Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-19T07:21:56.736Z Has data issue: false hasContentIssue false

Late Holocene development of Bubiyan Island, Kuwait

Published online by Cambridge University Press:  18 April 2022

Linda M. Reinink-Smith*
Affiliation:
Department of Earth and Environmental Sciences, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
Robert Carter
Affiliation:
UCL Qatar, P.O. Box 25256, Georgetown Building, Education City, Doha, Qatar
*
*Corresponding author email address: <l.reininksmith@gmail.com>

Abstract

Bubiyan Island, presently a vast sabkha and salt flat in the westernmost part of the Shatt Al-Arab delta, originated ca. 4000 cal yr BP as prodelta deposits from a paleochannel of the Euphrates River that flowed into a shallow sea. Southeastern Bubiyan Island first surfaced when spits and barrier islands formed on a 1–2 m forebulge caused by heavy sediment load to the northwest; the spits and barriers delineated an incipient shoreline and sheltered a shallow lagoon. Progradation of southeastern Bubiyan Island began when the spits and barriers were gradually stranded as beach ridges during minor sea-level fluctuations and continued marginal uplift. AMS dating of the beach ridges, which are ~1–5 km from the present shoreline, implies that Late Holocene relative sea level fell in three phases: ca. 3700–3400 cal yr BP, ca. 2600–1000 cal yr BP, and ca. 600–500 cal yr BP. Prior to each phase, relative sea level apparently stabilized to near stillstands, allowing spits and barriers to accrete. Torpedo-jar pottery sherds scattered on some of the most prominent beach ridges indicate Sasanian (AD ca. 300–650; 1650–1300 cal yr BP) to early Islamic (AD ca. 650–800; 1300–1150 cal yr BP) periods of human presence, concurrent with the Second phase of beach-ridge formation.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al-Aesawi, Q., Al-Nasrawi, A.K.M., Jones, B.G., 2020. Short-term geoinformatics evaluation in the Shatt Al-Arab Delta (Northwestern Arabian/Persian Gulf). Journal of Coastal Research 36, 498505.CrossRefGoogle Scholar
Al-Asfour, T. A., 1982. A note on the Late Holocene evolution of Bubiyan Island of Kuwait, Arabian Gulf. Bulletin of Researches in Geography 45, 117. [Translated from Arabic by Zein Eddin A. Ghunaimy]Google Scholar
Albadran, B., 1995. Lithofacies of recent sediments of Khor Abdullah and Shatt Al-Arab delta, N.W. Arabian Gulf. Iraqi Journal of Science 36, 11331147.Google Scholar
Albadran, B., 2004. Shatt Al-Arab Delta, Southern Iraq, sedimentological study. Marine Mesopotamia. 19, 311322.Google Scholar
Al-Hamad, S.S., Albadran, B.N., Pournelle, J.R., 2017. Geological history of Shatt Al-Arab River, south of Iraq. International Journal of Science and Research 6, 20292039.Google Scholar
Al-Hasem, A.M. 1997. Physical Characteristics of Coastal Environment in Kuwait, Arabian Gulf. Ph.D. dissertation, Eastern Michigan University, Ypsilanti, Michigan, 108 pp. ProQuest Dissertations Publishing 1384575.Google Scholar
Al-Hawi, N. A., 2014. Geoarchaeological and Morphotectonic Study of Al-Hammar Marsh Area and Surrounding. M.Sc. Thesis, University of Basrah, Basrah, Iraq, 135 pp.Google Scholar
Al-Mosawi, W.M., Al-Manssory, F.Y., 2019. The delta of Shatt Al-Arab River, framework and evolution. Mesopotamian Journal of Marine Science 34, 2742.Google Scholar
Al-Mulla, S.T., Al-Ali, A.K., 2015. Geomatic study of Shatt Al-Arab delta, southern Iraq. Marsh Bulletin 10, 7391.Google Scholar
Alosairi, Y., Pokavanich, T., 2017. Seasonal circulation assessments of the northern Arabian/Persian Gulf. Marine Pollution Bulletin 116, 270290.CrossRefGoogle ScholarPubMed
Alsharhan, A.S., Kendall, C.G.St.C., 2003. Holocene coastal carbonates and evaporites of the southern Arabian Gulf and their ancient analogues. Earth Science Reviews 61, 191243.CrossRefGoogle Scholar
Al-Zamel, A.Z., 1985. Occurrence and age of submarine peat in the Euphrates-Tigris delta. SEPM 2nd Annual Midyear Meeting, Golden, Colorado, Abstracts, p. 4.Google Scholar
Aqrawi, A.A.M., 1993. Implications of sea-level fluctuations, sedimentation and neotectonics for the evolution of the marsh-lands (Ahwar) of southern Mesopotamia. In: Owen, L.A., Stewart, I., Vita-Finnzi, C. (Eds.), Final Proceedings of International Symposium on Neotectonics; Recent Advances, 6–7 June, Burlington House, London. Quaternary Proceedings No. 3, Quaternary Research Association, Cambridge, pp. 21–31.Google Scholar
Aqrawi, A.A.M., 1997. The nature and preservation of organic matter in the lacustrine/deltaic sediments of southern Mesopotamia. Journal of Petroleum Geology 20, 6990.CrossRefGoogle Scholar
Aqrawi, A.A.M., 2001. Stratigraphic signatures of climatic change during the Holocene evolution of the Tigris-Euphrates delta, lower Mesopotamia. Global and Planetary Change 28, 267283.CrossRefGoogle Scholar
Aqrawi, A.A.M., Domas, J., Jassim, S.Z., 2006. Quaternary deposits. In: Jassim, S.Z., Goff, J.C. (Eds.), Geology of Iraq. Dolin, Prague and Moravian Museum, Brno, Czech Republic, pp. 254275.Google Scholar
Ashton, A., Nienhuis, J. Ells, K., 2015. On a neck, on a spit: controls on the shape of free spits. Earth Surface Dynamics Discussions 3, 193210.Google Scholar
Baker, R.G.V., Haworth, R.J., 2000a. Smooth or oscillating late Holocene sea-level curve? Evidence from the palaeo-zoology of fixed biological indicators in east Australia and beyond. Marine Geology 163, 367386.CrossRefGoogle Scholar
Baker, R.G.V., Haworth, R.J., 2000b. Smooth or oscillating late Holocene sea-level curve? Evidence from cross-regional statistical regressions of fixed biological indicators. Marine Geology 163, 353365.CrossRefGoogle Scholar
Baltzer, F., Purser, G.H., 1990. Modern alluvial fan and deltaic sedimentation in a foreland tectonic setting: the Lower Mesopotamian plain and the Arabian Gulf. Sedimentary Geology 67, 175197.Google Scholar
Bao, S-F, Huang, J-H., 2013. Engineering properties of soils on Boubyan Island in Kuwait. Advanced Materials Research 815, 273278.Google Scholar
Bassetti, M.-A., Berné, S., Sicre, M.-A., Dennielou, B., Alonso, Y., Buscail, R., Jalali, B., Hebert, B., Menniti, C., 2016. Holocene hydrological changes in the Rhône River (NW Mediterranean) as recorded in the marine mud belt. Climate of the Past 12, 15391553.CrossRefGoogle Scholar
Bateman, M.D., McHale, K., Bayntun, H.J., Williams, N., 2020. Understanding historical coastal spit evolution: a case study from Spurn, East Yorkshire, UK. Earth Surface Processes and Landforms 45, 36703686.CrossRefGoogle Scholar
Bieliński, P., Białowarczuk, M., Kiersnowski, H., Piątkowska-Małecka, J., Reiche, A. Smogorzewska, A., Szymczak, A., 2015. Bahra 1. Excavations in 2013. Preliminary Report on the Fifth Season of Kuwaiti-Polish Archaeological Explorations. Kuwait—Warsaw, NCCAL-PCMA, 175 pp.Google Scholar
Bingham, R.J., Hughes, C.W., 2012. Local diagnostics to estimate density-induced sea level variations over topography and along coastlines. Journal of Geophysical Research: Oceans 117, C01013. https://doi.org/10.1029/2011JC007276.CrossRefGoogle Scholar
Blair, A., Kennet, D., al-Duwish, S., 2012. Investigating an Early Islamic landscape on Kuwait Bay: the archaeology of historical Kadhima. In: Starkey, J.C.M. (Ed.), Papers from the forty-fifth meeting, London, 28–30 July 2011. Proceedings of the Seminar for Arabian Studies 42, 13–26. British Museum, London, Archaeopress.Google Scholar
Bosworth, W., Montagna, P., Pons-Branchu, E., Rasul, N., Taviani, M., 2017. Seismic hazards implications of uplifted Pleistocene coral terraces in the Gulf of Aqaba. Scientific Reports 7, 38. https://doi.org/10.1038/s41598-017-00074-2.CrossRefGoogle ScholarPubMed
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.Google Scholar
Bungenstock, F., Mauz, B., Schafer, A., 2004. The late Holocene sea-level rise at the East Frisian coast (North Sea): new time constraints provided by optical ages of coastal deposits. In: Schernewski, G., Dolch, T. (Eds.), Geographie der Meere und Kuste. Coastline Reports 1, 37–41.Google Scholar
Carter, R., 2002. Ubaid-period boat remains from As-Sabiyah: excavations by the British Archaeological Expedition to Kuwait. Proceedings of the Seminar for Arabian Studies 32, 1330.Google Scholar
Carter, R., 2003. The Neolithic origins of seafaring in the Arabian Gulf. Archaeology International 2002/2003, 4447.Google Scholar
Carter, R.A., 2010. Appendix I. Other Fieldwork in As-Sabiyah and Beyond. In: Carter, R.A., Crawford, H.E.W. (Eds.), Maritime Interactions in the Arabian Neolithic: the Evidence from H3, As-Sabiyah, an Ubaid-Related Site in Kuwait. Leiden, Brill, pp. 213260.Google Scholar
Carter, R., Crawford, H.E.W., 2001. The Kuwait-British archaeological expedition to As-Sabiyah: report on the second season's work. Iraq 63, 120.CrossRefGoogle Scholar
Carter, R., Crawford, H.E.W., 2002. The Kuwait-British archaeological expedition to As-Sabiyah: report on the third season's work. Iraq 64, 113.CrossRefGoogle Scholar
Carter, R., Crawford, H.E.W., 2003. The Kuwait-British archeological expedition to As-Sabiyah: report on the fourth season's work. Iraq 65, 7790.CrossRefGoogle Scholar
Carter, R., Philip, G., 2010. Deconstructing the Ubaid. In: Carter, A., Philip, G. (Eds.), Beyond the Ubaid, Transformation and Integration in the Late Prehistoric Societies of the Middle East. Papers from The Ubaid Expansion? Cultural Meaning, Identity and the Lead-up to Urbanism. International Workshop held at Grey College, University of Durham, April, 2006. Studies in Ancient Oriental Civilizations 63, 20–22.Google Scholar
Carter, R., Crawford, H., Mellalieu, S., Barrett, D., 1999. The Kuwait-British archeological expedition to As-Sabiyah: report on the first season's work. Iraq 61, 4358.CrossRefGoogle Scholar
Church, J.A., Gregory, J.M., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M.T., Qin, D., Woodworth, P.L., 2001. Changes in sea level. In: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P., Dai, X., Maskell, K., Johnson, C.I. (Eds), Climate Change 2001: The Scientific Basis. Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp. 639694.Google Scholar
Church, J.A., Woodworth, P.L., Aarup, T., Wilson, W.S. (Eds.), 2010a. Understanding Sea-Level Rise and Variability. Wiley-Blackwell, Hoboken, NJ, USA, 428 pp.CrossRefGoogle Scholar
Church, J.A., Roemmich, D., Domingues, C.M., Willis, J.K., White, N.J., Gilson, J.E., Stammer, D., et al. , 2010b. Ocean temperature and salinity contributions to global and regional sea-level change. In: Church, J.A., Woodworth, P.L., Aarup, T., Wilson, W.S. (Eds.), Understanding Sea-Level Rise and Variability. Wiley-Blackwell, pp. 143176.CrossRefGoogle Scholar
Coleman, J.M., Huh, O.K., 2003. Major World Deltas: A Perspective from Space. Coastal Studies Institute, Louisiana State University, 241 pp.Google Scholar
Dalongeville, R., 1990. Présentation physique générale de L’île de Failaka, In: Calvet, Y., Gachet, J., (Eds.), Failaka, Fouilles Francaises 1986–1988. Travaux de la Maison de l'Orient, Lyon, pp. 2340.Google Scholar
Dangendorf, S., Frederikse, T., Chafik, L., Klinck, J.M., Ezer, T., Hamlington, B.D., 2021. Data-driven reconstruction reveals large-scale ocean circulation control on coastal sea level. Nature Climate Change 11, 514520.CrossRefGoogle Scholar
El-Gindy, A.A., Eid, F.M., 1997. The seasonal variations of sea level due to density variations in the Arabian Gulf and Gulf of Oman. Pakistan Journal of Marine Sciences 6, 112.Google Scholar
El-Nahas, A., Chitambira, B., White, J., Brew, D., 2014. Geotechnical characteristics of shallow soil formations at Boubyan Island, Kuwait. 3rd International Symposium on Cone Penetration Testing, Las Vegas, Nevada, USA, pp. 543–552.Google Scholar
Engel, M, Brückner, H., 2014. The South Qatar Survey Project (SQSP). Preliminary findings on coastal changes and geoarchaeological archives. Zeitschrift für Orient-Archäologie 7, 290301.Google Scholar
Engel, M., Brückner, H., 2018. Holocene climate variability of Mesopotamia and its impact on the history of civilization. EarthArXiv. https://doi.org/10.31223/osf.io/s2aqt.CrossRefGoogle Scholar
Engels, S., Roberts, M.C., 2005. The architecture of prograding sandy-gravel beach ridges formed during the last Holocene highstand: Southwestern British Columbia, Canada. Journal of Sedimentary Research 75, 10521064.CrossRefGoogle Scholar
Evans, G., 1979. The development of the Mesopotamian delta, comments. Geographical Journal 145, 529531.Google Scholar
Evans, G., 2011. An historical review of the Quaternary sedimentology of the Gulf (Arabian/Persian Gulf) and its geological impact. International Association of Sedimentologists Special Publication 43, 1144.Google Scholar
Evans, G., Schmidt, V., Bush, P., Nelson, H., 1969. Stratigraphy and geologic history of the sabkha, Abu Dhabi, Persian Gulf. Sedimentology 12, 145159.CrossRefGoogle Scholar
Fanget, A-S., Bassetti, M.-A., Fontanier, C., Tudryn, A., Berné, S., 2016. Sedimentary archives of climate and sea-level changes during the Holocene in the Rhône prodelta (NW Mediterranean Sea). Climate of the Past 12, 21612179.CrossRefGoogle Scholar
Frezza, V., Carboni, M.G., 2009. Distribution of recent foraminiferal assemblages near the Ombrone River mouth (Northern Tyrrhenian Sea, Italy). Revue de Micropaléontologie 52, 4366.CrossRefGoogle Scholar
Ge, Y., Pederson, C.L., Lokier, S.W., Traas, J.P., Nehrke, G., Neuser, R.D., Goetschl, K.E., Immenhauser, A., 2020. Late Holocene to Recent aragonite-cemented transgressive lag deposits in the Abu Dhabi lagoon and intertidal sabkha. Sedimentology 67, 24262454.CrossRefGoogle Scholar
Gehrels, W.R., Kirby, J.R., Prokoph, A., Newnham, R.M., Achterberg, E.P., Evans, H., Black, S., Scott, D.B., 2005. Onset of recent rapid sea-level rise in the western Atlantic Ocean. Quaternary Science Reviews 24, 20832100.CrossRefGoogle Scholar
Godwin, H., Surggate, R.P., Wills, E.H., 1958. Radiocarbon dating of the eustatic rise of ocean-level. Nature 181, 15181519.CrossRefGoogle Scholar
Good, S.A., Martin, M.J., Rayner, N.A., 2013. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. Journal of Geophysical Research: Oceans 118, 67046716.CrossRefGoogle Scholar
Grinsted, A., Moore, J.C., Jevrejeva, S., 2009. Reconstructing sea level from paleo and projected temperatures 200 to 2100AD. Climate Dynamics 34, 461472.CrossRefGoogle Scholar
Gulf Consult, 2017. Boubyan Island Master Plan. https://www.gckuwait.com/portfolio_page/boubyan-island-master-plan/ Accessed January 11, 2017.Google Scholar
Gunatilaka, A., 1986. Kuwait and the northern Arabian Gulf: a study in Quaternary sedimentation. Episodes 9, 223231.CrossRefGoogle Scholar
Hansman, J.F., 1978. The Mesopotamia delta in first millennium. Geographical Journal 144, 4961.CrossRefGoogle Scholar
Heaton, T.J., Köhler, P., Butzin, M., Bard, E., Reimer, R.W. Austin, W.E.N., Ramsey, C.B., et al. , 2020. Marine20—The marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779820.CrossRefGoogle Scholar
Heyvaert, V.M.A., Baeteman, C., 2007. Holocene sedimentary evolution and palaeocoastlines of the Lower Khuzestan plain (southwest Iran). Marine Geology 242, 83108.CrossRefGoogle Scholar
Hosseinibalam, F., Hassanzadeh, S., Kiasatpour, A., 2007. Interannual variability and seasonal contribution of thermal expansion to sea level in the Persian Gulf. Deep-Sea Research Part 1 Oceanographic Research Papers 54, 14741485.CrossRefGoogle Scholar
Hosseinyar, G., Behbahani, R., Moussavi-Harami, R., Lak, R., Kuijpers, A., 2021. Holocene sea-level changes of the Persian Gulf. Quaternary International 571, 2645.Google Scholar
Hunziker, K., Mecall, R.J.S., 1952. Second reconnaissance to Bubiyan Island. Kuwait Oil Company, Geological Division (unpublished report).Google Scholar
Isaev, V.A.; Mikhailova, M.V., 2009. The hydrology, evolution, and hydrological regime of the mouth area of the Shatt al-Arab River. Water Resources 36, 380395.CrossRefGoogle Scholar
Jameson, J., Strohmenger, C., 2012. Late Pleistocene to Holocene sea-level history of Qatar: Implications for eustasy and tectonics. AAPG Search and Discovery Article #90142, AAPG Annual Convention and Exhibition, Long Beach, California. https://www.searchanddiscovery.com/documents/2012/50704jameson/ndx_jameson.pdf.Google Scholar
Jameson, J., Strohmenger, C., 2014. Resolving eustasy from neotectonics in the sea-level history of the Pliocene to Holocene of Qatar. Doha, Qatar 20–22 January, 2014. International Petroleum Technology Conference IPTC-17219-MS, 112.CrossRefGoogle Scholar
Jassim, R.Z., Al-Jiburi, B.S., 2009. Stratigraphy. In: Geology of Iraqi Southern Desert. Iraqi Bulletin of Geology and Mines Special Issue 2, 53–76.Google Scholar
Jotheri, J., 2016. Holocene Avulsion History of the Euphrates and Tigris Rivers in the Mesopotamian Floodplain. Ph.D. dissertation, Durham University, Durham, UK. http://etheses.dur.ac.uk/11752/.Google Scholar
Jotheri, J., Allen, M.B., Wilkinson, T.J., 2015. To what extent may palaeochannels be accurately dated on the basis of their associated settlements? BANEA 2015 UCL—London, p. 27. http://banealcane.org/banea/index.php/late-antique-frontiers-of-iran-the-caucasus-anatolia-and-iraq/Google Scholar
Kassler, P., 1973. The Structural and Geomorphic Evolution of the Persian Gulf. In: Purser, B.H. (Ed.), The Persian Gulf. Springer, Berlin, pp. 1132.CrossRefGoogle Scholar
Kemp, A.C., Horton, B., Doonnelly, J.P., Mann, M.E., Vermeer, M., Rahmstorf, S., 2011. Climate related sea-level variations over the past two millennia. Proceedings of the National Academy of Sciences 108, 1101711022.CrossRefGoogle ScholarPubMed
Kemp, A.C., Horton, B.P. Vane, C.H., Bernhardt, C.E., Corbett, D.R., Engelhart, S.E., Anisfeld, S.C., Parnell, A.C., Cahill, N., 2013. Sea-level change during the last 2500 years in New Jersey, USA. Quaternary Science Reviews 81, 90104.CrossRefGoogle Scholar
Kelsey, H.M., 2015. Geomorphological indicators of past sea levels. Part 1: field techniques for sea-level reconstruction. In: Shennan, I., Long, A.J., Horton, B.P. (Eds.), Handbook of Sea-Level Research, First Edition. John Wiley & Sons, Ltd., Hoboken, New Jersey, pp. 6182.Google Scholar
Kennet, D., 2007. The decline of eastern Arabia in the Sasanian period. Arabian Archaeology and Epigraphy 18, 86122.CrossRefGoogle Scholar
Kennet, D., 2013. Current fieldwork on the early Islamic archaeology of Kuwait: Kadhima, the coast and the Tariq al-Basra. Hadeeth ad-Dar 39, 1924.Google Scholar
Kennett, D.J., Kennett, J.P., 2007. Influence of Holocene marine transgression and climate change on cultural evolution in Southern Mesopotamia. In: Anderson, D., Maasch, K.A., Sandweiss, D.H. (Eds.), Climate Change and Cultural Dynamics: A Global Perspective on Mid-Holocene Transitions. Academic Press, London, pp. 229264.CrossRefGoogle Scholar
Khalaf, F.I., Al-Awadhi, J.M., 2012. Sedimentological and morphological characteristics of gypseous coastal nabkhas on Bubiyan Island, Kuwait, Arabian Gulf. Journal of Arid Environments 82, 3143.CrossRefGoogle Scholar
Khanna, P., Petrovic, A., Ramdani, A.I., Homewood, P., Mettraux, M., Vahrenkamp, V., 2021. Mid-Holocene to present circum-Arabian sea level database: investigating future coastal ocean inundation risk along the Arabian plate shorelines. Quaternary Science Reviews 261, 106959. https://doi.org/10.1016/j.quascirev.2021.106959.CrossRefGoogle Scholar
Kopp, R.E., Dutton, A., Carlson, A.E., 2017. Centennial- to millennial-scale sea-level change during the Holocene and Last Interglacial periods. Pages Magazine 25, 148149.CrossRefGoogle Scholar
Lambeck, K., 1996. Shoreline reconstructions for the Persian Gulf since the last glacial maximum. Earth and Planetary Science Letters 142, 4357.Google Scholar
Lambeck, K., Woodroffe, C.D., Antonioli, F., Anzidei, M., Gehrels, W.R., Laborel, J., Wright, A.J., 2010. Paleoenvironmental records, geophysical modeling, and reconstruction of sea-level trends and variability on centennial and longer timescales. In: Church, J.A., Woodworth, P., Aarup, T., Wilson, W. (Eds.), Understanding Sea-Level Rise and Variability. John Wiley & Sons, Hoboken, NJ, pp. 61121.CrossRefGoogle Scholar
Lambeck, K., Purcell, A., Flemming, N.C., Vita-Finzi, C., Alsharekh, A.M., Bailey, G.N., 2011. Sea level and shoreline reconstructions for the Red Sea: isostatic and tectonic considerations and implications for hominin migration out of Africa. Quaternary Science Reviews 30, 35423574.CrossRefGoogle Scholar
Larsen, C.E., 1975. The Mesopotamian delta region: a reconsideration of Lees and Falcon. Journal of the American Oriental Society 95, 4357.CrossRefGoogle Scholar
Larsen, C.E., Evans, G., 1978. The Holocene geological history of the Tigris-Euphrates-Karun delta. In: Brice, W.C. (Ed.). The Environmental History of the Near and Middle East Since the Last Ice Age. Academic Press, London, pp. 227244.Google Scholar
Lees, G.M., Falcon, N.L., 1952. The geological history of the Mesopotamian plains. Geographic Journal 118, 2439.CrossRefGoogle Scholar
Lokier, S., Steuber, T., 2008.Quantification of carbonate-ramp sedimentation and progradation rates for the late Holocene Abu Dhabi shoreline. Journal of Sedimentary Research 78, 423431.CrossRefGoogle Scholar
Lokier, S.W., Bateman, M.D., Larkin, N.R., Rye, P., Stewart, J.R., 2015. Late Quaternary sea-level changes of the Persian Gulf. Quaternary Research 84, 6981.CrossRefGoogle Scholar
Lüning, S., Gaɫka, M., Vahrenholt, F., 2017. Warming and cooling: The Medieval Climate Anomaly in Africa and Arabia. Paleoceanography and Paleoclimatology 32, 12191235.CrossRefGoogle Scholar
Macfayden, W.A., Vita-Finzi, C., 1978. Mesopotamia: the Tigris-Euphrates delta and its Holocene Hammar fauna. Geological Magazine 115, 287300.CrossRefGoogle Scholar
Mann, M.E., Bradley, R.S., Hughes, M.K., 1998. Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392, 779787.CrossRefGoogle Scholar
Mann, M.E., Zhang, Z., Hughes, M.K., Bradley, R.S., Miller, S.K., Rutherford, S., Ni, F., 2008. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proceedings of the National Academy of Sciences of the United States of America 105, 1325213257.CrossRefGoogle ScholarPubMed
Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., Ni, F., 2009. Global signatures and dynamic origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 12561260.CrossRefGoogle Scholar
Martinez-Ruiz, F., Kastner, M., Gallego-Torres, D., Rodrigo-Gámiz, M., Nieto-Moreno, V., Ortega-Huertas, M., 2015. Paleoclimate and paleoceanography over the past 20,000 yr in the Mediterranean Sea basins as indicated by sediment elemental proxies. Quaternary Science Reviews 107, 2546.CrossRefGoogle Scholar
Mauz, B., Bungenstock, F., 2007. How to reconstruct trends of late Holocene relative sea level: a new approach using tidal flat clastic sediments and optical dating. Marine Geology 237, 225–37.CrossRefGoogle Scholar
Mecall, R.J.S., 1952. Reconnaissance of Bubiyan Island. Kuwait Oil Company, Geological Division (unpublished report).Google Scholar
Milano, S., Nehrke, G., 2018. Microstructures in relation to temperature-induced aragonite-to-calcite transformation in the marine gastropod Phorcus turbinatus. PLoS ONE 13(10): e0204577. https://doi.org/10.1371/journal.pone.0204577.CrossRefGoogle ScholarPubMed
Milli, S., Forti, L., 2019. Geology and palaeoenvironment of Nasiriyah area/southern Mesopotamia. In: Romano, L., D'Agostino, F. (Eds.), Abu Tbeirah Excavations I. Area 1 Last Phase and Building A—Phase 1. Sapienza Università Editrice, Roma.Google Scholar
Moberg, A., Sonechkin, D.M., Holmgren, K., Datsenko, N.M., Karlen, W., 2005. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433, 613617.Google ScholarPubMed
Muttashar, W.R., 2010. Some geotechnical soil properties of western bank of Khor Al-Zubair channel coast at Khor Al-Zubair Port location, southern Basrah, Iraq. Mesopotamian Journal of Marine Science 25, 124133.Google Scholar
National Oceanic and Atmospheric Administration (NOAA), 2019. Beach Nourishment: A Guide for Local Government Officials: Formation and Evolution http://www.csc.noaa.gov/beachnourishment/html/geo/barrier.htmGoogle Scholar
Neelamani, S., Al-Shatti, F., 2014. The expected sea-level rise scenarios and its impacts on the Kuwaiti coast and estuarine wetlands. International Journal of Ecology & Development 29, 3343.Google Scholar
Neukom, R., Steiger, N., Gómez-Navarro, J.J., Wang, J., Werner, J.P., 2019. No evidence for globally coherent warm and cold periods over the pre-industrial Common Era. Nature 571, 550554.CrossRefGoogle Scholar
Otvos, E.G., 2012. Coastal barriers—Nomenclature, processes, and classification issues. Geomorphology 139–140, 3952.Google Scholar
PAGES 2k Consortium, 2013. Continental-scale temperature variability during the past two millennia. Nature Geoscience 6, 339346.CrossRefGoogle Scholar
Parker, A.G., Armitage, S.J., Engel, M., Morley, M.W., Parton, A., Preston, G.W., Russ, H., Drechsler, P., 2020. Palaeoenvironmental and sea level changes during the early to mid-Holocene in eastern Saudi Arabia and their implications for Neolithic populations. Quaternary Science Reviews 249, 106618. https://doi.org/10.1016/j.quascirev.2020.106618.CrossRefGoogle Scholar
Pascucci, V., De Falcob, G., Del Vaisc, C., Sannad, I., Melise, R.T., Andreuccie, S., 2018. Climate changes and human impact on the Mistras coastal barrier system (W Sardinia, Italy). Marine Geology 395, 271284.CrossRefGoogle Scholar
Pascucci, V., Frulio, G., Andreucci, S., 2019. New estimation of the post Little Ice Age relative sea level rise. Geosciences 9, 348. https://doi.org/10.3390/geosciences9080348.CrossRefGoogle Scholar
Patterson, R.J., Kinsman, D.J.J., 1977. Marine and continental ground-water source in a Persian Gulf coastal sabkha in reefs and related carbonates-ecology and sedimentology. AAPG Bulletin 4, 381397.Google Scholar
Paul, A., Lokier, S.W., 2017. Holocene marine hardground formation in the Arabian Gulf: shoreline stabilisation, sea level and early diagenesis in the coastal sabkha of Abu Dhabi. Sedimentary Geology 352, 113.CrossRefGoogle Scholar
Pedersen, D., Deigaard, R., Fredsøe, J., 2008. Modelling the morphology of sandy spits. In: Coastal Engineering 55, 671–684.CrossRefGoogle Scholar
Plaziat, J-C, Younis, W.R., 2005. The modern environments of molluscs in southern Mesopotamia, Iraq: a guide to paleogeographical reconstructions of Quaternary fluvial, palustrine, and marine deposits. Carnets de Géologie/Notebooks on Geology, Brest, Article 2005/01. https://doi.org/10.4267/2042/1453.CrossRefGoogle Scholar
Pourkerman, N., Marriner, N., Morhange, C., Djamali, M., Lahijani, H., Amjadi, S., Vacchi, M., et al. , 2021. Late Holocene relative sea-level fluctuations and crustal mobility at Bataneh (Najirum) archaeological site, Persian Gulf, Iran. Geoarchaeology 36, 740754.CrossRefGoogle Scholar
Pournelle, J.R., 2003. Marshlands of Cities: Deltaic Landscapes and the Evolution of Early Mesopotamian Civilization. Ph.D. dissertation, University of California, San Diego, 315 pp.Google Scholar
Pournelle, J.R., 2012. Physical geography. In: Crawford, H. (Ed.), The Sumerian World. Routledge Companion to Museum Ethics. Routledge, Oxford, UK, pp. 1332.Google Scholar
Rakha, K., Al-Salem, K., Neelami, S., 2007. Hydrodynamic atlas for the Arabian Gulf. Journal of Coastal Research, Special Issue 50, 550554.Google Scholar
Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Ramsey, C.B., Butzi, M., et al. , 2020. The Intcal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kbp). Radiocarbon 62, 725757.CrossRefGoogle Scholar
Reinink-Smith, L.M., 2015. AMS-dated mollusks in beach ridges and berms document Holocene sea-level and coastal changes in northeastern Kuwait Bay. Quaternary Research 84, 200213.CrossRefGoogle Scholar
Renssen, H., Goosse, H., Muscheler, R., 2006. Coupled climate model simulation of Holocene cooling events: oceanic feedback amplifies solar forcing. Climate of the Past 2, 7990.CrossRefGoogle Scholar
Reynolds, M.R., 1993. Physical oceanography of the Persian Gulf, Strait of Hormuz, and the Gulf of Oman—Results from the Mt. Mitchell Expedition. Marine Pollution Bulletin 27, 3559.CrossRefGoogle Scholar
Rivers, J., Engel, M., Dalrymple, R., Yousif, R., Strohmenger, C.J., Al-Shaikh, I., 2020. Are carbonate barrier islands mobile? Insights from a mid- to late-Holocene system, Al Ruwais, northern Qatar. Sedimentology 67, 534558.CrossRefGoogle Scholar
Rohling, E.J., Grant, K., Bolshaw, M., Roberts, A.P., Siddall, M., Hemleben, C., Kucera, M., 2009. Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nature Geoscience 2, 500504.CrossRefGoogle Scholar
Rosenthal, Y., Linsley, B.K., Oppo, D.W., 2013. Pacific Ocean heat content during the past 10,000 years. Science 342, 617621.Google ScholarPubMed
Safarkhani, E., Yarahmadi, D., Hamzeh, M.A., Sharafi, S., 2021. Reconstruction of the Persian Gulf SST variability over the last five millennia. Quaternary International. https://doi.org/10.1016/j.quaint.2021.01.028Google Scholar
Sanlaville, P., 1989. Considérations sur l'evolution de la Basse Mésopotamie au cours des derniers millénaires. Paléorient 15, 527.CrossRefGoogle Scholar
Sanlaville, P., 2002. The deltaic complex of the lower Mesopotamian plain and its evolution through millennia. In: Clark, P. (Ed.), The Iraqi Marshlands: A Human and Environmental Study. Politico's, London, pp. 133150.Google Scholar
Sanlaville, P., Dalongeville, R., 2005. L'évolution des espaces littoraux du Golfe Persiqueet du Golfe d'Oman depuis la Phase finale de la transgression post-glaciaire. Paléorient 31, 926.CrossRefGoogle Scholar
Sanlaville, P., Prieur, A., 2005. Asia, Middle East, coastal ecology and geomorphology. In: Schwartz, M. (Ed.), Encyclopedia of Coastal Science. Springer, Dordrecht, The Netherlands, pp. 7183Google Scholar
Scheffers, A., Engel, M., Scheffers, S., Squire, P., Kelletat, D., 2011. Beach ridge systems—archives for Holocene coastal events? Progress in Physical Geography 36, 537.CrossRefGoogle Scholar
Simpson, S.J., 2003. From Mesopotamia to Merv: reconstructing patterns of consumption in Sasanian households. In: Potts, T., Roaf, M., Stein, D. (Eds.), Culture Through Objects: Ancient Near Eastern Studies in Honour of P.R.S. Moorey. Griffith Institute, Oxford, pp. 347375.Google Scholar
Sissakian, V.K., Shihab, A.T., Al-Ansari, N., Knutsson, S., 2014. Al-Batin alluvial fan, southern Iraq. Engineering 6, 699711.CrossRefGoogle Scholar
Sissakian, V.K., Ahad, A.D.A., Al-Ansari, N., Knutsson, S., 2018. Neotectonic activity from the upper reaches of the Arabian Gulf and possibilities of new oil fields. Geotectonics 52, 240250.CrossRefGoogle Scholar
Sivan, D., Lambeck, K., Toueg, R., Raban, A., Porath, Y., Shirman, B., 2004. Ancient coastal wells of Caesarea Maritima, Israel, an indicator for relative sea level changes during the last 2000 years. Earth and Planetary Science Letters 222, 315330.CrossRefGoogle Scholar
Southon, J., Kashgarian, M., Fontugne, M., Metivier, B., and Yim, W. W-S., 2002. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44, 167180.CrossRefGoogle Scholar
Stanley, D.J., Warne, A.G., 1994. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise. Science 265, 228231.CrossRefGoogle ScholarPubMed
Stevens, T., Jestico, M.J., Evans, G., Kirkham, A., 2014. Eustatic control of late Quaternary sea-level change in the Arabian/Persian Gulf. Quaternary Research 82, 175184.CrossRefGoogle Scholar
Swift, S.A., Bower, A.S., 2003. Formation and circulation of dense water in the Persian/Arabian Gulf. Journal of Geophysical Research 108(C1), 3004. https://doi.org/10.1029/2002JC001360.CrossRefGoogle Scholar
Tamura, T., 2012. Beach ridges and prograded beach deposits as palaeoenvironment records. Earth-Science Reviews 114, 279297.CrossRefGoogle Scholar
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Zagorodnov, V.S., Howat, I.M., Mikhalenko, V.N., Lin, P.N., 2013. Annually resolved ice core records of tropical climate variability over the past w1800 years. Science 340, 945950.CrossRefGoogle Scholar
Tillmann, T., Wunderlich, J., 2013. Barrier rollover and spit accretion due to the combined action of storm surge induced washover events and progradation: insights from ground penetrating radar surveys and sedimentological data. In: Conley, D., Masselink, G., Russell, P., O'Hare, T. (Eds.), Proceedings from the International Coastal Symposium (ICS) 2013 (Plymouth, United Kingdom). Journal of Coastal Research, Special Issue 65, 600–605.CrossRefGoogle Scholar
Trincardi, F., Cattaneo, A., Correggiari, A., 2004. Mediterranean prodelta systems. Oceanography 17 (4), 3445.CrossRefGoogle Scholar
Uchupi, E., Swift, S., Ross, D.A., 1996. Gas venting and late Quaternary sedimentation in the Persian (Arabian) Gulf. Marine Geology 129, 237269.CrossRefGoogle Scholar
Uchupi, E., Swift, S., Ross, D.A., 1999. Late Quaternary stratigraphy, paleoclimate and neotectonism of the Persian (Arabian) Gulf region. Marine Geology 160, 123.CrossRefGoogle Scholar
van Heteren, S., Oost, A.P., van der Spek, A.J.F., Elias, E.P.L., 2006. Island-terminus evolution related to changing ebb-tidal-delta configuration. Marine Geology 235, 1933.CrossRefGoogle Scholar
Vaughan, G.O., Al-Mansoori, N., Burt, J.A., 2019. Chapter 1—The Arabian Gulf. In: Sheppard, C. (Ed.), World Seas: An Environmental Evaluation, 2nd Ed. Volume II: The Indian Ocean to the Pacific. Academic Press/Elsevier, The Netherlands, pp. 123. https://doi.org/10.1016/B978-0-08-100853-9.00001-4.Google Scholar
Vermeer, M., Rahmstorf, S., 2009. Global sea level linked to global temperature. Proceedings of the National Academy of Sciences of the United States of America 106 (51), 2152721532.CrossRefGoogle ScholarPubMed
Vespremeanu-Stroe, A., Preoteasa, L., 2015. Morphology and the cyclic evolution of Danube Delta spits. In: Randazzo, G., Jackson, D., Cooper, A. (Eds.), Sand and Gravel Spits. Coastal Research Library 12, 327–339. Springer, Cham.CrossRefGoogle Scholar
Vita-Finzi, C., 2001. Neotectonics of the Arabian plate margins. Journal of Structural Geology 23, 521530.CrossRefGoogle Scholar
Vos, P.C., Kiden, P., 2005. De landschapsvorming tijdens de Steentijd. In: Deeben, J., Drenth, E., van Oorsouw, M.-F., Verhart, L. (Eds.), De Steentijd van Nederland. Archeologie 11/12, 7–37.Google Scholar
Wassenburg, J.A., Immenhauser, A., Richter, D.K., Niedermayr, A., Riechelmann, S., Fietzke, D., Scholz, D., et al. , 2013. Moroccan speleothem and tree ring records suggest a variable positive state of the North Atlantic oscillation during the Medieval Warm Period. Earth and Planetary Science Letters 375, 291302.CrossRefGoogle Scholar
Walker, M., Head, M.J., Lowe, J., Berkelhammer, M., Björck, S., Cheng, H., Cwynar, L.C., et al. , 2019. Subdividing the Holocene Series/Epoch: formalization of stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary stratotypes. Journal Of Quaternary Science 34, 173186.CrossRefGoogle Scholar
Williams, A.H., Walkden, G.M., 2002. Late Quaternary highstand deposits of the southern Arabian Gulf: a record of sea-level and climate change. In: Clift, P.D., Kroon, D., Gaedicke, C., Craig, J. (Eds.), The Tectonic and Climatic Evolution of the Arabian Sea Region. Geological Society of London, Geological Society Special Publication 195, 371–386.Google Scholar
Wilson, A.T., 1925. The delta of the Shatt al 'Arab and proposals for dredging the bar. The Geographical Journal 65, 225239.CrossRefGoogle Scholar
Wood, W.W., Bailey, R.M., Hampton, B.A., Kraemer, T.F., Lu, Z., Clark, D.W., James, R.H.R., Al Ramadan, K., 2012. Rapid late Pleistocene/Holocene uplift and coastal evolution of the southern Arabian (Persian) Gulf. Quaternary Research 77, 215220.Google Scholar
Wright, E., Kruse, D., Forman, S.L., Harris, M.S., 2018. Millennial scale development of a southeastern United States spit. Journal of Coastal Research 34, 255271.CrossRefGoogle Scholar
Yaseen, B.R., 1998. Locational Relation Between Surface and Agricultural Levels in Basra. Ph.D. Dissertation. Basra, Iraq, University of Basra. [in Arabic]Google Scholar
Zarins, J., 1992. The early settlement of southern Mesopotamia: a review of recent historical, geological, and archaeological research. Journal of the American Oriental Society 112, 5577.CrossRefGoogle Scholar
Supplementary material: File

Reinink-Smith and Carter supplementary material

Reinink-Smith and Carter supplementary material 1

Download Reinink-Smith and Carter supplementary material(File)
File 28.9 KB
Supplementary material: PDF

Reinink-Smith and Carter supplementary material

Reinink-Smith and Carter supplementary material 2

Download Reinink-Smith and Carter supplementary material(PDF)
PDF 1.9 MB
Supplementary material: PDF

Reinink-Smith and Carter supplementary material

Reinink-Smith and Carter supplementary material 3

Download Reinink-Smith and Carter supplementary material(PDF)
PDF 610.2 KB
Supplementary material: PDF

Reinink-Smith and Carter supplementary material

Reinink-Smith and Carter supplementary material 4

Download Reinink-Smith and Carter supplementary material(PDF)
PDF 1.7 MB