Academia.eduAcademia.edu
CHAPTER ONE INTRODUCTION 1.1 Background of the Study The increase in industrial and agricultural processes across the world have significantly increased industrial and agricultural wastes generation which most often pose a problem to the environment and human health. In many countries, where subsistent agriculture is practiced; there are problems associated with the abundance agricultural wastes generations. Agricultural waste are all forms of plant-derived or animal-derived material that are considered useless either because they have no known positive economic importance or because they are not grown/raised for any specific purpose (Adeyi and Oladayo, 2010). These include woods, soya bean pod, crops and forest residues, herbaceous plants, animal’s waste e.t.c. In Nigeria, large quantities of these wastes are produced annually and are vastly underutilized. Plants absorb various minerals and silicates from earth into their bodies during growth process. These inorganic materials, especially silicates are found in their higher proportion in annually grown plants than in the long-lived trees. Rice, wheat, soya bean sunflower and tobacco plants therefore contain higher amount of silica in their cuticle parts (Basha et al., 2004). Inorganic materials are found in the forms of free salt and particles of cationic groups combined with the anionic groups of the fibres into the plants (Rydholm, 1995). Stabilized soil is, in general, a composite material that results from combination and optimization of properties in individual constituents materials. Well established techniques of soil stabilization are often used to generate 1 geotechnical material improved through the addition into soil of such cementing agent as Portland cement, lime asphalt etc. Since there is abundance of agricultural and industrial waste, research focusing on ways of utilizing these wastes as a raw material for industries or as a construction material is carried out day-by-day across the world. So this research work is centred on assessment of the possibility of using soya bean pod ash (SBPA) as a stabilizing agent in soil treatment to improve its geotechnical properties. Geotechnical soil improvement could either be by modification or stabilization or both, soil modification is the addition of a modifier (cement, lime e.t.c.) to soil to change it index properties, while soil stabilization is the treatment of soils to enable their strength and durability to be improved such that they become totally suitable for construction beyond their original classification (Alhassan, 2008). A lot of laterite gravels and pisolths which are good for gravel roads occur in tropical countries of the world including Nigeria (Osinubi and Bajeh, 1994). Clay exhibit generally undesirable engineering properties. They tend to have low shear strength and lose their shear strength further upon wetting or other physical disturbances. They can be plastic and compressible and they expand when wetted and shrink when dried - a very undesirable feature (Brooks, 2009). There are instances where laterite may contain a substantial amount of clay minerals whose strength and stability cannot be guaranteed under load especially in the presence of moisture. These types of laterite are also common in many tropical regions including Nigeria where in most cases sourcing for alternative soil may prove economically unattainable but rather the materials along existing alignments are improved through stabilization to meet the desired objective (Mustapha, 2005). 2 The over dependent on the utilization of industrially manufactured soil improving additives (cement, lime etc.), have kept the cost of construction of stabilized road financially high. This hitherto has continued to deter the underdeveloped and poor nations of the world from providing accessible roads to their rural dwellers that constitute the higher percentage of their population that are mostly farmers. Thus the re-use of these agricultural wastes (such as soya bean pod ash) will considerably reduce the cost of construction and as well as reduce the environmental hazards associated with them. According to Seer (2005), Portland cement, by the nature of its chemistry, produces large quantities of CO2 for every ton of its final product. Therefore, replacing proportions of the Portland cement in soil stabilization with a secondary cementations material like soya bean pod ash (SBPA) will reduce the overall environmental impact of the stabilization process. Several studies have focused on finding alternatives that can be used as replacement to cement, such as the disposable and less valuable wastes from industries and agricultural sites whose potential benefits can be realized through recycling, reuse and renewing programmes. Hence researchers have been investigating the effectiveness, efficiency and availability of waste material that are pozzolanic in nature, as cement replacement. The required materials should be a by-product from an original source that is rich in silicon (Si) and aluminium (Al) (Aprianti et al., 2014). The framework for utilizing industrial waste materials for building application has a successful history, which include fly ash, slag and silica fume. Soya bean pod is an agricultural waste obtained from thrashing of soya bean at harvest time. This is normally disposed of as waste which constitute 3 environmental problem. Large quantity of soya bean pod is produce annually in Nigeria especially in Benue State. To obtain the soya bean pod ash (SBPA), thermal incineration of the pod is done at higher temperature (5000C and above). The soya bean pod ash (SBPA) is pozzolanic since its original source contains silicon (Aprianti et al., 2014). Today, supplementary cementing materials are widely used as pozzolanic materials (create extra strength by pozzolanic reaction) in high-strength concrete, reduce permeability and improve the durability of the concrete. A pozzolan comprises siliceous materials, and when combined with calcium hydroxide (Ca(OH)2), exhibits cementitious properties depending on the constituents of the pozzolan. The basis of the pozzolanic reaction is a simple acid-base reaction between calcium hydroxide, also known as portlandide (Ca(OH)2) and silica acid (Si(OH)4). The chemistry is as shown in equation (1.1). Ca(OH)2 + Si(OH)4→ Ca2+ + H2SiO2+ 2H2O→CaH2SiO4.2H2O 4 2 (1.1) Soya bean pod ash (SBPA) is a waste to the society and this form the raw material for this research work. 1.2 Statement of problem Over the years cement and lime are considered as the two main materials used for stabilizing soils. These materials have rapidly increased in price due to the sharp increase in the cost of energy since 1970s (Neville 2000). The large quantities of agricultural wastes produce annually and across the globe have impact on the environment with its attendant disposal menace. In view of this, stabilization of lateritic soil using soya bean pod ash (SBPA), a cementitious material, will reduce the cost of stabilized road. Also, the use of SBPA will address 4 the disposal problem associated with the soya bean pod wastes. 1.3 Aim and objectives The aim of this study is to evaluate the possibility of using soya bean pod ash (SBPA) and cement (C) to stabilize lateritic soil (LS) as highway material. The objectives include (i) To determine the index properties of the various LS + C + SBPA mixes. (ii) To determine the compaction characteristics of the various LS + C + SBPA mixes. (iii) To determine the strength characteristics of the various LS + C + SBPA mixes. (iv) To determine the water absorption and durability characteristics of the various LS + C + SBPA mixes. (v) 1.4 To determine the oxide composition of LS and SBPA. Scope and Limitation The project work is limited to laboratory tests undertaken to determine the index properties of soya bean pod ash (SBPA) stabilized lateritic soil. These tests include: i. Natural moisture content, ii. Grain size distribution iii. Specific gravity 5 iv. Consistency (Atterberg limits) v. Compaction vi. - British standard light, BSL (Standard Proctor, SP) - British standard heavy, BSH (Modified Proctor, MD). California Bearing Ratio (CBR) - British standard light, BSL - British standard heavy, BSH vii. Unconfined compressive strength (UCS) test - British standard light, BSL - British standard heavy, BSH viii. Water absorption ix. Durability x. 1.5 Tri – axial test - British standard light, BSL - British standard heavy, BSH Significance of the study The findings of this project work will proffer solution to the problem of cost associated with stabilized road construction since soya bean pod is cheap and locally available. The menace caused by the agricultural waste product will be eradicated if the material is largely used for soil stabilization. 6 7 CHAPTER TWO LITERATURE REVIEW Coal-based thermal power plant all over the world face serious problems of handling and disposal of the ash produced. The high ash content of the coal makes this problem complex. Safe disposal of the ash without adversely affecting the environment and the large storage area required are a major concern. Hence attempts are being made to utilize the ash rather than dispose in landfills. The coal ash can be utilized in bulk only in geotechnical engineering application such as construction of embankment as a back fill material, sub-base material etc. For this, an in depth understanding of the physical and chemical properties, and engineering and leaching behaviours are required (Pandian, 2004). Construction of roadways on soft organic soils can be problematic because organic soils typically have low shear strength and high compressibility (Edil 1997). Current practice for construction of road-ways over organic soil subgrades mostly involve the removal of the organic soil to a sufficient depth and replacement with crushed rock (referred to as ‘cut and replace’) or preloading to improve engineering properties. Chemical stabilization with binders such as cement, lime and fly ash can be undertaken rapidly and often at low cost, and therefore chemical stabilization is becoming an important alternative (Parsons and Kneebone, 2005).Chemical stabilization of soft soil involves blending of binder into the soil to increase its strength and stiffness through chemical reactions. The binder is intended to cement the soil solids, thereby increasing strength and stiffness. The binders are generally added as dry solid. In practice, reducing the water content of high water content soils to the optimum water content (OWC) is difficult and time consuming. Therefore, addition of dry solid 8 and cementitious materials is preferable. Thus addition of a binder reduces both the water content and binds the soil particles which results in an increase in strength and stiffness (Erdem et al., 2011). Common binders include cement, lime fly ash or mixture thereof. The use of fly ash as a binder is relatively less expensive, compared with cement and lime (Federal Highway Administration USA, 2003). Additionally, using fly ash for soil stabilization, particularly fly ashes that otherwise would be landfill, promotes sustainable construction through reduction of energy use and reduction of green-house gasses. Organic soils are known to be more difficult to stabilize chemically than inorganic soils (Janz and Johansson, 2002). 2.1 Soya bean plant Soya bean is among the major industrial and food crops grown in every continent. The crop can be successfully grown in many states in Nigeria using low agricultural input. Soya bean cultivation in Nigeria has expanded as a result of its nutritive and economic importance and diverse domestic usage. It is also a prime source of vegetable oil in the international market. Soya bean has an average protein content of 40% and is more protein-rich than any of the common vegetable or animal food sources found in Nigeria. Soya bean seeds also contain about 20% oil on a dry matter basis, and this is 85% unsaturated and cholesterolfree (Dugje, et al., 2009). A study on plants residues by Luna, et al. (2011) gives details on the characteristics and composition of soya bean (see Table 2.1, 2.2). Table 2.1: Elemental analysis Element % 9 Soyabean C H N S O C/H C/N Stem 45.7 6.6 0.6 0.1 47.0 6.9 76.2 Pod 42.5 6.5 1.6 0.3 49.0 6.5 26.6 Source: Luna, et al. (2011) Table 2.2: Chemical analysis Soyabean Extractive (%) Lignin (%) Ash (%) Holocellulose (%) Stem 6.87 21.64 2.28 69.21 Pod 21.77 17.16 7.25 53.82 Source: Luna, et al. (2011) 2.2 Biomass Biomass as the solar energy stored in plant and animals in chemical form is among the most precious and versatile resources on earth. The solar energy which is stored in plant and animals, or in the waste they produce, is known as Biomass energy. This energy can be recovered by burning biomass as a fuel. Biomass has been considered as great potential renewable energy source, both for the developed countries and for the developing world (Veeresh and Narayana, 2012). Ash can be produced from agricultural biomass by burning the biomass at high temperature. The economic and convenient temperature required for conversion of agricultural biomass to ash, as revealed is 5000C. The burning time which will produced optimum result is 2 hours (Adeyi, 2010). Table 2.3:Characteristics of some agricultural waste. Parameter Moisture Bulk Particle 10 Volatile Ash Fixed Callosity content (%) density kg/m3 density kg/m3 Groundnut shell 1.67±0.05 12.60±0.21 Press dug 2.75±0.10 Tamarind fruit shell matter (%) content (%) carbon (%) value MJ/Kg 104.81±4.27 79.50±1.95 1.67±0.09 18.35±1.21 19.7±0.01 31.43±1.47 98.26±1.44 12.28±1.41 19.50±0.82 15.06±0.01 2.96±0.14 33.37±1.92 115.24±3.75 76.12±2.18 3.27±0.10 20.53±1.25 15.10±0.01 Caster seed cake 2.22±0.06 63.19±4.72 305.30±8.79 90.21±2.09 0.84±0.06 8.99±0.15 20.09±0.01 Jatropha seed cake 1.99±0.17 42.32±1.83 216.33±4.16 88.91±3.72 0.95±0.04 10.53±0.54 18.87±0.01 Sawmill dust 1.84±0.23 14.74±0.48 98.22±3.93 1.75±0.09 18.59±1.33 17.55±0.03 68.58±1.81 78.86±1.15 Source: Veeresh and Narayana (2012). Adeyi and Oladayo (2010) in their work “proximate composition of some agricultural waste in Nigeria and their potential use in activated carbon production” carried out research using dried pods of coca kola and coconut husk collected from Ogo-olowa, Ogbomoso Local Government, Oyo State, Nigeria and peels of plantago major collected from Takie area of Ogbomoso North Local Government, Oyo State, Nigeria. Wet Plantago major peels were dried for about 48 hours in the sun to ensure that water is removed. Other samples were also dried again after sand and debris have been removed from them. The result of this study is as tabulated in table 2.2. Table 2.4: Physical properties of some agricultural wastes Sample Bulk (g/cm3) density Moisture (%) Coconut husk 0.07±0.00 5.43±0.08 3.95±0.04 Cocoa pods 0.36±0.01 10.04±0.03 12.67±0.19 Kola nut pods 0.32±0.00 11.99±0.09 7.67±0.11 11 content Ash Content (%) Plantain peel (ripe) 0.41±0.00 8.91±0.02 11.73±0.61 Plantain peels (unripe) 0.48±0.00 8.22±0.03 9.51±0.59 G. Mean 0.33 8.88 9.10 ±SE 0.05 0.72 1.04 SE = Standard Error Source: Adeyi and Oladayo (201) 2.3 Lime Treatment Prakash et al. (1989) evaluated the behaviour of a montmorillonic soil treated with different percentage of lime (2 to 12%) and cured for different period (0 to 60 days). From the results of Atterberg limit tests and proctor compaction test, the initial effect of lime treatment show an appreciable decrease in the liquid limit with increasing lime content. However, over time, the liquid limit increased with an increase in lime content due to water entrapment between large void spaces caused by flocculation of the soil fabric. Lime treatment produced an immediate increase in the shrinkage limit and the effect on the shrinkage limit was a more pronounced as time increased. For compaction, the maximum dry unit weight decreased with lime content and curing time. Optimum water content increased with lime content and decreased with curing time. 2.4 Fly – Ash treatment Research work by Acosta, et al., (2003) quantified the effect of fly ash stabilization of different soft subgrade encountered in Wisconsin using locally available self-cementing fly ash. In their work, fly ash mixtures were prepared at different content (10 – 30%) and compacted at optimum water content(7% wet of optimum water content), and at a very wet condition (9 to 12% wet of optimum 12 water content). Several tests were conducted to quantify the effect of fly ash addition on the mathematical behaviour of the soil in terms of the Califonia bearing ratio (CBR), resilient modulus, and unconfined compression test. A general trend of increasing CBR with increasing fly ash content, and decreasing CBR with increasing water content was observed. The gain in CBR depends on the amount of fly ash in the mixture. Soil – fly ash mixture prepared with 10% and 18% fly ash content and compacted at 7% wet of optimum water content showed CBR gains of a factor 4 and 8, respectively. Larger CBR gains were typically obtained when stabilizing more plastic (i.e. poorer) subgrade soils. The presence of larger amount (10%) of organic matter in one of the soils inhibited reactions resulting in a smaller increase in CBR than was obtained with the inorganic soils. However, use of fly ash with higher organic content (16%) resulted in larger (7 times) CBR of the organic clay relative to that obtained with a typical class C fly ash. General trends of increasing unconfined compressive strength with increasing fly ash content, and decreasing unconfined compressive strength with increasing water content, were also observed by the researchers. The strength gain that was achieved varied somewhat with soil and fly ash type, but was not strongly correlated with soil index properties. Adding 10% fly ash caused the unconfined compressive strength to increase by a factor of 3 whereas adding 18% fly ash caused the unconfined compressive strength to increase by a factor of 4. Only marginal increase in unconfined compressive strength was obtained when curing was increased beyond 7 days. Edil et al. (2002) conducted a field evaluation of several alternatives for construction over soft subgrades soils. The field evaluation was performed along 13 a 1.4km segment of Wisconsin state Highway 60 and consisted of several test sections. By-products such as fly ash, bottom ash, foundry slag, and foundry sand were used. A class C fly ash was used for one test section and the unconfined compressive strength test results show that 10% content of fly ash was sufficient to provide the strength necessary for construction on the subgrade. Data were obtained before and after fly ash placement by subjecting the undisturbed samples to laboratory test, and by using a soil stiffness gauge (SSG) and a dynamic cone penetrometer (DCP) in the field. The unconfined compressive strength, soil stiffness, and dynamic cone penetration of the native soil before fly ash placement ranged between 100 to 150 kpa, 4 to 8MN/m, and 30 to 90mm/blow, respectively. After fly ash addition, the unconfined compressive strength reached as high as 540kpa, the stiffness ranged from 10 to 18Mn/m and the DCP was less variable and ranged between 10 and 20 Mm/blow. A CBR of 32 % was reported for the stabilized subgrade, which is rated as good for sub-base highway construction. CBR of the untreated subgrade was 3, which is rated as very poor. Erdem, et al (2011) investigated the effect of stabilization of organic soils with fly ash in order ascertain if unconfined compressive strength and resilient modulus (Mr) of soft organic soils can be increased by blending fly ash into the soil. Tests were performed with three organic soils and size fly ashes. Portland cement and inorganic silt were also used as a stabilizer for reference purposes. Fly ashes were mixed with soils at three different percentages and two different water content (OWC and 9 - 15% wet of the OWC). The following conclusions were made by them: 1. Unconfined compressive strength (qu) of organic soils can be increased 14 using fly ash, but the amount of increase depends on the type of soil and characteristics of the fly ash. Large increase in qu (from 30kpa without fly ash to > 400kpa with fly ash) were obtained for two clayed soils with an organic content (OC) less than 10% when blended with some of the fly ashes. More modest increase in qu (15kpa without fly ash to > 100 kpa with fly ash) were obtained for highly organic sandy silty peat with OC = 27%. Resilient modulus tests could not be performed on organic soils without fly ash stabilization at wet condition because the specimens were too soft. The addition of fly ash, at wet condition, to the slightly organic soils, (Lawson and Theresa soils used for the test;OC = 5 and 6%), respectively produced Mr varying from 10 – 100 Mpa, depending on the type and percentage of the fly ash. At OWC, Mr for these soils could be improved up to 120 Mpa with the addition of fly ash. However, for Markey peat (OWC = 27%), stabilization with fly ash never produced Mr > 30 Mpa no matter which fly ash type and percentage (up to 30%) was used. 2. The significant characteristics of fly ash affecting the increase in qu and Mr include CaO content and CaO/SiO2 ratio [or CaO/(SiO2 + Al2O3) ratio]. The highest qu and Mr were obtained when the CaO content was greater than 10% and the CaO/(SiO2 ratio was 0.5 – 0.8. Comparable increase in qu and Mr were obtained with the class C ashes, normally used in concrete application and the off-specification fly ashes meeting the aforementioned criteria for CaO content and CaO/(SiO2¬ratio. However, much lowerqu and Mr were obtained with one off-specification fly ash primarily because of its low CaO content and CaO/(SiO2¬ratio. Carbon content of the fly ash (i.e. loss on ignition) seemed to have no bearing on qu and Mr of the soil – fly 15 ash mixture. 2.5 Rice Husk Ash Treatment Alhassn (2008) evaluated the potentials of rice husk ash (RHA) for soil stabilization. Compaction, Califonia bearing ratio and unconfined compressive tests were conducted at different percentages of RHA content. There is a general trend of increase OMC with increase in the RHA content, and decrease Maximum dry density (MDD) with increase in RHA can be attributed to the replacement soil by the RHA in the mixture which have relatively lower specific gravity (2.25) compared to that of the soil which is 2.69). The result also shows an increase in OMC with increase RHA content. The increase was due to the addition of RHA, which decreased the quantity of free silt and clay fraction and coarser materials with larger surface areas (there processes need water to take place). This implies also that more water was needed in order to compact the soil-RHA mixture. The Califonia bearing ratio and UCS varies with increase in RHA content from 0 to 12%. For unsoaked samples, CBR values initially dropped with the addition of 2% RHA, after which the values rises to its peak at 6% RHA. It slightly dropped at 8% RHA and remains constant to 12% RHA. The initial decrease in the CBR is due to the reduction in silt and clay content of the soil, which reduces the cohesion of the samples. The increment in CBR after 2% RHA can be other butted to the gradual formation of cementitious compounds between the RHA and CaOH contained in the soil. The gradual decrease in the CBR after 6% RHA may be due to excess RHA that was not mobilized in the reaction, which consequently occupies spaces reducing bound in the soil RHA mixture. The trend of the soaked CBR was similar to the unsoaked CBR only that, even after the addition of 6% RHA, the CBR kept increasing. This trend shows that the presence of water (moisture) helps to 16 further the formation of the cementitious compounds between the soils CaOH and the pozzolanic RHA. There was also a sharp initial decrease in the UCS with addition of RHA to the natural soil when compared with the UCS values of 290KN/M3 recorded for the natural soil. This decrease may be due to earlier reason given in the case of CBR. The UCS values increase with subsequent addition of RHA to its maximum at between 6 – 8% RHA. The subsequent increase in the UCS is attributed to the formation of cementitious compounds between the CaOH present in the soil and RHA and the pozzolans present in the RHA. This decrease in the UCS values after the addition of 8% RHA may be due to the excess RHA introduced to the soil and therefore forming weak bonds between the soil and the cementitious compound formed. The maximum UCS value recorded was 293 KN/m2 and 295KN/m3 at 6 and 8% RHA content respectively after 28 days curing period. These values are slightly higher than the natural soil UCS of 290KN/m2. 2.6 Fly ash –Rice husk as treatment According to Brooks (2009) research on fly ash-rice-husk ash, stabilized soil, the following conclusions were made: 1. When the RHA content was increased from 0 to 12%, unconfined compressive stress increased by 97% 2. When the RHA was increased from 0 to 12%, CBR improved by 47%. 3. The optimum RHA content was found to be 12% for both USC and CBR tests. 2.7 Pozzolans/pozzalanic activity 17 Pozzolans comprise of siliceous materials which when combined with calcium hydroxide (Ca(OH)2), exhibits cementitious properties depending on the constituent of the pozzolan. (Aprianti et al., 2014). The cementing agents are exactly the same as it is the case with ordinary Portland cement (OPC). The difference is that the calcium silicate gel is formed from the hydration of anhydrous calcium silicate (cement), whereas with the pozzolanic material, the gel is formed only by the removal of silica from the clay mineral of the soil. The silica gel proceeds immediately to coat and bind clay lumps in the soil together and to block off the soil voids in the soil structure. With time, this gel gradually crystalizes into well-defined calcium silicate hydrates and the micro crystals that are also interlocking. The reaction ceases on drying, as very dry soil will not react with pozzolanic materials or cement (Agnus and Gendut, 2002). The American society for testing and materials (ASTM) classification of Pozzolan The test to assess the pozzolanic properties of an ash in conducted by determining the quantities of the various chemical compounds present in the ash and then subjecting the result to standard classification of pozzalans based on their chemical and physical requirement as presented in Table 2.3. Table 2.5: Chemical and physical requirements of pozzolans. Chemical requirement Mineral admixture class Silicon dioxide, Alumunium dioxide and iron 70 oxide (SiO2 + Al2O3 + Fe2O3) minimum % 70 50 Sulfur Trioxide (SO3) Maximum % 4.0 5.0 5.0 3.0 3.0 3.0 Loss of ignition, maximum % 10.0 6.0 6.0 Available alkalis as NaO2. Maximum % 1.5 1.5 1.5 Moisture contents, maximum % 18 Physical requirement Fineness, maximum % retained on 325-mesh 34 (44um) sieve 34 34 Source: ASTM c618-92a (1994). 2.8 Fly Ash Owing to its pozzolanic properties, fly ash is used as a replacement for some of the Portland cement content of concrete (Scott, et al., 2007). The use of fly ash as a pozolanic ingredient was recognized as early as 1914, although the earliest noteworthy study of its use was in 1937; Halstead, (1986),posited that its application greatly improves the strength and durability of concrete, and also enhances their preservation (Moure, 1999). Use of fly ash as a partial replacement for Portland cement is generally limited to class F fly ashes. It can replace up to 30% by mass of Portland cement and can add to the concrete’s final strength and increase its chemical resistance and durability. Recently concrete mix design for partial cement replacement with high volume fly ash (50% cement replacement) has been developed (Mehta, 2004). For roller compacted concrete (RCC) (used in dams construction), replacement values of 70% have been achieved with processed fly ash at the Gbatgher Dam project in Maharashtra, India. Due to the spherical shape of fly ash particles, it can also increase workability of cement while reducing water demand (U.S Federal Highway Administration, 2011). Since the worldwide production of Portland cement is expected to reach early 2 billion tons by 2010, replacement of any large portion of this cement by fly ash could significantly reduce carbon emission associated with construction, (Mehta, 2004). 2.9 Embankment 19 Unlike soil typically used for embankment construction, fly ash has large uniformity coefficient if it consist of clay-sized particles. Engineering properties that affect the use of fly ash is embankment include grain size distribution, compaction characteristics, shear strength and compressibility (US Federal Highway Administration, 2001). Nearly all the types of fly ash used in embankments are class F. 2.10 Waste Treatment and Stabilization Ash in view of its alkalinity and water absorption capacity, may be used in combination with other alkaline materials to transform sewage sludge into organic fertilizer or Biofuel (N- Viro Intenational Cooperation, 2010). In addition, ash mainly class C, may be used in the stabilization/solidification process of hazardous wastes and contaminated soils (Environmental Protection Agency, (2009). For example, the rhenipal process uses ash as an admixture to stabilized sewage and other toxic sludge. This process has been used since 1996 to stabilized large amount of chromium (Vi) contaminated leather sludge in Alcanena, Portugal (Disk Group, 1996). Municipal solid waste (MSW) compost is increasingly used in agriculture as a soil conditioner but also as a fertilizer. Large amounts of MSW compost are frequently used in agriculture to meet crop N. requirement and for the addition of organic matter. The main concern is loading the soil with metals that can result in the increased metal content of crops. Furthermore, in some cases, metal and excess nutrients can move through the soil profile into ground water. Municipal solid waste compost has also been reported to have high salt concentration, which can inhibit plant growth and negatively affect soil structure (Hargreaves et al., 2007). 20 2.11 Asphalt Concrete Asphalt concrete is a composite material consisting of an asphalt binder and mineral aggregate. Both class F and class C fly ash can typically be used as mineral filler to fill the voids and provide contact points between larger aggregate particles in asphalt concrete mixes. This application is used in conjunction or as a replacement for other binders (such as a Portland cement or hydrorated lime). For use in asphalt pavement, the ash must meet mineral filler specification outlined in ASTM D242(2009. The hydrophobic nature of fly ash gives pavements better resistance to striping. Ash has also been shown to increase the stiffness of the asphalt matrix, improving rutting resistance and increasing mix durability (Hennis, 1993). 2.12 Exposure concern of ash Ash silica is usually the major chemical compound contained in most ash residue after the combustion process of waste agricultural biomass (WAB) and its attendant health problems, because all forms of crystalline silica represent a very serious health hazard (Occupational Health Administration, 2002). The forms that develop at high temperature i.e. crystobalite and tridymite are particularly harmful (House Committee on Natural Resources, 2008). Although industry has claimed, that ash as material is “neither toxic nor poisonous” this is very disputed (National Research Council of the National Academics, 2006). Exposure to ash through skin contact, inhalation of fine particle dusts and drinking water may well present health risks,the most common health risk being silicosis (Occupational Safety and Health Administration U.S. Department of labour, 2002). 21 Although amorphous ash is the form produced at lower temperatures less than 10000C and does not contain more harmful forms of silica, it can pose respiratory hazard particularly if finely grounded (ETSU, 2003). Crystalline silica is classified as carcinogenic to humans and the International Agency for Research on Centre (IARC) concluded that there was sufficient evidence in humans for the carcinogenity of crystalline silica. Another ash component of concern is lime (CaO). This chemical reacts with water (H2O) to form calcium hydroxide [Ca(OH)2], with pH in the range of 10 – 12, medium to strong base. This can cause lung damage if present in sufficient amount (Meiji, 2003). 2.13 Stabilization Soil stabilization is the permanent physical and chemical alteration of soils to enhance their physical properties. Stabilization can increase the shear strength of soil and/or control the shrink-swell properties of a soil, thus improving the load bearing capacity of a subgrade to support pavements and foundation (Das, 1997). Stabilization can be used to treat a wide range of sub-grade materials from expensive clays to granular materials. Proper design and testing is an important component of any stabilization project. This allows for the establishment of design criteria as well as the determination of the proper chemical additive and admixture rate to be used to achieve the desire engineering properties. 2.13.1 Benefits of Stabilization The benefits of stabilization include the following; i. Higher resistance (R) value 22 ii. Reduction in plasticity iii. Lower permeability iv. Reduction of pavement thickness v. Aids compaction vi. Provide “all weather” access onto and within project sites. vii. Elimination of excavation, exporting unsuitable material and importing new materials. In addition, there are several environmental advantages. When unimproved roadways are stabilized and treated with the right additives, run-off of storm water will not cause erosion, which in turn would sends thousands of tons of silt into our rivers and bays. This erosion clogs and silts vital waterways and fish habitat that would have been spawning grounds for future generation. Soils stabilization help to preserve soils, waterways, unimproved roadways, and much more. Soil stabilization can be utilized on roadways, parking lots, site development projects, and in many other situation where sub-soils are not suitable for construction. (Midstate Reclaimation and Trucking, 2016 ) 2.13.2 Criteria for the selection of soils suitability for stabilization According to Ola (1983) the provisions of the Highway Research Board (HRB, 1943) for ideal soils, economically suitable for cement stabilization is as stated below; i. Maximum size – 75mm ii. Percentage passing sieve no. 200<50% 23 iii. Liquid limit (LL) < 40% iv. Plasticity Index (PI) ≤10% Table 2.6: Swelling characteristics of Soils Plasticity Index (%) Swelling Potential 0 – 15 Low 15 – 25 Medium 25 – 35 High Linear shrinkage (%) Degree of Expansion 0–5 No critical 3–5 Marginal 8 Critical Source: Ola, (1983). 24 CHAPTER THREE MATERIALS AND METHODOLOGY 3.1 Materials 3.1.1 Soya bean pod ash (SBPA) Due to large scale production of soya bean at Tyo-wanye, Benue State, Nigeria, large soya bean pod is left as a waste after thrashing at harvest time on production site. These were collected and burnt at controlled temperature of 500 – 6000C to produce the required ash (SBPA) used in this work. 3.1.2 Cement The cement used for this project is ordinary Portland cement obtained from an open shop in Makurdi, Benue State. 3.1.3 Lateritic Soil The lateritic soil (LS) used for this test was collected from a borrow pit at Koti – Yough, Mbagbam, Vandeikya, Benue state. The percentage passing sieve 20 mm was oven dried in the laboratory and used for this project. 3.2. Methodology The laboratory tests were carried out in accordance with the procedures specified in BS1377 (1990). Soil classification tests were carried out on each of the sample using the AASTHO and USCS, classification methods. The mix proportion adopted for this research work is presented in Table 3.1. 25 Table 3.1: Test perentage mix proportions S/N Mix Proportion 1. 100 % LS 2. 80 % LS + 20 % SBPA −− 3. 80 % LS + 18 % SBPA + 2% C 4. 80 % LS + 16 % SBPA + 4 % C 5. 80 % LS + 14 % SBPA + 6 % C 6. 60 % LS + 40 % SBPA −− 7. 60% LS + 38% SBPA + 2 % C 8. 60 % LS + 36 % SBPA + 4 % C 9. 60 % LS + 34 % SBPA + 6% C 10. 50 % LS + 50 %SBPA −− 11. 50 % LS + 48 % SBPA + 2 % C 12. 50 % LS + 46 % SBPA + 4 % C 13. 50 % LS + 44 % SBPA + 6 % C 14. 40 % LS + 60 % SBPA −− 15. 40 % LS + 58 % SBPA + 2 % C 16. 40 % LS + 56 % SBPA + 4 % C 17. 40 % LS + 54 % SBPA + 6 % C 18. 20 % LS + 60 % SBPA −− 19. 20 % LS + 58 % SBPA + 2 % C 20. 20 % LS + 56 % SBPA + 4 % C 21. 20 % LS + 54 % SBPA + 6 % C −− −− 22. −− 100 % SBPA −− 23. −− 98 % SBPA + 2 % C 24. −− 96 % SBPA + 4 % C 25. −− 94 % SBPA + 6 % C 26 SBPA = SoyaBean Pod Ash; LS = Lateritic Soil; C = Cement 3.2.1 Specific Gravity Test Specific gravity is the ratio of a unit weight of a material to the unit weight of water at standard temperature 40C (390F) and pressure (760mmHg). An object will float in water if its density is less than the density of water and sink if its density is more than that of water. Similarly, an object with specific gravity less than one, Gs < 1) will sink. Specific gravity normally ranges from 2.55 to 2.50 for most soils. In the case of sand, gravel and coarse grained materials, specific gravity (Gs) ranges from 2.68 – 2.72 (Gard, 2010). 3.2.1.1 Specific gravity test procedures. A 50ml (50cm3) glass tube was emptied and dried properly. The glass tube was weighed empty and recorded M1. The glass tube was then weighed when full with water only and recorded M4 The glass tube was again filled with about 5 grams (5g) of the dry sample and weight was recorded M2. Water was added to the sample in the glass tube till it full to the brim, the glass tube topper was inserted, this was shaken properly for the particles to distribute evenly in the glass water and then it was immediately weighed and recorded M3. The specific gravity was then determined using equation 3.1 and 3.2. Specific Gravity (Gs) = Weight of Sample Weight of Equal volume of Water 27 (3.1) Gs = M2-M1 (M4-M1)-(M3-M2 (3.2) The soil was sieved through BS sieve No 40 (425μm) and the Ash was sieved through B.S No. 200 (75 μm). 3.2.2 Grain Size Analysis The grain size of soil refers to the diameter of the soil particle making up the soil mass. Grain size analysis expresses quantitatively the proportions by weight of the various sizes of particles present in the soil matter (Arora, 2008). The B.S classification of soil according to their grain size is as follows: Clay – D < 0.002mm Silt – 0.06mm > D > 0.002mm Sand – 2.0mm > D 0.06mm Gravel – 60mm > D > 2.06mm Cobble – D > 60mm. A way of indicating the spread of grain sizes is by using the coefficient of uniformity Cu defined by equation 3.3 Cu = D60 (3.3) D10 The effective size (D10) of the granular soil is a measure to estimate the permeability and drainage through the soil, it also provide the coefficient of 28 curvature (Cc) which gives the angularity and also describe the slope of a particular soil matter (Arora, 2008). Cc = D30 (D60×D10) (3.4) 3.2.2.1 Grain Size Analysis Procedures Dried sample of 200g was poured into the sieve sizes 200mm, 14.0mm, 10mm, 6.30mm, 5.00mm, 3.35mm, 2.36mm, 1.70mm, 1.18mm, 850μm, 600μm, 425μm, 300μm, 150μm and 75μm arranged in the descending order as listed. It was manually shaken until the particles could not pass through. The weight of the material retained on each sieve size was checked and weighed on the 25kg weighing balance and data was recorded and values were plotted to determine the nature of the particle size distribution. 3.2.3 Atterberg (Consistency) Limit Test Particle size analysis discloses very little about the engineering properties of fine grained soils in which clay minerals are dominated; cohesive nature is caused by the absorbed water, surrounding fine particles. Atterberg developed a method to describe the consistency of five grained soil, with varying moisture contents in the early 1900s. At very low moisture content, soil behaves more like a solid, when the moisture content becomes very high, the soil and water may flow like high, therefore, on an arbitrary basis depending on the moisture content, the behaviour of soil can be divided into four-solid, semisolid plastic, and liquid. Beginning at a very low water 29 content, clay soil is first a solid and then becomes viscous fluid as the water content increases (Arora, 2008). Solid Semi-Solid Shrinkag e Limit (SL) Plasti Plastic Limit (PL) Viscous Liquid Limit (LL) Atterberg limits are the water content at which the consistency changes from one state to another; they include shrinkage limit (SL), plastic limit (PL) and liquid limit (LL) respectively. Shrinkage limit (SL): Is the water content below which no further shrinkage occurs, as the soil is dried. Here, moisture is gradually lost from the soil sample; equilibrium is reached where more loss of moisture will result in no further volume change linear shrinkage is computed using equation 3.5. Linear shrinkage (SL) = ( ) L1-L2 ×100% L1 (3.5) Where L1 = initial length of sample L2 = final length of sample Liquid limit (LL) is the minimum moisture content at which soil will flow under a specific small disturbed force. Plastic limit (PL): is the minimum water content at which the soil can deform plastically. It is defined as the minimum water content at which the soil can be rolled into thin thread of 3mm thick. Plasticity Index (PI): is the range of water content over which the soil is in plastic 30 condition (see equation 3.6). PI = LL – PL (3.6) 3.2.3.1 Consistency Limit Test Procedures Sample was sieved through sieve No 40 (425 μm), such that, the finer passing is separated for use in the test. With the help of the Atterberg limit apparatus, considerate part of the soil sample was poured on the plain glass and gradually mix with water. The spatula were used to mix the moist soil thoroughly to zero percent air void, it was then placed in the Cassagrande’s apparatus cup and grooved. A number of blows were given until the groove closes, after which part of the sample was collected from the apparatus for moisture content determination. The apparatus was cleared and the sample was remixed with addition of water or possibly dry sample and the procedure (2) was repeated. The above procedure was repeated to obtain a number of blows ranging between 10 – 15, 15 – 20, 20 – 25, 25- 30, and 30 – 40. Part of the wet sample was placed in the shrinkage dish/mould of known length and then vibrated properly to attain zero air voids. The surface was cleared and the sample was placed in the oven to dry to zero percent water voids. Part of the wet sample was rolled into thin threads of about 3mm diameter, placed in the container and then weight noted and then over dried, for 24 hours after which the dried weight is noted again. This is to determine the plastic limit. The liquid limitwas determined by corresponding to 25 blows. 31 determining the moisture content 3.2.4 Compaction Test This test is carried out get familiar with the laboratory compaction and to obtain the moisture-density relation of any particular soil material. To compact soil material is to put the material in a dense state, desirable to decrease future settlements, increase shear strength and decrease permeability (Gard, 2010). Compaction is the process where mechanical means is used to constrain the close parking of soil particles, by reducing the air voids. The purpose of this test is to determine the proper amount of water mix required to place and compact soil in the field and the resulting degree of denseness, which should be expected from compaction at the optimum moisture contents (Arora, 2008). 3.2.4.1 Compaction Test Procedures The sample was weighed 3000g each. The assumed moisture within the PI range of the material was added to the prepared sample, mixed to obtained an even moisture distribution in the material. With a rammer falling freely through the height of 300mm, the material was compacted in three layers the weight of sample plus mould was weighed and recorded and also some parts were collected for instantaneous moisture content determination. The sample was demoulded and 3% water was added to change the moisture content of the sample. This was re-mix thoroughly and compacted with the required number of blows per layer in respect to the applied effort (British standard light BSL or Standard Proctor, SP; and The British standard heavy, BSH or Modified Proctor, MP) used. 32 The above procedure was repeated until a moisture range is determined, where the material bulk density was observed to have undergone a fall. This procedure was repeated on all prepared samples to achieve the curve pattern of the moisture-density relationship, which eventually provide the maximum dry density MDD (Mg/m3) and optimum moisture content OMC (%). 3.2.5 Califonia bearing ratio (CBR) Test Califonia bearing ratio is an empirical test for estimating the bearing value of the base, sub-base, and sub-grade material in highway construction (Head, 1994). It is a dimensionless index property measured in a standard laboratory test or in the field. However, the field CBR values are usually different from the laboratory CBR values due to the difference of test condition. In the field, the CBR value of the base course is dependent on that of the sub-base which in turn depends on that of the subgrade. Soft subgrade soil does not provide the support needed to obtain good compaction of the bass and sub-base course materials; therefore, the field CBR can be significantly less than the laboratory CBR (Giroud and Han, 2004) CBR test is the most widely used method of evaluating soils for pavement design in developing countries despite the criticism of its empirical nature. It is determined as the ratio of the force required to penetrate a circular piston of 1935mm2 crosssection into the soil in a special container at a rate of 1mm/min, to that required for similar penetration into a standard sample of compacted crushed rock. The ratio is determined at penetration of 2.5 and 5.6mm and the highest value is used (Head, 1994). The specification relating to the use of these indices for highway design and construction are given in the Nigerian General Specifications (1997). 33 3.2.5.1 CBR Test Procedure This test was carried out on a purpose made loading frame, as mounted in the laboratory. The sample was placed vertically under the plunger. The annular surcharge weights were placed on the surface of the sample and the jack was screwed up, so that the plunger was just touching the surface of the sample. The test was carried out by subjecting the sample to plunger penetration. The dial reading of the plunger pressure loading was recorded at 0.5mm, 1.0mm, 1.5mm, 2.0mm, 2.5mm, 3.0mm, 3.5mm, 4.0mm, 4.5mm, 5.0mm, 5.5mm, 6.0mm, 6.5mm, 7.0mm, 7.5mm, penetrations respectively. Machine factor of 0.122 is considered per division of the dial reading scale, to determine, the plunger loading in kilonewton. The plunger was raised from the specimen and the mould removed. The depression on the surface was filed with a little dry sample and turned over on the base plate so as to repeat the process on the bottom of the sample. The specimen was demoulded and compacted again at the same OMC, then soaked for 24 hours and subjected to penetrometer. Test for top and bottom is to ascertain the strength development of the soil material. The load exerted at 2.5mm and 5.0mm is considered the critical loading of the material at the top and bottom of the four (4) CBR results, the highest value is considered the CBR values of the sample. 3.2.6 Natural moisture content Natural moisture is the estimation of the amount of water a sample collected from the field contained. 3.2.6.1 Natural moisture content test procedure 34 A clean container with a lid was taken and weighed and recorded M1 About 300g of the wet sample was measured and poured into the containerM2. The container together with the sample was kept in the oven and dried for 24 hours (the lid was removed). The lid was replaced after drying and the new weight of container plus dry sample was recorded M3 The natural moisture content was calculated thus M2-M3 Moisture content (w)= M3-M1 (3.7) 3.2.7 Uncofined compressive strength test This test is a special case of tri-axial compression test in which the all round pressure (σ3=0). The test is carried out on saturated samples which can stand without any lateral support. The test is therefore applicable to cohesive soils only (Murhy, 2010). The test is an undrained test and is based on the assumption that there is no moisture loss during the test. The unconfined compression test is one of the simplest and quickest test used for the determination of shear strength of cohesive soils. This test can also be performed in the field by making use of simple loading equipment (Murthy, 2010). Specimens of height to diameter ratio of 2 are normally used for the test. 3.2.7.1 Unconfined compressive strength test procedures 200g of the sample was mixed with the OMC and filled in the mould in three layers with each receiving a number of blows as specified in the method (BSL or SP and 35 BSH or MP). After that the specimen was demoulded and weighed. To avoid moisture loss, the specimen was covered with polyethene bag. The specimen was aligned in the compression machine properly, and tested by compression. The dial readings were taken at interval of 50. At failure, the sample was removed and oven dried The above steps were repeated with two other prepared samples. 3.2.8 Durability test Durability as defined by Notman, 2012 is the resistance to weathering, erosion due to trafficking and construction as well as the resistance to soil chemistry. Durability can also be defined as the ability of a material to retain stability and integrity over years of exposure to the destruction forces of weathering (Zhipeng, 2012). The ability of a cement stabilized laterite (CSL) to maintain desired properties over the life of a pavement is an important consideration. Variations in climaticconditions have been recognized by pavement engineers as a major factor affecting pavement performance (Zhipeng, 2012). Stabilized material deteriorates as a result of environmental attacks, such as freeze-thaw and wet-dry cycling. According to Notman, (2012) durability can be chemical durability and design durability−chemical durability is the resistance of a material to chemical reactions due to the presence of certain chemical elements; design durability is the effect on a material due to workmanship or design elements (such as inadequate compaction, frost, poor choice of binder etc) 36 3.2.8.1 Durability test procedures With the OMC, 200g of the sample was mixed and filled in the mould and compacted in three layers. It was carefully demouled and the weight measured. It was wrapped with a foil paper to prevent loss of moisture. The sample was subjected to drying – wetting cycle, that is, kept for 7 days and on the 8 day it was removed and partially soaked in water for another 7 days. On the 14th day the specimen was tested for UCS. The volume change is determined after each wetting-drying cycle by measuring the dimension of the sample (diameter and height) Another sample was prepared in the normal way and wrapped in a foil paper to avoid moisture loss to environment. The sample was cured for 14 days by keeping it in the desiccator and crushed on the 14th day to get the UCS value. The values determined from the two specimens were compared to express the durability of the sample mix. 3.2.9 Water absorption test procedures The sample was measured and mixed with the OMC thoroughly. Using the UCS mould, the specimen was prepared by compacting it in three layers and the weight was measured (M1). The specimen was cured (partially soaked in water) for 24 hours after which, it was removed and weighed the second time (M2) to determine the percentage of water absorbed using equation 3.8 Water absorbed (w) = M2-M1 x100 M1 (3.8) 37 3.2.10 Tri – axial test In the tri – axial compression test, three or more identical samples of soil are subjected to uniformly distributed fluid pressure around the cylindrical surface. The sample is sealed in a water – tight rubber membrane, then axial load is applied to the soil samples until it fails. Although only compressive load is applied to the soil sample, it fails by shear on internal faces (Murthy, 2010). It is possible to determine the shear strength of the soil from the applied load at failure. 3.2.10.1 Tri – axial test procedure 200 g of the samples was mixed with the optimum moisture content (OMC) determined from compaction test. The samples was filled in the mould and compacted in three layers with the required numbers of blows for BSL or SP and BSH or MP. The sample was carefully demoulded and then weighed to get the wet weight. The sample was put in a rubber membrane to avoid direct contact with liquid in the compression machine. The sample was aligned in the machine and the cell pressure (CP) adjusted as required (70 kpa), the sample was tested by compression. The dial readings were recorded at interval of 50 At failure, the final dimensions of the tested specimen was taken and recorded. The sample was oven dried to obtain the dry weight in order to determine the moisture content. The above steps were repeated using two different specimens setting the cell pressure to 140 kpa and 210 kpa. 38 CHAPTER FOUR RESULT AND DISCUSSION 4.1 Natural moisture content The natural moisture content of the lateritic soil was determined to be 9.74% 4.2: Specific gravity From the analysis of the data obtained from specific gravity test, the specific gravity of the natural lateritic soil (100% LS) is 2.66 and that of 100% SBPA is 1.30. For a fixed percentage of lateritic soil, the specific gravity of the various mix proportions did not show any particular trend but give a value in range of 1.25 – 2.62. The least value was obtained for the mix proportion of 98% SBPA+2% C, and highest value was obtained for the mix proportion of 80% LS+14% SBPA+6% C. Table 4.1 Specific gravity test result S/N Mix proportion Specific gravity Test 1 Test 2 Average value 1 100 % LS 2.71 2.60 2.66 2 80 % LS + 20 % SBPA 2.60 2.58 2.59 3 80 % LS + 18 % SBPA + 2 % C 2.61 2.54 2.58 4 80 % LS + 16 % SBPA + 4 % C 2.67 2.53 2.60 5 80 % LS + 14 % SBPA + 6 % C 2.60 2.64 2.62 6 60 % LS + 40 % SBPA 2.19 2.69 2.44 39 7 60 % LS + 38 % SBPA + 2 % C 2.72 2.45 2.59 8 60 % LS + 36 % SBPA + 4 % C 2.49 2.14 2.32 9 60 % LS + 34 % SBPA + 6 % C 2.34 2.37 2.36 10 50 % LS + 50 % SBPA 2.49 2.45 2.47 11 50 % LS + 48 % SBPA + 2 % C 2.32 2.24 2.28 12 50 % LS + 46 % SBPA + 4 % C 2.26 2.31 2.29 13 50 % LS + 44 % SBPA + 6 % C 2.55 2.47 2.51 14 40 % LS + 60 % SBPA 2.14 2.26 2.20 15 40 % LS + 58 % SBPA + 2 % C 2.30 2.11 2.21 16 40 % LS + 56 % SBPA + 4 % C 2.09 2.10 2.10 17 40 % LS + 54 % SBPA + 6 % C 1.92 2.21 2.07 18 20 % LS + 80 % SBPA 1.60 1.93 1.77 19 20 % LS + 78 % SBPA + 2 % C 1.79 1.81 1.80 20 20 % LS + 76 % SBPA + 4 % C 1.41 1.72 1.57 21 20 % LS + 74 % SBPA + 6 % C 2.00 1.50 1.75 22 100 % SBPA 1.12 1.47 1.30 23 98 % SBPA + 2 % C 1.10 1.39 1.25 24 96 % SBPA + 4 % C 1.40 1.22 1.31 25 94 % SBPA + 6 % C 1.09 1.87 1.48 LS= Lateritic Soil; SBPA= SoyaBean Pod Ash; C= Cement 4.3 Compaction characteristics The compaction characteristics of the natural (untreated) lateritic soil and that treated with various percentages of SBPA and cement (C) are presented in figures 4.1 – 4.4. The maximum dry density (MDD) for 100%LS is 1.719Mg/cm3 with a corresponding optimum moisture content (OMC) of 8.7% for BSL and 1.926Mg/cm3 with a corresponding OMC of 7.9% for BSH. For 100%SBPA (BSL), the MDD is1.220Mg/cm3 with a corresponding OMC of 22.42% and for BSH, the MDD is 1.372Mg/cm3 with OMC of 21.71%. In the case of the various mix proportions of LS+SBPA+C, the MDD ranges from 1.151 – 1.7Mg/cm3 with OMCs 40 ranging from 12.71 – 29% (BSL), while the MDD ranges from 1.191 – 1.798 Mg/cm3 with OMCs ranging from 9.4 – 26.81% for BSH. The maximum dry density (MDD) decreases with an increase in SBPA content in the mix, while the OMC increases. The same trend was observed for all the compaction efforts of BSL and BSH used to obtain the moisture – density relationship. This trend in the moisture – density relationship is attributed to the immediate reaction between the others components and the soil in the form of flocculation and agglomeration (Little, 1995). The increase in OMC may be due to increase of fine materials. Fig. 4.1: Variation of MDD with mix proportions of LS+SBPA+C 41 Fig 4.2: Variation of OMC with various mix proportions of LS+SBPA+C 42 Fig. 4.3: Variation of MDD with various mix proportions of LS+SBPA+C Fig. 4.4: Variation of OMC with mix proportions of LS+SBPA+C 4.4 Califonia bearing ratio (CBR) The result for Califonia bearing ratio 100% LS, 100%SBPA and the various LS+SBPA+C mixesare presented in figs.4.5 – 4.6. The CBR value for 100%LS (unsoaked) is 21.19% and 11% (soaked) for BSL while the CBR values of 23.84 % (unsoaked) and 26.28 % were obtained using BSH. The highest value is obtained for the mix proportion 80%LS+16%SBPA+4%C witha value of 36.86% (soaked) using BSH with a corresponding unsoaked value of 31.33%. 43 Fig. 4.5: Variation of CBR with Mix Proportions of LS+SBPA+C (BSL) Fig. 4.6: Variation of CBR with Mix Proportions of LS+SBPA+C (BSH) 44 4.5 Unconfined compressive strength (UCS) The results of unconfined compressive strength are presented in figure 4.7. It is observed that, the UCS varies upon addition of SBPA and C. This may be due to the reaction that occurs between SBPA, C and the soil constituents. For 7 days curing period, the UCS increased from 677 kpa (100% LS) to 2038 kpa 80 %LS+20SBPA and then drops. For 14 days curing period, it moves from 847 kpa ((100%LS) to 2230 kpa (80% LS + 14%SBPA +6 %C), then decreases. The value recorded for 100% SBPA is 1271.2Kpa (7 days) and 582.9Kpa (14 days). No general trend was observed in the various mix proportions of SBPA and C. Another observed trend is the increase in strength due to increased curing time. For every mix, the UCS value increases as the curing period increased with exception of 100%SBPA. For a constant percentage of lateritic soil (LS), the UCS varies differently and no specific trend was observed – for 80% LS, with varying SBPA and C, the value of UCS increases with increasing cement content for 14 days curing and decreases for 7 days curing. For 60% LS with varying SBPA and C content, the UCS value decreases both for 7 and 14 days curing period. 4.6 Durability characteristics It is observed that when the samples were subjected to soaking condition, there was a decrease in the UCS value for each mix proportion as compared to the UCS result for 14 days curing period. For 100% LS the UCS value was 317.7 Kpa. This shows a decrease in strength of about 85 % and thus less durable. For 100%SBPA, there is an increase in strength of 33.3% which it more durable when soak in water. For all the mixes the highest value (1129 kpa) was obtained for 80%LS + 14%SBPA + 6% C mix with a loss in strength of 49.4%. A loss in strength of 11% only was observed for 60%ls+34SBPA+6%C with a UCS value of 620.2Kpa. The 45 UCS could not be conducted on 100% LS because, the soil could not withstand the drying –wetting condition and failed when aligning in the compression machine. Fig.4.7:Variation of UCS values with mix proportions of LS+SBPA+C 4.7 Tri – axial test From the result obtained for tri – axial test, the strength parameters, cohesion (C) and angle of internal friction (Ø) for 100% LS (BSL) are 20kpa and 15˚ respectively and for (BSH), the values are 7kpa and 21˚ respectively. The strength parameters as obtained for 100%SBPA (BSL) are C=30kpa and Ø=26˚; for (BSH) the values are C=37kpa and Ø=23˚. No specific trend was observed in the various mix proportions of SBPA and cement, but a higher value of cohesion (C) of 158kpa was recorded for 60%LS+40%SBPA mix proportion (BSL) with an angle of internal friction (Ø) of 16˚, while the value obtained using BSH compaction energy was 104kpa with Ø=14˚.Generally, the cohesion of the natural lateritic soil improved upon addition of the stabilizing materials as compared to the value presented for 46 it for both compaction efforts, (BSL and BSH) adopted for the test. Table 4.2: Tri – axial test result (BSL) S/N Mix proportion Cohesion (C) Internal friction angle (Ø) 1 100 % LS 20 15 2 80 % LS + 20 % SBPA 67 5 3 80 % LS + 18 % SBPA + 2 % C 84 9 4 80 % LS + 16 % SBPA + 4 % C 47 14 5 80 % LS + 14 % SBPA + 6 % C 98 7 6 60 % LS + 40 % SBPA 158 16 7 60 % LS + 38 % SBPA + 2 % C 124 16 8 60 % LS + 36 % SBPA + 4 % C 90 25 9 60 % LS + 34 % SBPA + 6 % C 110 27 10 50 % LS + 50 % SBPA 101 21 11 50 % LS + 48 % SBPA + 2 % C 86 22 12 50 % LS + 46 % SBPA + 4 % C 90 17 13 50 % LS + 44 % SBPA + 6 % C 77 24 14 40 % LS + 60 % SBPA 38 26 15 40 % LS + 58 % SBPA + 2 % C 26 23 16 40 % LS + 56 % SBPA + 4 % C 35 15 17 40 % LS + 54 % SBPA + 6 % C 37 7 18 20 % LS + 80 % SBPA 18 23 19 20 % LS + 78 % SBPA + 2 % C 16 19 20 20 % LS + 76 % SBPA + 4 % C 50 17 21 20 % LS + 74 % SBPA + 6 % C 38 23 22 100 % SBPA 30 26 23 98 % SBPA + 2 % C 15 20 24 96 % SBPA + 4 % C 25 18 25 94 % SBPA + 6 % C 26 18 47 Table 4.3: Tri – axial test result (BSH) S/N Mix proportion Cohesion (C) Internal friction angle (Ø) 1 100 % LS 7 21 2 80 % LS + 20 % SBPA 43 10 3 80 % LS + 18 % SBPA + 2 % C 74 12 4 80 % LS + 16 % SBPA + 4 % C 57 14 5 80 % LS + 14 % SBPA + 6 % C 79 12 6 60 % LS + 40 % SBPA 104 14 7 60 % LS + 38 % SBPA + 2 % C 91 19 8 60 % LS + 36 % SBPA + 4 % C 90 13 9 60 % LS + 34 % SBPA + 6 % C 100 19 10 50 % LS + 50 % SBPA 84 24 11 50 % LS + 48 % SBPA + 2 % C 54 10 12 50 % LS + 46 % SBPA + 4 % C 66 15 13 50 % LS + 44 % SBPA + 6 % C 81 13 14 40 % LS + 60 % SBPA 30 29 15 40 % LS + 58 % SBPA + 2 % C 45 11 16 40 % LS + 56 % SBPA + 4 % C 38 15 17 40 % LS + 54 % SBPA + 6 % C 62 9 18 20 % LS + 80 % SBPA 15 24 19 20 % LS + 78 % SBPA + 2 % C 20 17 20 20 % LS + 76 % SBPA + 4 % C 24 17 21 20 % LS + 74 % SBPA + 6 % C 24 19 22 100 % SBPA 37 23 23 98 % SBPA + 2 % C 15 20 24 96 % SBPA + 4 % C 48 10 25 94 % SBPA + 6 % C 37 13 48 4.8 Water Absorption The percentage of water absorbed increased by addition of 20% SBPA to the natural soil both for BSL and BSH from which there is a decrease in the rate with increase in SBPA to 50% LS+44% SBPA + 6%C mix and then started rising again. For each fixed percentage of lateritic soil (LS) with increasing cement content, the rate rather reduces to a minimum, except for 60% LS (BSL) where the reverse was the case. The mix with the highest rate is 100 % SBPA (BSH) with 24.43% and the mix with least rate being 100% LS (BSL) with 4.51%. The water absorption percentages for 100%LS and 100% SBPA are 4.51% and 23.18% respectively for BSL and 7.22% and 24.43% respectively for BSH. Table 4.4: Water absorption test result Mix proportion BSL (%) BSH (%) 100 % LS 4.51 7.22 80 % LS + 20 % SBPA 18.56 20.12 80 % LS + 18 % SBPA + 2 % C 15.21 16.61 80 % LS + 16 % SBPA + 4 % C 9.28 11.01 80 % LS + 14 % SBPA + 6 % C 5.08 6.02 60 % LS + 40 % SBPA 15.48 16.60 60 % LS + 38 % SBPA + 2 % C 12.12 12.99 60 % LS + 36 % SBPA + 4 % C 8.42 10.11 60 % LS + 34 % SBPA + 6 % C 6.45 6.98 50 % LS + 50 % SBPA 8.77 12.13 50 % LS + 48 % SBPA + 2 % C 6.69 10.11 49 50 % LS + 46 % SBPA + 4 % C 5.97 8.71 50 % LS + 44 % SBPA + 6 % C 5.56 6.39 40 % LS + 60 % SBPA 17.68 18.11 40 % LS + 58 % SBPA + 2 % C 13.97 11.99 40 % LS + 56 % SBPA + 4 % C 7.12 11.10 40 % LS + 54 % SBPA + 6 % C 4.83 8.79 20 % LS + 80 % SBPA 14.49 16.89 20 % LS + 78 % SBPA + 2 % C 14.98 14.51 20 % LS + 76 % SBPA + 4 % C 16.33 14.00 20 % LS + 74 % SBPA + 6 % C 16.67 10.11 100 % SBPA 23.18 24.43 98 % SBPA + 2 % C 18.77 16.22 96 % SBPA + 4 % C 15.93 15.31 94 % SBPA + 6 % C 12.99 15.01 4.9 Oxide composition of SBPA The oxides composition of the SBPA is presented in table 4.3. The CaO concentration is 49.49 % and that of Fe2O3is 1.4 %. Oxides of aluminium and silicon are not detected in the ash therefore Fe2O3+Al2O3+SiO2=1.4%. Loss of ignition (LOI) which is an indication of the unburnt carbon in the SBPA is 4.21%. Since the CaO concentration is more than 20%, the ash is classified as class C and is self – cementing (ASTM c618-92a, 1994) Table 4.5: Oxide composition of soyabean pod ash (SBPA) 50 Compound Concentration (%) SO3 0.53 Cl 0.16 K2O 39.58 CaO 45.18 TiO2 0.48 MnO 0.388 Fe2O3 1.40 CuO 0.042 ZnO 0.11 Y2O3 6.00 Ag2O 0.91 BaO 0.68 CeO 0.03 Eu2O3 0.03 Re2O7 0.17 LOI 4.21 4.10 Sieve size analysis The result for grain size analysis is presented in figs.4.8 – 4.13. The gradation of 100% LS is composed of 98.8 % coarse grained particles (60.2 % gravel and 38.6 % sand) and the fined grained portion has a percentage of 1.2 %. The coefficient of uniformity Cu= 20 and that of curvature Cc=0.065, and it is classified as A – 2 – 7 (AASHTO classification sheme). 100% SBPA is composed of 56.2 % coarse particles and 43.8 % fines with coefficient of uniformity Cu= ∞ and coefficient of curvature Cc = 0. According to AASHTO classification, the ash is classified to be A 51 – (silty – clay material). For the various mix proportions of LS+SBPA+C the classification as shown in table 4.6 Fig.4.8: Sieve size analysis 52 Fig.4.9: Sieve size analysis Fig.4.10: Sieve size analysis 53 Fig.4.11: Sieve size analysis 54 Fig.4.12: Sieve size analysis Fig.4.13: Sieve size analysis 4.11 The atterberg limit test The atterberg limit test result is presented in the table 4.7 below. The liquid limit and plasticity index (PI) for the natural soil are 41% and 16 respectively and for 100%SBPA the liquid limit is 49.5% and the plasticity index (PI) is 8.36. The plasticity index showed no trend but the highest plasticity index was obtained for 40%+54%SBPA+6%C, and is described as high plastic. Table 4.6:Atterberg limit test result Mix proportion Liqui d limit (%) Plastic limit Linear shrinkage Plastic index (%) (%) (PI) AASHTO classification 100 % LS 41 25.00 8.53 16 A–2–7 80 % LS + 20 % SBPA 52 27.03 7.69 24.97 A–2–7 55 80 % LS + 18 % SBPA + 2 % C 44 23.94 5.26 20.06 A–2–7 80 % LS + 16 % SBPA + 4 % C 39 26.53 3.70 12.47 A–2–7 80 % LS + 14 % SBPA + 6 % C 35 32.73 3.70 12.27 A–2–6 60 % LS + 40 % SBPA 42 39.18 2.19 12.82 A–2–7 60 % LS + 38 % SBPA + 2 % C 47 30.36 2.94 16.64 A–2–7 60 % LS + 36 % SBPA + 4 % C 40 22.64 2.19 17.64 A–2–6 60 % LS + 34 % SBPA + 6 % C 40 23.52 2.19 16.48 A – 2 –6 27.5 27.45 4.48 9.55 A–2–4 50 % LS + 48 % SBPA + 2 % C 45 36.67 4.48 8.33 A–2–7 50 % LS + 46 % SBPA + 4 % C 42.5 20.83 4.30 11.67 A – 7 – 5a 50 % LS + 44 % SBPA + 6 % C 34 41.38 3.12 12.62 A–2–6 40 % LS + 60 % SBPA 43 34.00 3.00 9 A–2–7 40 % LS + 58 % SBPA + 2 % C 41 34.38 2.71 6.62 A–2–5 40 % LS + 56 % SBPA + 4 % C 36 13.89 2.45 22.11 A–2–6 40 % LS + 54 % SBPA + 6 % C 44.5 17.07 2.11 27.43 A–2–7 20 % LS + 80 % SBPA 44 43.75 2.88 20.25 A–2–7 20 % LS + 78 % SBPA + 2 % C 30 19.05 2.94 10.95 A–6 20 % LS + 76 % SBPA + 4 % C 48 44.74 6.06 13.26 A – 7 – 5a 20 % LS + 74 % SBAP + 6 % C 44 36.66 4.54 7.34 A–5 100 % SBPA 49.5 35.14 1.45 8.36 A–5 98 % SBPA + 2 % C 50.5 35.14 1.44 15.36 A – 7 – 5a 96 % SBPA + 4 % C 56 45.65 1.23 4.85 A–5 94 % SBPA + 6 % C 42 34.21 1.23 10.79 A–6 50 % LS + 50 % SBPA 56 CHAPTER FIVE SUMMARY, CONCLUSION AND RECOMMENDATION 5.1 Summary The laterite was identified to be an A – 2 – 7 soil (granular material)while the SBPAwas classified as A – 5 according to AASTHO classification system. The properties of the natural lateritic soil indicate liquid limit (LL) of 41%, plastic limit (PL) of 25%, linear shrinkage (LS) of 8.53% and plasticity index (PI) of 16, while for 100% SBPA, liquid limit is 49.5 %, plastic limit is 41.4 %, linear shrinkage is 1.45 % and plasticity index is 8.36 % The compaction characteristics of the natural soil were altered with the addition of SBPA and C. Treatment with SBPA and C showed a general decrease in the MDD and increase in OMC with increase in the SBPA content The peak CBR value of 36.86% was obtained for 80%LS+16%SBPA+4%C for soaked using BSH compaction energy with a corresponding unsoaked value of 31.33%. There was an improvement in the treated soil compared with the CBR of the natural soil (26.28% for soaked and 23.84% for unsoaked). The UCS values peaked at 80%LS+14%SBPA+6%C mix proportion for 14 days curing with50% durability. A higher durability of 89%was recorded for 60%LS+14%SBPA+6%C with 11 % loss in strength. For tri – axial test, the highest cohesion (C) was determined to be 158kpa with corresponding Ø of 16˚ for BSL 57 5.2 Conclusion The following conclusion can be drawn from the study: - The natural soil exhibit little strength resistance and failed easily when it absorbed water and thus not durable. The strength is reduced by 100% - Soyabean pod ash – cement stabilized lateritic soil improved in its geotechnical properties as a result of the varying mixes of LS+SBPA+C but there was a reduction in strength when soaked in water. - The mix proportion with minimum decrease in strength of 11%and withthe highest durability of 89% is 60%LS+34%SBPA+6%C. - Partial soaking samples caused loss in the UCS of the samples. - Curing periods affects the strength of the stabilized soil. Samples cured for 14 days have more strength than those cured for 7 days. The MDD decreased as the OMC increased with increasing SBPA content. - The mix proportion 80% LS+ 16% SBPA+4%C has the highest CBR value of 36.36 % (soaked) using BSH compaction effort and suitable for use as sub – base material. Other mixes with CBR value more than 30 % can be also used for same purpose. 5.3 Recommendations Although, various mixes of LS+SBPA+C offers higher CBR, UCS and cohesion (C) values, with less durability as compared to that of 60% LS + 34% SBPA + 6% C mix, 58 the mix 60% LS + 34% SBPA + 6% is recommended as suitable for treatment of lateritic soil to improve its geotechnical properties since it offers a strength of 695.7 kpa when cured for 14 days and 620.2 kpa when subjected to 7 days drying and 7 days wetting with the highest durability characteristics of 89 %, while the CBR and cohesion values are 31 % and 110 kpa respectively and can be used as a sub – base material in highway pavement construction. 59 REFERENCES Acosta, H. A., Edil, T. B. & Benson, C. H. (2003). “Soil Stabilization and Drying Using Fly Ash”, Geotechnical Engineering Report 03-03. University of WisconsinMadison, Geotechnical Program, Madison, Wisconsin. Adeyi, O., (2010). Proximate Composition of Some Agricultural Waste in Nigeria and Their Potential Use in Activated Carbon Production. Journal of. Appl. Sci. Environ. Manage. Vol. 14 No1,pp55-58 Agnus, S.M. & Gendut, H. (2002). “Influence of Rice Husk Ash and Lime on Engineering Properties of Clayey Subgrade”. Project Report, Civil Engineering Portal http://www.ejge. Com/2003/Ppr0304/Abs0304 Htm; viewed in April 2010 Alhassan, M.A., (2008). Potential of Rice Husk Ash for Soil Stabilization. Department of Civil engineering, Federal University of Technology, Minna, Niger State, Nigeria. Auj. T.vol. 11 No4,pp246-250 Aprianti, E. et al. (2014).Supplementary Cementitious Material Origin from Agricultural Waste – A Review. Elsevier (Construction and Building Materials)vol. 74 No2015.pp174-187 Arora, K.R., (2008). Soil Mechanics and Foundation Engineering (Geotechnical Engineering). 7th Ed. AK Jain for Standard Publishers Distribution: Naisarak Delhi.pp358-368 ASTM D242 (2009). “Standard Specification for Mineral Filler for Bituminous Paving Mixture”. American Society for Testing and Material (ASTM). ASTM Specification, C618-929 (1994). “Chemical and Physical Specification”. The American Society for Testing and Materials (ASTM) Classification of Pozzolans. B.S.,1377. “Methods of Testing Soils for Civil Engineering Purpose”. British Standard Institute, UK, pp139-140. Basha, E. A. et al. (2004). Stabilization of residual soil with rice husk ash and cement. Elsevier (construction and Building Materials) vol. 19 No2005,pp 448-453. Brooks, M.R., (2009). Soil Stabilization with Fly Ash and rice Husk. International journal of Research and Reviews in Applied science Vol. 1 No3, pp 209-217 Das, B.M., (1983). “Principles of Geotechnical Engineering”.PWS Publishing Company, Bostom M.A. USA. 60 Dirk Group, (1996).“Pulverized Fuel Ash Products Solve the Sewage Sludge Problems of the Waste Water Industry”. Waste Management vol. 16 No(13),pp51-57. Dugje, I. Y. et al (2009). “Farmer’s Guid to Soyabean Productioni Nothern Nigeria”. International Institute of Tropical Agriculture, Ibadan, Nigeria. PP21. Edil, T.B. (1997). “Construction over Peats and Organic Soil”.Pro. Conf. on Recent Advances in Soft Soil engineering. Edil T. et al, (2002). “Field Evaluation of Construction Alternatives for Roadways Over Soft Subgrades. Transportation Research Board, Wash. D.C. in Press. Environmental Protection Agency, EPA, (2009). “Selecting and Using Solidification/Stabilization Treatment for Site Remediation”. Technology Performance Review, Cincinnati. Erdem, O. T. et al (2011). Stabilization of Organic Soil with fly ash. Journal of Geotevhnical & Geoenvironmental Engineering, pp 819-831. Etsu, U., (2003). “Rice Husk Ash Market Study”. 00/0061/OTT/PUB Federal Highway Administration (2003). “Fly-Ash Facts for Highway.Engineers”. Technical Rep. FHWA-IF-03019. 4th Ed., Washington, D.C. Gard, S.K., (2010). Soil Mechanics and Foundation Engineering. 7th Ed. Survey University Press: London, pp119 - 132 Giroud, J.P. & Han, J., (2004).Desing of Geogrid- Reforced Unpaved Roads. 1 Development of Design Methods”. Journal of Geotechnical and Geoenvironmental Vol. 130, No 8,pp775-797 Hargreave J.C., et al., (2007). A Review of the Use of Composted Municipal SolidWaste in Agriculture. Elsevier (Agriculture Ecosystem and Environment) vol. 123 (2008) 1 – 14. Halstead, W., (1986). “Use of Fly Ash in Concrete”. National Cooperation Highway Reseach Project; (NCHRP) 127. Washington: Transportation Research Board, National Research Council. Hennis, K.W. & Frishette, C.W., (1993). “A New Era in Control Density Fill”. Proceedings of the Tenth International ash Utilization Symposium, International Agency for Research on Cancer; IARC (1997) “IARC Monographs on the Evaluation of Carcinogenic Risk to Human, 68. Janz M. & Johansson S.E., (2002). “The Function of Different Binding Agents in Deep Stabilization”. Rep 9, Swedish Deep Stabilization Research Centre, Linkoping, Sweden. Little, D. N. (1995). “Handbook for Stabilization of Pavement Sub – Grade and Base courses, with Lime”. National Lime Association, 1995. Kendall Hunt. Mehta, P.K. (2014). “High Preformance, High Volume Fly Ash Concrete for Suitable Development”. In Proceedings of the international Workshop on Sustainable Development and Concrete Technology, University of Califonia 61 Berkeley, USA. Meiji, R., (2003). “Status Report on the Fuel Ash and Fly Dush”. Kema Power Generation and Sustainable Report 50131022-KPS/Mec 10-6032, Ainhem. Mid-State Reclaimation and Trucking, (2015). Mid-State Companies 21955 Grenada Ave. Lakeville NN55044. Portal: http/www.midstatecompanies.com Moore, D. (1999). “The Roman Panihem”. The Triumph of concrete. Mustapha, M. A. (2005). “Effect of Bagasse Ash on Cement Stabilized laterite”. Seminar Paper Presented at the Department of Civil Engineering, Ahmadu Bello University. N- Viro International Corporate (2010). “The Mixing of Municipal Bio Solids with Specific Alkaline Wastes”. Neville, A.M. (2000). “Properties of Concrete”. 4th Ed. (low Price Ed.) Pearson Education Asia Publ. England Produced by Longman Malaysia, pp674 Occupational Health and Safety Administration, US Department of Labour (2002). “Regulation for Mineral Dusts”. Standard 1910, 100 Table 2-3. Ola, S.A., (1983). Tropical Soil of Nigeria in Engineering Practice. A.A. Bakema Publisher: Netherland, pp225 - 233 Osinubi, K. J., and Bajeh, I. (1994). “Bituminous Spectrum Journal. Vol. 1 No 2,pp 104-12. Stabilization of Laterite”. Pandian, N.S. (2004). Fly Ash Characterization with Reference to Geotechnical Application.Journal of Indian Institute of Science. Vol. 84, pp189-216 Parson, R.L. & Kneebone, E., (2005). “field performance of fly ash stabilised subgrades” ground improvement (200) 9,No 1, 33 – 38. Prakash, K. and Sridharan, A. (1989). Lime Stabilization and Curing Effects on the Index and Compaction Characteristics of a Montmorillonite: Journal of South-East Asian Geotechnical Society. Vol. 20, No. 1, pp. 39-47. Ramos e Paula, L.E. et al (2011). Characterization Residues from Plant Biomass for Use in Energy Generation. Journal of Cerne, Lavras, vol.17.No 2, P.237 – 246. Scott, A.N. and Thomas, M.D.A (2007). Evaluation of Fly Ash from Combustion of Coal and Petroleum Coke for Use in Concrete ACI Materials. Journal of American Concrete Institute. Vol. 104 No1, pp62-70 Sear, L.K.A. (2005). “Should You be Using More”. PFA Proc. Int. Conf. Cement Combination for Durable concrete, Held at the Univ. of Dundee, Scotland UK. Veeresh, S.J., & Narayana, J. (2012). Assessment of Agro-Industrial Wastes Proximate, Ultimate, SEM and FTIR Analysis for Feasibility of Solid Bio-Fuel Producition. Universal Journal of Environmental Reseach and Technology Vol. 2,No6:pp575-581. 62 APPENDIX I Unconfined compressive strength (UCS) test result BSL Mix proportion (7Days) UCS (Kpa) (14 Days) UCS(Kpa) (7days drying+7days wetting) UCS (Kpa) 100 % LS 677.1 847.2 0 80 % LS + 20 % SBPA 2038.3 2137.4 317.7 80 % LS + 18 % SBPA + 2 % C 1107.3 2209.4 613.2 80 % LS + 16 % SBPA + 4 % C 1556.0 2220.5 1084.7 80 % LS + 14 % SBPA + 6 % C 1884 2230.6 1129 60 % LS + 40 % SBPA 1004.8 1281.9 964.1 60 % LS + 38 % SBPA + 2 % C 830.6 1046.3 858.3 60 % LS + 36 % SBAP + 4 % C 697.7 1118.7 732.7 60 % LS + 34 % SBPA + 6 % C 844.0 695.7 620.2 50 % LS + 50 % SBPA 1487.4 1814 1005 50 % LS + 48 % SBPA + 2 % C 1272.6 1774 932.6 50 % LS + 46 % SBPA + 4 % C 1038 1713.3 836.1 50 % LS + 44 % SBPA + 6 % C 826.4 1652.7 610.4 40 % LS + 60 % SBPA 532.9 1994.9 200.7 63 40 % LS + 58 % SBPA + 2 % C 1283.6 2083 769.7 40 % LS + 56 % SBPA + 4 % C 1537 2203.9 910.4 40 % LS + 54 % SBPA + 6 % C 1792.1 2215 996.7 888 1218.2 696.8 20 % LS + 78 % SBPA + 2 % C 993.7 1472.1 827.1 20 % LS + 76 % SBPA + 4 % C 1113.3 1556 914.2 20 % LS + 74 % SBPA + 6 % C 1184.4 1670.9 439.7 100 % SBPA 1271.2 582.9 777.2 98 % SBPA + 2 % C 1315.6 1065.8 439.7 96 % SBPA + 4 % C 1554.3 1335.7 528.7 94 % SBPA + 6 % C 1637.6 1790.4 662.3 20 % LS + 80 % SBPA UCS: AFTER DRYING AND WETTING (BSL) SAMPLE: 80% LS + 20% SBPA Dial reading Load unit ΔL 12 20 0.12 20 25 40 Ɛ À P σ (mm2) (N) (N/mm2) 0.0015 1258.5 142 0.1128 0.20 0.0025 1259.7 177.5 0.1409 36 0.40 0.005 1262.9 255.6 0.2024 60 46 0.60 0.0075 1266.1 326.6 0.258 80 54 0.80 0.010 1269.3 383.4 0.3021 120 57 1.20 0.015 1273.7 404.7 0.3177 Ɛ À P σ (mm2) (N) (N/mm2) SAMPLE: 80%LS + 18%SBPA + 2%C Dial reading Load unit ΔL 64 12 14 0.12 0.0015 1258.5 99.4 0.0789 20 33 0.20 0.0025 1259.7 234.3 0.1860 40 44 0.40 0.005 1262.9 312.4 0.2474 60 57 0.60 0.0075 1266.1 404.7 0.3196 80 87 0.80 0.010 1269.3 617.7 0.4866 120 110 1.20 0.015 1273.7 781 0.6132 Ɛ À P (mm2) (N) σ 2 (N/mm ) SAMPLE: 80%LS + 16%SBPA + 4%C Dial reading Load unit ΔL 12 11 0.12 0.0015 1258.5 234.3 0.1862 20 17 0.20 0.0025 1259.9 319.5 0.2536 40 38 0.40 0.005 1263.0 475.7 0.3766 60 57 0.60 0.0075 1266.4 624.8 0.4934 80 80 0.80 0.010 1269.6 731.3 0.5760 120 105 1.20 0.015 1276.3 1384.5 1.0847 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 80%LS + 14%SBPA + 6%C Dial reading Load unit ΔL 12 31 0.12 0.0015 1258.5 220.1 0.1749 20 45 0.20 0.0026 1259.9 319.5 0.2536 40 75 0.40 0.0051 1263.0 532.5 0.4216 60 96 0.60 0.0077 1266.4 681.6 0.5382 80 104 0.80 0.010 1269.6 738.4 0.5816 120 166 1.20 0.0154 1276.3 1178.6 0.9235 140 189 1.40 0.0179 1279.5 1341.9 1.0488 65 160 204 1.60 0.0205 1282.9 1448.4 1.1290 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 60%LS + 40%SBPA Dial reading Load unit ΔL 12 15 0.12 0.0015 1258.5 106.5 0.0846 20 19 0.20 0.0025 1259.7 134.9 0.1071 40 31 0.40 0.005 1262.9 220.1 0.1743 60 43 0.60 0.0075 1266.1 305.3 0.2411 80 52 0.80 0.010 1269.3 369.2 0.2909 120 84 1.20 0.015 1273.7 596.4 0.4682 140 118 1.40 0.0175 1279.0 837.8 0.6550 160 152 1.60 0.020 1282.2 1079.2 0.8417 200 175 2.00 0.025 1288.8 1242.5 0.9641 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 60%LS + 38%SBPA +2%C Dial reading Load unit ΔL 12 20 0.12 0.0015 1258.5 142 0.1128 20 25 0.20 0.0026 1259.7 177.7 0.1409 40 33 0.40 0.0051 1262.9 234.3 0.1855 60 49 0.60 0.0077 1266.1 347.9 0.2748 80 61 0.80 0.010 1269.3 433.1 0.3412 120 92 1.20 0.0154 1273.7 653.2 0.5128 140 149 1.40 0.0179 1279.0 1057.9 0.8271 160 155 1.60 0.0205 1282.2 1100.5 0.8583 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 60%LS + 36%SBPA +4%C Dial reading Load unit ΔL 66 12 25 0.12 0.0015 1258.5 177.5 0.1410 20 29 0.20 0.0025 1259.7 205.9 0.1635 40 35 0.40 0.005 1262.9 248.5 0.1968 60 46 0.60 0.0075 1266.1 326.6 0.2580 80 55 0.80 0.010 1269.3 390.5 0.3076 120 83 1.20 0.015 1273.7 589.3 0.4627 140 100 1.40 0.0175 1279.0 710 0.5551 160 121 1.60 0.020 1282.2 859.1 0.6700 200 133 2.00 0.025 1288.8 944.3 0.7327 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 60%LS + 34%SBPA +6%C Dial reading Load unit ΔL 12 14 0.12 0.0015 1258.5 99.4 0.07899 20 18 0.20 0.0025 1259.7 127.8 0.1015 40 46 0.40 0.005 1262.9 326.6 0.2586 60 74 0.60 0.0075 1266.1 525.4 0.4150 80 83 0.80 0.010 1269.3 589.3 0.4643 120 99 1.20 0.015 1273.7 702.9 0.5519 140 110 1.40 0.0175 1279.0 781 0.6106 160 112 1.60 0.020 1282.2 795.2 0.6202 SAMPLE: 50%LS + 50%SBPA 67 Ɛ À(mm2) P(N) σ (N//mm2) 0.12 0.0015 1258.5 106.5 0.0846 22 0.20 0.0025 1259.7 156.2 0.1240 40 44 0.40 0.005 1262.9 312.4 0.2474 60 67 0.60 0.0075 1266.1 475.7 0.3757 80 81 0.80 0.010 1269.3 575.1 0.4531 120 148 1.20 0.015 1273.7 1050.8 0.8250 140 181 1.40 0.0175 1279.0 1285.1 1.005 Ɛ À(mm2) P(N) σ (N/mm2) Dial reading Load unit 12 15 20 ΔL SAMPLE: 50%LS + 48%SBPA + 2%C Dial reading Load unit ΔL 12 19 0.12 0.0015 1258.5 134.9 0.1072 20 25 0.20 0.0025 1259.7 177.5 0.1409 40 35 0.40 0.005 1262.9 248.5 0.1968 60 56 0.60 0.0075 1266.1 397.6 0.3140 80 70 0.80 0.010 1269.3 497 0.3916 120 140 1.20 0.015 1273.7 994 0.7804 140 168 1.40 0.0175 1279.0 1192.8 0.9326 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 50%LS + 46%SBPA + 4%C Dial reading Load unit ΔL 12 19 0.12 0.0015 1258.5 134.9 0.1072 20 21 0.20 0.0025 1259.7 149.1 0.1184 40 40 0.40 0.005 1262.9 284 0.2249 60 65 0.60 0.0075 1266.1 461.5 0.3645 68 80 85 0.80 0.010 1269.3 603.5 0.4755 120 150 1.20 0.015 1273.7 1065 0.8361 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 50%LS + 44%SBPA + 6%C Dial reading Load unit ΔL 12 13 0.12 0.0015 1258.5 92.3 0.0733 20 23 0.20 0.0025 1259.9 163.3 0.1296 40 42 0.40 0.005 1263.0 298.2 0.2361 60 69 0.60 0.0075 1266.4 489.9 0.3868 80 89 0.80 0.010 1269.6 631.9 0.4977 120 101 1.20 0.015 1273.3 717.1 0.5619 140 110 1.40 0.0175 1279.5 781 0.6104 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 40%LS + 60%SBPA Dial reading Load unit ΔL 12 11 0.12 0.0015 1258.5 78.1 0.0621 20 14 0.20 0.0025 1259.7 99.4 0.0789 40 20 0.40 0.005 1262.9 142 0.1124 60 25 0.60 0.0075 1266.1 177.5 0.1402 80 31 0.80 0.010 1269.3 220.1 0.1734 120 36 1.20 0.015 1273.7 255.6 0.2007 Ɛ À(mm2) P(N) σ (N/mm2) 0.0015 1258.5 142 0.1128 SAMPLE: 40%LS + 58%SBPA + 2%C Dial reading Load unit 12 20 ΔL 0.12 69 20 28 0.20 0.0025 1259.7 198.8 0.1578 40 40 0.40 0.005 1262.9 284 0.2249 60 68 0.60 0.0075 1266.1 482.8 0.3813 80 100 0.80 0.010 1269.3 710 0.5594 120 110 1.20 0.015 1273.7 781 0.6132 140 128 1.40 0.0175 1279.0 908.8 0.7106 160 139 1.60 0.020 1282.2 986.9 0.7697 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 40%LS + 56%SBPA + 4%C Dial reading Load unit ΔL 12 12 0.12 0.0015 1258.5 85.2 0.0677 20 38 0.20 0.0025 1259.7 269.8 0.2142 40 41 0.40 0.005 1262.9 291.1 0.2305 60 49 0.60 0.0075 1266.1 347.9 0.2748 80 112 0.80 0.010 1269.3 795.2 0.6265 120 143 1.20 0.015 1273.7 1025.3 0.7971 140 164 1.40 0.0175 1279.0 1164.4 0.9104 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 40%LS + 54%SBPA + 6%C Dial reading Load unit ΔL 12 12 0.12 0.0015 1258.5 85.2 0.0677 20 22 0.20 0.0025 1259.7 156.2 0.1240 40 52 0.40 0.005 1262.9 369.2 0.2923 60 95 0.60 0.0075 1266.1 674.5 0.5327 80 95 0.80 0.010 1269.3 674.5 0.5314 120 143 1.20 0.015 1273.7 1015.3 0.7971 70 140 174 1.40 0.0175 1279.0 1235.4 0.9659 160 180 1.60 0.020 1282.2 1278 0.9967 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 20%LS + 80%SBPA Dial reading Load unit ΔL 12 21 0.12 0.0015 1258.5 149.1 0.1185 20 31 0.20 0.0025 1259.7 220.1 0.1747 40 39 0.40 0.005 1262.9 276.9 0.2193 60 49 0.60 0.0075 1266.1 347.9 0.2748 80 93 0.80 0.010 1269.3 660.3 0.5202 120 125 1.20 0.015 1273.7 887.5 0.6968 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 20%LS + 78%SBPA + 2%C Dial reading Load unit ΔL 12 20 0.12 0.0015 1258.5 142 0.1128 20 31 0.20 0.0025 1259.7 220.1 0.1747 40 49 0.40 0.005 1262.9 347.9 0.2755 60 68 0.60 0.0075 1266.1 482.8 0.3813 80 111 0.80 0.010 1269.3 788.1 0.6209 120 130 1.20 0.015 1273.7 923 0.7247 140 149 1.40 0.0175 1279.0 1057.9 0.8271 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 20%LS + 76%SBPA + 4%C Dial reading Load unit ΔL 12 27 0.12 0.0015 1258.5 191.7 0.1523 20 34 0.20 0.0025 1259.7 241.4 0.1916 71 40 57 0.40 0.005 1262.9 404.7 0.3205 60 90 0.60 0.0075 1266.1 639 0.5047 80 125 0.80 0.010 1269.3 887.5 0.6992 120 164 1.20 0.015 1273.7 1164.4 0.9142 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 20%LS + 74%SBPA + 6%C Dial reading Load unit ΔL 12 1219 0.12 0.0015 1258.5 85.2 0.0677 20 2039 0.20 0.0025 1259.7 142 0.1127 40 3751 0.40 0.005 1262.9 262.7 0.2080 60 5082 0.60 0.0075 1266.1 355 0.2804 80 6197 0.80 0.010 1269.3 433.1 0.3412 120 9105 1.20 0.015 1273.7 560.9 0.4397 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 100%SBPA Dial reading Load unit ΔL 12 20 0.12 0.0015 1258.5 85.2 0.0677 20 40 0.20 0.0025 1259.7 142 0.1127 40 80 0.40 0.005 1262.9 284 0.2249 60 120 0.60 0.0075 1266.1 426 0.3365 80 160 0.80 0.010 1269.3 568 0.4475 120 175 1.20 0.015 1273.7 852 0.6679 140 110 1.40 0.0175 1279.0 994 0.7772 SAMPLE: 98%SBPA + 2%C 72 Ɛ À(mm2) P(N) σ (N/mm2) 0.12 0.0015 1258.5 85.2 0.0677 39 0.20 0.0025 1259.7 276.9 0.2198 40 50 0.40 0.005 1262.9 355 0.2811 60 68 0.60 0.0075 1266.1 482.8 0.3813 80 72 0.80 0.010 1269.3 511.2 0.4027 120 79 1.20 0.015 1273.7 560.9 0.4397 Ɛ À(mm2) P(N) σ (N/mm2) Dial reading Load unit 12 12 20 ΔL SAMPLE: 96%SBPA + 4%C Dial reading Load unit ΔL 12 29 0.12 0.0015 1258.5 205.9 0.1636 20 41 0.20 0.0025 1259.7 291.1 0.2310 40 64 0.40 0.005 1262.9 454.4 0.3598 60 78 0.60 0.0075 1266.1 553.8 0.4374 80 92 0.80 0.010 1269.3 653.2 0.5146 120 95 1.20 0.015 1273.7 674.5 0.5287 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 94%SBPA + 6%C Dial reading Load unit ΔL 12 10 0.12 0.0015 1258.5 74 0.05880 20 23 0.20 0.0025 1259.7 163.3 0.1296 40 47 0.40 0.005 1262.9 333.7 0.2642 60 72 0.60 0.0075 1266.1 511.2 0.4038 80 100 0.80 0.010 1269.3 740 0.5830 120 119 1.20 0.015 1273.7 844.9 0.6623 73 UCS: AFTER DRYING AND WETTING (BSH) SAMPLE: 80%LS + 20%SBPA Ɛ À(mm2) P(N) σ (N/mm2) 0.12 0.0015 1258.5 142 0.1128 25 0.20 0.0025 1259.7 177.5 0.1409 40 40 0.40 0.005 1262.9 284 0.2249 60 57 0.60 0.0075 1266.1 404.7 0.3196 80 62 0.80 0.010 1269.3 440.2 0.3468 120 65 1.20 0.015 1273.7 461.5 0.3618 140 73 1.40 0.0175 1279.0 518.3 0.4052 Ɛ À(mm2) P(N) σ (N/mm2) Dial reading Load unit 12 20 20 ΔL SAMPLE: 80%LS + 18%SBPA + 2%C Dial reading Load unit ΔL 12 18 0.12 0.0015 1258.5 127.8 0.1015 20 43 0.20 0.0025 1259.7 305.3 0.2424 40 53 0.40 0.005 1262.9 376.3 0.2980 60 63 0.60 0.0075 1266.1 447.3 0.3533 80 79 0.80 0.010 1269.3 560.9 0.4419 120 116 1.20 0.015 1273.7 823.6 0.6456 140 131 1.40 0.0175 1279.0 930.1 0.7272 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 80%LS + 16%SBPA + 4%C Dial reading Load unit ΔL 74 12 25 0.12 0.0015 1258.5 177.5 0.1410 20 35 0.20 0.0025 1259.7 248.5 0.1973 40 61 0.40 0.005 1262.9 433.1 0.3429 60 93 0.60 0.0075 1266.1 660.3 0.5215 80 108 0.80 0.010 1269.3 766.8 0.6041 120 130 1.20 0.015 1273.7 923 0.7247 140 145 1.40 0.0175 1279.0 1029.5 0.8049 160 149 1.60 0.020 1282.2 1057.9 0.8251 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 80%LS + 14%SBPA + 6%C Dial reading Load unit ΔL 12 18 0.12 0.0015 1258.5 127.8 0.1015 20 32 0.20 0.0025 1259.7 227.2 0.1804 40 68 0.40 0.005 1262.9 482.8 0.3823 60 95 0.60 0.0075 1266.1 674.5 0.5327 80 119 0.80 0.010 1269.3 844.9 0.6656 120 219 1.20 0.015 1273.7 1554.9 1.2207 140 230 1.40 0.0175 1279.0 1633 1.2768 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 60%LS + 40%SBPA Dial reading Load unit ΔL 75 12 11 0.12 0.0015 1258.5 78.1 0.0621 20 17 0.20 0.0025 1259.7 120.7 0.0958 40 38 0.40 0.005 1262.9 269.8 0.2136 60 57 0.60 0.0075 1266.1 404.7 0.3196 80 80 0.80 0.010 1269.3 568 0.4475 120 105 1.20 0.015 1273.7 745.5 0.5844 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 60%LS + 38%SBPA + 2%C Dial reading Load unit ΔL 12 12 0.12 0.0015 1258.5 85.2 0.0677 20 17 0.20 0.0025 1259.7 120.7 0.0958 40 38 0.40 0.005 1262.9 269.8 0.2136 60 59 0.60 0.0075 1266.1 418.9 0.3309 80 87 0.80 0.010 1269.3 617.7 0.4866 120 98 1.20 0.015 1273.7 695.8 0.5463 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 60%LS + 36%SBPA + 4%C Dial reading Load unit ΔL 12 20 0.12 0.0015 1258.5 142 0.1128 20 25 0.20 0.0025 1259.7 177.5 0.1409 40 33 0.40 0.005 1262.9 134.3 0.1855 60 39 0.60 0.0075 1266.1 276.9 0.2187 80 77 0.80 0.010 1269.3 560.9 0.4419 120 98 1.20 0.015 1273.7 695.8 0.5454 76 SAMPLE: 60%LS + 34%SBPA + 6%C Ɛ À(mm2) P(N) σ (N/mm2) 0.12 0.0015 1258.5 284 0.2257 54 0.20 0.0025 1259.7 383.4 0.3044 40 87 0.40 0.005 1262.9 617.7 0.4891 60 97 0.60 0.0075 1266.1 688.7 0.5440 Ɛ À(mm2) P(N) σ (N/mm2) Dial reading Load unit 12 40 20 ΔL SAMPLE: 50%LS + 50%SBPA Dial reading Load unit ΔL 12 26 0.12 0.0015 1258.5 184.6 0.1467 20 35 0.20 0.0025 1259.7 248.5 0.1973 40 42 0.40 0.005 1262.9 298.2 0.2361 60 69 0.60 0.0075 1266.1 489.9 0.3869 80 108 0.80 0.010 1269.3 766.8 0.6041 120 213 1.20 0.015 1273.7 1512.3 1.1855 140 220 1.40 0.0175 1279.0 156.2 1.2213 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 50%LS + 48%SBPA + 2%C Dial reading Load unit ΔL 12 20 0.12 0.0015 1258.5 142 0.1128 20 31 0.20 0.0025 1259.7 220.1 0.1747 40 50 0.40 0.005 1262.9 355 0.2811 60 97 0.60 0.0075 1266.1 688.7 0.5440 80 106 0.80 0.010 1269.3 752.6 0.5929 120 164 1.20 0.015 1273.7 1164.4 0.9128 77 140 189 1.40 0.0175 1279.0 1341.9 1.0492 160 229 1.60 0.020 1282.2 1625.9 1.2681 200 241 2.00 0.025 1288.8 1711.1 1.3277 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 50%LS + 46%SBPA + 4%C Dial reading Load unit ΔL 12 11 0.12 0.0015 1258.5 78.1 0.0621 20 22 0.20 0.0025 1259.7 156.2 0.1240 40 80 0.40 0.005 1262.9 568 0.4498 60 120 0.60 0.0075 1266.1 852 0.6729 80 129 0.80 0.010 1269.3 915.9 0.7216 120 151 1.20 0.015 1273.7 1072.1 0.8404 140 199 1.40 0.0175 1279.0 1412.9 1.1047 160 249 1.60 0.020 1282.2 1767.9 1.3788 200 260 2.00 0.025 1288.8 1846 1.4323 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 50%LS + 44%SBPA + 6%C Dial reading Load unit ΔL 12 7 0.12 0.0015 1258.5 177.5 0.1410 20 12 0.20 0.0025 1259.7 326.6 0.2593 40 24 0.40 0.005 1262.9 461.5 0.3654 60 25 0.60 0.0075 1266.1 653.2 0.5159 80 46 0.80 0.010 1269.3 781 0.6153 120 65 1.20 0.015 1273.7 1391.6 1.0909 140 92 1.40 0.0175 1279.0 1505.2 1.1769 160 110 1.60 0.020 1282.2 1881.5 1.4674 200 196 2.00 0.025 1288.8 1952.5 1.5150 78 SAMPLE: 40%LS + 60%SBPA Ɛ À(mm2) P(N) σ (N/mm2) 0.12 0.0015 1258.5 106.5 0.0846 25 0.20 0.0025 1259.7 177.5 0.1409 40 35 0.40 0.005 1262.9 248.5 0.1968 60 44 0.60 0.0075 1266.1 312.4 0.2467 80 51 0.80 0.010 1269.3 362.1 0.2853 120 57 1.20 0.015 1273.7 404.7 0.3177 Ɛ À(mm2) P(N) σ (N/mm2) Dial reading Load unit 12 15 20 ΔL SAMPLE: 40%LS + 58%SBPA + 2%C Dial reading Load unit ΔL 12 18 0.12 0.0015 1258.5 127.8 0.1015 20 29 0.20 0.0025 1259.7 205.9 0.1635 40 39 0.40 0.005 1262.9 276.9 0.2193 60 47 0.60 0.0075 1266.1 333.7 0.2636 80 66 0.80 0.010 1269.3 468.6 0.3692 120 88 1.20 0.015 1273.7 624.8 0.4898 140 109 1.40 0.0175 1279.0 775.9 0.6066 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 40%LS + 56%SBPA + 4%C Dial reading Load unit ΔL 12 27 0.12 0.0015 1258.5 191.7 0.1523 20 33 0.20 0.0025 1259.7 234.3 0.1860 40 68 0.40 0.005 1262.9 482.8 0.3823 79 60 109 0.60 0.0075 1266.1 773.9 0.6112 80 121 0.80 0.010 1269.3 859.1 0.6768 120 142 1.20 0.015 1273.7 1008.2 0.7916 140 160 1.40 0.0175 1279.0 1136 0.8882 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 40%LS + 54%SBPA + 6%C Dial reading Load unit ΔL 12 22 0.12 0.0015 1258.5 156.2 0.1241 20 32 0.20 0.0025 1259.7 227.2 0.1804 40 41 0.40 0.005 1262.9 291.1 0.2305 60 87 0.60 0.0075 1266.1 617.7 0.4879 80 102 0.80 0.010 1269.3 731.3 0.5761 120 143 1.20 0.015 1273.7 1015.3 0.7959 140 169 1.40 0.0175 1279.0 1199.9 0.9382 160 178 1.60 0.020 1282.2 1263.8 0.9856 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 20%LS + 80%SBPA Dial reading Load unit ΔL 12 8 0.12 0.0015 1258.5 56.8 0.0451 20 10 0.20 0.0025 1259.9 74 0.0587 40 18 0.40 0.005 1263.0 127.8 0.1012 60 26 0.60 0.0075 1266.4 184.6 0.1458 80 42 0.80 0.010 1269.4 298.2 0.2349 120 62 1.20 0.015 1276.3 440.2 0.3449 140 69 1.40 0.0175 1279.5 489.9 0.3829 160 70 1.60 0.020 1282.9 497 0.3874 80 SAMPLE: 20%LS + 78%SBPA + 2%C Ɛ À(mm2) P(N) σ (N/mm2) 0.12 0.0015 1258.5 63.9 0.0508 15 0.20 0.0025 1259.7 106.5 0.0845 40 35 0.40 0.005 1262.9 248.5 0.1968 60 62 0.60 0.0075 1266.1 440.2 0.3477 80 158 0.80 0.010 1269.3 1121.8 0.8838 120 161 1.20 0.015 1273.7 1143.1 0.8975 140 171 1.40 0.0175 1279.0 1214.1 0.9493 160 188 1.60 0.020 1282.2 1334.8 1.0410 Ɛ À(mm2) P(N) σ (N/mm2) Dial reading Load unit 12 9 20 ΔL SAMPLE: 20%LS + 76%SBPA + 4%C Dial reading Load unit ΔL 12 20 0.12 0.0015 1258.5 142 0.1128 20 21 0.20 0.0025 1259.9 149.1 0.1183 40 38 0.40 0.005 1263.0 269.8 0.2136 60 66 0.60 0.0075 1266.4 468.6 0.3700 80 95 0.80 0.010 1269.6 674.5 0.5313 120 145 1.20 0.015 1276.3 1029.5 0.8066 140 174 1.40 0.0175 1279.5 1235.4 0.9655 160 235 1.60 0.020 1282.9 1668.5 1.3006 81 200 420 2.00 0.025 1289.6 2982 2.312 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 20%LS + 74%SBPA + 6%C Dial reading Load unit ΔL 12 14 0.12 0.0015 1258.5 99.4 0.0789 20 23 0.20 0.0025 1259.7 163.3 0.1296 40 52 0.40 0.005 1262.9 369.2 0.2923 60 83 0.60 0.0075 1266.1 589.3 0.4654 80 107 0.80 0.010 1269.3 759.7 0.5985 120 144 1.20 0.015 1275.7 1022.4 0.8014 140 166 1.40 0.0175 1279.0 1178.6 0.9215 160 194 1.60 0.020 1282.2 1377.4 1.0742 200 220 2.00 0.025 1288.8 1562 1.2120 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 100%SBPA Dial reading Load unit ΔL 12 15 0.12 0.0015 1258.5 106.5 0.0846 20 23 0.20 0.0025 1259.7 163.3 0.1296 40 51 0.40 0.005 1262.9 362.1 0.2867 60 76 0.60 0.0075 1266.1 539.6 0.4262 80 81 0.80 0.010 1269.3 575.1 0.4531 120 106 1.20 0.015 1275.7 752.6 0.5899 140 133 1.40 0.0175 1279.0 944.3 0.7383 160 151 1.60 0.020 1282.2 1072.1 0.8361 200 157 2.00 0.025 1288.8 1114.7 0.8649 82 SAMPLE: 98%SBPA + 2%C Ɛ À(mm2) P(N) σ (N/mm2) 0.12 0.0015 1258.5 142 0.1128 40 0.20 0.0025 1259.7 284 0.2255 40 61 0.40 0.005 1262.9 433.1 0.3429 60 72 0.60 0.0075 1266.1 511.2 0.4038 80 100 0.80 0.010 1269.3 710 0.5594 120 121 1.20 0.015 1275.7 859.1 0.6734 140 142 1.40 0.0175 1279.0 1008.2 0.7883 160 159 1.60 0.020 1282.2 1128.9 0.8804 200 164 2.00 0.025 1288.8 1164.4 0.9035 Ɛ À(mm2) P(N) σ (N/mm2) Dial reading Load unit 12 20 20 ΔL SAMPLE: 96%SBPA + 4%C Dial reading Load unit ΔL 12 15 0.12 0.0015 1258.5 106.5 0.0846 20 25 0.20 0.0025 1259.7 177.5 0.1409 40 46 0.40 0.005 1262.9 326.6 0.2586 60 85 0.60 0.0075 1266.1 603.5 0.4767 80 101 0.80 0.010 1269.3 717.1 0.5650 120 115 1.20 0.015 1275.7 816.5 0.6400 140 133 1.40 0.0175 1279.0 944.3 0.7383 160 177 1.60 0.020 1282.2 1256.7 0.9801 200 192 2.00 0.025 1288.8 1363.2 1.0577 83 SAMPLE: 94%SBPA + 6%C Ɛ À(mm2) P(N) σ (N/mm2) 0.12 0.0015 1258.5 42.6 0.0338 26 0.20 0.0025 1259.7 184.6 0.1465 40 42 0.40 0.005 1262.9 298.2 0.2361 60 64 0.60 0.0075 1266.1 454.4 0.3589 80 95 0.80 0.010 1269.3 674.5 0.5314 120 150 1.20 0.015 1275.7 1065 0.8348 140 163 1.40 0.0175 1279.0 1157.3 0.9048 160 170 1.60 0.020 1282.2 1207 0.9414 200 205 2.00 0.025 1288.8 1455.5 1.1293 Dial reading Load unit 12 6 20 ΔL UCS (7 DAYS CURING) BSL SAMPLE: 100%LS Ɛ À(mm2) P(N) σ (N/mm2) 0.12 0.0015 1258.5 56.8 0.0451 11 0.20 0.0025 1259.9 78.1 0.0620 40 21 0.40 0.005 1263.0 149.1 0.1181 60 36 0.60 0.0075 1266.4 255.6 0.2018 80 54 0.80 0.010 1269.6 383.4 0.3020 120 90 1.20 0.015 1276.3 639 0.5007 140 111 1.40 0.0175 1279.5 788.1 0.6159 Dial reading Load unit 12 8 20 ΔL 84 160 120 1.60 0.020 1282.9 852 0.6641 200 123 2.00 0.025 1289.6 873.2 0.6771 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 80%LS + 20%SBPA Dial reading Load unit ΔL 12 9 0.12 0.0015 1258.5 63.9 0.0508 20 12 0.20 0.0025 1259.7 85.2 0.0676 40 16 0.40 0.005 1262.9 113.6 0.0899 60 35 0.60 0.0075 1266.1 248.5 0.1963 80 65 0.80 0.010 1269.3 461.5 0.3636 120 130 1.20 0.015 1275.7 923 0.7247 140 190 1.40 0.0175 1279.0 1349 1.0547 160 270 1.60 0.020 1282.2 1917 1.4951 200 370 2.00 0.025 1288.8 2627 2.0383 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 80%LS + 18%SBPA + 2%C Dial reading Load unit ΔL 12 19 0.12 0.0015 1258.5 134.9 0.1072 20 29 0.20 0.0025 1259.7 205.9 0.1635 40 35 0.40 0.005 1262.9 248.5 0.1968 60 55 0.60 0.0075 1266.1 390.5 0.3084 80 79 0.80 0.010 1269.3 560.9 0.4419 120 85 1.20 0.015 1275.7 603.5 0.4731 140 100 1.40 0.0175 1279.0 710 0.5551 160 145 1.60 0.020 1282.2 1029.5 0.8029 200 201 2.00 0.025 1288.8 1427.1 1.1073 85 SAMPLE: 80%LS + 16%SBPA + 4%C Ɛ À(mm2) P(N) σ (N/mm2) 0.12 0.0015 1258.5 78.1 0.0621 21 0.20 0.0025 1259.7 149.1 0.1184 40 40 0.40 0.005 1262.9 284 0.2249 60 67 0.60 0.0075 1266.1 475.7 0.3757 80 81 0.80 0.010 1269.3 575.1 0.4531 120 123 1.20 0.015 1275.7 873.3 0.6846 140 189 1.40 0.0175 1279.0 1341.9 0.9710 160 281 1.60 0.020 1282.2 1995.1 1.5560 Ɛ À(mm2) P(N) σ (N/mm2) Dial reading Load unit 12 11 20 ΔL SAMPLE: 80%LS + 14%SBPA + 6%C Dial reading Load unit ΔL 12 38 0.12 0.0015 1258.5 269.8 0.2144 20 49 0.20 0.0025 1259.7 347.9 0.2762 40 90 0.40 0.005 1262.9 639 0.5060 60 131 0.60 0.0075 1266.1 930.1 0.7346 80 182 0.80 0.010 1269.3 1292.2 1.0180 120 275 1.20 0.015 1275.7 1952.5 1.5305 140 310 1.40 0.0175 1279.0 2201 1.7208 160 341 1.60 0.020 1282.2 2421.1 1.8882 200 342 2.00 0.025 1288.8 2428.2 1.8840 86 SAMPLE: 60%LS + 40%SBPA Ɛ À(mm2) P(N) σ (N/mm2) 0.12 0.0015 1258.5 191.7 0.1523 44 0.20 0.0025 1259.7 312.4 0.2480 40 84 0.40 0.005 1262.9 596.4 0.4722 60 89 0.60 0.0075 1266.1 489.9 0.3869 80 92 0.80 0.010 1269.3 653.2 0.5146 120 174 1.20 0.015 1275.7 1235.4 0.9684 140 181 1.40 0.0175 1279.0 1285.1 1.0048 Ɛ À(mm2) P(N) σ (N/mm2) Dial reading Load unit 12 27 20 ΔL SAMPLE: 60%LS + 38%SBPA + 2%C Dial reading Load unit ΔL 12 15 0.12 0.0015 1258.5 106.5 0.0846 20 28 0.20 0.0025 1259.7 198.8 0.1578 40 38 0.40 0.005 1262.9 269.8 0.2136 60 51 0.60 0.0075 1266.1 362.1 0.2860 80 83 0.80 0.010 1269.3 589.3 0.4643 120 114 1.20 0.015 1275.7 809.4 0.6345 140 131 1.40 0.0175 1279.0 930.1 0.7272 160 150 1.60 0.020 1282.2 1065 0.8306 87 SAMPLE: 60%LS + 36%SBPA + 4%C Ɛ À(mm2) P(N) σ (N/mm2) 0.12 0.0015 1258.5 56.8 0.0451 26 0.20 0.0025 1259.7 184.6 0.1465 40 59 0.40 0.005 1262.9 418.9 0.3317 60 61 0.60 0.0075 1266.1 433.1 0.3421 80 81 0.80 0.010 1269.3 575.1 0.4531 120 99 1.20 0.015 1275.7 702.9 0.5510 140 111 1.40 0.0175 1279.0 788.1 0.6162 160 126 1.60 0.020 1282.2 894.6 0.6977 Ɛ À(mm2) P(N) σ (N/mm2) Dial reading Load unit 12 8 20 ΔL SAMPLE: 60%LS + 34%SBPA + 6%C Dial reading Load unit ΔL 12 14 0.12 0.0015 1258.5 99.4 0.0790 20 21 0.20 0.0025 1259.7 149.1 0.1184 40 31 0.40 0.005 1262.9 220.1 0.1743 60 42 0.60 0.0075 1266.1 298.2 0.2355 80 52 0.80 0.010 1269.3 369.2 0.2909 120 59 1.20 0.015 1275.7 418.9 0.3284 140 66 1.40 0.0175 1279.0 468.6 0.3664 160 91 1.60 0.020 1282.2 646.1 0.5039 200 126 2.00 0.025 1288.8 894.6 0.6941 240 154 2.40 0.030 1295.5 1093.4 0.8440 88 SAMPLE: 50%LS + 50%SBPA Ɛ À(mm2) P(N) σ (N/mm2) 0.12 0.0015 1258.5 177.5 0.1410 29 0.20 0.0025 1259.7 205.9 0.1635 40 47 0.40 0.005 1262.9 333.7 0.2642 60 59 0.60 0.0075 1266.1 418.9 0.3309 80 91 0.80 0.010 1269.3 646.1 0.5090 120 182 1.20 0.015 1275.7 1292.2 1.0129 140 205 1.40 0.0175 1279.0 1455.5 1.1380 160 242 1.60 0.020 1282.2 1718.2 1.3400 200 270 2.00 0.025 1288.8 1917 1.4874 Ɛ À(mm2) P(N) σ (N/mm2) Dial reading Load unit 12 25 20 ΔL SAMPLE: 50%LS + 48%SBPA + 2%C Dial reading Load unit ΔL 12 20 0.12 0.0015 1258.5 142 0.1128 20 28 0.20 0.0025 1259.7 198.8 0.1575 40 37 0.40 0.005 1262.9 262.7 0.2080 60 49 0.60 0.0075 1266.1 347.9 0.2748 80 61 0.80 0.010 1269.3 433.1 0.3412 120 73 1.20 0.015 1275.7 518.3 0.4063 140 122 1.40 0.0175 1279.0 866.2 0.6772 160 188 1.60 0.020 1282.2 1334.8 1.0410 200 231 2.00 0.025 1288.8 1640.1 1.2726 89 SAMPLE: 50%LS + 46%SBPA + 4%C Ɛ À(mm2) P(N) σ (N/mm2) 0.12 0.0015 1258.5 85.2 0.0677 24 0.20 0.0025 1259.7 170.4 0.1353 40 33 0.40 0.005 1262.9 234.3 0.1855 60 43 0.60 0.0075 1266.1 305.3 0.2411 80 81 0.80 0.010 1269.3 575.1 0.4531 120 105 1.20 0.015 1275.7 745.5 0.5844 140 187 1.40 0.0175 1279.0 1327.7 1.0381 Ɛ À(mm2) P(N) σ (N/mm2) Dial reading Load unit 12 12 20 ΔL SAMPLE: 50%LS + 44%SBPA + 6%C Dial reading Load unit ΔL 12 17 0.12 0.0015 1258.5 120.7 0.0959 20 31 0.20 0.0025 1259.7 220.1 0.1747 40 67 0.40 0.005 1262.9 475.7 0.3767 60 92 0.60 0.0075 1266.1 653.2 0.5159 80 109 0.80 0.010 1269.3 773.9 0.6097 120 132 1.20 0.015 1275.7 937.2 0.7347 140 139 1.40 0.0175 1279.0 986.9 0.7716 160 142 1.60 0.020 1282.2 1008.2 0.7863 200 150 2.00 0.025 1288.8 1065 0.8264 90 SAMPLE: 40%LS + 60%SBPA Ɛ À(mm2) P(N) σ (N/mm2) 0.12 0.0015 1258.5 120.7 0.0959 20 0.20 0.0025 1259.7 142 0.1127 40 33 0.40 0.005 1262.9 234.3 0.1855 60 34 0.60 0.0075 1266.1 241.4 0.1907 80 62 0.80 0.010 1269.3 440.2 0.3468 120 92 1.20 0.015 1275.7 653.2 0.5120 140 96 1.40 0.0175 1279.0 681.6 0.5329 Ɛ À(mm2) P(N) σ (N/mm2) Dial reading Load unit 12 17 20 ΔL SAMPLE: 40%LS + 58%SBPA + 2%C Dial reading Load unit ΔL 12 15 0.12 0.0015 1258.5 106.5 0.0846 20 23 0.20 0.0025 1259.7 163.3 0.1296 40 37 0.40 0.005 1262.9 262.7 0.2080 60 51 0.60 0.0075 1266.1 362.1 0.2860 80 79 0.80 0.010 1269.3 560.9 0.4419 120 121 1.20 0.015 1275.7 859.1 0.6734 140 179 1.40 0.0175 1279.0 1270.9 0.9937 160 212 1.60 0.020 1282.2 1505.2 1.1739 200 233 2.00 0.025 1288.8 1654.3 1.2836 91 SAMPLE: 40%LS + 56%SBPA + 4%C Ɛ À(mm2) P(N) σ (N/mm2) 0.12 0.0015 1258.5 163.3 0.1298 34 0.20 0.0025 1259.7 241.4 0.1916 40 49 0.40 0.005 1262.9 347.9 0.2755 60 88 0.60 0.0075 1266.1 624.8 0.4935 80 137 0.80 0.010 1269.3 972.7 0.7663 120 147 1.20 0.015 1275.7 1043.7 0.8181 140 161 1.40 0.0175 1279.0 1143.1 0.8937 160 222 1.60 0.020 1282.2 1576.2 1.2293 200 279 2.00 0.025 1288.8 1980.9 1.5370 Ɛ À(mm2) P(N) σ (N/mm2) Dial reading Load unit 12 23 20 ΔL SAMPLE: 40%LS + 54%SBPA + 6%C Dial reading Load unit ΔL 12 24 0.12 0.0015 1258.5 170.4 0.1326 20 27 0.20 0.0025 1259.7 191.7 0.1522 40 48 0.40 0.005 1262.9 340.8 0.2699 60 99 0.60 0.0075 1266.1 560.9 0.4430 80 124 0.80 0.010 1269.3 880.4 0.6936 120 195 1.20 0.015 1275.7 1384.5 1.0853 140 232 1.40 0.0175 1279.0 1647.2 1.2879 160 261 1.60 0.020 1282.2 1853.1 1.4453 200 310 2.00 0.025 1288.8 2201 1.7078 240 327 2.40 0.030 1295.5 2321.7 1.7921 SAMPLE: 20%LS + 80%SBPA 92 Ɛ À(mm2) P(N) σ (N/mm2) 0.12 0.0015 1258.5 149.1 0.1185 32 0.20 0.0025 1259.7 227.2 0.1804 40 39 0.40 0.005 1262.9 276.9 0.2193 60 49 0.60 0.0075 1266.1 347.9 0.2748 80 120 0.80 0.010 1269.3 852 0.6712 120 145 1.20 0.015 1275.7 1029.5 0.8070 140 160 1.40 0.0175 1279.0 1136 0.8880 Ɛ À(mm2) P(N) σ (N/mm2) Dial reading Load unit 12 21 20 ΔL SAMPLE: 20%LS + 78%SBPA + 2%C Dial reading Load unit ΔL 12 21 0.12 0.0015 1258.5 149.1 0.1185 20 41 0.20 0.0025 1259.7 291.1 0.2311 40 59 0.40 0.005 1262.9 418.9 0.3317 60 78 0.60 0.0075 1266.1 553.8 0.4374 80 121 0.80 0.010 1269.3 859.1 0.6768 120 150 1.20 0.015 1275.7 1065 0.8348 140 179 1.40 0.0175 1279.0 1270.9 0.9937 À(mm2) P(N) σ (N/mm2) SAMPLE: 20%LS + 76%SBPA + 4%C Dial reading Load unit ΔL Ɛ 93 12 27 0.12 0.0015 1258.5 191.7 0.1523 20 34 0.20 0.0025 1259.7 241.4 0.1916 40 57 0.40 0.005 1262.9 404.7 0.3205 60 90 0.60 0.0075 1266.1 637 0.5047 80 125 0.80 0.010 1269.3 887.5 0.6992 120 200 1.20 0.015 1275.7 1420 1.1131 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 20%LS + 74%SBPA + 6%C Dial reading Load unit ΔL 12 19 0.12 0.0015 1258.5 134.9 0.1072 20 39 0.20 0.0025 1259.7 276.9 0.2198 40 51 0.40 0.005 1262.9 362.1 0.2867 60 82 0.60 0.0075 1266.1 582.2 0.4598 80 97 0.80 0.010 1269.3 688.7 0.5426 120 213 1.20 0.015 1275.7 1510.9 0.5844 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 100%SBPA Dial reading Load unit ΔL 12 16 0.12 0.0015 1258.5 113.6 0.0903 20 26 0.20 0.0025 1259.7 184.6 0.1465 40 54 0.40 0.005 1262.9 383.4 0.3036 60 85 0.60 0.0075 1266.1 603.5 0.4767 80 131 0.80 0.010 1269.3 930.1 0.7328 120 212 1.20 0.015 1275.7 1505.2 1.1799 140 229 1.40 0.0175 1279.0 1625.9 1.2712 94 SAMPLE: 98%SBPA + 2%C Ɛ À(mm2) P(N) σ (N/mm2) 0.12 0.0015 1258.5 92.3 0.0733 28 0.20 0.0025 1259.7 198.8 0.1578 40 47 0.40 0.005 1262.9 333.7 0.2642 60 67 0.60 0.0075 1266.1 475.7 0.3757 80 136 0.80 0.010 1269.3 965.6 0.7607 120 222 1.20 0.015 1275.7 1576.2 1.2356 140 237 1.40 0.0175 1279.0 1682.7 1.3156 Ɛ À(mm2) P(N) σ (N/mm2) Dial reading Load unit 12 13 20 ΔL SAMPLE: 96%SBPA + 4%C Dial reading Load unit ΔL 12 36 0.12 0.0015 1258.5 255.6 0.2031 20 52 0.20 0.0025 1259.7 369.2 0.2931 40 95 0.40 0.005 1262.9 674.5 0.5341 60 149 0.60 0.0075 1266.1 1057.9 0.8356 80 197 0.80 0.010 1269.3 1398.7 1.1019 120 275 1.20 0.015 1275.7 1952.5 1.5305 140 280 1.40 0.0175 1279.0 1988 1.5543 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 94%SBPA + 6%C Dial reading Load unit ΔL 12 15 0.12 0.0015 1258.5 106.5 0.0846 20 25 0.20 0.0025 1259.7 177.5 0.1409 95 40 57 0.40 0.005 1262.9 404.7 0.3205 60 97 0.60 0.0075 1266.1 688.7 0.5440 80 155 0.80 0.010 1269.3 1100.5 0.8670 120 271 1.20 0.015 1275.7 1924.1 1.5083 140 295 1.40 0.0175 1279.0 2094.5 1.6376 UCS (14DAYS CURING) BSL SAMPLE: 100%LS Ɛ À(mm2) P(N) σ (N/mm2) 0.12 0.0015 1258.5 63.9 0.0508 15 0.20 0.0025 1259.7 106.5 0.0845 40 31 0.40 0.005 1262.9 220.1 0.1743 60 51 0.60 0.0075 1266.1 362.1 0.2860 80 69 0.80 0.010 1269.3 489.9 0.3860 120 87 1.20 0.015 1275.7 617.7 0.4842 140 119 1.40 0.0175 1279.0 844.9 0.6606 160 153 1.60 0.020 1282.2 1086.3 0.8472 Ɛ À(mm2) P(N) σ (N/mm2) Dial reading Load unit 12 9 20 ΔL SAMPLE: 80%LS + 20%SBPA Dial reading Load unit ΔL 96 12 32 0.12 0.0015 1258.5 227.2 0.1805 20 39 0.20 0.0025 1259.7 276.9 0.2198 40 65 0.40 0.005 1262.9 461.5 0.3654 60 88 0.60 0.0075 1266.1 624.8 0.4935 80 118 0.80 0.010 1269.3 837.8 0.6600 120 150 1.20 0.015 1275.7 1065 0.8348 140 190 1.40 0.0175 1279.0 1349 1.0547 160 280 1.60 0.020 1282.2 1988 1.5505 200 376 2.00 0.025 1288.8 2669.6 2.0714 240 390 2.40 0.030 1295.5 2769 2.1374 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 80%LS + 18%SBPA + 2%C Dial reading Load unit ΔL 12 27 0.12 0.0015 1258.5 191.7 0.1523 20 38 0.20 0.0025 1259.7 269.8 0.2142 40 51 0.40 0.005 1262.9 362.1 0.2867 60 76 0.60 0.0075 1266.1 539.6 0.4262 80 124 0.80 0.010 1269.3 880.4 0.6936 120 165 1.20 0.015 1275.7 1171.5 0.9183 140 311 1.40 0.0175 1279.0 2208.1 1.7264 160 399 1.60 0.020 1282.2 2832.9 2.2094 SAMPLE: 80%LS + 16%SBPA + 4%C 97 Ɛ À(mm2) P(N) σ (N/mm2) 0.12 0.0015 1258.5 106.5 0.0846 30 0.20 0.0025 1259.7 213 0.1691 40 42 0.40 0.005 1262.9 298.2 0.2361 60 84 0.60 0.0075 1266.1 596.4 0.4707 80 126 0.80 0.010 1269.3 894.6 0.7048 120 155 1.20 0.015 1275.7 1100.5 0.8627 140 300 1.40 0.0175 1279.0 2130 1.6654 160 401 1.60 0.020 1282.2 2847.1 2.2205 Ɛ À(mm2) P(N) σ (N/mm2) Dial reading Load unit 12 15 20 ΔL SAMPLE: 80%LS + 14%SBPA + 6%C Dial reading Load unit ΔL 12 12 0.12 0.0015 1258.5 85.2 0.0677 20 19 0.20 0.0025 1259.7 134.9 0.1071 40 25 0.40 0.005 1262.9 177.5 0.1405 60 39 0.60 0.0075 1266.1 276.9 0.2187 80 80 0.80 0.010 1269.3 568 0.4475 120 149 1.20 0.015 1275.7 1057.9 0.8293 140 151 1.40 0.0175 1279.0 1072.1 0.8382 160 175 1.60 0.020 1282.2 1242.5 0.9690 200 335 2.00 0.025 1288.8 2378.5 1.8455 240 407 2.40 0.030 1295.5 2889.7 2.2306 Ɛ À(mm2) P(N) σ (N/mm2) 0.0015 1258.5 170.4 0.1354 SAMPLE: 60%LS + 40%SBPA Dial reading Load unit 12 24 ΔL 0.12 98 20 31 0.20 0.0025 1259.7 220.1 0.1747 40 65 0.40 0.005 1262.9 461.5 0.3654 60 103 0.60 0.0075 1266.1 731.3 0.5776 80 165 0.80 0.010 1269.3 1171.5 0.9229 120 219 1.20 0.015 1275.7 1554.9 1.2189 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 60%LS + 38%SBPA + 2%C Dial reading Load unit ΔL 12 13 0.12 0.0015 1258.5 92.3 0.0733 20 26 0.20 0.0025 1259.7 184.6 0.1465 40 68 0.40 0.005 1262.9 482.8 0.3823 60 140 0.60 0.0075 1266.1 994 0.7851 80 155 0.80 0.010 1269.3 1100.5 0.8670 120 188 1.20 0.015 1275.7 1334.8 1.0463 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 60%LS + 36%SBPA + 4%C Dial reading Load unit ΔL 12 20 0.12 0.0015 1258.5 142 0.1128 20 29 0.20 0.0025 1259.7 205.9 0.1635 40 52 0.40 0.005 1262.9 369.2 0.2923 60 152 0.60 0.0075 1266.1 1079.2 0.8524 80 177 0.80 0.010 1269.3 1256.7 0.9901 120 201 1.20 0.015 1275.7 1427.1 1.1187 Ɛ À(mm2) P(N) σ (N/mm2) 0.0015 1258.5 198.8 0.1580 SAMPLE: 60%LS + 34%SBPA + 6%C Dial reading Load unit 12 28 ΔL 0.12 99 20 40 0.20 0.0025 1259.7 284 0.2255 40 57 0.40 0.005 1262.9 404.7 0.3205 60 68 0.60 0.0075 1266.1 482.8 0.3813 80 92 0.80 0.010 1269.3 653.2 0.5146 120 125 1.20 0.015 1275.7 887.5 0.6957 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 50%LS + 50%SBPA Dial reading Load unit ΔL 12 10 0.12 0.0015 1258.5 71 0.0564 20 19 0.20 0.0025 1259.7 134.9 0.1071 40 30 0.40 0.005 1262.9 213 0.1687 60 35 0.60 0.0075 1266.1 248.5 0.1963 80 53 0.80 0.010 1269.3 376.3 0.2965 120 117 1.20 0.015 1275.7 830.7 0.6512 140 160 1.40 0.0175 1279.0 1136 0.8882 160 177 1.60 0.020 1282.2 1256.7 0.9801 200 135 2.00 0.025 1288.8 1668.5 1.2946 240 331 2.40 0.030 1295.5 2350.1 1.8140 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 50%LS + 48%SBPA + 2%C Dial reading Load unit ΔL 12 10 0.12 0.0015 1258.5 71 0.0564 20 20 0.20 0.0025 1259.7 142 0.1127 40 31 0.40 0.005 1262.9 220.1 0.1743 60 45 0.60 0.0075 1266.1 319.5 0.2523 80 53 0.80 0.010 1269.3 376.3 0.2965 100 120 100 1.20 0.015 1275.7 710 0.5566 140 217 1.40 0.0175 1279.0 1540.7 1.2046 160 290 1.60 0.020 1282.2 2057 1.6058 200 322 2.00 0.025 1288.8 2286.2 1.7740 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 50%LS + 46%SBPA + 4%C Dial reading Load unit ΔL 12 18 0.12 0.0015 1258.5 127.8 0.1015 20 27 0.20 0.0025 1259.7 191.7 0.1522 40 35 0.40 0.005 1262.9 248.5 0.1968 60 55 0.60 0.0075 1266.1 390.5 0.3084 80 65 0.80 0.010 1269.3 461.5 0.3636 120 81 1.20 0.015 1275.7 575.1 0.4508 140 242 1.40 0.0175 1279.0 1718.2 1.3434 160 287 1.60 0.020 1282.2 2037.7 1.5892 200 311 2.00 0.025 1288.8 2208.1 1.7133 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 50%LS + 44%SBPA + 6%C Dial reading Load unit ΔL 12 40 0.12 0.0015 1258.5 284 0.2257 20 54 0.20 0.0025 1259.7 383.4 0.3044 40 87 0.40 0.005 1262.9 617.7 0.4891 60 140 0.60 0.0075 1266.1 994 0.7851 80 149 0.80 0.010 1269.3 1057.9 0.8335 120 170 1.20 0.015 1275.7 1207 0.9461 140 179 1.40 0.0175 1279.0 1270.9 0.9937 160 288 1.60 0.020 1282.2 2044.8 1.5948 101 200 300 2.00 0.025 1288.8 2130 1.6527 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 40%LS + 60%SBPA Dial reading Load unit ΔL 12 24 0.12 0.0015 1258.5 170.4 0.1354 20 30 0.20 0.0025 1259.7 213 0.1691 40 35 0.40 0.005 1262.9 248.5 0.1968 60 49 0.60 0.0075 1266.1 347.9 0.2748 80 67 0.80 0.010 1269.3 475.7 0.3748 120 111 1.20 0.015 1275.7 788.1 0.6178 140 165 1.40 0.0175 1279.0 1171.5 0.9159 160 205 1.60 0.020 1282.2 1455.5 1.1352 200 295 2.00 0.025 1288.8 2094.5 1.6252 240 364 2.40 0.030 1295.5 2584.4 1.9949 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 40%LS + 58%SBPA + 2%C Dial reading Load unit ΔL 12 20 0.12 0.0015 1258.5 142 0.1128 20 27 0.20 0.0025 1259.7 191.7 0.1522 40 47 0.40 0.005 1262.9 347.9 0.2755 60 62 0.60 0.0075 1266.1 440.2 0.3477 80 87 0.80 0.010 1269.3 617.7 0.4866 120 100 1.20 0.015 1275.7 710 0.5566 102 140 175 1.40 0.0175 1279.0 1242.5 0.9716 160 225 1.60 0.020 1282.2 1597.5 1.2459 200 342 2.00 0.025 1288.8 2428.2 1.8841 240 380 2.40 0.030 1295.5 2698 2.083 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 40%LS + 56%SBPA + 4%C Dial reading Load unit ΔL 12 18 0.12 0.0015 1258.5 127.8 0.1015 20 31 0.20 0.0025 1259.7 220.1 0.1747 40 51 0.40 0.005 1262.9 362.1 0.2867 60 71 0.60 0.0075 1266.1 504.1 0.3982 80 93 0.80 0.010 1269.3 660.3 0.5202 120 112 1.20 0.015 1275.7 795.2 0.6233 140 200 1.40 0.0175 1279.0 1420 1.1102 160 398 1.60 0.020 1282.2 2825.8 2.2039 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 40%LS + 54%SBPA + 6%C Dial reading Load unit ΔL 12 30 0.12 0.0015 1258.5 213 0.1692 20 36 0.20 0.0025 1259.7 255.6 0.2029 40 46 0.40 0.005 1262.9 326.6 0.2586 60 60 0.60 0.0075 1266.1 426 0.3365 80 78 0.80 0.010 1269.3 553.8 0.4363 120 121 1.20 0.015 1275.7 859.1 0.6734 140 140 1.40 0.0175 1279.0 994 0.7772 160 173 1.60 0.020 1282.2 1228.3 0.9580 103 200 264 2.00 0.025 1288.8 1874.4 1.4544 240 287 2.40 0.030 1295.5 2037.7 1.5729 280 418 2.60 0.035 1298.8 2967.8 2.2850 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 20%LS + 80%SBPA Dial reading Load unit ΔL 12 20 0.12 0.0015 1258.5 142 0.1128 20 33 0.20 0.0025 1259.7 234.3 0.1859 40 49 0.40 0.005 1262.9 347.9 0.2755 60 59 0.60 0.0075 1266.1 418.9 0.3309 80 155 0.80 0.010 1269.3 1100.5 0.8670 120 189 1.20 0.015 1275.7 1341.9 1.0519 140 220 1.40 0.0175 1279.0 1562 1.2182 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 20%LS + 78%SBPA + 2%C Dial reading Load unit ΔL 12 25 0.12 0.0015 1258.5 177.5 0.1410 20 69 0.20 0.0025 1259.7 489.9 0.3889 40 81 0.40 0.005 1262.9 575.1 0.4554 60 145 0.60 0.0075 1266.1 1029.5 0.8131 80 200 0.80 0.010 1269.3 1420 1.1187 120 215 1.20 0.015 1275.7 1526.5 1.1966 140 230 1.40 0.0175 1279.0 1633 1.2768 160 265 1.60 0.020 1282.2 1881.5 1.47207 104 SAMPLE: 20%LS + 76%SBPA + 4%C Ɛ À(mm2) P(N) σ (N/mm2) 0.12 0.0015 1258.5 106.5 0.0846 21 0.20 0.0025 1259.7 149.1 0.1184 40 49 0.40 0.005 1262.9 347.9 0.2755 60 61 0.60 0.0075 1266.1 433.1 0.3421 80 140 0.80 0.010 1269.3 994 0.7831 120 171 1.20 0.015 1275.7 1214.1 0.9517 140 220 1.40 0.0175 1279.0 1562 1.2213 160 281 1.60 0.020 1282.2 1995.1 1.5560 Ɛ À(mm2) P(N) σ (N/mm2) Dial reading Load unit 12 15 20 ΔL SAMPLE: 20%LS + 74%SBPA + 6%C Dial reading Load unit ΔL 12 19 0.12 0.0015 1258.5 134.9 0.1072 20 39 0.20 0.0025 1259.7 276.9 0.2198 40 58 0.40 0.005 1262.9 411.8 0.3261 60 81 0.60 0.0075 1266.1 575.1 0.4542 80 172 0.80 0.010 1269.3 1221.2 0.9621 120 253 1.20 0.015 1275.7 1796.3 1.4081 140 301 1.40 0.0175 1279.0 2137.1 1.6709 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 100%SBPA Dial reading Load unit ΔL 12 21 0.12 0.0015 1258.5 149.1 0.1185 20 31 0.20 0.0025 1259.7 220.1 0.1747 40 54 0.40 0.005 1262.9 383.4 0.3036 105 60 70 0.60 0.0075 1266.1 497 0.3925 80 82 0.80 0.010 1269.3 582.2 0.4586 120 87 1.20 0.015 1275.7 688.7 0.5399 140 105 1.40 0.0175 1279.0 745.5 0.5829 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 98%SBPA + 2%C Dial reading Load unit ΔL 12 16 0.12 0.0015 1258.5 113.6 0.0903 20 26 0.20 0.0025 1259.7 184.6 0.1465 40 59 0.40 0.005 1262.9 418.9 0.3317 60 72 0.60 0.0075 1266.1 511.2 0.4038 80 100 0.80 0.010 1269.3 710 0.5594 120 135 1.20 0.015 1275.7 958.5 0.7514 140 192 1.40 0.0175 1279.0 1363.2 1.0658 Ɛ À(mm2) P(N) σ (N/mm2) SAMPLE: 96%SBPA + 4%C Dial reading Load unit ΔL 12 17 0.12 0.0015 1258.5 120.7 0.0959 20 24 0.20 0.0025 1259.7 170.4 0.1353 40 52 0.40 0.005 1262.9 369.2 0.2923 60 109 0.60 0.0075 1266.1 773.9 0.6112 80 182 0.80 0.010 1269.3 1292.2 1.0180 120 240 1.20 0.015 1275.7 1704 1.3357 Ɛ À(mm2) P(N) σ SAMPLE: 94%SBPA + 6%C Dial Load unit ΔL 106 (N/mm2) reading 12 17 0.12 0.0015 1258.5 120.7 0.0959 20 22 0.20 0.0025 1259.7 156.2 0.1240 40 42 0.40 0.005 1262.9 298.2 0.2361 60 65 0.60 0.0075 1266.1 461.5 0.3645 80 92 0.80 0.010 1269.3 653.2 0.5146 120 170 1.20 0.015 1275.7 1207 0.9461 140 218 1.40 0.0175 1279.0 1547.8 1.2102 160 270 1.60 0.020 1282.2 1917 1.4951 200 325 2.00 0.025 1288.8 2307.5 1.7904 APPENDIX II Compaction test result Mix proportion BSL BSH MDD OMC MDD OMC 100 % LS 1.719 8.7 1.926 7.90 80 % LS + 20 %SBPA 1.700 12.71 1.798 9.40 80 % LS + 18 % SBPA + 2 % C 1.682 13.67 1.765 12.35 80 % LS + 16 % SBPA + 4 % C 1.670 14.71 1.760 13.02 80 % LS + 14 % SBPA + 6 % C 1.634 15.29 1.753 14.61 60 % LS + 40 % SBPA 1.611 14.65 1.621 14.99 60 % LS + 38 % SBPA + 2 % C 1.572 16.30 1.596 15.70 60 % LS + 36 % SBPA + 4 % C 1.542 20.49 1.580 16.81 60 % LS + 34 % SBPA + 6 % C 1.508 24.14 1.565 19.23 50 % LS + 50 % SBPA 1.481 19.85 1.581 11.57 50 % LS + 48 % SBPA + 2 % C 1.473 23.15 1.569 15.42 50 % LS + 46 % SBPA + 4 % C 1.449 25.00 1.542 17.50 50 % LS + 44 % SBPA + 6 % C 1.432 26.60 1.528 20.71 107 40 % LS + 60 % SBPA 1.474 21.45 1.564 19.01 40 % LS + 58 % SBPA + 2 % C 1.457 23.09 1.555 20.58 40 % LS + 56 % SBPA + 4 % C 1.441 24.43 1.534 21.70 40 % LS + 54 % SBPA + 6 % C 1.400 26.14 1.516 23.75 20 % LS + 80 % SBPA 1.387 19.54 1.561 19.67 20 % LS + 78 % SBPA + 2 % C 1.357 24.05 1.540 21.10 20 % LS + 76 % SBPA + 4 % C 1.330 25.18 1.524 22.57 20 % LS + 74 % SBPA + 6 % C 1.282 27.00 1.517 26.43 100 % SBPA 1.280 22.42 1.372 21.71 98 % SBPA + 2 % C 1.220 24.59 1.341 23.93 96 % SBPA + 4 % C 1.153 26.67 1.196 25.20 94 % SBPA + 6 % C 1.151 29.00 1.191 26.81 100%LS 80%LS+20%SBPA 108 80%LS+18%SBAP+2%C 80%LS+16%SBPA+4%C 80%LS+14%SBPA+6%C 60%LS+40%SBPA (BSL) 109 60%LS+38%SBPA+2%C (BSL) 60%LS+36%SBPA+4%C (BSL) 60%LS+34%SBPA+6%C (BSL) 110 50%LS+50%SBPA (BSL) 50%LS+48%SBPA+2%C (BSL) 50%LS+46%SBAP+4%C (BSL) 50%LS+44%SBPA+6%C (BSL) 111 40%LS+60%SBPA (BSL) 40%LS+58%SBPA+2%C (BSL) 40%LS+56%SBPA+4%C (BSL) 40%LS+54%SBPA+6%C (BSL) 112 20%LS+80%SBPA (BSL) 20%LS+78%SBPA+2%C (BSL) 20%LS+76%SBPA+4%C (BSL) 20%LS+74%SBPA+6%C (BSL) 113 100%SBPA (BSL) 98%SBPA+2%C (BSL) 96%SBPA+4%C (BSL) 94%SBPA+6%C (BSL) 114 100%LS 80%LS+20%SBPA 80%LS+18%SBPA+2%C 80%LS+16%SBPA+4%C 115 80%LS+14%SBPA+6%C 60%LS+40%SBPA 60%LS+38%SBPA+2%C 60%LS+36%SBPA+4%C 116 60%LS+34%SBPA+6%C 50%LS+50%SBPA 50%LS+48%SBPA+2%C 117 50%LS+46%SBPA+4%C 50%LS+44%SBPA+6%C 40%LS+60%SBPA 40%LS+58%SBPA+2%C 118 40%LS+56%SBPA+4%C 40%LS+54%SBPA+6%C 20%LS+80%SBPA 20%LS+78%SBPA+2%C 119 20%LS+76%SBPA+4%C 20%LS+74%SBPA+6%C 100%SBPA 120 98%SBPA+2%C 96%SBPA+4%C 94%SBPA+6%C 121 APPENDIX III Califonia bearing ratio (CBR) result Mix proportion BSL BSH unsoaked soaked unsoaked Soaked 100 % LS 21.19 11.00 23.84 26.28 80 % LS + 20 % SBPA 29.34 18.34 29.49 31.33 80 % LS + 18 % SBPA + 2 % C 28.56 20.27 28.73 27.64 80 % LS + 16 % SBPA + 4 % C 30.41 15.89 31.33 36.86 80 % LS + 14 % SBPA + 6 % C 31.33 20.27 27.51 33.17 60 % LS + 40 % SBPA 18.94 28.72 22.11 26.72 60 % LS + 38 % SBPA + 2 % C 22.11 27.51 22.11 27.51 60 % LS + 36 % SBAP + 4 % C 23.04 34.23 18.94 28.56 60 % LS + 34 % SBPA + 6 % C 20.17 31.33 23.04 25.80 50 % LS + 50 % SBPA 17.51 22.11 12.84 21.19 50 % LS + 48 % SBPA + 2 % C 13.82 23.96 13.82 22.11 50 % LS + 46 % SBPA + 4 % C 12.22 19.35 12.22 23.04 50 % LS + 44 % SBPA + 6 % C 19.35 20.27 14.74 15.89 40 % LS + 60 % SBPA 11.98 8.56 12.22 11.98 40 % LS + 58 % SBPA + 2 % C 12.22 9.21 11.98 12.90 40 % LS + 56 % SBPA + 4 % C 11.00 8.56 10.39 14.74 40 % LS + 54 % SBPA + 6 % C 14.05 7.33 11.61 16.59 20 % LS + 80 % SBPA 6.11 5.50 5.50 8.56 122 20 % LS + 78 % SBPA + 2 % C 8.56 11.98 4.89 7.33 20 % LS + 76 % SBPA + 4 % C 8.56 6.11 5.50 7.95 20 % LS + 74 % SBPA + 6 % C 16.59 6.11 11.00 7.95 100 % SBPA 20.78 14.67 12.84 6.11 98 % SBPA + 2 % C 17.11 10.37 11.61 6.11 96 % SBPA + 4 % C 16.59 7.95 11.06 4.89 94 % SBPA + 6 % C 22.11 7.33 13.82 6.45 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 100 % LS CBR VALUE: Penetration (mm) (MACHINE FACTOR=0.122) 20.78 Dial reading Load KN TOP: 20.78 Standard loading CBR (%) Dial reading 0.5 16 14 1.0 16 14 1.5 17 18 2.0 22 20 2.5 23 3.0 24 23 3.5 24 26 4.0 30 29 4.5 33 31 5.0 34 5.5 38 35 6.0 39 38 6.5 40 38 7.0 40 39 7.5 42 43 13.24 19.96 21.19 20.78 20.27 123 22 33 BOTTOM: Load (KN) Standard loading CBR 13.24 20.27 19.96 20.17 (%) CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 80%LS + 20%SBPA Penetratio n (mm) Dial readin g Loa d KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial readin g 0.5 18 20 1.0 21 20 1.5 24 23 2.0 26 24 2.5 29 3.0 30 28 3.5 31 30 4.0 31 33 4.5 34 34 5.0 45 5.5 47 49 6.0 48 54 6.5 48 55 7.0 55 55 7.5 57 59 13.24 19.96 CBR VALUE: 29.34 26.7 2 27.5 1 TOP: 27.51 Loa d (KN) 28 48 Standar d loading CBR 13.24 25.8 19.96 29.3 4 (%) BOTTOM: 29.34 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 80% LS+18%SBPA+2% Penetratio n (mm) Dial readin g Load KN Standar d loading 124 CBR (%) (MACHINE FACTOR=0.122) Dial Load readin (KN) g Standar d loading CBR (%) 0.5 18 16 1.0 18 19 1.5 25 20 2.0 26 26 2.5 31 3.0 33 34 3.5 33 35 4.0 34 36 4.5 38 38 5.0 46 5.5 48 44 6.0 51 49 6.5 58 49 7.0 59 55 7.5 64 58 13.24 28.5 6 19.96 CBR VALUE: 28.56 31 28.1 1 13.24 44 19.96 TOP: 28.56 28.5 6 26.8 9 BOTTOM: 28.56 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 80%LS+16%SBPA+4%C Penetratio n Dial reading (mm) Load KN Standar d loading CBR (%) Dial reading 0.5 19 15 1.0 25 20 1.5 28 27 2.0 28 33 2.5 29 13.24 26.72 125 (MACHINE FACTOR=0.122) 33 Load (KN) Standar d loading CBR 13.24 30.41 (%) 3.0 30 34 3.5 31 35 4.0 34 36 4.5 38 36 5.0 42 5.5 50 56 6.0 51 56 6.5 56 57 7.0 56 57 7.5 58 60 19.96 CBR VALUE: 30.41 25.67 49 TOP: 26.72 19.96 29.95 BOTTOM: 30.41 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 80%LS+14%SBPA+6%C Penetratio n Dial reading (mm) Load KN Standar d loading CBR (%) Dial reading 0.5 16 17 1.0 22 20 1.5 26 25 2.0 28 29 2.5 34 3.0 37 35 3.5 38 36 4.0 39 40 4.5 44 43 5.0 49 5.5 50 57 6.0 50 57 6.5 51 58 13.24 19.96 31.33 29.95 126 (MACHINE FACTOR=0.122) 34 50 Load (KN) Standar d loading CBR 13.24 31.33 19.96 30.56 (%) 7.0 53 59 7.5 59 62 CBR VALUE: 31.33 31.33 TOP: 31.33 BOTTOM: CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 60%LS+40%SBPA Penetratio n Dial reading (mm) Load KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial reading 0.5 9 9 1.0 11 9 1.5 15 10 2.0 16 14 2.5 20 3.0 25 17 3.5 27 18 4.0 27 26 4.5 28 28 5.0 31 5.5 32 31 6.0 33 33 6.5 34 34 7.0 37 36 7.5 38 38 CBR VALUE: 18.94 13.24 19.96 18.43 18.94 TOP: 18.94 127 16 28 Load (KN) Standar d loading CBR 13.24 14.74 19.96 17.11 BOTTOM: 17.11 (%) CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 60%LS+38%SBPA+2%C Penetratio n Dial reading (mm) Load KN Standar d loading CBR (%) Dial reading 0.5 10 11 1.0 12 11 1.5 15 13 2.0 18 19 2.5 24 3.0 26 21 3.5 26 22 4.0 27 28 4.5 28 28 5.0 31 5.5 33 28 6.0 33 31 6.5 37 35 7.0 38 39 7.5 40 42 13.24 22.11 19.96 CBR VALUE: 22.11 18.95 (MACHINE FACTOR=0.122) Load (KN) 21 26 TOP: 22.11 Standar d loading CBR 13.24 19.35 19.96 15.89 (%) BOTTOM: 19.35 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 60%LS+36%SBPA+4%C Penetratio n (mm) Dial reading Load KN Standar d loading CBR (%) 128 (MACHINE FACTOR=0.122) Dial reading Load (KN) Standar d loading CBR (%) 0.5 12 14 1.0 12 15 1.5 15 20 2.0 19 25 2.5 25 3.0 26 27 3.5 26 29 4.0 27 29 4.5 30 30 5.0 30 5.5 32 33 6.0 33 34 6.5 36 35 7.0 38 36 7.5 38 36 13.24 23.0 4 19.96 18.3 4 25 33 CBR VALUE: 23.04 TOP: 23.04 13.24 23.0 4 19.96 20.1 7 BOTTOM: 23.04 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 60%LS+34%SBPA+6%C Penetratio n Dial reading (mm) Load KN Standar d loading CBR (%) Dial reading 0.5 10 6 1.0 12 9 1.5 12 11 2.0 18 12 2.5 21 13.24 19.35 129 (MACHINE FACTOR=0.122) 15 Load (KN) Standar d loading CBR 13.24 13.82 (%) 3.0 25 19 3.5 29 25 4.0 29 27 4.5 30 28 5.0 33 5.5 34 29 6.0 34 31 6.5 36 37 7.0 38 40 7.5 39 40 19.96 20.17 27 CBR VALUE: 20.17 TOP: 20.17 19.96 16.50 BOTTOM: 16.50 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 50%LS+50%SBPA Penetratio n Dial reading (mm) Load KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial reading 0.5 13 10 1.0 13 12 1.5 15 14 2.0 16 14 2.5 19 3.0 20 16 3.5 23 18 4.0 25 18 4.5 25 19 5.0 25 13.24 19.96 17.51 15.28 130 16 22 Load (KN) Standar d loading CBR 13.24 14.74 19.96 13.45 (%) 5.5 29 23 6.0 30 25 6.5 33 28 7.0 35 33 7.5 36 34 CBR VALUE: 17.51 TOP: 17.51 BOTTOM: 14.74 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 50%LS+48%SBPA+2%C Penetratio n Dial reading (mm) Load KN Standar d loading CBR (%) Dial reading 0.5 8 7 1.0 9 7 1.5 11 12 2.0 12 15 2.5 13 3.0 15 16 3.5 15 18 4.0 18 19 4.5 20 19 5.0 20 5.5 21 22 6.0 25 23 6.5 26 27 7.0 27 27 7.5 28 27 CBR VALUE: 13.82 13.24 19.96 11.98 12.22 TOP: 12.22 131 (MACHINE FACTOR=0.122) 15 19 Load (KN) Standar d loading CBR 13.24 13.82 19.96 11.61 (%) BOTTOM: 13.82 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 50%LS+46%SBPA+4%C Penetratio n Dial reading (mm) Load KN Standar d loading CBR (%) Dial reading 0.5 7 6 1.0 7 10 1.5 12 10 2.0 13 10 2.5 13 3.0 15 16 3.5 17 20 4.0 17 20 4.5 20 20 5.0 20 5.5 21 23 6.0 25 24 6.5 26 26 7.0 30 27 7.5 30 30 13.24 11.98 19.96 12.22 (MACHINE FACTOR=0.122) Load (KN) 11 22 CBR VALUE: 13.45 TOP: 12.22 Standar d loading CBR 13.24 10.14 19.96 13.45 (%) BOTTOM: 13.45 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 50%LS+44%SBPA+6%C Penetratio n Dial reading (mm) 0.5 Load KN Standar d loading CBR (%) 13 Dial reading 15 132 (MACHINE FACTOR=0.122) Load (KN) Standar d loading CBR (%) 1.0 13 15 1.5 14 16 2.0 15 17 2.5 21 3.0 23 24 3.5 25 25 4.0 25 27 4.5 25 27 5.0 24 5.5 26 29 6.0 29 30 6.5 31 30 7.0 31 30 7.5 32 34 13.24 19.35 19.96 CBR VALUE: 19.35 18 14.67 27 TOP: 19.35 13.24 16.59 19.96 16.50 BOTTOM: 16.59 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 40%LS+60%SBPA Penetrati on (mm) Dial readin g Loa d KN Standar d loading (MACHINE FACTOR=0.122) CBR (%) Dial readin g 0.5 7 8 1.0 7 10 1.5 8 10 2.0 9 12 133 Loa d (KN) Standar d loading CBR (%) 2.5 10 13.24 9.21 13 3.0 11 14 3.5 13 15 4.0 14 15 4.5 16 15 5.0 16 5.5 16 20 6.0 18 21 6.5 21 21 7.0 22 25 7.5 24 26 19.96 9.78 19 CBR VALUE: 11.98 TOP: 9.78 13.24 11.9 8 19.96 11.6 1 BOTTOM: 11.98 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 40%LS+58%SBPA+2%C Penetratio n Dial reading (mm) Load KN Standar d loading CBR (%) Dial reading 0.5 5 6 1.0 6 6 1.5 8 6 2.0 8 8 2.5 12 3.0 12 10 3.5 12 15 4.0 15 17 4.5 16 17 5.0 18 13.24 19.96 11.06 11.00 134 (MACHINE FACTOR=0.122) 10 20 Load (KN) Standar d loading CBR 13.24 9.21 19.96 12.22 (%) 5.5 19 22 6.0 19 23 6.5 20 23 7.0 21 24 7.5 21 25 CBR VALUE: 12.22 TOP: 11.06 BOTTOM: 12.22 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 40%LS+56%SBPA+4%C Penetratio n Dial reading (mm) Load KN Standar d loading CBR (%) Dial reading 0.5 8 7 1.0 8 8 1.5 9 9 2.0 10 9 2.5 10 3.0 10 12 3.5 14 16 4.0 14 17 4.5 16 17 5.0 17 5.5 18 20 6.0 19 22 6.5 20 24 7.0 20 24 7.5 24 26 13.24 19.96 9.21 10.39 135 (MACHINE FACTOR=0.122) 9 18 Load (KN) Standar d loading CBR 13.24 8.29 19.96 11.00 (%) CBR VALUE: 11.00 TOP: 10.39 BOTTOM: 11.00 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 40%LS+54%SBPA+6%C Penetratio n Dial reading (mm) Load KN Standar d loading CBR (%) Dial reading 0.5 11 10 1.0 11 12 1.5 14 13 2.0 14 14 2.5 15 3.0 15 16 3.5 15 17 4.0 16 18 4.5 16 18 5.0 17 5.5 18 23 6.0 20 24 6.5 22 25 7.0 22 27 7.5 26 28 CBR VALUE: 14.05 13.24 19.96 13.82 10.39 TOP: 13.82 (MACHINE FACTOR=0.122) 15 23 Load (KN) Standar d loading CBR 13.24 13.82 19.96 14.05 BOTTOM: 14.05 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 20%LS+80%SBPA 136 (%) (MACHINE FACTOR=0.122) Penetrati on (mm) Dial readin g Loa d KN Standar d loading CBR (%) Dial readin g 0.5 3 3 1.0 3 4 1.5 4 6 2.0 5 6 2.5 5 3.0 6 7 3.5 7 8 4.0 8 9 4.5 8 10 5.0 9 5.5 10 12 6.0 13 13 6.5 15 14 7.0 16 17 7.5 17 23 13.24 19.96 CBR VALUE: 6.11 4.61 5.50 6 10 TOP: 5.50 Load Standar d (KN) loading CBR (%) 13.24 5.53 19.96 6.11 BOTTOM: 6.11 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 20%LS+78%SBPA+2%C Penetrati on (mm) Dial readin g Loa d KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial readin g 0.5 4 3 1.0 4 3 137 Load Standar d (KN) loading CBR (%) 1.5 5 4 2.0 6 5 2.5 8 3.0 9 7 3.5 10 8 4.0 12 10 4.5 12 10 5.0 14 5.5 17 13 6.0 18 15 6.5 22 15 7.0 23 16 7.5 24 23 13.24 19.96 CBR VALUE: 8.56 7.37 8.56 5 11 TOP: 8.56 13.24 4.61 19.96 6.61 BOTTOM: 6.61 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 20%LS+76%SBPA+4%C Penetrati on (mm) Dial readin g Loa d KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial readin g 0.5 3 3 1.0 4 5 1.5 4 5 2.0 5 7 2.5 8 3.0 9 9 3.5 9 9 4.0 10 11 13.24 138 7.37 9 Load Standar d (KN) loading 13.24 CBR (%) 8.37 4.5 11 11 5.0 14 5.5 15 17 6.0 16 20 6.5 18 24 7.0 21 25 7.5 23 25 19.96 CBR VALUE: 8.56 8.56 13 19.96 TOP: 8.56 7.95 BOTTOM: 8.37 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 20%LS+74%SBPA+6%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 11 12 1.0 11 13 1.5 14 14 2.0 14 15 2.5 15 3.0 15 18 3.5 16 18 4.0 16 19 4.5 17 23 5.0 18 5.5 19 24 6.0 20 24 6.5 20 25 13.24 19.96 13.8 2 11.0 0 139 (MACHINE FACTOR=0.122) 18 23 Load (KN) Standar d loading CBR 13.24 16.5 9 19.96 14.0 6 (%) 7.0 23 26 7.5 23 27 CBR VALUE: 16.59 TOP: 13.82 BOTTOM: 16.59 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 100%SBPA Penetrati on (mm) Dial readin g Load KN (MACHINE FACTOR=0.122) Standar d loading CBR (%) Dial reading 0.5 10 6 1.0 12 9 1.5 12 11 2.0 18 12 2.5 21 3.0 25 19 3.5 29 25 4.0 30 27 4.5 33 28 5.0 34 5.5 34 29 6.0 36 31 6.5 38 37 7.0 38 40 7.5 38 40 CBR VALUE: 20.78 13.24 19.96 19.3 5 20.7 8 TOP: 20.78 140 15 27 Load (KN) Standar d loading CBR 13.24 13.8 2 19.96 16.5 0 (%) BOTTOM: 16.50 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 98%SBPA+2%C Penetrati on (mm) Dial readin g Load KN Standar d loading (MACHINE FACTOR=0.122) CBR (%) Dial reading 0.5 9 10 1.0 9 10 1.5 10 10 2.0 15 12 2.5 16 3.0 18 16 3.5 20 17 4.0 25 23 4.5 26 26 5.0 28 5.5 29 26 6.0 31 30 6.5 32 31 7.0 33 32 7.5 34 33 13.24 14.7 0 19.96 17.1 1 CBR VALUE: 17.11 TOP: 17.11 15 26 Load (KN) Standar d loading CBR 13.24 13.8 2 19.96 15.8 9 BOTTOM: 15.89 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 96%SBPA+4%C 141 (MACHINE FACTOR=0.122) (%) Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 11 8 1.0 11 12 1.5 12 12 2.0 15 13 2.5 18 3.0 18 18 3.5 19 21 4.0 20 21 4.5 21 23 5.0 22 5.5 22 25 6.0 22 26 6.5 26 27 7.0 27 27 7.5 32 30 13.24 16.5 9 19.96 13.4 5 Load (KN) 13 24 CBR VALUE: 16.59 TOP: 16.59 Standar d loading CBR 13.24 11.9 8 19.96 14.6 7 (%) BOTTOM: 14.67 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL UNSOAKED) PERCENTAGE MIX: 94%LS+6%C Penetrati on (mm) Dial readin g Load KN (MACHINE FACTOR=0.122) Standar d loading CBR (%) Dial reading 0.5 10 11 1.0 11 11 1.5 15 14 2.0 20 16 142 Load (KN) Standar d loading CBR (%) 2.5 24 13.24 22.1 1 3.0 24 23 3.5 24 24 4.0 25 26 4.5 26 27 5.0 29 5.5 31 28 6.0 32 29 6.5 33 30 7.0 34 31 7.5 34 32 19.96 17.7 3 22 27 CBR VALUE: 22.11 TOP: 22.11 13.24 20.2 7 19.96 16.5 0 BOTTOM: 20.27 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 100%LS Penetrati on (mm) Dial readin g Load KN (MACHINE FACTOR=0.122) Standar d loading CBR (%) Dial reading 0.5 5 4 1.0 5 5 1.5 6 6 2.0 7 6 2.5 9 13.24 8.29 143 9 Load (KN) Standar d loading CBR 13.24 8.29 (%) 3.0 11 11 3.5 13 11 4.0 14 13 4.5 16 14 5.0 18 5.5 20 18 6.0 21 19 6.5 24 22 7.0 28 22 7.5 33 27 19.96 11.0 0 17 CBR VALUE: 11.00 TOP: 11.00 19.96 10.3 9 BOTTOM: 10.39 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 80%LS+20%SBPA Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial reading 0.5 8 8 1.0 9 8 1.5 10 12 2.0 12 14 2.5 18 3.0 18 14 3.5 20 20 4.0 24 22 4.5 26 25 5.0 29 13.24 19.96 16.5 9 17.7 3 144 19 30 Load (KN) Standar d loading CBR 13.24 17.5 1 19.96 18.3 4 (%) 5.5 29 30 6.0 32 32 6.5 33 33 7.0 33 33 7.5 36 34 CBR VALUE: 18.34 TOP: 17.73 BOTTOM: 18.34 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSLSOAKED) PERCENTAGE MIX: 80%LS+18%SBPA+2%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 7 8 1.0 8 8 1.5 14 9 2.0 18 11 2.5 22 3.0 22 16 3.5 23 21 4.0 25 22 4.5 26 24 5.0 27 5.5 28 29 6.0 28 30 6.5 29 31 13.24 19.96 20.2 7 16.5 0 145 (MACHINE FACTOR=0.122) 15 27 Load (KN) Standar d loading CBR 13.24 13.8 2 19.96 16.5 0 (%) 7.0 30 31 7.5 32 32 CBR VALUE: 20.27 TOP: 20.27 BOTTOM: 16.50 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 80%LS+16%SBPA+4%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 6 7 1.0 7 7 1.5 8 8 2.0 11 14 2.5 14 3.0 16 18 3.5 20 20 4.0 21 20 4.5 24 21 5.0 26 5.5 26 24 6.0 26 25 6.5 31 29 7.0 32 31 7.5 33 31 13.24 19.96 12.9 0 15.8 9 CBR VALUE: 15.89 TOP: 15.89 (MACHINE FACTOR=0.122) 17 24 Load (KN) Standar d loading CBR 13.24 15.6 6 19.96 14.6 9 BOTTOM: 15.66 146 (%) CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 80%LS+14%SBPA+6%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 8 10 1.0 9 10 1.5 14 10 2.0 18 14 2.5 22 3.0 22 20 3.5 22 21 4.0 26 22 4.5 27 23 5.0 29 5.5 30 28 6.0 33 31 6.5 33 31 7.0 34 34 7.5 35 34 13.24 20.2 7 19.96 17.7 3 CBR VALUE: 17.73 TOP: 17.73 (MACHINE FACTOR=0.122) Load (KN) 18 28 Standar d loading CBR 13.24 16.5 9 19.96 17.1 1 (%) BOTTOM: 17.11 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 60%LS+40%SBPA Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) 147 (MACHINE FACTOR=0.122) Dial reading Load (KN) Standar d loading CBR (%) 0.5 21 20 1.0 22 20 1.5 24 25 2.0 28 30 2.5 30 3.0 30 30 3.5 35 34 4.0 39 38 4.5 44 42 5.0 46 5.5 46 48 6.0 49 49 6.5 50 50 7.0 50 51 7.5 51 51 13.24 27.6 4 19.96 28.1 2 30 47 CBR VALUE: 28.72 TOP: 28.12 13.24 27.6 4 19.96 28.7 2 BOTTOM: 28.72 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 60%LS+38%SBPA+2%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 22 18 1.0 23 22 1.5 23 24 148 (MACHINE FACTOR=0.122) Load (KN) Standar d loading CBR (%) 2.0 26 25 2.5 28 3.0 28 29 3.5 33 32 4.0 34 35 4.5 38 40 5.0 38 5.5 44 46 6.0 46 47 6.5 48 48 7.0 50 49 7.5 50 49 13.24 25.8 0 19.96 23.2 3 29 45 CBR VALUE: 27.51 TOP: 25.80 13.24 26.7 2 19.96 27.5 1 BOTTOM: 27.51 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 60%LS+36%SBPA+4%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 22 23 1.0 22 25 1.5 24 26 2.0 25 30 2.5 27 3.0 33 36 3.5 36 37 4.0 40 41 13.24 24.8 8 149 (MACHINE FACTOR=0.122) 33 Load (KN) Standar d loading CBR 13.24 30.4 1 (%) 4.5 44 45 5.0 56 5.5 56 53 6.0 56 54 6.5 57 59 7.0 57 59 7.5 58 59 19.96 34.2 3 52 CBR VALUE: 31.78 TOP: 34.23 19.96 31.7 8 BOTTOM: 31.78 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 60%LS+34%SBPA+6%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 18 23 1.0 24 24 1.5 26 27 2.0 27 33 2.5 30 3.0 33 34 3.5 36 38 4.0 41 40 4.5 46 45 5.0 49 13.24 19.96 27.6 4 29.9 5 150 (MACHINE FACTOR=0.122) 34 51 Load (KN) Standar d loading CBR 13.24 31.3 3 19.96 31.1 7 (%) 5.5 49 52 6.0 49 52 6.5 51 53 7.0 51 54 7.5 51 56 CBR VALUE: 31.33 TOP: 29.95 BOTTOM: 31.33 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 50%LS+50%SBPA Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial reading 0.5 16 16 1.0 17 16 1.5 17 20 2.0 18 21 2.5 22 3.0 22 24 3.5 24 25 4.0 25 27 4.5 26 30 5.0 26 5.5 27 31 6.0 27 31 6.5 31 36 7.0 33 36 7.5 34 37 13.24 19.96 20.2 7 15.8 9 CBR VALUE: 22.11 TOP: 20.27 24 30 Load (KN) Standar d loading CBR 13.24 22.1 1 19.96 18.3 4 BOTTOM: 22.11 151 (%) CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 50%LS+48%SBPA+2%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 18 20 1.0 18 20 1.5 19 24 2.0 20 24 2.5 26 3.0 26 27 3.5 26 27 4.0 30 28 4.5 30 29 5.0 32 5.5 33 33 6.0 34 35 6.5 36 36 7.0 36 37 7.5 37 39 13.24 19.96 23.9 6 19.5 6 (MACHINE FACTOR=0.122) 24 29 CBR VALUE: 23.96 TOP: 23.96 Load (KN) Standar d loading CBR 13.24 22.1 1 19.96 17.3 3 (%) BOTTOM: 22.11 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 50%LS+46%SBPA+4%C 152 (MACHINE FACTOR=0.122) Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 14 15 1.0 14 16 1.5 18 20 2.0 18 20 2.5 18 3.0 19 22 3.5 20 23 4.0 21 23 4.5 22 24 5.0 23 5.5 24 26 6.0 26 34 6.5 30 34 7.0 35 34 7.5 36 35 13.24 16.5 9 19.96 14.0 6 Load (KN) 21 24 CBR VALUE: 19.35 TOP: 16.59 Standar d loading CBR 13.24 19.3 5 19.96 14.6 5 (%) BOTTOM: 19.35 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 50%LS+44%SBPA+6%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) 153 (MACHINE FACTOR=0.122) Dial reading Load (KN) Standar d loading CBR (%) 0.5 16 18 1.0 20 18 1.5 20 18 2.0 20 22 2.5 21 3.0 22 23 3.5 26 24 4.0 27 25 4.5 29 25 5.0 29 5.5 30 30 6.0 31 33 6.5 32 36 7.0 33 37 7.5 35 38 13.24 19.3 5 19.96 22 17.7 3 26 CBR VALUE: 20.27 TOP: 19.35 13.24 20.2 7 19.96 15.8 9 BOTTOM: 20.27 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 40%LS+60%SBPA Penetrati on (mm) Dial readin g Loa d KN Standar d loading (MACHINE FACTOR=0.122) CBR (%) Dial readin g 0.5 5 4 1.0 5 4 1.5 6 6 2.0 7 7 2.5 8 13.24 154 7.37 7 Load Standar d (KN) loading 13.24 CBR (%) 6.45 3.0 9 7 3.5 9 8 4.0 10 9 4.5 11 10 5.0 14 5.5 14 12 6.0 15 13 6.5 16 15 7.0 17 16 7.5 17 17 19.96 8.56 10 CBR VALUE: 8.56 TOP: 8.56 19.96 6.11 BOTTOM: 6.45 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 40%LS+58%SBPA+2%C Penetrati on (mm) Dial readin g Loa d KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial readin g 0.5 6 4 1.0 6 5 1.5 7 5 2.0 7 6 2.5 10 3.0 11 6 3.5 11 8 4.0 11 9 4.5 12 10 13.24 155 9.21 6 Load Standar d (KN) loading 13.24 CBR (%) 5.53 5.0 13 5.5 15 15 6.0 16 16 6.5 17 18 7.0 20 18 7.5 20 21 CBR VALUE: 9.21 19.96 7.95 15 TOP: 9.21 19.96 9.17 BOTTOM: 9.17 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 40%LS+56%SBPA+4%C Penetrati on (mm) Dial readin g Loa d KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial readin g 0.5 3 4 1.0 3 4 1.5 4 5 2.0 4 5 2.5 6 3.0 6 8 3.5 7 9 4.0 7 10 4.5 7 14 5.0 9 5.5 10 15 6.0 12 16 6.5 13 19 7.0 15 19 7.5 15 23 13.24 19.96 156 5.53 5.50 8 14 Load Standar d (KN) loading CBR (%) 13.24 7.37 19.96 8.56 CBR VALUE: 8.56 TOP: 5.53 BOTTOM: 8.56 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 40%LS+54%SBPA+6%C Penetrati on (mm) Dial readin g Loa d KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial readin g 0.5 4 4 1.0 4 4 1.5 5 4 2.0 6 6 2.5 7 3.0 7 7 3.5 7 9 4.0 8 10 4.5 10 10 5.0 12 5.5 12 13 6.0 13 14 6.5 14 15 7.0 15 15 7.5 16 17 13.24 19.96 CBR VALUE: 7.33 6.45 7.33 6 12 TOP: 7.33 Load Standar d (KN) loading CBR (%) 13.24 5.53 19.96 7.33 BOTTOM: 7.33 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 20%LS+80%SBPA Penetrati on Dial readin g Loa d Standar d loading 157 (MACHINE FACTOR=0.122) CBR (%) Dial readin g Load Standar d (KN) loading CBR (%) (mm) KN 0.5 3 2 1.0 3 4 1.5 3 4 2.0 4 5 2.5 4 3.0 5 6 3.5 6 6 4.0 7 7 4.5 7 7 5.0 7 5.5 8 9 6.0 9 9 6.5 9 10 7.0 10 10 7.5 11 12 13.24 3.69 19.96 CBR VALUE: 5.50 4.28 5 9 TOP: 4.28 13.24 4.61 19.96 5.50 BOTTOM: 5.50 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 20%LS+78%SBPA+2%C Penetrati on (mm) Dial readin g Loa d KN Stand ard loadin g CBR (%) (MACHINE FACTOR=0.122) Dial readin g 0.5 5 6 1.0 5 7 1.5 6 7 158 Loa d Stand ard loadin (KN) g CBR (%) 2.0 7 8 2.5 10 3.0 11 13 3.5 12 13 4.0 14 15 4.5 16 16 5.0 17 5.5 17 18 6.0 18 19 6.5 23 20 7.0 26 21 7.5 26 24 13.24 19.96 CBR VALUE: 11.98 9.21 10.39 13 17 TOP: 10.39 13.24 11.98 19.96 10.39 BOTTOM: 11.98 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 20%LS+76%SBPA+4%C Penetrati on (mm) Dial readin g Loa d KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial readin g 0.5 3 3 1.0 4 3 1.5 4 3 2.0 6 4 2.5 6 3.0 7 5 3.5 8 5 4.0 9 6 4.5 9 7 13.24 159 5.53 4 Load Standar d (KN) loading 13.24 CBR (%) 3.69 5.0 10 19.96 5.5 11 8 6.0 11 9 6.5 11 11 7.0 13 11 7.5 17 14 CBR VALUE: 6.11 6.11 8 19.96 TOP: 6.11 4.89 BOTTOM: 4.89 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 20%LS+74%SBPA+6%C Penetrati on (mm) Dial readin g Loa d KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial readin g 0.5 4 3 1.0 4 4 1.5 4 5 2.0 5 6 2.5 6 3.0 6 7 3.5 6 7 4.0 7 8 4.5 7 9 5.0 8 5.5 8 10 6.0 9 12 6.5 10 14 7.0 11 15 7.5 14 17 13.24 19.96 160 5.53 4.89 6 9 Load Standar d (KN) loading CBR (%) 13.24 5.53 19.96 6.11 CBR VALUE: 6.11 TOP: 5.53 BOTTOM: 6.11 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 100%SBPA Penetrati on (mm) Dial readin g Loa d KN (MACHINE FACTOR=0.122) Standar CBR d loading (%) Dial readi ng 0.5 5 7 1.0 6 7 1.5 8 8 2.0 9 8 2.5 11 3.0 14 14 3.5 15 18 4.0 18 22 4.5 18 24 5.0 18 5.5 21 24 6.0 24 25 6.5 25 27 7.0 25 27 7.5 28 28 13.24 10.14 19.96 11.00 CBR VALUE: 14.67 TOP: 11.00 Loa d Stand ard loadin (KN) g CBR 13.24 7.37 19.96 14.67 8 24 (%) BOTTOM: 14.67 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 98%SBPA+2%C Penetrati on Dial readin g Load KN Standar d loading (MACHINE FACTOR=0.122) CBR (%) 161 Dial reading Load (KN) Standar d loading CBR (%) (mm) 0.5 5 6 1.0 5 7 1.5 6 7 2.0 7 8 2.5 10 3.0 11 13 3.5 12 13 4.0 14 15 4.5 16 16 5.0 17 5.5 17 18 6.0 18 19 6.5 23 20 7.0 26 21 7.5 26 24 13.24 9.21 19.96 10.3 9 8 17 CBR VALUE: 10.39 TOP: 10.39 13.24 7.37 19.96 10.3 9 BOTTOM: 10.39 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 96%SBPA+4%C Penetrati on (mm) Dial readin g Loa d KN Standar d loading (MACHINE FACTOR=0.122) CBR (%) Dial readin g 0.5 3 4 1.0 3 5 1.5 4 6 2.0 4 7 2.5 4 13.24 162 3.69 7 Load Standar d (KN) loading 13.24 CBR (%) 6.45 3.0 6 8 3.5 8 9 4.0 9 10 4.5 10 12 5.0 10 5.5 11 14 6.0 11 14 6.5 11 14 7.0 15 16 7.5 15 17 19.96 6.11 13 CBR VALUE: 7.95 TOP: 6.11 19.96 7.95 BOTTOM: 7.95 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSL SOAKED) PERCENTAGE MIX: 94%SBPA+6%C Penetrati on (mm) Dial readin g Loa d KN Standar d loading (MACHINE FACTOR=0.122) CBR (%) Dial readin g 0.5 4 23 1.0 4 25 1.5 5 26 2.0 6 30 2.5 7 3.0 7 36 3.5 7 37 4.0 8 41 4.5 10 45 13.24 163 6.45 33 Load Standar d (KN) loading 13.24 CBR (%) 5.53 5.0 12 19.96 5.5 12 53 6.0 13 54 6.5 14 59 7.0 15 59 7.5 16 59 CBR VALUE: 7.33 7.33 52 19.96 TOP: 7.33 7.33 BOTTOM: 7.33 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 100%LS Penetrati on (mm) Dial readin g Load KN (MACHINE FACTOR=0.122) Standar d loading CBR (%) Dial reading 0.5 16 17 1.0 16 17 1.5 18 17 2.0 20 20 2.5 24 3.0 24 25 3.5 26 25 4.0 30 29 4.5 33 35 5.0 37 5.5 38 43 6.0 39 43 6.5 41 44 13.24 19.96 22.1 1 22.6 2 164 23 39 Load (KN) Standar d loading CBR 13.24 21.1 9 19.96 23.8 4 (%) 7.0 44 44 7.5 44 47 CBR VALUE: 23.84 TOP: 22.62 BOTTOM: 23.84 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 80%LS+20%SBPA Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial reading 0.5 20 20 1.0 22 22 1.5 22 24 2.0 26 28 2.5 32 3.0 32 33 3.5 34 34 4.0 38 39 4.5 40 40 5.0 43 5.5 43 44 6.0 44 45 6.5 46 47 7.0 47 47 7.5 47 48 13.24 19.96 29.4 9 26.2 8 CBR VALUE: 29.49 TOP: 29.49 31 43 Load (KN) Standar d loading CBR 13.24 28.5 6 19.96 26.2 8 BOTTOM: 28.56 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) 165 (%) PERCENTAGE MIX: 80%LS+18%SBPA+2%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 18 20 1.0 21 20 1.5 24 23 2.0 26 24 2.5 29 3.0 30 28 3.5 31 30 4.0 31 33 4.5 34 34 5.0 44 5.5 47 49 6.0 48 53 6.5 54 55 7.0 56 55 7.5 56 59 13.24 26.7 2 19.96 26.8 9 (MACHINE FACTOR=0.122) Load (KN) 28 47 CBR VALUE: 28.73 TOP: 26.89 Standar d loading CBR 13.24 25.8 0 19.96 28.7 3 (%) BOTTOM: 28.73 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 80%LS+16%SBPA+4%C Penetrati on Dial readin g Load KN Standar d loading CBR (%) 166 (MACHINE FACTOR=0.122) Dial reading Load (KN) Standar d loading CBR (%) (mm) 0.5 24 24 1.0 26 25 1.5 27 25 2.0 30 29 2.5 34 3.0 34 34 3.5 34 36 4.0 38 40 4.5 40 40 5.0 42 5.5 43 46 6.0 49 47 6.5 55 47 7.0 55 53 7.5 56 54 13.24 31.3 3 19.96 25.6 7 30 45 CBR VALUE: 31.33 TOP: 31.33 13.24 27.6 4 19.96 27.5 1 BOTTOM: 27.64 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 80%LS+14%SBPA+6%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 16 15 1.0 19 16 1.5 20 24 2.0 25 24 167 (MACHINE FACTOR=0.122) Load (KN) Standar d loading CBR (%) 2.5 28 13.24 25.8 0 3.0 29 33 3.5 35 38 4.0 38 38 4.5 40 43 5.0 43 5.5 43 47 6.0 44 49 6.5 49 49 7.0 50 51 7.5 52 51 19.96 26.2 8 26 45 CBR VALUE: 27.51 TOP: 26.28 13.24 23.9 6 19.96 27.5 1 BOTTOM: 27.51 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 60%LS+40%SBPA Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial reading 0.5 12 11 1.0 13 15 1.5 15 16 2.0 20 16 2.5 24 3.0 24 26 3.5 25 27 13.24 22.1 1 168 22 Load (KN) Standar d loading CBR 13.24 20.2 7 (%) 4.0 27 28 4.5 30 30 5.0 30 5.5 33 34 6.0 33 38 6.5 37 38 7.0 38 38 7.5 40 39 19.96 18.3 4 30 CBR VALUE: 22.11 TOP: 22.11 19.96 18.3 4 BOTTOM: 20.27 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 60%LS+38%SBPA+2%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 10 11 1.0 12 12 1.5 15 16 2.0 18 20 2.5 24 3.0 28 25 3.5 28 26 4.0 28 27 4.5 32 30 5.0 33 5.5 36 13.24 19.96 22.1 1 20.1 7 28 33 35 169 (MACHINE FACTOR=0.122) Load (KN) Standar d loading CBR 13.24 21.1 9 19.96 20.1 7 (%) 6.0 36 35 6.5 38 38 7.0 40 39 7.5 42 39 CBR VALUE: 31.78 TOP: 22.11 BOTTOM: 21.19 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 60%LS+36%SBPA+4%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 10 9 1.0 11 9 1.5 15 10 2.0 16 14 2.5 20 3.0 25 17 3.5 27 18 4.0 27 26 4.5 28 28 5.0 31 5.5 32 31 6.0 33 33 6.5 34 34 7.0 37 36 7.5 38 36 13.24 19.96 18.4 3 18.9 4 170 (MACHINE FACTOR=0.122) 16 28 Load (KN) Standar d loading CBR 13.24 14.7 4 19.96 17.1 1 (%) CBR VALUE: 18.94 TOP: 18.94 BOTTOM: 17.11 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 60%LS+34%SBPA+6%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 12 14 1.0 12 15 1.5 15 20 2.0 19 25 2.5 25 3.0 26 27 3.5 26 29 4.0 27 29 4.5 30 30 5.0 30 5.5 32 33 6.0 33 34 6.5 36 35 7.0 38 36 7.5 38 36 13.24 19.96 23.0 4 18.3 4 CBR VALUE: 23.04 TOP: 23.04 (MACHINE FACTOR=0.122) 25 33 Load (KN) Standar d loading CBR 13.24 23.0 4 19.96 20.1 7 BOTTOM: 23.04 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) 171 (%) PERCENTAGE MIX: 50%LS+50%SBPA Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial reading 0.5 8 8 1.0 9 9 1.5 10 11 2.0 12 13 2.5 13 3.0 14 14 3.5 14 14 4.0 17 15 4.5 19 18 5.0 19 5.5 21 21 6.0 21 22 6.5 21 23 7.0 23 24 7.5 23 24 13.24 11.9 8 19.96 11.6 1 Load (KN) 13 21 CBR VALUE: 12.84 TOP: 11.98 Standar d loading CBR 13.24 11.9 8 19.96 12.8 4 (%) BOTTOM: 12.84 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 50%LS+48%SBPA+2%C Penetrati on (mm) 0.5 Dial readin g Load KN Standar d loading CBR (%) 7 Dial reading 6 172 (MACHINE FACTOR=0.122) Load (KN) Standar d loading CBR (%) 1.0 8 9 1.5 9 10 2.0 10 11 2.5 15 3.0 15 16 3.5 16 16 4.0 20 17 4.5 20 18 5.0 20 5.5 21 21 6.0 21 23 6.5 23 24 7.0 25 25 7.5 25 27 13.24 13.8 2 19.96 12.2 2 12 21 CBR VALUE: 13.82 TOP: 13.82 13.24 11.0 6 19.96 12.8 4 BOTTOM: 12.84 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 50%LS+46%SBPA+4%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 10 9 1.0 11 10 1.5 11 12 2.0 12 12 2.5 13 13.24 11.9 173 (MACHINE FACTOR=0.122) 12 Load (KN) Standar d loading CBR 13.24 11.0 (%) 8 6 3.0 15 14 3.5 16 15 4.0 18 18 4.5 19 20 5.0 19 5.5 19 21 6.0 21 22 6.5 22 23 7.0 23 24 7.5 23 25 19.96 11.6 1 20 CBR VALUE: 12.22 TOP: 11.98 19.96 12.2 2 BOTTOM: 12.22 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 50%LS+44%SBPA+6%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 11 10 1.0 12 11 1.5 13 12 2.0 14 15 2.5 14 3.0 17 18 3.5 20 19 4.0 21 20 4.5 22 21 13.24 12.0 9 174 (MACHINE FACTOR=0.122) 16 Load (KN) Standar d loading CBR 13.24 14.7 4 (%) 5.0 23 19.96 14.0 6 22 5.5 23 25 6.0 25 26 6.5 26 27 7.0 26 28 7.5 28 29 CBR VALUE: 14.74 TOP: 14.06 19.96 13.4 5 BOTTOM: 14.74 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 40%LS+60%SBPA Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial reading 0.5 6 6 1.0 6 7 1.5 7 9 2.0 8 9 2.5 11 3.0 12 12 3.5 13 15 4.0 13 15 4.5 15 16 5.0 17 5.5 17 21 6.0 18 22 13.24 19.96 10.1 4 10.3 9 175 9 20 Load (KN) Standar d loading CBR 13.24 8.29 19.96 12.2 2 (%) 6.5 19 23 7.0 23 24 7.5 24 24 CBR VALUE: 12.22 TOP: 10.39 BOTTOM: 12.22 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 40%LS+58%SBPA+2%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 8 7 1.0 9 9 1.5 10 10 2.0 12 11 2.5 12 3.0 14 13 3.5 15 13 4.0 16 16 4.5 17 16 5.0 18 5.5 18 18 6.0 18 20 6.5 20 21 7.0 21 22 7.5 22 23 13.24 19.96 11.0 6 11.0 0 CBR VALUE: 11.98 TOP: 11.06 (MACHINE FACTOR=0.122) 13 17 Load (KN) Standar d loading CBR 13.24 11.9 8 19.96 10.3 9 BOTTOM: 11.98 176 (%) CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 40%LS+56%SBPA+4%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 7 7 1.0 9 8 1.5 10 9 2.0 11 10 2.5 11 3.0 12 11 3.5 14 13 4.0 15 14 4.5 16 15 5.0 17 5.5 19 16 6.0 20 16 6.5 21 20 7.0 22 20 7.5 22 20 13.24 10.1 4 19.96 10.3 9 (MACHINE FACTOR=0.122) Load (KN) 10 16 CBR VALUE: 10.39 TOP: 10.39 Standar d loading CBR 13.24 9.21 19.96 9.78 (%) BOTTOM: 9.78 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 40%LS+54%SBPA+6%C Penetrati Dial Load Standar CBR 177 Dial (MACHINE FACTOR=0.122) Load Standar CBR on (mm) readin g KN d loading (%) reading 0.5 8 8 1.0 9 9 1.5 10 10 2.0 12 11 2.5 12 3.0 15 18 3.5 16 18 4.0 16 18 4.5 16 19 5.0 16 5.5 19 20 6.0 20 22 6.5 21 23 7.0 22 24 7.5 23 24 13.24 11.0 6 19.96 11.0 0 11 19 CBR VALUE: 11.61 TOP: 11.06 (KN) d loading (%) 13.24 10.1 4 19.96 11.6 1 BOTTOM: 11.61 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 20%LS+80%SBPA Penetrati on (mm) Dial readin g Loa d KN Standar d loading (MACHINE FACTOR=0.122) CBR (%) Dial readin g 0.5 2 3 1.0 3 3 178 Load Standar d (KN) loading CBR (%) 1.5 4 3 2.0 4 4 2.5 4 3.0 5 6 3.5 6 7 4.0 6 8 4.5 7 8 5.0 7 5.5 8 11 6.0 10 12 6.5 11 13 7.0 12 14 7.5 15 15 CBR VALUE: 5.50 13.24 19.96 3.69 4.28 4 9 TOP: 4.28 13.24 3.69 19.96 5.50 BOTTOM: 5.50 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 20%LS+78%SBPA+2%C Penetrati on (mm) Dial readin g Loa d KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial readin g 0.5 2 2 1.0 2 3 1.5 3 3 2.0 3 4 2.5 5 3.0 7 6 3.5 7 8 4.0 8 8 13.24 179 4.61 4 Load Standar d (KN) loading 13.24 CBR (%) 3.69 4.5 8 8 5.0 8 5.5 10 9 6.0 11 12 6.5 13 13 7.0 14 14 7.5 14 16 19.96 4.89 8 CBR VALUE: 6.11 TOP: 4.89 19.96 6.11 BOTTOM: 6.11 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 20%LS+76%SBPA+4%C Penetrati on (mm) Dial readin g Loa d KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial readin g 0.5 4 3 1.0 4 3 1.5 4 4 2.0 5 4 2.5 5 3.0 6 6 3.5 6 8 4.0 7 8 4.5 8 8 5.0 8 5.5 11 11 6.0 11 15 6.5 12 17 13.24 19.96 180 4.61 4.89 4 9 Load Standar d (KN) loading CBR (%) 13.24 3.69 19.96 5.50 7.0 13 20 7.5 15 21 CBR VALUE: 5.50 TOP: 4.89 BOTTOM: 5.50 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 20%LS+74%SBPA+6%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 5 4 1.0 6 7 1.5 7 7 2.0 8 8 2.5 9 3.0 10 12 3.5 11 13 4.0 12 14 4.5 17 18 5.0 17 5.5 20 19 6.0 21 20 6.5 22 21 7.0 23 21 7.5 24 22 13.24 19.96 8.29 10.3 9 CBR VALUE: 11.00 TOP: 10.39 (MACHINE FACTOR=0.122) 10 18 Load (KN) Standar d loading CBR 13.24 9.21 19.96 11.0 0 BOTTOM: 11.00 181 (%) CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 100%SBPA Penetrati on (mm) Dial readin g Load KN (MACHINE FACTOR=0.122) Standar d loading CBR Dial reading (%) 0.5 6 6 1.0 7 8 1.5 8 8 2.0 12 9 2.5 13 3.0 14 13 3.5 15 14 4.0 16 19 4.5 18 20 5.0 19 5.5 21 22 6.0 23 23 6.5 23 24 7.0 24 25 7.5 24 25 13.24 11.9 8 19.96 Load (KN) 11 11.6 1 21 CBR VALUE: 12.84 TOP: 11.98 Standar d loading CBR 13.24 10.1 4 19.96 12.8 4 (%) BOTTOM: 12.84 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 98%SBPA+2%C Penetrati on (mm) Dial readin g Loa d KN Standar d loading 182 (MACHINE FACTOR=0.122) CBR (%) Dial readin g Loa d (KN) Standar d loading CBR (%) 0.5 6 5 1.0 7 6 1.5 8 7 2.0 9 8 2.5 9 3.0 11 10 3.5 12 12 4.0 13 17 4.5 14 17 5.0 14 5.5 15 20 6.0 16 22 6.5 20 23 7.0 20 25 7.5 21 28 13.24 19.96 8.29 9 8.56 19 CBR VALUE: 11.61 TOP: 8.56 13.24 8.29 19.96 11.6 1 BOTTOM: 11.61 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 96%SBPA+4%C Penetrati on (mm) Dial readin g Loa d KN Standar d loading (MACHINE FACTOR=0.122) CBR (%) Dial readin g 0.5 4 5 1.0 5 5 1.5 6 7 2.0 6 9 183 Loa d (KN) Standar d loading CBR (%) 2.5 6 13.24 5.53 12 3.0 7 13 3.5 8 13 4.0 9 13 4.5 10 15 5.0 12 5.5 12 17 6.0 12 18 6.5 13 19 7.0 17 20 7.5 18 20 19.96 CBR VALUE: 11.06 7.33 16 TOP: 7.33 13.24 11.0 6 19.96 9.78 BOTTOM: 11.06 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH UNSOAKED) PERCENTAGE MIX: 94%SBPA+6%C Penetrati on (mm) Dial readin g Load KN Standar d loading (MACHINE FACTOR=0.122) CBR (%) Dial reading 0.5 7 7 1.0 7 7 1.5 8 8 2.0 9 9 2.5 15 3.0 15 16 3.5 15 16 4.0 17 17 13.24 13.8 2 184 12 Load (KN) Standar d loading CBR 13.24 11.0 6 (%) 4.5 20 18 5.0 21 5.5 21 21 6.0 22 21 6.5 23 24 7.0 23 25 7.5 24 25 19.96 12.8 4 21 CBR VALUE: 13.82 TOP: 13.82 19.96 12.8 4 BOTTOM: 12.84 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 100%LS Penetrati on (mm) Dial readin g Load KN (MACHINE FACTOR=0.122) Standar d loading CBR (%) Dial reading 0.5 20 19 1.0 20 23 1.5 22 23 2.0 25 23 2.5 28 3.0 29 27 3.5 30 30 4.0 31 33 4.5 31 39 5.0 37 5.5 38 43 6.0 40 43 13.24 19.96 25.8 0 22.6 2 185 26 43 Load (KN) Standar d loading CBR 13.24 23.9 6 19.96 26.2 8 (%) 6.5 41 44 7.0 41 45 7.5 43 45 CBR VALUE: 26.28 TOP: 25.80 BOTTOM: 26.28 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 80%LS+20%SBPA Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial reading 0.5 22 20 1.0 25 20 1.5 26 28 2.0 30 30 2.5 34 3.0 36 33 3.5 40 34 4.0 44 39 4.5 44 43 5.0 46 5.5 46 45 6.0 46 50 6.5 50 50 7.0 56 50 7.5 56 55 13.24 19.96 31.3 3 28.1 2 CBR VALUE: 31.33 TOP: 31.33 33 45 Load (KN) Standar d loading CBR 13.24 30.4 1 19.96 27.5 1 BOTTOM: 30.41 186 (%) CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 80%LS+18%SBPA+2%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 20 21 1.0 20 21 1.5 20 21 2.0 21 25 2.5 23 3.0 27 33 3.5 30 34 4.0 36 34 4.5 37 37 5.0 41 5.5 41 42 6.0 41 44 6.5 44 45 7.0 49 46 7.5 49 47 13.24 19.96 21.1 9 25.0 6 (MACHINE FACTOR=0.122) 30 42 CBR VALUE: 27.64 TOP: 25.06 Load (KN) Standar d loading CBR 13.24 27.6 4 19.96 25.6 7 (%) BOTTOM: 27.64 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 80%LS+16%SBPA+4%C 187 (MACHINE FACTOR=0.122) Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 25 26 1.0 26 26 1.5 30 31 2.0 33 34 2.5 40 3.0 41 36 3.5 42 40 4.0 46 46 4.5 47 50 5.0 52 5.5 52 55 6.0 52 57 6.5 54 57 7.0 55 60 7.5 55 61 13.24 36.8 6 19.96 31.7 8 Load (KN) 35 55 CBR VALUE: 36.86 TOP: 36.86 Standar d loading CBR 13.24 31.3 3 19.96 33.6 2 (%) BOTTOM: 33.62 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 80%LS+14%SBPA+6%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 24 23 1.0 24 26 188 (MACHINE FACTOR=0.122) Load (KN) Standar d loading CBR (%) 1.5 26 30 2.0 27 35 2.5 33 3.0 37 37 3.5 40 37 4.0 46 43 4.5 50 45 5.0 53 5.5 54 49 6.0 55 49 6.5 60 53 7.0 60 55 7.5 61 56 13.24 30.4 1 19.96 32.3 9 36 49 CBR VALUE: 33.17 TOP: 32.39 13.24 33.1 7 19.96 29.9 5 BOTTOM: 33.17 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 60%LS+40%SBPA Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial reading 0.5 20 20 1.0 22 21 1.5 22 22 2.0 26 25 2.5 29 3.0 30 13.24 26.7 2 29 29 189 Load (KN) Standar d loading CBR 13.24 26.7 2 (%) 3.5 31 33 4.0 34 34 4.5 37 38 5.0 39 5.5 39 40 6.0 39 44 6.5 42 49 7.0 43 49 7.5 44 52 19.96 23.8 4 40 CBR VALUE: 26.72 TOP: 26.72 19.96 24.4 5 BOTTOM: 26.72 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 60%LS+38%SBPA+2%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 18 20 1.0 20 20 1.5 22 20 2.0 25 22 2.5 28 3.0 33 30 3.5 36 31 4.0 37 34 4.5 40 40 5.0 45 13.24 19.96 25.8 0 27.5 190 (MACHINE FACTOR=0.122) 27 45 Load (KN) Standar d loading CBR 13.24 24.8 8 19.96 27.5 (%) 1 1 5.5 46 45 6.0 47 45 6.5 50 47 7.0 51 50 7.5 51 54 CBR VALUE: 31.78 TOP: 27.51 BOTTOM: 27.51 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 60%LS+36%SBPA+4%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 21 19 1.0 21 20 1.5 25 21 2.0 26 27 2.5 31 3.0 31 29 3.5 33 36 4.0 34 37 4.5 36 38 5.0 38 5.5 42 41 6.0 43 42 6.5 44 43 7.0 45 44 13.24 19.96 28.5 6 23.2 3 191 (MACHINE FACTOR=0.122) 27 41 Load (KN) Standar d loading CBR 13.24 24.8 8 19.96 25.0 6 (%) 7.5 45 45 CBR VALUE: 28.56 TOP: 28.56 BOTTOM: 25.06 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 60%LS+34%SBPA+6%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 20 19 1.0 20 19 1.5 25 26 2.0 27 27 2.5 28 3.0 31 28 3.5 33 28 4.0 34 33 4.5 35 33 5.0 39 5.5 40 37 6.0 45 38 6.5 46 39 7.0 47 40 7.5 50 41 13.24 19.96 25.8 0 23.8 4 CBR VALUE: 25.80 TOP: 25.80 (MACHINE FACTOR=0.122) 28 37 Load (KN) Standar d loading CBR 13.24 25.8 0 19.96 22.6 2 BOTTOM: 25.80 192 (%) CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 50%LS+50%SBPA Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial reading 0.5 12 13 1.0 12 13 1.5 14 18 2.0 17 20 2.5 19 3.0 20 24 3.5 22 25 4.0 25 26 4.5 26 27 5.0 27 5.5 28 27 6.0 30 29 6.5 31 33 7.0 35 35 7.5 35 38 13.24 17.5 1 19.96 16.5 0 Load (KN) 23 27 CBR VALUE: 21.19 TOP: 17.51 Standar d loading CBR 13.24 21.1 9 19.96 16.5 0 (%) BOTTOM: 21.19 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 50%LS+48%SBPA+2%C Penetrati on Dial readin g Load KN Standar d loading CBR (%) 193 (MACHINE FACTOR=0.122) Dial reading Load (KN) Standar d loading CBR (%) (mm) 0.5 14 12 1.0 14 12 1.5 15 20 2.0 20 21 2.5 20 3.0 21 25 3.5 22 27 4.0 23 27 4.5 24 30 5.0 25 5.5 30 34 6.0 33 35 6.5 34 38 7.0 35 40 7.5 37 43 13.24 18.4 3 19.96 15.2 8 24 33 CBR VALUE: 22.11 TOP: 18.43 13.24 22.1 1 19.96 20.1 7 BOTTOM: 22.11 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 50%LS+46%SBPA+4%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 13 12 1.0 17 15 1.5 18 15 2.0 21 20 194 (MACHINE FACTOR=0.122) Load (KN) Standar d loading CBR (%) 2.5 25 13.24 23.0 4 3.0 25 26 3.5 25 30 4.0 26 31 4.5 30 32 5.0 30 5.5 31 36 6.0 36 37 6.5 37 37 7.0 40 38 7.5 40 42 19.96 18.3 4 22 33 CBR VALUE: 31.78 TOP: 23.04 13.24 20.2 7 19.96 20.1 7 BOTTOM: 20.27 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 50%LS+44%SBPA+6%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 11 10 1.0 11 11 1.5 12 12 2.0 14 13 2.5 17 3.0 18 13.24 15.6 6 13 18 195 (MACHINE FACTOR=0.122) Load (KN) Standar d loading CBR 13.24 11.9 8 (%) 3.5 20 18 4.0 25 19 4.5 25 20 5.0 26 5.5 28 23 6.0 29 24 6.5 32 30 7.0 33 30 7.5 34 34 19.96 15.8 9 22 CBR VALUE: 15.89 TOP: 15.89 19.96 13.4 5 BOTTOM: 13.45 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 40%LS+60%SBPA Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial reading 0.5 8 8 1.0 8 9 1.5 9 10 2.0 10 11 2.5 13 3.0 14 12 3.5 15 15 4.0 16 18 4.5 16 19 5.0 17 5.5 19 13.24 19.96 11.9 8 10.3 9 12 19 19 196 Load (KN) Standar d loading CBR 13.24 11.0 6 19.96 11.6 1 (%) 6.0 19 20 6.5 20 21 7.0 21 23 7.5 22 23 CBR VALUE: 11.98 TOP: 11.98 BOTTOM: 11.61 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 40%LS+58%SBPA+2%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 6 7 1.0 7 8 1.5 8 9 2.0 10 10 2.5 14 3.0 14 12 3.5 15 13 4.0 16 14 4.5 17 15 5.0 18 5.5 19 20 6.0 20 21 6.5 22 21 13.24 19.96 12.9 0 11.0 0 197 (MACHINE FACTOR=0.122) 12 18 Load (KN) Standar d loading CBR 13.24 11.0 6 19.96 11.0 0 (%) 7.0 24 25 7.5 25 27 CBR VALUE: 31.78 TOP: 12.90 BOTTOM: 11.06 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 40%LS+56%SBPA+4%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) Dial reading 0.5 10 9 1.0 10 10 1.5 12 10 2.0 13 14 2.5 15 3.0 17 16 3.5 18 17 4.0 19 18 4.5 20 21 5.0 22 5.5 23 24 6.0 24 25 6.5 25 26 7.0 25 27 7.5 26 29 CBR VALUE: 14.74 13.24 19.96 13.8 2 13.4 5 TOP: 13.82 198 (MACHINE FACTOR=0.122) 16 23 Load (KN) Standar d loading CBR 13.24 14.7 4 19.96 14.0 6 BOTTOM: 14.74 (%) CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 40%LS+54%SBPA+6%C Penetrati on (mm) Dial readin g Load KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial reading 0.5 9 11 1.0 10 13 1.5 12 14 2.0 13 17 2.5 15 3.0 15 19 3.5 17 19 4.0 18 20 4.5 20 20 5.0 21 5.5 21 22 6.0 21 22 6.5 25 25 7.0 26 26 7.5 30 26 13.24 13.8 2 19.96 12.8 4 18 20 CBR VALUE: 16.59 TOP: 13.82 Load (KN) Standar d loading CBR 13.24 16.5 9 19.96 12.2 2 (%) BOTTOM: 16.59 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 20%LS+80%SBPA Penetrati on (mm) 0.5 Dial readin g Loa d KN Standar d loading 4 (MACHINE FACTOR=0.122) CBR (%) Dial readin g 5 199 Load Standar d (KN) loading CBR (%) 1.0 4 5 1.5 5 5 2.0 6 6 2.5 7 3.0 8 7 3.5 9 7 4.0 11 8 4.5 12 8 5.0 14 5.5 14 12 6.0 15 13 6.5 15 14 7.0 16 14 7.5 17 16 13.24 19.96 CBR VALUE: 8.56 6.45 8.56 6 11 TOP: 8.56 13.24 5.53 19.96 6.72 BOTTOM: 6.72 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 20%LS+78%SBPA+2%C Penetrati on (mm) Dial readin g Loa d KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial readin g 0.5 3 3 1.0 4 3 1.5 4 4 2.0 5 4 2.5 6 13.24 200 5.53 5 Load Standar d (KN) loading 13.24 CBR (%) 4.61 3.0 7 5 3.5 8 5 4.0 10 6 4.5 12 8 5.0 12 5.5 12 10 6.0 13 11 6.5 14 14 7.0 15 16 7.5 16 16 19.96 7.33 9 CBR VALUE: 7.33 TOP: 7.33 19.96 5.50 BOTTOM: 5.50 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 20%LS+76%SBPA+4%C Penetrati on (mm) Dial readin g Loa d KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial readin g 0.5 5 5 1.0 5 6 1.5 6 7 2.0 7 7 2.5 8 3.0 9 8 3.5 10 9 4.0 12 11 4.5 12 12 5.0 13 5.5 14 13.24 19.96 201 7.37 7.95 8 12 13 Load Standar d (KN) loading CBR (%) 13.24 7.37 19.96 7.33 6.0 16 13 6.5 18 14 7.0 20 15 7.5 23 16 CBR VALUE: 7.95 TOP: 7.95 BOTTOM: 7.37 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 20%LS+74%SBPA+6%C Penetrati on (mm) Dial readin g Loa d KN Standar d loading CBR (%) (MACHINE FACTOR=0.122) Dial readin g 0.5 3 4 1.0 4 4 1.5 6 6 2.0 6 8 2.5 6 3.0 7 11 3.5 8 11 4.0 10 12 4.5 11 13 5.0 12 5.5 14 14 6.0 14 15 6.5 16 15 7.0 18 18 7.5 21 18 13.24 19.96 202 5.53 7.33 8 13 Load Standar d (KN) loading CBR (%) 13.24 7.37 19.96 7/9 5 CBR VALUE: 7.95 TOP: 7.33 BOTTOM: 7.95 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 100%SBPA Penetrati on (mm) Dial readin g Loa d KN (MACHINE FACTOR=0.122) Standar d loading CBR (%) Dial readin g 0.5 3 2 1.0 3 2 1.5 3 4 2.0 4 5 2.5 4 3.0 6 6 3.5 6 6 4.0 7 8 4.5 8 9 5.0 9 5.5 10 11 6.0 10 12 6.5 10 12 7.0 11 13 7.5 13 13 13.24 19.96 3.69 5.50 CBR VALUE: 6.11 TOP: 5.50 5 10 Load Standar d (KN) loading CBR (%) 13.24 4.61 19.96 6.11 BOTTOM: 6.1 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 98%SBPA+2%C Penetrati Dial Loa Standar 203 (MACHINE FACTOR=0.122) CBR Dial Load Standar CBR on (mm) readin g d KN d loading (%) readin g 0.5 4 2 1.0 4 2 1.5 4 2 2.0 5 3 2.5 6 3.0 7 5 3.5 8 6 4.0 10 7 4.5 10 7 5.0 10 5.5 11 9 6.0 12 10 6.5 14 11 7.0 14 11 7.5 17 13 13.24 19.96 5.51 6.11 3 7 CBR VALUE: 6.11 TOP: 6.11 (KN) d loading (%) 13.24 2.76 19.96 4.28 BOTTOM: 4.28 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 96%SBPA+4%C Penetrati on (mm) Dial readin g Loa d KN Standar d loading (MACHINE FACTOR=0.122) CBR (%) Dial readin g 0.5 2 4 1.0 2 4 1.5 2 4 2.0 3 5 204 Load Standar d (KN) loading CBR (%) 2.5 3 13.24 3.0 4 6 3.5 4 7 4.0 5 7 4.5 6 7 5.0 6 5.5 7 9 6.0 7 11 6.5 8 11 7.0 9 12 7.5 11 13 19.96 2.76 3.67 5 8 CBR VALUE: 4.89 TOP: 3.69 13.24 4.61 19.96 4.89 BOTTOM: 4.89 CALIFONIA BEARING RATIO (CBR) TEST RESULT (BSH SOAKED) PERCENTAGE MIX: 94%SBPA+6%C Penetrati on (mm) Dial readin g Loa d KN Standar d loading (MACHINE FACTOR=0.122) CBR (%) Dial readin g 0.5 3 2 1.0 4 3 1.5 5 4 2.0 6 5 2.5 6 3.0 6 7 3.5 7 8 4.0 8 8 4.5 9 9 13.24 205 5.33 7 Load Standar d (KN) loading 13.24 CBR (%) 6.45 5.0 10 19.96 6.11 9 5.5 12 11 6.0 14 14 6.5 18 20 7.0 25 24 7.5 26 25 CBR VALUE: 6.45 TOP: 6.11 19.96 BOTTOM: 6.45 APPENDIX IV Atterberg limit test result 206 5.50 100 % LS 80 % LS +20 % SBPA 80 % LS + 18 % SBPA + 2 % C 80%LS+16%SBPA+4%C 207 80%LS+14%SBAP+6%C 60%LS+40%SBPA 60%LS+38%SBPA+2%C 208 60%LS+36%SBPA+4%C 60%LS+34%SBPA+6%C 50%LS+50%SBPA 50%LS+48%SBPA+2%C 209 50%LS+46%SBPA+4%C 50%LS+44%SBPA+6%C 40%LS+60%SBPA 40%LS+58%SBPA+2%C 210 40%LS+56%SBPA+4%C 40%LS+54%SBPA+6%C 20%LS+80%SBPA 20%LS+78%SBPA+2%C 211 20%LS+76%SBPA+4%C 20%LS+74%SBPA+6%C 100%SBPA 98%SBPA+2%C 212 96%SBPA+4%C 94%SBPA+6%C 213 APPENDIX V Tri – axial test result (BSL) 100% LS 80%LS + 20%SBPA 80%LS+18%SBPA+2%C 214 80%LS+16%SBPA+4%C 80%LS+14%SBPA+6%C 60%LS+40%SBPA 215 60%LS+38%S6BPA+2%C 60%LS+36%S6BPA+4%C 60%LS+14%SBPA+6%C 216 50%LS+50%SBPA 50%LS+48%SBPA+2%C 50%LS+46%SBPA+4%C 217 50%LS+44%SBPA+6%C 40%LS+60%SBPA 40%LS+58%SBPA+2%C 218 40%LS+56%SBPA+4%C 40%LS+54%SBPA+6%C 20%LS+80%SBPA 219 20%LS+78%SBPA+2%C 20%LS+76%SBPA+4%C 20%LS+74%SBPA+6%C 220 100% SBPA 98%SBPA+2%C 96%SBPA+4%C 221 94%SBPA+6%C 222 Tri – axial test result (BSH) 100%LS 80%LS+20%SBPA 80%LS+18%SBPA+2%C 223 80%LS+16%SBPA+4%C 80%LS+14%SBPA+6%C 60%LS+40%SBPA 224 60%LS+38%SBPA+2%c 60%LS+36%SBPA+4%c 60%LS+34%SBPA+6%c 225 50%LS+50%SBPA 50%LS+48%SBPA+2%C 50%LS+46%SBPA+4%C 226 50%LS+44%SBPA+6%c 40%LS+60%SBPA 40%LS+58%SBPA+2%C 227 40%LS+56%SBPA+4%C 40%LS+54%SBPA+6%C 20%LS+80%SBPA 228 20%LS+78%SBPA+2%C 20%LS+76%SBPA+4%C 20%LS+74%SBPA+6%C 229 100%SBPA 98%SBPA+2%C 96%SBPA+4%C 230 94%SBPA+6%C 231