### **JUNE 1980**

<u>(</u>

Prepared by: Michigan Air Service Task Force

# MICHIGAN'S SCHEDULED AIR SERVICE: AN ANALYSIS



SERVICE SUPPLY AND DEMAND







**MICHIGAN DEPARTMENT OF TRANSPORTATION** 

# **MICHIGAN'S SCHEDULED**

# AIR SERVICE: AN ANALYSIS

**JUNE 1980** 

BUREAU OF TRANSPORTATION PLANNING MODAL TRANSPORTATION PLANNING DIVISION AVIATION PLANNING SECTION

MICHIGAN AIR SERVICE TASK FORCE

Edgerton W. Bailey, Chair

Herm W. Baadke

Thomas Drake John F. Hanleski

Richard J. Lilly

Francis X. McKelvey

Edward A. Meilman

James L. Roach

Department of Transportation Bureau of Transportation Planning Department of Transportation Bureau of Urban and Public Transportation Executive Office of the Governor Department of Commerce Office of Economic Development Department of Transportation Bureau of Transportation Planning Michigan State University Department of Civil Engineering Department of Transportation Bureau of Transportation

#### STATE TRANSPORTATION COMMISSION

Hannes Meyers, Jr. Chairman Zeeland

Weston E. Vivian Ann Arbor

Rodger D. Young Rochester Carl V. Pellonpaa Vice Chairman Ishpeming

William C. Marshall Lansing

Lawrence C, Patrick, Jr. Detroit

Director John P. Woodford

#### STATE OF MICHIGAN



### WILLIAM G. MILLIKEN, GOVERNOR

#### DEPARTMENT OF TRANSPORTATION

POST OFFICE BOX 30050, LANSING, MICHIGAN 48909

JOHN P. WOODFORD, DIRECTOR

#### June 16, 1980

Mr. John F. Woodford, Director Michigan Department of Transportation F.O. Box 30050 Lansing, Michigan 48909

Dear Mr. Woodford:

We are pleased to forward to you the report of the status of air service in Michigan. This effort was undertaken by a task force of representatives of the Michigan Departments of Transportation and Commerce, the Executive Office of the Governor and Michigan State University.

This is a unique period in commercial aviation history in the United States. The Airline Deregulation Act of 1978 and subsequent actions on the part of the air carriers have brought sweeping changes throughout the country and have affected Michigan's commercial air transportation system.

This report examines these factors and makes recommendations regarding future commercial air transportation in Michigan. It is acknowledged that an adequate job of planning and regulating commercial air transportation will require continued monitoring of this form of transportation by the State of Michigan. We intend to do this and will continue to keep you aware of events that influence this important mode of transportation.

Sincerely, Sam F. hyden

Sam F. Cryderman, Deputy Director Bureau of Transportation Planning



An Equal Opportunity Employer

## TABLE OF CONTENTS

### PART ONE: ISSUE STATEMENT

| Some Forces and Th   | eir | lr | np | ac | :† | • | ٠ | • | • | ٠ | • | • | • | • | • | • ' | • | • | •  | .• | • | • | ٠ | • | • | •          | • |
|----------------------|-----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|-----|---|---|----|----|---|---|---|---|---|------------|---|
| The Fleet and Its Us | е   |    | •  | •  | •  | • | • | ٠ | • | • | • | • | • | • | • | •   | • | • | ÷. | •  | • | • | • |   | • | •          | • |
| The Net Effect       | •   |    | •  | •  | •  | ٠ | • | • | • |   | • | • | • | • | • | •   |   | • | •  | •  | • | • | • | ٠ | • | ' <b>+</b> | • |

1

4

7

#### PART TWO: SERVICE SUPPLY AND DEMAND

| Service Areas                  | 10 |
|--------------------------------|----|
| Existing Scheduled Air Service | 12 |
| Service Quality Concerns       | 13 |
| Service Demand Estimates       | 17 |

PART THREE: ALTERNATIVES ANALYSIS

| Service Concepts    | •  | •    | •  | ٠  | ٠   | •.  | •  | • | • | • | ٠ | • | •  | ÷ | • | • | ٠ | • | • | • | • | • | • | • | • | •  | ٠ |   | 25 |
|---------------------|----|------|----|----|-----|-----|----|---|---|---|---|---|----|---|---|---|---|---|---|---|---|---|---|---|---|----|---|---|----|
| Fleet Options       | •  | •    | •  | •  | •   | •   | •  | • | • | • | ٠ | ٠ | •  | • | • | • | • | • | • | • | ь | • | • | • | • | .• | • | • | 32 |
| Evaluation Criteria | ar | nd . | Te | ch | nic | ĮUe | es | ٠ | • | • | ٠ | • | .• | ٠ | • | • | ٠ | • | ٠ | ٠ | • | • | ¢ | • | • | •  | • |   | 35 |

#### PART FOUR: RECOMMENDATIONS

|                     |      | . • |  |   |   |   |   |   |   |   |   |   |   |   |   |     |   |   | • |   |   |   |   |  |    |
|---------------------|------|-----|--|---|---|---|---|---|---|---|---|---|---|---|---|-----|---|---|---|---|---|---|---|--|----|
| Findings and Conclu | sior | ns. |  | • |   | • | • | • | • |   | • | • | ٠ | ¢ |   | • . | • | • | • | ٠ | ٠ | ٠ | • |  | 47 |
| Recommendations     | • •  |     |  | • | • | • | • |   |   | • | • | • |   |   | • |     | • | • | • | • | ٠ | • | • |  | 48 |

APPENDICES

| Α. | Glossary                                               | 53 |
|----|--------------------------------------------------------|----|
| в. | References                                             | 54 |
| С. | Service Area Population, 1979–90                       | 55 |
| D. | Certificated Air Service in Michigan, March, 1980      | 56 |
| Ε. | Passengers, Mail and Cargo for Air Carrier Airports    |    |
|    | JanDec. 1979/78, 1975/74, and 1970/69                  | 58 |
| F. | Short Haul (Commuter) Air Service, March, 1980         | 64 |
| G  | Michigan Short-Haul (Commuter) Air Service, January I  |    |
|    | through December 31, 1979                              | 65 |
| H. | Comparative Accident Data: 1969-78                     | 66 |
| Ι. | Demand Estimates for Low and Moderate Activity Service |    |
|    | Areas: 1990                                            | 67 |
| J. | History of Scheduled Commuter Service, 1968-80         | 70 |

## LIST OF FIGURES

### Figure

| ١. | Fuel Consumption of Composite Commercial Passenger Aircraft |
|----|-------------------------------------------------------------|
|    | As Influenced by Trip Length                                |
| 2. | Annual Enplaned Passengers and Real U.S. Gross National     |
|    | Produc 1968-79                                              |

5

|          | 3.  | Service Areas Delineation and Type                          | 11  |
|----------|-----|-------------------------------------------------------------|-----|
|          | 4.  | Scheduled Air Service: May 1980                             | 18  |
|          |     |                                                             |     |
|          | 5.  | Non-Stop Scheduled Air Service for Selected Gateways, March |     |
|          |     | 1980                                                        | 19  |
|          | 6.  | Communities with Potential for Scheduled Air Service        | 24  |
|          | 7.  | Do Nothing Service Concept                                  | 26  |
| ,        | 8.  | Trunk-Feeder Service Concept                                | 26  |
| .*<br>©} | 9.  | Trunk Extensions Service Concept                            | 29  |
|          | 10. | Community Coupling Service Concept                          | 29  |
| •        | ].  | Regional Airport Service Concept                            | 30  |
|          | 12. | Alternative Modes Service Concept                           | 30, |
|          | 13. | Direct Operating Costs for a Boeing 737-200, 1979           | 36  |
| r        | 14. | Air/Intercity Bus Travel Time and Fare Ratios               | 38  |
| •        | 15. | Air/Automobile Travel Time and Fare Ratios                  | 39  |
|          | 16. | Air/Intercity Rail Travel Time and Fare Ratios              | 40  |

. .

iii

# LIST OF TABLES

# <u>Table</u>

| 1. | Selected Direct Operating Costs and Performance Data for                                 |    |
|----|------------------------------------------------------------------------------------------|----|
|    | the Boeing 737-200 Aircraft, 1974-80                                                     | 3  |
|    |                                                                                          |    |
| 2. | Composition of U.S. Air Carrier Fleet, 1960–79                                           | 4  |
| 3. | Comparative Data for U.S. Air Carriers, 1978                                             | 6  |
| 4. | Characteristics of Service Area Types                                                    | 10 |
| 5. | Enplaned Passengers, Mail and Cargo Tons (000) for<br>Certificated Air Carriers, 1970–79 | 13 |
|    |                                                                                          |    |
| 6. | Air Transportation Accidents Throughout the World,                                       |    |
|    | 1975-79                                                                                  | 16 |
| 7. | Michigan Air Service Demand Parameters                                                   | 21 |
| 8. | Scheduled Air Service Demand Estimates, 1990                                             | 22 |
| 9. | Selected Aircraft Currently in Scheduled Service                                         | 32 |

iv

| 1                                               | 0.     | Selected Aircraft Under Development                   | 33     |
|-------------------------------------------------|--------|-------------------------------------------------------|--------|
| 1<br>1                                          | 1.     | Existing Scheduled Air Service to Chicago and Detroit |        |
| • · · ·                                         |        | Gateways Compared to Other Modes, March, 1980         | 38     |
| •                                               |        |                                                       |        |
| . 14                                            | 2.     | Impact Analysis Results for Each Service Concept      | 46     |
| $e^{-2\pi i \epsilon}$ , $e^{-2\pi i \epsilon}$ |        |                                                       |        |
| · · ·                                           |        |                                                       | • .    |
|                                                 |        |                                                       |        |
|                                                 |        |                                                       | ·      |
|                                                 | ·<br>· |                                                       | ·      |
|                                                 |        |                                                       | ·      |
|                                                 |        |                                                       | · ·, · |
|                                                 |        |                                                       |        |
|                                                 |        |                                                       |        |
|                                                 | ·      |                                                       | . *    |
|                                                 | . •    |                                                       | ÷.     |
|                                                 |        |                                                       |        |
|                                                 |        |                                                       |        |
|                                                 |        |                                                       |        |
| Α <sup>πο</sup> λ                               |        |                                                       |        |
| tan J                                           |        |                                                       |        |

# ISSUE STATEMENT

# part one

STORES.

#### <u>PARTONE</u>

#### <u>ISSUE STATEMENT</u>

Michigan is facing a transportation crisis. Nationwide, commercial air transportation is currently responding to regulatory reform, fuel price escalation, limited fuel availability, and the economy. Thus far, the effect has been a tendency for larger carriers to reduce service in low density smaller markets in favor of increased service in higher density larger markets. Short-haul service has given way to longer distances between stops resulting in the affected communities experiencing loss of service or replacement of service by a smaller carrier. Michigan has not escaped. Several communities are confronted with the possibility of a substantial reduction in scheduled air service. More could be in the not too distant future.

The ability to manage in this crisis rests in attaining a position capable of directing, rather than reacting to, events. This requires an understanding of the forces at work, existing service levels, community scheduled air service needs, and desirable courses of action. This document represents the first step in establishing such a position.

#### SOME FORCES AND THEIR IMPACT

#### Regulatory Reform

The Airline Deregulation Act of 1978 has been described as the most significant Federal Aviation legislation enacted in four decades (1). The purpose of this Act which amends the Federal Aviation Act of 1958 is "to encourage, develop, and attain an air transportation system which relies on competitive market prices to determine the quality, variety, and price of air services." The Act provides for (1) automatic entry to one new non-stop route per year through 1981 to fit, willing and able air carrier applicants within 60 days, (2) elimination of routes with 90 days notice (3) free market entry and exit effective 31 December 1981 excepting provision of essential air service, (4) a fare structure controlled only by the market effective I January 1983, (5) termination of the Civil Aeronautics Board (CAB) by I January 1985, and (6) guarantee of essential air service through October 1988 to those communities now served at a service level determined by the CAB.

Major changes have already occurred in the nation's air transportation system since enactment of the Airline Deregulation Act on 24 October 1978. Nationwide, in the first 11 months since passage (2)...

o 135 notices of service suspensions affecting 163 cities were served on the CAB.

- o CAB allowed 61 notices to take effect. 45 to
- o Competitive service appeared in 466 markets and disappeared in 249 others.
- o Over 20 medium-sized cities have lost substantial amounts of air service.
- A total of 23 former intrastate and commuter air lines have become certificated air carriers.
- o In California alone, 32 of the 42 air carrier communities have suffered service reductions of at least 20 percent.
- There are 134 fewer small communities nationwide accessible to Michigan's citizens by regular and convenient air service.
- o The substitutions being allowed by the CAB, commuter carriers for either trunk or regional carriers, do not provide comparable numbers of seats and enroute times between points.
- o The CAB's Essential Air Service guidelines, procedures and rulings do not provide for mail and cargo.

It is difficult to predict reliably the full impact of deregulation. It is likely that a restructuring of the airline industry will occur with carriers moving out of some markets and into others. The lower-density, short-haul markets are most sensitive to such changes. In these markets, a trend away from larger to small capacity aircraft is emerging. One impediment to development of new short-haul markets by smaller airlines is a distinct void in aircraft equipment having capacities in the range of 20 to 50 passengers. However, manufacturers are beginning to recognize this market potential and are planning to develop an adequate fleet in this range.

Also, deregulation will probably influence, and be influenced by, social and economic factors. Future air service changes should be examined with due consideration being given to promoting the social and economic well-being of Michigan's communities.

#### Fuel Pricing and Availability

Aviation fuel costs have quadrupled in the last six years. In 1974, fuel cost \$0.21 per gallon and accounted for 14 percent of the total airline operating costs. Today, fuel costs approximately 0.85 per gallon and represents nearly 30 percent of the total airline operating costs. In terms of flight or direct costs, fuel comprises over half (about 52 percent) for larger turbojet aircraft with a typical flight crew representing 20 percent. The trends in fuel costs, crew costs, and selected performance data for Boeing 737-200 are indicated in Table. 1.

| Category                                                                                                                                      | 1974                                            | 1978                                            | <u> </u>                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------------------------|
| Aircraft Operating Cost (dollars/block hour)<br>Fuel<br>Crew<br>Other<br>Total                                                                | \$195.00<br>151.00<br><u>271.00</u><br>\$617.00 | \$349.00<br>240.00<br><u>331.00</u><br>\$920.00 | \$ 686.00<br>264.00<br><u>364.00</u><br>\$1,314.00 |
| Performance Data<br>Fuel Consumption (gallons/block hour)<br>Fuel Cost (dollars/gallon)<br>Stage Length (miles)<br>Passenger Capacity (seats) | 857.00<br>.21<br>290.00<br>94.00                | +49%<br>857.00<br>.36<br>304.00<br>96.00        | 7,73°,<br>857.00<br>.85<br>304.00<br>96.00         |

# Table 1. Selected Direct Operating Costs and Performance Data for the Boeing 737-200 Aircraft, 1974-80

Notes:

<u>I</u>/Estimated based on existing data.

Sources:

s: Civil Aeronautics Board, "Aircraft Operating Cost and Performance Report," July 1976 and July 1979 editions; U.S. Department of Energy, March 1980.

During this same period, use of fuel by air carriers has increased steadily. Since the oil embargo of 1973, the following amounts of fuel were consumed annually nationwide by air carriers ...

| Year | Gallons Consumed<br>( <u>In_billions</u> ) | Revenue Passenger<br><u>Miles/Gal</u> | Load Factors    |
|------|--------------------------------------------|---------------------------------------|-----------------|
| 1974 | 9.5                                        | 19.5                                  | 54.9            |
| 1975 | 9.5                                        | 19.5                                  | 53.7            |
| 1976 | 9.8                                        | 20.7                                  | 55.4            |
| 1977 | 10.3                                       | 21.2                                  | 55.9            |
| 1978 | 10.6                                       | 23.7                                  | 61.5            |
| 1979 | 11.2 (estimate)                            | 25.0 (estimate)                       | 63.1 (estimate) |

Source: Airline Transport Association

These figures comprise somewhat less than 4 percent of the total fuel consumed annually in the United States (4).

Fuel consumption per seat mile, on the other hand, has decreased. Increased use of larger aircraft, longer stage lengths, and higher load factors have resulted in a significant increase in passenger seat miles per gallon of fuel consumed. Figure 1 illustrates the relationship between fuel consumption per seat mile and stage lenath. (5)

#### The Economy

The provision and use of scheduled air service is dependent, to a great extent, on economic factors. One component of air service demand is quite insensitive to price and is related to real gross national product (GNP). During the past decade real GNP and enplaned passengers paralleled one another until 1977. Since then the growth of the national economy has tapered off while enplanements have increased markedly (see Figure 2). Discretionary air travel is highly sensitive to fare structure and recent experiments in fare reductions for certain kinds of passengers have resulted in dramatic increases in demand. Because it is difficult to estimate the national economy and what will happen to fare structures in the future, it is unclear whether recent trends in enplanements will continue.

#### THE FLEET AND ITS USE

The domestic trunk and local service carrier fleet in the United States is becoming an all-jet aircraft fleet. Nearly 90 percent of the fleet (see Table 2) is comprised of turbojet aircraft with the percentage leveling off in recent years,

| Tupo of     | . 19 | 960   | <u> </u> | 965   | 19   | 970                | 19   | 975   | <u> </u> | 979   |
|-------------|------|-------|----------|-------|------|--------------------|------|-------|----------|-------|
| Aircraft    | No.  | %     | No.      | %     | No.  | %                  | No.  | %     | No.      | %     |
| Turbojet    | 202  | 9.5   | 725      | 34.1  | 2136 | ,<br>79 <b>.</b> 7 | 2114 | 84.7  | 2291     | 87.3  |
| Turboprop   | 230  | 10.7  | 312      | 14.7  | 374  | 14.0               | 260  | 10.4  | 256      | 9.8   |
| Piston      | 1678 | 78.6  | 1067     | 50.2  | 153  | 5.7                | 114  | 4.6   | 73       | 2.8   |
| Rotary-wing | 25   | 1.2   | 21       | 1.0   | 16   | 0.6                | 7    | 0.3   | 3        | 0.1   |
| Total       | 2135 | 100.0 | 2125     | 100.0 | 2679 | 100.0              | 2495 | 100.0 | 2623     | 100.0 |

### Table 2. Composition of U.S. $\frac{1}{2}$ Air Carrier Fleet. 1960-79

1/ Includes Certificated Route Air Carriers; Note: Supplemental Air Carriers, and **Commercial Operators** 

Source:

Department of Transportation, Federal Aviation Administration



FIGURE 2. ANNUAL ENPLANED PASSENGERS AND REAL U.S. GROSS NATIONAL PRODUCT, 1968-79-

These large transport-type aircraft operate most efficiently at high speeds and altitudes. To achieve these features, route segments must be long.

An aviation firm chooses its fleet mix based upon the market segments it wishes to serve. In general, the domestic trunk carriers operate three and four engine, high capacity aircraft over relatively long route segments between the largest cities in the country. The local service carriers operate two and three engine, smaller capacity aircraft over shorter route segments connecting medium-sized communities to the largest cities in the country. The short-haul (commuter) air carriers operate one and two engine, small capacity aircraft over very short route segments connecting the smaller communities with the medium-sized communities and largest cities in the country. An overview of the nature of these three types of carriers is presented in Table 3.

|                                       | Domestic<br>Trunk | Local<br>Service                      | Short Haul<br>(Commuters) |
|---------------------------------------|-------------------|---------------------------------------|---------------------------|
|                                       |                   | 0                                     | 250                       |
| Number of Operators                   |                   | 9                                     | 258                       |
| Passenger Enplanements (millions)     | 196.1             | 48.6                                  | 10.2                      |
| Passenger Miles (billions)            | 163.6             | 16.7                                  | 1.1                       |
| Airports Served                       | 189               | 484                                   | 819                       |
| Stage Length (miles)                  | 602               | 213                                   | 111                       |
| Average Annual Passenger Growth Rate  | 6.8%              | 8.7%                                  | 11.1%                     |
| · · · · · · · · · · · · · · · · · · · |                   | · · · · · · · · · · · · · · · · · · · |                           |

#### Table 3. Comparative Data for U.S. Air Carriers, 1978

Sources: Air Transport Association and Commuter Airline Association

Use of larger aircraft on route segments for which they are not designed results in operating costs diseconomies and aircraft underutilization. Shorter route segments result in ground times approaching flight times. This means the aircraft produces revenues a small portion of the time and, therefore, the return on investment for this aircraft is reduced. The result is an increase in that portion of direct operating costs related to aircraft depreciation. Consequently, it is rational for management to seek maximum aircraft utilization to reduce operating costs and keep fares reasonable, thereby maximizing revenues and profits.

Rising fuel costs and an uncertain future regarding fuel availability have been other determinants in a move toward longer route segments. Both domestic trunk and local service carriers have sought to reduce the number of short route segments by terminating some routes entirely and eliminating intermediate stops on others.

#### THE NET FFFECT

#### Service

The effect on small community air service is ominous. The economics of the larger air carrier firms are dictating service curtailments in these markets resulting in poorer quality air service. This is not unique to air transportation. Intercity bus, intercity rail, and local bus systems have been faced with similar conditions. Nor is it one that was unexpected. The Civil Aeronautics Board studied the economics of small community air service as early as 1971 (6).

United Airlines has curtailed some of its service from Michigan communities to two major hubs, Chicago and Cleveland, Though the reasons for the actions of the airline may be understood in light of the above factors, the affected communities may be left with less than satisfactory air service for passengers, cargo, and mail. The accessibility of these communities to national and international markets could be severely decreased. The net result of the projected service cutbacks at Lansing alone will be a 38 percent reduction in enplanement capacity with similar effects to cargo and mail service. For an airport which enplanes about 220,000 passengers 1361000 pussengers 1361000 (2035 = 84,000) = 1615 [wit = 230/DAY annually, this can be devastating.

#### The User

Major reductions in seat availability will likely lead to serious difficulties in procuring seat reservations on many flights and connections at gateway airports (large hubs) for continuing flights are likely to be less convenient. This can result in long passenger delays at nearby airports, increased travel times and costs for the passenger, and trips which may result in overnight stays which might have otherwise been avoided. But the air traveler is not the only segment of the community adversely affected.

#### The Community and Its Airport

The airport and scheduled air service stimulate the economic environment of the region they serve. They provide employment and attract industry which in turn provides employment. Less service to a community will adversely impact the economy of the community and the state.

Earlier decisions to invest in the improvement and expansion of airports are being Airport activities generate significant revenues through Federal questioned. enplanement funds, landing fees, space rental, parking and other concessions. These revenues finance airport construction and operations to a significant degree. A loss in these revenue sources could increase the cost burden on the community.

#### The Need For Planning

The problems facing Michigan communities now are not unique. Service curtailments and service abandonments have occurred frequently throughout the United States. The concerns being expressed by the Michigan citizenry now are not unlike those heard in the past. At the same time, short-haul aviation services have proven to be a valuable transportation service in many locations. Successful shorthaul services are being provided by domestic trunk, local service, and commuter carriers. The type of service provided is dictated by many factors including available aircraft equipment, demand level and density, direct and indirect operating costs, fares, and service segment lengths. The key to meeting immediate and future air transportation needs of Michigan is matching service design to service needs.

# SERVICE SUPPLY AND DEMAND

part two

#### PARTTWO

# SERVICE SUPPLY AND DEMAND

The quality and level of scheduled air service should be commensurate with demand. In order to determine whether a balance exists between supply and demand, one must examine the extent of service areas and their characteristics, inventory the existing service (quantity and quality), and estimate the demand for scheduled air service.

Э

#### SERVICE AREAS

Michigan has been divided into 21 service areas for analysis purposes. These areas were determined using 60 minute travel times on the State highway system from each of Michigan's 22 air carrier airports. County boundaries were honored where possible because of the ready availability of forecast data for counties, and counties often provide the best basis for financing airports and air service. In the case of the Detroit metropolitan area, it was assumed that the area is served by both Detroit Metropolitan and Detroit City airports. Figure 3 depicts the 21 service areas and 22 air carrier airports.

These service areas have been classified as low, moderate, and high activity areas. Population, population density, and annual enplanements were used to determine the level of activity characterizing each service area (see Table 4). One service area (metropolitan Detroit) is classified as a high activity area, 10 as moderate, and 10 as low activity service areas. All but one of the moderate activity service areas are located in the southern half of Michigan's lower peninsula (see Figure 3\*). Each service area is listed by activity classification in Appendix C together with the number of counties comprising each service area and existing and forecasted population figures.

| Type of<br>Service<br>Area | Population<br>(000) | <u> </u> / Population<br>Density<br>(Pop/Sq Mi) | Annual<br>Enplaneme<br>(000) | ents Associated<br>Cities                                                                                                            |
|----------------------------|---------------------|-------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Low<br>Activity            | Under 100           | Under 50                                        | Under 50                     | Alpena, Escanaba, Hancock/<br>Houghton, Iron Mountain,<br>Ironwood, Manistee, Marquette,<br>Menominee, Pellston, Sault Ste.<br>Marie |
| Moderate<br>Activity       | 100-1000            | 50-1000                                         | 50-1000                      | Battle Creek, Benton Harbor,<br>Flint, Grand Rapids, Jackson,<br>Kalamazoo, Lansing, Muskegon,<br>Traverse City, Tri-City            |
| High<br>Activity           | 1000+               | 1000+                                           | 1000+_                       | Detroit                                                                                                                              |

Table 4. Characteristics of Service Area Types

Note: <u>I</u>/ Population per square mile for the county in which the airport is located. Source: Michigan Department of Transportation, Aviation Planning Section.



#### EXISTING SCHEDULED AIR SERVICE

#### Certificated Air Carriers

Michigan, excepting Detroit-Metro, is presently served by several certificated air carriers including: Republic, United, Air Wisconsin and Wright Airlines. Republic Airlines provides scheduled air service to 20 of the 21 service areas and 20 of the 22 Michigan air carrier airports (all but Battle Creek and Detroit City). United Airlines serves five of Michigan's service areas and air carrier airports (Detroit Metro, Flint, Grand Rapids, Lansing and Tri-City). Air Wisconsin serves two areas (Battle Creek and Detroit). Wright Airlines provide service to one service area and air carrier airport (Detroit City). Appendix D depicts the routes flown and communities served by the four airlines.

Frequency of service varies greatly. Daily departures provided by certificated air carriers at low activity service areas range from one at Manistee to six in several Upper Peninsula service areas. In moderate activity service areas, the number of daily departures ranges from 4 at Jackson to 34 at Grand Rapids. Over 300 departures occur daily in Detroit.

Nearly 7 million passengers were enplaned on certificated air carrier flights departing from the 21 service areas in 1979... a 9.5 percent increase over 1978. Of these, the high activity service area realized nearly 5.4 million enplanements, the 10 moderate activity service areas over 1.4 million, and the 10 low activity service areas 0.2 million.

Air mail and air cargo (enplaned and deplaned) in the 21 service areas by the certificated air carriers declined by 1.2 and 11.1 percent respectively in 1979 as compared to 1978. Some 96.2 million pounds of mail and nearly 190 thousand tons of cargo were enplaned and deplaned during the past year. Of this 190 thousand tons of cargo, the high activity service area experienced an enplaning and deplaning of 93.7 percent the moderate activity service areas 5.3 percent and the low activity service areas 1.0 percent. Passenger, mail and cargo figures for the 3 service area types and the 22 Michigan air carrier airports are presented in Table 5 and Appendix E respectively.

| Type of              |       | 1970   | ·      |       | 1975   |       |       | 1979      |       |
|----------------------|-------|--------|--------|-------|--------|-------|-------|-----------|-------|
| <u>Service</u> Area  | Pass. | Mail   | Cargo_ | Pass. | Mail   | Cargo | Pass. | Mail      | Cargo |
| Low Activity         | 118   | 910    | 2      | 145   | 1,167  | 2     | 190   | 1,431     | 2     |
| Moderate<br>Activity | 767   | 6,864  | 17     | 985   | 6,411  | 10    | 1,415 | 4,870     | 10    |
| High<br>Activity     | 3,546 | 47,104 | 155    | 3,673 | 74,967 | 138   | 5,372 | . 89, 913 | 178   |
| Total                | 4,431 | 54,878 | 174    | 4,803 | 82,545 | 150   | 6,977 | 96,214    | 190   |

Table 5. Enplaned Passengers, Mail and Cargo Tons (000) for Certificated Air Carriers, 1970-1979

Source: Michigan Department of Transportation, Aviation Planning Section

#### Short-Haul (Commuter) Airlines

Michigan is presently served by six short-haul airlines including Coleman Air Transport, Comair, Heussler Air Service, Midstate Airlines, Simmons Airlines, and Skyline Motors Aviation Service. Simmons Airlines provides service to 4 of the 21 service areas (Hancock/Houghton, Lansing, Marquette and Traverse City). Midstate Airlines serves the Muskegon service area. The other commuter airlines serve the Detroit service area using Detroit Metro. Appendix F displays the routes flown and communities served as of March, 1980.

The highest daily service frequency provided by these airlines at any Michigan community is three flights per day. This is less than that provided by certificated air carriers in most cases. Lower air service demand in the short-haul airlines' markets due to smaller community size, the supplemental nature of the short-haul airlines' service in some areas, smaller craft size, and smaller fleets contribute to the relatively low number of departures and passengers carried. Only 64,000 passengers were transported in 1979 by short-haul carriers serving Michigan with two-thirds of these enplaned or deplaned at Detroit Metro Airport. Passengers and cargo carried in 1979 by short-haul carriers to and from Michigan communities are presented in Appendix G.

#### SERVICE QUALITY CONCERNS

Many characteristics of scheduled air service reflect its quality and service quality affects patronage. Nine of the more important characteristics are discussed below.

#### Frequency

Frequent departures and arrivals per day will probably better meet the transportation demand of a particular service area. Often a community requiring 100 seats per day is poorly served if these seats are provided by a single flight using a 100 passenger aircraft. This need would be better met with 5 flights per day averaging 20 available seats.

#### Timing

The scheduled times of flight departures and arrivals are important to the air traveler. Two considerations for the timing are direct flights to communities of interest and connecting flights. The direct flights preferably provide the business traveler the opportunity to leave home in the morning, fly to the community of interest, conduct a day's business, and return home the same day. Flights to hub airports should be timed to provide the maximum number of connections with the minimum lay-over time.

Sometime airlines provide air service based on convenience of aircraft scheduling and positioning with little or no regard to the true needs of the community. The result is often inadequate service and low boarding figures as many potential air travelers use other modes of transportation to make the entire trip or to access a more distant airport with better service.

#### Equipment

The size, type, and condition of the aircraft used to provide the service are of critical importance to the service provider and user. The size of the equipment should be matched to the market requirements to achieve the most economical utilization. It is unrealistic to ask for jet service using 100 passenger aircraft if the market will only produce 10,000 enplanements per year.

Also, the CAB does not require pressurized aircraft for replacement carriers providing Essential Air Service. The reasons given were the shortage of pressurized equipment and the fact that pressurization is not needed on short-haul flights except under extreme flying conditions such as high altitude locations.

Likewise, the CAB does not consider air freight transportation needs in its determinations of Essential Air Service. This could lead to problems in locations where smaller aircraft might adequately satisfy passenger demand but their limited lift capabilities might not permit the meeting of air freight demands. This problem could be overcome by scheduling separate freight runs or having an air freight operator provide air freight service.

In addition, the condition of the equipment is an important factor in gaining and retaining public acceptance. Faded paint, dirty aircraft, and torn upholstery will diminish public confidence in the airline's operation.

#### Markets

Accessibility to communities of interest by scheduled air service is a vital concern of many air travelers. These communities could be either final destinations or transfer points. Sometimes these city-pairs are obvious; other times an intensive market study might be needed in locations without air service, or where the existing service has not been responsive to the market, to determine the principal communities of interest.

#### Intersystem Compatibility

Airlines providing service to a community should be compatible with the entire system so as to provide convenient access to the national air transportation network. This is especially essential for commuter airlines which are often not housed in the main terminal of a major airport, but are relegated to inadequate quarters in a corner of the field. This compatibility includes interline agreements with major carriers for baggage transfer and through-ticketing, access to the computerized reservations network, passenger transfer between commuter terminal and main terminal, and joint fare agreements.

Joint fare agreements are of special importance to the budget-minded traveler. The impact of joint fares can be illustrated using a Lansing to Atlanta flight.

The cost of two separate tickets would be:

| Lansing – Detroit | \$ 41.00 |
|-------------------|----------|
| Detroit - Atlanta | 104.00   |
| Total             | \$145.00 |

The joint fare or connecting ticket Lansing - Atlanta is \$112.00 . . . a savings of \$33.00.

#### Safety

Establishing and maintaining an excellent safety record is necessary for a successful airline operation. This requires not only compliance with the federal and state regulations governing operations and maintenance of aircraft in scheduled service, but also often exceeding minimum standards set by such regulations for pilot training, aircraft equipment (weather radar, etc.), preventive maintenance, and other. Operational safety can also be affected by the airport facilities, length and condition of the runway, adequate snow removal, runway lighting, and radio communications.

The 1979 scheduled air service accident figures are slightly higher than the average over the last five years. Certificated air carriers, using the five year averages (see Table 6), account for 85 percent of the fatalities. However, the commuter airlines account for 76 percent of the accidents. One trend of note is that the number of certificated air carrier accidents are decreasing while the reverse is true for commuter airlines. This is partly due to the entry of a substantial number of additional commuter airlines into the scheduled air service market place, and a 40 percent increase in the number of hours flown by commuter airlines during this period. (7) Compared to other transportation modes, scheduled air service has fewer passenger fatalities per 100 million passenger mile (see Appendix H).

|                                       | Cer                        | tificated Air         | Carrier                        | Commuter                   |                           |                            |
|---------------------------------------|----------------------------|-----------------------|--------------------------------|----------------------------|---------------------------|----------------------------|
| Year                                  | Total<br>Accidents         | Fatal<br>Accidents    | Fatalities                     | Total<br>Accidents         | Fatal<br>Accidents        | Fatalities                 |
| 1979<br>1978<br>1977<br>1976<br>1975  | 18<br>25<br>26<br>28<br>45 | 3<br>6<br>5<br>4<br>3 | 280<br>163<br>655<br>45<br>124 | 73<br>56<br>41<br>41<br>50 | 8<br> 5<br>  <br> 1<br> 2 | 77<br>63<br>30<br>34<br>26 |
| Total                                 | 142                        | 21                    | 1,267                          | 261                        | 64                        | 230                        |
| U.S. 5 Year Avg.<br>Mich. 5 Year Avg. | 28<br>0.4                  | 4<br>0                | 253<br>0                       | 52<br>1.6                  | 13<br>0.2                 | 46<br>0.8                  |

#### Table 6. Air Transportation Accidents Throughout the World, 1975-1979

Source: Federal Aviation Administration, Flight Standards Service.

#### Dependability

Nothing erodes public confidence in scheduled air service faster than lack of dependability. Examples of this can be pointed to in some commuter air service operations who have served Michigan. Dependability is influenced by a variety of factors, many of which also relate to the safety of the operation. Proper scheduling, well-trained flight crews, adequate on-board equipment (de-icing, navaids, communications), and a good maintenance program are among them. Also of great importance are precision instrument landing systems at the airports served by air carriers to minimize the impact of adverse weather conditions on flight schedules.

#### Public Relations

Public relations can mean the success or failure of scheduled air service. One aspect of public relations is actively advertising and marketing the service to create public interest and stimulate demand. The latter could lead to improved service. A second aspect is cooperating with travel agencies, local governmental units, chambers of commerce and other business organizations, and service clubs. A third aspect of public relations is keeping ticket holders, travel agents, and airport management informed when cancellations, delays or other problems occur. Also, the stranded traveler appreciates any extra effort the airlines make to help the person arrive safely at his or her destination in spite of the problem.

#### Non-Stop and Single Plane Service

Non-stop or one-stop service to one or more gateways and single plane service to gateways and points beyond are desirable service features. These items increase the comfort and convenience of the air traveler. Eight Michigan air carrier airports have non-stop service to two or more gateways, seven to one gateway, and seven have no non-stop service to gateways. Figure 4 indicates the quality of airport access to gateways and the number of daily departures toward gateways for each of the service areas. Figure 5 depicts non-stop service from selected gateways serving Michigan to destinations throughout the country.

#### SERVICE DEMAND ESTIMATES

Demand has been estimated for enplaned passengers and cargo tons for the year 1990. Figures are for low and moderate activity service areas only. Estimates for the high activity service area, Detroit, have been developed as part of airport master plan studies in progress for Detroit Metropolitan and Detroit City airports. Those portions of Michigan outside the 21 service areas, containing 3.9 percent of the State's population, have not been included in the demand estimation process. For estimating purposes it is assumed scheduled air service will continue to be provided to all communities now served, but not to any additional communities.

#### Assumptions

The demand estimates will be valid only if the following assumptions hold:

- o Population changes will occur as presented in Appendix C.
- o All 21 service areas will continue to receive scheduled air service.
- The level of service provided will be within ranges specified in Table 7.
- o No significant changes in existing service areas will occur during the eighties.
- o The relationship between socio-economic conditions, energy cost and supply and scheduled air service will follow the trends of the 1970's through the 1980's.





| n san teran       | <b>1970</b> ×  | 2,         | 4 <i>5</i> 9 | 3,    | 283      |     |     | 16,    | 655    |
|-------------------|----------------|------------|--------------|-------|----------|-----|-----|--------|--------|
|                   | 1979           | 4,         | 537          | 6,    | 058      | E   | 58  | 9,9    | 923    |
| Total             | 1990           | 3,967      | 7,943        | 5,954 | 9,924    | 120 | 240 | 11,913 | 22 816 |
| Traverse City     |                | 172        | 344          | 258   | 430      | 12  | 24  | 516    | 1,031  |
| Saginaw           |                | 589        | 1,178        | 884   | 1,472    | 12  | 24  | 1,767  | 3,534  |
| Muskegon          |                | 412        | 823          | 618   | 1,029    | 12  | 24  | 1,235  | 2,470  |
| Lansing           |                | 467        | 936          | 700   | 1,167    | 12  | 24  | 1,401  | 2,801  |
| Kalamazoo         |                | 393        | 787          | 589   | 982      | 12  | 24  | 1,178  | 2,356  |
| Jackson           |                | 204        | 409          | 306   | 511      | 12  | 24  | 613    | 1,226  |
| Grand Rapids      |                | 647        | 1,299        | 974   | 1,624    | 12  | 24  | 1,948  | 3,897  |
| Flint             |                | 623        | 1,246        | 935   | 1,558    | 12  | 24  | 1,869  | 3,739  |
| Benton Harbor     |                | 278        | 556          | 417   | 695      | 12  | 24  | 834    | 1,668  |
| Battle Creek      |                | 182        | 365          | 273   | 456      | 12  | 24  | 547    | 1,094  |
| Moderate Activity |                |            |              |       | · .<br>· |     |     |        |        |
|                   |                | <u>.</u> . |              |       |          |     |     |        |        |
|                   | 1970           | 3          | 79           | e     | 33       |     |     | 2,     | 147    |
| · · · ·           | 1979           | 6          | 11           | ŀ,    | 021      | 4   | 1   | 1,     | 524    |
| Total             | 1990           | 681        | 1,019        | 1,009 | 1,361    | 30  | 60  | 1,697  | 3,059  |
| r-5               |                |            |              |       |          |     |     |        |        |
| Sault Ste. Marie  |                | 54         | 80           | 81    | 107      | 3   | 6   | 135    | 241    |
| Pellston          | ·              | 77         | 115          | 115   | 154      | 3   | 6   | 193    | 346    |
| Menominee         | •              | 62         | 93           | 93    | 125      | 3   | 6   | 155    | 280    |
| Marquette         |                | 96         | 145          | 144   | 193      | 3   | 6   | 240    | 434    |
| Manistee          |                | 67         | 101          | 100   | 135      | 3   | 6   | 168    | 303    |
| Ironwood          |                | 61         | 91           | 91    | 121      | 3   | 6   | 153    | 272    |
| Iron Mountain     |                | 55         | .82          | 77    | 109      | 3   | 6   | 138    | 246    |
| Hancock/Houghton  |                | 63         | 94           | 94    | 126      | 3   | 6   | 158-   | 283    |
| Escanaba          |                | 58         | 86           | 82    | 115      | 3   | 6   | 145    | 259    |
| Alpena            |                | 88         | 132          | 132   | 176      | 3   | 6   | 220    | 395    |
| Low Activity      | ente :<br>Allo |            |              |       |          |     |     |        |        |

.

ł

.....



| • • • • • • • • •                                                                                               |               | -     |                                       |          | - 1         |                |     |                  |               |
|-----------------------------------------------------------------------------------------------------------------|---------------|-------|---------------------------------------|----------|-------------|----------------|-----|------------------|---------------|
| Low Activity                                                                                                    |               | . ,   | ,                                     |          |             |                |     |                  |               |
| Alpena                                                                                                          |               | 88    | 132                                   | 132      | 176         | 3              | 6   | 220              | 395           |
| Escanaba                                                                                                        |               | 58    | 86                                    | 82       | 115         | 3              | 6   | 145              | 259           |
| Hancock/Houghton                                                                                                |               | 63    | 94                                    | 94       | 126         | 3              | 6   | 158 .            | 283           |
| Iron Mountain                                                                                                   |               | 55    | 82                                    | 77       | 109         | 3              | 6   | 138              | 246           |
| Ironwood                                                                                                        |               | 61    | 91                                    | . 91     | 121         | 3              | 6   | 153              | 272           |
| Manistee                                                                                                        | i             | 67    | 101                                   | 100      | 135         | 3              | 6   | 168              | 303           |
| Marquette                                                                                                       |               | 96    | 145                                   | 144      | 193         | 3              | 6   | 240              | 434           |
| Menominee                                                                                                       | -             | 62    | 93                                    | 93       | 125         | 3              | 6   | 155              | 280           |
| Pellston                                                                                                        | -             | 77    | 115                                   | 115      | 154         | 3              | 6   | 193              | 346           |
| Sault Ste. Marie                                                                                                |               | 54    | 80                                    | 81       | 107         | 3 ु            | 6   | 135              | 241           |
| r-5                                                                                                             |               |       |                                       |          |             |                |     | ,                |               |
| Total                                                                                                           | 1990          | 681   | , 1,019                               | 1,009    | 1,361       | 30             | 60  | 1,697            | 3,059         |
| · ·                                                                                                             | 1979          | 6     | 511                                   | 1,       | 021         | 4              | 1   | 1,               | 524           |
| ھ                                                                                                               | 1970          | . 3   | 79                                    | 6        | 33          |                |     | 2,               | 147           |
| <b>~~</b>                                                                                                       |               |       |                                       |          |             | ,              |     |                  |               |
| Moderate Activity                                                                                               |               |       |                                       |          |             |                |     |                  |               |
| Battle Creek                                                                                                    |               | 182   | 36 <i>5</i>                           | 273      | 456         | 12             | 24  | 547              | 1,094         |
| Benton Harbor                                                                                                   |               | 278   | 556                                   | 417      | 69 <i>5</i> | 12             | 24  | 834              | 1,668         |
| Flint                                                                                                           |               | 623   | 1,246                                 | 935      | 1,558       | 12             | 24  | 1,869            | 3,739         |
| Grand Rapids                                                                                                    |               | 647   | 1,299                                 | 974      | 1,624       | 12             | 24  | 1,948            | 3,897         |
| Jackson                                                                                                         |               | 204   | 409                                   | 306      | 511         | 12             | 24  | 613              | 1,226         |
| Kalamazoo                                                                                                       |               | 393   | 787                                   | 589      | 982         | 12             | 24  | 1,178            | 2,356         |
| Lansing                                                                                                         |               | 467   | 936                                   | 700      | 1,167       | 12             | 24  | 1,401            | 2,801         |
| Muskegon                                                                                                        |               | 412   | 823                                   | 618      | 1,029       | 12             | 24  | 1,235            | 2,470         |
| Saginaw                                                                                                         |               | 589   | 1,178                                 | 884      | 1,472       | 12             | 24  | 1,767.           | 3,534         |
| Traverse City                                                                                                   |               | 172   | 344                                   | 258      | 430         | 12             | 24  | 516              | -1,031        |
| Total                                                                                                           | 1990          | 3,967 | 7,943                                 | 5,954    | 9,924       | 120            | 240 | 11,913           | 2. 16         |
|                                                                                                                 | 1979          | 4,    | 537                                   | 6,       | 058         | 12             | 58  | 9,9              | 923           |
| Na in Synta                                                                                                     | 1970          | 2,    | 459                                   | 3,       | 283         |                |     | 16,              | 655           |
| n an chuir ann an ann an stàineachadh ann an stàineachadh ann an stàineachadh ann an stàineachadh ann an stàine | <b>a</b> 8 an |       | · · · · · · · · · · · · · · · · · · · | wa ter i | · •         | > <i>.1</i> ** | ,   | ίς του μεγο<br>α | • ہے۔ مہ ہ، ا |

ł

#### Demand Estimation Process

Population forecasts prepared by the Michigan Department of Management and Budget were utilized as the basis for making estimates. The following ratios, developed using relationships experienced during the 1970's, were applied to 1990 population forecasts to determine demand estimates.

- o Daily enplaned passengers/1000 population was used to determine demand for passenger service.
- o Daily available seats/1000 population was used to determine needed capacity.
- o Annual cargo tons/1000 population was used to determine demand for cargo transport using scheduled air service.

Daily departure ranges were developed from records of the number of daily departures occurring at Michigan air carrier airports during the seventies. These parameters are presented in Table 7. Future daily enplanements and seats for each low activity service area were estimated using a market share similar to that now assumed by that service area when compared to all other low activity service areas (8). The same method was used to estimate daily enplanements and seats for the ten moderate activity service areas. The results of the process were compared to the figures contained in the Essential Air Service determination (9), the FAA Aviation Forecasts: 1980-1991 (10), and the Michigan State Airport System Plan (11).

| Type of<br>Service Area | Population<br>(000) | Demand<br>(Daily<br>Enplane-<br>ments/<br>1000 Pop.) | Capacity<br>(Daily<br>Seats/1000<br>Pop.) | Frequency<br>(Daily<br>Deps.) | Annual<br>Cargo Tons/<br>1000 Pop. |
|-------------------------|---------------------|------------------------------------------------------|-------------------------------------------|-------------------------------|------------------------------------|
| Low Activity            | Under 100           | 1.0-1.5                                              | 1.5-2.0                                   | 3-6                           | 2.5-4.5                            |
| Moderate Activity       | 100-1000            | 1.2-2.0                                              | 1.5-2.5                                   | 12-24                         | 3.0-6.0                            |
| High Activity           | Over 1000           | 3.5+                                                 | 5.0+                                      | 300+                          | 35+                                |

 Table 7.
 Michigan Air Service Demand Parameters

Source: Michigan Department of Transportation, Aviation Planning Section.

#### **Demand Estimates**

Demand estimates for each low and moderate activity service area are presented in Table 8. For low activity service areas the number of daily enplaned passengers will increase up to 67 percent, and annual cargo tons will increase up to 100 percent by 1990. Daily available seats and daily departures are also likely to increase. In moderate activity service areas, daily enplaned passengers will increase up to 75 percent and annual cargo tons could more than double.

| Service Area                                                                                                                                              |                      | Do<br>Enp<br>Passo<br>Min                                       | aily<br>Ianed<br>engers<br>Max.                                         | Do<br>Availab<br>Min.                                                 | aily<br>Die Seats<br>Max.                                              | Depc<br>Min.                                                       | aily<br>irtures<br>Max.                                            | An<br>Cargo<br>Min                                                               | nual<br>o Tons<br>Max.                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Low Activity<br>Alpena<br>Escanaba<br>Hancock/Houghton<br>Iron Mountain<br>Ironwood<br>Manistee<br>Marquette<br>Menominee<br>Pellston<br>Sault Ste, Marie | -<br>-               | 48<br>75<br>99<br>65<br>41<br>10<br>150<br>37<br>109<br>47      | 71<br>112<br>148<br>97<br>61<br>15<br>225<br>56<br>163<br>71            | 81<br>112<br>148<br>97<br>61<br>15<br>225<br>56<br>163<br>71          | 96<br>150<br>198<br>130<br>82<br>20<br>300<br>74<br>218<br>94          | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 6 6 6 6 6 6 6 6                                                    | 220<br>145<br>158<br>138<br>153<br>168<br>240<br>155<br>193<br>135               | 395<br>259<br>283<br>246<br>272<br>303<br>434<br>280<br>241          |
| Total                                                                                                                                                     | 1990<br>1979<br>1970 | 681<br>6<br>3                                                   | ,019<br>  <br>79                                                        | 1,019<br>1,<br>6                                                      | ,362<br>02 <br>33                                                      | 30                                                                 | 60<br>41                                                           | 1,697<br> ,<br>2,                                                                | 3,059<br>524<br>147                                                  |
| Moderate Activity<br>Battle Creek<br>Benton Harbor<br>Flint<br>Grand Rapids<br>Jackson<br>Kalamazoo<br>Lansing<br>Muskegon<br>Traverse City<br>Tri-City   | 300<br>800           | 100<br>150<br>425<br>1,600<br>500<br>775<br>300<br>500<br>1,334 | 167<br>250<br>709<br>2,669<br>83<br>834<br>1,293<br>500<br>375<br>1,000 | 125<br>188<br>531<br>2,000<br>63<br>625<br>969<br>375<br>625<br>1,667 | 206<br>312<br>885<br>3,333<br>104<br>1,042<br>1,615<br>625<br>12<br>12 | 12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>24<br>24     | 24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>516<br>1,767 | 547<br>834<br>1,869<br>1,948<br>613<br>1,178<br>1,401<br>1,235<br>1,031<br>3,534 | 1,094<br>1,668<br>3,739<br>3,897<br>1,226<br>2,356<br>2,801<br>2,470 |
| Total                                                                                                                                                     | 990<br> 979<br> 970  | 5,000<br>4,<br>2,                                               | 9,849<br>537<br>459                                                     | 6,251<br>6,<br>3,                                                     | 9,924<br>058<br>283                                                    | 120<br>                                                            | 240<br>58                                                          | 11,913<br>9,<br>16,                                                              | <b>23,</b> 816<br>923<br>,655                                        |

#### Table 8. Scheduled Air Service Demand Estimates, 1990

Source: Michigan Department of Transportation, Aviation Planning Section.

Both existing services and the 1990 demand estimates are considerably higher than those provided for by the Civil Aeronautics Board as Essential Air Service (EAS). Essential Air Service guarantees about 70 percent of seats available today and some 50 percent of the departures.

| 10 Low Activity                      | Total Daily            | Total Daily   |
|--------------------------------------|------------------------|---------------|
| Service Areas                        | <u>Seats Available</u> | Departures    |
| Existing Service (1979)              | 1,021                  | 41            |
| EAS                                  | 697                    | 2!            |
| Demand Estimates (1990)              | 1,019-1,362            | 30-60         |
| 5 Moderate Activity<br>Service Areas |                        |               |
| Existing Service (1979)              | 1,418                  | 56            |
| EAS                                  | 376                    | not specified |
| Demand Estimates (1990)              | 1,376-2,283            | 60-120        |

A service area comparison to the Essential Air Service determinations (9) is presented in Appendix 1.

It should be noted that the enplaned passengers and cargo ton estimates reflect percentage increases somewhat higher than the revised FAA Aviation Forecasts for the nation (10). The FAA forecasts for the United States domestic revenue passenger enplanements for the year 1990 are 64 percent higher than the 1979 estimated figures and the cargo ton estimate is 94 percent higher.

|                                   |   | 1979 to 1990 % Increase |                         |               |  |  |  |  |
|-----------------------------------|---|-------------------------|-------------------------|---------------|--|--|--|--|
|                                   |   | 10 Low Activity         | 10 Moderate Activ       | ity FAA       |  |  |  |  |
|                                   | · | Service Areas           | Service Areas           | United States |  |  |  |  |
| Enplaned Passengers<br>Cargo Tons |   | Up to 67%<br>Up to 100% | Up to 75%<br>Up to 140% | 64%<br>94%    |  |  |  |  |

While the upper limit of the 1990 cargo ton estimate for the 10 moderate activity service areas is 140 percent over the 1979 figures, this actually is only a 43 percent increase when compared to 1970.

#### Service Points

Several additional communities should be considered for scheduled air service. These communities are generally located outside or near the periphery of the 21 existing service areas. Figure 6 depicts these communities. Some of these have had scheduled air service in the past but do not have service now.


# ALTERNATIVES ANALYSIS



part three

#### <u>PART THREE</u>

## ALTERNATIVES ANALYSIS

A variety of concepts that might be useful to influence scheduled air service should be explored. This involves consideration of alternate modes as well as several air transportation service level options. In order to manage this complex analysis, a series of steps must be undertaken:

I. Identifying a range of possible service levels,

2. Exploring fleet considerations, and

3. Establishing and applying a set of criteria in evaluating all options.

#### SERVICE CONCEPTS

Several alternatives may be considered for state level action that could be taken to influence future scheduled air service. These would range from a "do nothing" approach to exercising direct intervention in a variety of ways. The following six categories of potential actions are not mutually exclusive. Some may work well in some circumstances and in other instances another alternative or combination of actions may be most useful.

#### Do Nothing

The do nothing concept involves allowing scheduled air service to be shaped in the future in the way it has in the past. Regulatory reform in the form of free market entry and exit and Essential Air Service guarantees will continue to influence the level and extent of Michigan's air service system as will fuel availability, fuel price, and economic conditions. Advantages of this approach include: (1) cost effectiveness as the free enterprise system and the law of supply and demand will shape scheduled air service, (2) fuel efficiency as smaller airdraft will probably continue to replace larger aircraft on the shorter route segments, and (3) little burden economically on already limited State and Federal funds. Disadvantages include: (1) inconvenience and delays caused by continued congestion at some gateways, (2) no assurance that a suitable level of scheduled air service will be maintained on a continuous basis particularly in smaller markets, and (3) difficulty in increasing scheduled air service to presently served communities or providing service to new communities when demand warrants, due to the trend of airlines to consolidate and use larger aircraft.

In Michigan this could mean lower levels of service and loss of jet service for many communities. Also, several communities with no scheduled air service at the present time may have difficulty obtaining such service due to lack of Federal,







State and local funding. Congestion at Chicago's O'Hare Airport will continue to cause delays even with some relief provided by continued coupling of communities to bypass Chicago in favor of a more distant gateway (see Figure 7).

Michigan's existing scheduled air service system is a mix of trunk and short-haul carrier service. East and west gateways are accessed by Michigan communities using both types of service. Access to southern gateways is afforded only through the east and west gateways. One example of this is the single plane service provided to the south from Grand Rapids to Miami through Pittsburg. Much of the short-haul service feeds the trunk carrier system with this primarily occurring at the near gateways and to a lesser extent at Michigan's small hubs. Some service segments are extensions of the trunk system beyond the gateways to selected Michigan communities.

#### Trunk-Feeder

Trunk-feeder service describes a feeder system consisting primarily of smaller aircraft flying short stage lengths. Air passengers are transported from non-gateway communities to the gateways where connections are made with the trunk carrier system. The feeder service is different from the trunk carrier system, which is comprised primarily of larger aircraft flying longer stage lengths to reach the passenger's ultimate destination. The feeder system can be operated by either short-haul or trunk carriers. This concept has been successfully pioneered by Allegheny Airlines and the Allegheny commuter system in the eastern United States. Some advantages of the trunk feeder concept are: (1) cost effectiveness gained through using smaller aircraft and minimum crews, (2) fuel efficiency realized using smaller aircraft, and (3) more frequent service as required to meet the demand. Disadvantages include: (1) inconvenience and delays caused by the need to transfer to a different aircraft and perhaps, different airline at the gateway without the benefit of interline services, and (2) increased congestion and demand for time slots and gates at the gateways.

In Michigan, this would mean passengers from such cities as Alpena, Battle Creek, Marquette, and Traverse City flying in 20-50 passenger aircraft to Chicago and boarding a 100 plus seat aircraft before continuing westward or to Detroit or Cleveland before continuing eastward. As the craft size used in feeder service would be smaller than those presently used, more daily departures would be required to accommodate the same demand. The number of flights from Community C to the eastern gateway would be increased in the trunk-feeder option when compared to the do nothing option (see figures 7 and 8).

Much of Michigan's existing service "feeds" the trunk carrier system at Chicago, Detroit, and Cleveland. Simmons Airlines feeds Detroit from Hancock-Houghton, Marquette, Traverse City and Lansing. Many Republic and some United flights feed these gateways from Michigan communities. Midstate Airlines feeds Chicago from Muskegon and Freedom Airlines feeds Cleveland from Flint, Grand Rapids, Lansing and Tri-City.

#### Trunk Extensions

Another way scheduled air service is provided to small and non-hub communities is to extend the route of a trunk carrier beyond the gateway to one or more of the smaller communities. Some advantages of the trunk extensions service concept are: (1) increased convenience afforded by the same airline and often single plane service and (2) reduced airspace and gate demand at gateways gained by using aircraft with 100 plus seats. Some disadvantages are: (1) increased fuel consumption resulting from the use of large aircraft on short stage lengths, (2) less frequent service to meet the same demand than if smaller aircraft were used, and (3) scheduling which may not meet community needs as it would be dictated by the longer stage length service.

Within this concept, service by 100 plus seat aircraft would extend beyond Chicago, Detroit, or Cleveland to such Michigan communities as Lansing, Muskegon and Tri-City, also, the trunk carrier service between such gateways as Chicago and Detroit could serve communities in the 1-94 corridor: Battle Creek, Jackson and Kalamazoo. Service frequency would probably be less than that afforded by the trunk-feeder concept. For instance as depicted in figures 8 and 9, Community C's service to the east gateway could be substantially reduced.

Several Michigan communities today are served using this trunk extension concept. Lansing to Miami is achieved by extending the Chicago to Miami flight to begin in Lansing instead of Chicago. Tri-City is served by a Detroit to Atlanta flight that begins in Tri-City. Grand Rapids gains access to Boston by a Detroit to Boston Flight extended west to begin in Grand Rapids.

#### Community Coupling

The community coupling concept is the serving of two or more communities at one end of a route with a long stage length between the second community and the destination. Advantages of this concept include: (1) justifying service where none would otherwise be possible due to insufficient demand in either of the two communities, (2) shorter travel times resulting from bypassing congested gateways and proceeding to more distant gateways or final destinations, and (3) increased comfort afforded by single-plane, jet service from origin to destination. Disadvantages include: (1) inefficient use of fuel by using a large aircraft on a short stage length, and (2) reduced service frequency to those destinations not reasonably accessible from the more distant gateways.

In Michigan, two of the small hubs (Flint, Grand Rapids, Lansing, and Tri-City) or possibly a small hub and non-hub could be joined together and be served by a single plane which could then bypass Chicago or Detroit and continue to a more distant gateway or destination such as Washington, D.C. Service frequency would be less to the near gateways. For instance, as shown by Figure 10, Community A would have fewer daily flights to the immediate west gateway under the community coupling concept than if either the trunk extension or trunk-feeder concepts were employed.

Some community coupling is being done in Michigan today. Tri-City and Flint are coupled to justify a direct flight to Denver bypassing Chicago. Flint and Grand Rapids are coupled for the same reason. Until recently, Tri-City and Flint were coupled to warrant a direct flight to Pittsburgh bypassing Cleveland.



FIGURE 9. TRUNK-EXTENSIONS SERVICE CONCEPT

FIGURE 10. COMMUNITY COUPLING SERVICE CONCEPT





FIGURE 12. ALTERNATE MODES SERVICE CONCEPT

#### **Regional Airport**

A regional airport is one serving several communities as a collection point and providing flights with longer stage lengths to more distant gateways (see Figure 11). It may also provide services to nearby gateways. The regional airport functions as a mini-gateway in that smaller aircraft are used to feed the regional airport from nearby community airports with a significant number of departures from the regional airport being made by trunk carriers. Some advantages of the regional airport concept are: (1) congestion relief to the gateways by providing a substantial range of flight destinations thereby reducing air traffic to the gateways, (2) increased convenience gained by eliminating the delays often encountered at the gateways, and (3) the cost effectiveness and fuel efficiency characterizing the trunk-feeder concept. One disadvantage is the inconvenience caused by one additional stop if the desired flight connection is not provided.

Michigan communities such as Grand Rapids, Lansing, Traverse City, and Tri-City have airports which might be considered for utilization as regional airports. Increased non-stop and one-stop jet service to the more distant gateways and hubs could be provided. Smaller 8-50 passenger aircraft could bring travelers from the smaller Michigan markets to the regional airports. This would result in more daily flights to the gateway from the regional airport and fewer, if any, from the communities using the regional airport.

A few elements of the regional airport concept are in evidence in Michigan. Simmons Airlines feeds Lansing and Traverse City departures to Chicago and Detroit. Grand Rapids now provides non-stop service to Denver and Kansas City. The Tri-City International Airport serves the cities of Bay City, Midland and Saginaw.

#### Integrated Alternate Modes

and the second of

The alternate modes concept consists of complementing scheduled air service with other transportation modes either as feeder or supplemental systems. Some advantages are: (1) reduced travel times using a coordinated express bus and nonstop air service, (2) reduced user costs, (3) reduced air traffic congestion at gateways, and (4) increased energy efficiency gained by using express buses for shorter route segments. These advantages assume the express bus service would be coordinated with airline schedules, and interline ticket and baggage service would be provided. Some disadvantages are: (1) inconvenience due to the transfer from the ground vehicle at the gateway as opposed to single plane service at the point of origin, (2) increased travel time when the ground segment of the trip is longer and the transfer poorly coordinated, and (3) possible passenger resistance to the ground mode. Improved rail passenger service in selected corridors also offers a potential alternative to certain air services.

In Michigan, this could mean express bus and rail passenger service to nearby gateways and to any regional airports. This could involve several of the communities in the 1-96 and 1-94 corridors. For example, in Figure 12, these alternate modes could eliminate the need for air passenger service between Community C and Detroit.

The 1-94 corridor offers the best example of alternate modes complementing one another in a single corridor. Scheduled air service, express intercity bus, and intercity rail service provide transportation for travelers between Detroit, Chicago and communities located between these two gateways. However, much more needs to be done toward fully integrating these modes into the complementary systems.

#### FLEET OPTIONS

The composition of the fleet used to provide scheduled air service is critical to service concepts. For instance, the trunk-feeder service concept would be difficult to effect if the present trend toward an all-jet fleet continues. In essence, the number of smaller aircraft needed to economically provide short-haul (feeder) service is expected to fall short of meeting feeder service demand. Programmed and planned aircraft acquisitions by trunk carriers for the next decade indicate a continued dominance of jet aircraft in the nation's fleet ... 85 to 90 percent (13).

Several new aircraft are being designed and manufactured which will meet some existing and emerging air transportation needs. The medium and long-range aircraft are designed to meet FAA noise guidelines and provide greater fuel efficiency. Others will fill the 20-50 passenger aircraft gap in the existing fleet. A number of in service and new aircraft, together with their characteristics, are presented in Tables 9 and 10.

Different fleet configurations could be considered by the State to promote implementation of preferred scheduled air service concepts. These include at least two options . . . the do nothing and the reduced jet dominance.

#### Do Nothing Option

The do nothing fleet option consists of allowing past trends to continue with the law of supply and demand governing the composition of the nation's aircraft fleet. The fleet will continue to be dominated by jet aircraft, 85 to 90 percent of the fleet, operating over longer stage lengths. This will, in turn, result in service reductions and discontinuance to smaller communities. Trunk carriers will continue to accommodate 90 percent of the passenger miles flown and 80 percent of the enplanements.

| Type Passenger |           | I/Range       | I/Speed | I/Fuel Consumption |
|----------------|-----------|---------------|---------|--------------------|
| Capacity       |           | (Miles)       | (Mph)   | (Gals./Blk. Hr.)   |
| Intercontinen  | tal_Jets  |               |         |                    |
| B-707          | 3  - 202  | 4,155 - 7,610 | 600     | 1,600              |
| B-747          | 357 - 500 | 6,220 - 8,350 | 560     | 3,259              |
| DC-8           | 28 - 259  | 3,750 - 7,000 | 600     | 1,879              |
| DC-10          | 238 - 380 | 2,700 - 5,930 | 577     | 2,189              |
| L-1011         | 247 - 400 | 2,340 - 5,980 | 593     | 2,338              |

Table 9 Selected Aircraft Currently in Scheduled Service

## Long and Medium Range Jets

| A-300<br>B-727<br>B-737<br>DC-9<br>BAe BAC-111                                                                                                                                                                                                          | 220 -<br>94 -<br>97 -<br>70 -<br>74 -                                                      | 320<br>189<br>115<br>150<br>89 | 2,025 - 3<br>1,130 - 2<br>1,035 - 1<br>1,830 - 2<br>875 - 2                                                   | ,685<br>,300<br>,610<br>,515<br>,130 | 567<br>600<br>570<br>560<br>548                                                                       | 1,800<br>1,300<br>857<br>854<br>778                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Shortrange and Comm                                                                                                                                                                                                                                     | uter Air                                                                                   | <u>craft</u>                   |                                                                                                               |                                      |                                                                                                       |                                                                                  |
| F-28 (J)<br>F-27 (TP)<br>CV-580 (TP)<br>HS-748 (TP)<br>DHC-7 (TP)<br>SD 330 (TP)<br>SAC Metro II (TP)<br>CASA C-212 (TP)<br>DHC-6 (TP)<br>EMB-110 (TP)<br>GAF Nomad 24 (TP)<br>BN Trislander (P)<br>Beech 99 (TP)<br>C-402 C (P)<br>Piper Chieftain (P) | 60 -<br>40 -<br>44 -<br>50<br>30<br>19<br>19<br>18<br>18<br>18<br>16<br>16<br>15<br>8<br>8 | 85<br>60<br>56<br>50           | 1,150<br>1,250<br>1,100<br>850<br>810<br>770<br>685<br>370<br>745<br>400<br>350<br>650<br>997<br>562<br>1,019 |                                      | 525<br>265<br>350<br>275<br>274<br>218<br>295<br>226<br>200<br>253<br>180<br>180<br>280<br>239<br>254 | 237<br>300<br><br>250<br>100<br>79<br><br>80<br>63<br>60<br>42<br>70<br>38<br>40 |
|                                                                                                                                                                                                                                                         |                                                                                            |                                |                                                                                                               | 2                                    | e e e e e e e e e e e e e e e e e e e                                                                 |                                                                                  |

## Table 10. Selected Aircraft Under Development

| <u> </u> | Expected<br>Delivery                                        |
|----------|-------------------------------------------------------------|
|          |                                                             |
|          |                                                             |
| 535      | 1983                                                        |
| 535      | 1982                                                        |
| 560      | 1980 (late).                                                |
| 540      | 1983                                                        |
|          |                                                             |
| 435      | 1982                                                        |
| 310      | 1984                                                        |
| 355      | 1981                                                        |
| 300      | 1984                                                        |
| 300      | 1984                                                        |
|          | 1001                                                        |
|          | 535<br>535<br>560<br>540<br>435<br>310<br>355<br>300<br>300 |

|   | AR_404 (TP)                                             |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                      | 30                                                                                                                                                                                                                                    | 1 000                     | 195                                                                                                         | 1981              |
|---|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------|-------------------|
|   | $AR_{-402}$ (TP)                                        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                      | 27                                                                                                                                                                                                                                    | 770                       | 215                                                                                                         |                   |
|   | $D_0 \mid T_\Delta \mid (TP)$                           |                                                                                                                                                 | 19                                                                                                                                                                                                                                                                                                                                                                                                   | - 24                                                                                                                                                                                                                                  | 560                       | 273                                                                                                         | 1982              |
|   | Beech 1900 (TE                                          | 2)                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                      | 19                                                                                                                                                                                                                                    | 600                       | 300                                                                                                         | 1983              |
|   | BAe letstream                                           | у<br>31 (ТР                                                                                                                                     | )                                                                                                                                                                                                                                                                                                                                                                                                    | 18                                                                                                                                                                                                                                    | 300                       | 300                                                                                                         | 1982              |
|   | Beech 99C (TP                                           | )                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                      | 15                                                                                                                                                                                                                                    | 1.150                     | 290                                                                                                         | 1981              |
|   |                                                         | <u></u>                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       | .,                        |                                                                                                             |                   |
|   | Notes: 1/<br>equipr<br>not b<br>avera<br>Abbreviations: | Range,<br>ment, pa<br>e used t<br>ges and a<br>A<br>A<br>B<br>B<br>B<br>A<br>B<br>B<br>A<br>B<br>B<br>A<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | speed and fu<br>lyload, weather<br>for performan<br>others are optin<br>Airbus Industr<br>Ahrens Aircra<br>Boeing Co.<br>British Aerosp<br>Britten Norm<br>Beechcraft Co<br>Cessna Aircra<br>Commuter<br>Aeronauticas<br>Convair (Gene<br>McConnell Do<br>DeHavilland o<br>Dornier Gmbh<br>Embraer Aircra<br>Fokker/VFW<br>Gulfstream Ai<br>Government A<br>Hawker-Sidde<br>Jet Aircraft<br>Lockheed | vel consum<br>r and stage<br>noce compo-<br>mum figur<br>fie<br>aft Co.<br>bace, Inc.<br>an Pilatus<br>orp.<br>aft Co.<br>Aircraft<br>S.A.<br>eral Dynan<br>ouglas<br>of Canada<br>f<br>raft Corp.<br>merican C<br>Aircraft Fo<br>ley | Corp.<br>orp.<br>actories | v greatly depending<br>The figures listed sho<br>ause some of them<br>nufacturers' data.<br>CASAConstruccio | on<br>puld<br>are |
| · | · .                                                     | P<br>SAC<br>SD<br>TP                                                                                                                            | Piston-engine<br>Swearingen A<br>Shorts Bros.<br>Turbo-prop Ai                                                                                                                                                                                                                                                                                                                                       | Aircraft<br>ircraft Co<br>ircraft                                                                                                                                                                                                     | rp.                       |                                                                                                             |                   |
|   |                                                         |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |                           |                                                                                                             |                   |

Sources: CAB Aircraft Operating Cost and Performance Report Vol. XIII, July, 1979

Commuter Air Magazine, various issues Air Transport World, March 1980 Time Magazine, April 7, 1980 Business and Commercial Aviation, April, 1980

This fleet option favors three of the service concepts: do nothing, trunkextensions and community coupling. All three embody the move toward longer stage lengths and increased jet usage. The trunk-feeder and regional airport concepts would be difficult to implement. The smaller aircraft needed to economically provide service on the shorter stage lengths characteristic of these two service concepts would probably continue to be in short supply. The impact on the integrated alternative modes option would be mixed. Greater reliance on alternate modes would occur between community pairs relatively close to one another. Where community pairs are widely separated, the loss of air service would be difficult by to replace alternate modes when time is important to the traveler.

#### Reduced Jet Dominance Option

The reduced jet dominance fleet option consists of significantly increasing the number of turboprop aircraft to 15 to 20 percent of the nations fleet with jet aircraft comprising 75 to 80 percent. This would constitute a return to the fleet mix experienced in the late sixties and early seventies. Service to smaller communities could be more economically provided as shorter stage lengths could be flown using the smaller aircraft. Short-haul carriers would accommodate a larger percentage of the passenger miles flown and enplanements, with the trunk carriers' percentage being reduced when compared to the do nothing fleet option. One concern associated with increased use of smaller aircraft in scheduled air service is whether such aircraft are pressurized. Pressurized equipment should be utilized on most route segments where smaller aircraft are warranted.

The reduced jet dominance fleet option facilitates implementation of the trunkfeeder and regional airport service concepts. The short stage lengths characteristic of a feeder system could readily be accomodated by turboprop aircraft more economically than if jets were used. At the same time, the fleet mix under this option does not hinder implementation, or continuation, of the trunkextension and community coupling service concepts. This is because the focus of this option is not to decrease the number of jets in service; rather to increase significantly the number of turboprop aircraft. The integrated alternative modes service concept is better supported under this fleet option than the do nothing. Scheduled air service in the short and medium stage length corridors would be more likely to continue and perhaps increase using smaller aircraft. It is in many of these same corridors where the alternate modes and air transportation could provide service in an integrated manner.

#### EVALUATION CRITERIA AND TECHNIQUES

Several factors influence service and fleet options suited to Michigan. These include cost effectiveness, user concerns (cost and time), level of service, energy efficiency, environmental impacts, and community benefits.



FIGURE 13. DIRECT OPERATING COSTS FOR A BOEING 737-200, 1977 (11)

#### Cost Effectiveness

The cost of providing scheduled air service compared to the level of service provided is critical to the airline and the general public. The airline cannot afford to operate a particular stage length or route segment at a loss unless subsidized. The general public and communities cannot afford to lose scheduled air service below an essential level or to bear the burden of higher taxes to underwrite seat guarantee agreements or finance subsidies.

One measure of cost effectiveness is direct operating cost per passenger mile. This increases significantly as the stage length decreases. This principle is illustrated in Figure 13 for a two engine Boeing 737-200 turbojet ... an aircraft often used on shorter stage length routes in the United States. As the stage length is reduced from 200 to 100 miles, the cost increases approximately 40 percent. Therefore, higher fares must be charged for the shorter stage lengths if costs are to be recovered through revenues. This is also due, in part, to the easing of CAB control of fares resulting from the Airline Deregulation Act of 1978. This makes air transportation for shorter trips less attractive to the traveling public. A second measure is total aircraft operating cost per block hour.

Such costs vary depending on aircraft size, the airline providing the service, and stage lengths. The Swearingen Metro II and the DeHavilland Twin Otter have total aircraft operating costs per block hour of less than \$300, whereas the Boeing 737 and McDonnell Douglas DC-9 are over \$1,300. The Boeing 747 has a total aircraft operating cost per block hour exceeding \$4,000 (12).

Cost effectiveness dictates that smaller aircraft be used on shorter route segments. As the cost per passenger mile is higher for short stage lengths, it is vital to use aircraft with relatively low total operating costs per block hour. This means aircraft with 50 seats or less on most feeder routes.

#### User Concerns

The cost and travel time involved in making a trip are major user concerns. The question of whether to drive, take a bus or train, or fly is often made by comparing the time and cost involved as well as other factors. Sometimes the decision is not to make the trip. Travel time and cost ratios have been developed for air and each of the three other modes (auto, bus and rail) to assist in assessing choice among modes. Absolute time and cost differences between modes have also been noted.

Fares have been used to represent trip costs for air, bus and rail, and 12.3 cents per mile for the automobile. Fares and travel times were compiled for selected city pairs ... all 21 service areas and Chicago. Distances used were city center to city center for the automobile and terminal to terminal for the air, bus, and rail modes.

Three matrices have been prepared depicting travel time and fare ratios for each service area pair. Figure 14 presents air to intercity bus ratios, Figure 15 air to automobile ratios, and Figure 16 air to rail ratios. In these analyses service area pairs are designated as where the ratios are favorable to scheduled air service when the air to other mode travel time ratio is 1:5 or more, or travel time difference between the modes exceeds four hours, and/or the cost ratio is 2:1 or 1:1. That is, scheduled air service between these pairs offers a marked travel time advantage over the comparative mode and/or the fare is competitive with the comparative mode. On the other hand, service area pairs have been designated as corridors favorable to the alternative mode when the travel time ratio is 1:1 or 1:2, and/or the trip cost ratio is 1:5 or higher. In these corridors, modes other than air could be considered to complement the air transportation mode or perhaps replace it in some cases.

Table 11. Existing Scheduled Air Service to Chicago and Detroit Gateways Compared to Other Modes, March 1980

| <u></u>          |                             | To Chicago                   |                              |                             | To Detroit                   |                                                                                                                  |
|------------------|-----------------------------|------------------------------|------------------------------|-----------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------|
| Community        | <u>Air/Bus</u><br>Time Fare | <u>Air/Auto</u><br>Time Fare | <u>Air/Rail</u><br>Time Fare | <u>Air/Bus</u><br>Time Fare | <u>Air/Auto</u><br>Time Fare | <u>Air/Rail</u><br>Time Fare                                                                                     |
| Alpena           | 0 0                         | 0 0                          |                              | 0 0                         | + +                          |                                                                                                                  |
| Battle Creek     | + 0                         | 0 0                          | 0 0                          | + 🗝                         | + 0                          | + O                                                                                                              |
| Benton Harbor    | 0 -                         | 0 0                          |                              | + 0                         | O +                          |                                                                                                                  |
| Escanaba         | + O                         | + +                          |                              | + +                         | + +                          |                                                                                                                  |
| Flint            | + +                         | + <b>+</b>                   | + +                          | 0 -                         | 0~                           | o o 🖓                                                                                                            |
| Grand Rapids     | -+ +                        | ÷ +                          |                              | 0 0                         | + +                          | •                                                                                                                |
| Houghton/Hancock | 0 0                         | + +                          |                              | + +                         | + +                          | •                                                                                                                |
| Iron Mountain    | 0 0                         | + +                          | •                            | + +                         | + +                          | ĩ                                                                                                                |
| Ironwood         | + +                         | + +                          |                              | <b>⊹</b> +                  | + +                          |                                                                                                                  |
| Jackson          | 0 0                         | O +                          | 0 0                          | 0 -                         | 0 0                          | 0 -                                                                                                              |
| Kalamazoo        | + O                         | 0 0                          | 0 0                          | + 0                         | + 0                          | + 0                                                                                                              |
| Lansing          | + +                         | + +                          | + +                          | 0 -                         | 0 0                          | 0 0                                                                                                              |
| Manistee         | + +                         | + +                          |                              | O +                         | 0 0                          |                                                                                                                  |
| Marquette        | 0 0                         | 0 +                          |                              | + +                         | + +                          | ·                                                                                                                |
| Menominee        | 0 0                         | + +                          |                              | + +                         | + +                          |                                                                                                                  |
| Muskegon         | O +                         | O +                          |                              | 0 0                         | 0 +                          |                                                                                                                  |
| Pellston         | + +                         | + +                          |                              | + O                         | + +                          |                                                                                                                  |
| Saginaw          | + O                         | + +                          |                              | + 0                         | 0 0                          | Ţ                                                                                                                |
| Sault Ste. Marie | + +                         | + +                          |                              | + 0                         | + +                          |                                                                                                                  |
| Traverse City    | + +                         | + +                          |                              | + O                         | + +                          | and the second |

Note: 1/ If scheduled air service is favorable compared to other modes a "+" is used, if neutral an "o," and if the ratio is favorable to the comparative made a "-" is used.

2/All values were derived from figures 14, 15 and 16.

Source: Michigan Department of Transportation, Aviation Planning Section



Figure 14 MODAL COMPARISON MATRIX FOR AIR AND INTERCITY BUS TRANSPORTATION

Ratios Favorable To Scheduled Air Service

Ratios Favorable To The Alternate Mode

Ratios favorable to scheduled air service are those where the (1) air fare to comparative mode fare ratio is 2:1 or 1:1 or (2) air travel time to comparative mode travel time is 1:5, 1:6 or more, or the travel time difference exceeds four hours.

Ratios favorable to the alternative mode are those where the (1) air fare to comparative mode fare ratio is 5:1, 6:1 or higher or (2) air travel time to comparative mode travel time 1:1 or 1:2.



Figure 15 MODAL COMPARISON MATRIX FOR AIR AND AUTOMOBILE TRANSPORTATION

0

Ratios Favorable To Scheduled Air Service

Ratios Favorable To The Alternate Mode

Ratios favorable to scheduled air service are those where the (1) air fare to comparative mode fare ratio is 2:1 or 1:1 or (2) air travel time to comparative mode travel time is 1:5, 1:6 or more, or the travel time difference exceeds four hours.

Ratios favorable to the alternative mode are those where the (1) air fare to comparative mode fare ratio is 5:1, 6:1 or higher or (2) air travel time to comparative mode travel time 1:1 or 1:2.



#### Figure 16 MODAL COMPARISON MATRIX FOR AIR AND INTERCITY RAIL TRANSPORTATION

۲

Ratios Favorable To Scheduled Air Service

Ratios Favorable To The Alternate Mode

Ratios favorable to scheduled air service are those where the (1) air fare to comparative mode fare ratio is 2:1 or 1:1 or (2) air travel time to comparative mode travel time is 1:5, 1:6 or more, or the travel time difference exceeds four hours.

Ratios favorable to the alternative mode are those where the (1) air fare to comparative mode fare ratio is 5:1, 6:1 or higher or (2) air travel time to comparative mode travel time 1:1 or 1:2.

Using the ratios discussed above, Lansing-Marquette, Grand Rapids-Chicago, Traverse City-Detroit, and Flint-Chicago have air to automobile and air to bus ratios favorable to scheduled air service. At same time, Flint-Lansing is identified by this technique as a corridor favorable to the alternate mode based on air to automobile, air to bus, and air to rail ratios. Others could be favorable to scheduled air service or other modes, but are not identified by this process as such.

Portions of Figures 14, 15, and 16 have been translated into tabular form in Table 11 to evaluate access to the nearby gateways by scheduled air service compared to using bus, auto or rail. Communities like Flint with all pluses in the "To Chicago" columns indicate that scheduled air service compares favorably with bus, auto and rail based on travel time and fare. Flint-Chicago and Lansing-Chicago are examples of this case. Quite the opposite is true for Flint and Lansing regarding access to the Detroit gateway where all values are "0" or "-".

User concerns regarding trip cost and travel time indicate the need to retain and improve scheduled air service in some corridors. In other corridors, the use of various transportation modes to complement one another could be promoted as a reasonable alternative.

#### Level of Service

The frequency and quality of scheduled air service to Michigan communities should be commensurate with demand. This service includes access to gateways, other Michigan communities, and selected communities in neighboring states. Demand estimates for each Michigan service area have been presented earlier (see Table 8). Present access to the gateways and non-stop service afforded at those gateways have also been identified (see Figures 4 and 5).

In general, service frequency would be increased using smaller aircraft to meet a given demand. The reduced jet-dominance fleet option lends itself to this increased service frequency. However, service quality could be sacrificed in terms of safety, travel time and dependability unless attention is given to regulating aircraft selection and airline performance. Today's scheduled air service in Michigan is characterized by dependable and comfortable equipment, safety, on-time performance, and good public relations. And the existing fleet is a jet-dominant one. Also, scheduled air service is too important to Michigan communities to be solely determined by profit-maximizing considerations. It may be that there is a level of service essential to many of the service areas that exceeds the profit-making level.

#### Energy Efficiency

Energy efficiency can be measured in terms of passenger miles per gallon, gallons consumed per block hour (see Table 9), and total fuel consumption nationwide by the scheduled air service fleet. While fuel consumption by the fleet has increased, several steps have been, and are being, taken to increase the efficient use of aviation fuel. These include producing more fuel efficient aircraft, increasing stage lengths where larger aircraft are involved, and using smaller aircraft on the shorter stage lengths. These moves toward increased fuel efficiency favor the trunk-feeder and regional airport service concepts and the reduced jet dominance fleet option which are characterized by increased utilization of smaller aircraft.

#### Environmental Impacts

The principal impacts of scheduled air service on the environment are aircraft noise and land use restrictions. Some measures being taken to reduce the perceived level of noise are variations in landing and take-off profiles such as: (1) increased rate of ascent on take-off, (2) modifications of aircraft engines such as insulating and quieting engine operation, (3) development of STOL aircraft, and (4) restriction of hours of operation to daylight and near-daylight hours.

The trunk-feeder, regional airport, and integrated alternate modes concepts would have the least impact on the environment. The increased use of smaller aircraft, realized by implementing the first two of these, would generate less noise and require shorter runways thereby using less land for airport use. The integrated alternate modes option involves a reduction in flights in some corridors thereby reducing the period of time when aircraft noise is a problem.

#### Community Benefits

Community benefits of improved scheduled air service include (1) the potential of an increased tax base resulting from new business and industry locating in the community, (2) increased accessibility, and (3) improved airport facilities. One type of equipment necessary for dependable scheduled air service are precision instrument landing systems. Two-thirds of the airports used by commuter airlines to provide scheduled air service are not equipped with precision instrument landing systems (14) thereby preventing their use when visibility is poor. Benefits to industry and business could include reduced cost of, and time spent in business travel.

Different service concepts benefit communities in different ways. The community coupling concept provides more direct access to selected other cities as the nearby gateway could be bypassed. The trunk-feeder and regional airport concepts rely on smaller aircraft to provide service to many of the Michigan service areas. These aircraft require shorter runways then the larger aircraft; consequently, more communities might be able to afford upgrading their airports to accommodate these smaller scheduled air service aircraft.

#### Impact Analysis

A "first cut" impact analysis for each of the alternatives can be structured by applying the above criteria (see Table 12). This analysis is an approximation of impacts relative to the perceived overall objectives of society and the airline industry. These impacts are viewed as either favorable or unfavorable to the generalized objectives, or neutral if the impact is not clearly favorable or unfavorable. The impacts are also evaluated on the national and local scale, the latter consists of the perspective of the local community, region, or state directly affected by the impact.

- I. National Scale Public Sector
  - a. Energy Efficiency to increase transport output for a fixed quantity of fuel consumption.
  - b. Transport Costs to reduce unit costs of transport.
- 2. National Scale Airline Industry
  - a. Aircraft Utilization to maximize utilization, as expressed in revenue-hours or load factors.
  - b. Energy Efficiency to increase transport output relative to fuel consumption.
  - c. Energy Allocation to allocate fuel within the airline industry to those sectors which maximize output per unit of fuel consumed.
  - d. Operating Costs to lower unit operating costs.
  - e. Energy Availability to increase the availability and decrease the cost of fuel.
- 3. Local Scale Public Sector
  - a. Transport Costs to lower the overall costs of transport for society.
  - b. Accessibility to increase the accessibility of local areas to regional, national, and international markets.
  - c. Convenience to make transportation service to and from a local area more convenient through increased frequency, destinations and modes, and through ease of transfer within or between modes.

- d. Safety to make travel less susceptible to accidents.
- e. Airport Investments to make prudent investment decisions and, once made, to make optimal use of the investment.
- f. Economic Development to stimulate the economic development of a local area.
- 4. Local Scale Airline Operators
  - a. Energy Availability to make sufficient fuel available to airlines willing to meet needs of a local area.
  - b. Image to enhance the airline operator's image in a local community.

c. System Loads – to increase system load factors by attracting travelers from local markets.

d. Local Loads - to maximize the demand for service to local areas.

| Impacts                                                                                                  | Do<br>Nothing         | Trunk-<br>Feeder      | Trunk<br>Exten-<br>sions   | Community<br>Coupling | Regional<br>Airport        | Alterna-<br>tive<br>Modes |
|----------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|----------------------------|-----------------------|----------------------------|---------------------------|
| National Scale                                                                                           | ·                     |                       | . •                        |                       |                            |                           |
| Public                                                                                                   |                       |                       |                            |                       |                            |                           |
| Energy Efficiency<br>Transport Costs                                                                     | +                     | +<br>-                | -                          | -<br>+                | +<br>+                     | . +<br>+                  |
| Airline                                                                                                  |                       |                       |                            |                       |                            |                           |
| Aircraft Utilization<br>Energy Efficiency<br>Energy Allocation<br>Operating Cost<br>Energy Availability  | +<br>+<br>+<br>+<br>0 | +<br>+<br>0<br>+      | ō<br>ō                     | +<br>+<br>0<br>0      | +<br>+<br>+<br>0           | +<br>+<br>+<br>+          |
| <u>Local Scale</u><br>Public                                                                             |                       |                       |                            | •<br>• •              |                            |                           |
| Transport Costs<br>Accessibility<br>Convenience<br>Safety<br>Airport Investments<br>Economic Development | -<br>-<br>0<br>-<br>0 | -<br>-<br>-<br>0<br>+ | 0<br>0<br>+<br>+<br>+<br>+ | -<br>-<br>-<br>0<br>0 | 0<br>0<br>+<br>-<br>+<br>0 | +<br>-<br>-<br>+<br>+     |
| Airline                                                                                                  |                       |                       |                            |                       |                            | · · ·                     |
| Energy Availability<br>Image<br>Loads – System<br>Loads – Local                                          | 0                     | -<br>-<br>+           | 0<br>+<br>+<br>+           | 0<br>-<br>+<br>0      | +<br>0<br>-<br>+           | + .<br>-<br>+             |

TABLE12. Impact Analysis Results for Each Service Concept

Note: Favorable (+), Non-Favorable (-), and Neutral (0).

Source: Michigan Department of Transportation, Aviation Planning Section.

## RECOMMENDATIONS



## <u>PART FOUR</u>

#### RECOMMENDATIONS

Several findings, conclusions and recommendations emerged in exploring the Michigan scheduled air service crisis. The findings and conclusions capsulize those noted in earlier parts of the report and provide part of the basis for the recommendations.

#### FINDINGS AND CONCLUSIONS

- 1. <u>Level of Scheduled Air Service</u>. Twenty-two Michigan communities have scheduled air service with 21 having at least three departures daily. The exception is Manistee with one daily departure. Fifteen have non-stop service to one or more gateways (see Figure 4).
- 2. <u>Population Served by Scheduled Air Service</u>. Over 95 percent of Michigan's residents have some scheduled air service within 60 minutes of their home or business. This percentage has declined slightly since 1970 due to the population increases outside the 60 minute service areas.
- 3. Enplanements. The number of passengers enplaning at Michigan airports has increased by 58 percent since 1970 (see Table 5). With population increasing by 9 to 10 percent by 1990, further substantial increases will occur. However, 1980 first quarter enplancements are about five percent below the same quarter in 1979 for moderate activity service areas and down three percent at Detroit Metro. By some estimates, 1990 enplanements in Michigan's low activity service areas may increase by as much as 67 percent and moderate activity service area enplanements may double.
- 4. <u>Air Mail</u>. The number of pounds of mail transported by scheduled air service in Michigan since 1970 has increased by 75 percent (see Table 5). In the 1980 first quarter, air mail transported to and from moderate activity service areas increased by nearly 50 percent, primarily due to designation of Grand Rapids as a regional mail sorting center. Detroit Metro increased by 7 percent which is typical for a large hub.
- 5. <u>Cargo Tons</u>. Cargo tons transported by scheduled air service in Michigan increased by 9 percent during the 1970's (see Table 5). The low and moderate activity service areas realized no change or decreased, and Detroit Metro increased by 15 percent. In the first quarter of 1980, air cargo tonnage in the moderate activity service areas and at Detroit Metro decreased by 25 percent. The principal reason for these decreases is the current economic recession. However, there is ample reason to believe that by 1990 cargo tons transported by scheduled air service in Michigan could double.

- 6. <u>Impact of Regulatory Reform</u>. Under regulatory reform now in effect, service levels could decline to approximately 50 percent of today's departures at communities now served by a single certificated air carrier (see Appendix I).
- 7. <u>Short-Haul Carrier Failure Rate</u>. Past Michigan experience has shown that short-haul carriers discontinue service at the rate of about one per year. However, two carriers which served Michigan communities have suspended operations in the last six months (see Appendix J).
- 8. <u>Fleet Mix</u>. The domestic trunk and local service carrier fleet in the United States is comprised of 87 percent jets, compared to 80 percent at the beginning of the seventies decade. Both turboprop and piston aircraft have decreased markedly during this period (see Table 2). Some reversal of this trend may occur in the 1980's as several types of short and medium range aircraft are being constructed at the present time (see Table 10). Use of these aircraft could improve the present level of scheduled air service in Michigan.
- 9. <u>Safety</u>. Certificated air carriers have half as many accidents as shorthaul carriers (see Table 6) and fewer fatalities per 100 million passenger miles.
- 10. <u>Energy Efficiency</u>. The number of gallons of fuel used annually by scheduled air carriers has increased from 9.5 billion in 1974 to 11.2 billion in 1979 which is somewhat less than 4 percent of all fuel consumed annually in the United States. During the same period, fuel consumed per seat mile of scheduled air service has decreased by about 20 percent.
- 11. <u>Cost Effectiveness</u>. Smaller aircraft have lower total operating costs than larger aircraft over a fixed stage length. For a given aircraft, operating costs per mile for longer stage lengths are lower than for shorter stage lengths. Therefore, fares for short trips will increase more than for longer trips.

#### RECOMMENDATIONS

The intent of these recommendations is to assist in outlining actions which could influence the future course of scheduled air service in the State of Michigan. Some of these are mutually exclusive, while others complement one another. Actions should be considered in at least three major areas: scheduled air service, legislative/regulatory, and programming/planning.

#### Scheduled Air Service

- 1. Promote the regional airport concept to relieve congestion at Chicago's O'Hare Airport and improve passenger convenience. The existence of one or more regional airports in Michigan would reduce the total number of daily flights to O'Hare by (1) collecting air passengers from many smaller aircraft onto fewer larger aircraft before proceeding to Chicago and (2) bypassing Chicago and flying directly to more distant gateways.
- 2. Promote the concept of community coupling to provide direct access to more distant gateways. This would relieve congestion at nearby gateways and increase passenger convenience. Medium and long-haul aircraft would be used for these flights.
- 3. <u>Promote the trunk-feeder service concept in those parts of Michigan</u> not served by the regional airport. This includes selected communities in the southern half of the Lower Peninsula, much of the northern half of the Lower Peninsula, and all of the Upper Peninsula.
- 4. <u>Promote complementary non-air transportation modes in selected</u> <u>corridors</u>. This could call attention to choices in mode and price, reductions in travel time, and increased convenience to travelers in corridors warranting use of more than one public transportation mode. Complementing modes corridors identified in Part Three should be considered as candidate corridors. These include the 1-94 and 1-96 corridors in Michigan.
- 5. Promote service quality which is consistent with the needs of Michigan communities as determined by Michigan Department of Transportation. Generally, this means maintaining or Increasing the frequency of scheduled air service now provided. This will result in adequate access to other Michigan communities, to communities throughout the nation and in the preservation of the economic vitality of the communities served. Daily departures should be in the range indicated for each community in Table 8. Particular consideration should be given to providing frequent service in those corridors identified as "air critical" in PART THREE.
- 6. Promote the introduction or restoration, of scheduled air service to selected Michigan communities without service if a need exists. Three Michigan communities have lost all scheduled air service since January, 1980, and several have suffered service reductions. Loss of a key industry is a possibility in one of these communities unless service is restored. Other communities may warrant scheduled air service (see Figure 6).

- 7. Assist short-haul carriers in developing and maintaining public awareness and confidence in their scheduled air service. This includes publishing and distributing easy-to-use flight schedules, departing and arriving on time, adhering to an aircraft maintenance program, establishing a good safety record, and providing adequate back-up equipment and aircraft. It could also involve actual state supported publicity programs.
- 8. Promote interline agreements between short-haul and trunk carriers. This will increase convenience and reduce costs for the air traveler, promote use of short-haul carriers, and assure trunk carriers of higher load factors. Many of these are in effect today and should be continued and expanded when opportunities to do so arise.
- 9. Promote ticket and baggage coordination between the non-air transportation mode and short-haul and trunk carriers. This would encourage use of the non-air transportation mode to access the air transportation mode. An example is the limousine service between Jackson and Detroit Metropolitan Airport. Convenience to the air traveler results if ticketing and baggage handling between the bus service and the short-haul or trunk carriers are coordinated.
- 10. Encourage integration and coordination of smaller commuter airlines under a single management structure. Close cooperation between small commuter airlines or their integration under a single management system would create a broader and more stable financial base, eliminate duplication of ground support services, and assure greater dependability through shared back-up equipment.

#### Legislative/Regulatory

11. Investigate regulations necessary to assure safe and dependable service by short-haul carriers serving Michigan communities. Short-haul carriers have a higher accident rate than certificated carriers nationally, and in Michigan a relatively high business failure rate both of which should be lowered. One Michigan short-haul carrier accident, in 1979, claimed four lives. Commuter airlines in Michigan have a failure rate of about one per year. Safe service includes adequate pilot training and experience, well-maintained aircraft, and serviceable equipment. The solvency of a short-haul carrier should be reasonably assured before that carrier is permitted to initiate service to Michigan communities.

- 12. Investigate the need for a State subsidy program to assure provision of minimum scheduled air service to Michigan communities. A subsidy to provide service between specific community pairs should be considered. Minimum scheduled air service could be the minimum number of daily departures listed for each service area in Table 8. Until October, 1988, communities with Essential Air Service determinations could receive a state subsidy equal to the difference between the Federal EAS subsidy and that funding required to upgrade or maintain the service at the "minimum" level. One form of this type of subsidy program is in effect in Michigan ...a limited-time, start-up assistance program for intercity buses. Until recently, a similar federal program funded scheduled air service to several northern Michigan communities to encourage economic development in those areas.
- 13. Investigate the potential for a State aircraft lease-purchase program to promote entry of short-haul carriers into Michigan markets and assure use of suitable aircraft. One obstacle to unestablished, but capable, firms is capital with which to begin the provision of scheduled air service. Leasing aircraft from the state with the option to purchase would eliminate much of the capital outlay required to begin operation. Also, needed aircraft replacement would not be delayed due to lack of funds if such a program were available. There are similar programs in effect at the present time for intercity bus operators.
- 14. Develop a fuel priority rating system to assure an adequate supply of fuel for all carriers serving Michigan communities, trunk and short-haul. The fuel allocation should be sufficient in quantity to guarantee the minimum level of air service (see Table 8) to each community receiving scheduled air service.

#### Planning/Programming

15. Provide coordinated State planning and programming advisory services regarding scheduled air service. This should be available to short-haul and trunk carriers interested in or already serving Michigan communities, local governmental units, and regional planning agencies. Such services could include providing information on airport facilities, scheduled air service use, potential service opportunities, State air service regulations, State aid programs, and economic considerations. This could involve the Office of the Governor, the Department of Commerce, and the Department of Transportation (Bureau of Aeronautics, Bureau of Transportation Planning, and Bureau of Urban and Public Transportation).

- 16. <u>Monitor Michigan's scheduled air service use and characteristics</u>. This will generate a valuable data base for use by existing and prospective service providers, by those planning and programming service and airport improvements, and those administering State assistance and loan programs. Data items which should be monitored include enplaned and deplaned passengers, inbound and outbound mail, inbound and outbound cargo, number of flights per day, routes, type of aircraft used, and airline performance (on-time service, cancelled flights).
- 17. Establish a process for determining communities where new scheduled air service should be offered or existing service upgraded. Communities which should be considered for service include those portrayed in Figure 6. Several communities with existing service may warrant upgraded service (see Table 8).

## APPENDICES

#### APPENDIX A

#### GLOSSARY

<u>Air Carrier</u>: Aircraft operators certificated by the Federal Aviation Administration for transportation by air of persons, property, and mail.

<u>Air Traffic Hub</u>: A community which generates 0.05 percent of total domestic online enplaned passengers within the 50 states. Type of hub is classified as follows:

| Large    | - | 1.00% or more   |
|----------|---|-----------------|
| Medium   | - | 0.25% to 0.99%  |
| Small    | - | 0.05% to 0.24%  |
| Non Hubs |   | Less than 0.05% |

Cargo Tons: The total of freight and express tons.

<u>Certificated Route Air Carrier</u>: An air carrier holding a certificate of public convenience and necessity issued by the Civil Aeronautics Board to conduct scheduled services over specified routes. Certain non-scheduled or charter operations may also be conducted by these carriers.

<u>Commercial Operator</u>: One of a class of air carriers operating on a private for-hire basis, as distinguished from a public or common air carrier, holding a commercial operator certificate, issued by the administrator of the Federal Aviation Administration (pursuant to part 45 of the Civil Air Regulations) authorizing it to operate aircraft in air commerce for the transportation of goods or passengers for compensation or hire.

<u>Community</u>: A city, group of cities, or a standard metropolitan statistical area receiving scheduled air service by a certificated route air carrier.

Enplaned Passengers: The number of revenue passengers boarding aircraft including originating, stopover, and transfer passengers, in scheduled and nonscheduled services.

<u>Gateway</u>: A large hub that provides convenient access to domestic and international markets.

Local Service Carrier: Certificated domestic route air carriers operating routes of lesser density between the smaller traffic centers and between those centers and principal centers.

Piston Powered Aircraft: An aircraft operated by engines in which pistons moving back and forth work upon a crankshaft or other device to create rotational movement.

<u>Revenue Passenger Load Factor</u>: The percentage of seating capacity which is actually sold and utilized. Computed by dividing revenue passenger miles flown by available seat miles flown in scheduled revenue passenger service.

#### APPENDIX B

## REFERENCES

- 1. Michael J. Murphy, "Airline Deregulation: Its Impact on the Upper Midwest," A Report of the Upper Midwest Council, November, 1979.
- 2. Letter from John P. Woodford, Director, MDOT, to the Honorable Frank J. Kelley, Attorney General, November 23, 1979.
- 3. U.S. Department of Energy.
- 4. California Department of Transportation, Division of Construction, "Energy and Transportation Systems: Final Report," December, 1978.
- 5. Commuter Airline Association of America, "Creating a New Era," Commuter Airline Industry 1979 Annual Report, October, 1979.
- 6. U.S. Department of Transportation, Federal Aviation Administration, Flight Standards Service.
- 7. Francis X. McKelvey, "Aviation Planning and Design," Course notes: Michigan State University, College of Engineering, September, 1979.
- 8. Civil Aeronautics Board, "Essential Air Transportation Determination," Dockets EAS 445-459, March 4, 1980.
- 9. U.S. Department of Transportation, Federal Aviation Administration, <u>FAA</u> Aviation Forecasts: 1980–1991, September, 1979.
- 10. Michigan Department of Transportation, <u>Michigan State Airport System Plan</u>, 1974.
- 11. Civil Aeronautics Board, <u>Aircraft Operating Cost and Performance Report</u>, July 1976 and 1979.
- 12. "Air Transport World," March, 1978.
- 13. Commuter Airline Association of America, "1979 Annual Report."

## APPENDIX C

## SERVICE AREA POPULATION, 1970-90

| Associated City                                                                                                                                | 1/ Number of<br>Counties Served                | 2/ 1970<br>(Actual)                                                                                                     | <u>2</u> / 1978<br>(Estimated)                                                                                          | 3/ 1990<br>(Forecast)                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Low Activity                                                                                                                                   |                                                | ·                                                                                                                       |                                                                                                                         |                                                                                                                         |
| Alpena<br>Escanaba<br>Hancock/Houghton<br>Iron Mountain<br>Ironwood<br>Manistee<br>Marguette                                                   | 5<br>3<br>5<br>5<br>3<br>3                     | 60,630<br>45,379<br>49,476<br>46,003<br>59,854<br>48,666<br>74,813                                                      | 71,300<br>50,925<br>52,800<br>50,006<br>61,480<br>54,200<br>85,520                                                      | 87,800<br>57,575<br>62,860<br>54,585<br>60,520<br>67,300<br>96,520                                                      |
| Menominee<br>Pellston<br>Sault Ste. Marie                                                                                                      | 2<br>3<br>3                                    | 57,318<br>51,445<br>48,861                                                                                              | 56,079<br>60,700<br>49,000                                                                                              | 62,345<br>76,800<br>53,500                                                                                              |
| Subtotal                                                                                                                                       |                                                | 542,445                                                                                                                 | 592,010                                                                                                                 | 679,805                                                                                                                 |
| Moderate Activity                                                                                                                              |                                                |                                                                                                                         |                                                                                                                         |                                                                                                                         |
| Battle Creek<br>Benton Harbor<br>Flint<br>Grand Rapids<br>Jackson<br>Kalamazoo<br>Lansing<br>Muskegon<br>Traverse City<br>Tri-City<br>Subtotal | 2<br>4<br>3<br>5<br>2<br>6<br>3<br>4<br>7<br>7 | 179,869<br>235,653<br>561,025<br>547,812<br>180,445<br>330,196<br>378,423<br>331,583<br>103,467<br>513,320<br>3,361,793 | 179,600<br>245,570<br>588,400<br>588,225<br>191,400<br>348,795<br>408,100<br>362,600<br>132,600<br>545,200<br>3,590,490 | 182,300<br>278,047<br>623,100<br>649,456<br>204,300<br>392,597<br>466,900<br>411,700<br>171,900<br>589,000<br>3,969,300 |
| High Activity                                                                                                                                  |                                                |                                                                                                                         |                                                                                                                         |                                                                                                                         |
| Detroit                                                                                                                                        | 8                                              | 4,758,319                                                                                                               | 4,726,550                                                                                                               | 5,013,000                                                                                                               |
| Michigan Population Served<br>Michigan Population Not Served                                                                                   |                                                | 8,585,199<br>296,627                                                                                                    | 8,830,840<br>358,550                                                                                                    | 9,583,308<br>462,500                                                                                                    |
| Total<br>% Michigan Population Served                                                                                                          |                                                | 8,881,826<br>96.7%                                                                                                      | 9,189,000<br>96.1%                                                                                                      | 10,046,000<br>95.4%                                                                                                     |



\_\_\_\_


#### APPENDIX E

# 

|                           | JAN          |                  | PASSENGERS       |                      | PASS         |                  | MAIL (POUNDS | )                    | 1. S. | CARGO(TON              | 8)                          |
|---------------------------|--------------|------------------|------------------|----------------------|--------------|------------------|--------------|----------------------|-------------------------------------------|------------------------|-----------------------------|
| (COMMUNITY)               | DEC          | DEPLANED         | ENPLANED         | TOTAL                | HANK<br>MIC+ | INBOUND          | OUTBOUND     |                      | inbornd<br>Inbornd                        | osessesses<br>Outgound | TOTAL                       |
| PHELPS COLLINS            | 1979         | 15,117           | 13,020           | 26,137               | 17           | 0                | 0            | 0                    | 120.7                                     | 25.9                   | 146.6                       |
|                           | 1978<br>XCHG | 12,597           | 12,615           | 25,012<br>+ 4,5%     | 17           | ۵<br>۵۰ ۵ ۵      | 0<br>♦ 0∡0%  | 0<br>0 0 0 0         | 156.9<br>• 23.1x                          | 29,]<br>• 11.61        | 106.2<br>• 21.12            |
| W. K. KELLIGG DEGIONAL    | 1979         | 38.180           | 78.240           | 54 7E8               | 1 1          |                  | • •          |                      |                                           |                        |                             |
| (BATTLE GREEK)            | 1978         | 28,915           | 30,582           | 59,497               | 13           | . 0              | U<br>U       | 0                    | 473.4<br>275.4                            | ozi.o<br>535.0         | 1,115,0                     |
|                           | XCHG         | - 1.Ay           | ≈ 7°5%           | - 4,6%               |              | \$ 0.0%          | + 0,0%       | + 0,0%               | ♦ 79,23                                   | \$ 15.0%               | + 37.5×                     |
| ROSS FIELD                | 1979         | 30,167           | 37,508           | 73,675               | 11           | 73               | 4,692        | 4,765                | 116,9                                     | 180,7                  | 297.6                       |
| CACHION HANDANI           | ZCHG         | ¢ 4.2%           | ۶۳٬۹۶۲<br>۲۹٬۹۶۲ | 07,190<br>8 6,6%     | 11           | o,12∉<br>∞ 98,8% | \$843°2%     | 0,241<br>= 23,7%     | 242.4<br>• 51.8x                          | 282.0<br>- 35,98       | 524,4<br>= 43,23            |
| DETROIT CITY              | 1979         | 36,978           | 38,597           | 75,575               | 10           | 0                | ٥            |                      | 475.5                                     | 366_8                  | 847.5                       |
| (DETROIT)                 | 1978         | 35,526           | 35,483           | 71,009               | 10           | Ņ                | 0            | Ğ                    | 572.9                                     | 355, 7                 | 928,6                       |
|                           | XCHG         | 4 4 <u>,1</u> %  | * 8°8%           | * 6.4%               |              | \$ 0.0X          | 0.0X         | * 0,0 <u>%</u>       | - 17.03                                   | + J.1%                 | • 9,35                      |
| DETROIT METROPOLITAN      | 1979         | 5,348,007        | 5,333,450        | 10,681,457           | 1            | 45,130,781       | 44,782,110   | 89,912,891           | 67,440.5                                  | 110,003,9              | 177,000,0                   |
| (DEIROTI)                 | 1978<br>XCHG | $+ 11.0 \times$  | 4,767,762        | 7,308,196<br>+ 11.4X | 8            | 43,634,033       | 45,512,572   | 88,947,205<br>+ 1.1x | 70,571,3                                  | 119,430,6              | 195,001,8                   |
| DELTA COUNTY              | 1070         |                  |                  |                      |              |                  | 4 7 4 4      |                      |                                           |                        |                             |
| (ESCANABA)                | 1978         | 17.570           | 61/4/1<br>17.317 | 42,545<br>34.887     | 15           | 2,754            | 12,064       | 14,648               | 12301                                     | 40.0                   | 169.V<br>146 9              |
| • • • • • • • •           | %CHG         | * 21.7%          | ◆ 24 0%          | * 22.8%              |              | \$175.9X         | - 13,3%      | - 0,5x               | * 5.8x                                    | + 52.9%                | + 15,7%                     |
| BISHOP                    | 1979         | 120,360          | 119,763          | 246,123              | 6            | 99,292           | 347,464      | 446,756              | 694,9                                     | 127.9                  | 8,5501                      |
| (FLINT)                   | 1978         | 141,931          | 138,213          | 280,144              | 5            | 140,284          | 459,433      | 599,717              | 1,262,5                                   | 222,7                  | 1,405.2                     |
|                           | %CHG         | 11,0%            | - 13.3X          | ∞ 15°1X              |              | ∞ 29,2%          | ∞ 24,4×      | - 25.5¥              | - 29,13                                   | - 42.6X                | - 31,12                     |
| KENT COUNTY INTERNATIONAL | 1979         | 465,136          | 459,268          | 922,404              | 2            | 491,256          | 1,289,301    | 1,780,557            | 1,556.6                                   | 1,290,5                | 2,847,1                     |
| (GRAND KAP105)            | 1974<br>7646 | 424,607          | 420,709          | 841,316              | - 2          | 810,186          | 1,951,901    | 2,762,087            | 1,961.0                                   | 1,631,6                | 3,592.6                     |
|                           |              | ,                | V V0LA           | ¥ ¥804               |              | م که کر س        | ~            | - 3302%              | ~ &U 6 0 4                                |                        |                             |
| HOUGHIDN COUNTY MEMORIAL  | 1979         | 20,081           | 27,614           | 53,695               | 14           | . 0              | 18,568       | 18,568               | 85.5                                      | 71.7                   | 157,2                       |
|                           | XCHG         | * Z.1x           | + 5.1X           | 4 J.6%               | 1 44         | + 0.0X           | × 20.0%      | + 20,8x              | - 10,63                                   | 0 48,5%                | e 72°02<br>E7e'e            |
| FORD                      | 1979         | 17,816           | 17,883           | 35,699               | 16           | 1,243,171        | 20,456       | 1,263,627            | 149.4                                     | 87.0                   | 237.2                       |
| (IRON MOUNTAIN)           | 1978         | 51,956           | 22,265           | 44,191               | 15           | 1,563,728        | 26, 323      | 1,590,051            | 303,4                                     | 502°a                  | 506.8                       |
|                           | хснс         | a 18,7%          | = 19,7%          | - 19.2%              |              | ◦ 20.5%          | - 55°72      | - 50°2%              | - 50.8%                                   | ∞ 56,8%                | - 53,2x                     |
| GOGEBIC CUUNTY            | 1979         | 12,390           | 11,796           | 24,186               | 19           | 0                | 0            | 0                    | 30.0                                      | 12,3                   | 92.3                        |
| (IKONMOOD)                | 1978         | 10,386           | 10,125           | 20,511               | 20           | 29               | 2,176        | 2,205                | 34.3                                      | 6.7                    | 41,0                        |
|                           | 46 NO        | 9 1787X          | 2 10°37          | 9 1/09X              |              | - =100e0%        | @100°0X      | -100°0%              | - 12,3%                                   | 0 0 j. 0 %             | 9 J <sub>8</sub> CX         |
| JACKSON COUNTY REYNOLDS   | 1979         | 8,341            | A,651            | 16,992               | 21           | 52,470           | 20,928       | 73,398               | 92,0                                      | 28.7                   | 120.7                       |
| (UALKOUTY                 | 1978<br>76HC | ▼ø/10<br>m 14,1w | 10,196           | 19,905<br>= 14.69    | 21           | 54,445           | 30,042       | 90,087<br>- 18 Sev   | 105,3                                     | 33,3<br>- 18,87        | 130,0<br>= 12.9%            |
| Mar and Zoo Dillates Day  |              | ****£            | • = • • A        |                      | -            |                  |              | - 1407A              | - 150 44)                                 | - 62848                |                             |
| (KALAMAZOO)               | 1978         | 141,410          | 141,677          | 203,087              | 5            | 786,903          | 461,942      | 748,905              | 377.6                                     | 331.0<br>150 P         | 709 <sub>6</sub> 0<br>780 4 |
| ·· ··· ·                  | XCHG         | \$ 2.0%          | + 4.3X           | * 3.1%               | 0            | = 16.2X          | \$ 2°5%      | - 5,7%               | - 15°51                                   | , 5,5%                 | a 9,81                      |

58

1000 million (199



PASSFNGERS, MATL CAPGO 8, (AIRPORTS LISTED ALPHABETICALLY)

| 1100009 U.V.              | JAN       |                       | PASSENGERS                              | 5          | PASE           | 3                | MAIL (POUNDS            | )                       |                   | CARGO (TON                              | 8)               |
|---------------------------|-----------|-----------------------|-----------------------------------------|------------|----------------|------------------|-------------------------|-------------------------|-------------------|-----------------------------------------|------------------|
| ALRPUKI NAME              | 1000      |                       |                                         |            | RANK           |                  |                         |                         | *****             | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ****             |
| (COANDAILY)               | 080       | DEPLANED              | ENPLANED                                | TOTAL      | MICH           | A INBORND        | OUTBOUND                | TOTAL                   | INBOUND           | OUTBOUND                                | TOTAL            |
| CAPITAL CITY              | 1979      | 224,178               | 220,046                                 | 444,224    | <b>6</b> #     | 195,267          | 897,220                 | 1,292,487               | 846.7             | 448.0                                   | 1.810.4          |
| (LANSING)                 | 1978      | 225,958               | 221,301                                 | 447.259    | 4              | 684,446          | 970.149                 | 1.550.595               | 1.184.0           | 405 G                                   | • 6 6 6 4 4 • •  |
|                           | X CHG     | ⇒ 0,8%                | · 0.6%                                  | e 0.7%     |                | - 32.4%          | = 7,5%                  | - 16,9%                 | - 27,3%           | * 4,0%                                  | = 18,6X          |
| MANISTEE COUNTY-BLACKER   | 1979      | 2.867                 | 2.877                                   | 5 744      | 22             | 104              | 8.452                   | 7 E8a                   | -<br>•#           |                                         | 90.0             |
| IMANISTEE 1               | 1978      | 2 880                 | 5 9 / /                                 | 5 283      |                | . 1.46           |                         | 31338                   | 23.0              | 12.5                                    | 30,8             |
| fun .thten                | 4 ° 1 0   | 6 J C D D D           | E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 26195      | ec             | 161              | 0,135                   | 8,802                   | 33.5              | 30,5                                    | 84.6             |
|                           | 6419<br>8 | ∞ () <sub>e</sub> 7%; | * 1.2%                                  | * 0.2%     |                | a 15.5%          | - 60,5X                 | - 59,9%                 | - 53,5%           | • 55,2X                                 | • 54,1X          |
| MARQUETTE CONDTY          | 1970      | 43,092                | 41,840                                  | 84,932     | 9              | 3,345            | 24,251                  | 27,596                  | 271.0             | 64,4                                    | 355.4            |
| (MARQUETTE)               | 1978      | 42,927                | 42,569                                  | 85,496     | - <del>9</del> | 1,664            | 15,278                  | 36.942                  | 260.0             | ୍ର୍ର                                    | \$10.0           |
|                           | %CHG      | * 0.4%                | - 1.7%                                  | - 0.7%     |                | 4101.0%          | = 31.3X                 | • 25,3x                 | * 4.23            | 0 7.5X                                  | \$ <b>6</b> ,8%  |
| MENOMINEE=MARINETTE       | 1979      | 11,18%                | 10.468                                  | 21.651     | 20             |                  | 21.433                  | 21.486                  | <b>67</b> 5       | 19 E                                    |                  |
| (MENGMINEE)               | 1978      | 11.521                | 10.978                                  | 22,499     | 4 Q            | 458.             | 10 762                  | 20.141                  | 0480<br>0480      | 2102<br>636                             |                  |
|                           | 2 CHG     | ~ 2 Qv                |                                         |            | ₽. <b>?</b> .  | - 84 78          | 4 70 1 V 2<br>A 8 8 8 4 | E01101                  |                   |                                         | 10960            |
|                           | 100 IQ    |                       | - 0.0%                                  | - 3600     |                | 50°C4            |                         | Y 0,0%                  | - 40°39           | 60 60 s 1 k                             | a 79°79          |
| MUSKEGON COUNTY           | 1979      | 86,509                | A1,159                                  | 167,668    | 8.             | 1,787            | 1,907                   | 3,694                   | 355.2             | \$70.1                                  | 725.1            |
| (MUSKEGON)                | 1976      | 87,400                | 85,832                                  | 173.232    | 7              | 9,623            | 905                     | 10.528                  | 404.0             | 700.3                                   | 1.106.3          |
|                           | %CHG      | - 1.0%                | = 5,4X                                  | × 5,2×     |                | - 81.4X          | \$110,72                | - 64,9%                 | - 12,1%           | 0 47.2%                                 | • 34,32          |
| EMMET COUNTY              | 1979      | 30,500                | 30,096                                  | 60.605     | 12             | 654              | 443                     | 1.007                   | 612 A             | 116 8                                   | 330.7            |
| (PELLSTON)                | 1978      | 30.537                | 30,128                                  | 60,565     | 12             | 266              | 106                     | 1107/                   | 00209<br>120 021  | 00 9<br>61 4 6 4                        | 520 91<br>520 91 |
|                           | XCHG      | · · · · · · ·         | ø 0.1%.                                 | a 0.4%     | * 9=           | A 1 4 5 . 0 4    | ~117 QY                 | 4165<br>4100 000        | - 13 BA           | 4701<br>A 16 AP                         | 567¢/            |
|                           |           |                       |                                         |            |                | A [ - 4 6 1 5 .  | * - 2 4 7 6 7 49        | * * * * * * *           | - ) <u>-</u> 603  | 4 78.08X                                | W Veva           |
| TRIOCITY INTERNATIONAL    | 1979      | 217,020               | 556,659                                 | 446,649    | 3              | 59,293           | 239,694                 | 298,987                 | 671.8             | 275.7                                   | 987.S            |
| (SAGINAW)                 | 1978      | 225,416               | 226,745                                 | 452,161    | 3              | 67,316           | 388,259                 | 455.575                 | 945.1             | 506.8                                   | 1.451.9          |
|                           | % C HG    | - 3,7%                | + 1,3X                                  | a 1.2%     |                | - 11.9%          | - 36.3%                 | = <u>]</u> 4,4%         | = 28,9%           | - 45,6%                                 | - 34,7%          |
| CHIPPEWA CO INTERNATIONAL | 1979      | 13,828                | 13.019                                  | 26.847     | 17             | 49.252           | 30.628                  | 70.88A                  | 49.2              | 18.6                                    | 68. (            |
| (SAULT STE. MARIE)        | 1978      | 13.210                | 12,179                                  | 25, 389    | 17             | R6.111           | 44.853                  | 76.080                  | \$2.2             | 22 8                                    | 9080<br>91.A     |
|                           | XCHG      | 6 4 7%                | 6 6 9%                                  | a c 71     |                | × 2 × 18         | ጠ ጋድ ለጀ                 | 4 % & *                 | ~ 6 98            | - 15 68                                 | - 8 79           |
|                           |           | , -g m                |                                         | . 7        |                | * 1 <u>6</u> 874 | - 63000                 | 1 3000                  | · 30/2            | m 1260w                                 | ta ta            |
| CHERPY CAPITAL            | 1979      | 82,638                | 89,060                                  | 171,698    | 7              | 191,042          | 29,293                  | 220,335                 | 470.0             | 389.5                                   | 865.5            |
| (TRAVERSE CITY)           | 1978      | 74,652                | 78,067                                  | 152,719    | 8              | 349,155          | 20,094                  | 369,249                 | 510.9             | 502.4                                   | 1.013.3          |
|                           | %CHG      | + 10.7%               | * 14.1%                                 | * 12,4%    |                | · 45.3%          | + 45,8%                 | - 40,3%                 | - 6,8%            | • 22.5%                                 | 0 14,6X          |
| 70741                     | 1970      | A 001 10+             | 1 077 344                               | 17 049 184 | •              | 110 ANT 500      |                         | م., <b>گرو ب</b> ر ۱۱ م | <b>5</b> 11 850 - |                                         |                  |

(MICHIGAN)

50

1978 6,430,834 6,374,437 12,805,271

1978 6,430,634 6,374,437 12,805,271 47,607,229 49,748,213 97,355,442 87,737,5 125,682,4 213,419,9 XCHG + 8,7x + 9,5x + 9,1x + 0,8x = 3,1x = 1,2x = 14,7x = 8,5x = 11,1x

#### APPENDIX E (CONT)

#### 

| AT DO LUT NAME                                 | ĴAN.                 |                                  | PASSENGERS                       |                                  | PASS       |                                    | MAIL (POUNDS                       | )                                  |                               | CARGO (TON                       | 3)                                     |
|------------------------------------------------|----------------------|----------------------------------|----------------------------------|----------------------------------|------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------|----------------------------------|----------------------------------------|
| (COMMUNITA)                                    | DEC                  | DEPLANED                         | ENPLANED                         | TOTAL                            | MICH       | INBOUND                            | OUTBOUND                           | TOTAL                              | ingound<br>Ingond             | 00190000                         | 00000000000000000000000000000000000000 |
| PHELPS COLLINS<br>(ALPENA)                     | 1975<br>1974<br>%Chg | 8,415<br>9,299<br>- 4,1%         | 8,871<br>9,151<br>- 3,1%         | 17,786<br>18,450<br>- 3.6%       | 17<br>17   | 8,742<br>11,703<br>= 25.3x         | 15,642<br>10,226<br>+ 53.0%        | 24,384<br>21,929<br>+ 11,21        | 101.9<br>125.0<br>- 18.5x     | 27.4<br>41.7<br>9 34.38          | 129,3<br>166,7<br>22,43                |
| W. N. KELLOGG REGIONAL<br>(Battle Creek)       | 1975<br>1974<br>XCHG | 17,982<br>16,739<br>- 4,0%       | 19,704<br>19,863<br>- 0.88       | 37,680<br>38,602<br>- 2.4%       | 14<br>13   | 0<br>7,665<br>0100.0%              | 0<br>100,576<br>~100.0%            | 108,241<br>-100.0x                 | 55,5<br>47,9<br>4 15,9%       | 47.1<br>21.7<br>4117.12          | 102.6<br>69.6<br>4 87.4x               |
| ROSS FIELD<br>(BENTON HARBOR)                  | 1975<br>1974<br>%CHG | 20,265<br>27,491<br>= 4,5%       | 27,854<br>29,916<br>- 6,9%       | 54,119<br>57,407<br>- 5,7%       | 10<br>11   | 51,745<br>65,086<br>- 20.5%        | 123,300<br>233,696<br>- 47,2%      | 175,045<br>298,782<br>- 41,42      | 196.8<br>315.6<br>837.63      | 168.6<br>170.4<br>= 1.1X         |                                        |
| DETROIT CITY<br>(DETROIT)                      | 1975<br>1974<br>XCHG | 26,601<br>31,397<br>- 15,3%      | 25,711<br>30,359<br>- 15.3%      | 52,312<br>61,756<br>- 15,3%      | 11<br>9    | 0<br>0<br>0.0%                     | 0<br>0<br>0 • 0 • 0 *              | 0<br>0<br>0 0 0 4                  | 342°7<br>663°7<br>88°43       | 229,5<br>358,9<br>- 36,12        | 572,2<br>1,022,6<br>44,02              |
| DETROIT METROPOLITAN<br>(DETROIT)              | 1975<br>1974<br>XCHG | 3,700,751<br>3,867,245<br>= 4,2% | 3,647,616<br>3,818,177<br>- 4,5% | 7,354,367<br>7,685,422<br>- 4,3% | 1          | 37,389,613<br>35,804,600<br>+ 4,4% | 37,577,759<br>36,633,467<br>\$2,6% | 74,967,372<br>72,438,067<br>+ 3,5% | 70,085,5<br>95,172,1<br>26,4% | 66,904,5<br>102,144,9<br>- 34,58 | 136,990,0<br>197,317,0<br>- 30,63      |
| DELTA COUNTY<br>(ESCANABA)                     | 1975<br>1974<br>XCHG | 14,562<br>15,136<br>• 3,8%       | 14,424<br>15,378<br>6,2%         | 28,986<br>30,514<br>- 5,08       | 16<br>- 16 | 24,837<br>54,945<br>© 54.8%        | 28,017<br>66,610<br>= 57,9%        | 52,854<br>121,555<br>= 56,5%       | 138.8<br>141.5<br>2 1.92      | 19,7<br>47,3<br>• 16,12          | 178,5<br>188,8<br>• 5,5%               |
| BISHOP<br>(FLINT)                              | 1975<br>1974<br>XCHG | 90,333<br>102,508<br>- 6.0%      | 96,537<br>100,708<br>- 4,1%      | 192,670<br>203,216<br>= 5.1%     | 5          | 221,356<br>280,343<br>= 21.0%      | 407,543<br>322,722<br>+ 26,5%      | 628,899<br>603,065<br>* 4,3%       | 740.8<br>1,069.1<br>= 30.7%   | 163,8<br>2,292<br>20,98 =        | 908.0<br>1,361.8<br>7,5,6%             |
| KENT COUNTY INTERNATIONAL<br>(GRAND PAPIDS)    | 1975<br>1974<br>XCHG | 280,622<br>279,973<br>+ 2,4%     | 285,334<br>280,862<br>* 1.6%     | 571,958<br>560,835<br>+ 2,0%     | 2          | 348,108<br>269,180<br>0 29,3%      | 560,024<br>237,417<br>+135,9%      | 908,132<br>506,597<br>* 79,3%      | 1,015,0<br>2,191,3<br>- 26,3% | 1,373,4<br>1,986.0<br>= 30,88    | 2,989,0<br>4,177,3<br>© 28,4%          |
| HOUGHTON COUNTY HEMORIAL<br>(HOUGHTON/HANCOCK) | 1975<br>1974<br>XCHG | 19,594<br>18,847<br>+ 4.0%       | 19,112<br>18,902<br>+ 1,1%       | 38,706<br>37,749<br>* 2,5%       | 13<br>14   | 22,325<br>50,606<br>- 55,9%        | 21,588<br>51,192<br>- 58,0%        | 43,913<br>101,998<br>- 56,9%       | 205.0<br>213.6<br>- 4.0%      | 120.0<br>144.2<br>• 16.88        | 325°0<br>357°4<br>© 9°32               |
| FORU<br>(IRON MOUNTAIN)                        | 1975<br>1974<br>XCHG | 16,278<br>15,904<br>+ 2,4%       | 16,479<br>16,317<br>* 1.0%       | 32,757<br>32,221<br>+ 1,78       | 15<br>15   | 673,819<br>650,464<br>0 3,6%       | 21,244<br>18,732<br>+ 13,43        | 695,063<br>669,196<br>+ 3,9%       | 174,7<br>140.5<br>+ 24,33     | 104.2<br>110.1<br>5,48           | 278°9<br>220°6<br>\$ 11°22             |
| GOGEBIC CUUNTY<br>(1ronwood)                   | 1975<br>1974<br>XCHG | 8,295<br>8,506<br>2,5%           | 8,230<br>8,700<br>© 5,4%         | 16,526<br>17,206<br>- 4,0%       | 21<br>20   | 1,615<br>1,958<br>@ 17,5%          | 6,029<br>9,004<br>- 33,0%          | 7,644<br>10,962<br>- 30,3%         | 40.6<br>749.0<br>- 94.6%      | 8.5<br>20.1<br>\$7.7%            | 4901<br>769,1<br>495,65                |
| JACKSON COUNTY REYNOLDS<br>(JACKSON)           | 1975<br>1974<br>XCHG | 8,326<br>8,513<br>2,2%           | 8,610<br>8,644<br>• 0,4%         | 16,956<br>17,157<br>- 1,53       | 20<br>21   | 179,185<br>209,939<br>- 14,68      | 65,652<br>80,410<br>© 18,4%        | 244,637<br>290,349<br>= 15,7%      | 124,7<br>176,5<br>= 29,33     | 39,3<br>37,1<br>\$ 9,92          | 164,0<br>213.0<br>23.22                |
| KALAMAZUO MUNICIPAL<br>(KALAMAZUO)             | 1975<br>1974<br>%CHG | 93,069<br>100,738<br>- 7.6%      | 92,522<br>101,167<br>- 8.5%      | 185,591<br>201,905<br>- 8,1%     | 6<br>6     | 576,888<br>764,950<br>- 24.6%      | 1,517,170<br>1,288,944<br>+ 17,7%  | 2,094,058<br>2,053,894<br>+ 2,0%   | 400,7<br>608,8<br>• 34,2%     | 199.0<br>306.0<br>0 39.02        | 599,7<br>912,5<br>8 14,5               |

60

and the

APPENDIX (CONT)

PASSENGERS, MAIL

61

8

CARGO

FOR AIR CARRIER AIRPORTS..... JAN-DEC (AIRPORTS LISTED ALPHABETICALLY)

, 1 9 7 5

|                              | JAN          |                             | PASSENGERS                              | 3                                     | PASS | 5              | MAIL (POUNDS         | ;)                |                   | CARGO (TONS                                | ))                   |
|------------------------------|--------------|-----------------------------|-----------------------------------------|---------------------------------------|------|----------------|----------------------|-------------------|-------------------|--------------------------------------------|----------------------|
| ALMPUTI NAME<br>Troman. Trai | 1959         | യമായയായയും<br>സ്ത്രീ കല്പ്പ |                                         |                                       | RANK |                |                      |                   | *********         | ***********                                |                      |
| (CONT33141 - 13              | 060          | [/2. ** L. # [KF]]}         | I MPLATED                               | IUIAL                                 | MICH | INBUUND        | DUTBOUND             | TOTAL             | INSOUND           | OUTBOUND                                   | TOTAL                |
| CAPITAL CITY                 | 1975         | 166,657                     | 160,519                                 | 327.176                               | 4    | A49.99%        | 522.414              | 1.172.407         | 0 4 0 A           | 0/13 6                                     | A                    |
| (LAHSING)                    | 1974         | 164.482                     | 162,081                                 | 326.563                               | -4   | 744.358        | 551.592              | 1 297.040         | 1 D&A 1           | 4718 K<br>4746 B                           | 1041104              |
| ••••                         | % CHG        | + 1.3%                      | - 1.0%                                  | ÷ 0.2%                                |      | - 12.7%        | - 5.6X               | · 9.7%            | - 24 lx           | - 19 <sub>9</sub> 3<br>- 19 <sub>9</sub> 3 | <br>                 |
|                              |              |                             |                                         |                                       |      |                |                      |                   | 6 - 8 a a         |                                            | - 619-4              |
| MANISTEE COUNTY-BLACKER      | 1975         | 2,763                       | 2,857                                   | 5,620                                 | 52   | 918            | 8,197                | 9,115             | 58,7              | 13.7                                       | 72.4                 |
| (MANISTEL)                   | 14/4         | 5,284                       | 3,385                                   | 5,569                                 | 22   | 197            | 8,084                | 8,281             | 103.1             | 34,5                                       | 137,6                |
|                              | %CHG         | ≈ 15,9%                     | ■ 15.6%                                 | - 15.7%                               |      | +360.0X        | * 1 <sub>9</sub> 4%  | ♦ 10,1%           | - 43,1%           | - 60.3%                                    | - 47,42              |
| MARQUETTE COURTY             | 1975         | 31.994                      | 11.109                                  | 797,7A                                | 0    | 54.050         | 27.179               | 81.220            | 3/17 A            | ፈዋ ዋ                                       |                      |
| (MARUUETTE)                  | 974          | 39,347                      | 29,620                                  | 59,967                                | 10   | 54,480         | 28.918               | 01/267<br>81.407  | 287.60            | 0/ <sub>6</sub> /                          | 21202                |
|                              | XCHG         | * 5.4Y                      | * 6.0%                                  | . 5 72                                | ••   | - 0.8%         |                      | - 3 44            | 2 2 2 2 U         | 21.00                                      |                      |
|                              |              | · • • • - •                 |                                         |                                       |      |                |                      | - E.OA            | 4 0.0X            | ♥ 31 <sub>6</sub> 64                       | ♥ 11 <sub>0</sub> 64 |
| MENUMINEE=MARINETTE          | 1975         | 4,436                       | 9,256                                   | 19,192                                | 18   | 13,803         | 36.593               | 52, 396           | 103.4             | 62.3                                       | 165.7                |
| (MENOMINEE)                  | 1974         | 9,795                       | 9,145                                   | 18.940                                | 18   | 14,333         | 49.401               | 83,734            | 90,4              | 2.40                                       | 187.9                |
|                              | %CH16        | + 1,4%                      | * 1.2%                                  | * 1.5%                                |      | - 59.8%        | = 21.9X              | - 37.42           | • 4 AX            | a 14.8%                                    | a 16.3%              |
|                              |              | •                           |                                         |                                       |      |                |                      |                   |                   | - 20800                                    | ~ 14830              |
| MUSKEGON COUNTY              | 1975         | 72,620                      | 72,047                                  | 144,667                               | 7    | 37,232         | 37,676               | 74,908            | 332.7             | 685.7                                      | 1,018.4              |
| (MUSKEGON)                   | 1974         | 73,156                      | 73,334                                  | 146,490                               | 7    | 66,735         | 65,455               | 132,190           | 429,9             | 729.5                                      | 1,199.4              |
|                              | XCHG         | - 0,7%                      | - 1.8%                                  | ⇒ 1,2X                                |      | ≈ 44.2X        | • 42,4%              | - 43,5%           | - 22, 6%          | - 6.0%                                     | - 12,2%              |
| EMMET COUNTY                 | 975          | 22.030                      | 21.802                                  | 44 530                                | 17   | 71 404         | 12 097               | 81 5 5            |                   | <b>F</b> A <b>0</b>                        |                      |
| (PELISTON)                   | 1974         | 21.81                       | 22,126                                  | 44002CV<br>112 027                    | 6.30 | 110074         | 121421               | 04,331<br>1/0 310 | 10463<br>07 4     | 20,4                                       | 101.6                |
|                              | XCHG         | 5 T 74                      | 5 C F C F C C C C C C C C C C C C C C C | · · · · · · · · · · · · · · · · · · · | 16   | אכוקבע:        | - 40 8V              | - 43 AA           | 5 25 4<br>2 2 5 4 | 76,7                                       | 13307                |
|                              |              | + JelA                      | ~~ <sup>4</sup> 6 4 40                  | r lgJA                                |      | ₩ 36°A4        | - 04 <sup>2</sup> 04 | - 42.02           |                   | ▼ 16.6×                                    | ♥ ₡0°1×              |
| TRI-CITY INTERNATIONAL       | 1975         | 163,122                     | 165,371                                 | 328,493                               | 3    | 236,292        | 448,547              | 684,839           | 971.7             | 378.5                                      | 1.350.2              |
| (SAGINAW)                    | 1974         | 171,561                     | 172,608                                 | 344,169                               | 3    | 259,395        | 425,478              | 684,873           | 952.9             | 492.3                                      | 1.445.2              |
|                              | % CHG        | ∞ 4 <sub>6</sub> 9%         | ≈ 4,2X                                  | - 4,6%                                |      | - 8,9X         | + 5.4%               | = 0,0X            | * 2.0X            | - 23,15                                    | - 6,6%               |
| PHIDDENA CO TRALDUATIONAL    | + 07E        | • 4 • 4 •                   | 4.3 U.4.0                               |                                       |      |                | 8                    |                   |                   |                                            |                      |
| ISANLY STE MADTES            | 1970         | 54 / 5 ~                    | 121440                                  | 20,300                                | 11   | 54,001         | 20,001               | 112,002           | 62,5              | 16,0                                       | 74.3                 |
| CONCENTRATES                 | 1774<br>YEWE | - 1 04                      | 161400                                  | 20,070                                | 47   | 03,001         | 31,712               | 105,375           | 60,¥              | 10,0                                       | 70.84                |
|                              | ACHU         | as 1,97 <u>7</u>            | ~ ∪ <sub>e</sub> 3∧                     | ● ] <sub>9</sub> £A                   |      | ∞ <u>]</u> ,0% | \$ \$4,4%            | · • 11,7%         | + 5°71            | : <b>6 52,0</b> 8.                         |                      |
| CHERRY CAPITAL               | 1975         | 51,918                      | 56,216                                  | 108,134                               | 8    | 378,608        | 49,648               | 428,256           | 443.1             | 132.8                                      | 775.9                |
| (TPAVERSE CITY)              | 1974         | 50,374                      | 54,457                                  | 104,831                               | 8    | 246,827        | 158,571              | 405,398           | 371.7             | 362.9                                      | 734.6                |
|                              | XCHG         | + 3.1%                      | * 3.2%                                  | + 3.2%                                |      | 4 53.4%        | = 68.7%              | <b>* 5.6</b> %    | + 19 2%           | . 6.32                                     | 0 5 6X               |
| Ŷ                            |              |                             |                                         | - <b>e</b> -                          |      |                |                      | - 9               |                   |                                            | - 6 -                |
|                              |              |                             |                                         |                                       |      |                |                      |                   |                   |                                            |                      |
| TUTAL                        | 1975         | 4,865,372                   | 4,803,011                               | 9,668,383                             |      | 41,005,424     | 41,540,140           | 82,545,564        | 77,510.1          | 71,479.2                                   | 148,995.3            |
| (MICHIGAN)                   | 1974         | 5,043,518                   | 4,997,386                               | 10,040,904                            | 1.1  | 39,748,784     | 40,423,581           | 80,172,365        | 105,228.0         | 108,237.0                                  | 213,465.0            |
|                              | %CHG         | - 3,5%                      | = <u>3</u> 9%                           | - 1.72                                |      | 6 3.28         | + 2.8X               | • 3 OX            | = 26 3X           | a 14 02                                    | \$ \$ 6 . 28         |

#### APPENDIX E (CONT)

#### PASSFHGERS, MATL & CARGO FOR AIR CARRIER AIRPORTS, , , , , JAN © DEC, 1970 (AIRPORTS LISTED ALPHABETICALLY)

|    |                                             | JAN                  |                                  | PASSENGERS                       | i i                                | PASS     | 3                                  | MAIL (POUNDS                       | ))                                     |                                | CARGO (TON                     | 8)                                     |
|----|---------------------------------------------|----------------------|----------------------------------|----------------------------------|------------------------------------|----------|------------------------------------|------------------------------------|----------------------------------------|--------------------------------|--------------------------------|----------------------------------------|
|    | (COMMUNITY)                                 | DEC                  | DEPLANED                         | ENPLANED                         | TOTAL                              | MICH     |                                    | OUTBOUND                           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | INBOUND                        | OUIBOUND                       | TOTAL                                  |
|    | PHELPS COLLINS<br>(ALPENA)                  | 1970<br>1969<br>%CHG | 5,958<br>5,958<br>\$ 9,5%        | 6,397<br>5,960<br>+ 7.3%         | 12,922<br>11,918<br>* 8,4%         | 17<br>17 | 8,943<br>25,638<br>- 65,4%         | 20,044<br>24,829<br>= 19,3%        | 28,987<br>50,667<br>~ 42,82            | 117.9<br>93.7<br>\$25.8x       | 143.2<br>67.1<br>0113.48       | 261:1<br>160;8<br>02,43                |
|    | W. K. KELLOGG REGINNAL<br>(BATTLE CREFK)    | 1970<br>1969<br>%Chg | 30,077<br>37,790<br>- 20,4%      | 27,387<br>33,062<br>* 17,2%      | 57.464<br>70,852<br>= 18.9%        | 10       | 151,486<br>196,291<br>- 22.8%      | 578,474<br>763,058<br>= 24,2%      | 729,960<br>959,349<br>* 23,9%          | 326,3<br>461,3<br>* 29,3%      | 85,5<br>206,2<br>© 58,5%       | 41128<br>667.5<br>5 5253               |
|    | RUSS FIELD<br>(BENTON HARBOR)               | 197)<br>1969<br>%CHG | 21,357<br>20,435<br>+ 2.0%       | 22,931<br>22,277<br>* 2,9%       | 44,288<br>43,212<br>* 2.5%         | 12<br>12 | 63,473<br>71,099<br>- 10.7%        | 211,319<br>205,645<br>\$2.3%       | 274,792<br>277,744<br>= 1,13           | 328,5<br>304,3<br>\$ 8,0%      | 248,3<br>225,4<br>¢ 9,7%       | 576,8<br>530,7<br>¢ 8,78               |
|    | DETROIT CITY<br>(DETROIT)                   | 1970<br>1969<br>%CHG | 50,157<br>74,485<br>0 \$2,7%     | 51,244<br>72,824<br>- 29.6%      | 101,401<br>147,309<br>© 31.2%      | පි<br>ර  | 0<br>0<br>\$ 0.0 \$                | 0<br>80.0 ¢                        | 0<br>70,0 ¢                            | 707,7<br>602,9<br>+ 17,4%      | 445.1<br>377.8<br>\$ 17.83     | 1,152.8<br>980.7<br>+ 17,5%            |
|    | DETROIT METROPOLITAN<br>(DETROIT)           | 1970<br>1969<br>%Chg | 3,544,994<br>3,734,480<br>- 5,1% | 3,495,003<br>3,681,809<br>= 5.1% | 7,039,997<br>7,416,289<br>=== 5,1% | 1<br>1   | 23,563,851<br>24,864,977<br>= 5,2% | 23,539,759<br>24,178,868<br>- 2,6% | 47,103,610<br>49,043,845<br>= 4,03     | 72,929,9<br>70,604.6<br>\$3,3% | 61,083,8<br>86,855,4<br>~ 6,6% | 15 <i>4,013,7</i><br>157,400,0<br>2,23 |
| 69 | DELTA COUNTY<br>(ESCANABA)                  | 1970<br>1969<br>%Chg | 14,228<br>11,797<br>+ 20.0%      | 13,941<br>12,138<br>+ 14,9%      | 28,169<br>23,935<br>* 17,7%        | 15<br>15 | 27,657<br>64,584<br>= 57,2%        | 45,083<br>59,307<br>- 24,0%        | 72,740<br>123,891<br>= 41,3%           | \$ 21.22<br>\$2.3<br>\$1.22    | 49.3<br>47.1<br>\$ 4.7%        | 157.j<br>129.4<br>• 21.65              |
|    | BISHOP<br>(FLINT)                           | 1970<br>1969<br>%Chg | 77,450<br>89,071<br>© 13.0%      | 79,542<br>89,248<br>** 10,9%     | 156,992<br>178,319<br>- 12.01      | 5        | 183,691<br>272,507<br>- 32.68      | 387,419<br>523,117<br>- 25,9%      | 571,110<br>795,624<br>- 28,28          | 1,533,3<br>1,524,8<br>* 0,6%   | 814.0<br>958.0<br># 15.93      | 2,547.3<br>2,692.8<br>- 5.82           |
|    | KENT COUNTY INTERNATIONAL<br>(GRAND RAPIDS) | 1970<br>1969<br>2046 | 221,641<br>223,484<br>= 0,8%     | 215,579<br>221,248<br>- 2.6%     | 437,220<br>444,732<br>- 1,7%       | 2        | 745,003<br>686,042<br>0 8.63       | 694,956<br>767,564<br>- 9,5%       | 1,439,959<br>1,453,606<br>- 0,92       | 2,853,9<br>2,478,8<br>+ 15,1%  | 2,792.0<br>2,689.6<br>4 3.82   | 5,645,9<br>5,165,4<br>\$ 9,23          |
|    | HOUGHTON COUNTY MEMORIAL (HOUGHTON/HANCOCK) | 1970<br>1969<br>XCHG | 17,500<br>17,772<br>1,5%         | 17,377<br>17,749<br>• 2.14       | 14,683<br>35,521<br>- 1,8%         | 13<br>13 | 221,490<br>259,422<br>= 14.6%      | 49,754<br>97,770<br>- 49,1%        | 271,244<br>357,192<br>- 24,13          | 206.3<br>173.2<br>+ 19.1x      | 113.9<br>109.5<br>* 4.03       | 520.2<br>282.7<br>+ 15.Jx              |
|    | FORD<br>. (IRUN HOUNTAIN)                   | 1970<br>1969<br>%CHG | 13,018<br>11,006<br>4 18,3%      | 12,886<br>11,869<br>* 8.6%       | 25,904<br>22,875<br>* 13.2%        | 16<br>16 | 135,400<br>97,114<br>+ 39.4%       | 20,741<br>68,806<br>- 69,9%        | 156,141<br>165,920<br>- 5,93           | 207.0<br>221.1<br>+ 30.1x      | 70,5<br>129,2<br>- 49,4%       | 356.1<br>350.3<br>¢ 2.2%               |
|    | СОСЕРІС СОЦЧТУ<br>(Іконмарр)                | 1970<br>1959<br>%CHG | 7,560<br>0,478<br>4 8,3%         | 7,925<br>7,415<br>* 6,9%         | 15,485<br>14,393<br>+ 7,6%         | 19<br>19 | 2,473<br>2,887<br>= 14.3%          | 17,208<br>27,219<br>- 36,8%        | 19,681<br>30,106<br>• 34,63            | 72.1<br>62.4<br>* 15.52        | 11.6<br>32.5<br>© 64.35        | 85.7<br>94.9<br>\$1.8%                 |
|    | JACKSON COUNTY REYNOLDS<br>(JACKSON)        | 1970<br>1969<br>%Chg | 5,021<br>5,344<br>• 6,0%         | 5,733<br>6,070<br>9 5,6%         | 10,754<br>11,414<br>• 5,8%         | 21<br>21 | 191,471<br>215,841<br>= 11,3%      | 52,641<br>74,783<br>= 29,6%        | 244,112<br>290,624<br>= 16,0%          | 227,5<br>219,2<br>\$ 3,8%      | 83.8<br>50.8<br>♦ 21.8%        | 511.5<br>288.0<br>\$ 8,1%              |
|    | KALAMAZUO MUNICIPAL<br>(KALAMAZOO)          | 1970<br>1969<br>%Chg | 65,440<br>61,430<br>\$ 6,5%      | 60;296<br>63;304<br>~ 4.8%       | 125,736<br>124,734<br>+ 0.8%       | 6<br>8   | 381,211<br>802,874<br>= 52.5%      | 524,723<br>536,289<br>- 2,2%       | 905,934<br>1,339,163<br>= 32,4%        | 734.1<br>756.7<br>= 3.08       | 617,9<br>1,155,4<br>= 46,5%    | 1,352,0<br>1,912,1<br>- 29,3%          |

#### APPEN E (CONT)

წვ

| ATREDRT DAME                                    | JAN<br>THE D           |                                  | PASSENGERS                       | 5                                       | PASS     | š                                  | MAIL (POUNDS                       | <b>3)</b> ,                        |                                | CARGO (TON                    | 5)                               |
|-------------------------------------------------|------------------------|----------------------------------|----------------------------------|-----------------------------------------|----------|------------------------------------|------------------------------------|------------------------------------|--------------------------------|-------------------------------|----------------------------------|
| (СОМНИЦТТУ)                                     | DEC                    | DEPLAHED                         | ENPLANED                         | , a m a a a a a a a a a a a a a a a a a | MICH     | A INBOUND                          | OUTBOUND                           | 1014°                              | . INRDAND<br>Mannadaa          | CHISCHO<br>CHISCHO            | . JATCT                          |
| CAPITAL CITY<br>(LANSING)                       | 1970<br>1969<br>%CHG   | 120,523<br>135,721<br>= 11,2%    | 117,642<br>127,869<br>- 8.0%     | 238,165<br>263,590<br>- 9.6%            | 4        | 569,311<br>718,193<br>= 20,7%      | 612,049<br>1,093,190<br>= 44.0%    | 1,181,360<br>1,811,383<br>- 34,8%  | 1,083.1<br>1,308.6<br>- 17,2%  | 659.5<br>1,019,9<br>- 35,3%   | 1,742,6<br>2,328,5<br>= 25,25    |
| MANISTEE COUNTY=BLACKER<br>(MANISTEE)           | 1970<br>1969<br>XCHG   | 2,080<br>4,084<br>= 48,9%        | 2,367<br>4,168<br>- 43,2%        | 4,453<br>8,252<br>= 46.0%               | 55<br>55 | 805<br>5,807<br>= 86.1%            | 13,364<br>19,653<br>* 32,0%        | 14,169<br>25,460<br>- 44,32        | 67.2<br>72,9<br>7.8%           | 52.4<br>39.8<br>\$ 31.72      | 119.6<br>112.7<br>¢ 6.1%         |
| MARQUETTE COUNTY<br>(MARQUETTE)                 | 1970<br>1969<br>%CHG   | 24,749<br>22,194<br>+ 11,52      | 24,301<br>21,745<br>+ 11,8%      | 49,050<br>43,939<br>+ 11.6%             | 11<br>11 | 91,241<br>96,512<br>∞ 5.5%         | 82,158<br>135,781<br>- 39,5%       | 173,399<br>232,293<br>- 25,4%      | 183.8<br>150.3<br>+ 22.3%      | 95.2<br>40.3<br>*109.6x       | 279.0<br>196.6<br>+ 41.92        |
| MENUMINEF=MARINETTE<br>(MENUMINEE)              | 1970<br>1969<br>%CHG   | 8,208<br>8,557<br>- 4,1%         | A,332<br>8,614<br>- 3,3%         | 10,540<br>17,171<br>∞ 3.7%              | 18<br>18 | 13,198<br>28,224<br>- 53.2%        | 36,475<br>15,984<br>+128.2%        | 49,673<br>44,208<br>† 12,4%        | 102.3<br>110.1<br>= 7.1%       | 114.8<br>132.7<br>= 13.5x     | 217, i<br>242, 6<br>0, 65        |
| MUSKEGON COUNTY<br>(MUSKEGON)                   | 1970<br>1969<br>%CHG   | 61.696<br>63.015<br>2.1x         | 62,755<br>64,707<br>- 3.0%       | 124,451<br>127,722<br>• 2.63            | 7<br>7   | 98,543<br>114,376<br>= 13.8%       | 335,149<br>516,576<br>= 35,1%      | 433,692<br>630,952<br>• 31,3%      | 616,5<br>582,4<br>\$ 5,9%      | 1,303,4<br>1,179,4<br>+ 10,5% | 1,919.7<br>1,751.8<br>• 9,03     |
| EMMET CUUNTY<br>(PELLSTON)                      | 1970<br>1969<br>%Chg   | 15,954<br>15,732<br>+ 1,4%       | 15,457<br>16,572<br>- 0,7%       | 31,411<br>32,304<br>∞ 2.8%              | 14       | 10,555<br>17,116<br>- 38.3%        | 13,538<br>20,611<br>- 34,3%        | 24,093<br>37,727<br>= 36,12        | 120.6<br>96.1<br>\$25.5%       | 133.7<br>58.1<br>\$130.1%     | 254,5<br>158,2<br>\$ 54,9%       |
| TRI-CITY INTERNATIONAL<br>(SAGINAH)             | 1971<br>1969<br>%CHG   | 138,934<br>140,401<br>• 5,1x     | 138,762<br>165,965<br>- 16,4%    | 277,695<br>312,366<br>= 11.1%           | 3        | 570,002<br>534,143<br>+ 70.63      | 337,538<br>578,507<br>- 41,7%      | 907,600<br>912,650<br>= 0,6%       | 816,8<br>1,113.1<br>- 24,6%    | 1,021.7<br>889.2<br>♦ 14.9%   | 1,838,5<br>2,002,3<br>= 6,2%     |
| CHIPPEWA CO INTERNATIONAL<br>(SAULT STE, MARIE) | 1970<br>1969<br>%Chg   | 9,290<br>10,187<br>- 8,8%        | 9,173<br>10,272<br>- 10,72       | 18,483<br>20,459<br>= 9,8%              | 17<br>17 | 59,998<br>107,561<br>= 44.2%       | 39,996<br>77,241<br>- 48,2%        | 99,994<br>184,802<br>@ 45,9%       | 76.9<br>83.7<br>8,1%           | 20.0<br>15.9<br>- 44,11       | \$8,9<br>119,8<br>= 19,0%        |
| CHERRY CAPITAL<br>(TRAVERSE GITY)               | 1970<br>1969<br>\ %CHQ | 36,225<br>35,460<br>\$ 2,2%      | 36,610<br>34,441<br>* 6,3%       | 72,835<br>69,901<br>+ 4,23              | 9<br>10  | 126,827<br>183,126<br>= 30,7%      | 49,008<br>124,255<br>= 60,6%       | 175,835<br>307,381<br>- 42,8%      | 266.2<br>244.8<br>• 8.7%       | 265,0<br>234.4<br>+ 13,1%     | 551.2<br>279.2<br>4 10.92        |
| TOTAL<br>(MICHIGAN)                             | 197)<br>1969<br>%Chg   | 4,492,639<br>4,741,681<br>- 5,3% | 4,431,640<br>4,699,326<br>= 5.7% | 8,924,279<br>9,441,207<br>∞ 5.5%        |          | 27,216,089<br>29,164,534<br>= 6.7% | 27,661,396<br>29,910,053<br>= 7.5% | 54,878,085<br>59,074,587<br>• 7,1% | 83,766,5<br>81,347,3<br>+ 3,0% | 90,224.0<br>96,568.7          | 173,991.1<br>177,916.0<br>- 2.2% |



### APPENDIX G

## MICHIGAN SHORT - HAUL (COMMUTER) AIR SERVICE

January | through December 31, 1979

| · · ·              | · .    | Passengers |        | , tele ti <b>j</b> | Freight ( | (Lbs)   |           |       |
|--------------------|--------|------------|--------|--------------------|-----------|---------|-----------|-------|
| Location           | In     | Out        | Total  | In                 | Out .     | Total   | Remarks   |       |
| Alpena             | 288    | 232        | 520    | 176                | 65        | 241     | · .       |       |
| Big Rapids         | 87     | 94         | 181    | 40                 | 150       | 190     | Sv. term. | 10/1  |
| Cadillac           | 564    | 584        | 1,148  | 368                | 253       | 621     |           | · .   |
| Detroit Metro      | 22,436 | 22,334     | 44,770 |                    | Not re    | eported | х.        |       |
| Gaylord            | 107    | 001        | 207    | 50                 | 25        | . 75    | Sv. term. | 10/1  |
| Grand Rapids       | 1,604  | 2,121      | 3,725  | 85                 | 153       | 238     | Sv. term. | 6/30  |
| Hancock/Houghton   | Not re | ported     | 843    |                    | Not re    | eported |           |       |
| Lansing            | Not re | oorted     | 3,302  |                    | Not re    | eported |           |       |
| Mackinac Island    | 24     | 42         | 66     |                    | No        | ne      | Sv. term. | 10/15 |
| Marquette          | Not re | ported     | 2,6577 |                    | Not re    | eported |           |       |
| Mt. Pleasant       | 311    | 343        | 654    | 10                 | 20        | .30     |           |       |
| Muskegon           | 2,047  | 3,143      | 5,190  | 8,779              | 494       | 9,273   | Sv. eff.  | 6/1   |
| Oscoda (Wurtsmith) | 447    | 492        | 939    | 61                 | 71        | 132     |           |       |
| Traverse City      | 367    | 394        | 761    |                    | Not re    | eported | Sv. eff.  | 10/1  |
|                    |        |            |        |                    |           |         |           |       |

TOTAL:

64,693

Source: Michigan Department of Transportation, Bureau of Urban and Public Transportation.

#### APPENDIX H

# COMPARATIVE ACCIDENT DATA, 1969-78

|      | Passenger<br>Automobiles<br>and Taxis | Buses          | Railroad<br>Passenger<br>Trains | Domestic<br>Scheduled<br>Air Transport<br>Planes |
|------|---------------------------------------|----------------|---------------------------------|--------------------------------------------------|
| 1969 | 2.30                                  | .19            | .07                             | .13                                              |
| 1970 | 2.10                                  | .19            | .09                             | .00                                              |
| 1971 | 1.90                                  | .19            | .24                             | .15                                              |
| 1972 | 1.90                                  | .19            | .53                             | .13                                              |
| 1973 | 1.70                                  | <u> </u> / .24 | .07                             | .10                                              |
| 1974 | <u> </u>                              | .21            | .07                             | .12                                              |
| 1975 | 1.40                                  | .15            | .08                             | .08                                              |
| 1976 | <u> </u>                              | <u> </u>       | .05                             | .003                                             |
| 1977 | 1.33                                  | .13            | .05                             | .04                                              |
| 1978 | 1.30                                  | .17            | .13                             | .01                                              |

(Passenger Fatalities per 100 Million Passenger Miles)

Note:

<u>I</u>/ Revised figure.

Sources:

Motor vehicle (automobiles, taxis, and buses) and railroad passenger train data from the National Safety Council. Domestic scheduled air transport data from the Natonal Transportation Safety Board.

#### APPENDIX I

### DEMAND ESTIMATES FOR LOW AND MODERATE ACTIVITY SERVICE AREAS-1990

|    |                                    |                |                         | Demar             | nd (Daily    | Enplanen | nents)  | Capaci       | ity (Daily        | Available | Seats)  | Free     | uency ([ | Daily Depo | irtures) |
|----|------------------------------------|----------------|-------------------------|-------------------|--------------|----------|---------|--------------|-------------------|-----------|---------|----------|----------|------------|----------|
|    | Service Area<br>Low Activity Servi | Year<br>ce Are | Population<br><u>as</u> | Min               | Max          | Actual   | EAS     | Min          | Max               | Actual    | EAS     | Min      | Max      | Actual     | EAS      |
|    | Alpena                             | C<br>1990      | 71,300<br>87,800        | 42<br>48          | 62<br>71     | 42<br>   | 35<br>  | 62<br>71     | 83<br>96          | ! 04<br>  | 70<br>  | 3<br>3   | 6<br>6   | 3<br>      | 2        |
|    | Escanaba                           | C<br>1990      | 50,925<br>57,575        | 65<br>75          | 98<br>112    | 69<br>   | 35<br>  | 98<br>112    | 30<br>  <b>50</b> | 140       | 80<br>  | 3<br>3   | 6<br>6   | 6<br>      | 2        |
|    | Hancock/Houghton                   | C<br>1990      | 52,800<br>62,860        | 86<br>99          | 129<br>148   | 89<br>   | 70<br>  | 29<br>  48   | 163<br>198        | 100       | 80      | 3<br>3   | 6<br>6   | 6          | 2        |
|    | Iron Mountain                      | C<br>1990      | 50,006<br>54,585        | 57<br>65          | 85<br>97     | 57<br>   | 59      | 85<br>97     | 3<br> 30          | l 65      | 80      | · 3<br>3 | 6        | 6<br>      | 2        |
| 67 | Ironwood                           | C<br>1990      | 61,480<br>60,520        | 36<br>41          | 53<br>61     | 38       | 36<br>  | 53<br>61     | 71<br>82          | 48        | 71      | 3<br>3   | 6<br>6   | 4          | 2        |
|    | Manistee                           | C<br>1990      | 54,200<br>67,300        | 9<br>10           | 13<br>15     | 9<br>    | 8<br>   | 13           | 17<br>20          | 12        | 32      | 3<br>3   | 6        |            | 1/2<br>  |
|    | Marquette                          | C<br>1990      | 85,520<br>96,520        | 130<br>150        | 196<br>225   | 134<br>  | 113<br> | 196<br>225   | 261<br>300        | 165       | 80      | 3<br>3   | 6<br>6   | 3          | 2        |
| ÷  | Menominee                          | C<br>1990      | 56,079<br>62,345        | 32<br>37          | 49<br>56     | 35<br>   | 28      | 49<br>56     | 64<br>74          | 60<br>    | 57<br>  | 3<br>3   | 6<br>6   |            | 2        |
|    | Pellston                           | C<br>1990      | 60,700<br>76,800        | 95<br>109         | 42<br>  63   | 96<br>   | 72      | [42<br>[63   | 190<br>218        | 177<br>   | 80<br>  | 3<br>3   | 6<br>6   | 5<br>      | 3<br>    |
|    | Sault Ste. Marie                   | C<br>1990      | 49,000<br>53,500        | 41<br>47          | 62<br>71     | 42       | 34      | 62<br>71     | 82<br>94          | 50        | 67      | 3<br>3   | 6<br>6   | 2          | 2        |
|    | Total                              | C<br>1990      | 592,010<br>679,805      | -<br>592 -<br>681 | 888<br>1,019 | 611      | 490     | 888<br>1,019 | 1,184<br>1,362    | 1,021<br> | 697<br> | 30<br>30 | 60<br>60 | 41         | 21       |

|    |                                      | $\Box \Xi \overline{w}$ | AND ES                 |                | <u>= = = = = = = = = = = = = = = = = = = </u> |           | AND      | MODERAI        |                |           | SERVI         | CE AREA   | 12 - 13    | 220       |                |
|----|--------------------------------------|-------------------------|------------------------|----------------|-----------------------------------------------|-----------|----------|----------------|----------------|-----------|---------------|-----------|------------|-----------|----------------|
|    |                                      |                         |                        | Demand         | l (Daily E                                    | nplaneme  | nts)     | <u>Capacit</u> | y (Daiły       | Available | <u>Seats)</u> | Frequ     | ency (D    | aily Depa | <u>rtures)</u> |
|    | Service<br>Area<br>Moderate Activity | Year<br>Service         | Population<br>Areas    | Min            | Max                                           | Actual    | EAS      | Min            | Max            | Actual    | EAS           | Min       | Max        | Actual    | EAS            |
|    | Battle Creek                         | C<br>1990               | 179,600<br>182,300     | 90<br>100      | 151<br>167                                    | 91<br>    | 94<br>   | 3<br> 25       | 186<br>206     | 113       | 80<br>        | 12<br>[2  | 24<br>24   | 14        |                |
|    | Benton Harbor                        | C<br>1990               | 245,570<br>278,047     | 36<br>  50     | 226<br>250                                    | 120       | 86<br>   | 170<br>188     | 282<br>312     | 168       | 80<br>        | 12        | 24<br>24   | 7<br>     | 2              |
|    | Flint                                | C<br>1990               | 588,400<br>623,100     | 384<br>425     | 641<br>709                                    | 384       | NA<br>   | 480<br>531     | 800<br>885     | 735       | NA            | 12        | 24<br>24   | 14        | NA<br>         |
| 83 | Grand Rapids                         | C<br>1990               | 588,225<br>649,456     | ,447<br> ,600  | 2,414<br>2,669                                | 1,472<br> | NA<br>   | 1,809<br>2,000 | 3,014<br>3,333 | i,640     | NA<br>        | 2<br> 2   | 24<br>24   | 34        | NA<br>         |
|    | Jackson                              | C<br>1990               | 191,400<br>204,300     | 45<br>50       | 75<br>83                                      | 28        | 28 .<br> | 57<br>63       | 94<br>104      | 96<br>    | 56            | [2<br>[2  | 24<br>24   | 5         | 4              |
|    | Kalamazoo                            | C<br>1990               | 348,795<br>392,597     | 452<br>500     | 754<br>834                                    | 454<br>   | 344<br>  | 564<br>625     | 942<br>1,042   | 649<br>   | 80<br>        | 2<br> 2   | 24<br>24   | 13        |                |
|    | Lansing                              | C<br>1990               | 408,100<br>466,900     | 701<br>775     | 1,170<br>1,293                                | 705       | NA<br>   | 877<br>969     | 1,099<br>1,215 | 966       | NA<br>        | 2<br> 2   | 24<br>24   | 24        | NA<br>         |
|    | Muskegon                             | C<br>1990               | 362,600<br>411,700     | 271<br>300     | 452<br>500                                    | 262       | NA<br>   | 339<br>375     | 565<br>625     | 306       | NA<br>        | 12        | 24<br>24   |           | NA             |
|    | Traverse City                        | C<br>1990               | 132,600<br>171,900     | 271<br>300     | 452<br>500                                    | .285<br>  | 187      | 339<br>375     | 565<br>625     | 392       | 80            | 12<br>12  | 24<br>24   | 17        |                |
|    | Tri-City                             | C<br>1990               | 545,200<br>589,000     | 723<br>800     | l,388<br>1,534                                | 736       | NA       | 905<br>1,000   | 1,508<br>1,667 | 993       | NA<br>        | 12        | 24<br>24   | 19        | NA<br>         |
|    | Total                                | C<br>1990               | 3,590,490<br>3,969,300 | 4,309<br>4,763 | 7,181<br>7,939                                | 4,537     | <br>     | 5,386<br>5,954 | 8,976<br>9,924 | 6,058     |               | 20<br> 20 | 240<br>240 | <58<br>   |                |

#### APPENDIX I (continued)

Notes: 1/ "Counties Served" includes those counties served entirely or partially by an airport including Wisconsin counties served by Michigan airports.

- 2/ U.S. Department of Commerce, Bureau of the Census "Estimates of the Population of Michigan Counties and Metropolitan Areas: July 1, 1977 (Revised) and 1978 (Provisional)."
- 3/ Michigan Department of Management and Budget, "Population Projections for Michigan to the Year 2000: Summary Report (State, Regions, Counties)."

Source:

Michigan Department of Transportation, Aviation Planning Section.

69

## APPENDIX J

# HISTORY OF SCHEDULED COMMUTER SERVICE - 1968-80

| Community          | Voors Served                                                                                                                                                                                                                                                                                                                 | C                         | Carriers Served                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Averac<br>of V | je Num<br>Veekda                                                                                         | iber<br>y |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------|-----------|
| Commonly           | redis Served                                                                                                                                                                                                                                                                                                                 | -                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | Jui Tores                                                                                                | <b></b>   |
| Alpena             | 1969<br>1977-80                                                                                                                                                                                                                                                                                                              | ۲<br>5                    | Trans-Michigan Airlines<br>SEACO Airlines                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | 2<br>                                                                                                    |           |
| Battle Creek       | 972-73<br> 974<br> 974-present                                                                                                                                                                                                                                                                                               | H<br>S<br>_/ /            | Hub Airlines<br>Gkystream Air Lines<br>Air Wisconsin                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | 8<br>6<br>12                                                                                             |           |
| Benton Harbor      | 1969<br>1970-71                                                                                                                                                                                                                                                                                                              | T<br>4                    | Time Airlines<br>Air Michigan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 3<br>5                                                                                                   |           |
| Big Rapids         | 197879                                                                                                                                                                                                                                                                                                                       | S                         | GEACO Airlines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | 2                                                                                                        |           |
| Cadillac/Reed City | 1969<br>1977-80                                                                                                                                                                                                                                                                                                              | ۸<br>S                    | Miller Airlines<br>SEACO Airlines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | N/A<br>3                                                                                                 | ï         |
| Detroit            | 1968   1968-69   1968-69   1968-73   1969-73   1972   1972-74   1972-74   1977-1978   1977-1978   1979-present   1969-70,   1974-present   1980-present   1968-present | SOTTAHATASSAOLAOSHOOS ASV | Standard Airways<br>Commuter of Chicago<br>Fag Airlines<br>Time Airlines<br>Air Michigan<br>Hub Airlines<br>Miller Airlines<br>Trans-Michigan Airlines<br>Manufacturer's Air Transport Servic<br>Shorter Airways<br>Skystream Air Lines<br>Air Metro<br>CommutAire of Michigan<br>Lake Central Aviation<br>Michigan Airways Internt'l<br>Chippewa Airlines<br>Heussler Air Service<br>Comair<br>Coleman Air Transport<br>Skyline Motors Aviation Services<br>Air Wisconsin<br>Simmons Airlines<br>Wright Airlines | ce             | 5<br>11<br>23<br>6<br>3<br>5<br>3<br>5<br>2<br>2<br>6<br>4<br>6<br>1<br>1<br>2<br>20<br>2<br>2<br>7<br>6 |           |

| Escanaba         | 1970-73                                                            | Trans-Michigan Airlines                                                                                                                    | 4                                |
|------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Flint            | 1969-73<br>1976-77                                                 | Trans-Michigan Airlines<br>CommutAire of Michigan                                                                                          | 6<br>4                           |
| Gaylord          | 1977-79                                                            | SEACO Airlines                                                                                                                             | ľ                                |
| Grand Rapids     | 968-69<br> 970-72<br> 97 <br> 976<br> 977-79                       | Miller Airlines<br>Trans-Michigan Airlines<br>Air Michigan<br>Air Metro<br>Skystream Air Lines                                             | 5<br>4<br>10<br>4<br>5           |
| Hancock/Houghton | 1968–73<br>1974<br>1976<br>1977<br>1977<br>1979-present            | Trans–Michigan Airlines<br>Skystream Air Lines<br>Air Metro<br>Lake Central Aviation<br>Michigan Airways Internt'l<br>Simmons Airlines     | 2<br>4<br>2<br>2<br>1<br>2       |
| Iron Mountain    | 1971                                                               | Trans-Michigan Airlines                                                                                                                    | 2                                |
| Ironwood         | 1971                                                               | Trans-Michigan Airlines                                                                                                                    | l.                               |
| Kalamazoo        | 1969-71                                                            | Air Michigan                                                                                                                               | 9                                |
| Lansing          | 1969-73<br>1971<br>1974<br>1976<br>1977<br>1979-80<br>1978-present | Trans-Michigan Airlines<br>Air Michigan<br>Skystream Air Lines<br>Air Metro<br>Lake Central Aviation<br>SEACO Airlines<br>Simmons Airlines | 8<br>11<br>8<br>5<br>1<br>4<br>4 |
| Mackinaw Island  | 1979                                                               | SEACO Airlines                                                                                                                             | 1                                |
| Manistee         | 1977-78                                                            | Chippewa Airlines                                                                                                                          | ł                                |
| Marquette        | 1970-73<br>1974<br>1976<br>1977<br>1977<br>1978-present            | Trans-Michigan Airlines<br>Skystream Air Lines<br>Air Metro<br>Lake Central Aviation<br>Michigan Airways Internt'l<br>Simmons Airlines     | 4<br>8<br>4<br>5<br>1<br>4       |
| Menomineee       | 1971                                                               | Trans-Michigan Airlines                                                                                                                    | ·                                |
|                  |                                                                    |                                                                                                                                            |                                  |

| Mount Pleasant                                                             | 1977-78<br>1978-80                                                | Chippewa Airlines<br>SEACO Airlines                                                                                                                     | 2<br>3                     |
|----------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Muskegon                                                                   | 1979-present                                                      | Midstate Airlines                                                                                                                                       | 3                          |
| Oscoda                                                                     | 1977-80                                                           | SEACO Airlines                                                                                                                                          | 2                          |
| Pellston                                                                   | 1969, 1972-75<br>1970-72<br>1971                                  | Shorter Airways<br>Phillip's Flying Service<br>Trans-Michigan Airlines                                                                                  | 5<br>2<br>4                |
| Sault Ste. Marie                                                           | 1971<br>1974                                                      | Trans-Michigan Airlines<br>Shorter Airways                                                                                                              | 2 .                        |
| Traverse City                                                              | 969–73<br> 974<br> 976<br> 977<br> 977<br> 979–80<br> 979–present | Trans-Michigan Airlines<br>Skystream Airlines<br>Air Metro<br>Lake Central Aviation<br>Michigan Airways Internt'I<br>SEACO Airlines<br>Simmons Airlines | 8<br>4<br>4<br>4<br>3<br>4 |
| Tri-City                                                                   | 1969, 71                                                          | Trans-Michigan Airlines                                                                                                                                 | 12                         |
| Notes: 1/ Air Wisconsin became a certificated air carrier in October 1978. |                                                                   |                                                                                                                                                         |                            |

Air Wisconsin became a certificated air carrier in October 1978.

2/

Wright Airlines is now a certificated air carrier and has six daily departures from Detroit City airport.

Source: Michigan Department of Transportation.