Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-07T03:57:22.016Z Has data issue: false hasContentIssue false

Diffusion of Cu and interfacial reactions during reflow of Sn–8.5Zn–0.5Ag–0.01Al–0.1Ga alloy on Ni/Cu substrate

Published online by Cambridge University Press:  14 March 2012

Jagjiwan Mittal
Affiliation:
Department of Material Science and Engineering, National Cheng Kung University, Tainan Taiwan, 701, Republic of China
Kwang Lung Lin*
Affiliation:
Department of Material Science and Engineering, National Cheng Kung University, Tainan Taiwan, 701, Republic of China
*
a)Address all correspondence to this author. e-mail: matkllin@mail.ncku.edu.tw
Get access

Abstract

Reflow behavior of a Sn–8.5Zn–0.5Ag–0.01Al–0.1Ga (five-element) solder on the Ni/Cu substrate was investigated under different heating rates. Reflowed samples show decreased Zn and increased AgZn3 in the solder with a reduction in the heating rate. The Zn at the solder/substrate interface was found to be much lower than that in the Sn–Zn solder systems. Cu was observed to be diffused through the electroplated Ni layer and noticed only with the Ag–Zn compound in the solder. Ga was spotted at the interface in the Ag–Zn matrix, whereas Al was detected with the Zn at the interface. Small intermetallic compound (IMC) layer was formed at the interface; however, its amount enhanced with the reduction in the heating rate. Present study relates the reflow behavior of the five-element solder with the reactivity of different elements in the system and its influence on the formation of IMCs in the solder and at the solder/substrate interface.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mittal, J., Kuo, S.M., Lin, Y.W., and Lin, K.L.: Diffusion behavior of Zn during reflow of Sn-9Zn solder on Ni/Cu substrate. J. Electron. Mater. 38, 2436 (2009).CrossRefGoogle Scholar
2.Sogo, Y., Hojo, T., Iwanishi, H., Hirose, A., Kobayashi, K.F., Yamaguchi, A., Furusawa, A., and Nishida, K.: Influence of the interfacial reaction layer on reliability of CSP joints using Sn-8Zn-3Bi solder and Ni/Au plating. Mater. Trans. 45, 734 (2004).CrossRefGoogle Scholar
3.Suganuma, K., Murata, T., Noguchi, N., and Toyoda, Y.: Heat resistance of Sn-9Zn solder/Cu interface with or without coating. J. Mater. Res. 15, 884 (2000).CrossRefGoogle Scholar
4.Yang, W., Messler, R.W., and Felton, L.E.: Microstructure evolution of eutectic Sn-Ag solder joints. J. Electron. Mater. 23, 765 (1994).CrossRefGoogle Scholar
5.Mavoori, H., Chin, J., Vaynman, S., Moran, B., Keer, L., and Fine, M.E.: Creep, stress relaxation and plastic deformation in Sn-Ag and Sn-Zn eutectic solders. J. Electron. Mater. 26, 783 (1997).CrossRefGoogle Scholar
6.Huang, C.W. and Lin, K.L.: Microstructures and mechanical properties of Sn-8.55Zn-0.45Al-XAg solders. J. Mater. Res. 18, 1528 (2003).CrossRefGoogle Scholar
7.Lin, K.L., Wen, L.H., and Liu, T.P.: The microstructures of the Sn-Zn-Al solder alloys. J. Electron. Mater. 27, 97 (1998).CrossRefGoogle Scholar
8.Lin, K.L. and Liu, T.P.: High temperature oxidation of a Sn-Zn-Al solder. Oxid. Met. 50, 255 (1998).CrossRefGoogle Scholar
9.Chen, K.I., Cheng, S.C., Wu, S., and Lin, K.L.: Effects of small additions of Ag, Al and Ga on the structure and properties of the Sn-Zn eutectic alloy. J. Alloy. Comp. 41, 98 (2006).CrossRefGoogle Scholar
10.Yu, S.P., Wang, H.C., Hon, M.H., and Wang, M.C.: Composition and heat-treatment effects on the adhesion strength of Sn-Zn-Al solders on Cu substrate. JOM 36, 36 (2000).CrossRefGoogle Scholar
11.Date, M., Shoji, T., Fujiyoshi, M., Sato, K. and Tu, K.N.: Ductile to brittle transition in Sn-Zn solder joints measured by impact test. Scr. Mater. 51, 641 (2004).CrossRefGoogle Scholar
12.Yoon, J.W., Lee, B.B., and Jung, S.B.: Growth of an intermetallic compound layer with Sn-3.5Ag-5Bi on Cu and Ni-P/Cu during aging treatment. J. Electron. Mater. 32, 1195 (2003).CrossRefGoogle Scholar
13.Lai, R.S., Lin, K.L., and Salam, B.: Suppressing growth of the Cu5Zn8 intermetallic layer in Sn-Zn-Ag-Al-Ga/Cu solder joints. J. Electron. Mater. 38, 88 (2009).CrossRefGoogle Scholar
14.Andrews, K.W., Davies, H.E., Hume-Rothery, W., and Oswin, C.R.: The equilibrium diagram of the system silver-zinc. Proc. R. Soc. Lond. A177, 149 (1940–1941).Google Scholar
15.Lin, K.L. and Shih, C.L.: Microstructure and thermal behavior of Sn-Zn-Ag solders. J. Electron. Mater. 32, 1496 (2003).CrossRefGoogle Scholar
16.Zhu, W., Liu, H., Wang, J., Ma, G., and Jin, Z.: Interfacial reactions between Sn-Zn alloys and Ni substrates. J. Electron. Mater. 39, 209 (2010).CrossRefGoogle Scholar
17.de Bore, F.R., Boom, R., Mattens, W.C.M., Miedema, A.R., and Niessen, A.K.: Cohesion in Metals: Transition Metal Alloys (Elsevier Science Publishers B.V., 1988).Google Scholar
18.Zhang, X.F., Guo, J.D., and Shang, J.K.: Controlling intermetallic compounds formation reaction between Sn and Ni-P by Zn addition. J. Alloy. Comp. 479, 505 (2009).CrossRefGoogle Scholar
19.Nash, P. and Pan, Y.Y.: Phase Diagrams of Binary Nickel Alloys, edited by Nash, P. (ASM International, Materials Park, OH, 1991), p. 382.Google Scholar
20.Massalski, T.B., Okamoto, H., Subramanian, P.R., and Kacprzak, L.: Binary Alloy Phase Diagrams, 2nd ed. (ASM International, Materials Park, OH, 1990).Google Scholar
21.Liou, W.K. and Yen, Y.W.: Interfacial reactions between Cu addition on Sn-9Zn lead-free solder and Ni substrate. J. Electron. Mater. 18, 2222 (2009).CrossRefGoogle Scholar
22.Chang, J., Seo, S.K., and Lee, H.M.: Phase equilibria in the Sn-Ni-Zn ternary system: Isothermal sections at 200°C, 500°C, and 800°C. J. Electron. Mater. 99, 2643 (2010).CrossRefGoogle Scholar
23.Schmetterer, C., Rajamohan, D., Ipser, H., and Flandorfer, H.: The high-temperature phase equilibria of the Ni-Sn-Zn system: Isothermal sections. Intermetallics 19, 1489 (2011).CrossRefGoogle ScholarPubMed
24.Yuan, Y., Delsante, S., Li, D., and Borzone, G.: The isothermal section of the Ni-Sn-Zn phase diagram at 873 K. Intermetallics 19, 1646 (2011).CrossRefGoogle Scholar
25.Gandova, V., Soares, D., Lilova, K., Tedenac, J.C., and Vassilev, G.P.: Phase equilibria in the Sn-Zn-Ni system. Inter. J. Mat. Res. 102, 257 (2011).CrossRefGoogle Scholar
26.Liang, J-L., Du, Y., Tang, Y-Y., Xie, S-B., Xu, H-H., Zeng, L-M., Liu, Y., Zhu, Q-M., and Nong, L-Q.: Phase equilibria in the Ni-Sn-Zn system at 500°C. J. Electron. Mater. 40, 2290 (2011).CrossRefGoogle Scholar
27.Chen, W., Xue, S., Wang, H., Wang, J., and Han, Z.: Solderability and intermetallic compounds formation of Sn-9Zn-xAg lead free solders wetted on Cu substrates. Rare Met. 28, 656 (2009).CrossRefGoogle Scholar
28.Hultgren, R., Desai, P.D., Hawkins, D.T., Gleioser, M., and Kelley, K.K.: Select Values of Thermodynamic Properties of Binary Alloys (ASM International, Metals Park, OH, 1973).Google Scholar
29.Zou, H.F. and Zhang, Z.F.: Effect of Zn addition on interfacial reactions between Sn-4Ag solder and Ag substrates. J. Electron. Mater. 37, 1119 (2008).CrossRefGoogle Scholar
30.Jao, C.C., Yen, Y.W., Lin, C.Y., and Lee, C.: Phase equilibiria of the Sn-Zn-Ag system and interfacial reactions in Sn-Zn/Ag couples. Intermetallics 16, 463 (2008).CrossRefGoogle Scholar
31.Hsuan, T.C. and Lin, K.L.: Microstructural evolution of AgZn3 and Zn phases in Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga solder during aging treatment. J. Alloy. Comp. 469, 350 (2009).CrossRefGoogle Scholar
32.Date, M., Tu, K.N., Shoji, T., Fujiyoshi, M., and Sato, K.: Interfacial reactions and impact reliability of Sn-Zn solder joints on Cu or electroless Au/Ni(P) bond-pads. J. Mater. Res. 19, 2887 (2004).CrossRefGoogle Scholar
33.Huang, C.S., Duh, J.G., Chen, Y.M., and Wang, J.H.: Effects of Ni thickness and reflow times on interfacial reactions between Ni/Cu under bump metallization and eutectic Sn-Pb solder in flip chip technology. J. Electron. Mater. 32, 89 (2008).CrossRefGoogle Scholar
34.Huang, C.S., Jang, G.Y., and Duh, J.G.: Soldering-induced Cu diffusion and intermetallic compound formation between Ni/Cu under bump metallization and SnPb flip-chip solder bumps. J. Electron. Mater. 33, 283 (2004).CrossRefGoogle Scholar
35.Chang, Y.A., Neumann, J.P., Mikula, A., Goldberg, D.: “Cu-Sn-Zn”, Phase Diagrams. Thermodynamic Properties Ternary Copper-Metal Systems. 6, 678 (1979).Google Scholar
36.Turchi, P.E.A., Sluiter, M., Pinski, F.J., Johnson, D.D., Nicholson, D.M., Stocks, G.M., and Staunton, J.B.: First-principles study of phase stability in Cu-Zn substitutional alloys. Phys. Rev. Lett. 67, 1779 (1991).CrossRefGoogle ScholarPubMed
37.Chou, C-Y. and Chen, S-W.: Phase equilibria of the Sn–Zn–Cu ternary system. Acta Mater. 54, 2393 (2006).CrossRefGoogle Scholar
38.Huang, Y-C., Chen, S-W., Chou, C-Y., and Gierlotka, W.: Liquidus projection and thermodynamic modeling of Sn–Zn–Cu ternary system. J. Alloy. Comp. 477, 283 (2009).CrossRefGoogle Scholar
39.Chuang, C.M., Hung, H.T., Liu, P.C., and Lin, K.L.: The interfacial reaction between Sn-Zn-Ag-Ga-Al solders and metalized Cu substrate. J. Electron. Mater. 33, 7 (2004).CrossRefGoogle Scholar
40.Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiser, M., and Kelley, K.K.: Selected Values of the Thermodynamic Properties of Binary Alloys (ASM International, Metals Park, OH, 1973), p 115.Google Scholar
41.Yu, C.H. and Lin, K.L.: Early stage soldering reaction and interfacial microstructure formed between molten Sn-Zn-Ag solder and Cu substrate. J. Mater. Res. 20, 1242 (2005).CrossRefGoogle Scholar
42.Liu, N.S. and Lin, K.L.: Evolution of interfacial morphology of Sn-8.5Zn-0.5Ag-0.1Al-xGa/Cu system during isothermal aging. J. Alloy. Comp. 456, 466 (2008).CrossRefGoogle Scholar
43.Liu, N.S. and Lin, K.L.: The effect of Ga content on the wetting reaction and interfacial morphology formed between Sn-8.5Zn-0.5 Ag-0.1Al-xGa solders and Cu. Scr. Mater. 54, 219 (2006).CrossRefGoogle Scholar
44.Chang, S.C., Lin, S.C., and Hsieh, K.C.: The formation and growth of intermetallic compounds in Sn-Zn and Sn-Zn-Al solder with Ni/Cu surface finish bond pad. J. Electron. Mater. 35, 399 (2006).CrossRefGoogle Scholar
45.Raghavan, V.: Al-Cu-Zn (Aluminium-Copper-Zinc). J. Phase Equilib. Diffus. 28, 183 (2010).CrossRefGoogle Scholar