
Realizing Quality Attributes of Service-based 

Business Processes: A Model-driven Approach 
 

Fabrício Teles, Nelson Rosa 

Centro de Informática 

Universidade Federal de Pernambuco 

Recife, Brazil 

{fst, nsr}@cin.ufpe.br 

Fernando Lins 

Departamento de Estatística e Informática 

Universidade Federal Rural de Pernambuco 

Recife, Brazil 

fernando.aires@deinfo.ufrpe.br

 

 
Abstract— The agnostic, integrated and automated treatment 

of non-functional (quality) attributes into a business process 

realization is still a challenge. While functional attributes are 

already addressed by existing approaches, non-functional ones 

are commonly neglected. A systematic way of dealing with such 

attributes from the most abstract business level to their technical 

realization through service compositions is a complex task. In 

this context, this paper presents a model-driven approach, in 

which quality attributes are transformed until their technical 

enforcement at execution level. Additionally, two key 

characteristics of our approach are the agnostic treatment of the 

quality attribute being considered and its projection on 

standards such as URN (User Requirement Notation), UML for 

QoS and WS-Policy. To illustrate the proposed approach, an 

illustrative scenario of Supply Chain Management (SCM) is 

used. 

Keywords— Quality Attributes, Model Driven Engineering, 

Service Oriented Computing, Business Process Management 

I. INTRODUCTION 

Business Process Management (BPM) lifecycle [24] 
consists of four main stages, namely process design, system 
configuration, process enactment and diagnosis. To address 
quality attributes since the early stages (process design) until 
the final realization (process enactment) is a complex task. A 
possible strategy to address quality attributes in the whole 
BPM lifecycle is to define them separately from the functional 
definition, i.e., by defining catalogues of quality characteristics 
using well-known standards for quality definition (e.g., 
GRL/URN [8], i* [32], NFR framework [2]), and linking them 
to the business processes in a non-invasive way, i.e., without 
defining new language features and simply reusing existing 
ones, such as the so-called ‘text annotation’ standard artifact of 
BPMN. 

Quality characteristics of business processes (e.g., time and 
resource consumption, auditability, scalability, security) are 
arguably difficult to capture in business process modeling, 
since the focus of this early stage is the discovering of 
functional characteristics [22]. Moreover, existing standards 
for business process modeling (e.g., BPMN) do not readily 
support the expression of quality characteristics of business. To 
extend their notations, however, may not bring good results, 
since desirable requirements such as readability, extensibility, 
standardization and tool support may be lost after that.  

Looking at the stages of the BPM lifecycle (e.g., system 
configuration, process enactment), it is possible to observe that 
there is a relevant support for the treatment of quality 
attributes. Specifically in the context of SOC infrastructures, 
there are several works that consider quality characteristics of 
services [6][26]. Additionally, OASIS [14] gives a 
classification of different types of quality factors of services. 
For the enforcement of quality attributes at execution time 
there is the support of well-known specifications, such as WS-
Policy [26] and WS-SecurityPolicy [15]. Additionally, to 
support the diagnosis stage, dynamic validation of quality 
attributes with Complex Event Processing (CEP) [12] solutions 
have also been proposed [1]. 

Despite the (independent) support for defining quality 
attributes at various stages of BPM lifecycle, it is worth 
observing the lack of systematic approaches for a (integrated) 
treatment of quality attributes at these various stages. For 
instance, nowadays it is difficult to translate an abstract quality 
attribute of the business process definition (e.g., quality 
attributes in GRL) into its respective operational definition 
(e.g., QoS policies in WS-Policy), in such way that we can 
ensure the abstract quality definition is being fully considered 
at execution time. 

This paper presents the “MOdel-driven QUality Attributes 
for business processes” (MOQUA), which aims to provide a 
systematic way of treating with quality attributes through the 
whole BPM lifecycle. MOQUA proposes a forward model-
driven engineering process in which abstract business 
processes models and their quality attributes are sequentially 
refined through model transformations until production of 
executable business processes.  

As unique contributions, this paper proposes (1) an 
integrated service-oriented and model-driven forward 
engineering process for the treatment of quality attributes of 
business processes, (2) a model transformation chain (CIM to 
PIM and PIM to PSM) for the realization of these quality 
attributes, (3) an integrated use of standards such as User 
Requirement Notation (URN) [8], UML for modeling QoS and 
Fault Tolerance [18], and WS-Policy [26]. 

This paper is organized as follows. Next section presents 
the envisioned MOQUA solution, detailing the model-driven 
approach used to realize quality attributes. In order to illustrate 



this approach, Section III presents a use case in the context of 
the Supply Chain Management (SCM) application [30]. 
Section IV presents related works and shows the main 
differences between the existing approaches and the one 
presented in this paper. Finally, in Section V some conclusions 
and future work are presented. 

II. MOQUA 

MOQUA (MOdel-driven QUality Attributes for business 
processes) defines a forward model-driven engineering process 
in which abstract business process models along with their 
quality attributes are sequentially refined through model 
transformation until the production of executable business 
processes. By using a Model-Driven Engineering (MDE) 
approach, we aim to automate the translation from abstract to 
concrete business processes. 

Fig. 1 shows the relationship between MOQUA and BPM, 
using the BPM lifecycle [24]. The BPM lifecycle describes the 
various phases to operationalize business processes. In the 
design phase, processes are (re)designed. In the configuration 
phase, designs are implemented by configuring a process-
aware software system. After configuration, the enactment 
phase begins when the operational business processes are 
executed using the system configured. In the diagnosis phase, 
the operational processes are analyzed to identify problems and 
opportunities for improvement [24]. 

Based on the BPM lifecycle, this paper proposes a model-
driven approach to support the process design, system 
configuration and process enactment stages. Fig. 1 illustrates 
an overview of the proposed approach, highlighting the model-
driven viewpoints (CIM/PIM/PSM), and their relation with the 
BPM lifecycle phases (process design with CIM, system 
configuration with PIM/PSM and process enactment with 
Code). Additionally, it is presented the forward engineering 
process, in which abstract business models (CIM = [Business + 
Quality] Conceptual Model) are refined into platform 
independent models (PIM = [Business + Quality] SW Design 
Model) that are finally refined into executable business models 
(PSM = [Business + Quality] SW Operational Model). Central 
in this approach are the model to model (M2M) and model to 
text (M2T) transformations responsible for the vertical model 
refinement, and the weaving models responsible for the 
horizontal and fine-grained correspondence between model 
elements from the models of the same viewpoint. 

 

Fig. 1. BPM lifecycle and MOQUA conceptual solution 

A. Methodological and technical decisions 

This section puts forward the methodological and 
technological decisions that drive MOQUA technical design 
and elaborates on the rationale behind each decision. 

Adherence to MDA principles: Our solution adheres to 
the four principles that underlie the OMG’s view of MDA [13]: 
(1) Models should be expressed in a well-formed notation that 
forms the cornerstone for understanding the software system. 
On this point, the semantic of our models is based on 
metamodels. (2) The building of the software system can be 
organized around a set of models by applying sequential model 
refinement, organized into an architectural style of layers and 
transformations. We provide M2M transformations to support 
any change between models while M2T transformation are 
associated with (automated) code production. (3) A formal 
underpinning for describing models in a set of metamodels 
facilitates meaningful integration and transformation among 
models, and is the basis for automation through software. Our 
metamodels are compliant with the OMG's MetaObject 
Facility (MOF). (4) The acceptance and adoption of a model-
driven approach require industry standards to provide openness 
to consumers, and foster competition among vendors. Our 
solution is based on the use of well-founded business process 
and quality standards. 

Separation of concerns: We propose to treat the quality 
attributes of the business process separately from its functional 
definition. For this, catalogues of quality attributes must be 
defined, and linked to the business process in a non-invasive 
way, i.e., by using (weaving) annotations in the business 
process to define the semantic relation of the business process 
elements and the quality attributes definition. 

Agnostic approach: We propose to capture the non-
functional (quality) intentions at business level as they apply to 
the business but avoid addressing specific software attributes. 
The quality intentions are identified in high-level business 
modeling, as first-class entities in the software development. 
The idea is to deliver a software solution centered from the 
beginning on the business process and also the quality 
attributes that are really significant to the business needs. 
Although the agnostic treatment, it is worth observing that a 
considerable number of quality attributes may appear in the 
context of business processes that can be grouped in broad 
dimensions, such as suitability, accuracy, security, reliability, 
understandability, learnability, time efficiency and resource 
utilization. Some of them can be accomplished by means of 
software solutions, but others do not. We are interested in the 
ones realizable by software.  

Extensive use of standards: Besides the MDA’s 
orientation to use standards, we highlight additional benefits 
related to the using of standards: (1) to promote consistency 
and communication through common languages and notations 
(e.g., BPMN, GRL/URN), (2) to support reusability and 
extensibility by designing the software solution using Domain 
Specific Languages (DSLs) based on UML profiles (e.g., 
SoaML, QoS&FT), and (3) fostering acceptance and adoption 
by using technologies with broad tool support such as WS-
BPEL and WS-Policy. 



In the following, we focus on the standards that were 
chosen to realize each model-driven viewpoint 
(CIM/PIM/PSM) of MOQUA conceptual solution (Fig. 1). At 
the CIM viewpoint, the Business Conceptual Model is 
expressed in BPMN [16], and the Quality Conceptual Model is 
expressed in the GRL notation of URN [8]. These models 
serve as the input for the forward MDE process. 

Besides the many benefits of using a standard modeling 
notation, the use of BPMN is justified as follows: (1) BPMN is 
readily understood by a considerable number of business users 
- from business analysts to technical developers; (2) BPMN has 
a standardized metamodel and serialization format, which 
allows users to exchange business process models in several 
ways; and (3) BPMN provides mapping mechanisms to view 
business processes models as executable processes described in 
business process execution languages, such as WS-BPEL. 

Additionally, at the CIM viewpoint, we use GRL to 
represent quality attributes of business processes. GRL 
supports a goal-oriented modeling and reasoning about 
requirements, especially on quality attributes [8]. Since BPMN 
does not provide direct modeling features to analyze process 
alternatives in terms of high-level quality attributes or business 
(soft) goals, a goal-oriented modeling language serves as a 
good alternative to meet those needs [31]. In the context of 
business process modeling, a GRL goal model captures 
business goals, alternative means of achieving goals, and the 
rationale for goals and alternatives, along with an explanation 
of why an alternative is preferable or not. 

GRL is based on two mainstream goal-oriented modeling 
languages: i*[32] and the NFR Framework [2], having relevant 
benefits over them: (1) GRL supports representation of 
numeric-based and qualitative-based quality attributes, (2) it 
provides additional first-class elements such as strategies (for 
analysing GRL models), metadata (for extensibility purposes), 
and (3) it provides a clear separation of model elements from 
their graphical representation, so that it enables a scalable and 
consistent representation of multiple views of the same goal 
model.  

At the PIM viewpoint, the Software Design Model is 
expressed using the metamodel of the Service oriented 
architecture Modeling Language (SoaML) [17], and the 
Quality Design Model is expressed using the metamodel of the 
UML for modeling Quality of Service and Fault Tolerance 
(QoS&FT) [18]. 

SoaML provides a metamodel and a UML profile for 
specifying and designing services within a service-oriented 
architecture. SoaML is founded on the separation of logical 
implementation of a service from its possible physical 
realizations on various platforms. Additionally, SoaML is 
intended to work in synergy with business level languages like 
BPMN. Hence, these characteristics are aligned to our 
approach. Also, model-driven mappings from BPMN to 
SoaML are nowadays an active research topic [3][11][21] and 
we take advantage of these mappings.  

Additionally, at the PIM viewpoint, we use QoS&FT to 
represent quality attributes at the software design level. 
QoS&FT provides a metamodel and a UML profile for the 

description of quality of service (QoS) and fault-tolerance (FT) 
properties in the context of a system, service or computational 
resource. As major benefits of adopting QoS&FT, we have: (1) 
the ability to define a broad range of QoS attributes, (2) a QoS 
framework having a metamodeling foundation that provides a 
hierarchy of QoS meta-classes with well-formed verification 
rules and semantics, and (3) a general QoS catalogue that 
includes a set of general QoS characteristics and categories that 
can be reused to define specialized QoS attributes.  

Finally, at the PSM viewpoint, the Business Operational 
Model is expressed in some executable/interpretable language 
(e.g., WS-BPEL, jPDL) to represent the executable business 
process. Similarly, the Quality Operational Model is expressed 
in some policy definition language (e.g., WS-Policy, XACML) 
to enforce quality characteristics (e.g., security, reliable 
messaging, or access control) at execution time. In this paper 
we propose to realize the PSM using WS-BPEL and WS-
Policy, since they provide integration in synergy to 
operationalize the business processes and their quality 
attributes. But it is worth observing that the MOQUA 
conceptual solution (Fig. 1) is not limited to those 
languages/technologies, since the PSM viewpoint could be 
realized using distinct business execution and quality 
enforcement languages. 

B. Architecture 

This section presents an overview of the model-driven 
architecture to support the definition and handling of the 
models and transformations proposed in the conceptual 
solution (Fig. 1). Fig. 2 depicts the proposed architecture 
through three layers. First, the Modeling Layer (ML) represents 
how business processes (functional) and quality attributes 
(non-functional) can be modeled. Second, the Model 
Transformation Layer (MTL) details the model transformation 
chain to transform the business process and the quality 
attributes into executable artifacts. Finally, the Operational 
Layer (OL) represents how the business process is executed 
and how the quality attributes are enforced at execution time. 

 

Fig. 2. MOQUA Architecture: modeling, model-transformation and 
execution 

At the Modeling Layer (ML) the business process definition 
(BPMN artifact) and the quality attributes definition (GRL 
artifact) are linked by means of an annotation weaving artifact 
(Annotation artifact). This weaving artifact represents how the 
non-functional (quality) assessments relate to the process 



elements, i.e., which specific activities, data objects, resources 
or any other element involved in the process are traced to the 
softgoals and descriptions of the quality attributes definition. 
To define the BPMN artifact we use the Eclipse BPMN2 
Modeler tool and to define the GRL artifact the choice is the 
Eclipse jUCMNav tool. Finally, the Annotation artifact is 
based on the weaving modeling approach of the AMW 
(ATLAS Model Weaver) tool. 

The Model Transformation Layer (MTL) in centered in the 
transformation chains to refine the models projected from the 
ML. This layer is structured through two perspectives 
(Business and Quality) in accordance with the conceptual 
solution previously defined (Fig. 1). MTL is also subdivided in 
three horizontal sub-layers (M1, M2 and M3). M1 defines the 
set of models of each perspective (e.g., MBPMN stands for the 
BPMN model, MGRL stands for the GRL model). Similarly, 
M2 presents the definition of the metamodels (e.g., MMBPMN 
stands for the BPMN metamodel, MMURN stands for the URN 
model), and finally M3 represents the central meta-metamodel 
that is based on MOF. 

The Operational Layer (OL) comprises a Runtime Engine 
to support the execution of the business process (WS-BEPL 
Code) and the enforcement of the quality attributes (WS-Policy 
Code). The combined use of the Apache ODE engine (for 
business process execution) with the Apache Rampart module 
(for the quality attributes enforcement, specifically security) is 
an example to the Runtime Engine. The eclipse Business 
Process Management (eBPM) project is also a valid example 
and is our choice, since it aims to provide not only runtime 
support but a complete BPM solution. 

C. Models and Transformations 

Central in each perspective, the Model Transformation 
Layer (MTL) is the focus of this section, since the Modeling 
Layer (ML) and Operational Layer (OL) adopt existing tools, 
as already mentioned. MTL is defined atop of the Eclipse 
Modeling Framework (EMF), a metamodeling framework that 
provides integrated facilities to define, edit and handle models 
and metamodels. EMF has a great potential in the 
metamodeling field and has been broadly used to define new 
metamodeling tools during the last years.  

The metamodels are defined in terms of Ecore meta-
metamodel, the metamodeling language of EMF (Ecore 
provides an implementation for the essential part of the OMG’s 
MOF standard). From an Ecore metamodel, it is possible to 
generate a set of plug-ins that bundle Java programming code 
to provide runtime support for graphically editing, 
manipulating, reading, and serializing models conforming to 
such metamodel. In order to automate the transformations, we 
use ATLAS Transformation Language (ATL) [9]. ATL has 
been widely accepted as de facto standard for model to model 
transformation development [25]. 

Fig. 2 (left side) depicts that in the business perspective, the 
MBPMN conceptual model (conforms to MMBPMN) must be 
translated into an MSoaML design model (conforms to 
MMSoaML), and finally this intermediate model must be 
translated into a MWSBPEL operational model (conforms to 
MMWSBPEL). To realize these two sequential translations, we 

defined two ATL transformations, namely MBPMN2MSoaML 
(MT1) and MSoaML2MWSBPEL (MT2). 

MT1 was designed in accordance with the BPMN-to-
SoaML transformation illustrated in [21], in which the BPMN 
source model comprises three different views: the structural, 
behavioral and data view, so that the transformation contains 
three different transformation types to map each view into the 
target model. The mapping results are consolidated in one 
resulting SoaML target model. The SoaML model also 
contains 3 views: the structural model can be seen as a SoaML 
participant diagram, behavioral model as the UML activity 
diagram and the data model as UML class diagram. The 
transformation of BPMN structural view into SoaML 
participant model is detailed in [3] and is also implemented in 
the SHAPE project (http://www.shape-project.eu/), the 
transformation of the BPMN behavioral view into the UML 
activity model is quite simple and is described in [11], and the 
transformation of BPMN data view into UML class model is 
trivial [21]. So that, the detailed mappings of these 
transformations is anything but new, and therefore is not 
included here. Additionally, MT2 is performed by applying 
mapping rules adapted from [7] that derive data types (XSD), 
service interfaces (WSDL) and executable business logic (WS-
BPEL) from UML models. 

Fig. 2 (right side) depicts that in the quality perspective the 
quality attributes model expressed in GRL must be translated 
into a QoS design model. Next, this intermediate model is 
translated into a concrete policy description model expressed in 
some policy definition language, such as WS-Policy. This final 
model represents how the quality attributes can be enforced at 
execution time. To realize these model translations we defined 
two sequential transformations: MGRL2MQoS (MT3) and 
MQoS2MWSP (MT4). The following subsections will focus 
on the realization of MT3 and MT4. 

D. The MGRL2MQoS Model Transformation 

To illustrate MT3, we introduce a simplified security 
attribute called SimpleSecurity (Fig. 3). This high-level model 
represents a security attribute defined by means of signed and 
encrypted communication. It is an abstract view of protection 
policy assertions proposed in WS-Security Policy [15]. The 
SimpleSecurity GRL model is a graphical representation of the 
GRL model (conforms to URN metamodel). 

 

Fig. 3. SimpleSecurity GRL model (graphical notation) 

MT3 presents a basic transformation pattern in which a 
source tree-structure needs to be transformed into a target tree-
structure (see Fig. 4). This kind of transformation can be 
realized by a Depth First Traversal (DFS) algorithm, in which 
all nodes of the source tree are traversed, to generate the nodes 



of the target tree. Generalizing the tree-structures presented in 
Fig. 4, it was defined the five mapping rules (MR) to MT3: 

[MT3.MR1] The high-level node of the source tree 
(Intentional Element of Softgoal type) needs to be mapped into 
a high-level node of the target tree (QoS Context). 

Since a QoS Context allows describing the context of a 
quality expression by means of multiples QoS Characteristics 
and its constraints [18], this context can be defined (in an 
abstract way) through a high-level Softgoal, which in turn is 
defined by means of quantifiable Softgoals. For instance, the 
SimpleSecurity Softgoal can be understood as an abstract 
definition of a QoS Context that defines a Simple Security 
requirement. 

 

Fig. 4. Tree structure of the SimpleSecurity (GRL, QoS and WSP) models 

[MT3.MR2] The intermediate-level nodes of the source 
tree (Intentional Elements of Softgoal type) need to be mapped 
into the intermediate nodes of the target tree (QoS 
Characteristics), preserving the hierarchy of the nodes. 

The Softgoals that define the abstract context of a quality 
expression (also a Softgoal) have a direct correspondence with 
the QoS Characteristics that define a QoS Context. For 
instance, the Integrity Softgoal defines how to address the 
SimpleSecurity abstract context (Softgoal) and has a direct 
correspondence with the Integrity QoS Characteristic that 
defines the SimpleSecurity QoS Context. It is important to note 
that although not shown in the example in Fig. 4, an 
intermediate-level Softgoal can be defined as a hierarchy of 
others Softgoals. So, this hierarchy of Softgoals in the source 
model needs to be preserved as a hierarchy of QoS 
Characteristics in the target model. 

[MT3.MR3] The low-level nodes of the source tree 
(Intentional Element of Task type) need to be mapped to low-
level nodes of the target tree (QoS Dimension). 

QoS Characteristics can be quantified in different ways 
(e.g., absolute values, minimum and maximum values, 
statistical values) and a QoS Dimension represents a dimension 
that quantifies a QoS Characteristic. Since Tasks can be used to 
represent the way to address (or operationalize) Goals and 
Softgoals [8], Tasks assume the (abstract) role of quantifying 
Softgoals in GRL. For instance, Signed Parts and Encrypted 
Parts Tasks quantify the Integrity and Confidentiality 
Softgoals. 

The QoS metamodel defines metaclasses to represent the 
taxonomy of non-functional characteristics (e.g., 
QoSCharacteristic, QoSDimension) and also metaclasses to 
represent the values (instances) for these characteristics (e.g., 
QoSValue, QoSDimensionSlot). QoS Value represents an 

instance of QoS Characteristic and fixes it with specific values 
(QoS Dimension Slots). In this way, we have identified two 
additional mapping rules to map the values applied to the 
quality attributes: 

[MT3.MR4] The intermediate-level nodes of the source 
tree (Intentional Elements of Softgoal type) also need to be 
mapped to intermediate-level nodes of the target tree that 
represents the values of the QoS Characteristics (QoS Values), 
preserving the hierarchy of the nodes. 

MT3.MR4 is similar to MT3.MR2 since for each QoS 
Characteristic created from the MT3.MR2, it is also needed to 
create a QoS Value representing the value of this characteristic. 
For instance, Integrity Softgoal is mapped into Integrity QoS 
Characteristic (MT3.MR2) and also into a QoS Value that 
represents the Integrity QoS Characteristic quantification 
(MT3.MR4). 

[MT3.MR5] The metadata of low-level nodes of the source 
tree (Metadata of Intentional Element of Task type) needs to be 
mapped into the value of low-level nodes of the target tree 
(QoS Dimension Slot of QoS Dimension). 

QoS Dimension Slots represent possible values that a 
primitive QoS Dimension can assume, and a QoS Value sets a 
value for each QoS Dimension of the QoS Characteristic being 
quantified. Conversely, Tasks can be enriched with Metadata 
to set the value that a Task must respect. So, the Metadata 
value of a Task has a direct correspondence with the QoS 
Dimension Slot defined to a QoS Dimension. For instance, the 
SignedParts Task could assume three values (Header, Body or 
Attachments), but in the SimpleSecurity context it assumes the 
Body value. This specific value is mapped into a Body QoS 
Dimension Slot that defines the value of the SignedParts QoS 
Dimension. The defined mappings were realized by means of 
five ATL model transformation rules. The complete code of 
MT3 is available at [23]. 

E. The MQoS2MWSP Model Transformation 

The mapping rules that serve as basis to the MT4 have a 
similar, but more direct, transformation pattern than the one 
defined to the MT3. Similarly, there is a source tree structure to 
be transformed into a target tree structure (see Fig. 4) and an 
imperative DFS algorithm that is applied to traverse all nodes 
of the source tree, generating the nodes of the target tree. 
Generalizing the tree-structures presented in Fig. 4, we have 
defined the following mapping rules (MR) to MT4: 

[MT4.MR1] The high-level node of the source tree (QoS 
Context) needs to be mapped into the high-level node of the 
target tree (Policy Alternative). The Policy Document and the 
Policy that wraps the Policy Alternative also needs to be 
created. 

A Policy allows the technical specification of requirements 
over entities related to a Web service based system. A Policy is 
defined by a list of Policy Alternatives, which in turn defines a 
context of constraints on the use of a service. So, it is possible 
to understand a Policy Alternative as a technical realization of 
a QoS Context. Since a Policy Alternative is encapsulated by a 
Policy, within a Policy Document, these last two elements must 
also be created by the previous mapping rule. 



[MT4.MR2] The quantification of intermediate-level nodes 
of the source tree (QoS Value of QoS Characteristic) needs to 
be mapped to intermediate-nodes of the target tree (Policy 
Assertion). 

A Policy Alternative is a list of Policy Assertions, which in 
turn represents a requirement, capability, or other property 
applied to an entity (e.g., endpoint, message, resource, 
operation) with which a Policy can be linked. Since a QoS 
Characteristic and its specific QoS Value define a QoS 
requirement and its applied value, it is direct to map then to a 
Policy Assertion that defines the same requirement at technical 
level. 

[MT4.MR3] The quantification of low-level nodes of the 
source tree (QoS Dimension Slot of QoS Dimension) needs to 
be mapped into the low-level nodes of the target tree (nested 
Policy Assertion). The specific value associated with the 
quantification (Key/Value Tuple) also needs to be created. 

A Policy Assertion can be defined by nested Policy 
Assertions, and these inner assertions can assume specific 
values defined by means of a Key/Value Tuple. Since a QoS 
Dimension and its constrained QoS Dimension Slot are 
responsible to set a QoS Value, it is feasible to map then to a 
Policy Assertion and a Key/Value Tuple that defines the 
property (key) and its value applied to the assertion. The 
aforementioned mappings were realized by means of three 
ATL model transformation rules. The complete code of MT4 is 
available at [23]. 

III. USING MOQUA 

In order to showcase the proposed approach, this section 
presents an illustrative scenario named WS-I Supply Chain 
Management (SCM), initially introduced in [30] and then 
elaborated in [5]. WS-I SCM has been broadly used to validate 
Web Services related applications [4][10]. 

A. Scenario Description 

The functional specification of the WS-I SCM scenario is a 
typical business-to-consumer (B2C) one and consists of a 
Retailer (offers consumer electronic goods to consumers), a 
Warehouse (stocks items for the Retailer) and a Manufacturer 
(executes a production run to build finished goods). Fig. 5 
depicts the associated business process model (from the 
Retailer’s collaboration perspective). 

Considering this scenario, it is relevant to address security 
issues in order to guarantee that executions occur in a safe 
environment, which depends on services delivered over the 
Internet. According to [29], relevant security requirements 
appear when the Retailer submits an order to the Warehouse 
(integrity and authentication), when the Warehouse confirms 
the order to the Retailer (integrity and authentication), when 
the Warehouse requires a production to the Manufacturer 
(integrity, authentication and confidentiality) and when the 
Manufacturer sends the report to the Warehouse (integrity and 
authentication). 

 

Fig. 5. WS-I SCM: Business Process Model with Security intentions 

The non-functional intentions, which are represented by 
text annotations (metadata) in the business process, can be 
enriched with specific properties in order to better specify their 
enforcement [5][30]. For instance, the non-functional 
intentions Integrity, Confidentiality and Authentication have 
the properties Integrity Algorithm, Crypto Algorithm and 
Token Key Algorithm set to “SHA1”, “AES256” and 
“RSA15”, respectively. The hierarchical structure of the 
Security attribute that encompasses these non-functional 
intentions is represented by the GRL model depicted in Fig. 6. 
A general Softgoal (Security) is defined through other three 
Softgoals (Integrity, Confidentiality and Authentication). Each 
inner Softgoal is defined by means of valuable Tasks (e.g., 
Crypto Algorithm for Confidentiality, Token Type for 
Authentication). Finally, the Tasks are enriched with metadata 
values (e.g., SHA1 for Integrity Algorithm Task). 

 

Fig. 6. WS-I SCM: Security attribute in GRL graphical notation 

B. Practical Use 

Following MOQUA approach, the GRL graphical model of 
Fig. 6 was projected into a GRL model conforming to URN 
metamodel (Fig. 7a). This model represents the input for the 
forward model transformation chain defined for the quality 
attributes. After applying the MT3, we have as result a QoS 
model (Fig. 7b) that is represented by a Security QoS Context, 
based on three QoS Characteristics (Integrity, Confidentiality 
and Authentication), so that each one is quantified by a set of 
QoS Dimensions (e.g., Crypto Algorithm for Confidentiality). 



It is worth observing that each QoS Characteristic has a valid 
QoS Dimension Slot (e.g., AES256 for CryptoAlgorithm). 

The application of MT4 to the Security QoS model yields 
the Security policy model (Fig. 7c). This policy model is 
represented by a Security Policy that has one Policy 
Alternative defined by three Policy Assertions (Integrity, 
Confidentiality and Authentication). Each Assertion is 
quantified by a set of inner Assertions (e.g., Crypto Algorithm 
for Confidentiality Policy Assertion) with valid values (e.g., 
AES256 for the Crypto Algorithm Assertion). 

The generation of the WS-Policy document (code) is not 
directly performed from the WSP model by means of a M2T 
tool as might be expected. In contrast, the WSP model is first 
transformed into a XML model (according to a metamodel 
available in the Eclipse MoDisco tool suite) for which a XML 
extractor is available. This approach represents an alternative 
mechanism for the generation of (code) artifacts in MDE, in 
which a model is sequentially translated into different models, 
being the final model syntactically expressed (concrete syntax) 
in the desired target format [5]. 

Listing 1 is an excerpt of the projection (model to text) 
result of the Security policy model previously defined. It 
specifies security enforcement mechanisms (and related 
properties). Configurations are provided both for the 
authentication token type (lines 1-6) and for the cryptographic 
algorithm (lines 8-10), which are used, for example, in the 
communication process between Warehouse and Manufacturer. 
The complete code is ready to be deployed in a security 
enforcement module (e.g., Apache Rampart) of a services 
orchestration engine (e.g., Apache ODE). 

Listing 1.  Excerpt of WS-SecurityPolicy Document 

1 ... <sp:InitiatorToken> 

2  <wsp:Policy> 

3      <sp:X509Token sp:IncludeToken=" 

http://schemas.xmlsoap.org /ws/2005/07/             

 securitypolicy/IncludeToken/AlwaysToRecipient" /> 

4  ... 

5  </wsp:Policy> 

6    </sp:InitiatorToken> 

7 ...  

8    <sp:AlgorithmSuite> 

9  <wsp:Policy> <sp:AES256/> </wsp:Policy> 

10    </sp:AlgorithmSuite> ... 
 

IV. RELATED WORK 

Existing approaches applying model-driven development to 
realize business processes and their quality attributes have 
already been proposed. However, most of them do not support 
quality attributes (in a structured way) since abstract business 
level (CIM level) or do not provide a clear way to derive final 
artifacts to enforce the quality attributes at execution level. 
Some of these approaches are described as follows. 

Ortiz and Hernandez [19][20] propose the use of model-
driven development and aspect-oriented modeling for treating 
with extra-functional concerns of Web services. However, 
unlike our approach, Ortiz's proposal starts from the PIM-level, 
using the OASIS SCA (Service Component Architecture) 
specification and a UML profile for modeling services with 
extra-functional aspects. The UML profile is used to define the 
PIM, from which a specific service model (based on a JAX-
RPC), and three additional specific models (an aspect-oriented 
one, a policy-based one and a soap tag-based one) are 
generated. Finally, code skeletons are generated from the 
specific models by applying additional transformation rules. 

Wada et al. [27] use a UML profile (UP-SNFR) to define 
non-functional requirements inside UML models for SOA. 
This profile models security in a low level, defining technical 
security properties (e.g., algorithms, tokens, timeout) of the 
system. In Wada et al. [28] the original approach is extended, 
by now starting from a BPMN model (functional) and a 
Feature model (non-functional) that are weaved to generate the 
UP-SNFR model. Although defining non-functional properties 
early, the business and design models share the same 
abstraction level to define the non-functional aspects. Our 
approach, however, proposes goal-oriented modeling at 
business level to represent non-functional intentions of 
business processes. The goal is to provide an easy and 
understandable way to represent non-functional expertise at 
business level. 

Gallino [5] proposes a model-driven approach for the 
development of a service-oriented solution that respects non-
functional aspects. The proposal provides a model-driven 
process in which non-functional intentions are first transformed 

 

Fig. 7. WS-I SCM: Model Transformation Chain for Security attribute 

 



into a QoS design model (PIM) and finally into a policy model 
(PSM). The use of well-known standards such as BPMN, 
QoS&FT and WS-Policy is one of its strengths, which is a 
point of convergence with us. A main difference to us is that 
Gallino's solution does not provide the means to model non-
functional properties at CIM level, since the non-functional 
intentions in the BPMN models are directed mapped into QoS-
design models (PIM) conform to the QoS&FT metamodel. 

V. CONCLUSION AND NEXT STEPS 

This paper introduced the MOQUA approach that proposes 
a forward model-driven engineering process to produce 
executable business models with quality awareness. In order to 
carry out the treatment of quality attributes, the proposed 
approach presents a model transformation chain defined around 
standards to represent quality attributes, such as GRL, 
QoS&FT and WS-Policy. The MDE techniques that underlie 
MOQUA were evaluated against the proposals of the main 
related work, providing a comparative view of our approach 
and the ones defined in related work. 

The relevance of this work is primarily related to the 
possibility of dealing with quality attributes since the early 
stages of software development. Even in the business modeling 
phase, it is possible to think and to define the quality 
requirements, enabling an anticipated treatment of potential 
problems in the later stages of development. For this purpose, 
GRL models are defined at business-level to represent the 
quality attributes, and the model-driven process automates the 
derivation of policies models to represent the restriction over 
the services that will realize the business processes. 

In terms of future work we are investigating: (1) how our 
approach could be scalable to other quality attributes apart 
from those related to QoS&FT and WS-Policy; (2) how our 
approach could address quality attributes for business 
processes realizable by dynamic service composition, which 
are popular at services related applications; (3) Finally, in 
terms of tools, we are evaluating the integration of the different 
Eclipse tools that support MOQUA architecture, particularly 
the Eclipse Business Process Management (eBPM). 

REFERENCES 

 
[1] Charles, O. and Hollunder, B., Non-Functional Requirements for 

Business Processes in the Context of SOA, 6th Int. Conf. on Software 
Engineering Advances, 2011. 

[2] Chung, L., Nixon, B. A., Yu, E. and Mylopoulos, J., Non-Functional 
Requirements in Software Engineering, Int. Series in Sofware 
Engineering, vol. 5, p. 476. Springer, 1999. 

[3] Elvesaeter, B., Panfilenko, D., Jacobi, S. and Hahn, C., Aligning 
Business and IT Models in SOA using BPMN and SoaML, ACM 1th 
Int. Workshop in Model-Driven Interoperability, 2010. 

[4] Erradi, A., Maheshwari, P., and Tosic, V., Policy-Driven Middleware 
for Self-Adaptive Web Services Composition, in Middleware 2006, 
Springer, LNCS, vol. 4290, pp. 62–80. 

[5] Gallino, J. P. S., “Application of model-driven techniques to the design 
of non-functional concerns of service-oriented software systems,” PhD 
Thesis. ETSIT-UPM, Spain, 2012.   

[6] Galster, M. and Bucherer, E., A Taxonomy for Identifying and 
Specifying Non-Functional Requirements in Service-Oriented 
Development, IEEE Cong. - Services - Part I, 2008. 

[7] Gebhart, M. and Bouras, J., Mapping between Service Designs Based on 
SoaML and Web Service Implementation Artifacts, 7h Int. Conf. on 
Software Engineering Advances, 2012. 

[8] ITU-T, Recommendation Z.151 (10/2012) User Requirements Notation 
(URN) - Language Definition, Switzerland, 2012. 

[9] Jouault, F. and Kurtev, I., Transforming Models with ATL, Proc. of the 
Model Transformations in Practice Workshop at MoDELS 2005, vol. 
Satellite, pp. 128–138, 2005. 

[10] Kalavathy, G. M., Rathinam, N. E., and Seethalakshmi, P., “Self-
adaptable media service architecture for guaranteeing reliable 
multimedia services,” Multimedia Tools Appl. 57, 3, pp. 633–650, 2012. 

[11] Lemrabet, Y., Touzi, J. and Bourey, J. -P., “Mapping of BPMN models 
into UML models using SoaML profile,” 8th Int. Conf. of Modeling and 
Simulation - MOSIMS10, 2010. 

[12] Luckham, D., The Power of Events, Addison Wesley, 2007. 

[13] Mellor, S. J., Scott, K., Uhl, A., Weise, D., MDA Distilled: Principles of 
Model-Driven Architecture, Addison-Wesley, New York, 2004. 

[14] OASIS, Web Services Quality Factors, v.1.0, 2010. 

[15] OASIS, Web Services Security Policy, v.1.3, 2009. 

[16] OMG, Business Process Model and Notation, v.2.0, 2011. 

[17] OMG, SOA Modeling Language, v.1.0.1, 2012. 

[18] OMG, UML for modeling QoS and Fault Tolerance, v.1.1, 2008. 

[19] Ortiz, G. and Hernandez, J., Service-Oriented Model-Driven 
Development: Filling the Extra-Functional Property Gap, Int. Conf. on 
Service Oriented Computing, pp. 471–476, Chicago (USA), 2006. 

[20] Ortiz, G. and Hernandez, J., A Case Study on Integrating Extra-
Functional Properties in Web Service Model-Driven Development, 2nd 
I. C. on Internet and Web Applications and Services. IEEE C.S., 2007. 

[21] Panfilenko, D. V., Hrom, K., Elvesæter, B. and Landre, E., Model 
Transformation Recommendations for Service-Oriented Architectures, 
'ICEIS (2)' , SciTePress , pp. 248–256, 2013. 

[22] Pavlovski, C. J. and Zou, J., Non-Functional Requirements in Business 
Process Modeling, Asia-Pacific Conference on Conceptual Modelling, 
pp. 103–112, 2008. 

[23] Teles, F., MOQUA: Model-driven Quality Attributes in BPM, Technical 
Report, pp. 14–35, UFPE, 2013,  http://www.cin.ufpe.br/~fst/moqua/ 
(accessed on April 2014). 

[24] van der Aalst, W. M. P., ter Hofstede, A. H. M. and Weske, M., 
Business Process Management: A Survey, Int. Conf. on BPM (BPM 
2003), LNCS 2678, pp. 1–12, 2003. 

[25] Vara, J. M., Marcos, E., “A framework for model-driven development of 
information systems: technical decisions and lessons learned,” J. Syst 
Software 85(10):2368–2384, 2012. 

[26] W3C, Web Services Policy 1.5 - Framework, W3C Recommendation, 
2007. 

[27] Wada, H., Suzuki, J. and Oba, K., Modeling Non-Functional Aspects in 
Service Oriented Architecture, IEEE Int. Conf. on Services Computing, 
pp. 222–229, 2006. 

[28] Wada, H., Suzuki, J. and Oba, K., Early Aspects for Non-Functional 
Properties in Service Oriented Business Processes, IEEE Congress on 
Services, pp. 231–238, 2008. 

[29] WS-I, Sample Applications Security Architecture Document, 2006, 
available at http://www.ws-i.org/deliverables/ (accessed on April 2014). 

[30] WS-I, Supply Chain Management Sample Architecture Specification, 
2003, http://www.ws-i.org/deliverables/ (accessed on April 2014). 

[31] Weiss, M. and Amyot, D., “Business process modeling with URN,” Int. 
J. of E-Business Research 1(3), pp. 63–90, 2005. 

[32] Yu, E. S. K., “Towards modelling and reasoning support for early-phase 
requirements engineering,” 3th IEEE Int. Symposium on Requirements 
Engineering, 1997. 

 


