
Real-time unsupervised object localization on
the edge for airport video surveillance⋆

Paula Ruiz-Barroso1[0000−0003−0731−1074], Francisco M.
Castro1[0000−0002−7340−4976], and Nicolás Guil1[0000−0003−3431−6516]

University of Málaga, Málaga, Spain {pruizb,fcastro,nguil}@uma.es

Abstract. Object localization is vital in computer vision to solve ob-
ject detection or classification problems. Typically, this task is performed
on expensive GPU devices, but edge computing is gaining importance
in real-time applications. In this work, we propose a real-time imple-
mentation for unsupervised object localization using a low-power device
for airport video surveillance. We automatically find regions of objects
in video using a region proposal network (RPN) together with an op-
tical flow region proposal (OFRP) based on optical flow maps between
frames. In addition, we study the deployment of our solution on an em-
bedded architecture, i.e. a Jetson AGX Xavier, using simultaneously
CPU, GPU and specific hardware accelerators. Also, three different data
representations (FP32, FP16 and INT8) are employed for the RPN. Ob-
tained results show that optimizations can improve up to 4.1x energy
consumption and 2.2x execution time while maintaining good accuracy
with respect to the baseline model.

Keywords: Edge Computing · Object Localization· Deep Learning

1 Introduction

The goal of object localization is to define the spatial extent of objects present
in an image or video sequence. In this task, it is not necessary to know the class
of the object since the result is usually used for object tracking where it is not
important to know the kind of object. Object localization is typically carried
out as the first step of the object detection problem in most object detection
algorithms. Thus, an object detection algorithm can be used for object localiza-
tion after discarding the class prediction step. Many different approaches have
been proposed for this task [30, 9, 10, 24, 2]. Traditional approaches are based
on hand-crafted descriptors that are computed and classified along the image
in a sliding window setup [30, 9]. With the advent of deep learning models, the
features are self-learnt by the model, which greatly boosted the performance of
the proposed approaches [32, 34, 17].

⋆ Supported by the Junta de Andalućıa of Spain (P18-FR-3130 and UMA20-
FEDERJA-059), the Ministry of Education of Spain (PID2019-105396RB-I00) and
the University of Málaga (B1-2022 04).



2 P. Ruiz-Barroso et al.

However, all those approaches must be trained in a supervised way using
labelled data. This requirement, together with the huge amount of data needed
for training a deep learning model, limits the use of deep learning models with
new classes that are not available in public datasets. Although this problem is
less important for object localization since region proposal usually works fine
with unknown objects, it is still a limitation for video surveillance tasks where
cameras are placed at a certain distance and small objects appear in the scene.
This is due to models are trained with public datasets where objects appear in
the foreground thus, they are not able to localize small objects since they are
not trained for that task. To solve this limitation, since we are working on video
surveillance, we compute the optical flow maps between every 15 frames (since it
is the frame step in the dataset) to discover areas with moving objects, allowing
us to discover small objects in the scene.

Typically, the deployment of these deep learning models needs the use of high-
performance architectures with discrete Graphics Processing Units (GPUs) to
fulfil both inference time and energy consumption requirements. However, when
these applications have to work in embedded platforms, energy consumption
is a paramount issue that must also be taken into account. In these platforms,
energy-efficient CPUs and accelerators are integrated on the same chip achieving
a good trade-off between performance and consumption [26, 23]. Different tech-
niques can be applied to reduce both the computational and energy consump-
tion requirements. Thus, using pruning techniques [16] can reduce the number
of arithmetic operations by removing filters and even layers of the model. More-
over, more simple data representation can be used using quantization methods
[20]. Thus, instead of using 32-bit floating-point data representation, the model
could employ 16-bit floating-point or even 8-bit integer data.

In this work, we propose an unsupervised approach for object localization in
videos. In Fig. 1 we show a sketch of our pipeline. Firstly, we automatically find
regions of objects in a sequence of frames by using the Region Proposal Network
(RPN) of a pre-trained object detection model. In addition, we compute the
optical flow maps between every 15 frames (it is the frame step in the dataset) to
discover areas with small moving objects. Then, a non-maxima suppression step
is carried out to filter and combine detections. Finally, the pipeline is optimized
and deployed in an NVIDIA Jetson AGX Xavier embedded system.

Therefore, the main contributions of this work are: (i) a combination of two
complementary region proposals specially designed for video sequences; (ii) an
optimized pipeline for embedded systems; and, (iii) a thorough experimental
study to validate the proposed framework and different optimizations.

In our experiments, we use videos obtained from a live RGB camera contin-
uously recording the apron area (area where aeroplanes park to load passengers
and luggage) of the Gdansk Airport. According to the results, our region pro-
posal approach is robust, especially with small regions or classes with changes
in shape such as persons, and can run in real-time in an embedded system.



Real-time unsupervised object localization on the edge 3

The rest of the paper is organised as follows. We start by reviewing related
work in Sec. 2. Then, Sec. 3 explains the proposed approach. Sec. 4 contains the
experiments and results. Finally, we present the conclusions in Sec. 5.

2 Related Work

2.1 Objects Localization solutions

Object localization is an essential task in the field of object tracking and object
classification. Gudovskiy et al . [12] present CFLOW-AD model, that is based
on a conditional normalizing flow framework adopted for anomaly detection
and localization using an encoder and generative decoders. Zimmerer et al . [36]
complement localization with variational auto-encoders. Gong et al . [11] propose
a two-step ”clustering + localization” procedure. The clustering step provides
noisy pseudo-labels for the localization step, and the localization step provides
temporal co-attention models that in turn improve the clustering performance.

Moreover, some approaches are related to low-cost devices. In this area, Li
et al . [15] propose a deep-reinforcement-learning-based unsupervised wireless-
localization method. Chen et al . [4] present a robust WIFI-Based indoor lo-
calization, they use variational autoencoders and train a classifier that adjusts
itself to newly collected unlabeled data using a joint classification-reconstruction
structure. Chen et al . [3] show an unsupervised learning strategy to train the
fingerprint roaming model using unlabeled onboard collected data which does
not incur any labour costs.

2.2 Implementations on Embedded Systems
Nowadays, the use of embedded platforms to deploy deep learning applications
has become more important. These systems are typically employed just for in-
ference due to their limited computational capabilities [25, 14]. However, some
authors have used them for collaborative training [29, 21]. Apply techniques such
as pruning, quantization or matrix factorization, among others, that increase in-
ference throughput on embedded platforms have led to multiple contributions.
Model compression techniques can be found in surveys of the state-of-the-art [5,
7]. Following, we show some contributions in this field related to our work.

Quantization reduces the number of computations using simpler data repre-
sentation. Some authors apply post-training quantization [25, 18]. Another op-
tion consists of the application of quantization during the training process [22,
35]. Others include quantization with other optimization techniques. Thus, some
papers use quantization and pruning techniques separately [25]. Other works
jointly use sparsity training, channel and layer pruning and quantization [19].

Furthermore, software development kits are available for optimizing deep
learning models such as TensorRT or TensorFlow Lite for GPU or CPU, respec-
tively. Focusing on TensorRT, parallelization methodology is used to maximize
performance using GPU and deep learning accelerators (DLAs) [14]. Segmen-
tation approaches and object detection networks can also be optimized using
TensorRT [27, 33]. Turning our attention to TensorFlow Lite. It has two differ-
ent targets: microcontrollers [6] and smartphones [1].



4 P. Ruiz-Barroso et al.

3 Methodology

In this section, we present our proposed method to localize small and big objects
in real-time using an embedded device. Then, we describe hardware optimiza-
tions applied in this work.

3.1 Pipeline description

Our pipeline is shown in Figure 1. As input, we use one frame every 15 frames
from a video since it is the frame step in the dataset. Then, the region proposal
methodology is composed of two steps: (1) object localization using YOLOv4
[31] with ResNet50 [13] as the backbone and (2) object localization using region
proposal based on Farneback optical flow (OF). Finally, non-maxima suppression
is applied to combine objects from YOLOv4 and OF.

RPN

OFRP

NMSInput Frames

Fig. 1. Object localization method. The input is a subset of RGB video frames.
Localizations are jointly obtained from both optical flow region proposal (OFRP) and
region proposal network (RPN). Finally, non-maxima suppression (NMS) is applied to
combine both localizations.

Input Data. Taking into account the input shape required by our RPN, the
original video frames have been resized to 640 x 384 pixels. On the other hand,
optical flow is calculated with a resolution of 720 x 405 pixels.

Region Proposal Network (RPN). In our approach, we use the Region Pro-
posal Network (RPN) of a pretrained YOLOv4. It has been chosen because is one
of the most widespread object detection networks nowadays and it obtains good
accuracy for COCO dataset. To improve the performance of our embedded sys-
tem, we have replaced the original CSPDarknet53 backbone with ResNet50 since
it is better optimized for NVIDIA Jetson devices in terms of energy and time.
YOLOv4 allows us to obtain the bounding box coordinates, mostly the largest
objects which are common detections used for training this kind of network.

Optical Flow Region Proposal (OFRP). On the other hand, region pro-
posal based on OF is obtained from optical flow maps using the FarneBack Dense
Optical Flow technique [8]. OF maps Ft are computed every 15 frames (since it



Real-time unsupervised object localization on the edge 5

is the frame step in the dataset). To remove the optical flow noise produced by
changes in the conditions of the scenario, all positions whose optical flow com-
ponents (x and y) are smaller than a threshold TF are set to 0. Then, contours
containing the objects of the scene are found using the well-known algorithm
proposed by Suzuki et al . [28]. Finally, to prevent excessively small regions, we
remove those proposed regions whose area is smaller than a threshold TA.

Non-maxima Suppression. To avoid duplicated localizations of a moving
object that is localized by the RPN and the OFRP at the same time, we need
to combine both localizations. To do that, we compute the Intersection over
Union (IoU) metric between these two proposed regions. If the IoU is bigger
than a threshold TI and the aspect ratio of the biggest region divided by the
smallest one is bigger than a threshold TAR (i.e. the aspect ratio of both regions
is similar), we keep the bounding box proposed by the RPN due to the fact that
it is more accurate than the bounding box proposed by the OFRP. Moreover, we
apply non-maxima suppression to each individual proposal algorithm to remove
overlapped regions whose IoU is greater than the same threshold TI .

3.2 Hardware optimizations

Hardware optimizations depend on the target device where the model is going
to be deployed. In this paper, we employ an NVIDIA Jetson AGX Xavier that
includes different processing units such as CPU, GPU, and DLA which can deal
with different data precisions, i.e. FP32, FP16, and INT8. Thus, two different
hardware-based optimizations can be applied to our platform:

Quantization: We explore, in addition to FP32 representation, FP16 and INT8
precision formats, which provide a more compact numerical representation that
can reduce both the inference time and memory consumption. However, lower
data precision can degrade model accuracy due to the fact that the numerical
precision of the weights and activations is lower. In our case, FP16 optimization
is performed with the TensorRT framework, but INT8 optimization requires an
additional calibration to reduce the accuracy loss when the network is converted
from FP32 to INT8. We have fine-tuned the model using PyTorch quantization
aware training. During fine-tuning, all calculations are done in floating point,
using fake quantization modules, which model the effects of quantization by
clamping and rounding to simulate the effects of INT8. Then, the calibrated
model is converted using TensorRT to complete the optimization process.

Concurrent computation: To accelerate our pipeline and take advantage of
the different hardware resources available, we perform an efficient mapping of
application modules on the available hardware. This way, our RPN and OFRP
modules can be executed concurrently since the first one is mapped to the GPU
and the second one to the CPU.

4 Experiments and Results

In this section, we first present the apron area dataset used in our experiments.
Then, some implementation details are shown. Next, we define our pipeline eval-
uation, carry out hardware optimizations in our RPN, and show their effect on



6 P. Ruiz-Barroso et al.

energy consumption and inference time. Finally, we examine the impact of our
two region proposal algorithms according to their individual CorLoc metrics.

4.1 Dataset

In our experiments, we use a video dataset obtained from a live RGB camera
continuously recording the apron area (the area where aeroplanes are parked,
unloaded, loaded, boarded, refuelled or maintained) of the Gdansk Airport. This
camera is publicly available online in a more modern version1. The dataset con-
tains 96 video clips of one-minute length recorded by a FULLHD camera which
provides a video stream with a resolution of 1920 x 1080 pixels and a frame
rate of approximately 15 fps. In order to deal with different illumination condi-
tions, 60% of the videos were recorded during the morning and the other 40%
were recorded during the afternoon/evening. In our experiments, we consider the
following categories: car (‘car’), fire-truck (‘ft’), fuel-truck (‘fuel’), luggagetrain-
manual (‘lgm’), luggagetrain (‘lg’), mobile-belt (‘mb’), person (‘pe’), plane (‘pl’),
pushback-truck (‘pb’), stairs (‘st’) and van (‘van’). Note that the abbreviated
name of each class used in the tables is included in parentheses.

4.2 Implementation Details

As it has been indicated in the previous section, we ran our experiments on
NVIDIA Jetson AGX Xavier. This platform is designed to be used as a low-
power consumption system for embedded computer vision applications providing
good performance. It includes an octa-core NVIDIA Carmel ARM V8.2 and a
Volta GPU with 512 cores and 64 Tensor Cores accompanied by 32 GB of main
memory shared by the ARM processors and the GPU. It also includes two deep
learning accelerators (DLAs) and one vision accelerator (VA). Note that DLA
is slower and more limited in functionality than GPU so it is expected that
execution time increases using DLA and GPU with respect to performing the
computation on just GPU. However, DLA consumes less energy than GPU.

Therefore, inference processes have been deployed on GPU or DLA+GPU
using TensorRT 8.4.1 and cuDNN 8.4.1. Original YOLOv4 with ResNet50 as
backbone has been trained based on Sacaled-YOLOv4 [31] code2 on a computer
with a discrete GPU using PyTorch 1.11. On the other hand, OF has been cal-
culated using an OpenCV library implemented on CPU. Moreover, non-maxima
suppression and preprocessing before introducing frames into OFRP or RPN
have been calculated on CPU too.

Regarding parameters commented in Section 3, after a cross-validation pro-
cess on a subset of the training data, we have established the following values:
TF = 0.7, TA = 100, TI = 0.4, TAR = 0.5.

4.3 Performance Evaluation

On the one side, we report energy consumption and execution time for each
implementation. Energy consumption is provided by internal sensors incorpo-
rated on Jetson boards. We employ a 500 Hz sampling frequency which is the

1 http://www.airport.gdansk.pl/airport/kamery-internetowe
2 https://github.com/WongKinYiu/ScaledYOLOv4



Real-time unsupervised object localization on the edge 7

maximum value supported by the sensors. Also, the average values for 800 for-
ward steps after 5 warm-up predictions are provided. We use the Energy Delay
Product (EDP) metric, which is the product of energy and execution time, to
measure hardware performance. Thus, the lower the EDP value, the better.

On the other side, we use the Correct Localization metric (CorLoc) to evalu-
ate the precision for region localization. This metric is defined as the percentage
of objects correctly localized according to the Pascal criterion: the IoU between
the predicted region and the ground-truth region is bigger than a given threshold
for the RPN and bigger than another given threshold for the OFRP.

4.4 Experimental Results

Baseline experiment. In this section, we show our baseline experiment with-
out any optimization, i.e. the pipeline has been deployed with PyTorch on GPU
using FP32 data representation. The obtained results in terms of energy and time
can be observed in Table 1. The pipeline is divided into four stages: frames pre-
processing (‘Prep.’) before introducing them into the next step, region proposal
network (‘RPN’), optical flow region proposal (‘OFRP’) and finally, non-maxima
suppression (‘NMS’). As we can see, the most time and energy consuming part is
the RPN. The RPN using PyTorch is a bottleneck for the parallel OFRP+RPN
process. On the other hand, energy consumption in preprocessing and NMS is
almost negligible while inference time represents a 7.17% of the final time. Fi-
nally, our complete pipeline takes 94.25 ms with an energy consumption of 16.72
mJ without considering any hardware optimization.

Table 1. Baseline study: Time and energy. Each row represents a different stage:
preprocessing (Prep.), parallel region proposal algorithms: region proposal network
(RPN) and optical flow region proposal (OFRP) and non-maxima suppression (NMS).
Columns represent inference time and energy consumption together with EDP (Energy
Delay Product) value. The last row represents the total time, energy and EDP of our
baseline method. Note that for the total time of the baseline, we only consider the
highest time of the parallel region proposal part (i.e. 87.49 ms from RPN).

Stage Time (ms)
Energy (mJ)

EDP
GPU CPU

Prep. 3.32 - 0.05 0.16

Parallel
RPN 87.49 12.68 - 1109.23

OFRP 73.01 - 3.98 290.89

NMS 3.44 - 0.01 0.03

Total 94.25 16.72 1400.32

Data quantization on GPU. In Table 2, we observe energy consumption,
inference time and EDP for the RPN after the optimization carries out by Ten-
sorRT for different data precisions. The last column shows the EDP reduction
ratio (EDPrr) for FP16 and INT8 with respect to FP32 precision. As prepro-
cessing and NMS are executed on the CPU, they have been omitted.

First of all, we compare baseline inference time and energy consumption
(third row in Table 1) with FP32 optimization using TensorRT. It can be ob-



8 P. Ruiz-Barroso et al.

served that there is a decrease in inference time of 19.35 ms and a reduction of
4.29 mJ in energy consumption.

Focusing on FP16 data precision, we can see a significative reduction (around
2×) of the computation time for FP16 w.r.t FP32, as it was expected. Energy
consumption has also improved due to both the shorter inference time and the
use of more compact computing units. Nevertheless, INT8 precision has an un-
expected behaviour as it obtains a longer execution time than that achieved for
FP16. We analysed the executed kernels with NVIDIA Profiler3 for INT8 quanti-
zation and we discovered that TensorRT employs not only INT8 kernels but also
FP32, probably because there is not INT8 implementation for some RPN layers.
Thus, the execution improvement is lower than expected since mixed precisions
are used together.

Comparing EDPrr among different data precision, there is a great improve-
ment when using FP16. However, the enhancement is not as significant when
using INT8 due to the fact that also FP32 is being used as previously discussed.

Finally, we consider the RPN with FP16 data precision the best option due to
lower energy consumption and inference time. Thus, the total energy consump-
tion for our approach using FP16 quantization is 6.07 mJ and the total time is
79.77 ms taking into account preprocessing, OFRP+RPN and NMS values. In
this case, as the OFRP takes longer than the RPN, it is a bottleneck for the
parallel OFRP+RPN processing. In terms of frames per second (FPS), taking
into account that during 79.77 ms we are processing 15 video frames, we are able
to process 188 FPS.

Table 2. Hardware optimizations: Data quantization. Each row shows different
data precision. Columns represent inference time and energy consumption together with
EDP (Energy Delay Product) value for GPU. Finally, EDPrr (Energy Delay Product
reduction ratio) with respect to the FP32 model is included in the last column.

Quantization Time (ms) Energy (mJ) EDP EDPrr

FP32 68.14 8.39 571.38 -
FP16 30.90 2.03 62.79 9.10x
INT8 52.91 5.52 292.06 1.96x

Deep Learning accelerator. Another hardware optimization available on Jet-
son Xavier is the use of both DLA and GPU to perform model inference using
TensorRT. However, it has limitations in the amount and kind of layers sup-
ported. Our RPN is too large to be completely mapped on DLA. In this case,
TensorRT implementation reaches an internal state which indicates that DLA
has exceeded the number of layers in the network that it can handle, so the
remaining layers are mapped in the GPU. Moreover, other models cannot be
entirely mapped on DLA due to layer incompatibilities4.

3 NVIDIA Nsight Compute documentation can be consulted:
https://developer.nvidia.com/nsight-compute

4 NVIDIA TensorRT documentation can be consulted to find mapping incom-
patibilities: https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-
841/developer-guide/index.html



Real-time unsupervised object localization on the edge 9

On the other hand, DLA data precision is currently limited to networks
running in FP16 and INT8 modes. In our case, INT8 is not available due to pre-
viously commented layers incompatibilities with this data precision. Therefore
we have only deployed our model on DLA using FP16. The results using DLA
and GPU can be observed in the fourth row of Table 3. If we compare inference
time and energy consumption with its GPU analogues in FP16 (third row in
Table 3), DLA makes the inference process much slower, which increases the
energy consumption with respect to GPU only. Thus, due to its lower computa-
tional capacity and data transfer rate between GPU and DLA, this combination
also consumes more energy and time. However, it allows freeing GPU resources
which could be employed for other computations if required.

Comparing EDP reduction ratios (EDPrr) among baseline models without
TensorRT optimizations and FP16 models using TensorRT, we can observe sig-
nificant reduction ratios when using TensorRT and FP16 data precision. For the
FP16 model on GPU, it achieves a value of 17.67x with respect to the baseline
model and a value of 2.18x for GPU and DLA implementation.

Table 3. Hardware optimizations: DLA study. Columns represent inference time
and energy consumption for DLA and GPU together with EDP (Energy Delay Product)
for RPN. Finally, EDPrr (Energy Delay Product reduction ratio) with respect to the
baseline model is included in the last column. Each row represents a different model:
baseline model without optimizations, FP16 model on GPU and FP16 model on DLA
and GPU.

Model Time (ms)
Energy (mJ)

EDP EDPrrGPU DLA Total

Baseline 87.49 12.68 - 12.68 1109.23 -
FP16 on GPU 30.90 2.03 - 2.03 62.79 17.67x

FP16 on DLA - GPU 71.41 4.35 2.78 7.13 509.46 2.18x

Region proposal comparative. In this experiment, we evaluate the perfor-
mance of each region proposal algorithm (RPN and OFRP) using the CorLoc
metric, comparing the annotated ground-truth with the proposals obtained from
each approach. Furthermore, we evaluate the performance of each one based on
the category object to be detected.

In Table 4, we show the CorLoc results (where higher is better) for our two
proposal algorithms. Concerning the RPN algorithm, we have four combinations:
FP32, FP16, INT8 using GPU and FP16 using GPU with DLA. Finally, the
combination of both has been added. The standard value of 0.5 is used as IoU
threshold for the RPN algorithm and 0.1 is used for OFRP. OFRP requires a
smaller threshold because Farneback optical flow is computed every 15 frames
(since it is the frame step in the dataset), which generates large flow vectors which
make the bounding boxes too big in comparison to the ground-truth bounding
boxes. With regard to the results, RPN produces more accurate regions than
OFRP due to OF is only able to detect moving objects. The RPN that uses INT8
data precision achieves the best results, thus this RPN together with OFRP is the
best combination. Note that this improvement in the results for INT8 is because
we have fine-tuned the model using PyTorch quantization aware training, as



10 P. Ruiz-Barroso et al.

commented previously, during four epochs improving the accuracy of the model.
The other combinations obtain almost the same CorLoc value.

Table 4. CorLoc results for different data quantization. Each row shows the
CorLoc results using only RPN (second column), only OFRP (third column) or both
RPN+OFRP (last column) for different data quantization.

Quantization RPN OFRP RPN + OFRP

FP32 GPU 19.60 3.92 23.52
FP16 GPU 19.58 3.87 23.45
INT8 GPU 21.46 3.87 25.33

FP16 GPU + DLA 19.58 3.93 23.51

In addition, we measure the CorLoc metric over the true positive set of each
class. We obtain the CorLoc metric separately (second and third rows) in Table
5) for each algorithm and each class. Finally, the last row in Table 5 shows the
results using both region proposal algorithms together. For brevity, we only show
the results per class for the best RPN algorithm, i.e. using INT8 data precision
and GPU. It can be observed that RPN proposes better regions for all classes
because most of the objects remain stationary, thus, there is no optical flow in
this situation. The major contribution of the optical flow is for the person class as
very small bounding boxes are generated and sometimes may not be detected by
the RPN algorithm. Finally, the OFRP algorithm increases the CorLoc metric
of 6 classes and allows us to obtain the best results in our pipeline.

Table 5. CorLoc results per class using true positives. Each row represents a
different proposal algorithm and each column represents a different class.

Precision Car ft Fuel lgm lg mb pe pl pb st Van

OFRP 8.5 8.0 5.5 2.3 12.0 9.2 36.3 1.4 7.4 37.8 86.7

RPN INT8 67.6 97.8 97.8 31.2 15.2 56.3 37.9 98.1 13.3 66.5 93.3

OFRP+RPN INT8 67.6 97.9 97.8 31.3 15.2 56.7 39.7 98.1 14.0 67.1 93.3

5 Conclusions

We have proposed a real-time unsupervised object localization approach using
a low-power device for airport video surveillance. Our method has two princi-
pal components which produce the bounding boxes: a region proposal network
(RPN) and an optical flow region proposal (OFRP). We have evaluated our
pipeline on video sequences of the apron area of an airport showing that our
approach is able to localize objects that appear on videos. Moreover, hardware
optimizations allow us to improve energy consumption and inference time in or-
der to obtain real-time localization in addition to low consumption. Regarding
the CorLoc metric, it can be observed that the combination of OFRP and RPN
improves the results obtained using only one of them. Furthermore, with regard
to hardware optimizations, we have demonstrated that the use of different data
precisions i.e. FP16 or INT8 or the employment of GPU together with DLA can
achieve less energy consumption and inference time than the baseline pipeline.



Real-time unsupervised object localization on the edge 11

As future work, we plan to use these localizations to obtain descriptors and
group them using a clustering algorithm in order to find similar objects. Finally,
we want to label these clusters and a human may optionally revise some samples
from each cluster.

References

1. Ahmed, S., Bons, M.: Edge computed nilm: a phone-based implementation using
mobilenet compressed by tensorflow lite. In: NILM 2020. pp. 44–48

2. Cai, Z., Vasconcelos, N.: Cascade R-CNN: Delving into high quality object detec-
tion. In: CVPR. pp. 6154–6162 (2018)

3. Chen, M., Liu, K., Ma, J., Zeng, X., Dong, Z., Tong, G., Liu, C.: Moloc: Unsu-
pervised fingerprint roaming for device-free indoor localization in a mobile ship
environment. ieee internet of things journal 7(12), 11851–11862 (2020)

4. Chen, X., Li, H., Zhou, C., Liu, X., Wu, D., Dudek, G.: Fidora: Robust wifi-based
indoor localization via unsupervised domain adaptation. IEEE Internet of Things
Journal 9(12), 9872–9888 (2022)

5. Cheng, Y., Wang, D., Zhou, P., Zhang, T.: A survey of model compression and
acceleration for deep neural networks. arXiv preprint:1710.09282 (2017)

6. David, R., Duke, J., Jain, A., Janapa Reddi, V., Jeffries, N., Li, J., Kreeger, N.,
Nappier, I., Natraj, M., Wang, T., et al.: Tensorflow lite micro: Embedded machine
learning for tinyml systems. PMLR 3, 800–811 (2021)

7. Deng, L., Li, G., Han, S., Shi, L., Xie, Y.: Model compression and hardware ac-
celeration for neural networks: A comprehensive survey. Proceedings of the IEEE
108(4), 485–532 (2020)

8. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In:
Image Analysis: 13th Scandinavian Conference, SCIA 2003 Halmstad, Sweden,
June 29–July 2, 2003 Proceedings 13. pp. 363–370. Springer (2003)

9. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. IEEE PAMI 32(9), 1627–1645
(2010)

10. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: CVPR. pp. 580–587 (2014)

11. Gong, G., Wang, X., Mu, Y., Tian, Q.: Learning temporal co-attention models for
unsupervised video action localization. In: CVPR. pp. 9819–9828 (2020)

12. Gudovskiy, D., Ishizaka, S., Kozuka, K.: Cflow-ad: Real-time unsupervised anomaly
detection with localization via conditional normalizing flows. In: WACV 2022. pp.
98–107

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770–778 (2016)

14. Jeong, E., Kim, J., Tan, S., Lee, J., Ha, S.: Deep learning inference parallelization
on heterogeneous processors with tensorrt. IEEE Embed. Syst. Lett. 14(1), 15–18
(2021)

15. Li, Y., Hu, X., Zhuang, Y., Gao, Z., Zhang, P., El-Sheimy, N.: Deep reinforcement
learning (drl): Another perspective for unsupervised wireless localization. ieee in-
ternet of things journal 7(7), 6279–6287 (2019)

16. Liang, T., Glossner, J., Wang, L., Shi, S., Zhang, X.: Pruning and quantization for
deep neural network acceleration: A survey. Neurocomputing 461, 370–403 (2021)

17. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: ICCV. pp.
10012–10022 (2021)



12 P. Ruiz-Barroso et al.

18. Liu, Z., Wang, Y., Han, K., Zhang, W., Ma, S., Gao, W.: Post-training quantization
for vision transformer. NeurIPS 34, 28092–28103 (2021)

19. Ma, X., Ji, K., Xiong, B., Zhang, L., Feng, S., Kuang, G.: Light-yolov4: An edge-
device oriented target detection method for remote sensing images. IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens 14, 10808–10820 (2021)

20. Mathew, M., Desappan, K., Kumar Swami, P., Nagori, S.: Sparse, quantized, full
frame cnn for low power embedded devices. In: CVPR (July 2017)

21. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Artificial intelligence and statistics. pp. 1273–1282. PMLR (2017)

22. Park, E., Yoo, S., Vajda, P.: Value-aware quantization for training and inference
of neural networks. In: ECCV. pp. 580–595 (2018)

23. Qasaimeh, M., Denolf, K., Khodamoradi, A., Blott, M., Lo, J., Halder, L., Vissers,
K., Zambreno, J., Jones, P.H.: Benchmarking vision kernels and neural network
inference accelerators on embedded platforms. Journal of Systems Architecture
113, 101896 (2021)

24. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object
detection with region proposal networks. In: NIPS. pp. 91–99 (2015)

25. Ruiz-Barroso, P., Castro, F.M., Delgado-Escaño, R., Ramos-Cózar, J., Guil, N.:
High performance inference of gait recognition models on embedded systems. Sus-
tain. Comput. Informatics Syst. 36, 100814 (2022)

26. Saddik, A., Latif, R., Elhoseny, M., Elouardi, A.: Real-time evaluation of different
indexes in precision agriculture using a heterogeneous embedded system. Sustain.
Comput. Informatics Syst. 30, 100506 (2021)

27. Seichter, D., Köhler, M., Lewandowski, B., Wengefeld, T., Gross, H.M.: Efficient
rgb-d semantic segmentation for indoor scene analysis. In: ICRA. pp. 13525–13531.
IEEE (2021)

28. Suzuki, S., et al.: Topological structural analysis of digitized binary images by
border following. CVGIP 30(1), 32–46 (1985)

29. Tao, Z., Li, Q.: esgd: Commutation efficient distributed deep learning on the edge.
HotEdge p. 6 (2018)

30. Viola, P., Jones, M., et al.: Rapid object detection using a boosted cascade of
simple features. CVPR 1, 511–518 (2001)

31. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: Scaled-yolov4: Scaling cross stage
partial network. In: CVPR. pp. 13029–13038 (2021)

32. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: Yolov7: Trainable bag-of-freebies sets
new state-of-the-art for real-time object detectors. arXiv: 2207.02696 (2022)

33. Xia, X., Li, J., Wu, J., Wang, X., Wang, M., Xiao, X., Zheng, M., Wang, R.:
Trt-vit: Tensorrt-oriented vision transformer. arXiv preprint:2205.09579 (2022)

34. Zhai, X., Kolesnikov, A., Houlsby, N., Beyer, L.: Scaling vision transformers. In:
CVPR. pp. 12104–12113 (2022)

35. Zhao, K., Huang, S., Pan, P., Li, Y., Zhang, Y., Gu, Z., Xu, Y.: Distribution adap-
tive int8 quantization for training cnns. In: Proceedings of the AAAI Conference
on Artificial Intelligence. vol. 35, pp. 3483–3491 (2021)

36. Zimmerer, D., Isensee, F., Petersen, J., Kohl, S., Maier-Hein, K.: Unsupervised
anomaly localization using variational auto-encoders. In: MICCAI 2019. pp. 289–
297. Springer


