IONGNSS 2011

September 19th-23th 2011 - Portland, Oregon

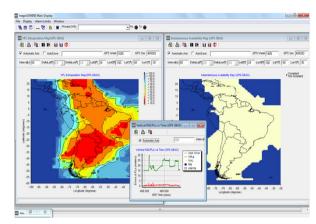
First broadcast of SBAS-SACCSA test signal in the Caribbean, Central America and South America

Session C4: GNSS Space Based Augmentation Systems (SBAS)

- A. Cezón, I. Alcantarilla, J. Caro, J. Ostolaza, GMV
- C. Soddu, Inmarsat
- L. Andrada, AENA
- F. Azpilicueta, UNLP-CONICET

CONTENTS

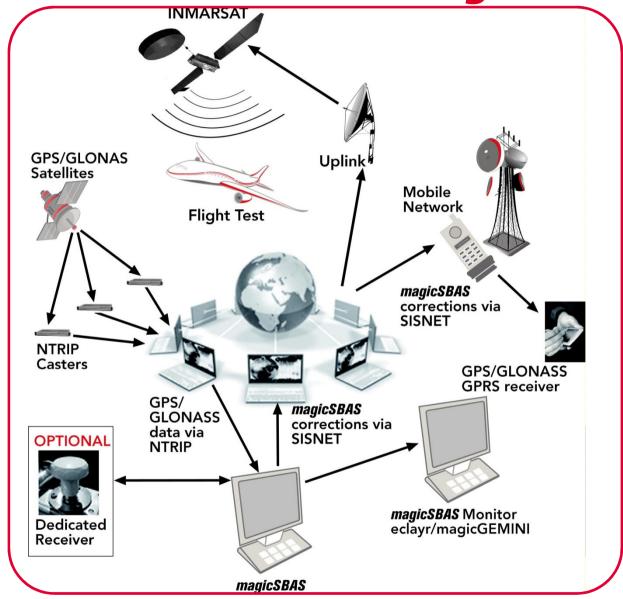
- > Introduction
- > SBAS Demonstration architecture
- > Obtained Results
- > Safety Aspects
- > Conclusions



Introduction

Introduction

- First SBAS GEO test signal in Latin America
 - **❖**SACCSA coordination meeting (RCC/7) **Bariloche, Argentina (14-15.10.2010)**
- ❖ RCC/7 participants:
 - Argentina, Bolivia, Brazil, Colombia, Costa Rica, Guatemala, Panama, Spain, Venezuela, COCESNA, IFALPA and ICAO.
- With the support from:
 - ❖ICAO, AENA and GESA laboratory (Universidad Nacional de La Plata, Argentina"), and the Argentinean State represented by ANAC.
- ❖ Integration of GMV and Inmarsat technologies
- Filmed video in the following web link http://www.gmv.com/magicsbas/gallery/gallery.html



SBAS Demonstration architecture

- magicSBAS
- SBAS signal generator
- Inmarsat GEO satellite
- magicGEMINI
- NTRIP reference stations
- User receiver

Demo architecture: magicSBAS

IONGNSS 2011

User receivers used:

- Septentrio PolaRx2 in Spain
- GPS map 276C Garmin in Argentina

19-23/09/2011 Page 6 Silving Squirions

Demo architecture: SBAS signal generator

SBAS signal generator owned by Inmarsat, used for L1/L5 payload validation

- It basically consists of:
 - ❖ L1/L5 GPS/SBAS Receiver
 - ❖ L1/L5 Signal Generator, and
 - ❖ L1/L2 GPS Receiver/Antenna and an SBAS Processor/Controller

(For the purpose of the demonstration, only the L1 signal was generated.)



L1/L5 SBAS Signal Generator (by GPS Silicon Valley)

9mv° INNOVATING SOLUTIONS

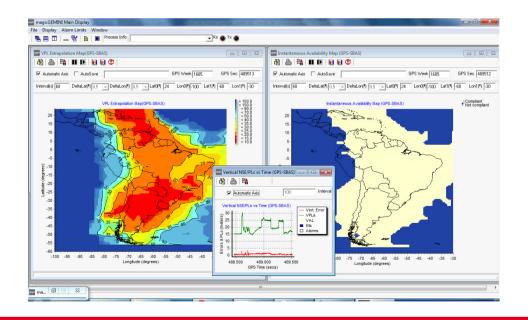
Demo architecture: *Inmarsat GEO*

- ❖ Navigation transponder in GEO Inmarsat-3F4
 - ❖ Positioned over the Americas continent (Longitude 54ºW)
- Uplink from Inmarsat communication station located in Fuccino (Italy)

Demo architecture: *magicGEMINI*

* magicGEMINI (GMV) used to check SBAS performances

GNSS performance analysis and monitoring tool


Targeting air navigation service providers

Implementation of Performance Based Navigation

❖ Transition to GNSS (certification, monitoring, etc.)

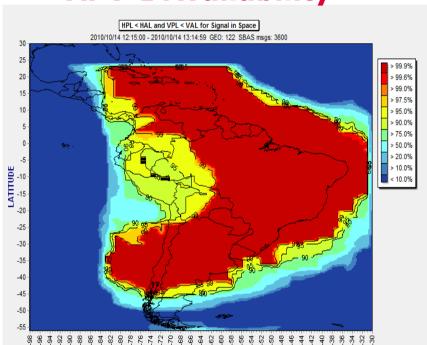
MOPS and SARPS compliant.

Real time and post-processing

SBAS demonstration Obtained Results

- Introduction
- magicSBAS performances
- Additional demonstrations

SBAS obtained Results: Introduction


- * magicSBAS has been adapted to South America
 - Algorithms customized to equatorial regions.
- Ref. station network consistent on available NTRIP real time stations
- Execution in September and October 2010.
 - ❖ Broadcast by the Inmarsat GEO on 14 and 15 Oct. 2010.
 - Low-medium ionosphere activity, not representative of the worst case
- Different analyses were done to study the obtained demo performances:
 - From a GPS receiver at GMV premises in Madrid (covered by footprint)
 - In-situ SBAS performances in San Carlos de Bariloche, Argentina
- Performances highly dependant on data availability
 - Data transmission on the internet
 - ❖ Focus of the paper is on the technology integration

magicSBAS performance analysis

Latin America

APV-I Availability

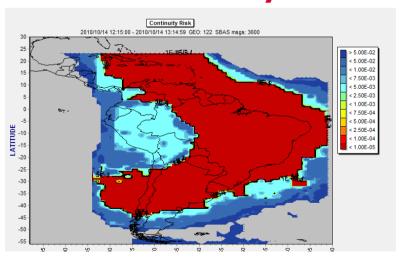
Red area: 99.9%

Data sources: IGS/IBGE/UNESP/UPRM

(igs.bkg.bund.de / www.ibge.gov.br / gege.fct.unesp.br/ www.uprm.edu)

Note: Performance figures highly depend on NTRIP station availability, so different availability figures where obtained

Accuracy

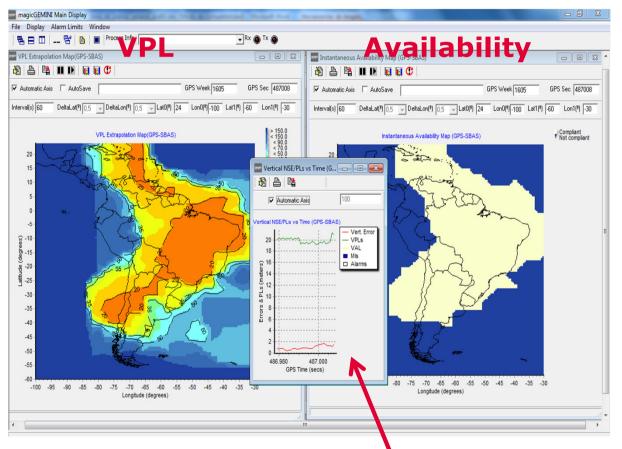

* Horizontal (95%): 1-2 m

* Vertical (95%): 2-3 m

Integrity

* Safety Index 95% < 0,27

Continuity



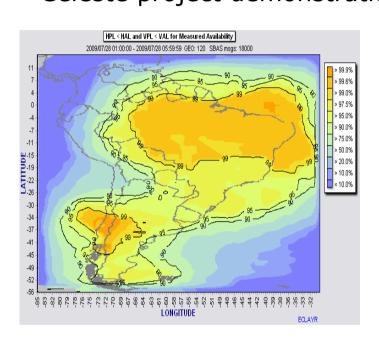
Red area: 10⁻⁵

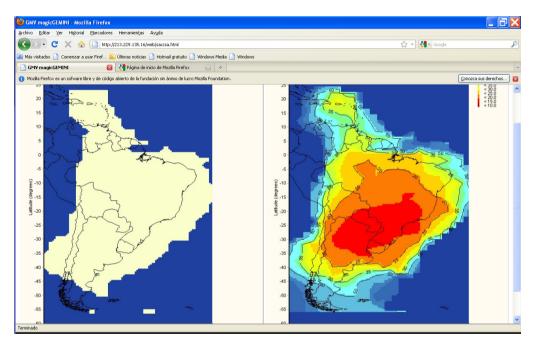
magicSBAS performance analysis:

In-situ performances
Latin America

- Demo SBAS GEO (PRN 122) as seen by the Garmin receiver
- Rx configured to process test SBAS signal (MT0)

Integrity: NSE vs PL


magicSBAS aditional demonstrations


Additional demonstrations (without GEO broadcast)

July-August 2009:

Celeste project demonstrations

ICAO CNS/ATM Mexico

A web platform with internet data dissemination

• 213.229.135.14:5555 (subject to change)

(e-mail to magicSBAS@gmv.com)

SAFETY Aspects

Safety Aspects

- Safety a fundamental aspect to consider in the demo
 - Ensure no interference with other operational SBAS
- Barriers used:
 - MT0 enabled and transmitted every 6 s (magicSBAS only mode)
 - The configured IGPs did not overlap EGNOS or WAAS
 - ❖ MT27 configured to define a Service Area over South America
 - Highest possible delta UDRE for the outside region.
 - ❖ PRN used was PRN 122
- ICAO was aware of the intention to broadcast the test signal
 - FAA and the European Commission were informed with the signal in the air
 - It could be convenient to have a coordination mechanism for further test
- Are new safety barriers needed to avoid interference from ill-willed signals?
 - Could it be convenient to add authentication in SBAS L5?

Conclusions

Conclusions

- First SBAS test GEO signal time in the Caribbean, Central America and South America regions
- The purpose of the transmission was:
 - to complete the integration of GMV's magicSBAS with Inmarsat GEO payloads (Inmarsat-3F4 in this case)
 - to show that SBAS test system is affordable with minimum infrastructure investments.
- ❖ Broadcast during the Seventh Meeting of the Coordination Committee (RCC/7) of ICAO Regional Project RLA/03/902 SACCSA, held in San Carlos de Bariloche, Argentina, from 14 to 15 October 2010.
- ❖ A great success with excellent results and with a minimum cost.
- The presented technology constitutes a fundamental engineering and demonstration asset for those entities considering the deployment of an operational SBAS in any region

http://www.gmv.com/magicsbas/magicsbas.htm

http://www.gmv.com/magicsbas/gallery/gallery.html

Thank you

J. Caro, GMV

www.gmv.com

