Publishing (2016). https://doi.org/10.1016/B978-0-08-100040-3.00002-X

    Chapter  Google Scholar 

  49. Zhou, W., Apkarian, R., Wang, Z.L., Joy, D.: Fundamentals of scanning electron microscopy (SEM). In: Weilie, Z., Lin, W.Z. (eds.) Scanning Microscopy for Nanotechnology: Techniques and Applications, pp. 1–40. Springer New York (2007). https://doi.org/10.1007/978-0-387-39620-0_1

    Chapter  Google Scholar 

  50. Dao, T.D., Jeong, H.M.: Graphene prepared by thermal reduction–exfoliation of graphite oxide: effect of raw graphite particle size on the properties of graphite oxide and graphene. Mater. Res. Bull. 70, 651–657 (2015). https://doi.org/10.1016/J.MATERRESBULL.2015.05.038

    Article  CAS  Google Scholar 

  51. Shabaneh, A., Girei, S., Arasu, P., Mahdi, M., Rashid, S., Paiman, S., Yaacob, M.: Dynamic response of tapered optical multimode fiber coated with carbon nanotubes for ethanol sensing application. Sensors. 15(5), 10452–10464 (2015). https://doi.org/10.3390/S150510452

    Article  CAS  Google Scholar 

  52. Tang, C.Y., Yang, Z.: Transmission Electron Microscopy (TEM). In: Hilal, N., Ismail, A.F., Matsuura, T., Oatley-Radcliffe, D. (eds.) Membrane characterization, pp. 145–159. Elsevier (2017)

    Chapter  Google Scholar 

  53. Meyer, R.R., Sloan, J., Dunin-Borkowski, R.E., Kirkland, A.I., Novotny, M.C., Bailey, S.R., Hutchison, J.L., Green, M.L.H.: Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science. 289(5483), 1324–1326 (2000). https://doi.org/10.1126/SCIENCE.289.5483.1324

    Article  CAS  Google Scholar 

  54. Koskin, A.P., Larichev, Y.V., Mishakov, I.V., Mel’gunov, M.S., Vedyagin, A.A.: Synthesis and characterization of carbon nanomaterials functionalized by direct treatment with sulfonating agents. Microporous Mesoporous Mater. 299, 110130 (2020). https://doi.org/10.1016/J.MICROMESO.2020.110130

    Article  CAS  Google Scholar 

  55. Skoog, D.A., Holler, F.J., Crouch, S.R.: Principles of Instrumental Analysis, 7th edn. Cengage Learning (2017)

    Google Scholar 

  56. Wei, Q., Huang, F., Cai, Y.: Textile surface characterization methods. In: Wei, Q. (ed.) Surface Modification of Textiles, pp. 26–57. Woodhead Publishing (2009)

    Chapter  Google Scholar 

  57. Jung, S.H., Park, D., Park, J.H., Kim, Y.M., Ha, K.S.: Molecular imaging of membrane proteins and microfilaments using atomic force microscopy. Exp. Mol. Med. 42(9) (2010). https://doi.org/10.3858/emm.2010.42.9.064

  58. Johnson, D., Oatley-Radcliffe, D.L., Hilal, N.: Atomic Force Microscopy (AFM). In: Hilal, N.F., Ismail, A., Matsuura, T., Oatley-Radcliffe, D. (eds.) Membrane Characterization, pp. 115–144. Elsevier (2017)

    Chapter  Google Scholar 

  59. Jiao, X., Qiu, Y., Zhang, L., Zhang, X.: Comparison of the characteristic properties of reduced graphene oxides synthesized from natural graphites with different graphitization degrees. RSC Adv. 7, 52337–52344 (2017). https://doi.org/10.1039/C7RA10809E

    Article  CAS  Google Scholar 

  60. Johnson, D.J., Al Malek, S.A., Al-Rashdi, B.A.M., Hilal, N.: Atomic force microscopy of nanofiltration membranes: effect of imaging mode and environment. J. Membr. Sci. 389, 486–498 (2012). https://doi.org/10.1016/J.MEMSCI.2011.11.023

    Article  CAS  Google Scholar 

  61. Giessibl, F.J.: Atomic resolution of the silicon (111)-(7x7) surface by atomic force microscopy. Science. 267, 68–71 (1995). https://doi.org/10.1126/SCIENCE.267.5194.68

    Article  CAS  Google Scholar 

  62. Siciliano, B., Khatib, O.: Springer handbook of robotics. In: Springer Handbook of Robotics, pp. 1–2227 (2016). https://doi.org/10.1007/978-3-319-32552-1

    Chapter  Google Scholar 

  63. Abou El-Nour, K.M.M., Eftaiha, A., Al-Warthan, A., Ammar, R.A.A.: Synthesis and applications of silver nanoparticles. Arab. J. Chem. 3, 135–140 (2010). https://doi.org/10.1016/J.ARABJC.2010.04.008

    Article  CAS  Google Scholar 

  64. Peter, E., Paul, W.: Atomic Force Microscopy. Oxford University Press (2010)

    Google Scholar 

  65. Carter, C.B., Williams, D.B.: Transmission Electron Microscopy: Diffraction, Imaging, and Spectrometry. Springer (2016)

    Book  Google Scholar 

  66. Li, J., Nianqiang, W.: Biosensors Based on Nanomaterials and Nanodevices. CRC Press (2017)

    Google Scholar 

  67. Spence, J.C.H.: High-Resolution Electron Microscopy. Oxford University Press (2013)

    Book  Google Scholar 

  68. Sawyer, L.C., Grubb, D.T., Meyers, G.F.: Polymer Microscopy. Springer New York, New York (2008)

    Google Scholar 

  69. Xie, Y. ed: The Nanobiotechnology Handbook. (2013)

    Google Scholar 

  70. Rossiter, B.W., Baetzold, R.C. (eds.): Investigations of Surfaces and Interfaces

    Google Scholar 

  71. Wolf, E.L.: Principles of Electron Tunneling Spectroscopy. Oxford University Press (2011)

    Book  Google Scholar 

  72. Ishigami, M., Chen, J.H., Cullen, W.G., Fuhrer, M.S., Williams, E.D.: Atomic structure of graphene on SiO 2. Nano Lett. 7, 1643–1648 (2007). https://doi.org/10.1021/NL070613A

    Article  CAS  Google Scholar 

  73. Rodríguez-Galván, A., Contreras-Torres, F.F.: Scanning tunneling microscopy of biological structures: an elusive goal for many years. Nano. 12, 3013 (2022). https://doi.org/10.3390/nano12173013

    Article  CAS  Google Scholar 

  74. Rance, G.A., Marsh, D.H., Nicholas, R.J., Khlobystov, A.N.: UV–vis absorption spectroscopy of carbon nanotubes: relationship between the π-electron plasmon and nanotube diameter. Chem. Phys. Lett. 493, 19–23 (2010). https://doi.org/10.1016/J.CPLETT.2010.05.012

    Article  CAS  Google Scholar 

  75. Wang, Z., Liu, Q., Zhu, H., Liu, H., Chen, Y., Yang, M.: Dispersing multi-walled carbon nanotubes with water–soluble block copolymers and their use as supports for metal nanoparticles. Carbon. 45, 285–292 (2007). https://doi.org/10.1016/J.CARBON.2006.09.025

    Article  CAS  Google Scholar 

  76. Benítez-Martínez, S., López-Lorente, Á.I., Valcárcel, M.: Graphene quantum dots sensor for the determination of graphene oxide in environmental water samples. Anal. Chem. 86, 12279–12284 (2014). https://doi.org/10.1021/AC5035083

    Article  Google Scholar 

  77. Zagrebina, E.M., Generalov, A.V., Klyushin, A.Y., Simonov, K.A., Vinogradov, N.A., Dubois, M., Frezet, L., Mårtensson, N., Preobrajenski, A.B., Vinogradov, A.S.: Comparative NEXAFS, NMR, and FTIR study of various-sized nanodiamonds: as-prepared and fluorinated. J. Phys. Chem. C. 119, 835–844 (2015). https://doi.org/10.1021/JP510618S

    Article  CAS  Google Scholar 

  78. Cayuela, A., Soriano, M.L., Valcárcel, M.: Reusable sensor based on functionalized carbon dots for the detection of silver nanoparticles in cosmetics via inner filter effect. Anal. Chim. Acta. 872, 70–76 (2015). https://doi.org/10.1016/j.aca.2015.02.052

    Article  CAS  Google Scholar 

  79. Kolhe, P., Roberts, A., Gandhi, S.: Fabrication of an ultrasensitive electrochemical immunosensor coupled with biofunctionalized zero-dimensional graphene quantum dots for rapid detection of cephalexin. Food Chem. 398, 133846 (2023). https://doi.org/10.1016/J.FOODCHEM.2022.133846

    Article  CAS  Google Scholar 

  80. Lim, J., Yeap, S.P., Che, H.X., Low, S.C.: Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett. 8, 1–14 (2013). https://doi.org/10.1186/1556-276X-8-381

    Article  CAS  Google Scholar 

  81. Metin, C.O., Lake, L.W., Miranda, C.R., Nguyen, Q.P.: Stability of aqueous silica nanoparticle dispersions. J. Nanopart. Res. 13, 839–850 (2011). https://doi.org/10.1007/S11051-010-0085-1

    Article  CAS  Google Scholar 

  82. Małolepszy, A., Błonski, S., Chrzanowska-Giżyńska, J., Wojasiński, M., Płocinski, T., Stobinski, L., Szymanski, Z.: Fluorescent carbon and graphene oxide nanoparticles synthesized by the laser ablation in liquid. Appl. Phys. A Mater. Sci. Process. 124, 1–7 (2018). https://doi.org/10.1007/S00339-018-1711-5

    Article  Google Scholar 

  83. Huang, J.J., Yuan, Y.J.: A sedimentation study of graphene oxide in aqueous solution using gradient differential centrifugation. Phys. Chem. Chem. Phys. 18, 12312–12322 (2016). https://doi.org/10.1039/C6CP00167J

    Article  CAS  Google Scholar 

  84. Brandon, D., Kaplan, W.D.: Microstructural characterization of materials. Wiley. (2008). https://doi.org/10.1002/9780470727133

  85. Shen, Q., Liu, Z., Hua, Y., Zhao, J., Lv, W., Mohsan, A.U.H.: Effects of cutting edge microgeometry on residual stress in orthogonal cutting of Inconel 718 by FEM. Materials. 11(6), 1015 (2018). https://doi.org/10.3390/MA11061015

    Article  Google Scholar 

  86. Awadallah-F, A., Al-Muhtaseb, S.: Carbon nanoparticles-decorated carbon nanotubes. Sci. Rep. 10, 4878 (2020). https://doi.org/10.1038/s41598-020-61726-4

    Article  CAS  Google Scholar 

  87. Stevie, F.A., Donley, C.L.: Introduction to x-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A. 38(6), 063204 (2020). https://doi.org/10.1116/6.0000412

    Article  CAS  Google Scholar 

  88. Aziz, M., Ismail, A.F.: X-Ray Photoelectron Spectroscopy (XPS). In: Hilal, N., Ismail, A.F., Matsuura, T., Oatley-Radcliffe, D. (eds.) Membrane Characterization, pp. 81–93. Elsevier (2017)

    Chapter  Google Scholar 

  89. Abd Mutalib, M., Rahman, M.A., Othman, M.H.D., Ismail, A.F., Jaafar, J.: Scanning electron microscopy (SEM) and energy-dispersive X-Ray (EDX) spectroscopy. In: Hilal, N., Ismail, A., Matsuura, T., Oatley-Radcliffe, D. (eds.) Membrane Characterization, pp. 161–179. Elsevier (2017)

    Chapter  Google Scholar 

  90. Lynch, S.P.: Metallographic and fractographic techniques for characterising and understanding hydrogen-assisted cracking of metals. In: Gangloff Richard, P., Somerday Brian, P. (eds.) Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: The Problem, Its Characterisation and Effects on Particular Alloy Classes, pp. 274–346. Woodhead Publishing (2012). https://doi.org/10.1533/9780857093899.2.274

    Chapter  Google Scholar 

  91. Droushiotis, N., Doraswami, U., Ivey, D., Othman, M.H.D., Li, K., Kelsall, G.: Fabrication by co-extrusion and electrochemical characterization of micro-tubular hollow fibre solid oxide fuel cells. Electrochem. Commun. 12(6), 792–795 (2010). https://doi.org/10.1016/J.ELECOM.2010.03.035

    Article  CAS  Google Scholar 

  92. Wan, F., Du, L., Chen, W., Wang, P., Wang, J., Shi, H.: A novel method to directly analyze dissolved acetic acid in transformer oil without extraction using Raman spectroscopy. Energies. 10(1), 967 (2017). https://doi.org/10.3390/EN10070967

    Article  Google Scholar 

  93. Kakihana, M., Osada, M.: Raman spectroscopy as a characterization tool for carbon materials. In: Yasuda, E., Inagaki, M., Kaneko, K., Endo, M., Oya, A., Tanabe, Y. (eds.) Carbon Alloys: Novel Concepts to Develop Carbon Science and Technology, pp. 285–298. Elsevier Science (2003). https://doi.org/10.1016/B978-008044163-4/50018-8

    Chapter  Google Scholar 

  94. Ferrari, A.C.: Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Comm. 143(1–2), 47–57 (2007). https://doi.org/10.1016/J.SSC.2007.03.052

    Article  CAS  Google Scholar 

  95. Maiti, D., Tong, X., Mou, X., Yang, K.: Carbon-based nanomaterials for biomedical applications: a recent study. Front. Pharmacol. 9, 1401 (2019). https://doi.org/10.3389/FPHAR.2018.01401

    Article  Google Scholar 

  96. Lin, Y., Lu, F., Tu, Y., Ren, Z.: Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 4(2), 191–195 (2004). https://doi.org/10.1021/NL0347233

    Article  CAS  Google Scholar 

  97. Jacobs, C.B., Peairs, M.J., Venton, B.J.: Review: carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta. 662(2), 105–127 (2010). https://doi.org/10.1016/J.ACA.2010.01.009

    Article  CAS  Google Scholar 

  98. Liu, Y., Dong, X., Chen, P.: Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 41(6), 2283–2307 (2012). https://doi.org/10.1039/C1CS15270J

    Article  CAS  Google Scholar 

  99. Shahdeo, D., Roberts, A., Abbineni, N., Gandhi, S.: Graphene based sensors. Compr. Anal. Chem. 91, 175–199 (2020). https://doi.org/10.1016/BS.COAC.2020.08.007

    Article  CAS  Google Scholar 

  100. Roberts, A., Kesarwani, V., Gupta, R., Gandhi, S.: Electroactive reduced graphene oxide for highly sensitive detection of secretory non-structural 1 protein: a potential diagnostic biomarker for Japanese encephalitis virus. Biosens. Bioelectron. 198, 113837 (2022). https://doi.org/10.1016/J.BIOS.2021.113837

    Article  CAS  Google Scholar 

  101. Dey, J., Roberts, A., Mahari, S., Gandhi, S., Tripathi, P.P.: Electrochemical detection of Alzheimer’s disease biomarker, β-secretase enzyme (BACE1), with one-step synthesized reduced graphene oxide. Front. Bioeng. Biotechnol. 10, 385 (2022). https://doi.org/10.3389/FBIOE.2022.873811

    Article  Google Scholar 

  102. Roberts, A., Chauhan, N., Islam, S., Mahari, S., Ghawri, B., Gandham, R.K., Majumdar, S.S., Ghosh, A., Gandhi, S.: Graphene functionalized field-effect transistors for ultrasensitive detection of Japanese encephalitis and avian influenza virus. Sci. Rep. 10, 14546 (2020). https://doi.org/10.1038/s41598-020-71591-w

    Article  CAS  Google Scholar 

  103. Mahari, S., Gandhi, S.: Electrochemical immunosensor for detection of avian salmonellosis based on electroactive reduced graphene oxide (rGO) modified electrode. Bioelectrochemistry. 144, 108036 (2022). https://doi.org/10.1016/J.BIOELECHEM.2021.108036

    Article  CAS  Google Scholar 

  104. Shah, M., Kolhe, P., Roberts, A., Shrikrishna, N.S., Gandhi, S.: Ultrasensitive immunosensing of Penicillin G in food samples using reduced graphene oxide (rGO) decorated electrode surface. Colloids Surf. B Biointerfaces. 219, 112812 (2022). https://doi.org/10.1016/J.COLSURFB.2022.112812

    Article  CAS  Google Scholar 

  105. Shukla, S., Haldorai, Y., Khan, I., Kang, S.M., Kwak, C.H., Gandhi, S., Bajpai, V.K., Huh, Y.S., Han, Y.K.: Bioreceptor-free, sensitive and rapid electrochemical detection of patulin fungal toxin, using a reduced graphene oxide@SnO2 nanocomposite. Mater. Sci. Eng. C. 113, 110916 (2020). https://doi.org/10.1016/J.MSEC.2020.110916

    Article  CAS  Google Scholar 

  106. Chen, J., Chen, S., Zhao, X., Kuznetsova, L.V., Wong, S.S., Ojima, I.: Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J. Am. Chem. Soc. 130(49), 16778–16785 (2008). https://doi.org/10.1021/JA805570F

    Article  CAS  Google Scholar 

  107. Kang, J.H., Kim, H.S., Shin, U.S.: Thermo conductive carbon nanotube-framed membranes for skin heat signal-responsive transdermal drug delivery. Polym. Chem. 8(20), 3154–3163 (2017). https://doi.org/10.1039/C7PY00570A

    Article  CAS  Google Scholar 

  108. Kumawat, M.K., Thakur, M., Gurung, R.B., Srivastava, R.: Graphene quantum dots for cell proliferation, nucleus imaging, and photoluminescent sensing applications. Sci. Rep. 7, 15858 (2017). https://doi.org/10.1038/s41598-017-16025-w

    Article  CAS  Google Scholar 

  109. Qian, Z.S., Shan, X.Y., Chai, L.J., Ma, J.J., Chen, J.R., Feng, H.: A universal fluorescence sensing strategy based on biocompatible graphene quantum dots and graphene oxide for the detection of DNA. Nanoscale. 6(11), 5671–5674 (2014). https://doi.org/10.1039/C3NR06583A

    Article  CAS  Google Scholar 

  110. Wang, Y., Zhang, L., Liang, R.P., Bai, J.M., Qiu, J.D.: Using graphene quantum dots as photoluminescent probes for protein kinase sensing. Anal. Chem. 85(19), 9148–9155 (2013). https://doi.org/10.1021/AC401807B

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Department of Biotechnology (DBT), New Delhi, for financing (Grant number BT/PR34216/AAQ/1/765/2019), the intensification of research in high priority area (IRHPA) program from Science and Engineering Research Board (SERB), New Delhi (Grant Number IPA/2020/000069, CRG/2020/003014, WEA/2020/000036) and the institutional grant from National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad (Grant Number C0038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonu Gandhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kolhe, P., Shah, M., Gandhi, S. (2023). Spectroscopic and Microscopic Characterizations of Functionalized Carbon Nanostructures. In: Barhoum, A., Deshmukh, K. (eds) Handbook of Functionalized Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-031-14955-9_38-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14955-9_38-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14955-9

  • Online ISBN: 978-3-031-14955-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics