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The Space Shuttle Columbia was returning from a 16-day research mission, STS- 107, with nominal system 
performance prior to the beginning of the entry interface into earth’s upper atmosphere. Approximately one 
minute and twenty four seconds into the peak heating region of the entry interface, an off-nominal temperature 
rise was observed in the left main landing gear brake line. Nearly seven minutes later, all contact was lost with 
Columbia. Debris was observed periodically exiting the Shuttle’s flight path throughout the reentry profile over 
California, Nevada, and New Mexico, until its final breakup over Texas. During the subsequent investigation, 
electron microscopy techniques were crucial in revealing the location of the fatal damage that resulted in the 
loss of Columbia and her crew. 

Beginning the Investigation 
After the loss of Columbia was confirmed, NASA immediately implemented procedures adopted as a result of 
the 1986 Challenger tragedy. An independent Columbia Accident Investigation Board (CAIB) was formed and 
assigned the responsibility of finding the root causes for the disaster. NASA teams were responsible for the 
recovery, identification, reconstruction, and analysis of the debris, but the recovered hardware belonged to the 
CAIB and analysis was directed solely by the CAIB. Columbia debris was collected, catalogued, and 
reassembled at the Shuttle Landing Facility (SLF) located on the Kennedy Space Center (KSC) during an 
intensive four-month period. Scattered over a vast length of Texas, 85,000 pieces of Columbia were recovered 
that represented 40 percent of the shuttle by weight. The Materials & Processes Failure Analysis Team was 
tasked with analysis of selected debris components. This team was challenged with collecting and interpreting 
physical evidence that could verify the sequence of events that led to the loss of Columbia and her crew, as seen 
in figure 1. 

The Challenpe 
Sensor spikes associated with the left main landing gear indicated the initial failure probably started in the left 
wing, but where do you begin the failure analysis of 85,000 pieces of evidence? What questions needed to be 
asked, and how many parts required analysis? What was the priority of each analysis? The final challenge that 
threatened to undermine basic evidence interpretation was distinguishing between damage that occurred before 
the shuttle disintegrated and damage that resulted from breakup, re-entry, and ground impacts. The Materials 
and Processes Failure Analysis Team was responsible for providing the CAIB with factual analytical evidence 
relating to the condition of debris items. Interpretation of the analytical evidence was kept separate so the CAIB 
could collect various opinions on the meaning of the raw data without fear of shading the basic facts. Initial 
non-destructive analysis began on several debris items based on visual inspection that was correlated with 
available flight sensor data. Items such as the main landing gear strut and tires, uplock rollers, midbody panels, 
thermal protection system tiles, and Wing Leading Edge (WLE) hardware were photographed and x-rayed in 
preparation for more extensive failure analysis activities. To better visualize the condition of debris items 
relative to each other and their location on the Shuttle, the wing, tail, and fuselage debris were laid out on a grid 
as seen in figure 2. 

About six weeks after the crash, the fortunate recovery of more extensive sensor information fi-om Columbia’s 
on-board data recorder “black box’’ provided a clear sequence of sensor failures that significantly narrowed the 
possible locations of an initial breach. The timed sequence of sensor failures revealed the first off-nominal 
temperature increase started in the left WLE at a thermocouple located behind the U-shaped Reinforced 
Carbon-Carbon (RCC) panel 9. RCC is a high temperature carbon fibedcarbon matrix composite that is 
protected from oxidation by a silicon carbide coating. Although RCC is designed to operate at temperatures up 



to 3000 O F ,  it is extremely brittle and will shatter like glass if overstressed. Because the thermocouple in the 
cavity behind left WLE RCC panel 9 was the first to fail, prior to any other sensors, the analysis of debris items 
focused on the left WLE RCC panels where launch video indicated foam from the external tank had impacted 
on ascent as seen in figure 3. 

Left Wing Leading Edge 
There are 22 RCC panels protecting the leading edge of each wing from hot gasses during re-entry. The gap 
between each panel is sealed with a short T-shaped RCC seal. The arrangement of the wing leading edge is 
shown in Figure 4. The highest heating during re-entry occurs in panels 7- 10, right where the wing leading edge 
surface changes direction. After recovery and identification, the reconstructed pieces of Columbia's RCC panels 
and T-seals were qualitatively examined for damage patterns. The internal surfaces of left wing RCC panels 7 
through 10 showed heavy deposition of material that was best described by the metallurgical term slag. The 
deposits on the RCC panels were expected to originate from Columbia's metal wing structures. Some RCC 
panels from the right wing also contained slag deposits although to a lesser degree. Figure 5 shows one example 
of slag deposits on the inside surface of left wing RCC panel 8. There were other visual signs of significant heat 
damage including melted RCC attachment hardware and knife edge erosion on broken edges of RCC panels. 
Most of the slag deposits, molten RCC attachments, and eroded RCC were concentrated between RCC panels 7 
through 10 on the left wing. 

The key to deciphering the sequence of damage events was to understand the origins of the slag deposition. By 
understanding the composition of the materials in the WLE, it was hoped the origin of the slag deposits could be 
identified. The major WLE materials and components included RCC, 2024 aluminum wing spar, A286 steel 
attachment fittings, Inconel 718 spanner beams and bolts, 6061 aluminum carrier panels, Inconel 601 foil 
around flexible cerachrome insulation, Inconel 625 insulation attachment clips, and silica thermal protection 
tiles. Figure 6 shows a cross-section of the WLE including material identification. Slag specimens were 
extracted from many RCC panels from both the left and right WLE with the underlying RCC intact and 
quantitatively analyzed to determine their chemistry and morphology. 

Analysis Techniques, Plan and Interpretation Criteria 
Table 1 lists the techniques that were considered for slag analysis. Several practice samples were used to test 
these techniques and determine the level of information that could be obtained. After the trial evaluations, a few 
techniques were found to be acceptable for the final production analysis of RCC slag samples cut from left wing 
RCC panels 7, 8,9, and 10 and right wing RCC panel 8. Repeatability and reproducibility were emphasized 
through multiple sampling of similar features and through analysis by multiple techniques. Similar results 
quantitatively and qualitatively reproduced by different techniques allowed for cross checking of results which 
minimized the possibility of analytical error. 

The final analysis techniques included radiography to see through the RCC slag deposits and identify unique 
features. Scanning Electron Microscopy (SEM), Energy Dispersive x-ray Spectroscopy (EDS), elemental x-ray 
dot mapping, and backscattered electron imaging of slag cross sections were used to identify elements and their 
physical microstructural distribution. Electron microprobe performed accurate quantitative chemistry of 
microstructural features identified in the SEM. X-ray diffraction and Electron Spectroscopy for Chemical 
Analysis (ESCA) provided quantitative compound information that complemented the chemistry determined by 
electron microprobe. 

Interpretation criteria were necessary to identify the origin df localized WLE slag deposits. The high 
temperature structural WLE alloys Inconel 601, Inconel 718, Inconel 625, and A286, all contained nickel and 
iron as their major constituents. The ratio of nickel to iron atomic percentages provided the most reliable finger 
print of each alloy. The presence or absence of minor alloying elements such as molybdenum, niobium, cobalt, 
and titanium were also used in conjunction with NdFe ratio. Cerachrome insulation, used to shield the 
aluminum wing spar from heating, was identified by its unique green color and its composition that contained 
mostly silica, alumina, and some chromium oxide. Thermal protection tiles were composed of pure silica that 



made them easily identifiable. The wing spar was manufactured from 2024 aluminum which contains copper as 
a strengthening additive. 

Analysis of Wing Leading EdPe RCC Slag Deposits 
Dozens of RCC cross sections were analyzed for slag deposit chemistry and morphology generating 
approximately 2000 pages of chemical and morphological data. One sample analysis from the left wing RCC 
panel 8 is presented here to exemplify the process. In this case, unique metallic spheroids were found that were 
in direct contact with RCC surface as seen in Figure 7. Like a layerd cake, the first slag deposits represented the 
first damage event, while the outer slag surface represented the last damage event. SEM x-ray dot maps in 
Figure 8 shows high concentrations of iron, nickel, and chromium in these spheroids. Backscattered imaging 
clearly showed metallic deposits versus oxide type deposits in the vicinity of the spheres. Quantitative electron 
microprobe results identified spheroid compositions that closely matched Inconel 7 I8  and Inconel 601 which 
correspond to the metallic RCC attachment hardware and the internal insulation foil. The final layers on top of 
the spheroids contained oxidized and metallic aluminum with copper that uniquely identified the 2024 wing 
spar as the source for the final deposits as seen in figure 9. 

Similar layering information was obtained for slag deposits on both the left and right wing RCC panels. 
Physical features such as tear shaped deposits, globular deposits, and uniform slag layering were analyzed. 
Correlation of the slag analysis revealed the pattern and timing of thermal damage: 

1. 
first deposited slag layer. This suggests the first damage occurred by melting of RCC attachment beams and 
internal insulation. 
2. In left wing RCC pieces, aluminum deposition was secondary suggesting the wing spar melted last. 
3. In left wing RCC pieces, there was no indication of A286 wing spar attachment fittings in the first slag 
deposits suggesting the initial plasma impingement was through a breach near the RCC attachment points and 
not near the wing spar. 
4. 
RCC panels suggesting temperatures were in excess of 3200 O F .  
5. 
inferred a long duration. 
6. 
aluminum, and Inconel materials that implied all components were melting together during breakup. 

In left wing RCC pieces, cerachrome insulation and Inconel 7 1 8 or Inconel 60 1 primarily made up the 

In left wing RCC pieces, there is large amount of molten ceramic cerachrome insulation on the inside of 

Left wing slag distribution and shape identified the plasma flow direction and the deposition thickness 

Right wing slag deposits were thin and uniform including simultaneous deposition of cerachrome, 

Analysis of Slag Deposits on Thermal Protection Tiles 
Many of the thermal protection tiles immediately behind the WLE RCC panels were recovered and 
radiographed. They did not show any evidence of embedded material, but their surfaces did have discoloration 
and localized melting. The directionality of the discoloration and melting indicated hot plasma was exiting from 
the top comer of RCC panel 8 onto the tiles behind RCC panel 9. Cross sections of the discolored and melted 
tiles were analyzed in the SEM and electron microprobe. Like the internal RCC slag deposits, the thermal tile 
discoloration contained layers of material that were chemically consistent with the internal WLE structures. 

Breach Scenario from Analvsis Results 
After correlating all analyses, a scenario for the progression of damage in Columbia's wing is depicted in Figure 
10. The breach started on the underside of the left wing at RCC panel 8, close to the T-seal between panels 8 
and 9. The plasma first impinged on the Inconel 7 18 attachments that held the RCC in place and insulation that 
protected the aluminum wing spar from overheating. The flexible insulation was not designed to contain hot 
flowing plasma which continued to circulate around inside the left wing at RCC panel 8 creating molten 
cerachrome tears and droplets. Eventually the insulation failed between panels 7 and 9 allowing plasma to move 
downstream and upstream from panel 8. Eventually the lower RCC attachment points for panels 8 and 9 
collapsed causing massive plasma impingement on the aluminum wing spar at temperatures greater than 3200 
"F. 



The final failure scenario generated from the analytical data identified the initial breach location as the same as 
visual observations, and area where foam from the external tank had impacted the wing leading edge on ascent. 
Had the breach occurred away from the hottest RCC panels between 7 and 10 on the WLE, Columbia may have 
survived the peak heating of re-entry structurally intact. They were only a minute away from the end of peak 
heating. 
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Figure 1.  Astronauts of Space Shuttle Colul nbia, Columbia on launch pad, and liftoff. 

Figure 2: Hardware recovered, identified, and laid in a grid pattern at shuttle’s landing facility. 
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Figure 4: Arrangement of 22 RCC panels and T-seals on the wing leading edge. 
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Figure 6: Cross-section through the wing leading edge including major component materials. 

Purpose 
Photo documentation 

Analysis Technique WhyIAdvantages 

Documentation to maintain traceability 

Semiquant elemental 
composition 
Back Scattered Imaging 

Scanning Electron 
Microscopy - SEMEDS I Elements present, identify difference 

between top and bottom, X-ray mapping. 

Identify compounds 

Identify elements I Electron Microprobe 

Identify compounds ofcryst a 11' ine structure 

Determine exact composition 

Radiography, CT, 
Ultrasonics 

~~ I Fourier Transform Inh-Red I Qualitative organic comp. I If organic, aid in identification 

NDI and identification See through the material, identify 
differences in materials, identify defects 

ESCNXPS 

Metallography + SEM 

Inductively coupled plasma - 
ICP composition composition of sample 



Radiographic II Left Wing RCC panel 8 - -  
* -.- &.- ~ 

Figure 7: Cross-section through unique spheroids in slag deposits on the left WLE RCC panel 8. 
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Figure 8: X-ray map showing distribution of various elements in and around spheroids of Figure 6 .  
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Figure 9: Layering of slag showing sequence of damage and deposition events. 
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Figure 10: Breach scenario and location based on analysis results. 


