6.1 CELL DIVISION

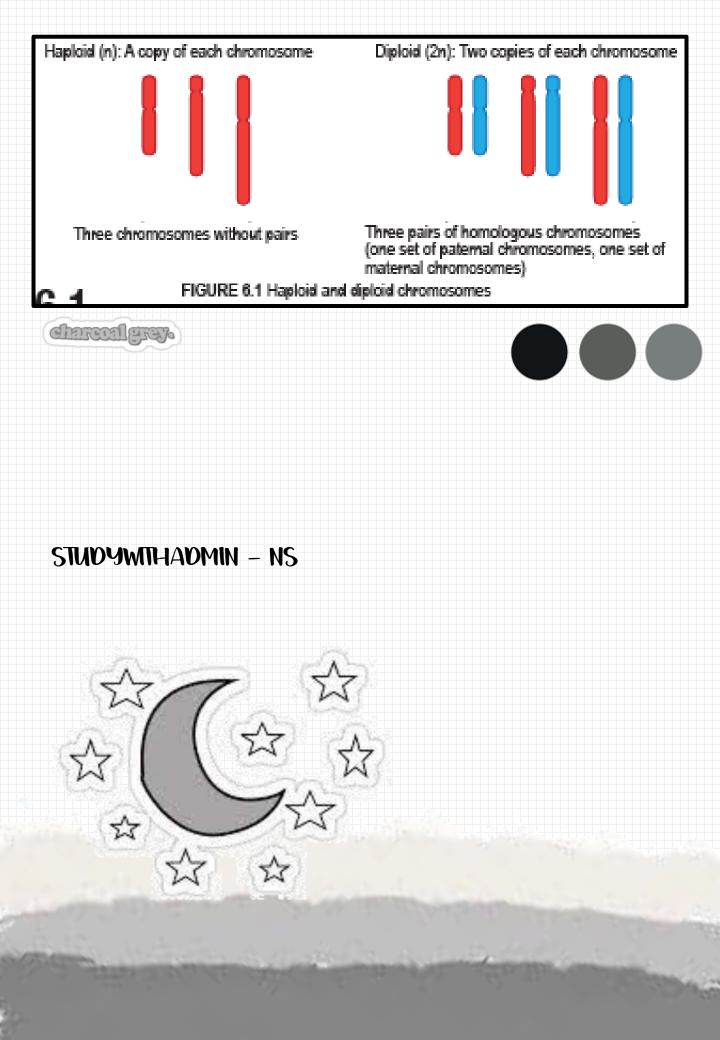
- Cells in our body always grow, divide and die
- □ As such, the dead cells must be replaced with new cells
- Cells in the body produce new cells through the cell division process.
- Karyokinesis involves the division of the nucleus.
- Cytokinesis involves the division of the cytoplasm

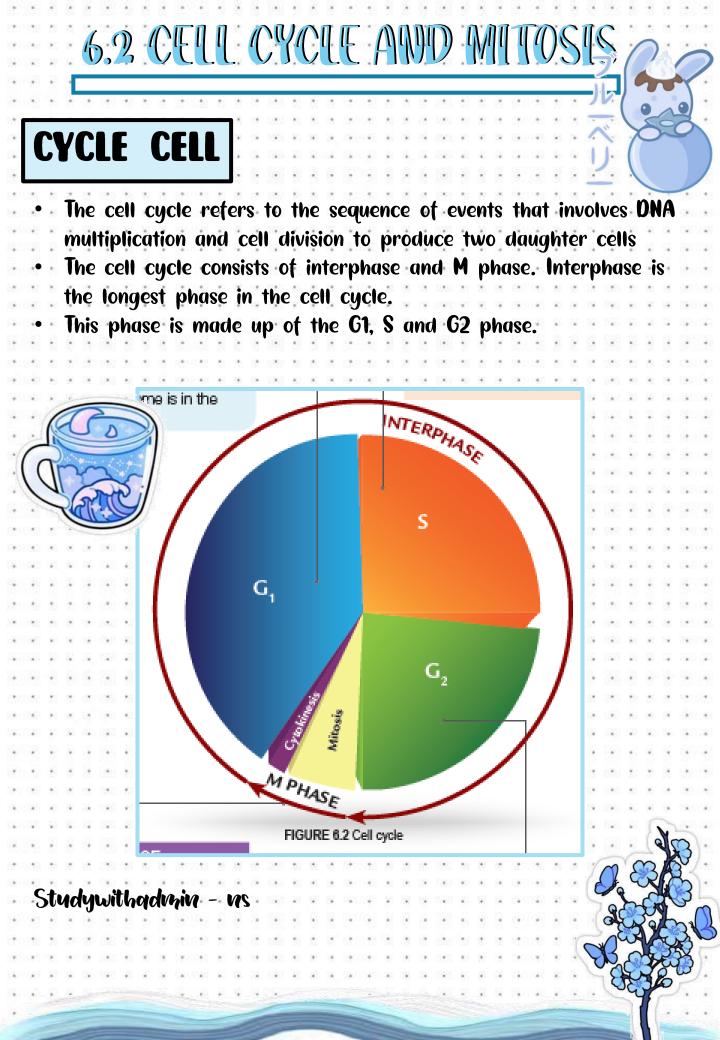
ORGANISM CELL

SOMATIC CELL

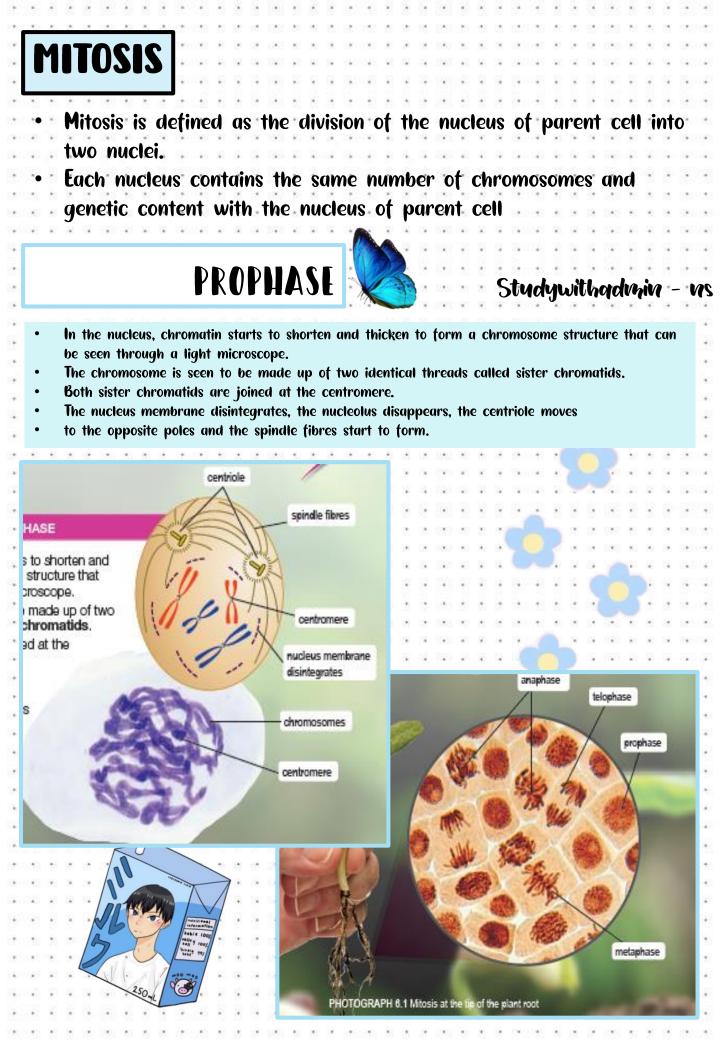
 Body cells apart from gametes.

34

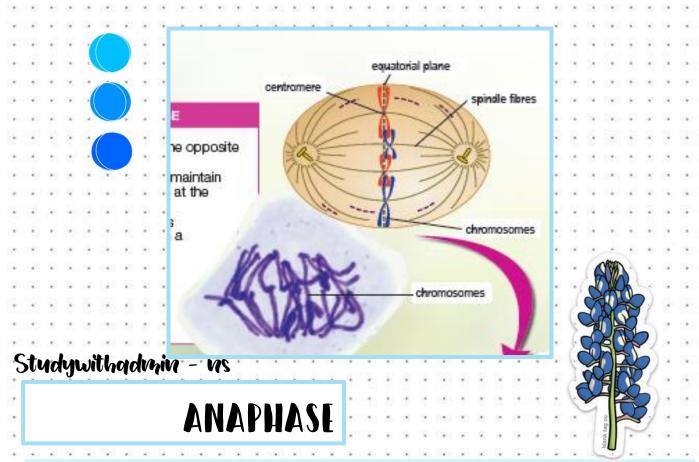

- Somatic cells are produced through the mitosis process.
- It contains a diploid number of chromosomes, that is, each cell contains two sets of chromosomes or 2n. In human somatic cells, 2n = 46.


Gametes are reproductive cells.

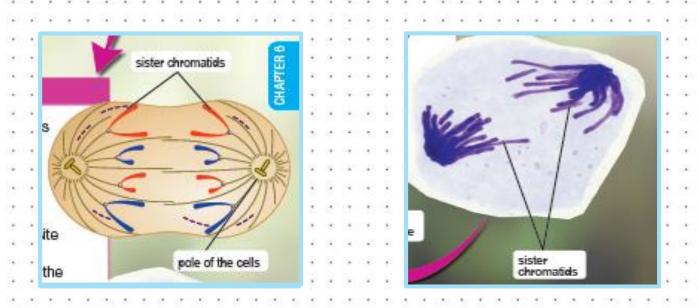
GAMETE


- Gametes are produced through the meiosis process.
- It contains a haploid number of chromosomes, that is, each cell contains one set of chromosomes or n. In human gametes, n = 23.

- In diploid cells, one set of chromosomes originate from the male parent or paternal chromosomes and another set is from the female parent or maternal chromosomes..
- Both paternal and maternal chromosomes have the same structural characteristics
- This pair of chromosomes are called homologous chromosomes.
- Chromatin is a chromosome that looks like a long thread.

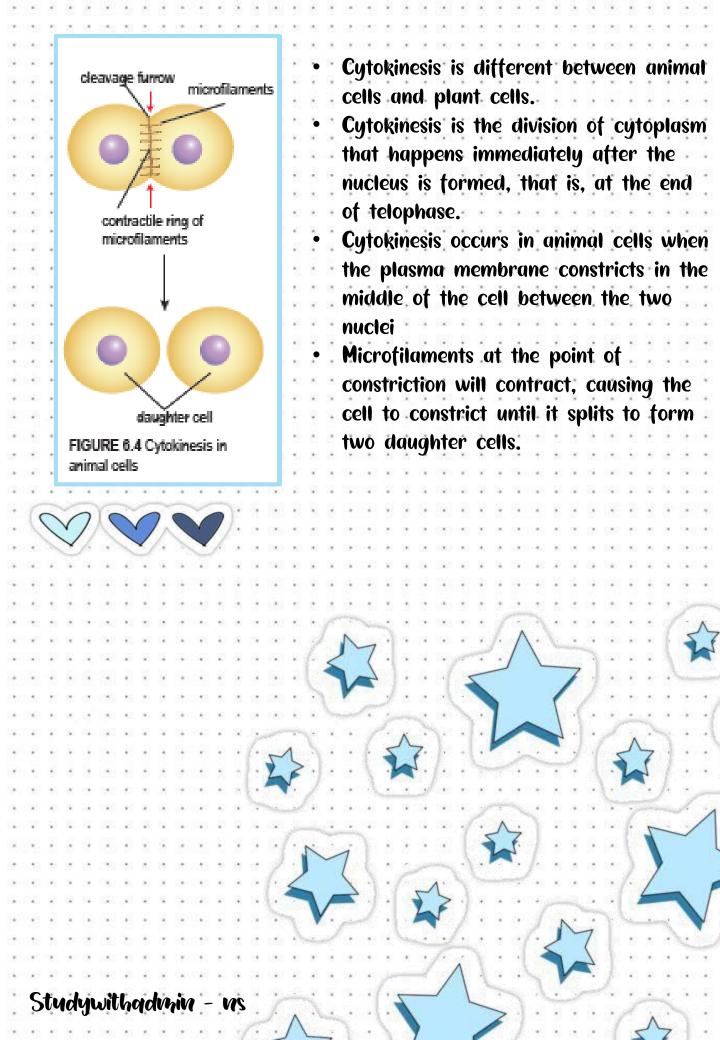


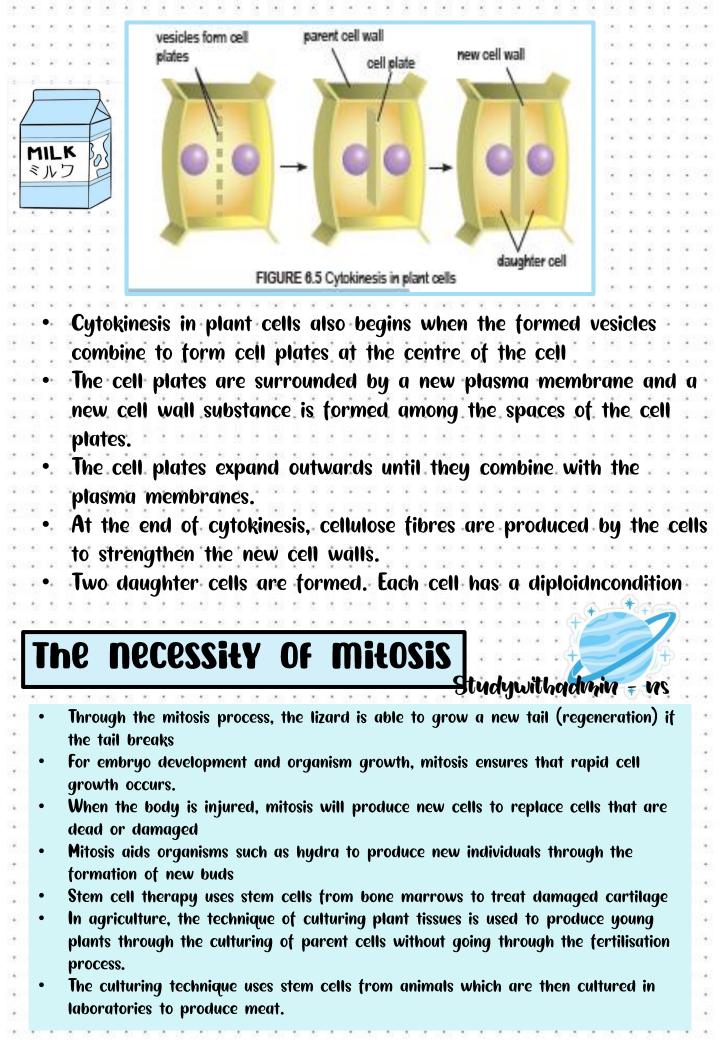
								121 23		12 N.S.											
0.000	(#) 3# (3#); #); #); #		1 2 2	1.55	30.5	: <u>18</u> 3	1.07	1.1	25	8.85	5.153	透 透		201	3	81 8	83 B	5.35			*
			- xe - x	1.0	10 A	10.1	 Sec. 	- e - e		19 - 73 8		x - 14	2400	100 X		(x - 5)		- w	10		*
	PHAS																				
\mathbf{D}	VHA																				
		•																			
	12 12 12 12 12 12 13		19.2	1.8	23 1	1313		1.12				8.0	8	3.3	18	8.0	3	18			
		120.03	0.01.0	112	800 B	1.15	2.000	- 10 C	<u></u>	S. 165	1.25	10 U.S		191	1	85 Q	00 B	1.10		5	
10100	Cells grow.		1.1	- (H	1.1	2.85	 (*) 	1. 1	80	10.0	8.82	5.15		1.1	100	8 B	10.3	1.85		•	۰.
100.00		e nerre	- 92 B	14		- 14 - S				4	6.80	¥ 38	1410	ac 4	1	N 8	÷.,	12			
•	Cell compone	ents su	ich a	s m	itock	ondi	rion	and	end	oplo	Ismi	c re	ticu	lum	are	pr	odu	ced	at		
			5 96 G		00400 - 40	*)				08 0080	- e)	40 - 14		140.04	0.0	04 0	• •		٠		
	this stage					188					1										
•	Proteins used	in th			olo	aro d	aleo	cunt	hoei	boa	dur	ina ·	thic	tim	0				~ ~		100
1.1.1.1.1.1								•				•				ST 8	50 S	1	3		
* * • *	At this stage	the I	nucle	us l	ooks	bia	and	the	chr	omo	som	e is	in	the .	torn	0 01	63 B	3. 182	10		
011102-02	171 INC (THEN INT INT IN	1 12/02	\sim	6 62	020 2		2 327	0.25 12	63	19 192	2 122	10 10	820	123 2	0	12 10	23 2	1.12	22	200	27
	chromatin.		$(\cdot \cdot)$																		
										* *				* *		*	• •			*	*
	0 3 00 0 0 0																				
		1000		000		1 345 8	1. 37.0	-10 X	đ	18 A.A.	81.82	15 55	2.5	10.1	- 10 -	18 11	312 - S	9 . 28	37		÷.,
JT	HASE		1	00	\sim			* *	*	* *	. *	8. 38		* *		19 I I	÷	S (#)			*
•	• -	121112			1.	128.5	2 323	121 23	22	S 82	3 23	2.32	1	22.5	12	a 8	2012	2.12			4
					5																
	* * * * * *	• •					• •		3		1.2	•		• •		88	• •				+
	DNA synthesi	s occu	ars in	the	2 S #	phase	2.					a) (a)				04 C					10.1
· · · ·	The DNA in t	ne nu	cieus	IS 1	epin	cateo	1.0					10 (H		• •		0 4 - 13	80. B	- 30	٠		
	Each chromos	omo	multi	nlio	· int	o two	n ide	ontic	al c	hrow	nner	mos	bn	own	90	ciet	or	1.16			+
12:01:20 88		some		pnea	5 1011	0 100	0 100	ennu	ui c	111 01	11030	Jules		UWII	us	3131	ei	1.3	12	120	23
	chromatids.					1.1						1	1			1					
				1.4								* *	1.0	* *			• •				
	Both chroma	tids c	ontai	n th	e sa	me (copy	of t	he	UNA	mc	lecu	le.								
420066 58																					
a ()	Both chroma	nus u	re ju	men	MI *	me c	em	ome	.62			* *				S# 23	• •				
10.00	2 2 2 2 2 2 2 3	1.12	1 (d) (d)	102	1911	123 8	1.12	20 R	4	4	1	¥ 12	4	÷.	12	S4 - S	÷. ;	12			4.5
			3.3	1.12	2637 13		0.000			52 72	8 80	8 8		128 12		501 S	88 8				
12			5.2	18		1.5		10.15	<u>_</u>	8 S.	8.80	S 0		<u> </u>	1.5	85 D	28 3	13	2		1
b	VHA		21 23	1 12	252 B	- 3% - S	2.050	- TO - 70	25	d	s 75	5 B	100		12			2.5	15		1
62	PHA	זו	2 3 8 4							at et a es									а 		
62	PHA:						: .:. : ::::		*	* *		* *		• •			• •		3 3	•	•
62	РНА		• •	5 63 5 68 6 64	• •	•	• •	• •	*	 		8 8 8 8 8 8							3 3 3	•	•
62	90 04 040 40 40 9	() () ()	nuo t	to a	row	and	rom	din 1	octio	 	ota	holic	attu	 	rina	the	- G	2		•	•
62	The cells will	() () ()	nue 1	to g	row	and	rem	ain a	activ	ve m	neta	bolic	ally	du	ring	the	e G	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	• •
62	The cells will	() () ()	nue 1	to g	row	and	rem	ain a	activ	ve m	neta	bolic	ally	du.	ring	the	e G	2	100 H H 100 H	•	• • • •
62	The cells will phase.	conti	•	1			1.00	1.1	*		5	• •	*	•	*	3	•	٠		•	
62	The cells will	conti	•	1			1.00	1.1	*		5	• •	*	•	*	3	•	٠		•	
62	The cells will phase. Cells gather	conti	•	1			1.00	1.1	*		5	• •	*	•	*	3	•	٠			* * * * * *
62	The cells will phase.	conti	•	1			1.00	1.1	*		5	• •	*	•	*	3	•	٠		•	たんちょうたん ちょう
62	The cells will phase. Cells gather division.	conti energi	y an	d m	ake	tinal	arr	ange	mer	nts t	0 eI	nter	*	•	*	3	•	٠		• • • • • •	
6 2	The cells will phase. Cells gather	conti energi	y an	d m	ake	tinal	arr	ange	mer	nts t	0 eI	nter	*	•	*	3	•	٠		•	
θ 2	The cells will phase. Cells gather division.	conti energi	y an	d m	ake	tinal	arr	ange	mer	nts t	0 eI	nter ase	the	nex	t ste	age	ot	cell		· · · ·	
θ2	The cells will phase. Cells gather division.	conti energi	y an	d m	ake	tinal	arr	ange	mer	nts t	0 eI	nter ase	the	nex	t ste	age	ot	cell		WS	
	The cells will phase. Cells gather division. After the inte	conti energi erphas	y an	d m	ake	tinal	arr	ange	mer	nts t	0 eI	nter ase	the	•	t ste	age	ot	cell		ws	
	The cells will phase. Cells gather division. After the inte	conti energi erphas	y an	d m	ake	tinal	arr	ange	mer	nts t	0 eI	nter ase	the	nex	t ste	age	ot	cell		WS	
	The cells will phase. Cells gather division.	conti energi erphas	y an	d m	ake	tinal	arr	ange	mer	nts t	0 eI	nter ase	the	nex	t ste	age	ot	cell		ws	
	The cells will phase. Cells gather division. After the inte	conti energi erphas	y an	d m	ake	tinal	arr	ange	mer	nts t	0 eI	nter ase	the	nex	t ste	age	ot	cell		ws	
	The cells will phase. Cells gather division. After the inte	conti energi erphas	y an	d m	ake	tinal	arr	ange	mer	nts t	0 eI	nter ase	the	nex	t ste	age	ot	cell		WS	
	The cells will phase. Cells gather division. After the inte	conti energy erphas E	y and se sta	d m Ige,	ake the	tinal cell	arr will	ange ente	mer r tł	nts t	0 eI	nter ase	the	nex	t ste	age	ot	cell		ws	
	The cells will phase. Cells gather division. After the inte	conti energy erphas E	y and se sta	d m Ige,	ake the	tinal cell	arr will	ange ente	mer r tł	nts t	0 eI	nter ase	the	nex	t ste	age	ot	cell		ws	
	The cells will phase. Cells gather division. After the inte PHAS M phase is n	conti energy erphas E	y and se sta np ot	d m Ige, mil	ake the	final cell and	arr will cyte	ange ente okine	mer r tł	nts t ne M	o ei I ph	nter Iase St	the	nex	t ste	age	ot	cell		ws	
	The cells will phase. Cells gather division. After the inte	conti energy erphas E	y and se sta np ot	d m Ige, mil	ake the	final cell and	arr will cyte	ange ente okine	mer r tł	nts t ne M	o ei I ph	nter Iase St	the	nex	t ste	age	ot	cell		ws	
	The cells will phase. Cells gather division. After the inte PHAS M phase is n	conti energy erphas E	y and se sta np ot	d m Ige, mil	ake the	final cell and	arr will cyte	ange ente okine	mer r tł	nts t ne M	o ei I ph	nter Iase St	the	nex	t ste	age	ot	cell		ws	
	The cells will phase. Cells gather division. After the inte PHAS M phase is n	conti energy erphas E	y and se sta np ot	d m Ige, mil	ake the	final cell and	arr will cyte	ange ente okine	mer r tł	nts t ne M	o ei I ph	nter Iase St	the	nex	t ste	age	ot	cell		ws	
	The cells will phase. Cells gather division. After the inte PHAS M phase is n	conti energy erphas E	y and se sta np ot	d m Ige, mil	ake the	final cell and	arr will cyte	ange ente okine	mer r tł	nts t ne M	o ei I ph	nter Iase St	the	nex	t ste	age	ot	cell		ws	
	The cells will phase. Cells gather division. After the inte PHAS M phase is n	conti energy erphas E	y and se sta np ot	d m Ige, mil	ake the	final cell and	arr will cyte	ange ente okine	mer r tł	nts t ne M	o ei I ph	nter Iase St	the	nex	t ste	age	ot	cell		ws	
	The cells will phase. Cells gather division. After the inte PHAS M phase is n	conti energy erphas E	y and se sta np ot	d m Ige, mil	ake the	final cell and	arr will cyte	ange ente okine	mer r tł	nts t ne M	o ei I ph	nter Iase St	the	nex	t ste	age	ot	cell		ws	
	The cells will phase. Cells gather division. After the inte PHAS M phase is n	conti energy erphas E	y and se sta np ot	d m Ige, mil	ake the	final cell and	arr will cyte	ange ente okine	mer r tł	nts t ne M	o ei I ph	nter Iase St	the	nex	t ste	age	ot	cell		ws	
	The cells will phase. Cells gather division. After the inte PHAS M phase is n	conti energy erphas E	y and se sta np ot	d m Ige, mil	ake the	final cell and	arr will cyte	ange ente okine	mer r tł	nts t ne M	o ei I ph	nter Iase St	the	nex	t ste	age	ot	cell		WS	
	The cells will phase. Cells gather division. After the inte PHAS M phase is n	conti energy erphas E	y and se sta np ot	d m Ige, mil	ake the	final cell and	arr will cyte	ange ente okine	mer r tł	nts t ne M	o ei I ph	nter Iase St	the	nex	t ste	age	ot	cell	. 🍋	WS	
	The cells will phase. Cells gather division. After the inte PHAS M phase is n	conti energy erphas E	y and se sta np ot	d m Ige, mil	ake the	final cell and	arr will cyte	ange ente okine	mer r tł	nts t ne M	o ei I ph	nter Iase St	the	nex	t ste	age	ot	cell		WS	
	The cells will phase. Cells gather division. After the inte PHAS M phase is n	conti energy erphas E	y and se sta np ot	d m Ige, mil	ake the	final cell and	arr will cyte	ange ente okine	mer r tł	nts t ne M	o ei I ph	nter Iase St	the	nex	t ste	age	ot	cell	a a 🍋 a a a a a a a a a a a a a a a a a	WS	
	The cells will phase. Cells gather division. After the inte PHAS M phase is n	conti energy erphas E	y and se sta np ot	d m Ige, mil	ake the	final cell and	arr will cyte	ange ente okine	mer r tł	nts t ne M	o ei I ph	nter Iase St	the	nex	t ste	age	ot	cell	🍋	WS	
	The cells will phase. Cells gather division. After the inte PHAS M phase is n	conti energy erphas E	y and se sta np ot	d m Ige, mil	ake the	final cell and	arr will cyte	ange ente okine	mer r tł	nts t ne M	o ei I ph	nter Iase St	the	nex	t ste	age	ot	cell		ws	
	The cells will phase. Cells gather division. After the inte PHAS M phase is n	conti energy erphas E	y and se sta np ot	d m Ige, mil	ake the	final cell and	arr will cyte	ange ente okine	mer r tł	nts t ne M	o ei I ph	nter Iase St	the	nex	t ste	age	ot	cell		WS	
	The cells will phase. Cells gather division. After the inte PHAS M phase is n	conti energy erphas E	y and se sta np ot	d m Ige, mil	ake the	final cell and	arr will cyte	ange ente okine	mer r tł	nts t ne M	o ei I ph	nter Iase St	the	nex	t ste	age	ot	cell		WS	



METAPHASE

- Centrioles are at the opposite poles of the cell.
- The spindle fibres maintain the chromosomes at the equatorial plane.
- The chromosomes become aligned in a single row on the equatorial plane.
- Metaphase ends when the centromere begins to divide.


- The centromere divides into two and the sister chromatids separate.
- Spindle fibres shorten, contract and the sister chromatids are attracted to the opposite pole cells.
 Anaphase ends when the chromatid arrives at the pole of the cell.
 - Anaphase ends when the chromatia arrives at the pole of the cell.



TELOPHASE When the chromatids are at the opposite poles, they are now called the daughter chromosome. Each pole contains one set of complete and identical chromosomes. Chromosomes are shaped again as fine chromatin threads. Nucleoli are formed again. Spindle fibres disappear. A new nucleus membrane is formed. The telophase stage is followed by cytokinesis. spindle fibres daughter chromosomes centriole nuclear membrane nuclear membrane daughter cells FIGURE 6.3 M The differences between mitosis and

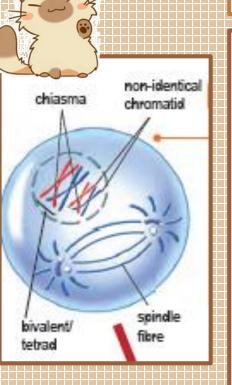
Cytokinesis in animal cells and Plant cells

*1	(18) (19)	80	Ď	138 170	nt.) 1		do	•	internet	8	∷ ∧•	ntai	6 6 10 1	· · ·	101	tn:		*) 00	त्र व्य	38. 24	2003 1141	8	*	3		1	×:	10	S.		1	8 14	2	J.	0
																																		8			
	•	2	H	ov	ve	vei	,	pl	an	ıţ	Ce	2115		can	S	till	1	foi	m		sp	in	dle	e 1	fib	re	S	du	ri	ng	Ĩ	nit	osi	is	2		
				3		<u>*</u> :	*	3	÷	•	*	8	35	353	8		6	•	•	85	3	55	393	13	×	÷			20	8	3		82				
•			\geq	\sim		10	\otimes	\sim		٠	\mathbf{x}	\mathbf{x}	3	0.00	0	6.3	6.3		•	÷:	\mathbf{x}	1	(0)	*	\mathbf{x}	98			\otimes	8		10	80				
•	۰.		\mathbf{G}	i.		•	$\hat{\mathbf{x}}$	32		٠		э.	1	362 A	8	÷ 3	ě.		•	÷	¥	5	(a))	•	*	*			92	2			•	2	•		*
*	•					•				•		٠				•		•	•		٠								*	8			•	٠			*
•				3			*			•			e		9		5	•	•	•	•			13	*		1	•	5		3	•		*	1		*
•	. •	(_			\mathbf{S}_{i}^{i}	\times	\mathcal{X}	100	٠	*	9	28	(10) - 1 (10) - 1	9.1	8.8	6.3	•	•	85	$\left \theta \right $	99.	100	≤ 2	(\mathbf{x})	×		190	\mathbf{S}_{i}^{\prime}	8	3		82				(9)
÷.,			U		(*);	65	$\hat{\kappa}$	\mathbf{x}	(A) (\mathbf{x}_{i}	98. 180	14	080	8 3	8.9	e	a ()	•		×	24	(141)	80	$\left \mathbf{k} \right $	14	14.	14	82	х.	3		÷.	8	×.	14.1	(\mathbf{a})
•	÷				1.	2	X			÷	*		÷	÷.,	8				•		÷.	Si.		÷					÷	¥.,		÷.	2		4		*
•		5	~	~	•	•	•		•	•	8	٠		•)	•		•			٠	•	۲	•	SI	y	d	W	itl	d	dv	hil	n.		N	S.	•

 Meiosis is the process of cell division that occurs in reproductive organs to produce gametes that contain half the number of chromosomes (haploid) of the parent cells (diploid).

6.3 Meiosis

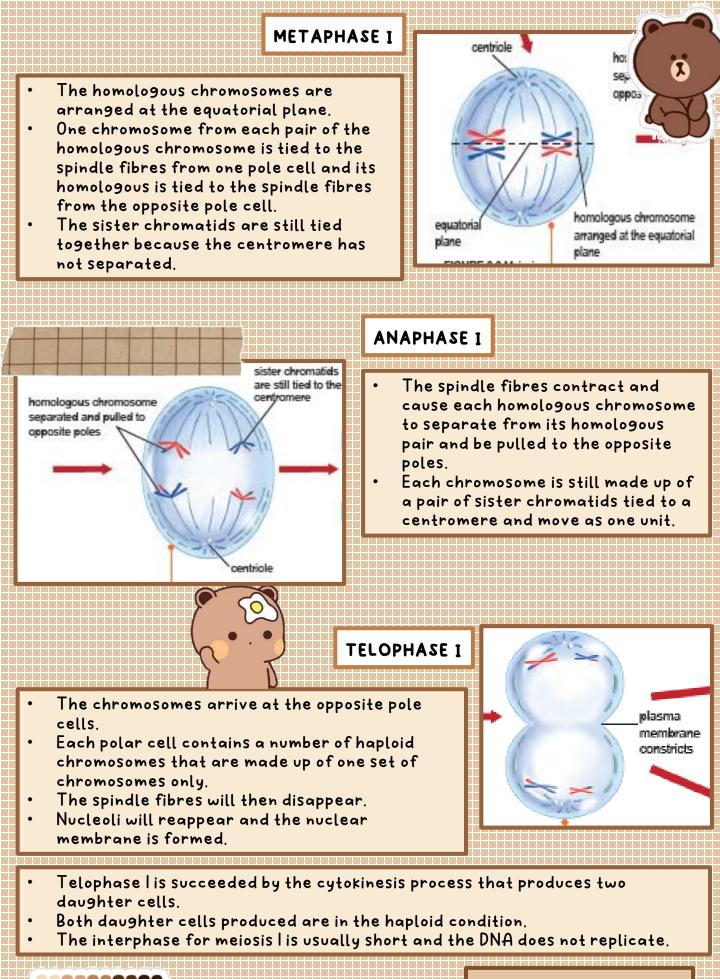
• Meiosis occurs in the testis (male) and ovary (female) for animals and humans.

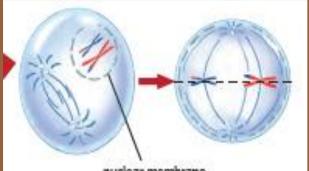

need for meiosi

 Meiosis forms gametes through the process of gametogenesis and ensure that the diploid chromosome number of organisms that carry out sex reproduction is always maintained from one generation to the next.

• Meiosis also produces genetic variation in the same species. Meiosis is divided into two stages of cell division, that is meiosis I and meiosis II

MEIOSIS


- Meiosis I comprises of prophase I, metaphase I, anaphase I and telophase I.
- Meiosis II comprises of prophase II, metaphase II, anaphase II and telophase II.



PROPHASE I

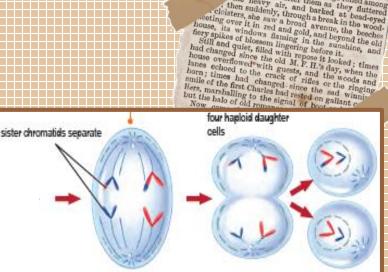
• Chromatin shortens, thickens and forms visible chromosomes.

- The pairing of homologous chromosomes (synapsis) forms bivalent (or known as a tetrad, that is four chromatids for each homologous chromosome).
- The crossing over process that is an exchange of genetic material between non-identical chromatids takes place.
- Crossing over produces a combination of genes that are new in chromosomes.
- The point where the chromatids cross over is called chiasma.
- At the end of prophase I, the nucleus membrane and nucleoli will start to disappear.
- Both centrioles will move towards the opposite pole cells.
 - Spindle fibres are formed among the centrioles.

PROPHASE II

- The nucleoli and the nuclear membrane disappear.
 - Each chromosome is made up of sister chromatids that are joined at the centromere.
 - The spindle fibres start to form in both daughter cells

and chestnuts; the dogs rolld

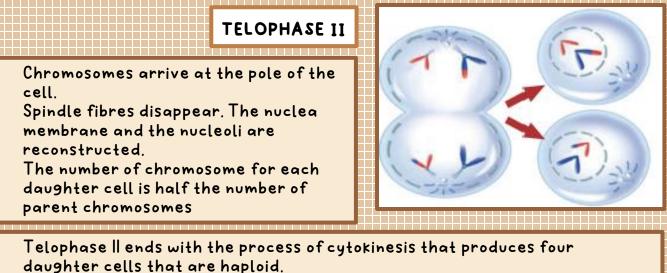

air, and barked at

they flutte

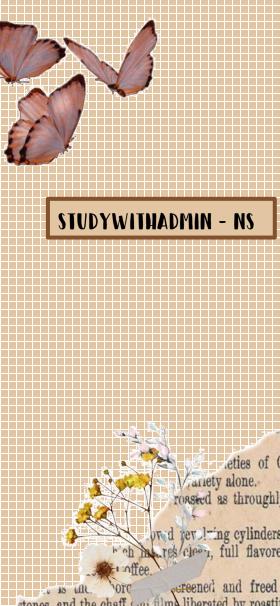
nuclear membrane

ANAPHASE II

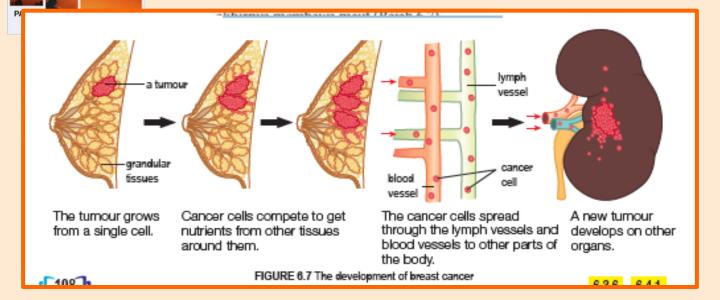
- The sister chromatid centromere starts to separate.
- The sister chromatid pair separates and moves towards the opposite poles led by the centromere.
- Each chromatid at this stage is known as a chromosome.

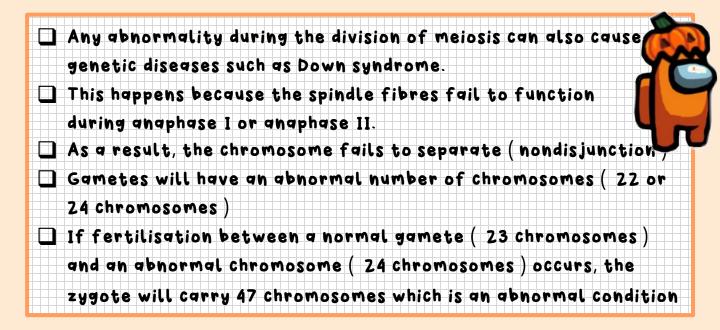

METAPHASE II

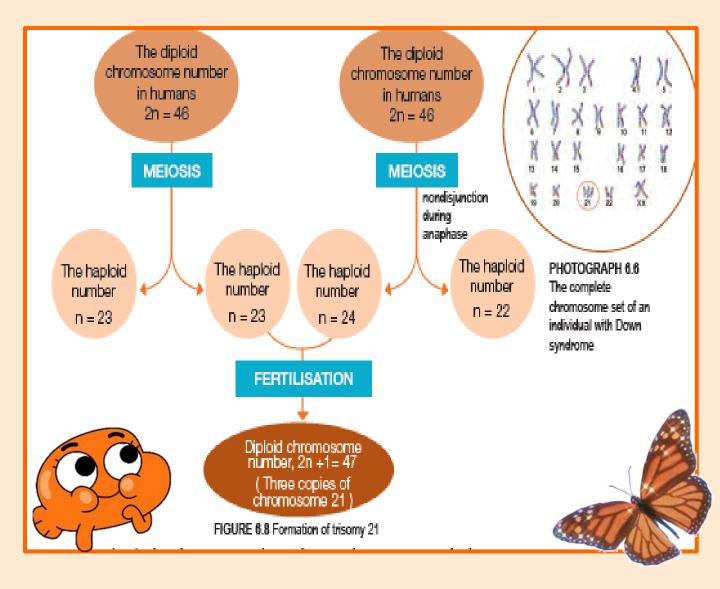
- Chromosomes are arranged at random on the equatorial plane for each daughter cell.
- Each chromatid is tied to the spindle fibres at the centromere.
- Metaphase II ends when the centromere separates.


two haploid daughter cells

 Each haploid cell contains half the number of parent cell chromosomes. The genetic content is also different from the diploid parent cell. The haploid cells develop into gametes






stones, and the chaff and film liberated by roasti It is packed in Patent air tight packages with waxed paper, which protects the from atmospheric influences, and retains it

6.4 issues of cell division on human health

The cell cycle is controlled by a special control system at each
G1, S, G2 and M phase to ensure proper division of the cells.
However, uncontrolled cell division sometimes can lead to the formation
of tumours.
Tumour is divided into two types which are benign tumour and malignant
tumour.
A benign tumour is not dangerous and can be removed surgically. A
malignant tumour is also called cancer.
Cancer is caused by several factors such as radiation (x-ray, gamma rays
and ultraviolet rays), chemical substances (such as tar in tobacco),
carcinogens (such as formaldehyde and benzene), genetic factors, and
also bacteria and viruses.
This will cause the cells to divide continuously and develop into a tumour.
The cancer cells will spread and destroy normal cells around them.
This condition will affect the functions of the tissues around them.
Cancer that is not identified at the early stage can cause damage to the
organs and finally death
STUDYWITHADMIN — NS

] In a normal meiosis division, the chromosomes are divided evenly
among the gametes
] If the homologous chromosome or sister chromatids fail to
separate, the distribution of parent chromosomes during meiosis
will be uneven
] An individual with Down syndrome has 47 chromosomes, which is
an extra chromosome at the 21st set. This condition is known as
trisomy 21.
] This syndrome can cause mental retardation, slanted eyes and a
slightly protruding tongue.

