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Abstract: Members of the transient receptor potential (TRP) superfamily are broadly expressed
in our body and contribute to multiple cellular functions. Most interestingly, the fourth member
of the vanilloid family of TRP channels (TRPV4) serves different partially antagonistic functions
in the respiratory system. This review highlights the role of TRPV4 channels in lung fibroblasts,
the lung endothelium, as well as the alveolar and bronchial epithelium, during physiological and
pathophysiological mechanisms. Data available from animal models and human tissues confirm the
importance of this ion channel in cellular signal transduction complexes with Ca2+ ions as a second
messenger. Moreover, TRPV4 is an excellent therapeutic target with numerous specific compounds
regulating its activity in diseases, like asthma, lung fibrosis, edema, and infections.

Keywords: TRP channels; TRPV4; respiratory system; lung; endothelium; epithelium; Ca2+ signaling;
signal transduction

1. Introduction

Cation selective ion channels of the transient receptor potential (TRP) superfamily con-
tribute to numerous cellular functions in the body [1]. Originally cloned in Drosophila [2,3],
we now know 28 proteins in mammals subdivided into six major families: TRPA for
ankyrin, TRPC for canonical, TRPM for melastatin, TRPML for mucolipidin, TRPP for
polycystin, and TRPV for vanilloid [4,5]. The first cloned member of the latter family
(TRPV1), containing six proteins, was identified as vanilloid receptor, which is activated by
capsaicin from hot chili peppers [6]. Its fourth protein (TRPV4) was discovered in the year
2000 and is an osmo-sensitive channel homologue [7,8] of the invertebrate gene Osm-9
in Caenorhabditis elegans. TRPV4 is functionally expressed almost ubiquitously in human
tissues (see Reference [9] for a recent review), and numerous mutations in the protein are
linked to diseases, such as skeletal dysplasia and neuropathies (see Reference [10] for a
recent review). Here, we review TRPV4 channel expression in the respiratory tract and its
function in health and disease.

2. Structure and Cellular Function of TRPV4 Channels Modulated by Specific
Activators and Inhibitors

TRPV4 channels have different functional domains, including a proline-rich domain,
six ankyrin repeats domains (ARDs), and an OS-9 binding domain in the amino-terminus.
Activating compounds mostly bind to amino acids in transmembrane segments (S) 3 and 4,
while the channel pore is located between S5 and S6. The characteristic TRP box, together
with a calmodulin (CaM) binding site and a PDZ-binding-like motif are located in the
carboxy-terminus of the protein (see Figure 1). While the exact function of the proline-
rich domain is still elusive, ARDs are important for trafficking the channel to the plasma
membrane, as splice variants with deletions in these repeats show impaired oligomerization

Cells 2021, 10, 822. https://doi.org/10.3390/cells10040822 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-1168-8707
https://doi.org/10.3390/cells10040822
https://doi.org/10.3390/cells10040822
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10040822
https://www.mdpi.com/journal/cells
https://www.mdpi.com/2073-4409/10/4/822?type=check_update&version=2


Cells 2021, 10, 822 2 of 14

and intracellular retention [11]. OS-9 is a ubiquitously expressed endoplasmic reticulum
(ER) associated protein which binds to the amino-terminus of TRPV4 channels and aids in
TRPV4 maturation [12], while a glycosylation site at N651 [13] is important for membrane
targeting (see Figure 1). In addition to homo-oligomers, hetero-tetramers with TRPC1 [14],
TRPP2 [15], and both channels [16] were identified (see Figure 1), but it is not known
if they are functionally active in native cells. Several phosphorylation sites are located
on the amino-terminus (S162, T175, S189, phosphorylated by protein kinase C (PKC)
and S184 phosphorylated by protein kinase A (PKA)). On the carboxy-terminus, only
one site was identified (S824 for phosphorylation by PKA). All of them sensitize the
channel [17,18]. The carboxy-terminal site is also phosphorylated by serum glucocorticoid-
induced protein kinase 1 (SGK1) for interaction with F-actin [19] and stromal interaction
molecule 1 (STIM1) [20], a sensor protein of the store-operated Ca2+ influx [21]. Most
interestingly, lung damage by overventilation involves activation of TRPV4 channels
phosphorylated at S824 by SGK1 [22]. Ubiquitination of the protein by the ubiquitin ligase
AIP4 at the amino-terminus (aa 411–437) promotes endocytosis and decreases channel
expression at the plasma membrane [23]. Cryo-electron microscopy (Cryo-EM) and X-ray
structures of TRPV4 channels from Xenopus tropicalis became available recently and show a
wider selectivity filter in the channel pore compared to other TRP channels [24].

TRPV4 channels show a higher Ca2+ permeability in comparison to Mg2+ and Na+ [25,26]
and are activated by intracellular Ca2+ through binding of Ca2+/calmodulin [27]. In the
resting state, the amino-terminus forms an auto-inhibitory complex with a carboxy-terminal
domain, which is released by Ca2+/CaM binding [28]. In clear contrast, other TRP channels,
like TRPC3, are inhibited by Ca2+/CaM binding [29], while TRPC6 also releases its amino-
carboxyl-terminus interaction during activation similar to TRPV4 [30].

Figure 1. (A) Cartoon representing the structure of a he fourth member of the vanilloid family of transient receptor potential
channels (TRPV4) channel with functional domains, as well as activator interaction sites (modified from Reference [31]). See
text for details. 4α-PDD, 4α-phorbol 12,13 didecanoate; 5,6 EET, 5,6 epoxyeicosatrienoic acids; A, ankyrin repeat domain
(ARD); AA, arachidonic acid; CaM, Ca2+/calmodulin binding site; N, N-glycosylation site; P, channel pore; PKA, protein
kinase A; PKC, protein kinase C; PM, plasma membrane; PDZ, PDZ binding domain; PRD, proline-rich domain; TRP,
TRP-box; S1-6, transmembrane segments 1–6. (B) A selection of the proposed multimerization potential of TRPV4 (V4)
proteins to form functional homo- or together with Transient Receptor Potential Classical 1 (TRPC1) (C1) and Transient
Receptor Potential Polycystin 2 (TRPP2) (P2) monomers hetero-tetrameric channels (modified from Reference [32]). P,
channel pore.
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TRPV4 was originally described as anosmo-sensing channel, which was activated by
hypoosmolar solutions [7,8]. However, the channel pore is also directly opened by cell
swelling [33] or mechanical stress (Reference [34], reviewed in Reference [35]) irrespective
of other specific triggers. Alternatively, an indirect mechanism by phospholipase A2 (PLA2)
and its effectors was described in Müller glia cells [36,37]. While the ARD domains of
TRPV4 are not essential for channel opening by cell swelling [7], a stepwise deletion analysis
revealed an essential function of the most distal part of the amino-terminus especially the
proline-rich domain (PRD) in the activation process [37]. Most interestingly, the cytoskeletal
protein PACSIN3 (protein kinase C and casein kinase substrate in neurons protein (3)
interacts with this domain in the TRPV4 amino-terminus [38], suggesting changes in the
cell cytoskeleton induced by mechanical stress as the ultimate trigger of TRPV4 channel
activity [39,40]. Moreover, activation by cell swelling also requires cytochrome P450
(CYP) epo-xygenase activity to convert arachidonic acid (AA) to epoxyeicosatrienoic acids
(EETs), such as 5,6-EET and 8,9-EET, which all act as direct TRPV4 agonists in mouse
aortic endothelial cells [41]. Reactive oxygen species (ROS) produced by mitochondria
also activate TRPV4 channels in endothelial cells of coronary arteries and the systemic
vasculature to increase vascular permeability, although the exact molecular mechanism
underlying this response is still elusive [42,43]. TRPV4 was described as potential toxicant
sensor in many human tissues (reviewed in Reference [44]) as channel inhibition counteracts
toxic lung edema in vivo after chlorine exposure [45].

TRPV4 channels are also involved in temperature-sensing from 27 to 44 ◦C depending
on the cell type [7,46], while other TRPV proteins are activated by higher temperatures
(TRPV3 > 33◦C, TRPV1 > 42 ◦C and TRPV2 > 52 ◦C, reviewed in Reference [47]). Moreover,
thermosensitivity rises in differences of activation energies associated with voltage depen-
dent opening and closing as described for the closely related TRPV1 channel [48]. The
ARDs are essential for activation of TRPV4 by temperature as deletion of the first three prox-
imal domains results in a temperature insensitive channel [49]. The cholesterol content of
the plasma membrane seems to be important for TRPV4 channel activation, as supplemen-
tation of cholesterol by methyl-β cyclodextrin (MβCD) suppressed temperature-evoked
elevations in intracellular Ca2+ ([Ca2+]i) and prolonged the time course of the cell swelling
response in TRPV4 expressing Müller cells [50]. Along the same line, phosphatidylinositol-
4,5-bisphosphate-dependent rearrangements of the cytosolic tails of TRPV4 are involved in
channel activity by both physiological stimuli [51].

A variety of activators for TRPV4 channels have been discovered ranging from natural
compounds of plants to synthetic molecules [52]. Bisandrographolide A (BAA) from the
plant Andrographis paniculata, citric acid, and the flavone apigenin all induce membrane
currents in TRPV4-expressing cells [53,54], while phorbolesters, like 4α-phorbol 12,13 dide-
canoate (4α-PDD), α-phorbol 12,13 dihexanoate (4α-PDH), and phorbol 12-myristate 13-
acetate (PMA), open the TRPV4 channel pore [55,56]. For the latter compounds proposed
binding sites between S3 and S4 of the channel were identified [57,58]. Most effective
is the synthetic lipid GSK1016790A [59,60], which also requires the distant part of the
amino-terminus of the channel suggesting a similar activation mechanism as for cell
swelling [37]. Recently, local application of quinazolin-4(3 H)-one derivatives as TRPV4
agonists to joint cartilage stimulated chondrocyte matrix production and provided relieve
from osteoarthritic damage in a rat model [61].

Inhibitors of TRPV4 channels range from the unspecific compound ruthenium red to
more specific blockers, like RN-1734 [62], RN-9893 [63], Crotamin [64], and HC-06704753 [65],
with a high therapeutic potential [52]. Most interestingly a hydroxyazetidine TRPV4 in-
hibitor with a very low half maximal inhibitory concentration (IC50) was effective to
reverse agonistic effects in rat bladder but failed in other efficacy studies (reviewed in
Reference [52]), while another (GSK2798745) is the first TRPV4 antagonist to reach clin-
ical trials [66]. A selection of TRPV4 modulators, their specificity, and their prospective
therapeutic options are shown in Table 1.
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Table 1. Selected compounds activating or inhibiting TRPV4 channels (modified from Reference [67]).

Drug TRPV4 TRPV1 TRPV2/3 IC50/EC50
* Therapeutic opt. Ref.

α-phorbol-e. + / / 0.37 µM - [56]
EETs + ? ? 0.15 µM - [41]

GSK1016790A + / ? 5 nM Blood pressure↓ [59,68]
RN1747 + ? ? 0.77 µM - [62]

Quinazolin d. + ? ? 60 nM Osteoarthritis [61]
RN1734 - / / 2.3 µM - [62]

HC-06704753 - / / 48 nM Cystitis, COPD [65]
GSK2193874 - ? ? 40 nM Pulm. Edema [69]

RN9893 - ? ? 0.42 µM [63]
PF-0514030 - ? ? 4 nM Bladder activity↓ [52]

GSK2798745 - ? ? 1.8 nM Phase I studies [66]

*, modified from Reference [52]; +, activating; d., derivate; e., esters; -, inhibiting; ?, not tested; /, very low activity; ↓, reduction, opt.,
options, Ref., reference.

3. TRPV4 Function in the Upper Respiratory Tract and Bronchi

The upper respiratory tract and the trachea are essential to guide inhaled air to the lung
for gas exchange but also for protection of the body from inhaled pathogens and toxicants.
The pseudostratified epithelium mainly contains goblets cells for the production of mucus
and ciliated cells to remove the mucus with invading toxicants and pathogens out of the
body. In the bronchi and bronchioles however goblet cells are gradually replaced by club
cells, which produce glycosaminoglycans to protect the epithelium (reviewed by Hogan
and Tata [70]). By innervation of the upper epithelium sensory afferent nerve impulses are
conducted through the vagal nerve to the central nervous system to induce sneezing and
coughing [71], which strongly support the removal of pathogens and toxicants.

Activation of TRPV4 channels by specific agonists or hypo-osmotic solution was
able to induce depolarization of vagal nerves in humans, mice and guinea pigs, which
was blocked by channel antagonists [72]. The authors postulate a signal transduction
cascade involving TRPV4, adenosine triphosphate (ATP), and the purinoreceptor 2X3
(P2X3), which is activated by ATP, involved in this sensory airway nerve reflex [72]. Along
this line, TRPV4 channels also contributed to the ATP-induced increase in the ciliary
beating frequency in ciliated tracheal cells [73]. Importantly, silica nanoparticles, which
inhibited TRPV4 activity by GSK1016790A in primary cultured mouse tracheal bronchial
epithelial cells, were also able to abrogate this increase in ciliary beating frequency [74].
Moreover, lipopolysaccharides (LPS) released by gram-negative bacteria trigger defensive
responses in the airways dependent on Toll-like receptor 4 (TLR-4) via activation of TRPV4
channels [75]. Along this line, TRPV4-deficient mice display exacerbated ventilator changes
and recruitment of polymorphonuclear leukocytes into the airways upon LPS challenge [75]

TRPV4 is also important for the regulatory volume decrease (RVD) in airway epithelia.
Patients with cystic fibrosis carry mutations in the gene for the cystic fibrosis (CF) trans-
membrane conductance regulator, an ion channel managing the passage of chloride and
bicarbonate ions across the apical membrane of epithelial cells [76]. Most interestingly,
RVD is absent in epithelia from CF patients but could be recovered by 4α-phorbolesters as
TRPV4 activators [11].

Asthma is a chronic inflammatory disease of the upper airways induced by repeated
exposure to specific allergens, which results in activation of epithelial cells and acute
bronchoconstriction [77]. In a chicken ovalbumin (OVA) model of asthma, TRPV4-/- mice
developed similar levels of airway hyper-responsiveness compared to wild-type (WT)
mice [78], although TRPV4 protein levels were increased in WT animals [79]. TRPV4-
deficient mice were however protected from airway remodeling in a house dust mite
(HDM) model, which is more relevant to the human situation [80]. In nasal cells of pa-
tients with allergic rhinitis (AR) caused by HDM, TRPV4 proteins were up-regulated and
GSK1016790A as TRPV4 channel activator decreased expression of the cell junctional pro-
teins E-cadherin and Zona occludens 1, which may be responsible for epithelial barrier
disruption [81]. TRPV4 agonists induced the release of ATP from human airway smooth
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muscle cells (HASMC) of non-atopic, immunoglobulin E-independent, asthma patients.
ATP as important mediator molecule then activates P2X4 receptors on mast cells to re-
lease cysteinyl-leukotriens, which contracted HASMC [82]. Asthma is also triggered by
inhalation of allergens from household molds, such as Aspergillus spec., which secrets an
alkaline protease Alp1 [83]. After inhalation of Alp1 an immune response involving a
T-helper 2 (Th2) cell -induced eosinophilia, cytokine and mucus production, as well as
bronchial constriction, occurred [84,85]. Moreover, Alp1 destroys cell junctions of club cells
in the airways, which protect the epithelium, detoxify harmful substances and serve as
stem cells for ciliated cells [86]. Most interestingly, a club cell specific knock-out of TRPV4
protein resulted in decreased production of the C-C motif chemokine ligand 2 (CCL2) and
a reduction of immune cells after inhalation of Alp1 in these mice in comparison to WT
controls [87]. Along this line, over-expression of mechanosensitive TRPV4 in these cells
resulted in a Ca2+/calcineurin-dependent increased Th2 response to Alp1 [87]. Moreover,
a single nucleotide polymorphism (SNP) rs6606743 in the human TRPV4 gene increased
expression of the channel protein and is associated with fungal immunization and asthma
in humans [87]. The same and other TRPV4 related SNPs were also found in patients with
chronic obstructive pulmonary disease (COPD) [88]. Importantly, diesel exhaust particles
(DEP) evoked protracted Ca2+ influx via TRPV4, enhanced by the COPD-predisposing
human genetic polymorphism TRPV4P19S [89] Therefore, TRPV4 antagonists may present
options for cough relief, asthma, and COPD therapeutics.

4. Roles for TRPV4 Channels in Pulmonary Fibroblasts: Key Cells for the
Development of Lung Fibrosis

Fibroblasts are involved in repair processes after chronic lung damage by toxicants
(e.g., the cytostatic drug bleomycin) and will differentiate to myofibroblasts in response to
secreted profibrotic transforming growth factor β (TGF-β1) [90]. Myofibroblasts express
α-smooth muscle actin, in addition to secreting large amounts of extracellular matrix, e.g.,
collagens. They accumulate in fibroproliferative foci, which inhibit gas exchange and may
induce lung fibrosis. Despite recent progress with the approval of the drugs pirfenidone
and nintedanib for the treatment of pulmonary fibrosis, the only causative treatment is still
lung transplantation.

TRPV4 is constitutively expressed in primary lung fibroblasts and a global TRPV4-
deficient mouse model showed less fibrotic plaques and was partly protected from bleomycin-
induced lung fibrosis [91]. Therefore, an additional pathway was proposed by the authors
adjunct to TGF-β-signaling. TRPV4-mediated Ca2+ influx by mechanical stress induced
actomyosin-remodeling and nuclear translocation of myocardin-related transcription factor
A (MRTF-A), which activated myofibroblast generation and fibrosis [91]. Along this line,
primary murine lung fibroblasts (PMLF) from TRPV4 deficient mice [92] showed less
contraction in a collagen gel matrix after adding TGF-β1 in comparison to WT control cells
(see Figure 2). Fibroblasts isolated from asthmatic human patients exhibit increased TRPV4
activity compared to cells from healthy donors [80]. The authors propose a TGF-β1-induced
signaling pathway via PI3K and TRPV4 to enhance fibrotic gene expression and inhibit
fibrinolysis by activating plasminogen activator inhibitor 1 (PAI-1) [80]. Although other
cell types, including alveolar epithelial cells (see below), are involved in the development
of lung fibrosis [90], TRPV4 antagonists may be useful in pharmacological therapy of
lung fibrosis.
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Figure 2. Contraction of primary murine lung fibroblasts (PMLF) in a gel matrix assay (modified
from the Doctoral thesis of Jonas Weber (Ludwig-Maximilians-Universität (LMU)-Munich 2020,
see http://edoc.ub.uni-muenchen.de/26578/). PMLFs from wild-type (WT) and TRPV4-deficient
(TRPV4-/-) mice were seeded in collagen matrices in 6-well plates and transforming growth factor β
(TGF-β1) (2 ng/mL, TGF-β1) or solvent (control) was added before release from the well edges (as
described in Reference [93]). Diameters of matrices before and after adding TGF-β1/solvent were
measured and percent (%) contraction was quantified by calculating differences. Data are shown
as means with standard errors of the mean (SEM) of three independent cell isolations (described in
Reference [93]). * indicates a p-value of <0.05.

5. TRPV4 in the Lung Endothelium: Supporting Vasodilation and Lung Permeability

The endothelium provides important pathways for vasodilatation of the systemic and
pulmonary circulation (reviewed in Reference [94]). An increase of Ca2+ in endothelial
cells by stretch-activated TRPV4 channels produces nitric oxide (NO) by the endothelial
NO synthetase (eNOS). NO diffuses to the adjacent layer of smooth muscle cells (SMC),
stimulates cyclic guanosine monophosphate (cGMP)-signaling activating myosin light
chain phosphatase (MLCP), which results in a decrease of contractile force and vasodilation
(reviewed in Reference [94]). This mechanism was also dependent on endothelium-derived
hyperpolarization factor (EDHF) and caveolar components, as well as connexin proteins at
cellular gap junction [95]. Thus, TRPV4 deficient mice were not able to regulate vascular
tone and blood pressure, due to lack of channel activity in response to mechanical shear
stress [96]. Along this line, activating TRPV4 channels by a higher dose of specific agonist,
like GSK1016790A (see Table 1), in mice, rats, or dogs dramatically resulted in a circulatory
collapse [68], while, in low doses, the drug produced a decrease in pulmonary arterial
pressure in rats [97]. Therefore, TRPV4 activators may serve as new therapeutic option
in the fight against pulmonary arterial hypertension (PAH). On the other hand, TRPV4
activation by reactive oxygen species (ROS) in lung microvascular endothelial cells isolated
from a rat model of PAH promoted abnormal cell migration and proliferation [98].

The endothelium of the pulmonary circulation is an important cell barrier to protect
the lung from toxicants and pathogens circulating in the blood flow, like epithelial cells, in
the airways. However, in response to bacterial infections of the lung tissue, endothelial cell
permeability increases to facilitate invasion of immune cells from the blood as an essential
line of defense. As a side effect of this response, protein-rich fluid accumulates in the
lung interstitium and the alveolar space causing an acute and life threatening pulmonary
edema (reviewed in Reference [99]). It is assumed that, in analogy to smooth muscle

http://edoc.ub.uni-muenchen.de/26578/
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cells, an elevation of the intracellular Ca2+ concentration activates myosin light chain
kinases (MLCK), promoting actin myosin interaction and triggering a cell shape change
of endothelial cells, which results in an increased endothelial permeability (reviewed in
Reference [100]).

TRPV4 is a key channel for increasing endothelial permeability (reviewed in Refer-
ence [101]; also see Figure 4), and TRPV4-deficiency reduces hydrostatic lung edema for-
mation and capillary leakage [102,103]. Importantly, a TRPV4 antagonist, like GSK2193874
(see Table 1), was effective in inhibiting lung edema by high pulmonary venous pressure,
as well as in a myocardial infarction mouse model [69]. Vice versa, activation of TRPV4 by
4α-phorbol esters (see Table 1) initiates lung edema [104]. Two other blockers (GSK2220961,
GSK2337429) even protected from acute lung injury, if they were added 30 min after acid
aspiration by gastroesophageal reflux [45]. Less effective was GSK2193874, which had
to be applied before injury and, therefore, showed only a prophylactic effect [103]. Most
interestingly, blocking TRPV4 was also proposed as a promising and feasible approach in
the recent coronavirus disease 2019 (COVID-19) pandemic to protect the alveolo-capillary
barrier of the lungs, as severe acute respiratory syndrome coronavirus type 2 (SARS-CoV2)
is also present in the endothelium [105]. Therefore, the authors suggest GSK2798745 (see
Table 1) as a powerful therapeutic option in COVID-19 patients. Unfortunately, in the first
clinical trial, LPS-induced elevation of total protein and neutrophils in the bronchoalveo-
lar lavage (BAL) observed after application of this TRPV4 inhibitor from the vascular or
the airway site was not different so far in comparison to placebo-treated controls [106].
Therefore, modulating TRPV4 channel activity may be useful in therapeutic approaches for
pulmonary hypertension, lung edema, and infection, but clinically successful drugs still
need to be established.

6. TRPV4 in the Alveolar Epithelium: Reinforcing Lung Barrier Function

The alveolar epithelium is composed of alveolar type 1 (AT1) and alveolar type 2 (AT2)
cells. While AT1 cells with a long and flat shape ensure alveolar epithelial barrier function,
cubic AT2 cells produce surfactant to reduce surface tension and enhance gas exchange
(reviewed in Reference [70]). In response to severe damage of the alveolar epithelium by
pathogens or toxicants leading to cell death and a decrease in barrier function, AT2 cells
can differentiate into AT1 cells next to their self-renewal potential. Moreover, in a process
called epithelial mesenchymal transition (EMT), AT2 cells transform to mesenchymal cells,
which express high amounts of α-smooth muscle actin (α-SMA) and may [107] or may
not [108] be involved in wound healing during lung fibrosis. TRPV4 mRNA is expressed
in AT2 cells and GSK1016790A (see Table 1) increased basal currents in WT AT2 cells but
not in cells from TRPV4-/- mice [109]. While differentiation to AT1 cells was not changed
in AT2 cells from TRPV4-deficient mice [109], EMT was significantly reduced in TRPV4-/-
AT2 cells compared to WT control cells (Figure 3).
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Figure 3. Epithelial mesenchymal transition (EMT) of primary alveolar epithelial cells type 2 (AT2) after application of
TGF-β1 quantified by immunostaining of α-smooth muscle actin (α-SMA) and cell nuclei with Hoechst dye (Hoechst).
(A) Pictures of representative immunohistochemistry stainings of AT2 cells from wild-type (WT) and TRPV4-deficient
(TRPV4-/-) mice by a fluorescence-coupled anti-α-SMA antibody (described in Reference [110]) after application of TGF-β1
(+TGF-β1) or solvent (control). (B) Summary of data. Grey values of AT2 cells from wild-type (WT) and TRPV4-deficient
(TRPV4-/-) mice are plotted. Data are shown as means with standard errors of the mean (SEM) of three independent cell
isolations (described in Reference [109]). * indicates a p-value of <0.05.

Ischemia-reperfusion (IR)-induced lung injury, which results in alveolar damage,
lung edema and hypoxemia remains a significant cause of primary graft failure after lung
transplantation [111]. In an isolated perfused mouse lung model, edema formation as one
of the hallmarks of IR-induced injury can be mimicked and quantified [112]. Surprisingly,
TRPV4-/- lungs showed a significant increase in edema formation compared to WT mice.
As these data are in clear contrast to the function of TRPV4 channels in the endothelium
(see above), TRPV4 function in the alveolar epithelial barrier was carefully analyzed.
Deletion of TRPV4 channels in AT1 cells inhibited aquaporin-5 (AQP-5) expression at the
plasma membrane and reduced cell migration, as well as barrier function [109]. Although
association of water conducting AQP-5 channels with and regulation by TRPV4 proteins has
already been described [113,114], an AQP-5-deficient mouse model showed no differences
in the formation of pulmonary edema and iso-osmolar fluid transport from the alveolar
space [115]. Importantly, AT2 cells of TRPV4-/- mice showed a decreased production of
pro-surfactant protein C, a precursor of surfactant protein-C (SP-C), secreted from these
cells and older mice exhibited emphysema-like changes in their lung structure [109]. Next
to facilitating gas exchange, surfactant is also important for protection of the alveolar
epithelium from chronic micro-injuries. As SP-C-deficient mice show emphysema-like
changes [116] similar to TRPV4-/- mice, this phenotype may rather be responsible for
the higher edema formation. Importantly, TRPV4 seems to be involved in the protection
and regeneration of the alveolar epithelium in older mice, as Ca2+ influx through TRPV4
channels are important for production of surfactant, as well as barrier function by AT1 cells.

All these data support a model of increased edema formation by endothelial TRPV4
channels induced by mechanical ventilation and application of toxicants (see above), while
deletion of TRPV4 proteins in the alveolar epithelium and activation of TRPC6 channels
in the endothelium results in significantly higher edema formation by IR (see Figure 4).
Most interestingly, edema formation by these chronic changes in the TRPV4-/- epithelium
are partly reversed in TRPC6/TRPV4-double deficient lungs [109], as TRPC6 ablation
reduces IR-induced lung edema formation by a loss of permeability in the pulmonary
endothelium [117]. Therefore, TRPV4 serves different partly antagonistic function in the
formation of lung edema dependent on the tissue, where the channel is expressed (Figure 4).
This interesting phenomenon needs to be further analyzed in time- and tissue-specific
TRPV4-deficient mouse models, as well as human tissues, in the near future.
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Figure 4. A model for edema formation by different triggers in wild-type (WT) and TRPV4-deficient
(TRPV4-/-) lungs. (A) The alveolar capillary membrane with resident cells in the quiescent state
(no trigger) in wild-type (WT) mice. (B) TRPV4 channels are expressed in endothelial, AT1 and AT2
cells. Edema formation by pressure, Cl- and other TRPV4 activators in WT lungs is due to increased
endothelial permeability by TRPV4 channels (reviewed in Reference [101]). (C) Stronger edema
formation by ischemia-reperfusion (IR) in TRPV4-deficient (TRPV4-/-) mice. IR-induced edema
is dependent on acute activation of TRPC6 channels in the vascular endothelium and supported
by a chronic loss of barrier function in the alveolar epithelium due to ablation of TRPV4 channels.
TRPV4 deficiency results in reduced surfactant protein-C (SP-C) production in AT2 and decreased
aquaporin-5 (AQP-5) expression in AT1 cells, which also showed less barrier function and reduced
cell migration [109].

7. Conclusions

In summary, TRPV4 proteins are expressed in numerous cells of the respiratory tract,
like ciliated, club, AT1, and AT2 cells of the airways, as well as endothelial cells of the
pulmonary vasculature. Channel function is essential for a first line of defense against
invading pathogens and toxicants, while channel dysfunction is coupled to diseases, like
asthma, COPD, CF, lung fibrosis, and edema. Although many specific TRPV4 modu-
lators are available, none of them has succeeded in clinical trials so far. Nevertheless,
TRPV4 channels are important pharmacological targets as new therapeutic option for
respiratory disease.
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