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Abstract

This paper investigates the identification and estimation of the extended Roy model, in which the
agents maximize their utility rather than just outcome. I develop a new nonparametric identification
method that substantially relaxes conventional functional form restrictions. The outcome equations are
fully unrestricted; for example, the outcome equations can accommodate nonseparable functional forms
or disturbances of an arbitrary dimension. Furthermore, it allows for general nonlinear utility functions
by assuming that the utility is a function of the potential outcomes, instruments, and observables without
imposing ad hoc restrictions. The identification method does not require the instrument to have a large
support. I show that (i) when the instrument is continuous, possibly having a bounded support, the
model is point-identified on a certain identification region, and that (ii) when only discrete instruments
are available, sharp bounds for the model are obtained. The key assumption of the method is the
monotonicity of the selection with respect to the instrument. Based on the identification result, I propose
a nonparametric estimation procedure that builds upon a simulation-based method proposed by Dette
et al. (2006). The estimator is easy to implement in practice because it only uses a closed form formula
and straightforward simulations. I show that the estimator possesses a standard nonparametric rate of
convergence, and examine its efficacy in finite samples by Monte Carlo simulations. Finally, I estimate a

model for farmers’ decisions to adopt a new technology using data from Malawi.
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1 Introduction

Self-selection has been at the core of econometrics and empirical economics for decades. The Roy model is
a structural model of self-selection that has been used for a large class of applications. For instance, earlier
applications of the Roy model are of great importance in the literatures of the choice of schooling (Willis
and Rosen, 1979), immigration (Borjas, 1987), labor union status (Lee, 1978), etc. The Roy model has seen
continued usage in recent years in various contexts such as the choice of health plans (Cardon and Hendel,
2001) or the adoption of new agricultural technology (Suri, 2011).

Consider a binary choice from two states. Let d € {0,1} index the states. Each agent is endowed with
a pair of potential outcomes (Yp, Y1) associated with the respective state. However, the researcher observes

the realized outcome Y only, which is given by
Y=DY1+(1-D)Yy

where D is the selection indicator.
The relationship between the potential outcomes and other observable variables is specified in the fol-
lowing outcome equation:
(Yo, V1)|X ~ Fy,y,|x (1)

where Fy,y,|x is an unknown conditional distribution function. This paper assumes a completely nonpara-
metric distribution of the potential outcomes conditional on observables.
The standard formulation of the outcome equation in the literature is an additively separable relationship
as follows: For d € {0, 1},
Yo =my(X) +eq (2)

where my is an unknown function and &4 is an unobservable disturbance in the potential outcome for state d.
For example, a linear specification of my is considered in Heckman and Honore (1990) and a nonparametric
mg in Heckman (1990), Maurel and D’Haultfoeuille (2011), and French and Taber (2011), among others.
In additively separable models, the effect of X on Yy is assumed to be homogeneous across agents after
conditioning on observables. However, this assumption is hard to justify with economic theory in many
situations.

There have been a number of attempts to address this drawback of additively separable models. Consider

the nonseparable outcome equation as follows:
Yq =ma(X,ea) (3)

where mgy is an unknown nonparametric function of X and e4. For example, if ¢g = 1, the outcome
equation (3) is a nonseparable model with endogeneity, with D being the endogenous variable, as in Chesher
(2003), Chesher (2005), Torgovitsky (2011), among others. Chernozhukov and Hansen (2005) present an
identification of the outcome equation (3) under the rank similarity condition, F. |xzp = F:,|xzp-

In existing studies, the main focus is on the identification and estimation of mgy rather than the joint
distribution of (Yp,Y7). However, the joint distribution is often of greater interest; for example, the joint
distribution of the potential outcomes is needed when estimating treatment effects. In this paper, functional
form restrictions on the outcome equation are fully relaxed. The outcome equation given in equation (1)
nests (2) and (3) as special cases. Furthermore, the outcome equation (1) allows for disturbance terms of an



arbitrary dimension.

A distinctive feature of the Roy model is to specify the selection explicitly as a function of potential
outcomes. In the literature, various forms of the selection equation are used. They can be classified into
three types according to Heckman and Vytlacil (2007). The simplest form of the selection equation is called
the original Roy model. In the original Roy model, as in Roy (1951) and Heckman and Honore (1990), it is

assumed that the agents maximize their outcome. The selection equation takes the following form:
D =1{Y1 > Yy} (4)

The extended Roy and generalized Roy models include an additive nonpecuniary utility in the selection
equation. In the extended Roy model, the additive nonpecuniary utility is assumed to be deterministic
conditional on observables. For example, Borjas (1987), Bayer et al. (2011) use an extended Roy model with

the selection equation that takes the following form:
DZI{Yl >YQ+(,0(X,Z)} (5)

where ¢ is the nonpecuniary utility function, X is a vector of observable covariates, and Z is a vector of
instruments.
Meanwhile, the generalized Roy model allows for additional unobserved heterogeneity in the selection

equation. The selection equation takes the form
DZl{Yl >Y0+<,O(X,Z)—|—§} (6)

where £ captures unobserved heterogeneity in preferences.

The additional unobserved heterogeneity in the generalized Roy model complicates the identification
of the model. For example, if it is observed that when an agent chooses state 1, then Y and £ remain
unobserved. It is difficult to separate the two effects without additional assumptions. Even when (Yp, Y7, ¢)
is assumed to jointly have a normal distribution, the correlation between (Yy,Y7) is not identified. Since
this paper aims to identify the joint distribution of (Y, Y1), it focuses on the extended Roy model. The
identification of the generalized Roy model is studied in Park (2012) using the same ideas as in this paper.

The model considered in this paper extends the conventional specification of the extended Roy model to

accommodate general nonlinear utility functions. I assume a selection equation of the form
D=1u(1,X,Z) >Uy(Yo, X, Z)} (7

where X is a vector of observable covariates, Z is a vector of instruments, and Uy is a utility function for
state d € {0,1}. As is standard, Z is assumed to be independent of (Yp,Y7). The selection equation in (5)
assumes that the marginal utility of the outcome is constant and the same across states for any X and Z. In
contrast, the selection equation in (7) can incorporate important aspects of utility functions. The following

examples illustrate the importance of nonlinearity in the utility functions.

Example 1.1. Concavity of the utility function matters in many cases. Consider the choice of attending
college. If an agent attends college, she earns a lifetime income of Y7 and a nonpecuniary utility of «, e.g.,
personal pride or social recognition. Let o be a nonparametric function of Z. If the agent does not attend

college, she earns a lifetime income of Yy and no nonpecuniary utility. Let X be the family income. With



an increasing and concave utility function u, the agent’s utility from income equals w(X + Y)). The agent
will choose to attend college if
wX + Y1)+ a(Z) > u(X +Y)

or
Vi >u t(u(X +Yy) - X —a(Z))

Clearly, the right-hand side is nonlinear in Yy unless w is linear. This illustrates that the linearity assumption

is not satisfied even in the common case of a concave utility function and an additive psychological utility.

Example 1.2. When only a part of the outcome is observed, the form of the utility function matters. Again,
consider the choice of attending college. The outcome that governs the choice is lifetime earnings. However,
lifetime earnings are not observed. Suppose that when the agent chooses d, only the first-year salary Yy is
observed by the researcher. Also assume that the wage grows at an annual rate of v4(Z), which depends on
the choice of d. That is, the wage after ¢ years of work experience is given by [v4(Z)]* - Y4. Let 8(Z) be the
annual discount rate and let v be an instantaneous utility function. Then the discounted value of lifetime
utility is
Ta
Us =Y BX,Z)  ul(va(X, 2)" - Ya)
t=S4

where Sy and T} represent the year of labor force entrance and retirement, respectively, for each d € {0, 1}.
Even if the instantaneous utility is the identity function, the relationship between the outcomes and the

other variables, X and Z, is not linear because X and Z enter the discount factor nonlinearly.

However, it should be noted that utility function is identified only up to a monotone transformation.
Hence, a normalization is needed to fix the unit of the utility function. Assume that the utility function U
in equation (7) is strictly increasing in Y] for any X and Z. Then there exists the inverse of U; with respect
to Y;, denoted by Z/lfl. Let h = Z/{fl oUy. Then, the selection equation (7) can be written as follows:

D =1{V; > h(Yo, X, Z)} (8)

Now h can be regarded as a utility function normalized in units of Y.

The key assumption of this paper is the monotonicity of & in Z. This implies that an increase in Z always
induces more agents to choose one state than the other. It is the Roy model’s version of the monotonicity
assumption in Imbens and Angrist (1994) and Vytlacil (2003). Vytlacil (2003) shows that the monotonicity
assumptions in Imbens and Angrist (1994) can be translated into the framework of classical selection models.
To explain the intuition of the identification method, suppose that A is increasing in Z. When Z increases,
state 0 becomes more favorable and some agents will switch from state 1 to state 0. The researcher observes
the changes in the distribution of observed outcomes. Since the inflow into state 0 and the outflow out of
state 1 sum to zero, matching the changes in two states gives the key equation used for the identification.
An advantage of my identification strategy is that it is constructive, leading to a natural nonparametric
estimator.

A prevalent identification method for the Roy model is the so-called “identification at infinity” argument.
The basic idea of the identification-at-infinity method is that the selection problem disappears when a state
is chosen with probability one. A sufficiently large variation in instrumental variables enables the researcher
to make the choice probability arbitrarily close to one. However, the identification-at-infinity argument has

two potential problems. First, it requires a large support assumption on instruments, which often fails to



hold in practice. Second, the estimation based on the identification-at-infinity is “irregular” in the sense that
it relies on observations near infinity.

This paper addresses the two central problems of the identification-at-infinity method. First, the identi-
fication method proposed in this paper does not require any support condition on the instrumental variable.
Instead, it gives different identification results for different types of instruments. When the instrument is
continuous, possibly having a bounded support, the model is point-identified. When only discrete instru-
ments are available, bounds for the model are obtained and shown to be sharp. Second, the estimation
method based on the new identification strategy possesses a standard nonparametric rate of convergence.
The estimation procedure using the identification-at-infinity argument is irregular, potentially resulting in a
slower rate of convergence.

I propose a simulation-based estimator for the model with a continuous instrument. The method proceeds
in two steps. In the first stage, the distribution function of observed outcomes and its derivatives with respect
to the instrument are estimated by a local linear estimator. In the second stage, the parameters of interest are
estimated by solving equations obtained from the first stage estimates. I adopt and extend the simulation-
based method proposed by Dette et al. (2006) to solve the equations under the monotonicity assumption. The
estimator is easy to implement because it only uses a closed-form formula and straightforward simulations.
I derive its rate of convergence and conduct a set of Monte Carlo simulations to examine its efficacy in finite
samples.

The nonparametric estimator is applied to an empirical example of the adoption of hybrid maize using
data from Malawi. Maize is one of the most important food crops in Malawi, and hybrid maize is a variety
that has been developed to improve the yield. In spite of the government subsidies for hybrid maize, the
adoption rate of hybrid maize remains low. A farmer’s decision to adopt hybrid maize is viewed as a binary
choice between planting hybrid maize and traditional maize. I use the distance to the nearest secondary
road network as the instrument. Since a farmer has to travel to the market to buy hybrid maize seeds, the
instrument has a monotone effect on the selection. The median treatment effect of hybrid maize on the yield
is estimated; the estimation results suggest that the median treatment effect is positive overall though it
may vary with the amount of fertilizer used and the soil quality. In addition, the optimal subsidy level that
maximizes the total maize yield is estimated. The results suggest that the optimal subsidy level is positive,
which is surprising given the positive sign of the median treatment effect. The results are also consistent
with the monotonicity assumption of the instrument.

The remainder of the paper is organized as follows. Section 2 presents the identification results. Subsec-
tions 2.1 and 2.2 provide a point-identification result for continuous instruments and a partial identification
result for discrete instruments, respectively. In Section 3, I develop a nonparametric estimator based on
the identification results and derive the convergence rate of the estimator. Section 4 presents Monte Carlo
simulation results to check the performance of the estimator in finite samples and compares it with bench-
mark estimators. Section 5 discusses the empirical application of the estimator to the adoption of hybrid
maize. Section 6 summarizes the results and provides some future research directions. Appendix A proves
an asymptotic theory for the simulation-based estimator used in Section 3 under high-level assumptions.
Appendix B provides a high-level conditions for stochastic equicontinuity. Tables are deferred to the end of

the paper.



2 Identification

Suppose that Y; € R for each d € {0,1} and let X € X C R™X and Z € Z C R™Z. Tcall X and Z
covariates and instruments, respectively. Throughout this paper, I assume that mz = 1 so that the model
is just identified. Generalization to the case of myz > 1 is straightforward. Consider the following model:

(Yo, Y1)|X, Z ~ Fy,y,|x

D =1{Y; > h(Y, X, Z)}
Y = DY; + (1 — D)Y,

The parameters of interest are the joint distribution of the potential outcomes, Fy,y,|x, and the utility
function, h. For identification, I assume that the researcher observes the joint distribution of the state choice
D, realized outcome Y, covariates X and instrument Z.

I fix notation first. Throughout this paper, random variables are denoted by upper case letters and their
realizations by lower case letters. Let G4 for d € {0,1} be the conditional distribution function of observed
outcomes in state d:

Galylr,z) =Pr(Y <y,D=d|X =2,7Z ==z)

Note that G is identified by definition because it is a distribution function of observed variables. When it is
obvious, the conditioning variables are abbreviated. For example, Pr (-|z, z) abbreviates Pr(:| X =z, Z = z2).
Let supp(-) represent the support of a random variable. Also, supp(+|-) signifies the conditional support of a
random variable conditional on another random variable.

In the following subsections, I present two identification results. One is a point-identification result when

the instrument is continuous, and the other is a partial identification result when the instrument is discrete.

2.1 Continuous Instrumental Variable

First I consider a continuous instrument case. Throughout this section, I fix X at x and the results are

conditional on z. The following assumptions are used:

Assumption 2.1. The following assumptions hold conditional on X = x with probability one:
(a) (Yo,Y1) is independent of the instrument Z.
(b) The distribution of (Yo,Y1) has a density fy,y,|x and a support equal to R?.
(¢) h is strictly increasing in Yy for any Z.
(d) h is strictly increasing in Z for any Yy.
(e) The distribution of Z has a density fz x.
(f) h is differentiable with respect to Z for any Y.

Remark 2.1. Assumption 2.1(b) guarantees that observed distributions have well-defined densities and allows
one to ignore the indecisive case of Y7 = h(Yp, z,z). This assumption can be weakened, for example, to
incorporate mixed continuous and discrete distribution by specifying a tie breaking rule. The support is
mild. To identify parameters locally at a certain point, the support assumption can be relaxed. In the case
of bounded support, Bayer et al. (2011) presents an identification strategy that utilizes the boundedness of
the support.



Remark 2.2. Assumption 2.1(c) is an axiom of utility and naturally satisfied in most applications. It can be
relaxed if one is interested in the identification of h at a certain point (yo,x, z). Then the assumption can
be replaced with the following assumption:

() h(go,,2) < h(yo,z,2) if Yo < yo and h(fo,,2) > h(yo,z,2) if Jo > yo
Remark 2.3. Assumption 2.1(d) imposes a monotonicity of selection in the instrument, which is the key
for the identification. It is the Roy model’s version of the monotonicity assumption in Imbens and Angrist
(1994) and Vytlacil (2003). Intuitively speaking, it implies that when the instrument increases, the utility

for state 0 increases more or decreases less than that for state 1.
Assumption 2.1(f) guarantees the differentiability of G4 with respect to z. I denote the derivative of G4
with respect to z by

0
szl)(ydmz) = &Gd(ydlx,z)

Let h=1(y1, 7, ) be the inverse function of h(yo, z, z) with respect to yo at (z, z). That is, y1 = h(yo, z, 2) is
equivalent to yo = h~!(y1,, z). Assumption 2.1(c) guarantees that h=! is uniquely defined.
The following is an intermediate result, which is used for the identification of underlying parameters.

Lemma 2.1. Under Assumption 2.1, if y1 = h(yo,x, z), then

Go(yolw, 2) + G1(y1lz, 2) = Fy,v, 1x (Yo, v1]@)

and
M (yolz, 2) + G (g1 |2, 2) = 0

Proof. Using the selection equation and Assumption 2.1(a), the observed distribution functions, Gy and G,

can be written as

Go(yolz,z) = Pr(Y <yo,D =0|z,2)
= Pr (}/0 < y07Y1 < h(%axazﬂx) (9)
and
Gi(yilz,z) = Pr(Y <wy;,D=1|z,z)
= Pr(Y1 <y, Y1 > h(Yo,2,2)|x) (10)

Note that conditioning on Z disappears because Z affects Gy and Gy only via h by the independence
assumption between Z and (Yp,Y7) conditional on X.

By the monotonicity of h in Yy, Yy < yo and Y7 < (Yo, z, z) imply

Yl < h(YO7va)
S h(yo,.T,Z)
= U



Thus,

GO(yO‘xaz) = Pr (YO S y07Y1 S h(}/o,"E,Z)‘(E,Z)
= Pr (YO g yOaYi S yl»yl S h(Yo,.’IJ,ZMJJ)

Similarly,

Gi(y1lz,z) = Pr(Y1 <y, Y1 > h(Yo,z,2)|z)
= Pr (YO S y07Y1 S yl»YI > h(YO7.’L',Z)|$)

Therefore,

Go(yolz, z) + G1(ya|z,2) = Pr(Yo <wyo, Y1 <y1,Y1 < h(Yo,z,2)|x)
+Pr (Yo <o, Y1 <y1,Y1 > h(Yo,z,2)|z)
= Pr(Yp <o, Y1 <wyilz)
= Fyyy,x o, y1]x)

which proves the first statement of the lemma.
The probability (9) can be expressed as an integral as follows:

Yo h(vo,z,z)
Go(yolz, 2) :/ / Jyova|x (Vo, v1|z)dvrdug

Differentiating this with respect to z yields

G?%L@—/%<%@%@)MmﬂWMJ@W@ (1)

oo 0z

Similarly, we can write Gy (y1|z, 2) as

R (y1,2,2)  pon
Gi(y1l|z, 2) =/ / Jyovi|x (vo, v1|x)dvoduy
h

—oo (vo,,2)

Now differentiate this with respect to z to obtain

Oh~ 1 , T, Y1 B
GO (ylez) = ((“I”)/ Frovapx (= (g, 2), )y
h

9z (h=1(y1,2,2) 2.2)

h (y1,2,2) oh
+/ (_(UO’I’Z)> fyovi|x (vo, h(vo, x, z)|x)dvo

oo 0z

Observe that the range of the first integral is simply a point {Y; = y;} because h(h~!(y1,x, 2),z,2) = y1.
Since the set {Y7 = y1} is of measure zero with respect to the Lebesgue measure, any integral over this set
with respect to a measure that is absolutely continuous with respect to the Lebesgue measure yields zero
under Assumption 2.1(b). Hence,

h=H(ye,2) Oh(v,x, 2
nle2) = [ (()>&MXWM%%@@M (12)

oo 0z



Figure I
Y = h(¥,;,x,z2)

G, (h(yo, x,2)| 2)

h(y,,x,2)

GO(yO |X=Z)

Yo Yo
Combining equations (11) and (12), we have
o oh(v,z, z
Ggl)(yo|z,z) + Ggl)(y1|z,z) = / ( : <(8z)> Tyovi)x (v, h(v, z, 2)|x)dv (13)
h=1(y1,x,2

It is now clear that if y; = h(yo, z, 2),
G (wolz,2) + G (g, 2) = 0

O

Figure I illustrates the first result of the lemma. Let x and z be given and put Y, and Y; on the vertical
and horizontal axes, respectively. The utility function is a upward sloping curve on the plane. Any point
below the curve satisfies Y7 < h(Yp, z, z). Hence the agents whose potential outcomes lie below the curve
will choose state 0. Furthermore, Yy will be observed for the agents below the curve. For an arbitrary yo,
the probability measure on the shaded area represents Go(yo|z, z). By the same argument, the probability
measure on the shaded area above the curve gives G;. In particular, when y; = h(yo, z, ), the two areas
jointly make a rectangle. Therefore, the probability measure on the rectangle equals to the sum of the two
observed probability measures as in the lemma.

Now consider an increase in Z by e for an arbitrary positive €. Since h is strictly increasing in z, the
utility function shifts upward as in Figure II. An increase in Z will increase the utility of choosing state 0 and
so more agents will choose state 0. With yo being fixed, Go(yo|x, z + €) — Go(yo|z, 2) captures the increase
in the probability measure of the agents who choose state 0 and receive an outcome less than or equal to .

The shaded area in Figure II represent the subpopulation who changed the choice from state 1 to state 0



Figure II
I71 = h(YO>x:Z+8)

le = h(Y()axsZ)

Go(yo | x,z+€)—G0(y0|x,z)

Yo Y

0

due to the increase in Z. If the increase in Z is infinitesimal, G(()l)(y0|x, z) captures the infinitesimal increase
in the distribution function Gy. The shaded area in Figure II will shrink to a curve that is depicted as a
bold line in Figure III. Note that any point on the bold line satisfies Y7 = h(Yp, z, z), which implies that the
utilities for both states are the same. Therefore Gél)(yoh:7 z) can be viewed as the density of the event that
Yy is less than or equal to yy and two states are indifferent.

Similarly, Ggl)(y1|x, z) is the density of the event that Y7 is less than or equal to y; and two states are
indifferent. Note that Ggl) is negative because G; decreases as Z increases. As Figure III shows, G(()l)(yo|m, z)
and Ggl)(h(yo,x, 2)|z, z) capture the same density, though the signs are different. Based on this idea, the
following theorem proves the identification of h.

Theorem 2.1. Under Assumption 2.1, h is identified for any (yo,x, z) € supp(Yo, X, Z).

Proof. Let (yo,x,z) € supp(Yy, X, Z) be given. By Lemma 2.1, we know that if y; = h(yo, z, ), then
G (yol, 2) + G (]2, 2) = 0 (14)
I prove that (14) holds only if y; = h(yo, z, 2). Pick any ¢} > y;. From (12), we have

h(yhe.2) (8h(v7m,z)

522 (00,2 )

@Wma@—dwmmwz—/

h=1(y1,z,2)

By Assumption 2.1, 2—2 > 0 and fy,y;)x > 0. Thus, the integrand is strictly positive on a neighborhood of

10



Figure III

Yl :]’l(YO,x,Z)

h(y,,x,2)

Yo ¥,

y1 = h(yo,z,2). Since h=1(y}|,x,2) > h=(y1,z, 2), we have

GV (il 2) < G (e 2)
By exactly the same reasoning, for y| < y1,

GV (vl 2) > GI (e 2)

Therefore equation (14) has a unique solution, and we already know that the solution is h(yo, z, z). Since
Gél) and Ggl) are identified, h(yo,x, 2) is also identified. O

Equation (14) is the key equation for identification of h(yg, x, z). As I mentioned previously, G(()l) captures

the density of inflow toward state 0 caused by an increase in Z and Ggl) the outflow out of state 1. Since
there are only two choice options, the inflow and the outflow must sum to zero. Figure III shows that the
zero-sum condition holds when y; = h(yo, x, z). The theorem states that for each yo there is unique y; that
satisfies the zero-sum condition in (14) and the solution is h(yo, , 2).

Now I consider the identification of Fy,y,|x. Though I do not require a large support assumption on Z,
the support of Z does affect the identification region. Let Z(x) be the support of Z conditional on X = x.
Also define

H(z) = {(yo,y1) € supp(Yo, Y1|z) : y1 = h(yo, x, ) for some z € Z(x)}

Intuitively speaking, an agent whose potential outcomes lie in H(z) is indifferent between the two states at
a certain value of Z in Z(x). In other words, an agent outside H(z) chooses one state no matter what the

value of Z is. Since identification relies on the changes in the choice caused by Z, such agents outside H(z)

11



do not provide any information for identification. Hence, H(x) is the identification region for Fy,y, x.
Theorem 2.2. Under Assumption 2.1, Fy,y,|x (Yo, y1|7) is identified for any x € X and (yo,y1) € H(x).

Proof. Suppose that (yo,y1) € H(x) is given. Then, there exists ¢ € Z such that y; = h(yo, 2, ). By Lemma
2.1,

Fy,v1x (Yo, y1]2) = Go(yolz, ¢) + G1(y1]z, ()

Since Gy and G; are observed, only unknown is (. By Theorem 2.1, h is identified at (yo,z,z) for any
z € Z(x). Hence ( is also identified. Therefore Fy,y,|x is identified. O

Consider a large support assumption that #H(x) includes the support of (Yp, Y1) conditional on X = z.
Under the large support assumption, Fy,y,|x is point identified everywhere on its support.

Even if the large support assumption fails, useful treatment effect parameters can still be identified. Let
Qy,-v,|x (]x) be the Tth quantile of Y7 — Yg conditional on X = x for 7 € [0, 1]. The following result gives
the conditions under which Qy, _y,|x (7|x) is identified with a bounded support of the instrument.

Assumption 2.2. Suppose that Z(x) = [z, z] where —co < z < Z < co. Assume that the following inequality
holds almost surely.
h(}/07x7§) S }/0 + QY17Y0|X(T|x) S h(Yba z, 2)

Corollary 2.1. Under Assumption 2.1 and 2.2, Qy, _y,|x(7|x) is identified.
Proof. Tt suffices to show that Pr(Y; — Yy < Qy, _y, x (7|z)|x) is identified. Note that

Pr(Y1 =Yy < Qy,—vy x(T]2)|z) = Pr(¥Y1 —Yo < Qy, vy x(7|z), Y1 < h(Yo,, 2)|2)
+Pr(Y1 — Yo < Qy,—vyx(7|2), Y1 > h(Yp, 7, 2)|z) (15)

By Assumption 2.2, Y7 < h(Yo,, z) implies Y1 — Yy < Qy,_y,x(7]x). Thus, the first term in (15) can be

written as

Pr(Y1 — Yo < Qy, vy x(7]2), Y1 < h(Yo,z,2)[z) = Pr(Y1 < h(Yo,z,z2)|z)
Pr(D = 0|z, 2)

Note that Pr(D = 0|z, z) is an observed probability, so it is identified.

Now I prove that the second term in (15) is also identified. Note that Y1 —Yy < Qy, _y;|x (7|z) implies that
Y1 < h(Yy, z, 2) almost surely by Assumption 2.2. For any y1 € [h(yo,, 2), h(yo, 2, Z)], by the intermediate
value theorem, there exists ( € Z(x) such that y; = h(yo,z,(). Hence a point (yo,y1) such that Y; —
Yo < Qy,—y, x(7|z) and Y1 > h(Yp,z,2) is an element of #H(x) almost surely. Since the conditional joint
distribution function of (Y, Y1) conditional on X = z is identified on H(z) by Theorem 2.2, the second term
n (15) is identified. O

Remark 2.4. The relationship Y1 = Y5 +Qy, —v,|x (7|z) can be depicted as a diagonal line on two dimensional
plane of (Yp,Y7). Assumption 2.2 states that the diagonal line lies in H(z). For heuristic explanation,
suppose that the utility function h is additively separable in Yy and nonpecuniary preference: h(Yy, X, Z) =
Yo+¢(X, Z). In this case, Assumption 2.2 is equivalent to a simple assumption that Qy, _y,|x (7|z) = ¢(z, 2)
for some z € Z(z). That is, the support of ¢(z, Z) is the identification region for Qy, _y,|x (7|x).

12



2.2 Discrete Instrumental Variable

In this subsection, I consider the case in which the instrumental variable is discrete. In this case, point-
identification of the model is impossible. Instead, bounds are obtained. Suppose that Z takes a value from
z={0,1,--- ,K}.

Assumption 2.3. Conditional on X = x, the following assumptions hold with probability one:

(a) The distribution of (Yy,Y1) is absolutely continuous with respect to the Lebesgue measure with a

density fy,y,|x-
(b) h is strictly increasing in Yy for any Z.
(c) h is strictly increasing in Z for any Y.

Assumption 2.3 is the same as Assumption 2.1 except the support condition on Z and the differentiability
condition. As the derivatives of the observed distributions in the continuous instrument case play the key
role, the differentials with respect to Z in the observed distributions are important in discrete case. For
z2€{1,2,--- ,K} and d € {0, 1}, define

AGa(yolz,2) = Galyolz,z) — Ga(yolz,z — 1)
using expression (9), this can be written as
AGo(yolz, z) = Pr(Yo < yo, h(Yo, 2,2 — 1) < Y7 < h(Yp, 2, 2)|x) (16)

It is obvious that AGy(yo|z, z) is non-negative and non-decreasing in yo. Similarly, we have

AGi(yilz,z) = Gi(yilz,z) — Gi(yolz,z — 1)
= Pr(Y1 <y, Y1 = h(Yo, 2, 2)[z} — Pr{Y1 <y1, Y1 = h(Yo, 2,2 — 1)|z)
= —Pr(Y1 <uy1,h(Yo,2,2—1) <Y1 < h(Yp,x, 2)|z) (17)

Note that it takes a non-positive value and is non-increasing in y;.

Theorem 2.3. Under Assumption 2.3, for z € {1,2,--- | K}, the upper bound for h(yo,x,z) is given by
hY (yo, @, 2) = inf{y1 : AGo(yolz, 2) + AG1(y1|z, 2) < 0} (18)
and the lower bound for h(yo,z,z — 1) by
hr(yo,x,z — 1) = sup{y1 : AGo(vol|z, 2) + AG1(y1]z,2) > 0} (19)

Furthermore, the bounds are sharp.

Proof. 1 prove the theorem for the upper bound only. The lower bound can be shown similarly. I will
establish that for y; > h(yo, z, 2),

AGo(yolz,z) + AG1(y1]z,2) <0

If the claim is true, hY (yo,, 2) > h(yo,z,2). Suppose that v, y1, * and z are fixed. If y; > h(yo,, 2),
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Yy <wyo and Y7 < (Y, z, 2) imply Y7 < y;. Thus, we have

AGo(yolz,z) = Pr(Yo <yo,h(Yp,z,z—1) <Y; < h(Yy,z,2)|x)
< Pr(Ys <y, h(Yo,z,2—1) <Y; < h(Yp,z, 2)|x)
= —AGi(y1]r,2)

Note that by Assumption 2.3(a) a strict inequality can be replaced with a weak one and vice versa.

To show that the bound is sharp, I will illustrate that any value smaller than hY (yo,z, 2z) can be also
smaller than h(yo, z, 2) under certain circumstances. Let ; be an arbitrary value smaller than kY (yo, z, 2).
By definition, AGo(yol|x, z) + AG1(§1]2z,2) > 0. Fix a small ¢ > 0 and let A = {(Yp, Y1) : h(Yp, 2,2 — 1) <
Y1 < h(Yy,z,2)}. Also let

.Ao (E)
Ay (e)

AN{Ys <o, Y1 > h(yo,z,2) — e}
An{Yy >y, Y1 < h(yo,x,2) — e}

Suppose that Pr (Ag(e)|z) = Pr (A;(e)|x) + AGo(yolx, 2) + AG1 (71 ]z, ). Since Ag(e) and A;(e) are disjoint
regions having a positive Lebesgue measure, their probabilities can be manipulated easily without hurting

any assumptions imposed for the theorem. A simple but tedious algebra gives
AGo(yolw,z) + AG1(h(yo, x,2) — €|z, z) = Pr (Ao(e)]x) — Pr (Ai(e)l|z)
Thus,
AGq(h(yo,z,2) — elz, z) = AGy (1], 2)
Since AG1(y1|r, 2) is strictly monotone, 41 = h(yo, x,z) — € < h(yo, z, 2). Therefore, h is sharp. O

Note that there is no bound for the boundary values of Z. That is, h(yo,,0) has no lower bound and
h(yo, x, K) has no upper bound. This is related to the identification region H(z) as discussed in the previous
section.

The following theorem gives bounds for the joint distribution function. The bounds extend the bounds

proposed by Peterson (1976) to a general censoring scheme that includes an instrument.

Theorem 2.4. For fized (yo,y1,x), let
F%Yl\X(y07y1|x) = Zlgg {Go(yo|$7z) +G1(y1|1'72’)}

By x o pilr) = sup {Golyg (2)]x, 2) + Gr(yf (2)] 2, 2) }
zE

where

ye(2) = min{yo,inf{t: AGo(t|z,2) + AG1 (1|7, 2) < 0}}
yf(z) = min{y,inf{t : AGo(yo|z, 2) + AG1(t|x,z) < 0}}

Under the assumptions of Theorem 2.3,

F)%Yl\x(yo,yﬂiﬂ) < Fy,yy i x (o, y1|x) < F}%yﬂx(yanlm')
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and the bounds are sharp.

Proof. For any z € Z,

Go(yolz,z) = Pr{¥y <wo, Y1 < h(Yo,x,z)|x}
Z PI'{}/O S yO,Yl S th1 < h(Yb,IE,Z)IIE} (20)
and
Gi(yilz,z) = Pr{Y1 <y, Y1 > h(Yo,z,2)|z}
Z PI‘{YE) S y()ayl S yl,Yi Z h(YE)aI7Z)|I} (21)
Since
Pr{Yy <yo,Y1 <1, Y1 < h(Yo,z, 2)|z}
+Pr{Yy <o, Y1 < w1, Y1 > h(Yo, z, 2)|x}
= Pr{Yy <yo, Y1 <yilx}
we have
Go(yolz, 2) + G1(y1|z, 2) > Pr{Y¥y < wo, Y1 < y1|o}
for any z € Z.

Note that yF(2) is the minimum of y; and the lower bound for h(yo,r,z) given in Theorem 2.3. Thus
Y1 <yl (2) implies Y7 < h(yo,x,2) as well as Y7 < ;.

Pr{Yl < ylL(Z)’}/l > h(YQ,$,Z>|Z‘}
Pr{Yl < h(yo,x,z),iﬁ S yl,Yl > h(Yo,QS‘,Z)|’I}}
Pr{Yy <wyo,Y1 <w1,Y1 > W(Yo, 2, 2)|x}

Gi(yi (2)lz,2)

IN

IA

The last inequality holds because Y7 < h(yo,z, z) implies Yy < yo when Y7 > h(Yp,z, 2z) holds due to the
monotonicity of h. By switching the role of Yy and Y7, it can be shown that

Go(yg (2)|z, 2) < Pr{Yy < yo, Y1 < y1, Y1 < h(Yo,x, 2)|z}
Therefore, for any z € Z,
Go(yg (2)], 2) + Gr(yt (2)|a, 2) < Pr{Yy < 40,1 < ynlz}

Now I show that the bounds are sharp. I will provide an example in which the bounds are actually
the same as the object. Suppose that there exists ¢ € {0,1,2,---, K} such that y; = h(yg,z,(). By the
monotonicity of h, Yy < o and Y; < h(Yp, z,¢) imply Y7 < h(yo,,() = 3. Hence, the inequality in (20)
holds as an equality. Similarly, (21) becomes an equality for z = . Therefore,

Go(yolz, Q) + Gi(yr]z, ¢) = Pr{Ys < o, Y1 < y1lz} = Fy,v, x (Yo, v1]x) (22)
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which implies
Py, yax (W0, 9117) = Fygyy x (vo, y1|2)

Note that
“(

y%(z) = min{yhh yO’sz)}

where hY is the bound for h defined in Theorem 2.3. Hence, if 31 = h(yo, 7, (),

hY (yo, x,¢) > h(yo, z,¢) = 1

and so
Yl Q) =m

Similarly, it can be shown that y&(¢) = yo. Then,

Fyy x o mile) = Golyolz, ¢) + Gi(ylx, ¢)
Fyyyy1x (Yo, yi|z)

Hence, the bounds are sharp. O

3 Estimation

In this section, I consider the estimation of the model with a continuous instrument. Suppose that we
observe a random sample of {(D;,Y;,Z;, X;) : i =1,...,n} where D; € {0,1}, V; € R, Z; € Z C R and
X; € X C R™x. The identification results imply that h(yg,z, z) is the unique solution to

G(()l)(yo|x, z) + Ggl)(yl\x, 2)=0
for fixed (yo,, z). Meanwhile, for given (yo,y1,%), Fy,v,|x (Y0, y1|z) is the solution to

Fy,v1x (Yo, y1]z) = Go(yolz, ¢) + G1(y1], )

for some ¢, where ¢ solves y1 = h(yo, x, z) for the given (yo, y1, ).

I propose a nonparametric estimator based on the identification results. The estimation method proceeds
in two steps. In the first stage, the conditional distribution function of the observed outcome and the choice,
Ga(yalz, z), and its derivative with respect to the instrument are estimated by a local linear estimator. Local
linear estimators are a standard nonparametric method extensively studied in statistics and econometrics.
For example, see Fan and Gijbels (1996), Ruppert and Wand (1994) and the references therein. In particular,
the local linear estimator of a conditional distribution function is considered in Yu and Jones (1998), Hall
et al. (1999).

In the second stage, I solve equations that are obtained from the first stage estimation. I adopt and extend
the simulation-based method proposed in Dette et al. (2006), Dette and Scheder (2006), and Dette and
Volgushev (2008). The estimator is computationally attractive: it only requires straightforward simulations
and calculations of closed-form expressions. It does not require any numerical optimization. Furthermore,
it is applicable to a more general estimation problem of numerically solving equations. Thus, the results

obtained here might be of theoretical and practical interest in their own right.
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I start by fixing some notation that is used throughout the section. Let W; = (X!, Z;)’ and W C R™
be the support of W. For a positive integer [, G((il)(y\w) stands for %Gd(mw) for w = (2, 2)’. Similarly,
‘S‘l,) (w) is the lth derivative of fy with respect to z, where fyy is the probability density of W.
Let ¢ = (t1,-++ ,tm) be a m-dimensional vector of non-negative integers. Let || = 3 7", ¢,. For v =
(v1,-++,vm) € R™ and a function p : R™ — R, define

vh =t X e X ukm

and
T
ot vyt - - - Qugy

3.1 First Stage Estimation

The first stage estimation is to estimate the conditional distribution function of (Y, D) conditional on W.
Let (y,d,w) be given. We know that

E[H{Y; <y, D; = d}|W;] = Ga(y|Ws)

If we write Sy = G4(y|lw) and 81 = w, by Taylor’s theorem, we can approximate the right hand side
by
Ga(ylWi) =~ o+ B (Wi —w) (23)

for W; ~ w.!
I consider a product kernel with equal bandwidth across variables. Let k be a kernel function defined on

R and b be a sequence of positive numbers converging to zero. For v = (vq,- -+ ,v,,) € R™, define

Ky(v) = ;nf[lk (%ﬂ) (24)

Based upon the approximation (23), one can estimate the parameters by solving the following weighted

least squares problem

B = arg min) z”: [1{D; =d,Y; <y} — ag — a\ (Wi — w)]> K,(W; — w) (25)
=1

(ao,a1

~ ~ ~ /
where 8 = (ﬁo, Bi) is an estimator of 8 = (B, 81)’.

The solution to the problem (25) has a closed-form solution. It is convenient to work with matrix notation.

!Here T consider a first-order expansion because the higher-order derivatives are not of interest and would make the notation
and calculation complicated if included. However, it is possible to approximate up to a higher order. The estimator has smaller
bias at a cost of larger variance. This extension is straightforward and well-studied. For example, see Ruppert and Wand (1994)
and Fan and Gijbels (1996) among others.
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Define matrices W and Y as follow:
1 (W1 — w)’ 1{D1 = d, Y1 S y}
W=1: : and Y = :
Further, define K = diag{ Ks(W1 — w), ..., Ks(W,, — w)}. Then the solution to the weighted least squares

problem (25) can be written as
B = (WKW) 'WKY (26)

I make the following assumptions.

Assumption 3.1. Let y € R, d € {0,1} and w € W be given. Suppose that G4(ylw) € (0,1). At (y,d,w),

the following assumptions hold

(a) %Sﬁ is bounded and continuous over W for any |i| < 3.
(b) 8(;7{)‘7 is bounded and continuous on W for || =0, 1.

(c) k is a symmetric, positive, second order kernel function. The following constants are finite for j < 8.

/ujk:(u)du
/ujk2 (u)du

Theorem 3.1. Under Assumption 3.1, for d € {0,1},

kj

Vj

(e) Asn — 0o, b— 0 but nb™+? — oco.

E [Galylw) - Galylw)W| = 0*Bo(y,d,w) + 0,(b?)
E G o) = Galylw) W] = Bi(y,d,w) + 0,(4)
where
Bo(y.dow) = 2race (=2 Gyl
oy, a,w) = B) race Jwow aly|lw
and
(1)
i 1 (2) 1) 8G (ylw) O fw (w)
1 2GWM (y|w
6{ LG wf) v () + 3 Trace (8;8(;") v ()
Moreover,
. 1
var {Gd(y|w)|W} = WVO(%CZ w)—i—op( bm)
A(1) _ 1 1
var [Gd (y|w)|W} = Wvl(y,d,w)+op (W)

18



where

%@Amﬂzﬁ§5GAWMUdeWW
mel
Vi(y,d,w) = m&xylw) [1— Galylw)]

Proof. The conditional mean squared error for a local linear estimator is derived in, e.g., Ruppert and Wand
(1994) and Fan et al. (1997). Particularly for the estimates of the derivatives, see Lu (1996). O

The theorem shows the rate of convergence of Gg4 and C?((il). Let r,, represent the convergence rate of
CA?((;). That is,

rp = max {b2 1 }
n Y /nbm+2
3.2 Estimation of the utility function

In this section, the estimation of h(yg,w) is discussed. For given (yo,w), define
un(y) = G5 (olw) + G1V (ys|w)

Since (yo,w) is fixed, pyp, is a function of y;. By Theorem 2.1, we know that h(yg,w) is the unique solution

to
pa(-) =0 (27)

Also, it is shown that puj is strictly decreasing in y; by the proof of Theorem 2.1. Using the first stage
estimates of Gél) and Ggl), a natural estimate of p, is

n(y1) = G (yolw) + G (g ]w)

Note that i, might not be decreasing in y; because the first stage estimate is not shape-restricted. A natural

way to estimate h(yo,w) is to find y; such that

fin(y1) =0 (28)

To obtain the numerical solution to equation (28), I use a simulation-based method, which is explained in
detail in Appendix A below.
Let Fj be a distribution function chosen by the researcher and 7} be a random variable with the

distribution function F}’. Using the monotonicity assumption that py is strictly decreasing,

Pr(un(Tj;) > 0) = Pr(Ty < p;,'(0))
= Fy(w, (0)
It leads to
py (0) = (F) ™ (Pr(pn(T3;) > 0)) (29)

Note that F}’ is known. Let {tzj :j =1,...,n} be a generated random sample from F}'. Replace p; with
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fur, and approximate the probability of the event {u,(T}) > 0} by
1S
— > H{mn(t;;) > 0} (30)
j=1

Since h(yo,w) = ;" (0), using (29) and (30), define an estimator for h(yo,w) by

S 1 i) > 0)

=1

h(yo.w) = (Fy) ™

Note that it only requires drawing a random sample from a known distribution and calculations of closed-form
expressions in (30). Hence it is computationally very accessible.

The choice of F} does not affect the first-order asymptotics as long as it satisfies the assumptions below,
which are mild. Hence one may choose a distribution function that is tractable. In addition, since pj is
evaluated at each point of the generated sample, it is desirable that the support of Y3. One possible choice is
a uniform distribution over the range of the observations of Y1, for example [Qy, | (0.01|w), Qy;w (0.99|w)].

I make the following assumptions.

Assumption 3.2. Suppose that the following assumptions hold:
(a) W is bounded and continuous over (y,w) € R x W for any |¢| < 3.
(b) %ﬁ‘w) is bounded and continuous over (y,w) € R x W.
(¢) sup,cpm |t/ uK (u)| < oo

(d) There exists a positive sequence 0,, such that d, log(n) = o(1).

(e) Fyf has a continuous and bounded density f; and f; > 0 on a neighborhood of h(yy,w).
(f) pn(Ty;) has a bounded density f;.

(9) = = o(ra)

Remark 3.1. Assumptions 3.2 (a) and (b) are a stronger version of the boundedness condition in Assumption
3.1. Since Gfil) (y|w) is evaluated at different values for the estimation of h, the boundedness condition has to
be strengthened accordingly. While the boundedness condition in Assumption 3.1 is with respect to w € W,
Assumptions 3.2 (a) and (b) are with respect to both y and w.

Theorem 3.2. Let yg € R and w € W be given. Under Assumptions 3.1 and 3.2,

. <M#Wmmwm>

h(yo, w) = h(yo, w) = — i ) [ (A (Yo, w))] + 0p(rn)

Proof. Tt is a direct result of Lemma A.1, which is given in Appendix. Assumption A.1 (a) and (b) are
satisfied because py,(y1) is strictly monotone and differentiable in y;. Assumption A.1 (c¢) and (d) follow
from Theorem 3.1 and Lemma B.2, respectively. Finally, (e), (f) and (g) are assumed in Assumption 3.2. [

Remark 3.2. Theorem 3.2 implies that the convergence rate of ﬁ(yo, w) is the same as that of . Since

fin(y1) = G5 (yolw) + G (y1|w)

it follows from Theorem 3.1 that the bias and the standard error of fi;, have an order of b2 and \/ﬁ,
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respectively. Therefore, the convergence rate of fL(yO,w) is r, = max {bz, \/ﬁ}, which is the standard

rate of convergence for nonparametric estimators of first-order derivatives.

3.3 Estimation of the joint distribution

In this subsection, I consider the estimation of Fy,y,|x (y0,1|7) for fixed (yo,y1,7). By Theorem 2.2, we
know that

Fy,y,1x (Yo, y1lz) = Go(yolz, ¢) + G1(y1], Q)

where ( satisfies y; = h(yo, x, (). So a natural estimator of Fy,y, x (Yo, y1|®) is

FY0Y1|X(yan1|x) = G’o(yo|$7 ¢) + él(yﬂﬂ% () (31)

However, it is infeasible because ¢ is unknown. To estimate ¢ for fixed (yo,y1, ), define
1 1
ne(2) = G (yol, 2) + GV (., 2)

It is clear that ¢ satisfies pupr({) = 0. We can use the simulation-based estimator that is used to estimate
h(yo, w). Let F¥ be a distribution function chosen by the researcher and 77 be a random variable with the
distribution function FC* Draw a random sample {tzj :7=1,...,n*} from FC*' Define the simulation-based
estimator of ¢ by

. _ 1 <

C= (R | o 2o {ctiyy) > 0}

Jj=1

Plug { into (31) to obtain
Fyyv1x (Yo, y1]z) = Go(yolz, ¢) + G1(y1], )

The following assumptions are required.

Assumption 3.3. Suppose that the assumptions of Theorem 3.1 hold. Further assume that
(a) On a neighborhood of w, fw is bounded away from zero.
(b) The kernel k is uniformly continuous.
(c) There ezists a sequence of positive numbers §,, such that 6, = o(b), 0, log(n) = o(1) and r,, = 0(d,).
(d) F¢ has a continuous and bounded density f and f& > 0 on a neighborhood of ¢.
() puc(T¢) has a bounded density f;.

()= = o0(rn)

Theorem 3.3. Under Assumptions 3.1 and 3.3,

Fyyvy1x (W0, v112) — Fyovy x o, 1lz) = Gol(yolz,¢) — Go(yolz, ) + G1(yilz, ¢) — Gi(y]z., C)

G (yolz, ) + G (], o) A
+ 0p(Tn
(G(()2)(y0|177€)+G§2)(y1|$70 AclO) + oplrn)

Proof. Note that
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Fyoyl\x(yo,yﬂx) - Fyoyl\x(yoayﬂx) = G’o(yo\x,é) =+ él(l/ﬂ%é) - Go(y0|$7§) - Gl(y1|$aé)
+Go(yole, C) + G(y1]2,C) — Golyolw, ¢) — Gi(uilz. ) (32)

By Lemma A.1, along the same line as the proof of Theorem 3.2, we can show that

¢~ ¢ = [6P olr, )+ Pl ] elQ) + oy(r) (39)

Since { — ¢ = Op(rp) and ry, = 0(6n), Ce N (¢, 6,) with probability approaching to one. By Lemma B.3, we
have
Ga(yalr, () = Ga(yalz,) = Galyale,¢) — Ga(yalz, ¢) + 0p(rn) (34)

By the delta-method,
Galyale,$) = Galyal, ) = G4 (wal, ) - [¢ = ¢] + 0, (¢ = ¢])
Hence,

G (yolz, ¢) + G (i |, )
G (yolz, ) + G (), )

Go(y0|$7é) + Gl(y1|$7§) — Go(yolz, () — Gi(y1]z, () = ( ) ﬂc(C) + Op(Tn) (35)

From (32), (34) and (35), we have

Fyoviix o, y112) — Fyoyy x (Wo, n1]z) = Go(yolz, ¢) — Golyolz, ¢) + Gi(y1]z,¢) — Gi(yi]z,¢)

G (yolz, Q) + G (], o) A
- (€) + 0p(ra)
(fo)(yom,o+G§2><y1|x,<> peb o

O

Remark 3.3. Tt follows from (33) that the convergence rate of ( is the same as that of éél) + GP. By
Theorem 3.1, we know that the convergence rate of (A is . Since Fyoyl‘x depends not only on é but also on
Go+ G’l, we have to compare the relative orders of f and G4. Theorem 3.1 gives that the orders of the biases
of G4 and éfil) are the same, but the orders of their standard errors are different: Gg) is slower. Hence the
convergence rate of Fyoyl‘ x is at least as slow as C;‘Ell). It is also possible that the estimation error in Gy is

of negligible order relative to (A if b2 = o(ﬁ), which requires that the bandwidth is small enough.

4 Monte Carlo experiment

This section presents some Monte Carlo experiment results to demonstrate the finite-sample performance of
the estimator proposed in Section 3. Under different specifications, I estimate two parameters, the utility
function and the treatment effect, which are of principal interest in practice. Then I compare the performance
of my estimator with two benchmark estimators : one is Heckman’s two-step estimator (Heckman (1979))
for a parametric model with a normal distribution assumption, and the other is a semiparametric estimator
based on the identification-at-infinity method proposed in Heckman (1990) and Andrews and Schafgans
(1998).
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4.1 Data Generating Processes

I consider three designs. Design (A) is the standard parametric model given by

Yo= a4+ XBq+eq (36)
D=1{Y; > Y, + 26} (37)

where X and Z are independent standard normal random variables and (go,¢1) follows a bivariate normal

distribution independently of X and Z. Parameter values are set as ap = a1 =0, 51 =1, 5y =05, =1

<€?> o ((g) | (0%5 Of)) (39)

In Design (B), skewed disturbance terms are considered. The selection equation is given by (37) and the
outcome equation is similar to the specifications above except that the disturbance term 4 is replaced by

gskew  The new disturbance term £5F? is generated from the following formula

Eskeu) _ exp(sd) —F [GXP(Ed)]
shew
varlexp(eq)]

where ¢, is generated according to (38). That is, £5*¥ is a bivariate log-normal distribution with its mean
and variance normalized to zero and one, respectively. All the parameter values are the same as Design (A).
Finally, Design (C) is to accommodate nonlinear utility functions. The outcome equation is given by (36)

and (38), while the selection equation takes the form of
D = U(Y1) > U(Yo) + 25}

where U(y) = —exp(—y). Note that this design incorporates a quasi-linear constant absolute risk aversion
(CARA) utility function ¢. All the parameter values are the same as the base design.

For each design, a hypothetical data is generated for different sample sizes of n € {200, 500, 1000}. The
estimated parameters are the utility function h(yo,x,z) at (yo,z,2) = (0,0,0) and the median treatment
effect, median(Y; — Yy|X = 0).

4.2 Estimation Procedure

The preliminary tuning parameters used in the estimation are as follows. In the first stage, the conditional
distribution function and its derivatives are calculated by the local linear estimator with the Gaussian kernel.
I estimate the model for different bandwidths of {0.4,0.5,0.6}.

The size of the generated sample for numerical inversion method, n*, is set equal to 1000. In general,
the larger n*, the better as long as the computing time and cost permits. In practice, I suggest to set n* no
lower than the sample size of the data. It is generated from a uniform distribution over the interval between
upper and lower 0.5 percentile values.

h(yo, , z) is estimated at yo = 0, z = 0 and z = 0. Following are the procedures that I use to estimate
h(yo, z, z) at a fixed (yo,x, 2).

1. Fy is set as the uniform distribution function over [Qy, (0.05), Qy, (0.95)], where Qy, is the sample
quantile of Y conditional on D = 1.
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2. Draw a random sample {y; :j=1,2,---,n}} from Fy, where n}, = 1000. I just used an equally-
spaced grid.

3. Calculate fi(y;) = éél)(y0|x,z) + Cl(ll)(yﬂx,z) for each j = 1,2,---,nj. Using the closed-form
formula for local linear estimators, the calculation is easy to implement.

4. Let ny be the number of fi,’s such that fix(y;) < 0.
5. Fy  (fiy/n}) is the estimate of h(yo, z, 2).

Table 1 exhibits the results of estimation of h.
The estimation of median(Y; — Yo|r) requires a different procedure. Since Fy,y,|x (yo,y1]z) is the esti-
mated object, an extra step is needed to calculate median(Yy — Yo|z) from Fy y, | x. Let me first explain

how to estimate Fy,y,|x (vo,y1|z) for a fixed (yo,y1, ).
1. Let F} be a uniform distribution over [Qz(0.05),Q~(0.95)].
2. Draw a random sample {zj* :j=1,2,--- ,n%} from F}, where n} = 1000.

3. Calculate fip(2}) = G(()l)(yokc,z;) + égl)(yﬂx,zj) for j =1,2,---,n} using the formula for the local

linear estimators.

4. Let nz be the number of non-positive G(Ql)(yo,y1|x,z;)’s among {G’gl)(yo,yﬂx,z;‘) j=12---,n}}
and z* be the 7i,th smallest element of {z;k ci=1,2,---,ny}.

5. Using the estimates calculated in the second step, Go(yo|x, 2*) + G4 (y1]x, 2*) is the final estimate of
Fy,v,1x (o, y1]x).

The resulting Fy,y,|x may be outside [0,1]. One may adjust the estimates to satisfy the restriction, but I
don’t in the simulations.

To calculate median(Yy — Yp|z), I estimate Fy,y,|x (yo,%1|x) at 200 x 200 points of (yo,y1). The points
divides R? into 201 x 201 squares and the probability measure on each square can be calculated. Then I treat
(Yp, Y1) as a discrete random variable distributed on 201 x 201points, which represent the squares. Under
the presumption that (Yp, Y1) is discrete, we know the whole distribution of the random variable. Hence we

can calculate the distribution of Y; — Yy and so the median of Y7 — Yj.

4.3 Benchmark and alternative methods

As a benchmark, I also estimate the model using Heckman’s two-step method (Heckman (1979)). It is a
widely used method to adjust selection bias in many empirical studies. Let me briefly explain how Heckman’s

two step estimator works. In the first step, the selection equation is modeled as follows:
D, = 1{7‘(‘0+X1‘7T1+Zi7r2 Zfl} (39)

with
&l Xi, Z; ~ N(0,1)

and it is estimated by the probit model. In the second stage, using the first stage estimates and the normal

distribution assumption, the selection bias in the outcome equation is adjusted. For each d € {0, 1},
EYi|Xi, Zi, D = d] = ag + Xifa + o\ (o + XiT1 + ZiTr2)
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where ) is the inverse Mills ratio. By regressing Y on X, Z and A (g + X7 + Z#2), we can estimate aq
and By accounting for the selection bias.

Note that the first step is correctly specified in Design (A). Meanwhile, in Design (B), it is misspecified
because the disturbance £ is not normally distributed, which results in misspecification bias in the first stage.
In Design (C), it is also misspecified not only because the disturbance is not normal, but also because the
selection equation is not linear in X and Z.

I also estimate the model with a semiparametric method based on the identification-at-infinity argument
proposed by Andrews and Schafgans (1998). The basic idea is that state 1 will be chosen with a probability
close to 1if Z; is low enough. Hence, using the observations for which Z; is smaller than a certain threshold, we
can estimate the model without selection bias. For the subsample such that D; = 1, T compute YZ =Y; szﬂAl

using the estimate of 34 obtained by Heckman’s two-step estimator. The estimate of oy, @1, is defined by

gy — 2z Vil{Di = 1.2 < 7}

Zi:1 I{Di =1,7Z; < 'Yn}
where v, is a threshold. That is, & is the sample mean of YZ conditional on D; = 1 and Z; being smaller than
the threshold. The threshold is defined by a sample quantile of Z and I consider three different quantiles:
0.02, 0.05 and 0.1. Similarly, @y can be computed using the observations for which D; = 0 and Z; is
larger than a threshold, which is set as either 0.98, 0.95 or 0.9 sample quantile of Z. To prevent possible
misspecification error in computing Y,;, I only estimate Design (A). Note that the large support assumption
holds because the support of Z is the whole real line. Even though all assumptions for the estimator are
satisfied, it is known that the estimator has a slower rate of convergence because the effective sample size
used to estimate &g is smaller than the whole sample size. For example, if the sample size is 1000 and the
extreme 5% observations are used, the effective sample size used to calculate aq is only 50.

Both estimators estimate a4 separately for d € {0,1}. Then, median(Y1 — Yp|z) is estimated by é; — Gy
and &; — Gy in the respective case. These are legitimate estimators because median(Y; — Yp|z) = a1 — g
in our simulation designs. However, there is a potential problem in calculating the bias of an estimate of
a1 — ag. Even though an estimate of «; is biased, if an estimate of g is equally biased ,the bias of a3 — «g
is offset. Hence, I report the biases of oy and g separately.

Note that the estimates of the utility function, h, can not be compared with the first step estimates
of Heckman’s two-step estimator. h directly depends on Y, while the selection equation for Heckman’s
two-step estimator in (39) is a function of X and Z only. Hence only the median treatment effect estimates

are compared.

4.4 Results

I approximate the root mean squared error (RMSE), the bias and the standard error (SE) of the estimators,
based on 1,000 times of repetitions. Table 1 presents the results for the estimates of the utility function,
h. It shows that the bias and the standard error decrease as the sample size increases in all designs. It is
hard to compare the results across different designs because the shape of the underlying parameters affects
the results. When the sample size equals to 200, the results are sensitive to the choice of bandwidth and it
seems that the bandwidth choice of 0.4 is too small. Since the local linear estimator linearly approximates a
function, an increase in the bandwidth does not decrease the bias if the true model is linear. I expect this is

why the bias constantly decreases as the bandwidth increases in Designs (A) and (B), where the underlying
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model is linear.

Table 2 shows the performance of the median treatment effect estimates. It is consistent with the
theoretical result that the estimator of the quantile treatment effect parameter is identified and consistently
estimated. As the sample size increases, the bias and the standard error decrease. In contrast to Table 1,
the results in Table 2 are stable across all the bandwidths of {0.4,0.5,0.6}.

Table 3 summarizes the performance of Heckman’s two-step estimator. As expected, in Design (A), the
estimator performs very well as the parametric assumptions are all satisfied. However, in Designs (B) and
(C), the estimates suffer from misspecification errors, having large biases. Notably, the estimates of «ay
have larger biases than those of ;. This implies that a misspecification error might be more critical when
estimating treatment effects that are associated with the intercepts rather than slope coefficients.

Table 4 presents the results of the semiparametric estimator proposed by Andrews and Schafgans (1998).
I only estimate Design (A) because the preliminary estimates, Bd, are not consistent in the other designs,
which contradicts an assumption required for the consistency of the estimator. The results are sensitive to
the effective sample size. As the effective sample size increases, the standard error decreases but the bias
increases. This is consistent to what theory tells.

Table 5 allows us to compare the biases of the different estimators. For comparison, I use the results
of my nonparametric estimator for bandwidth 0.5 and Andrews-Schafgans’ semiparametric estimator for
the effective sample size being 5% of the whole sample size. In Design (A), Heckman’s estimator yields
the smallest bias. The nonparametric estimator introduced in this paper has smaller biases than those
of Andrews-Schafgans’ semiparametric estimator, even in small-sample cases. In Designs (B) and (C),
Heckman’s two-step estimator has a huge bias, while the nonparametric estimator still has small biases.

In Table 6, the standard errors of the estimators are compared. For Heckman’s two-step estimator
and Andrews-Schafgans’ semiparametric estimator, I calculate the standard errors of &; — &g and &1 — ayg,
respectively. As expected, Heckman’s two-step estimator has the smallest standard error when the parametric
assumptions hold. But Andrews-Schafgans’ semiparametric estimator has a larger standard error than my
nonparametric estimator. In Design (B), Heckman’s two-step estimator has a larger standard error, which
is a consequence of misspecification.

Overall, the nonparametric estimator developed in this paper performs well in all simulation designs,
while the parametric estimator can be biased when the parametric assumptions fail. Most importantly, the
nonparametric estimator outperforms Andrews-Schafgans’ semiparametric estimator even when the model
is correctly specified.

Finally, it is notable that the computational cost of the estimation is fairy low. For the sample size of
1000, one iteration for the estimation of A takes less than one second and one iteration for the estimation of
the median treatment effect takes about 6 seconds. The code is written and run in MATLAB on a desktop
PC with 3GHz CPU.

5 Application to Hybrid Maize Adoption

Agriculture is the most important sector and maize is a major food crop in Malawi. Hybrid maize is a variety
of maize that has been developed to improve agricultural yield. To resolve the food security problem and
foster economic growth, the government has implemented a large-scale agricultural input subsidy programs
since the 1980s. Even though one of the principal goals of the government’s programs is to encourage farmers

to plan hybrid maize, the adoption rate is still around 60%.
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In this section, I investigate the farmers’ adoption decision of hybrid maize in the framework of the
extended Roy model. I attempt to answer two policy-relevant questions : First, does hybrid maize really
improve yield? Second, how much subsidy is needed to maximize yield? Regarding the first question,
I estimate the treatment effect of hybrid maize on yield. I also estimate the relationship between the
effectiveness of hybrid maize and other agricultural inputs such as soil quality and the amount of fertilizer
use. The estimation results suggest that hybrid maize is effective in improving yields in general. Then,
why do farmers not plant hybrid maize? There must be a cost of planting hybrid maize, which dominates
the yield increment. It naturally raises the second question. Since the utility function is estimated, the
subjective cost of planting hybrid maize directly follows. I calculate the optimal subsidy level that depends

on observable characteristics of farmers.

5.1 Decision to Adopt Hybrid Maize

This subsection describes how farmers’ decisions to adopt hybrid maize can be analyzed within the framework
of the Roy model. Suppose that farmers face a discrete choice between planting traditional maize or hybrid
maize. Let D = 1 represent planting hybrid maize and D = 0 traditional maize. Both types of seeds yield
the same type of crop. Only the amount of crop differs. For d € {0,1}, Y, signifies the potential yield of
maize for each type of maize seed. The potential outcomes are heterogeneous across farmers. Thus, the
returns to planting hybrid maize is also heterogeneous. I do not impose any functional form restrictions on
the distribution of the potential yields:

(%7 Y1)|X ~ FY()Yl‘X

where X includes the amount of fertilizer, the area of plot, years of schooling of the farmer, and soil quality
dummy.

Knowing their own potential yields, the farmers take more components into account. They have to buy
hybrid maize seeds from the market if they decide to plant hybrid maize, while they can just use the previous
year’s crop as seeds if plant traditional maize. I assume that the farmer’s decision is made according to the
following selection equation:

D=1{Y1>hY,X,2)}

h is the utility function measured in terms of yield of hybrid maize. It can be interpreted as the yield from
hybrid maize that is equivalent to Yy from traditional maize. If h(Yp, X, Z) is higher than Yj, there are
some obstacles that hinder the farmers from planting hybrid maize. Let ¢(Yy, X, Z) = h(Yy, X, Z) — Y, and
rewrite the selection equation as

D=1{YV1>Yy+ (Yo, X,2)}

Note that it nests the usual extended Roy model specification
D=1{Yi > Yo + 6(X. 2)}

where ¢(X, Z) is the cost of planting hybrid maize, which does not allow interaction between (X, Z) and Yj.
d(Yo, X, Z) captures the cost of planting hybrid maize.
On the other hand, the cost ¢(Yy, X, Z) can be viewed as the optimal subsidy level to maximize the

yield. Consider a policy such that subsidy S, measured in terms of Y7, is offered to farmers who plant hybrid
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maize. This policy affects the selection, so the selection equation becomes
D=1{"1+S>hnYy,X,2)} (40)
If the policy maker’s objective is to maximize the yield, the optimal subsidy S* must induce
D =1{Y; > Yy} (41)

When S = ¢(Yy, X, Z), the selection equation (40) becomes (41). Therefore, we can calculate the optimal
subsidy level that follows the estimation of h.

I use distance to road as an instrumental variable. In Malawi, the maize market is monopolized by
a government-owned corporation, the Agricultural Development Marketing Corporation (ADMARC). AD-
MARC monopolizes the distribution of agricultural inputs and sets crop prices. There are local private
buyers/sellers that intermediates the farmers and ADMARC. To plant hybrid maize, the farmers must ei-
ther buy the seeds from a local private seller or travel to an outlet post of ADMARC. Hence, the cost of
planting hybrid maize is correlated with the distance to road. Its relevance has been confirmed in various
studies on hybrid maize adoption. Among papers on the adoption of hybrid maize in Malawi, Zeller et al.
(1998) find that the traveling cost to the market is one of the significant determinants of hybrid maize
adoption and Chirwa (2005) obtains a similar result with the distance to the nearest market. Suri (2011)
examined the effect of hybrid seed using Kenyan data and used the distance to the nearest fertilizer seller as
an instrument. Also, since covariates include geographic variables such as the area of plot and soil quality,

the potential indirect effect of the instrument on the yield is controlled.

5.2 Data

The data comes from the Integrated Household Survey (IHS) in Malawi conducted by the Government of
Malawi through the National Statistical Office jointly with the World Bank. The survey is conducted roughly
every 5 years and the latest one is third round in 2010 and 2011. As the sample households in each round
have no link, I only use the latest survey as a cross-sectional data. The sample households are nationally
representative, drawn from all regions over Malawi. The survey provides a detailed information on a huge
number of households : it covers 12,271 households and provides various demographic, agricultural and
geographic variables for each household.?

Here are some sample exclusion criteria. I excluded the plots if a crop other than traditional local maize
or hybrid maize is planted; or if multiple crops are planted. Further, recycled hybrid maize is excluded
because it is known that recycled hybrid maize has little difference from the traditional one. I excluded
the observations whose yield is not measured in a metric unit - kilogram or ton. All observations with any
missing items are removed.

My sample includes the farmers who planted maize - either traditional or hybrid - in the rainy season in
2009-2010. The unit of observation is a plot. There are several reasons that I use a plot as the unit. First,
the information on agricultural activities - for example, the amount of fertilizer use, the amount of yield -
are recorded for each plot. Second, a farmer may have multiple plots and may decide to plant different types
of maize seeds on different plots. Therefore, a plot is the unit in which the decision to use hybrid seeds is

made. Therefore, it is natural to consider a plot as the unit.

2For more detailed information, visit http://go.worldbank.org/6 A7TGUDQ1Q0
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The descriptions of the variables are given in Table 7. Table 8 shows some descriptive statistics of related
variables. Note that it is clear that hybrid maize yields more than traditional maize, and the hybrid maize
users live closer to road on average than the traditional maize users.

Preliminarily, some frequently used models are estimated. First, I estimate a probit model to see determi-
nants of the adoption of hybrid maize under parametric assumptions and the results are reported in Table 9.
The coefficient to the distance to road is significantly negative. This result supports the relationship between
the cost of hybrid maize and the distance to road. Next, I regress yield on the adoption of hybrid maize and
other variables and the results are reported in Table 10. OLS results suggest that hybrid maize has a positive
effect on yield. T also estimate an instrumental variable regression model treating hybrid maize adoption as
an endogenous variable and the distance to road as an excluded variable. Still the results indicate hybrid
maize increases yields. Though, the regression results can be limited in a sense that the effect of hybrid
maize on yields is assumed to be merely a constant shift in the intercept. Heckman’s two-step estimator
allows for the coefficients differ across two types of maize. Table 11 reports the estimated coefficients using
Heckman’s two-step estimator. The implied effect of hybrid maize on yields is calculated and reported in
Table 12.

5.3 Estimation

I estimate the full nonparametric model. In the first stage, I estimate the distribution of observed harvest
conditional on covariates and the instrument, G4(y|z, z), and its derivative with respect to the instrument
using a local linear estimator. I use a product kernel using Gaussian kernel. The bandwidth parameters are
chosen by cross validation method as follows. First, since different bandwidths should be applied to different
variables according to their degrees of dispersion, the bandwidth of a variable is fixed to be proportional
to the standard deviation of the variable up to a coefficient. Then I compute the coefficient that applies
to all variables by a cross-validation method. Another problem is that in the estimation of Gg4(y|w), the
theoretically optimal bandwidth may be different for different values of y. Since it is hard to differentiate
the bandwidths according to y, the bandwidth parameter is chosen to minimize the average squared error
over different values of y and applied to all y. The average squared error is calculated on empirical deciles of
observed Y and then summed over the nine points except for Oth decile and 10th decile. I denote the deciles
as {y(1), Y2y, > Y(9) }-

Then, the standard leave-one-out cross-validation method is used. Without using the ith observation,
estimate G4(y|lw) at y € {y(1),--- ,y(9)} and w = W; by alocal linear estimator. Denote it as G’d,,i(y(]—) |[W;).

The bandwidth parameter is chosen to minimize

n 9 2
Sy % (1{3@- <y, Di = d} - Gdﬁi(y(jﬂWi))

=1 j=1de{0,1}

among candidate values of {0.3,0.4,--- ,3.0}. In noncomputable cases due to matrix singularity, I impute the
squared error as 1. When including discrete variables, e.g., dummy for soil quality, the bandwidth parameter
is cross-validated for the subsample of each type of soil quality. The cross validation results are given in
Table 13.

Then I estimate two parameters: one is the median treatment effect of hybrid maize, median(Y; — Yy|X),
and the other is the optimal subsidy level, h(Yy, X, Z) — Yy. The median treatment effect is estimated at five
different levels of fertilizer use: the median of fertilizer use, 54.95 Kg/Acre, and deviations from the median,
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34.95, 44.95, 64.95 and 74.95 Kg/Acre. After estimating the median effect using the whole sample, I use a
subsample to incorporate the soil quality. Soil quality is given as a binary code - good or poor. Using the
subsample for each type of soil quality, the median treatment effect is estimated at five different levels of
fertilizer use. Meanwhile, Yj is fixed at its median.

The detailed estimation procedure is the same as described in the previous section. 90% confidence
interval for each estimate is calculated based on the bootstrap of 1000 repetitions. The program is available

for Matlab upon request. A program for Stata is in progress.

5.4 Results

The estimation results for the median treatment effect are given in Table 14. It suggests that the median
treatment effect is positive in the whole sample estimates and the subsample estimates conditional on good
soil quality. The confidence intervals support the positive treatment effect of hybrid maize. However, when
the soil quality is poor, the estimates are negative. The confidence intervals are too wide to tell the sign of
the estimates. This implies that hybrid maize does not always increase the yield.

The effects of fertilizer and soil quality are positive from the estimates. In each panel, as the amount
of fertilizer use increases, the estimated treatment effect strictly increases. Though the confidence intervals
overlap with each other, they are also increasing as a whole. The effect of soil quality is also clearly positive.
The estimates for good soil are strictly larger than those for poor soil.

All estimates of the optimal subsidy level are positive. They show that the farmers do not plant hybrid
maize even though it yields more. In each panel, the optimal subsidy level increases as the distance to road
increases, which is consistent with intuition. Since the farmers living far from road are likely to face higher
transaction cost of buying hybrid maize, a higher level of subsidy is needed for them to plant hybrid maize
relative to the farmers close to road.

There is a pattern that the optimal subsidy level is higher for the farmers with less years of schooling.
There can be two possible reasons: first, highly educated farmers are more likely to be from a rich family.
Hence, the borrowing constraint upon buying hybrid maize might be weaker for highly educated farmers.
Another explanation is that highly educated farmers are more willing to adopt a new technology, which
results in a lower psychological cost of adopting hybrid maize.

Finally, I make a remark on the confidence intervals. The confidence intervals are wider than desirable.
This is a common problem with a fully nonparametric approach when multiple conditioning variables are
used. In general, functional form restrictions help construct tighter intervals and allow one to use more

conditioning variables. A semiparametric estimation method is an interesting topic to pursue.

6 Conclusion

In this paper I have developed a new identification method for the extended Roy model that identifies the
joint distribution of the potential outcomes and the utility function. The key assumptions are that the utility
function is deterministic conditional on the potential outcomes and observables and that the effect of the
instrument on the selection is monotone. In a companion paper, I study the identification of the Roy model
with unobserved heterogeneity in preferences.

An advantage of the identification is that it allows one to relax conventional functional form restrictions on
the outcome equation and the utility function such as linearity and additive separability. Another advantage

of the identification method is that no support assumption is required so that instruments with a bounded
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or finite support can be used. A point-identification result is given if the instrument is continuous, possibly
having a bounded support. Sharp bounds for the model are obtained if the instrument is discrete.

In addition, I have developed a nonparametric estimator based on the identification method using the
simulation-based estimator proposed in Dette et al. (2006). It is computationally attractive. I showed that
the simulation-based estimator has a standard nonparametric rate of convergence and examined the efficacy
of the estimator in finite sample shown by Monte Carlo simulations. The estimator can be applied to other

problems that require numerically solving equations with monotonicity.

Appendix

A A simulation-based estimator

In this section, I introduce a simulation-based estimator for the solution to a monotone equation. Consider
a strictly increasing function p : 7 — R where 7 C R. Suppose that the parameter of interest, § € T, is the

unique solution to

u(-) =s
for a given s € R. Let 4 be a preliminary estimator of p, which is not necessarily increasing. Many
applications of such a setup can be found in economics. A typical example is estimation of quantile functions
(e.g., Dette and Volgushev (2008),Chernozhukov et al. (2010)). Economic models with monotonicity are
common. For example, in Berry and Haile (2012), market share is a monotone function of price.

In general, estimating 6 using [ is numerically formidable. One possible way is to impose a shape
restriction when estimating p. It requires a constrained optimization. Another alternative is the minimum
distance estimation to find 6 that minimizes the distance between i and s. For example, the estimator
minimizing the distance defined by the squared deviation is given by

5 . 2

6 = min (4(t) - 5)
It also requires numerical optimization procedure. Furthermore, frequently used methods, such as Newton-
Rhapson method, require estimation of the derivative of u. If & is not monotone, the criterion function is
nonconvex, which makes the optimization more complicated. Another simple way to estimate 6 using the

monotonicity is to find the smallest or largest value that [ intersects s, e.g.,
0 = inf{t : a(t) > 0}

It is an ad hoc way to resolve the problem of multiple solutions. Furthermore, it does not give any guideline
how to find such a value. For example, in the case of i being the Nadaraya-Watson estimator, it is very
difficult, if not impossible, to evaluate [ at all point.

The method I introduce in this section provides a simple way to solve monotone equations. I extend
the estimator proposed by Dette et al. (2006) in several directions. First, in their papers, the first stage
estimator is limited to kernel-type regression estimators. In contrast, I consider a general class of first-stage
estimators under primitive conditions. Second, I relax the differentiability assumption in Dette et al. (2006)

that p is twice differentiable at . I replace the differentiability condition with a mild condition that u is not
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"flat’ on a neighborhood of 6. Third, I relax the compactness of 7 and accommodate possibly unbounded 7.
Lastly, I drop redundant smoothing parameters so that the effect of the smoothing parameter is eliminated
in finite samples.

Let F* be a distribution function chosen by the researcher and T* be a random variable with the
distribution function F* and a support 7*. Suppose that 7* is included in 7 so that u(7™*) is well-defined

almost surely. For a fixed s, define
w(s) = Pr(u(I")<s) (42)

Since p is increasing and s = u(6), u(T*) < s is equivalent to 7* < #. Thus we have

m(s) = Pr(T"<0)
= F*(9)
or
0=F" (n(s)) (43)

Since F* is chosen by the researcher, F*" is known. Hence, in (43), 7(s) is the only unknown object. Let

7(s) be an estimator of 7(s) obtained by replacing p in (42) with . That is,
#(s) = Pr(a(T") < 5)

Even though the distribution of 7™ is known, computing 7 is not an easy task. Instead of integrating 4 with
respect to the true F*, we approximate the integral by a Monte Carlo integration. Let {tj cj=1,...,n"}

be a generated random sample from F*. Define a simple estimator of 7(s) by

#(s) = - SO 1A(E) < 5}
j=1

Relative to 7, 7 is affected by the additional randomness from the Monte Carlo approximation. However,
one can take n* to be arbitrarily large and 7 can be arbitrarily close to 7. Note that still the randomness in
[t remains in 7.

The choice of F* is important for practical reasons. First, F* should be selected so that it is easy
to simulate a random sample from F* and calculate the inverse ol Second, F* is a solution selection
mechanism. For an extreme example, consider two distribution functions F} and F3 that have disjoint
supports. Let 7;* and 75 be the support of F; and Fi, respectively. Suppose that t; < ¢y for any ¢; € 77"
and ty € 75°. Let 67 and 05 be the estimator of 0 using the same first-stage estimate, but different distribution
functions, F; and Fy, respectively. Then it is always true that 6; < 6, because Fy  (m) < Fj  (m2) for
any m and e on [0,1]. However, under the assumptions state below, F* has no effect on the first-order
asymptotic result that follows.

In Dette et al. (2006), the limit theory is shown by the delta method based on a Taylor expansion. This
approach can not be applied to the estimator because I do not require differentiability and not smooth the
estimator. Thus the proof of the limit theory in this paper is based on stochastic equicontinuity arguments,
which is different from Dette et al. (2006).
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To simplify notation, define

Nte)={teT:|t—1t<e}
The following assumptions are used to derive the limit theory for 6.

Assumption A.1. Let s € R be given. Define A, (t) = ji(t) — p(t).
(a) p(t) < s fort <0 and u(t) > s fort > 0. Furthermore,

1
lim =  inf ) — u(0)] >0
lim = b |1a(t) — (0]

(b) There ezists a positive constant C,, such that

Cp = lim  inf |u(t) — u(8)]
e—0teN(6,¢) [t — 0|
(c) E[A2(1)]Y/? = O(ry) uniformly over T.
(d) For a positive sequence d,, such that 6, = o(1) and r, = 0(d,),

sup  |AL(t) — An(0)| = o(ry)
teN(6,6,,)

(e) F* has a support T* C T and a density f* with respect to the Lebesgue measure; and f*(t) >0 on a
neighborhood of 0.
(f) u(T*) has a bounded density f;.

(9) = = olry)

Remark A.1. Assumptions A.1(a) and (b) are actually weaker than the monotonicity and differentiability
assumptions, respectively. The second part of Assumptions A.1(a) guarantees that 6 is the unique solution
to pu(-) = s and that u(t) is reasonably distinguishable from p(6) if ¢ is away from 6. Assumptions A.1(b)
requires that p is not ’flat’ on a neighborhood of 6. If y is flat, we can not estimate 0 accurately no matter
how accurate fi is. Conversely, if C), = oo, the estimator is very accurate relative to . C, = oo occurs
if u(0) = 0 and lim;—g p(t) # 0, in which there is a jump at 6 so it is very easy to distinguish 6 from its
neighborhood.

Remark A.2. Uniformity of the convergence rate in the mean squared error is much weaker than the uni-
form convergence of [ itself, e.g., see Assumption 2 in Chernozhukov et al. (2010). For most standard
nonparametric methods, Assumptions A.1(c) is easy to verify. Assumption A.1(d) is the so-called stochastic

equicontinuity. It regulates that i around the true value 6 be smooth enough.

Remark A.3. Without Assumption A.1(e) that the estimator converges to the true parameter 6. If F* puts
no probability measure on a neighborhood of 8, the estimator does not converge to 6. Assumption A.1(f)

implies that m(s) is uniformly continuous in s.

Lemma A.1. Under Assumption A.1,
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Proof. By Taylor’s theorem and the inverse function theorem, we have

N 1 1

-0 = P k() - (r(s)
= (f7(9) 7" (7(s) = 7(s)) + 0 (|7 (s) — 7(5)])
Hence, it suffices to show
#t(s) —m(s) = [ (O)C, " [AO)] + 0p(rn)

By the central limit theorem, it is easy to show that

7(s) —7(s) = ni S 1{alty) < s} —Pr(at;) <s) =0, (Ji?)

Jj=1

and by AssumptionA.1(e), 7(s) — 7(s) = 0p(rn)-
Now it remains to show that 7(s) — (s) = f*(9)C, ' [A(0)] + o(ry). For the sequence 6, in Assumption
Al(c), let N, = N(6,8,) N T. Observe that

7(s) —m(s) = /l{ﬂ(T*) < s}dF* f/l{u(T*) < s}dF*
= [ vty <spar - [ < spae
N No

+/N£1{ﬂ(T*) < s}dF” /Nﬁl{u(T*) < s}dF*

= H1 + H2
where

I = /Nl{,a(T*)gs}dF*—/N 1{u(T*) < s} dF*

n n

I, = /01{,1(T*) gs}dF*—/Ncl{u(T*)gs}dF*

n n

I will establish that

I = f5(0)C, " [-An(0)] + 0p(rn) (44)
and
Iy, = op(ry) (45)

Note that, for any ¢ € R,

1{At) < s} - / u(t) < s}

Ha(t) < s <p@)} —Hu(t) <s < p(t)}
HA®) < s — put) <0} —1{0 < s — u(t) < A(t)} (46)

I first show equation (44). Let Ca = sup,cp, |A(t) — A(F)]. I t € N, we have A(f) — Ca < A(t) <

34



A(0) + Ca. Moreover, by AssumptionA.1(a), if t € Ny,

s—p® = [u(6) - u(o)
> Ol

Hence for t € N, and t > 6, A(t) < s — p(t) implies A(§) — Ca < C,(0 —t). For t € N,, and ¢ < 0,
s — pu(t) < A(t) implies C, (0 —t) < A(0) + Ca. Therefore we have

—1{0 < CL(6 — t) < A(6) + Ca} (47)
< A < s p(t) <0} — 1{0 < s — pu(t) < At)}
< 1A(B) — Ca < Cu(6— 1) < 0} (48)

Using these bounds and equation (46), bounds for II; are given by

_ / 1{0 < C,(6 — T%) < A(8) + Ca}dF* (49)
IT,
/1{A(9) _Ca < Cu(6—T%) < 0}dF” (50)

IN

IN

I will prove that both (49) and (50) have the same limit. First, note that equation (50) can be written as
Pr(0 <T*"<60+C, ' (-A(0)+Ca)) = F*(0+C, (—A(0)+Ca)) — F*(0)
By the Taylor theorem, it becomes
FOCT [=An(0) + Ca] + 0p (I=An(0) + Cal)

Since A(#) = O(ry,) and Ca = o(ry,) by Assumption A.1(b) and (c), we have that the upper bound converges
to

FOCT [=An()] + 0p (rn)
Similarly, the limit of the lower bound is also given by
FXO)C [=An(O)] + 0p (rn)
By the sandwich principle, we have
I = f*(0)C; " [-An(0)] + 0p (1)

as in (44).
Now I show that Iy = o(r,,). Since |II3| < 1, it suffices to show E[|Ilz|] = o(r,,). If t € NS, by Assumption
Al(a),

l1(0) — pu(t)]

Y

1(0) — (0 £ 0,)]
Coby,

Y
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Note that equation (46) implies that

1) < s}~ {u) < s}l < L{A®) < s — pu(t) < 0} +1{0 < s — u(t) < A)}
H{IAW®] > |s - u(0)]}

Using the fact that 1{a > b} < ‘g—z for any positive real numbers a and b,

A2(t)

{|A s — —_—
{lA@) > [s—p@®[} < 5 n(0))

Using these inequalities, we obtain

Bl < B[ AT < s}~ Ha(T) < 5)ldF"
E[AYT)]
< [ ommEpt

Since E [AQ(T*)]1/2 is uniformly O(r,,) by Assumption A.1(b), the nominator is uniformly O(r2). Let
U = s— p(T*) and F}; be the implied distribution function. For T* € N, |U| > C,0,. Hence, by a

change-of-variable method,

/ b e —/OO R +/C“6" RS
Ne (8= p(T%))? T Jos, U2V ) vzl

By Assumption, the density of Fy; is bounded and let C¢« > ff;. So we can bound

—dFy < dU
/c 5, U2 = /Cuén U?

o
Cyu6n

. —Cbn Cje
and similarly, [~ " %dF,j < &%~ Hence
1On

B <0 (32) = o)

n

Thus we get the desired result as in equation (45). O

A.1 Algorithm for the method
In practice, the estimator proceeds as follows:

1. Pick a distribution function F'* to satisfy the required assumptions. Draw a random sample {t;‘ 1] =
1,2,---,n*} from F*.

2. Compute fi(t7) for j =1,2,--- ,n*. If /i has a closed form formula, it is easy to compute.
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3. Compute

4. To solve u(-) = s’ for a different s’ # s, reuse {fi(t}) : j = 1,2,--- ,n*} and just repeat Step 3 unless

there is any reason for F* to fail any of the assumptions.

When choosing F'*, there are several desirable attributes of F*. For the sake of computational ease, it should
be easy to compute the inverse of F*. Note that F* " is used twice in the algorithm. First, to draw a random
sample from F*, it is usually carried out by take F* on a uniform random sample. Also, in Step 3, e
is needed. If there is any information such as € lies in a certain region, one can utilize the information by
restricting the support of F* to the region. On the other hand, if the support of F* is too large that some
points are far from observations, there can be numerical singularity condition when computing . In general,
when there is no additional information, a uniform distribution on the range of observations is a standard

choice. Anyhow, the effect of F'* disappears in the limit.

B Lemmas for Stochastic Equicontinuity

In this section, I verify the stochastic equicontinuity conditions using high-level assumptions. To accommo-
date an abstract random element, I introduce triangular arrays of random processes: let £ € = be a generic
random element. For each n =1,2,..., let ¥, be a class of measurable functions from = to R. Also assume
that ¥,, can be indexed by a set T'. That is,

U, ={n(-,t): t €T}

for some function ¢,, : = x T — R.

For a random sample {1,...,&,}, I simplify the notation by writing t,;(¢) instead of ¥, (&;,t). The
triangular array of random processes {¢;(t) : t € T,i = 1,...,n} is said to be i.i.d. within each row if
and only if {&, -+ ,&,} is i.i.d. for each n. Call a measurable mapping 1, : = — R an envelope for ¥, if
|9 (€,1)] < 1 (€) for all t € T. Define L, norm between two processes as follows:

[n ()l = [/M(E’t”p dp(g)] 1/p

for p € [1,00) and [[¢n (-, 1)

To deal with the abstract space, I define a measure for the complexity of ¥,,’s.

|| refers to the supremum norm using the notion of essential supremum.

Definition B.1. For each ¢ > 0, the Li-covering number, N; (e, ¥,,), is the smallest value of J for which there
exists 7/17(11)7 s ,1/11(5) € U, such that for any v¥,, € ¥,,, there always exists j* that satisfies ‘ Up — wr(f*) H <e.
1

Following are the conditions imposed.

Assumption B.1. Let U, be a class of real-valued measurable functions defined on =. Suppose that there
is an envelope function 1, : = — R for U,, with ||1Z)"Hoo < oo. Let{t,i(t) e ¥, :t€T,i=1,---,n} be a

triangular array of random processes that are i.i.d. within each row. Suppose that the following are true.
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(a) There exist positive constants C1 and Cy such that
(& [9nll - ) < Cra™

(b) Letp,, be a sequence such that ||¢y,|, 1Og(n) = o(pn)-

Lemma B.1. Under Assumption B.1,

teT

Proof. Tt can be proved using Theorem 2.37 in Pollard (1984). Using his notation, the stochastic process f;

is taken to be | wm and let F,, = { | wm Ty € \Iln} I prove that

n

wn

sup
teT

anm - fm( )] :OP(||7/_)nHoopn)

To check the covering number condition, let J,, = Ny(e ||,l;n“oo’ n) and {w(j) j=1,...,J,} be the
approximating functions as in Definition B.1. It implies that there exists a subset {1/)n S mbﬁ[l")} of ¥,
< el
dividing every element of {t)\", -+ ¥\} by [|[tn ||, we can construct a subset (0, 1Y of F.
Now consider an arbitrary f,, € F,. By hypothesis, for i, = ||1LnHoo fn, there exists j € {1,...,J,} such
that &)

such that for any v, € U, there always exists j € {1,...,J,} satisfying

<eg HJJ,LHOO It is straightforward to show that there must exist
1

‘fnffé,])’ = —1 ‘I/Jn*i/)g)lééi
[[9nl
Thus, we have Ny(e ||wnH = Ni(e, F,). Therefore, Assumption B.1(a) implies the covering number
condition in Pollard (1984).
By construction, it is obvious that |f,;| < 1 almost surely for all n. Furthermore, |||l < & H for all
O'n and oy, = %. Observe that
2
néia? = nln

o2
U'n

and by Assumption B.1(b), we havelog(n) = o (n L ”) Hence, all the conditions for Theorem 2.37 in Pollard
(1984) are satisfied. As a direct result of the theorem, we have

_ Pn
o (nwnuoo)

By multiplying ||¢, || _ on both sides, we have the desired result:

sup
teT

nzf’n.l fnz( )]

n

=3 nilt) = B i)

i=1

sup
teT

= 0p (pn)
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The following lemma is used to verify Assumption A.1 (d) to prove Theorem 3.2.

Lemma B.2. Let (yg,w) be given and 0 = h(yg,w). Under Assumption 3.1 and 3.2,

sup |GV (ylw) — G Blw) — GV (ylw) + GP Blw)| = 0, (rn)
yeN(0,6,)

The proof is long and provided in Subsection B.1.

For the estimation of the joint distribution, the following lemma is used to prove Theorem 3.3.

Lemma B.3. Let (yo,v1) € R? and © € X be given. Under Assumptions 3.1 and 3.3, we have

sup | Galyle, 2) = Galylz, ©) — Galylw, 2) + Galyle, O] = op(rn) (52)
2EN(C,0n)
and
sp G W, ) = 6 . €) = G e, 2) + G (4l Q)| = 0 (ra) (53)
ZE Y

B.1 Proof of Lemma B.2

Let /
G a(ylw) )

o= Gty 2442

and recall that the weighted-least-square estimate of 8 by solving the weigh problem (25) is given by
B = (WKW) "WKY (54)
Note that Y is a vector of 1{Y; <y, D; = 1}. Define a random variable R;(y) by
Ri(y) = HY; <y, D; = 1} — Ga(y|W7)

By construction, F[R;(y)|W] =0 and |R;(y)| < 1.
By the Taylor theorem,

G a(y|lw)

Ga(ylWi) = Galylw) + —5 =

(Wi —w) + Qi(y, w)
where Q;(y,w) is the remainder term given by

1 %Gy (y|w;)
Qi(y, w) = i(Wi - w)/W(Wi —w)
for some intermediate value w; that lies between W; and w. By Assumption 3.2(a),
C
Qily, w)| < 5 Wi —wl|*

for some constant C.
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Now we can write

L{¥; <y, D1 = d = Gatyhe) + 28N (W, )+ Quly, w) + Bily)
or
Y=WB+Q+R (55)

where Q and R are the vectors of @;’s and R;’s, respectively. Plug the expression (55) into the formula (54)
to obtain
B — B = (WKW) 'WK(Q+R) (56)

To study the asymptotic behaviors of B — [, it is useful to adopt the following normalization. Let B be
a (m+1) x (m+ 1) diagonal matrix defined by

(1 0
0 bl,

where I,;, is an m x m identity matrix and b is the bandwidth. Rewrite equation (56) as
5 1 !
B-B=B"" (HWQKWb> SWLK(Q +R) (57)

where W, = WB~!, the vector of deviations of W;’s from w normalized by the bandwidth, i.e.,

We are interested only in Gfil)(y|w) — Gfil)(y|w). Since Z; is the mth element of W, G‘EII) (y|w) —GS) (y|w)
is the (m + 1)th element of 3 — 8. Hence, I particularly let w,(w) be the (m + 1)th diagonal element in
(%WgKWb)fl. Further, the (m + 1)th element of 2W,K(Q + R) can be written as

Therefore, the formula for Gfil)(y|w) - Ggl)(y|w) is

n

6P~ 6P ) = S5 (252 ) ki =) () + @) )
i=1

For each t € [—1, 1], define

Uni(t) = % (Zlb_ Z) Ky(W; —w) [Ri(0 + 6,t) + Qi (6 + dpnt,w) — Ri(0) — Qi(6, w)] (59)
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Then, for any y € N'(6,4,),

&P (ylw) — &P 0lw) — G (ylw) + G (Blw) =

for some t € [—1,1] such that y = 0 4 0,,1.
Therefore, what we want to show becomes

sup
te[—1,1]

By the results in Ruppert and Wand (1994) and Lu (1996), we know that

wn (W) = ———— + 0,(1)

Ka fw (w)

and
E[ni(t)] = b2 k2 fo (w) [B1(0 + 6ut, d, w) — B1(0,d,w)] + o(ry)

where Bj is the leading term of the bias as defined in Theorem 3.1. By Assumption 3.1, By is bounded and

continuous in y. Hence, as d,, = o(1),
Bi(0+ pt,d,w) — B1(0,d,w) = o(1)

uniformly and so E[t),;(t)] is o(ry) uniformly over ¢ € [—1,1].

Note that

ap 225 5 0] = o)l sup |23 )

te[—1,1] i1 te[-1,1] |1 ]

< wn(w)] sup |— Z'(/Jni(t) — Epni(1)]

te[-1,1] |

+Hwn(w)| sup  |[Egni(t)]]
te[—1,1]
Now it remains to show that
Su}f 3 Z wnz - dJm (t)] = OP(Tn)

The proof closely follows Lemma B.1. Let ¥,, = {¢,,(t) : ¢ € [-1,1]}.

Lemma B.4. Under the assumptions of Lemma B.2,

n

sup | =3 ilt) — Bl (t)

te[-1,1] n = Op(rn)

Proof. 1 verify each condition for Lemma B.1. C will denote a generic positive constant with different values
in different places. First, I claim that Q;(y, w) is of negligible order compared to the term arising from R;(y).
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By Assumption 3.2(a), there exists a positive constant C' such that

/82Gd(y|u_)i)

(W; = w) Jwow’

(WZ — 'LU) § C(Wz — U))I(Wl — w)
Using the standard change-of-variable method for kernel estimators, let W; = w + bU and w; = w + ba.
Then,
b? /82Gd(y‘w + bﬂ)
Qilyw) = FU—p 57—
< CVYU'U
for some positive constant C. By Assumption 3.2 (¢), U’U is bounded when multiplied by the kernel function.
While R;(y) does not shrink, the order of Q;(y,w) is b, which converges to zero. Therefore, the leading
term of 1,;(t) is associated with R;(y).
STEP 1. We know that |R;(y)| <1 for any y. Also note that

Zi—z Ky(W;, —w)| < L sup |uK (u)]
b b™ u€R™

Therefore,

‘2 (Zib_z> KW, —w) R0+ 8,) ~ Ru(O)}| < 2

for a positive constant C. Since Q;(y,w) of negligible order,

||| has an order of s
STEP 2. In this step, I calculate the covering number. To calculate the L;-distance between two elements

of U,,, take arbitrary ¢ and ¢’ from [—1,1]. Without loss of generality, suppose that ¢t < ¢'. Then

Ri(0+,t) — Ri(0+6,t') = 1{O+6,t<Y; <O0+,t',D; =d}
—Ga(0 + 0nt'|W;) + Ga(0 + 6,t|W;)

Thus,
E[|Ri(0+ 0nt) — Ri(0+ 0,t")| | W] < 2|Ga(0 + 5,t'|W;) — Ga(0 + 5,t|W5)]
< 2 sup ‘aGd(mw) 5n‘t—t'|
(y,w)ERXW ay

and by the same algebra as in STEP 1, we can show that

it =]

E‘( ; )Kb(Wi—w){Ri(0+6nt)—Ri(0+5nt’)}’ < o

Also, it follows from STEP 1 that the term containing @); is ignorable. Hence, we have
c
1ni (8) = ¥ni @)1y < ozt = ¥

For any ¢ € (0,1), let &, = b™ " ||¢b, || _ € and let J be the greatest integer smaller than or equal to 2<.
Always we can take a set {t; € [-1,1] : j = 1,2,---,J} such that for any ¢t € [—1,1] there always exists
J e {1,2,---,J} satisfying [t —t;<| < %&. Then, for any ,;(t) € ¥y, there always exists 1,;(t;-) € ¥y,
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such that

C
) = sty < gl —
< bm-l—l_”w"H

Hence {¢(j) ev, : w(j) =Yn(-,tj),5 =1,2,---, J} satisfies the condition in Definition B.1. Since J < % =
= 6, the assumption is verified.

STEP 3. Now I compute the order of E [¢2,(t)] 2 The algebra is exactly the same as the algebra used

to calculate the variance in Theorem 3.1. Note that

E[R2(0 + 6,t)[W;] = war[l{Y;i <0+ 6,t,D; = d} — 1{Y; < 0,D; = d}|W]
< |Ga(8 + 0 |Wi) — Ga(0]W5)]
< Con

for some constant C. Hence, the leading term of E[¢2,(¢)] is

1 (Z;—= 2 cé, Zi— 2z 2

g (557) movi-wrde+an| = G| (% )zﬁwm—wﬂ
< Co,
— bm+2

Still @Q; is of smaller order than R; by the same reasoning as in the previous steps. Therefore, ||1)y;||, has

an order of 4/ bmﬂ

STEP 4. Finally I verify Assumption B.1(b). In our case, p, is replaced with r,,. We want to show that

log(n)

= o(ry)

[¥nill

Since r, > \/ﬁ’ by Assumption 3.2(d),

1 O 1
il 5 = YT o)

as desired. 0

B.2 Proof of Lemma B.3

Equation (52) and (53) can be proved along the same lines. Since the proof for equation (53) is more involved,

I only prove the equation. For ease of notation, let we = (2/, z)’. From the expression (57), we have

=0y (%5

P (yh) ~ 6P (yh) = ) Kl = 0) {R:(0) + Qi) (60)
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Corollary 2 in Masry (1996) implies that
1

sup wWp (W) — ——| = 0,(1
ZEN(C,8n) n(w) /fsz(w)‘ »(1)
Since fy is bounded and continuous and §,, = o(1),
1 1
sup — =o(1
2eN(C.0n) | Fafw (w) ﬁsz(wc)‘ o
Thus,
1
sup wn(W) — ——| = 0, (1
2EN(C.6n) (w) "E2fw(w<)‘ o)

For each t € [—1, 1], define

1
Pni(t) = 3 {(
1
b
1
b

Zi —zt> W — ) (ZZ-b—C) Ky (W _wC)}Ri(y)

< . ; Zt) Ky (Wi — wi)Qi(y, we)

( C)mﬂ%—wd@@w@

+

b

where z; = ( + d,t and wy = (', z;)'. Let @, be the family of ¢,;’s, i.e.,

O, = {dni(t) : t € [-1,1]}

Since

sup |G (ylw) = G (yhee) = G (ylw) + G (gl we)|

2€N((,0,)
1
B (f@fw(wc) ol )te?u?l Z%Z
Z ¢7LZ ¢7L7/( )]

1
(HZfW(wC) ol )tes[’u?l
|

1
*(@mww+%m>ﬁ?uﬂ%ﬂm

it suffices to show
tes[ulf 1] Z¢nz - (bnl( )] = Op(rn) (61)
and
sup |E[¢ni(t)]] = o(rs) (62)
te[—1,1]

(61) is shown in Lemma below. To see (62), note that mE[ém(t)] is the bias of G (ylwy) —

G{(jl)(y|w<). By Theorem 3.1, we know

E¢ni(t)] = kafw (we) [b7 (Bi(y, we) — By, we)) + o(b%)]
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Since By is continuous in w and |wy — we| < 6y, it follows that

sup |E[¢ni(t)]] = o(rn)
te[—1,1]

Lemma B.5. Under the assumptions of Theorem 3.1 and Lemma B.3,

sup = 0p(7n)

te[—1,1]

% Z ¢ni (t) -F [(énz(t)}

Proof. 1t is a result of Lemma B.1. As in Lemma B.4, Q;(y,w) is of smaller order than R;(y), so will be
ignored when calculating convergence rates. Also, C' will denote a generic positive constant, which may

represent, different values in different places.
STEP 1. For z € N (¢, 6,),

Z; — Z; — C z—
K bz>me—w—( bc)mﬂ%—wﬁ < ﬁ‘bﬁ
Co,
<
-  pm+l

for some positive constant C. Since |R;(y)| < 1,
‘b{( 5 )Kb(Wi—w)— < b >Kb(Wi—w<)}Ri(y)‘ < 2

I will set the envelope function ¢,, = % for a sufficiently large positive constant C.
STEP 2. I calculate the covering number. For t,t' € [—1, 1], by the same algebra used in STEP 1,

p Coy, ,
[fni(t) = Gni(t)] < 51t = 1]

Thus, [|¢ni(t) = éni (), < 532

Let ¢ > 0 be given. And let J be the largest integer such that J < &éﬂ We can take a partition
{t1,to,--- ,t;} on [—1,1] such that {N(¢;, g—f) :j=1,2,---,J} covers [—1,1]. Consider a ﬁnite_subset of
D, {Pni(t1), Pni(ta), -+, dni(ts)}. For any ¢ni(t) € @y, there exists j* < J such that [t —t;-| < g—f Then,

t — /| for a positive constant Cj.

C16,
|ni(t) = dni(tj<)|l; < b’”’i“ [t —t;»
Cs,
S pmezt
= |énll.c

Thus, Assumption B.1 (a) is satisfied.
STEP 3. I calculate the order of ||¢n;||,. Since the terms associated with Q;(y, w) are of negligible order,
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the leading term of |¢,;(t)|? is

(25555

L (Zi—=)’ 1 (Zi— ¢\
= bz( 2 t) K,?(Wi—wt)R?(y)—i—bz( 2 )Kf(Wi—wg)Rf(y)

_b% (Zi . Zt) (Zib_ C) Ky (Wi — we) Ky(W; — we) R2(y)

The same algebra used to calculate the variances in Theorem 3.1 yields

K3 f2, (wy) 1
- 2b++2tvl(yawt) +o (W)

1 Zi—Zt 2 2 2
Bl (Z52) KOV - w)RE)

and

1 (Zi—¢\°
B3 (2525) movi-wom) L

2 £2 1
= %Vl(%wd +0( )

where V) is the leading term of variance defined in Theorem 3.1. By Assumption3.1, V; is continuous in w.
Since |w, — we| < 8, = o(1),

Fiv (we)Va(y, we) = fiy (wo)Va(y, we) + o(1)

Assumption 3.3 implies that there exists a positive constant C' such that

C
| Ky (Wi — wy) — Ky(Wi —we)] < WIWt—wc\

C
= 75,”4
bm

for any t € [-1,1]. By Assumption 3.3, we have %” = 0(1). Thus it follows that

(Zib_zt> (Zib_c) Ky(Wi — we) Ky(W; —we) = (Zi;Csz?(Wi—wc)JrO(;n)

and a straightforward but tedious calculus yields

B (252) (255 mms - w ot - w) )|

K3 f2 (we) 1
= Wvl(y,w<)+o(w>

Therefore, the order of |||, is 1/ 2%z By Assumption 3.3,

1 1
[6lls | <A = e /B ToB(0)
= o(1)
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Hence, Assumption B.1(b) is satisfied.
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Table 1: Simulation results for A

n = 200 n = 500 n = 1000
b RMSE  bias SE RMSE  bias SE RMSE  bias SE
Design (A)
04 1.009 0.126 1.001 0.592  0.064 0.589 0.377  0.015 0.377
0.5 0.768  0.073 0.765 0.409 0.036 0.408 0.281 0.004 0.281
0.6 0.602  0.041 0.600 0.318 0.026 0.317 0.235 0.002 0.235
Design (B)
04 0.629  0.204 0.595 0.237  0.093 0.218 0.141  0.069 0.123
0.5 0.387  0.126  0.366 0.172  0.086 0.148 0.128 0.074 0.104
0.6 0.252  0.095 0.233 0.159 0.087 0.134 0.124  0.076 0.098
Design (C)
04 0.546  -0.034 0.545 0.305 0.010 0.305 0.219 0.001 0.219
0.5 0.419 -0.015 0.419 0.247  0.017 0.246 0.182 0.006 0.182
0.6 0.365 -0.006 0.365 0.214 0.021 0.213 0.163  0.010 0.162
Table 2: Simulation results for the median treatment effect
n = 200 n = 500 n = 1000
b RMSE  bias SE RMSE  bias SE RMSE  bias SE
Design (A)
04 0.419 -0.006 0.419 0.265  0.024 0.264 0.210 -0.010 0.210
0.5 0.376  -0.012 0.375 0.236  0.015 0.236 0.185 -0.007 0.185
0.6 0.345 -0.011 0.345 0.215 0.013 0.214 0.161 -0.002 0.161
Design (B)
04 0.192 -0.007 0.192 0.116  -0.003 0.116 0.089 -0.013 0.088
0.5 0.182 -0.002 0.182 0.119  0.000 0.119 0.090 -0.012 0.090
0.6 0.178 -0.002 0.178 0.121  -0.003 0.121 0.090 -0.012 0.089
Design (C)
04 0.315  0.002 0.315 0.183  0.024 0.181 0.136  0.013 0.136
0.5 0.277  0.007 0.277 0.167  0.032 0.164 0.125 0.024 0.122
0.6 0.251  0.016 0.251 0.156  0.038 0.151 0.116  0.035 0.111
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Table 3: Simulation results for Heckman’s two-step estimator

n = 200 n = 500 n = 1000
RMSE  bias SE RMSE  bias SE RMSE  bias SE
Design (A)
Qo 0.180  0.009 0.180 0.110  0.002 0.110 0.079  0.001  0.079
A 0.178 -0.005 0.178 0.114  0.002 0.114 0.078 -0.002 0.078
Bo 0.109  0.000 0.109 0.071  -0.001 0.071 0.048 -0.001 0.048
Bl 0.107  0.006 0.107 0.071 0.003 0.071 0.049  0.001 0.049
Design (B)
& 0.334 -0.257 0.214 0.300 -0.267 0.137 0.281  -0.265 0.094
o 0.339 -0.264 0.213 0.298 -0.265 0.136 0.290 -0.273 0.100
BO 0.137 -0.025 0.134 0.096 -0.028 0.092 0.068 -0.028 0.062
/3’1 0.146  0.031 0.142 0.094 0.030 0.088 0.071 0.030 0.064
Design (C)
& 0.239  0.197 0.136 0.208  0.190 0.084 0.198  0.187 0.063
o 0.300  0.260 0.149 0.283  0.267 0.093 0.273  0.265 0.064
Bo 0.091 0.029  0.087 0.063  0.027 0.057 0.047  0.027 0.039
By 0.216 -0.186 0.111 0.199 -0.186 0.072 0.195 -0.188 0.050
Table 4: Simulation results for Andrews-Schafgans’ semiparametric estimator
n = 200 n = 500 n = 1000
RMSE  bias SE RMSE  bias SE RMSE  bias SE
Design (A), v, = 0.02th quantile of Z
&y 0.482  0.039 0.480 0.315 0.040 0.313 0.218 0.012 0.218
o 0.494 0.019 0.493 0.318 0.021 0.317 0.219 0.021 0.218
Design (A), v, = 0.05th quantile of Z
Qo 0.316 0.041 0.314 0.205 0.042 0.200 0.148 0.036 0.144
G 0.322  0.035 0.320 0.209 0.038 0.205 0.149 0.043 0.143
Design (A), v, = 0.1th quantile of Z
&y 0.236  0.065 0.227 0.155 0.066 0.140 0.123  0.063 0.105
a 0.245 0.062 0.237 0.159 0.062 0.146 0.121  0.063 0.104
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Table 5: Bias Comparison

P H AS
n med(Y1 — YolfL‘) do dl do dl
Design (A)
200 -0.012 0.009 -0.005 0.041 0.035
500 0.015 0.002  0.002 0.042 0.038
1000 -0.007 0.001 -0.002 0.036 0.043
Design (B)
200 -0.002 -0.257 -0.264
500 0.000 -0.267 -0.265 N.A.
1000 -0.012 -0.265 -0.273
Design (C)
200 0.007 0.197  0.260
500 0.032 0.190 0.267 N.A.
1000 0.024 0.187  0.265

The table reports the biases of three estimators. P, H and AS signify the nonparametric estimator proposed in this paper,
Heckman’s two-step estimator, and Andrews-Schafgans’ semiparametric estimator. The bandwidth for estimator P is fixed at

0.5 and the threshold for AS is set at 5% quantiles.

Table 6: Standard Error Comparison

P H AS
n med(Y1 - 1/0‘.73) (3(1 - (3(0 641 - O~éo
Design (A)
200 0.375 0.245 0.461
500 0.236 0.154 0.285
1000 0.185 0.111 0.203
Design (B)
200 0.182 0.280
500 0.119 0.182 N.A.
1000 0.090 0.127
Design (C)
200 0.277 0.203
500 0.164 0.126 N.A.
1000 0.122 0.092

The table reports the standard errors of three estimators. P, H and AS signify the nonparametric estimator proposed in this
paper, Heckman’s two-step estimator, and Andrews-Schafgans’ semiparametric estimator. The bandwidth for estimator P is
fixed at 0.5 and the threshold for AS is set at 5% quantiles.
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Table 7: Description of Variables

label description Unit
yield Log of maize harvest per acre Log(Kg/Acre)
hybrid Indicator variable for planting hybrid maize binary
fertil Amount of fertilizer used per 10 acres Kg/(10*Acre)
labor Days of labor worked on the plot per 10 acres Days/(10*Acre)
area Area of plot Acre
rain09 Rainfall over July 2009 to June 2010 mm /100
avgrain Rainfall over the last decade mm /100
road Distance to secondary road network Km
soil — good Dummy for soil quality. 1 if good binary
soil — poor Dummy for soil quality. 1 if poor binary
edu Years of schooling of head of household, with top code 15. years
sex Dummy for sex of head of household. 1 if male binary
Table 8: Summary Statistics
All Non-hybrid Hybrid
mean median std. dev. mean median std. dev. mean median std. dev.
hybrid 0.5561 1 0.4970 0 0 0 1 1 0
yield 5.9386  5.9915 0.9534 5.7092  5.7978 0.8915 6.1218  6.1598 0.9619
fertil 8.0522  5.4945  21.0635 5.2878  3.3333 8.7661 10.2591  7.1429  26.9417
labor 7.3329  5.2941  12.1202 7.0105 5.2381  13.6382 7.5902  5.3333  10.7544
area 1.0217  0.8700 0.8332 1.0697  0.9500 0.8121 0.9833  0.8100 0.8480
rain09 9.2221  8.6000 1.8383 9.0004  8.3700 1.6594 9.3992  8.8100 1.9521
avgrain 8.5536  8.3100 0.8601 8.4358  8.1600 0.7973 8.6477  8.4000 0.8964
edu 5.4910  6.0000 4.4037 4.5153  4.0000 4.1352 6.2699  7.0000 4.4576
road 1.2247  1.6572 1.7528 1.4944  1.9657 1.6631 1.0094  1.3913 1.7930
soil — good 0.4607 0 0.4986 0.4674 0 0.4992 0.4553 0 0.4982
s0il — poor 0.0958 0 0.2944 0.0917 0 0.2887 0.0992 0 0.2990
sex 0.7744 1 0.4180 0.7464 1 0.4353 0.7967 1 0.4026
sample size 2212 982 1230
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Table 9: Probit regression

coefficient t-stat
fertil 0.0250 7.18 ***
labor -0.0047 -1.78 *
area -0.0459 -1.36
rain09 -0.0214 -0.59
soil — good  -0.0568 -0.97
soil — poor  0.1003 1.02
edu 0.0390 5.57
sex 0.0791 1.16
avgrain 0.1469 1.89 *
road -0.0605 -3.60 ***
constant  -0.0605 -3.60 ***
sample size 2212

Dependent variable is hybrid.

Table 10: OLS and IV regression results

OLS IV regression
coeflicient t-stat coeffcient t-stat
hybrid 0.2683 7.16 *** 1.0172 2.39 **
fertil 0.0114 11.38 *** 0.0097 6.59 ***
labor 0.0045 2.56 ** 0.0052 2.67 *xx
area -0.1808 -8.12 *** -0.1600 -5.96 ***
rain09 0.0394 3.92 *** 0.0234 1.65 **
soil — good 0.0665 1.73 ** 0.0774 1.84 **
soil — poor -0.2136 -3.30 *** -0.2416 -3.36 ***
edu 0.0294 6.62 *** 0.0150 1.57
sex 0.0815 1.82 ** 0.0693 1.41
constant 5.2503 49.22 *** 5.0562 31.72
sample size 2212 2212
adj. R? 0.2036 0.0632

Dependent variable is yield. For instruments, road and avgrain are used.
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Table 11: Heckman’s two-step estimator

Non-hybrid Hybrid
coefficient t-stat coefficient t-stat
fertil 0.0022 3.88 *** 0.0040 1.22
labor -0.0006 -0.60 0.0077 1.11
area -0.0260 -2.07 ** -0.0862 -1.20
rain09 0.0766 3.94 *** -0.0623 -1.83
soil — good -0.0293 -0.52 0.1671 1.40
soil — poor -0.3490 -3.62 *** -0.2516 -1.26
edu 0.0135 1.13 -0.0325 -1.68 *
sex 0.0463 0.73 0.0808 0.57
constant 4.8974 24.06 *** 8.2951 12.91 ***
sample size 982 1230

Table 12: Average treatment effect using Heckman’s two-step estimator

Dependent variable is yield.

Average treatment effect of hybrid maize

Other regressors fixed at their mean
Other regressors fixed at their median

1.7760
1.7879

The average treatment effects are calculated using the results in Table 11. They imply the expected difference in yields between

hybrid maize and non-hybrid maize when other regressors are fixed at their mean or median.
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Table 13: Cross-validation results

b Sum of squared errors
whole sample poor soil quality good soil quality
0.3 7614.2 5233.1 4040.4
0.4 6782.1 3970.5 3614.2
0.5 6570.1 4678.1 3422.2
0.6 6504.5 4771.0 3440.8
0.7 6446.3 4805.2 3327.1
0.8 6404.6 4849.3 3213.5
0.9 6376.5 4869.8 3201.8
1.0 6340.7 4830.8 3105.9
1.1 6332.2 4723.0 3025.4
1.2 6332.7 4441.2 2980.6
1.3 6337.6 3991.5 2958.6
1.4 6341.5 3652.0 2945.1
1.5 6342.2 3523.4 2933.7
1.6 6340.0 3486.3 2922.2
1.7 6335.9 3474.7 2911.1
1.8 6331.1 3520.0 2901.6
1.9 6332.7 3518.1 2894.5
2.0 6326.4 3518.7 2889.6
2.1 6325.1 3518.4 2886.4
2.2 6326.4 3519.0 2884.3
2.3 6329.6 3519.8 2882.8
24 6334.0 3520.4 2881.7
2.5 6338.9 3520.5 2881.0
2.6 6343.9 3520.1 2880.7
2.7 6348.7 3519.2 2880.8
2.8 6353.2 3518.0 2881.4
2.9 6357.5 3516.9 2882.6
3.0 6361.6 3516.4 2884.1

The minimum values are reported in bold.
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Table 14: Median treatment effect of hybrid maize

fertil median treatment effect 90% C.L
whole sample
34.95 Kg/acre 0.5123 -0.0904 2.1093
44.95 Kg/acre 0.5725 0.0603 2.4709
54.95 Kg/acre 0.9944 0.2109 2.7421
64.95 Kg/acre 1.4162 0.3013 2.8626
74.95 Kg/acre 1.9888 0.4219 2.9832
good soil quality
34.95 Kg/acre 0.8533 -0.2297  2.1660
44.95 Kg/acre 1.0830 0.1969 2.7896
54.95 Kg/acre 1.3784 0.3938 3.0850
64.95 Kg/acre 2.1004 0.5907 3.2819
74.95 Kg/acre 2.7896 0.7876 3.4131
poor soil quality
34.95 Kg/acre -0.3892 -1.0009 1.2511
44.95 Kg/acre -0.3058 -0.8897 1.6125
54.95 Kg/acre -0.1112 -0.6950 2.0017
64.95 Kg/acre 0.1390 -0.5560  2.2520
74.95 Kg/acre 0.3892 -0.4170  2.4188

The results are conditional on other variables being fixed at their respective median. The final two columns report the lower

bound and the upper bound of 90% confidence interval calculated from bootstrap of 1000 repetitions.

Table 15: Optimal Subsidy Level

distance optimal subsidy level 90% C.L
no schooling
1km 0.3808 -0.1367 1.7904
5km 0.3928 -0.1367 1.8931
10km 0.4887 -0.1534  1.9348
6 years of schooling
1km 0.2909 -0.1367  1.1406
5km 0.3328 -0.1256  1.3572
10km 0.3808 -0.1256  1.7043
9 years of schooling
1km 0.2249 -0.1367 1.0434
5km 0.2789 -0.1339 1.1684
10km 0.3508 -0.1145  1.4655

The results are conditional on other variables being fixed at their respective median. The final two columns report the lower

bound and the upper bound of 90% confidence interval calculated from bootstrap of 1000 repetitions.
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