

LARCEST AND BEST SHORT-WAVE STATION LIST IN PRINT - PHOTOS OF S-W ARTISTS WHERE TO FIND SSW STATIONS ON YOUR DIAL - WORLD SHORT-WAVE STATION MAP

THESE remarkable globes, executed in fourteen colors, are absolutely indispensable for short L wave fans. Notable amona the numerous features of these world globes, is that a damp cloth quickly removes all dust and water does not harm the surface.
Short Wave fans are enabled to determine correct time in various centers of the world with the aid of these maps; distances from city to city can be accurately established.
There is a graduated "Meridian" scale of black enameled metal with the 9 " and 12 " globes. An additional feature is the movable hour scale found at the north poie-this facilitates determining the hour in any part of the world.
Only on a globe of this size is it possible to get an necurate picture of countries and their relative positions to each other. You will actually be amazed when you compare distances-from New York to Moscow: from a small string and stretch 1t across the globe, from clty to clty, and you have the correct distances.
Here are globes that add dignity to home, offce, studio or laboratory-a globe that everyone would be proud to possess.
fere are Each world globe contains a listing of orer 7,500 cities in nations the world over-spellings conform to inter.
national geographic standards-ali globes are of 1934 production. GET ONE OF THESE FINE WORLD GLOBES TODAY!

No. 147

> Gentlemen: I received the World Globo and am certainly well pleased with its completeness, appearance and its usefulness. Short ware listening has become a hobby with me, and thls World Globe is a necesfary accessory to any bhort wave litener or, for that matter, to any home. P. C. ELLLIS, Supt. Laboratory, 19th and Camp. bell Streets, Kansas City, Mo. ORDER YOUR।
GLOBE TODAY!

SHORT WAVE CRAFT

59 Hudson Street, New York, N. Y
Gentlemen: Enclosed you will find my remit tance of \$.......... for which please ship me the following World Globe
() World Globe No. 99 ค $\$ 2.05$
() World Globe No. 147 (a) $\$ 2.95$
(World Globe No. 47 @ $\$ 0.90$
\qquad
Name
Address \qquad
City
State. Send remitiance in check or money order register letter SHIPPED FROM OUR WAREHOUSE IN CHICAGOF. O. B. FROM THAT CITY.

All globes are carefully packed in original cartons assuring safe delivery. ORDER BY NUMBER. Send check or money order, plus sufficient postage for delivery by parcel post. Globes are shipped from our Chicago warehouse. Register letter if it contains cash, or currency or stamps. If preferred, specify that shipment be sent express collect. ALL ORDERS ARE FILLED PROMPTLY.

ALL GLOBES SHIPPED IMMEDIATELY
99 HUDSON STREET, NEW YORK, N. Y.

OPPORTUNITIES
 are many for the Radio Trained Man

Don't be an untrained man. Let me show you how to get your start in Radio-the fastest growing, livest money-making game on earth. Jobs Leading to Salaries of $\$ 35$ a Week and Up Prepare for jobs as Designer, Inspector and Tester-as Radio Salesman and in Service and Installation Work-or for work in a Broadcasting Station-as Wireless Operator on a Ship or Airplane, or in Talking Picture or Sound Work-HUN. DREDS OF OPPORTUNITIES for a real future in Radio!

Ten Weeks of Shop Training Pay Your Tuition After Graduation

We don't teach by book study. We train you on a great outlay of Radio, Television and Sound equipment - on scores of modern Radio Receivers, huge Broadcasting equipment, Television apparatus, Talking Picture and Sound Reproduction equipment, Code Practice equipment, etc. You don't need advanced education or previous experience. We give you-RIGHT HERE IN THE COYNE SHOPS-the actual practice and experience you'll need for your start in this great field. And because we cut out all useless theory and only give that which is necessary you get a practical training in 10 weeks.

TELEVISION and TALKING PICTURES

And Television is already here! Soon there'll be a demand for THOUSANDS of TELEVISION EXPERTS! The man who learns Television now can have a great future in this great new field. Get in on the ground-floor of this amazing new Radio development! Come to COYNE and learn Television as it should be learned on Television equipment. Talking Picture and Public Address Systems offer opportunities to the Trained Radio Man. Here is a great new Radio field just beginning to grow! Prepare NOW for these wonderful opportunities! Learn Radio Sound Work at COYNE on actual Talking Picture and Sound Reproduction equipment.

PAY FOR YOUR TRAINING After You Graduate

I am making an offer that no other school has dared to do. I mean exactly what I say. You can get a complete training by the world's oldest and largest Practical Radio School and I'll finance your Tuition. You won't have to start paying me back in small, monthly payments until 2 months after your required training period is over. I consider the fellow who is ambitious enough to want to get ahead by taking my Training, worthy of my help. MAIL TIIE COUPON BELOW, and you can prove to me that you are willing to spend just TEN WEEKS in the Coyne Training Shops Learning RADIO. Then, I'll tell you how I finance your Tuition-give you your complete Training and let you pay me back later.

I've got enough confidence in ambitious fellows and in my methods to give them the training they need and let them pay me back after they have completed their training.

ELECTRIC REFRIGERATION AIR CONDITIONING

To assure your thorough preparation for a prosperous future, I in -clude-at no extra cost-a course in Electric Refrigeration and Air Conditioning, taught you by personal instruction and actual work on latest-type equipment.

ALL PRACTICAL WORK At COYNE in Chicago

ALL ACTUAL, PRACTICAL WORK. You build radio sets, install and service them. You actually operate great Broadcasting equipment. You construct Television Receiving Sets and actually transmit your own Television programs over our Television equip-
ment. You work on real Talking Picture machines and Sound equipment. You learn Wireless Operating on Actual Code Practice apparatus. We don't waste time on useless theory. We give you the practical training you'll need-in 10 short, pleasant weeks.

MANY EARN WHILE LEARNING

You get Free Employment Service for Life. And don't let lack of money stop you-my plan makes it possible to get Coyne training with very little money. Many of our students make all or a good part of their living expenses while going to school and if you should need this help just write to me. Coyne is 36 years old. Coyne Training is tested-proved beyond all doubt. You can find out everything absolutely free. Just mail coupon for my big free book!
H. C. Lewis, Pres. RADIO DIVISION Founded 1899 Cojire E1ectrical Selnool 500 S. Paulina St., Dept. 55-3M Chicago, 111. Mail Coupon Today for All the Facts

H. C. LEWIS, President

Radio Division, Coyne Electrical School

 s00 S. Paulina St., Dept. 55-3M Chicago, Ill.Dear Mr. Lewis:-Send me your Big Free Radio Book, and all details of your Special Offer, including Electric Refrigeration, Air Conditioning courses and your "Pay After Graduation" offer.

Name

Address

City \qquad State

Fans, Take Notice!
CONTINUOUS
BANDSPREAD on all bands

${ }^{\text {mite orctant }}$
 O ERLE

 BANDSPREADNATION-WIDE TESTIMONIALS PRAISE THIS SET

Dear Sir:

Dear Sir: to tell you that the radio which bought from you recently is working fine. I have received California on long-waves, and on ahort-waves have logged about 93 stations Three from the greatest distance are VK3LR, WK2ME aDd VK3ME, all located in Australia. And I get them consistently, not just once in - great while, at great volume, on a small win-How-sill aerial.
The set certainly has some "kick" to it. Ernest J. Grishek, 118 White St., Westfield, Mass

Dear Sirs:
Just a line or so to give you an idea of what my Doerle A. C. 5 hauled in during a 2 weeks listening test. All the G and D stations were received ako TIEP, W9XF, PRADO, HJ4ABE, W8XAL F2XE, W8XK, CJRO, YU2RC, CJRX COC. HJ4ABB, HJ1ABB, YU5RMO, YP3RC WCRCT GT1AA W1XAL W9XAA, W1XAZ, EAQ. WEGGW, HC2RL, HJ3ABD, KEJ. HJB, HP5B, HJ1ABD, WNB, YUIRC, HIZ, JYK, FYA, YU4RC, OA4AD, RNE, PHI, RK, I WNC YNA, COH, PRF5, WON, XEBT, W2XAF, LSL 12RO, IRM, JYS, UK3LR. All stations come in with strong carriers with a QSA4-5-R9 plus. "Hams" in 48 states and foreign countries besides practically all Police Radio Stations were seceived.
Frances Kmetz, 213 Linden St., Allentown, Pa.
Gentlemen:
The Doerl. "AC-5" arriced all O.K. Had it going in about ten minutes after unpacking. It sure seoms to be fine, we enjoy it very much. lam new at shortrave tuning but the bandspread dial makes tuning a not glve you any long list of stations recelved, but have recelsed manv roreign stations. I think Rio De Janeiro about the hest distance at about R8 rolume.

Gentlemen:
Here is a list of Short-Ware stations I have recelved on a short time with my "DOERLE AC5", with a very poor aerlal for short-wave work. EAQ-MadrId, Spain; WIXA7-Springfeld, Mass.: W2XAF-Schenectady, N.Y.
COH-Havana, Cuba; COC-Havana, Cuba; VEgGW-COH-Havana, Cuba: COC-Harana, Cuba; VEgGWBownantile, PRF5-Rio De Janelro. Brazil; H.ItABB-Barranquila, Col., S. A.: PRADO-Iiobamba, Ecuador, S.A. D.IC-Berlin. Germany: XEBT-Mexico City, Mexico VVRMO-Naracabo. Fenezuela, S. A.; CRIO-Winntbegrgh. Pa.: HP5B-Panama City, Panama; FYA-Paris, burgh. Pa. : HP5B-Panama City, Panama; FYA-Paris, EAG-Madrid, Spain and COD-Havana. Cuba come in every night on the loud speaker recardless of weather conditions. This is the third and best receiver I have owned in the short time I have been Interested In Short Emerald H. Delbruge日, Rose-Mary Dahlia Gardens, artins Fery, Ohlo
plus others may be seen at our offic.p

5-TUBE SHORT.WAVE RECEIVER

, Doublet Antenna Infut or

, Standard Antenna Input

, 8-Low Loss Bakelite Plug-in Coils
» 15-200 Meters "Fully Shielded
" Bandspread Dial „ Dynamic Speaker
»Headset Jack »Beautiful Cabinet
8 EFORE you buy any other Short-Wave Receiver, be sure to take advantage of our FREE five dey trial offer explained below. Satisfy yourself, in your own home and at your leisure保 this IS one of the greatest values in radin, and that it DOES have features which are ound in more expensive receivers.
nowerful 5 -tube "rig" complete with its self-contalned hum-free nower pack and dynamic speaker; all mounted a male speaker grill. Two tuned stages-regenerative detector, 3AF stages with powerful 41 pentode output and perfectiy matched dy wave roceiver. CONTINUOUS BANDSPREAD ON ALL BANDS. A special double-pointer, double-scale, alrplane dial havine tuning ratlo of 125 to 1 is employed.
Many fine features that you would expect to find in more expensive receivers are incorporated in this "ACE TOPNOTCHER' ${ }^{\prime \prime}$ of the entire Docrle Ine
Elther a short-wave doublet or standard antenns may be used. A new antenna-adjusting scheme permita perfect made to of both tuned circuits without apprectably affecting the setting of the

LOOK AT THIS DX-QSL LIST!

During its initial test, in New York City, this receiver puiled in on its loud speaker, at good room volume, the and W9XF, Chicago: GSC, GSD, GSE, GSF HBL. HBP, Geneva; VEgGW Ontario: VgDN Dentry. England; DJA, DJB, VEGC, DJD, Zeesen, Germany, City; YUIBC,YV3BC Caracas: CP5 Bolivia; LSN Buenos Alres; COC Havana; EAQ Madrid; WQO and WEF testing with the Byrd Expedition and a whole fiock of amateurs in practically erery radio disirict of the Unlted States. After that, we could no longer keep our eyes open so we "signed off" to bed.
The testimontals printed on thifs page testify that, in actual use, our customers are attaining even greater success. Uses a simple regenerative in one). 1-37. power output tube and 1-80 full-wave rectifier. Two gang tuning condenser

 List Price $\$ 46.75$ Set of 2 Broadcast colls $\$ 1.75$ additional

7 PAGES of Instructions and Diagrams Included with each SET

RADIO TRADING CO., IO3A HUDSON ST., NEW YORK Gentlemen Sher_dontars, dollar your new Doerle 5-Tube De-Luxe Short-Wave receiver on a five day free trial basis, I am to prove to my own satis:
faction that it will give me world-wide reception ond that your guarantee means exictly what says ath at the ond of five days after receipt of radto, 1 amm not perfectly satisfled. I will write you accordingly. whereupon, you win send shipping instructions. Uvon receipt of the radio, sou will refund me the full purchase price. I agree to pay express charges one way, and you the other

PRINT Name
Address
Town

```
    MUGO GRRNSBACK
    HUGO GERNSBACK............President Editor
    H. W. SECOR..............Vice-President
    EMLL GROSSMAN Director of Advertising
London Agent: GORRINGE'S AMERICAN NEWS
            AGENCY, 9A Green St.,
            Leicester Square, London, W.C. 2
Paris Agent: BRENTANO'S,
            37 Ave. De L'Opera
            Paris, 2E, France
Australian Agency: McGILL'S AGENCY, 179
                Elizabeth St., Melbourne
```

HUGO GERNSBACK
Managing Editor
H. WINFIELD SECOR

Associate Editor
GEORGE W. SHUART, W2AMN.

OFFICIAL

SHORT-WAVE
LISTENER MAGAZINE
Combined with
OFFICIAL SHORT-WAVE
LOG AND CALL MAGAZINE

```
AUGUST-SEPTEMBER, l935 VOLUMEII, No.l
```


WHAT DO YOU WANT?

- The editors want you to feel that this is YOUR magazine and that it is edited entirely for you. You appreciate the fact that in order to be successful a magazine must cater to the likes of its readers and that the personal likes and dislikes of the editors count for naught.

> And while we have received, and do receive every day, dozens of letters from our readers, many of which are laudatory, most of the letters, while they make nice reading for the editors, really do not give us YOUR viewpoint.
> What we want from you is suggestions as to what sort of material you want to read in this magazine. Remember, that only by such guidance can we do the best job for you. There may be certain things in the SHORT WAVE LISTENER that you do not like. If there are such articles or such features, do not hesitate to advise us because only by your guidane can we make the magazine so that the majority of the readers will benefit by reading it.

Always remember, that the magazine is edited for YOU. Write us what you want and what you don't want. We will try and comply with all the suggestions, where ever this is possible.

HUGO GERNSBACK, Editor.

Popular Book Corporation
Editorial and General Offices
99-101 Hudson St., New York, N. Y.

Contents...

Articles

Page Number
3LR's Short-Wave Voice From "Down Under" 148
Bright Spots in U.S.S.R. Programs, by J. C. Kelley ------------------149
Musical Artists from Australia 150
Hungarian Short-Wave Artists 151
Just Another Racket-Short-Wave Fiction, by Willis Werner 152
Scrambled Speech! What is It? 153
Novel Programs from India 154
Musical Signatures of Foreign Stations 155
How To Find S-W Stations Quickly 156
Local Time Throughout The World 157
Silver Trophy for the Best Listening Post Photo 158
$\$ 3.00$ for the Best Short-Wave Hint 160
Can a One-Tube Set Get Europe? 161
Short-Wave Station Time Graph 162
The Listener Speaks (Letters Fzom Our Readers) 164
International Call-Sign Prefixes 166
Standard Time Conversion Churt 167
Short-Wave Map of the World 168
Best Short-Wave Stations 170
Television and Police Alarm Stations 173
Grand Short-Wave Station List 174
Kilocycle - Meter Conversion Chart 183
Standard Time Zone Chart of the World 184
The Nairobi Africa S-W Station 185
The Listener Asks (Question Box) 186

This magazine is published every other month.
The next issue will be out October 15th.

OFFICIAL SHORT WAVE LISTENER MAGAZINE published every other month by Popular Book Corp., 99-101 Hudson St. New York, N. Y. and entered as second class matter at the Post Office, New York, N. Y., under the act of March 31, 1879. Additional entry, New York, N. Y.. under the act of March 31, 1879. Additional entry. Paterson, N. Trasback. 99 Hudsom Street, New York City. Text and illustraGernsback, 99 Hudson Street, New York City. Text and illustra-
tions of this magazine are copyright and must not be reproduced without permission. OFFICIAL SHORT LISTENER MAGAZINE is published every other month, six numbers per year. The subis published every other month, six numbers per year. The sub-
scription price is $\$ 1.50$ per year in the United States and possessions;

Canada and foreign countries, $\$ 1.75$ per year. Single copies 25c. Address all contributions for publication to the Editor, OFFICIAL SHORT WAVE LISTENER MAGAZINE, 99-101 Hudson Street, New York, N. Y. Publishers are not responsible for lost manuscripts or photographs. Contributions cannot be returned unless authors re mit full return postage. This magazine is for sale at all principal newstands in the United States and Canada. European agents: Brentano's, London and Paris. Printed in U. S. A.

Make all subscription checks payable to Popular Book Corporation. COPYRIGHT, 1935 by H. GERNSBACK.

3 LR's Short - Wave V OIC E
 from "Down Under"

Even though the Australian programs have to travel half-way around the world in order to be heard by the average American short-wave listener, these programs are being received with good strength by thousands of listeners, as reports show.

 SHORT WAVE STATION 3LR LYNDHURST, AUSTRALIA- IN the Commonwealth of Australia all telecommunication services are controlled by the Postmaster-General's Department. Radio broadcasting is one of these services and is given to the public in two forms: A government-owned National Service financed by license fees collected from all broadcast listeners; a commercial service supplied by private enterprise from stations licensed to operate by the Postmaster-General's Department. The commercial licensed stations derive their revenue from advertisements.

The National Service is planned on a comprehensive basis as one complete system which will cover the populated areas of the continent. The plant is designed, constructed, owned and operated by the Postmaster-General's Department and the programmes are produced over it by the Australian Broadcasting Commission-also a governmental body. The number of listeners in the Commonwealth is now 660,000 .

Here we have an interesting view of the neatly designed, yet highly efficient shortwave transmitter utilized at station 3 LR , whoge programs are heard regalarIy by thousendm of thort wave fans in this country.

The speech input equipment at the Australian short-wave broadcast station, 3 LR .

All these stations are interconnected by a system of high-quality program lines having a total length of 6,500 miles. The short-wave station 3 LR Lyndhurst was opened on March 12, 1934, for the purpose of making the National Programs available to listeners in the remoter areas of the Commonwealth. In these areas the atmospheric noise level is frequently very high and the use of short-wave is the most practical way of extending the service to the listeners there.

The high frequency transmitting plant at Lyndhurst is located on the site of one of the outdoor laboratories of the Research Laboratories of the Postmaster-General's Department and under the International call sign VK3LR it has been used occasionally for some time past on various frequencies for radio broadcast work. Now that the plant is used for regular broadcast work, the National call sign 3 LR is used, while for experimental work a further International sign VK3XX has been allotted.

The site of the station-Lyndhurst-is about 25 miles south-east of Melbourne, longitude 145° $15^{\prime} 40^{\prime \prime}$, latitude $38^{\circ} 3^{\prime} 10^{\prime \prime}$ South. The plant used for broadcasting consists of an electron coupled oscillator suitably amplified by a^{4} screen-grid transmitting tube and modulated at low level. Two further stages of radio frequency amplification, the last of which is connected in push-pull permit of an unmodulated carrier of 600 watts being delivered to the radiating systems. The frequency response of the transmitter is essentially flat between 35 and 10,000 cycles, while the modulation characteristic is linear to the full 100%.

Several radiating systems are employed at the station for experimental purposes, the systems being fed by radio frequency transmission lines
(Continued on page 189)

BRIGHT SPOTS IN U.S.S.R. PROGRAMMS

By J. C. KELLEY

- TO the dyed-in-the wool radio fan the transmitters of the U.S.S.R. present a goal for all to aim for, not only because of the thrill one gets from listening to a land so far away but also because it zeems to give us a more personal interest in the welfare of these people, whose governnent has under gone such drastic changes during this last decade. It brings us closer to these people and helps us to understand the attitude of the people and of the government. When listening to a Russian station-remember that you are only a split-second away from this country that has made, and is still making, history that has affected the actions of more than one coantry on this little planet of ours. Think of the great step that has been made toward modernization of this once strictly agricultural country, that has, in a few short years, developed to an amazing extent their natural resources, the most important, perhaps being the large amount of electric power made possible by the construction of one of the world's largest dams.

Tap photo-Playing a solo number on the cymbalon. Below-the artist Seversky singing and playing the "Gusle" (zither)

Accompanying a recent communication sent the writer by the All Union Ratio Committee's Foreign Bureau, there was a list of 72 long-wave broadcast stations, either in operation or under construction, in the land of the Soviets. There are at present three principal short-wave stations, the frequencies and call letters of which will be found in the directory of Short Wave Stations reproduced in another section of this magazine. The Russian shortwave stations are quite powerful and have been heard by many American listeners. The long wave stations run as high as 500 kilowatts in power and some of the stations are now being increased in power. Wavelengths all the way from 1724 meters down to those below 100 meters are in use by the stations operated under the directions of the kent.

Above-Miss Mary Lorand, announcer heard over the short-wave stations HAS3 and HATA, the Hungarian short-wave transmitter picked up regularly by American listeners. While male annoumcers also talk over these stations, the ladies seem to predominate.

HUNGARIAN SHORT-WAVE STARS

Above-Mrs. Gecso, another atar Iady announcer heard by American listeners from the short-wave Hungarian stations.
Many fine operatic comcerts are broadcast by the Hungarian short-wave stations; at left opera singer Fralein Sari Sebok.

Just Another Racket!

- "NOISY? I'll say it's noisy. This is the worst location I was ever in. If electrical interference were suddenly to become a tangible, visible quality, we'd find ourselves in a fog thicker 'n anything London can scare up!"

Dick Land grinned across his "experimental" table at Kurt Rexford, his reporter pal, who stood, hands in hip pockets, watching him reach for the soldering iron with one hand and a roll of solder with the other.
"Is that what all that racket is?" returned Kurt, shifting his gaze to a small table by the window on which stood a table-model all-wave job.
"Yeah. It's an eight-tuber, and I'll say one thing for it, she sure brings in noise as well as stations. Gosh, I wish I could afford a good battery job. I'd like to take it back in the mountains about 50 miles. I bet I could get something then."
"That station you've got on now sounds all right. Is that short wave?" asked Kurt.
"Yeah, that's W8XK on 48 meters. That's in Pittsburgh." The solder flux sizzled as a joint set.
"Pittsburgh? Heck, that ought to satisfy you. That's clear across the, country and it certainly is loud enough."
"Say, Pittsburgh, is just local. I want to hear Europe, but San Diego is about as far away from everything as you can get. But the worst of it is the noise level, you can't get through."
"What're you building there?" asked the reporter, sinking into a chair, "a noise catcher or something?"
"No, just a little three-tube portable. I was going through the junk-box and I found just about enough of everything..." He was interrupted by a fierce stuccato roar from the loudspeaker, which sent him flying for the volume control.
"Boy! What's happened?"
"It's that damn razor downstairs," explained Land, softening the musicburying roar.
"Razor?"
"The chap downstairs has an electric shaver. It sure kicks out a signal!"
"Can you tell that by its sound?"
"Yeah...Well, I guess he changed his mind," inserted Dick as the crackling ceased. "Turn up the volume again, will you?"
"O.K."
Land bent over the small three-ply backless, topless box on the table before him and pushed a toggle switch through a mounting hole in one side.
"Hear that?" he asked, nodding his head toward the shortwaver.
"You mean the music?"
"No, that click, click, click-click, click, click, in the background."
"Yes, sure enough."
"Well, that's the flasher on the sign at my theatre."

By Willis Werner

Many queer sounds came out of the loudspeaker on Dick Land's Portable short-wave receiver - but you'll never guess how one particular sound led to the apprehension of a longsought criminal.

"Why, that's a block and a half away!"
"Yes, it is the fartherest noise I have traced. It's the only one I get from the theatre. I tried to get the boss to put in some condensers to silence it, but he won't put out the dough. He doesn't want people to stay home and listen to the radio, he wants them to come to the show!" Dick laughed.

"You're right, Kurt, it's loudest right here. . . That's darn funny. That shoe shop has been empty for a week! There shouldn't be anybody or anything in there to make a noise."
"You sure can tune in noises! That might make a good feature some day. 'Short wave fan tunes in electric signs, razors,'" chuckled the reporter.
"Well, I can pick up the sewing machine next door, the elevator in the bank across the street, and the electric beater in the bakery back of me. There is no good ground in this dry adobe and I am two flights up and have to use a gas pipe at that so it makes a better aerial than a ground. Listen. Here that?" A rapid series of "dots" swelled into the speaker and faded away again. "That was a car going by outside. I can tell you every time a car goes by that is radio-equipped because you can't hear it. They put suppressors in the ignition circuit on 'em.

Oh, you can't fool me on what's going on in this neighborhood!"
"And what about that thing you're building? Is that to pick up some new ones?"
"No, as I was saying, I found enough junk to put together a little three-tuber battery set so I am making a 'local' portable. I've got some of these 2 -volt tubes left from the days when I used to have more time for this stuff. I'm going to connect 'em up to this fiveinch cone. Remember when they had that miniature cone speaker fad about five years ago? I bought, one in Los Angeles but never used it."
"The dial on your big set is almost bigger 'n it, at that. What is the idea of so much stuff on that dial anyway?"
"Well, it is a five-band set and has readings for all bands. The set goes clear up to 2,000 meters."
"What do you get way up there?"
"Nothing. At least all I have been able to pick up is a lot of beep-beeps. I can't find a list anywhere of what is on, up there. I guess I will have to write to Short Wave Listener."
"What's that?" queried Kurt, lighting a cigarette.
"A mag I ran across on the newsstand the other day. It sure has all the short-wave stations listed.
"It's all Greek to me!" Kurt shook his head. "When will you finish that thing you're working on?"
"Just a couple more connections and I'll be done. The small batteries will go in the bottom and it will be all selfcontained. I am going to put the plugin coils on top so they will pick up stuff without an aerial."
"But I thought you needed a big aerial for short waves, to get all that distance I mean."
"Oh no! All I want is something to pick up the local police and airports. I will take this set with me wherever I go and see what I can get. I want to try driving a nail into a tree for an aerial or driving a pipe into the ocean for a ground and things like that. I can test it out in a minute, I guess," added Dick, screwing on the top to which was fastened the coil mounting.
Suddenly, he cocked his head and listened intently. "What time is it?" he asked.
"Eight-thirty p.m. Why?"
He ignored the question. "Hear anything?"
"No," said the reporter.
"Listen. That grinding noise."
"I hear a lot of 'em," yawned Kurt.
"But there's a new one I never heard before until night before last. It was on last night, too. It comes on at 8:30 every time."
"So what? Should I write a story about it maybe?"
"No," admitted Dick, "I guess it (Continued on page 188)

Scrambled Speech! WHAT IS IT?

"Play-o-fine-crink-o-nope." Have you ever heard any crazy chatter similar to this on your short-wave receiver? Well, if you have, then you have been listening to the so called "scrambled speech". The word in question means "telephone company". A great many short-wave "Fans" have spent a number of hours listening to peculiar garbled sounds emanate from various short-wave telephone stations. First, let us review the history of this whole affair in order that the reader will obtain a clear picture of just what has gone on.
The various telephone companies who originally installed radio stations to carry on communication between telephone subscribers located in the various countries, found that much of the conversation was listened to by shortwave "Fans" and others who were using the information gathered in this manner for their own personal benefits. It became evident immediately that some form of secrecy had to be maintained, and radio engineers set about developing what is now called the "speech inverter" or "scrambler". Systems of this general type are used at many of the major telephone radio stations used for carrying commercial (toll) telephone conversations.
In the diagram we see a gentleman talking into a regular micropnone and amplifier. The speech goes from here into the inverter and is then transmitted to the distant receiver. Thence it goes to the inverter at the distant terminal which, of course, transforms the speech back into its normal condition. Now, if we listen in with our standard shortwave receiver which is not equipped with the special unscrambling device we hear the peculiar garbled sounds

While tuning in on certain frequencies you have probably heard something which sounded like a cross between Chinese and Hindu. The chances are you picked up some "scrambled" trans-Atlantic speech waves as here explained.

Privacy on transoceanic radio telephone calls is made possible by the speech inverters shown here. By their use the speech received on the ordinary radio receiver tuned to the overseas services can be made unintelligible. Photo courtesy A. T. \& T. Company.
such as the one previously mentioned.
The actual technicalities of the instrument used for scrambling the speech of these telephone stations would not be of great interest to our short-wave "Fans" and therefore will not be taken into consideration here. However, a simple enough explanation of what happens follows.

Suppose we have a word made up of a certain number of low frequency tones and a corresponding number of high frequency tones. When put through the speech inverter, the high frequencies become low frequencies and the low frequencies in turn are registered as high frequencies. Changing the entire word around and making it sound entirely unlike its original character and being totally unintelligible. At the receiving station, as we mentioned before, an inverter is used to change the speech back to its normal sound by converting the low frequencies into high frequencies and vice versa.
In one of the diagrams we have endeavored to illustrate in the form of sound waves approximately what takes place. The top formation shows what might be a word consisting of low frequencies at the beginning, high frequency in the center, and low frequency again at the end. Underneath this we have shown just the opposite; the beginning of the word has been changed to high frequency, the center is low frequency, and the end is high frequency.

A technical operator who has made a prolonged study of the phonetics of this strange new language has learned to articulate a number of the weird sounds which the scrambler produces. When spoken back into the inverter, (Continued on page 191)

The illustration above shows the stages through which the voice passes in a radio telephone conversation across the ocean between two subscribers, and how the voice is scrambled by the A. T. \& T. Company system, so as to be unintelligible to any radio eavesdroppers.

Novel Programs from India

The group of pictures above illustrate an India short-wave station and some of the artists performing over this station. The top left picture shows a QSL card sent to those who report reception of this station. The local programs are broadcast on a wavelength of 350.0 meters and the short-wave programs on 31.3 meters. The top right photo shows anten na supporting masts. Below at Ieft-odd musical instruments used and known as Tablas (drums), Tamboora (string instrument), and Harmonium. Lower right-an Indian orchestra.

- WE are glad to present herewith several interesting views of the brcadcast station operated in Bombay, India, by the Indian State Broadcasting Service. Their address is Irwin House, Sprott Rd., Ballard Estate, Bombay, India. Irwin House, in which
the Bombay broadcasting station studios are located is a very handsome five story building of attractive architecture and finished in stone.

Many interesting concerts, especially those incorporating some of the odd string music produced by some of the
novel instruments played by the Indian performers, have been heard in all parts of the world, thanks to the shortwave transmitter operated by this station. The call letters of this station are VUB. Many American Fans hear VUB regularly.

Don'ts for Short-Wave Listeners

- DON'T expect to find broadcasting stations on all parts of the dials as you do with the long and medium waves. Except in a very few places short-wave stations are widely separated. The crowded bands are 19.5 to 20 metres, 25 to $25.7 \mathrm{~m} ., 31.25$ to 31.6 m . and 49 to 50 metres .

Don't expect stations to tune in broadly. As a general rule the more distant the station the sharper the tuning.

Don't try to get stations by skimming over the dials. Slow tuning and great patience are needed to ensure absolute success.
Don't tune haphazardly unless you are just amusing yourself. Be guided by a list of broadcasting stations and get to know where these are on your particular set.

THE NEW TOWER OF BABEL.

Don't expect to get every station on your list the first day you get your set. Knowledge of your receiver and the best way of tuning it may take some time.

Don't be discouraged. Every new short-wave listener is liable to feel disheartened if he does not get as good results as on the long waves. Reception may be poor today and good tomorrow.

Don't waste time tuning in stations over 35 meters during daylight. Except for an hour or two after sunrise and before sunset results will be discouraging. In like manner,

Don't tune in stations below 25 metres after dark.
-The Times of India

Musical Signatures of Foreign Stations

Call	Location	Identification	Remarks
GSH PMC \qquad LSY PLF \qquad GSG \qquad \qquad DFB \qquad DJB \qquad GSF \qquad GSE 12RO DJD GSD \qquad PHI FYA \qquad ORK \qquad EAQ \qquad \qquad VK2ME \qquad HBL DJA \qquad GSC VK3ME GSB IAC PSK (PRA3) CNR HBP TIEP HC2RL PRADO HJIABB HJ5ABD HIIA YV3RC W2XE YV2RC VE9HX OXY VE9CS GSA DJC XEBT RV59 HVJ TGX YY5RMO HCJB	Daventry, England \qquad Bandoeng, Java \qquad Buenos Aires, Argentina Bandoeng, Java \qquad Daventry, England \qquad Nauen, Germany \qquad Zeesen, Germany \qquad Daventry, England \qquad Daventry, England Rome, Italy \qquad Zeesen, Germany. \qquad Daventry, England \qquad Huizen, Holland \qquad Pontoise, France \qquad Brussels, Belgium \qquad Madrid, Spain Lisbon, Portugal \qquad Sydney, Australia \qquad Geneva, Switzerland \qquad Zeesen, Germany \qquad Daventry, England \qquad Melbourne, Australia Daventry, England Piza, Italy Rio de Janeiro, Brazil Rabat, Morocco Teneva, Switzerland \qquad San Jose, Costa Rica \qquad Guayaquil, Ecuador Riobomba, Ecuador Barranquilla, Colombia Cali, Colombia Santo Domingo \qquad Caracas, Venezuela \qquad Wayne, New Jersey. Caracas, Venezuela \qquad Halifax, Nova Scotia \qquad Skamleback Denmark Vancouver, B. C. \qquad Daventry, England \qquad Zeesen, Germany \qquad Mexico City, Mexico Moscow, U. S. S. R. Vatican City, Italy \qquad Guatemala City, S. A... Varacaibo, Venezuela Quito, Ecuador \qquad	(See GSB). [Stations appear in order of frequency] (See PLF). Begins transmissions by sounding E, E, G sharp, and A, on xlyophone. Begins transmissions with three tone auto horn. Notes are F, D, C. (See GSB). Sounds three tone whistle at beginning of transmissions. Notes are D, C, G. (See DJC). (See GSB). (See GSB). Woman announcer announces "Radio Roma Napoli." (See DJC). (See GSB). Announces "This is Huizen." Plays the "Marseillaise" at beginning and end of transmissions. Ilays Belgium national hymn at close of programs. Announces "Ay-ah-coo, transradio Madrid." sounds the cookoo calls between selections. Laugh of Kookaburra bird at beginning and end of transmissions. (see HBP). (See DJC). (See GSB). Opens program with clock chimes. Big Ben Chimes on quarter hours. Announces "London calling on-(stations and Wavelengths)." Begins and ends transmissions by playing "God save The King." This song has the same tune as our "America." Calls "Pronto, pronto-(name of ship)." Plays chimes like the NBC chimes when signing off. Announces "Radio Rabat dans Maroc." Uses metronome between selections. Announces "Hillo, hillo, radio nations." Announces "La Voz del Tropico." Plays the Ecuadorian National Anthem at beginning and end of transmissions. Announces "Estacion el Prado, Riobomba, Ecuador." Announces "Achay-hota-uno-ah-bay-bay." Amounces "Achay-hota-thinko-ah-bay-bay." Plays "Anchors Aweigh" at start and finish of programs. Announces "Ee-vay-trays-erra-say." Plays bells on the hour. Aunounces in English, German, French, Spanish and Italian. Announces "Ee-vay-dos-erray-say." Sounds four strokes on chimes every fifteen minutes. Sounds four strokes on a gong at beginning of transmissions. Midnight chimes at 6 P. M. E. S. T. Sounds two bells between selections. (See GSB). Announces in German, and English. Eight notes of old German song played over and over at beginning of transmissions, Sounds auto horn after each selection. "International" is played at beginning and end of transmissions. Announces "Pronto, pronto, radio Vaticano." Clock ticking. Two tone high frequency signals. Strikes gong before announcing. Sounds 2 -tone chime after announcements.	-

-Courtesy N. Y. Bun.

Abbreviations for the Listener

"R" Audibility System

Use the " $Q, R, \& T$ " systems together to give the clearest reports on signals. Thus: "Ur R7 but QSA3 \& T2."
R1-Faint signals; just readable.
R2-Weak signals; barely readable.
R3-Weak signals; but can be copied.
R4-Fair signals; easily readable.
R5-Moderately strong signals.
R6—Good signals.
R7-Good strong signals, that come thru QRM \& QRN.
R8-Very strong signals; heard several feet from the fones.
R9-Extremely strong sigs.

Amateur Abbreviations

The following tables are in constant use by the transmitting amateurs. The " Q " table is strictly a readability system and should not be used to indicate signal strength. The " R " system is for this purpose and should not be governed by the readability of a signal. In other words a signal could be QSA5-very good simnals; perfectly readable, but still weak. This would be a QSA5 R3 signal.
The " T "' system is used mostly in foreign countries but is a very accurate method of reporting tone quality arid should be used more extensively. The other abbreviations are used during direct conversation and it will be noticed that with a few exceptions most of the vowels are eliminated from the words.

"Q" Readability System

QSA1-Hardly percentible; unreadable.
QSA2-Weak : readable only now and then.
QSA3-Fairly good; readable with difficulty.
QSA4-Good readable sirnals.
QSA5-Very good signals; perfectly readable.

"T" Tone System

T1-("UP tone 1, R6") Poor 25 or 60 cycle AC tone.
T2-Rough 60 cycles AC tone.
T3-Poor RAC tone. Sounds like no filter.
T4-Fair RAC, small filter.
Tō-Nearly DC tone, good filter, but has key thumps, or back wave, etc.
T6-Nearly DC tone. Very good filter; keying $O K$.
T7-Pure DC tone, but has key thumps, back wave, etc.
T8-Pure DC, not equal to T9.
T9-Best steady, pure, crystal controlled DC tone.

How To Find S-W Stations Quickly

When To Tune and Where

- Until you have had considerable experience in short wave tuning. it is well to confine your efforts to the four bands indicated on t e dial. These may look small, compared to the total length of the dial. but they contain the best "plums" among the foreign stations and among the ones which, at first, sou will probably pass unnoticed until will probably pass unnoticed until you learn to tune slowly and carefully, intent upon identifying each
slight "swish" which may be a slight "swish". which may be a station.
U.S. STATIONS BROADCASTING PROGRAMS ON•SHORT.WAVE CHANNELS

Local Time Throughout the World

The table below may be used to determine the time, at any other place in the world, corresponding to your own time, provided you know its location.

Pick out your own time zone; it is a good idea to rule a red line on each side of it, across the page, for convenience in consulting it. Take the hour at your own locality, and run your finger directly up or down till you find the App. Longitudes
zone in which the station you are looking up is located. If necessary, consult the map. Read the hour, above or below your own, and add the minutes. If, in going up or down, you cross the (MN) (midnight) line, then change the date accordingly- to the day before, if you are going down, or the day after, if you are going up. The hours given as G. M. T., or,G. C. T., should be read from the central line, between black cross rules.

$180^{\circ}-17212^{\circ} \mathrm{E}$. \mid D	Date Line-Fiji Islands.	MNI		2										M		2											
$1721 / 2^{\circ}-1571 / 2^{\circ} \mathrm{E}$. \mid	New Zealand		\|MN]		2	31	4	5	6	\| 71	\| 81	19	\| 10	11	M			3	,	5	61	7	8	9	10		
$1571 / 2^{\circ}-1421 / 2^{\circ} \mathrm{E}$. $\mid \mathrm{E}$	East	10	11	IMN		21	\|	\|	51	61	7	81		101	11	M		2	3	4	5	6	7	8	9	0	
$1421 / 2^{\circ}-1271 /{ }^{\circ}$	Japan-W. A		10		MN		2	3	41	15	6	$!7$	8	9	101	11	-		2	3	4	5	6	7	8	9	
$1271 / 2^{\circ}-1121 / 2^{\circ} \mathrm{E}$. \mid P	Philippines-C	81	9	10	11	\|MN		2	31	4	5	61	71	-	9	10	111	M		2	3	4	5		7	8	
$1121 / 2^{\circ}-971{ }^{\circ}$	Siam-Annam	7	8	9	10		MN		21	13	4	5		7	8	9	101	11	M		2	3	4		6	7	
971/2	IndiamEast)	61	7	8	9	10	11	MN	1		31	41	5	61	71	8	9	10	11	M		2	3			6	
021/2 ${ }^{\circ}$ - $671 / 2^{\circ} \mathrm{E} . \mid 1$	ndia-West	51	6	7	8	9	10		M MN \|		2	\|	4	5	6	7	8	9	10		M		2			5	
-	Persia	41	5	6	7	8		10		MN	1	\|	31		5			8		10		M		2	3	4	
$521 / 2^{\circ}-37$	Arabia	31	4	5	6	7	8	9	10				21	3	41	5		7					M		2		
$371 / 2^{\circ}-22$	Russia-	21	3	4	5	61	7	8	91	10		\|MN			2	3	4		6	7	81	9	101		M		2
221/2 ${ }^{\circ}-71 / 2^{\circ} \mathrm{E} . \mid$ \|	Germany-Italy z	11	2	3	4	51	6	7	8				MN\|		2	3		5	6		8	9	01		M		
71/2 ${ }^{\circ} \mathrm{E} .-71 / 2^{\circ} \mathrm{W}$. Eng	gland, France - Greenwich	M 1	1	21	3	4	51	61	71	8	91	10		MN\|		2	31	4	51		71	7		10	11	M	
$71 / 2^{\circ}$ -	W.		M		2	3	41	51	61	7	\|	9			MN		2	3	41			7	8	91	101		
221/2 ${ }^{\circ}-371 / 2$	Afla	10	,	M	1	2	3	41	5	6	7	8		101		MNI		2			5	61	b		9	10	
$371 / 2^{\circ}-521 / 2$	\|Greenland-Bra		10	11	M	1	2	31	4	5	6	7	81	1	10				1		4	5	6		8	9	
$521 / 2^{\circ}-67 /{ }^{\circ}$	\|E.Can.-Argen	8		10		M	1	21	31	4	5	6	7	8	1					2	3		5			8	
$671 / 2^{\circ}-821 / 2^{\circ}$	U.S. Eastern-P	7	8	9	10	111	M	1	2	31.		5	6	71	81	91	10		MNI		,	3			6	7	
$821 / 2^{\circ}-971 / 2$	U.S. Central-	6	7	8	9	10	11	M	11	21	1	41	5	6	7	81	91	10				21			5	6	
971/2 ${ }^{\circ}-1121 / 2^{\circ}$	U.S. Mountai	5	6	,	8	9	101		M		2				61	71	3	91					2			5	
$1121 / 2^{\circ}-1271 / 2$	U.S. Pacific	4	5	6	71	81	91			M	1	21	3	4	5	61	7	8	91					2		4	
1271/2 ${ }^{\circ}-1421 / 2$	\| E		4	5	6	71	8	\|	101	11	M	1	2	1	4	5	6	7	81						2	3	
$1421 / 2^{\circ}-1571 / 2^{\circ} \mathrm{W}$	\| Central Alaska*	2	31	41	5	61	71	81	9	101	111	M	1	21	31	41	5	61	71	81	91					2	
$1571 / 2^{\circ}-1721 / 2^{\circ} \mathrm{W}$	Western Alaska.	11	21	3	4	5			81		101	11	M		2					7	,						
$1 / 2^{\circ}-180^{\circ} \mathrm{W}$	Date Line-Sa	AN				41		6								2	3	4				8					

 in Sydney.

The

IT IS impossible now to set foot in a radio without becoming entangled in short waves, including the Australian.
You pick them from thin air. By day and night. If your receiver is "ell-wave," has a converter, or is a straight short wave imbiber. (Never question the possibility of a "straight wave.")
Old-timers claim they recall the perils of wild waves, permanent waves, over-the-waves. Among others. They are nothing compared to the present invasion of brisf radiations.

What chance (no chance is the answer) has anyone against this sinister rew energy stepping with the speed of light, and invisible? They penetrate steel walls, tea-times chat, everywhere, office hours and the odd unexplored wilds. They laugh brazenly at coast guards, customs excise duties, gift cigar smoke screens and The Shadow.

Do these waves travel openly? No! They go incognito, using merely initials, as: EAQ, SA, DJN, PRADO, WPDX, RKI, or (if licensed for trailer) with a numeral, thus: VK2ME, LSN6 and W9XF. Others are far oo!der. Ocean Gate calls ships with a bland, seductive WOO.

"D X" Fever Epidemic

By "WHF"

Short waves are dangerous (habitforming), infections and contagious. But the short wave victim (a formerly sanc mortal) is rabid, violent and sleepless! This creature eats nething save radio magazine covers when they happen to appear in apple or (state choice) berry shades!
To this extent, several shortwaveitis patients will be a definite advantage to a large family.
This doomed mammal (gradually becoming all ears) exists only because careless governments did not completely exterminate its ancestor the DX (long distance) fanatic:-short for 'îan'-who reached his peak or worst about 1922 A.M. (After Marconi).
A few old liars can remember 1922, and what a terror that DX fan was. Ilistory tersely records him thus:
". . long-eared biped somewhat resembling man. Reported capable of uttering a few intelligible words. Writes endless reports of reception, mailing same to radio stations, Never combs hair, fearing static discharge noise. Emits plaintive cries,
as WHAM, WAAF, WOWO, KOA
and WOAI. Quite harmless if battery kept charged. Hands like pliers."
Another reference lists the DX fan as an electro-musical maniac who worked barely enough to buy watts needed to maintain six vacuum tubes in glowing health. He hovered helplessly near his radio from 8.30 p.m. until 5.30 in the yawning.

Any family owning a marriage license apparently included one DX fan. Some claimed proof of nearing Dallas, lenver B.C. (Before Chains) and Miami. If he were a DX KING cheriching a verification or EKKO stamp from Alaska, England or Brazil, he was a Prominent Figure in what has been called America. Headphones and radio clubs were named after him. Honest

To sing or shout gladly in passing the DX fan's nest between midnight and dawn was the same as leaning irito a buckshot shampoo or massage. The die-hard "dial nighthawk" wanted his noises from far places and (for a better yarn) preferably under Difficult Conditions.

But our modern aerial viking-what kind of "catch" does he consider the logging of England or spanning mere-
(Continued on page 166)

Win This

Third

Trophy Award to

Arthur S. Harris, Jr.

Winchester, Mass.

The handsome Silver Trophy, illustrated here, will be awarded to the person here, will be awarded to the person sending in what appears to be to the judges the most interesting photograph of
their short-wave listening post. The rules for this contest provide that the Trophy shall be awarded only for the BEST photo of listening post apparatus or set-up, and is not concerned with amateur TRANS MITTING stations. Those owning transmitting stations may enter such photos in the monthly contest sponsored by SHORT WAVE CRAFT magazine. This Trophy is a handsome specimen of the silversmith's art and was designed by a leading New York Trophy Manufacturer. This beautiful silver trophy stands 16 inches high and is symbolic of the art of shortwave listening.

Rules For Short

Wave "Listening Post"

Trophy Contest

- THE editors of the OFFICIAL SHORT WAVE LISTENER magazine feel sure that our readers will be greatly pleased with this announcement of a brand new "Trophy Cup" Contest, in which the handsome silver trophy here illustrated, will be awarded to that Short Wave Listener who submits the best "Listening Post" photo.

Here are some of the points on which the "Listening Post" photos will be judged by the editorial staff: The photo must be clear and preferably not smaller than 5×7 inches, although 4×5 inches will do if the photo is particularly clear.

If possible try to have the photo show the owner or operator of the "Listening Post" appear in the same picture with the receiving apparatus, although a separate photo of yourself will do, of course.

Not only will the photo be judged for the quality of the photograph itself, but also for the ingenuity shown by the owner of the station in a neat and orderly arrangement of the receiving apparatus.
Do not write descriptions on the

Here is a brand new contest which will cost you practically nothing to enter and you have a very fine chance of winning this handsome Silver Trophy. The editors will award one of these Silver Trophies for the best "Listening Post" photo submitted by the readers of the OFFICIAL SHORT WAVE LISTENER magazine. Please remember that the photos must be as large as possible and they absolutely must be "clear"!
back of the photo, but simply place your name and address on the back of it or on the photo mounting.

All descriptions of Short-Wave "Listening Posts" should be typewritten or else writtin in ink, well spaced so that the editors can read them quickly. Do not send "pencil-written" descriptions and moreover keep the description of the station and the results you have obtained as brief as possible; usually 300 words is plenty.
Describe your aerial briefly with its

Silver Trophy For the Best "Listening Post Photo"

dimensions, and particularly tell in what geographic direction it points, north, south, etc. Also mention where it is located such as above any roofs, trees, or other objects, and what form of lead-in you employ.

The announcement of the third Trophy Award for the best Short-Wave "Listening Post" photo appears on the opposite page. Entries for the next contest will be accepted up until September 20th, 1935.
The editors will not be responsible for any photographs or descriptions of "Listening Posts" which may be lost in the mail or otherwise, and return postage should be included with the photos if they are to be returned.

All members of the OFFICIAL SHORT WAVE LISTENER MAGAZINE'S editorial and business staff are excluded from this contest, as well as any members of their families.

In the event of a "tie" between two or more contestants, the judges will award a similar trophy to each contestant so tying. Please remember that this contest for the best Short-Wave "Listening Post" photo is purely an amateur or experimenter's proposition, and all commercial short-wave receiving stations are excluded.
The best "Listening Post" photo will also be judged not because of the fact that a handsome array of expensive short-wave receiving apparatus has been assembled for the picture, but the "pedigree" or "DX" reception results will also be carefully scrutinized by the judges. The board of judges for this contest will be the Editors of the Official SHORT WAVE LISTENER magazine.

Address all entries to this contest to: LISTENING POST CONTEST, care of OFFICIAL SHORT WAVE LISTENER MAGAZINE, 99-101 Hudson Street, New York.

Third Trophy Award to A. S. Harris, Jr.

What a Station! Arthur S. Harris, Jr. Takes the Trophy!

HAS HEARD 30 FOREIGN COUNTRIES!

Editor, Short Wave Listener:

The chief receiver is an AtwaterKent eight-tubs all-wave. It sure is " $\mathrm{i} b$ " (fine business). On this receiver I have received over thirty foreign countries and I get more every week. I have received all the continents of the World and alsa The Byrd Expedition at Little America. Every state in this country has been received, with the exception of Montana. VK3ME, VK3LR, VK2ME, and VK2LQ in Australia have all been received without using an antenna or ground.

I have five antennas and I use all of them, but for all-round use I recommend a "doublet" receiving antenna. Note the knife-switch on the right of the desk, used to change antennas.
I am a regular reader of your F.B. mag and I haven't missed a copy.

Arthuir S. Harris, Jr., 4 Hillside Avenue, Winchester, Mass.

CLIFF FIELD A REGULAR LISTENER

 $\underset{\text { Heress an at- }}{\text { tractive }}$ tractive photo
(left) of Mr. (left) of Mr.
Field's shortwave "Listening
Post."
 Oliver Amlie is a well-knowil
short-wave short-wave listener and has invised several inferesting circuits,
which he hung which he hung
up a fine record and won the Short W a ve
Scout Trophy shown on top of his set, this
Trophy being the one awarded monthly by SHORT WAVE CRAFT for the best " log" of short-wave stations heard.

Editor, Short Wave Listener:

- I AM sending you s photo of my "shack", to be entered in your next contest.
I have been a short-wave listener since 1928. The short-wave "Bug" first bit me when the description of the "Junk-Box Special" was published in RADIO NEWS (then a Gernsback Publication) and I have been building and rebuilding sets ever since.

The little receiver I am now using consists of a 57 E.C. detector, 27 first audio, and an optional 45 output. Until April 1, 1935, I used a sixty foot aerial pointing in a north-west, south-east direction. On changing location April 1, it was necessary to change to "Zepp" feed, with the transmission line taken from the north-west end of the antenna.

The case in which the receiver was built is one section of an old Radiola V, as suggested in Short Wave Craft for May 1933.
(Continued on page 190)

OLIVER AMLIE-_A DEMON LISTENER

Editor, Short Wave Listener:
In the photo is the 10th Short Wave Craft Trophy, the first to bring in VK2ME-VK3ME verifications in nine contests ahead of me, also the famous Amlie "plugless" DX'er, using 2-201A and 1-12A power tube. The scrapbook on top of the receiver has 80 verifications from all parts of the world, such as the following: England-GSH, GSB, GSG, GSC, G5SW, GSB; Germany-DJC, DJA, DJC; Rome, Italy-I2RO, IRA; Canada-VE9AS, VE9HX, VE9DR, VE9QW, CJRX, CJRO; Australia-VK2ME, VK3ME 1931 veris. VK2ME, VK3ME, 3LR 1934 veris. VK2ME, VKIME, 3LR 1935 veris. France--FYA; Spain YEAQ; South America-CTIAA, HCJB, XETE, HC2RL, YV3RC, YV2RC, CP5, HJ4ABL, XDA, HAS3, COC, COH. This does not count the American stations like KEW, KEE, etc., which makes up the 80 veris.
I have now 85 verifications registered with the Broadcasting Commissioner of Australia, reporting signals for
(Continued on page 190)

- M|

Lightning Arrestor For Doublet

 $\$ 3.00$ PRIZEMany of the readers of the Short Wave Listener have constructed doublet antennas and it is for them that this hint is presented. Secure a convenient size block of wood, something 2 inches square and 1 inch thick, will serve very nicely. In the center of

this block drill a 1 inch hole, then drive three nails through each of three sides as shown in the drawing. By leaving a space between the nails of about $1 / 32$ of an inch, a very effective lightning arrester can be made. By just using two nails, of course, you can construct a regular lightning arrester for the ordinary single lead-in antennas. - W. Laub.

Connecting Earphones In Series

Recently, when visited by friends, and wanting to entertain them with shortwave programs, I discovered the following kink. Two old metal binding posts

> A convenient method of connecting two earphones in series.
\qquad
were fastened together by a short length of threaded brass, made by removing the head of a machine screw. The drawing clearly shows how this is constructed and it provides a very handy method for connecting two earphones together.

Grounding Switch For Doublet

An ordinary double-pole doublethrow switch of fairly heavy structure can be used as a lightning switch where double lead-ins are concerned. The two blades of the switch are connected to the lead-ins. Two of tine stationary

Each month we are awarding $\$ 3.00$ for the best short-wave hint. Those presented on this page will give the reader an idea of the type of material that we are looking for. All hints printed other than the prize winner will be awarded a six months' subscription to this magazine.

contacts are short-circuited and connected to a good ground. The two remaining stationary terminals of the switch are connected to the cloublet posts on the receiver. By throwing the switch in one direction the two lead-ins are joined together and grounded, while throwing it in the other direction connects them to the radio receiver. The drawing clearly illustrates this.

Wall Insulators for Lead-In
Two of the wellknown "beehive" type insulators used as shown in the accom-

Lead-in insulators construct ed with two "beehíve" insulators.
panying drawing will serve to make a very efficient lead in insulator. First drill a hole in the wall through which the wire is to be run, large enough to accomodate a long 8-32 machine screw. The mounting holes in the insulators are used to fasten them to the wall and the threaded brass rod run through the insulators and fastened by means of locknuts.

Nifty Headphone Kink
Probably as much time is spent by the radio "Fan" in untangling radio

Kceping $t \mathbf{h}$ Kceping the from twisting by winding heavy wire around them.
cords as he spends listening to the short-wave programs. After being annoyed for a number of years with this particular problem, I hit upon the following idea.

Secure two lengths of fairly stiff hook-up wire and wind it about the phone cords as shown in the diagram. You will be surprised at the effectiveness of this method for keeping the phone cords untangled. The lower portion of the phone cord does not need to be treated; only the two sections going directly to the phones.

Stand-Off Insulators
 Stand-off insulators for the antenna

 lead in or other wiring can be easily made with the aid of the old type porcelain tube. Bend a heavy wire to form a single loop as shown in the drawing and fasten these to the wall with wood-screws or nails. If the por-
celain tubes have a large knob on one end they can be placed in the loop so that this knob prevents them from sliding through the wire to be insulated can then be run through the holes in the tubes in the usual manner.

Lead-In Condenser

Short-wave experimenters and "Fans" who find it difficult to bring a lead-in through a window can make use of the idea depicted in the drawing. By folding two pieces of tin-foil around small strips of copper in the manner illus: trated, a very effective lead-in condenser can be constructed. One of these

> Two pieces of tin-foil bring the lead-in to your get without cutting or drilling a hole in the glass.

electrodes, or pieces of tin foil, is cemented on each side of the window pane. The glass together with the two pieces of tin foil form a condenser and allow the energy to be transferred from the antenna to the radio set

Home-Made Headband

To make an old style head set fit better and be more comfortable, the following suggestion was offered by Mr . Heinie Tek. A new band was shaped from heavy steel wire as shown in the diagram, This is easily made.

Can A l-Tube Set Pick Up Europe?

- MR. JONES and Mr. Smith were having a hot argument recently as to the merits and demerits of 1 -tube shortwave receivers versus multi-tube receivers having 6 to 16 tubes or more.

Said Mr. Jones-"I hear all the principal short-wave stations in Europe on my 1-tube set every night-true I hear them on a pair of earphones, but they are clear and the program is really enjoyable."
Said Mr. Smith in answer to this statement-"I fail to see how you can hear European stations on a little 1tube receiver. It is absolutely incomprehensible to me and if I did not know you as well as I do I would certainly challenge your statement. I have always used a multi-tube set and at the present time I have just spent $\$ 350.00$ for a new 12 tube All-Wave receiver. I hear all the European short-wave stations; Paris, Madrid, Rome, Berlin and London, besides many others the same as you do-and all on the loudspeaker!"

Arguments such as this one between Mr. Jones and Mr. Smith, can be heard almost anywhere every day, and the writer has been asked the question so many times he has lost track of it as to whether Europe can be heard on a 1tube set-and if so, how come?
The reason why a 1 -tube set can pick up Europe 2500 miles away, in round figures, is because of the fact that the

Receiving Europe with a 1-tube set.
vacuum tube detector is an unbelievably sensitive interceptor of radio signals.

Speaking roughly, the average 1 -tube set will not detect or pick up a fairly weak signal coming from a European short-wave broadcaster while, if a booster stage is added ahead of the detector, then this booster tube will amplify the sub-normally "weak" signals, and therefore a set having one or more stages of booster (radio frequency amplification) stages will be able to pick up weaker signals than a 1 -tube set.

However, do not lose sight of the fact that the incoming signal (even though it has journeyed several thousand miles, and providing it has a certain strength) will be able to influence the grid of the tube and cause a change in the output current of the detector of an ordinary 1-tube $s \in t$, with the consequence that the station program will be heard in the headphones.

Remarkable as it may seem to the uninitiated, 1 -tube sets have picked up programs from half-way around the world. Of course, if you want to make sure of picking up the weaker signals, (unless they happen in be so weak that the noise-level is high enough to cause the voice to be unintelligible), then you will do well to add a booster (radio frequenc ${ }^{5}$) amplifier stage ahead of the detector.

Now we come to the second type of listener who may desire to graduate from the headphone stage to the loudspeaker $\because l a s s . ~ O r d i n a r i l y ~ h e ~ w i l l ~ a d d ~$ a couple of voice amplifier stages (konwn technically as audio stages) to the detector and the average signal will then be amprified sufficiently to operate a loudspeaker.

Thousands of 3-tube sets "get" Europe on the loudspeaker, also some special 2 -tube sets, using the new dual purpose, multi-element tubes. Those interested in sets of this type will find many interesting designs in Short Wave Craft magazine.

Important Facts About S-W Antennas

- UNQUESTIONABLY the most important part of any receiving station is the antenna. Much has been said regarding the construction of an antenna, but correspondence from our readers shows that it still is an interesting subject and that we should continue to discuss it.

In the drawing we have the wellknown doublet type antenna. The important points in constructing this type of antenna are clearly labeled. For any particular frequency (wavelength) there is an optimum (best) length of each half of the doublet and an optimum height above ground. However, the latter is not so important as the length of the antenna, that is for general short-wave reception.

Next in importance are the type of lead-ins used, the material used for insulation, and the kind of supports used to hold the antenna up. The leadins of the doublet can be either transposed, spaced paralleled wires, or in the form of a twisted pair. For each type there is a most effective type of coupling transformer.
When purchasing the coupling transformer, be sure to specify the type of lead-ins you intend to use. The insulators should be of the highest grade

The doublet is really one of the most effective antennas that can be used for short-wave reception. Many hints are given in this article regarding the construction of an efficient doublet.

The most critical points of the doublet are here shown.
obtainable and the tie-wires, that is the supporting portion between the antenna insulator and the mast, or other support such as a building or tree, should he preferably a non-conductor, (heavy rope). If this wire is longer than 4 or 5 feet it should be broken up cceasionally with insulators.

Wherever possible avoid fastening the antenna to metal masts and in all cases, keep the antenna proper as far away from surrounding objects as possible, especially metal objects. The length of each section of the doublet is probably most important of all. For a given frequency or wavelength, each section of the antenna should have a certain length.

For instance, for the 49 meter band each section of thee flat top should be approximately 38 feet long. For the 31 meter band each section should be 24 feet long and for the 25 meter band it should be 18 feet long, and for the 19 meter band it should be 15 feet long.
In all cases, the antenna should be located as high above the ground as possible. The doublet received best those stations which are facing its broadside; in other words, to receive stations east and west, the antenna should be run north and south.

S. W. Station Time Graph

(1) Einch square under the hours represents 1 hour. For example: A line diawn through all the squares from 7 A.M. to 5 P.M. means that that station broadcasts from 7 A.M. to 5 P.M. This particular time is for Statiom PSA, Rio de Janeiro, Brazil, on 21.08 Megacycles. In the same way, a line drawn through all of the squares under Mond., Tues., etc., means that the station is on every day in the week from 7 A.M. to 5 P.M. Ahove time based on Eastern Std. Time. Central, Mountain and Pacific Time are shown immediately under Eastern Std. Time.
(2) If a atation broadcasts at different hours of the day on the same day, an explanation is beat made by examining the chart under Station

RNE, Moscow, Soviet Union, at 12.00 Megacycles. The 3 lines under the hours and the line under the days, show that the station is on the air from 5 A.M. to 6 A.M. $; 8$ A.M. to 9 A.M. and 10 A.M. to 11 A.M. on Sunday. This time is also based on Eastern Std. Time. The corresponding time for Central, Mountain and Pacific is given below the Eastern Std. Time.
(3) Draw a line through all of the "standard" times at the top of the page, except the one in which you are located. The chart will then be correct for your location.

"Peach of a Magazine"

Editor, Short Wave Listener:
Many thanks for putting out a "peach" of a magazine. It surely has gotten off to a fine start. I hope it keeps up right along. I think it's so good that it should come out at least once a month.

I have been entertained and thrilled by short waves for about three months now. In all, during this time, I've logged about 130 stations, practically all broadcasters. I do all my listening on the loudspeaker; nix on the earphones. They're all right if you want to listen in at 3 A.M. But I don't. At
entertainment. Something too should be done to make amateurs take care in letting their harmonics run all over the short waves.

The magazine is worth many times what is charged for it. The features that I like best are the pictures and stories of the stations, especially the photos. We like to see what the place looks like that we listen to. How about more of this?

The fiction stories are great stuff; more and bigger stories would be to my liking. Those articles on special applications of short wave are welcome. The maps are okay. What
was entirely satisfactory to all parties concerned.

I also want to say that I have been hearing a Spanish-speaking station on about 26 meters for quite a while, and haven't been able to identify it. I haven't seen it listed as yet either. It is on every evening from 6:30 P.M. to 7:00 P.M., E.S.T., and uses a bugle call as an interval signal. I wonder if it couldn't be the CT3AQ Funchal, Madeira, that Mr. Shuler Doron wrote of in the May issue. Has anyone else heard this station and identified it? If you have, won't you write?

Well, here's hoping you much suc-

The
that time I'm peacefully unaware of what's happening in Japan or Java. I'm using a small 5 -tuber, and the aerial is only the window-sill cage type. I don't use a ground. I get better results with it. The reason why I use the window-sill aerial is because it isn't feasible for me to put up a doublet here. I have a wire connected to a cold water pipe, and when I want more volume on 31 or 25 meters, I connect it to the aerial lead. The increase in volume is 100%.

The one thing that makes me sore is to be listening to a fine program and then all of a sudden have a car roar by. It makes me gnash my teeth and feel like taking a cannon and blasting the car to kingdom come.

I believe that I have converted quite a few people to short waves. They didn't believe in overseas reception until they heard RNE, or D, G, or F stations come in loud enough to be heard out on the street.

Something though should be done about the short wave situation as it is now. There are so many of the smaller stations broadcasting, especially on 49 meters," that they "make a mess of things." They spoil reception from other stations and usually don't broadcast especially good entertainment. The International Radio Commission could remedy this very easily. So many strong stations could be allocated to each country and no more. They could broadcast the best entertaniment available, and could be spaced far enough apart so that one station wouldn't heterodyne another.
Code transmitters too could be put in one group and not allowed to spoil reception from the broadcaster by having it come in pounding away for all it's worth, and completely ruining the

> In this department we will print in each issue letters from short-wave listeners of value to all readers. We are particularly interested in those that have constructive criticisms and information that may be of value and help to other short-wave listeners. Only those letters which are deemed of sufficient importance will be printed here. It makes no difference whether your letter is laudatory or whether it contains a "brickbat," it will be published just the same, as long as the information is deemed worthy.
> Address all communications to THE LISTENER SPEAKS, care of THE SHORTWAVE LISTENER, $99-101$ Hudson Street, New York City.
about pictures of police, television, airport, and commercial stations?
The S-W hints are right handy; more of them. Also of "'The Listener Asks". The cover designs are excellent.

And how about giving each month a little bit of the history of short-wave development and application in language understandable to the listener, and illustrated?

What about trying to print the program schedule for the most important stations for the period immediately following the issue of the magazine? How about making it the size of Short Wave Craft? And a column on the pattern of "When to Listen In" in Short Wave Craft? A column of unusual short-wave facts, events, and happenings?

I here want to thank Pierre A. Portmann for his fine photo in the May issce. I always wanted to mount my "veris" in a prominent place. But I found that if I tacked them up on the wall, the said wall would look like a scene if the cards were later taken down. I noted that Mr. Portmann mounted his cards on one large piece of cardboard by means of mounting corners. I did the same and the result
cess with Short Wave Listener, and also hoping it comes out monthly very soon and this gets into print.

> ERNEST J. ARISHEK, 118 White St.,
> Westfield, Mass.

Just What The Listener Has
 Waited For

Editor, Short Wave Listener:
I am only an insignificant short wave listener but I wish to say that your magazine is just what the listener has been waiting for.

Unfortunately I live in the down town district and the noise level is very high which of course is a hinderance to successful listening. As you desire information on new stations I wish to say that a new one in Bogota, Columbia, has been sending out experimental programs during the last few days from 5:30 to 7:15 PM. CST. The address is HJB Radio Dept. Minister of War, Bogota, Colombia. S. A. The frequency is a little lower than EAQ.

I would like to correspond with other listeners and I think your magazine should have a space for a list of those who would care to correspond with others. Also a tip to verification card collectors is to listen more frequently to the 20 meter amateur bands as very nice cards are sent by most of them. (Foreigns of course.) I have a few of them and I prize them much more highly than cards from commercials.
I will send you a picture of my listening post soon and in the meantime I wish your magazine infinite success.

My receiver is a home-built seven tube superhet.

OSCAR JAEGER, JR.,
117 Easton St.,
Alton, Ill.

OUR

Helps Find Stations Quickly

F'ditor, SHort Wave Listener:
Enclosed please find stamps for which kindly send me a copy of March, Official Short Wave Listener. I just discovered this magazine through a friend of mine and was very much taken with page 13, "Where To Find S-W Station on Your Dial", and hope you will see your way clear to show more stations in the same way in some of your future publications, as I am going to subscribe to this magazine.

WILLIAM L. SEEBOHM,

R. D. No. 3,

Irwin, Penn.
S.W.L.-A New Deal for the "Listener"
Editor, Short Wave Listener:
We short-wave fans get a "New Deal" as the Short Wave Listener begins publication. It's just what we've been looking forward to for such a long time.

You ask for helpful suggestions and I think it would be a good idea if you would start a column similar to the "Short Wave Scout News" in "Short Wave Craft" Magazine. You could put it in a non-technical way so everyone could easily understand it. Such tips ought to be helpful to the listener.
My new 2 tube battery Doerle sure brings in the stations with a bang. Here's most of the best catches up to now:
VK2ME, VK3ME, VK3LR, JVN, JVT, LSX, PRF5, RKI, RNE, DJA-C-D-E-N, GSA-B-C-D-E-F-G-L, FYA-19, 25.2, 25.6, EAQ, GDS, HC2RL, HKB, HKE, HJ1ABB, HJABD, HJ4ABA, HJ2ABC, HIX, HI7G, HBL-P, HP5B, HPF, KKQ-Z, WKO-V, COC, COH, CJA, CJRO-X, CO2HY, 2RO-49m., 31m., PHI-25m., $16 \mathrm{~m} .$, PCJ, YV3RC, YV4RC, YV5RMO, TIEP, ORK, W6LR, W6AM, XIG, XEBT, CT1AA, OAX4D, PRADO.

J. GORDON BACH,
206 Kelso Rd.,

Columbus, Ohio.

Other Magazines Too Technical?

 Editor, Short Wave Listener:I traded my old radio in last March and bought an all-wave receiver. I dion't know anything about $\mathrm{S}-\mathrm{W}$ so went down to the drug store to see what they had in radio magazines. I bought several. One of them was the March issue of Official Short Wave ListenER. The other magazines were too technical for me to understand and seemed to be more for persons having S-W stations.

The only trouble with your magazine is that you should publish it monthly
instead of every other month. I pestered the druggist for weeks waiting for the second issue which I now have. I enjoy seeing pictures of the stations in foreign countries which I have listened to, and also photos of the singers. I aiso enjoy the fiction story in each issue. I think that your page on how to identify foreign stations by signatures is a big help too; I never heard of veri cards before reading the article in the March issue. Also the article cu" "Tuning in S-W Stations" was just what I was looking for.

The "Dial" and "When To Tune" was a big help. After reading the article on High Fidelity, I tuned in W2XR and aiso W9XBY, St. Louis, on about 1540 kilocycles. I think an article on aerials and grounds is always of value to listeners and also The Grand Short-Wave Station List. Also the "Listener Asks" page should help many with their troubles. I like the new page S-W Hint in your May issue as it gives the listener valuable hints. I think the "Listener Speaks" page should help to improve your magazine-if that is possible. The S-W Time Graph is handy as you only have to look at the clock and then at the Graph to see what stations are on the air.

READERS

I have a 7-tube "Airline" All-Wave receiver and have obtained good results by using a single wire for the aerial and a shielded lead-in. I have heard COC, COH, CMA, HJ2ABA, YV4RC, PRF5, PRADO, TIEP, YV3RC, HJ4ABE, YV5RMO, HC2RL, DJD, DJC, GSC, GSE, GSB, EAQ, and KIO, besides North American stations. I reard a station sending musical selections the other afternoon on about 14 megs. announce W5DCO, El Paso, Texas, but couldn't find it on your station list.

KENNETH McGOVERN, 434 Sheldon, S.E., Grand Rapids, Mich.

Oh! Those "Code Hogs"
 Editor, Short Wave Listener:

I can see easily that much of the money now invested in short wave magazines and in departments devoted to sliort wave broadcasting and reception is to be lost. The short wave develcpment is doomed! Interest in it will die out as quickly as it sprang into life. This is absolutely certain; I know from my own experience and that of many others with whom I am in contact. I believe that some years hence interest in short-wave developments will revive, but for some time-possibly a year-short-waves will be a "dead duck"!

The short wave development is to be killed off by the code hog. The buyer of a short-wave set is not told that whether or not he receives any selected foreign station depends entirely upon the will of the code hog. But this is the fact.

For the first few months I was as enthusiastic over short-wave reception as any one. Now I only tune in for a moment or two on any selected station to see if it is free of the code hog. IT NEVER IS!
What is the use to try to tune in FYA, or Valencia, or Rio Janeiro, GSC, DJC, EAQ, Rome or any other? Whenever you tune in-night or daythe wave channel of the selected station is occupied by a code hog! Why is no mention ever made of this fact?

As I understand it there is no authority that can clear the broadcast channels and force these code hogs off into free channels. This means the end of the short wave development! What is the use of tuning in FYA and have the code hog signals so interfere as to make noise out of what might otherwise be the finest music?
Another difficulty is that there is no international authority to co-ordinate the many foreign broadcast stations sc that they do not interfere as to wave length and time of broadcast. As I understand it, this is an incurable condition.
So, just as the short wave development reaches its peak the code hog and lack of the international control brings the entire development to an end-so far as the listener is concerned. And the rotten feature is that the finer the receiver, the worse the condition. And there is no way under the sun that one can tune out one of two stations on exactly the same wave-length. I only know if I had any money invested in short-wave interests in any form, I would now be doing my utmost to get it back-and I am making this fact clear to all my friends. Let the code hog have the entire short-wave band and be done with it. There is no music in a mixture of code and music.

Yours in disgust,
J. MARTIN DUPONT, 2259 Houghton Ave., New York City.
IDEAS
(We are inclined to disagree with you, Mr. Dupont, when you say it is $i \cdot n p o s s i b l e ~ t o ~ l i s t e n ~ t o ~ s h o r t-w a v e ~ s t a-~$ tions without any success, due to interference caused by what you term "code hngs." We have spent a good many years listening on the various shortwave bands and Lave never experienc-
(Continued on page 190)

Call Signal Prefixes --- By Countries

Esthonia ..ESA-ESZ	
Ethiopia	ETA-ETZ
F'inland ..OFA-OHZ	
France \& Colonies \& Protectorates	
	F, TKA-T77
Germany	D
Great Britain	G, M
Greece	SVA-S7Z
Guatemala	TGA-TGZ
Haiti	HHA-HHZ
Hedjaz	HZA-HZZ
Honduras	HRA.HRZ
Hungary	HAA-HAZ
Iceland	...TFA-TFZ
Iraq	YIA-YIZ
Irish Free State	EIA-EIZ
Italy \& ColoniesI
Japan	
Jugoslavia	YTA-YUZ
Latvia	YLA-YLZ
Liberia	ELA-ELZ
Lithuania	LYA-LYZ
Luxembourg	..LXA-LXZ
Mexico	XAA-XFZ,
Morocco ..CNA-CNZ	
Netherlands (Holland)	PAA-PIZ
Newfoundland	VOA-VOZ

Prefixes By Calls

CAA-CEZChile
CFA-CKZ	-.Canada
CLA-CM7Cuba
CNA-CNZ	Moroce
COA-COZ	Cuba
CPA-CPZ	Bolivia
CQA-CRZ	Portuguese Colnnies
CSA-CUZ	Portugal
CVA-CXZ	Uruguay
CYA-CZZ	Canada
D	Germany
EAA-EHZ	Spain
EIA-EIT	Irish Free State
EIAA-ET.7	Liberia
EPA-EQZ	Persia
ESA-ESZ	Estonia
ETA-ETZ	Ethiopia
FFra	and Colonies and Protectorates
G	Great Britain
HAA-HAZ	Hungary
HBA-HBZ	..Swiss Confederation
HCA-HCZ	Ecuador
HHA-HHZHaiti
HTA-HT\%	Dominican Republic
H.JA-HK\%	...Colombia
HPA-HP7.	Panama
HRA-HRZ	Honduras
HSA-HST	Siam
HVA-HVZ	Vatican City State
HZA-HZZHedjaz
	Italy and Colonies
Japan

KUnited States of America	
LAA-LNZ	..Norway
LOA-LWZ	.Argentina
LXA-LXZ	Luxembourg
LYA-LYZ	Lithuania
LZA-LZZ	Bulgaria
M	Great Britain
N	United States of America
OAA-OCZ	..Pera
OEA-OEZ	Austria
OFA-OHZ	Finland
OKA-OKZ	Czechoslovakia
ONA-OTZ	Belgiurn and Colonies
OUA-OZZ	..Denmark
PJA-PJZ ...Curacao	
PKA-POZ Dutch East Indies	
PPA-PYZ	Brazil
PZA-PZZ ... Surinam	
R \qquad Union of Socialist Soviet Republics (USSR)	
SAA-SMZ	Sweden
SOA-SRZ	Poland
STA-SUZ	...Egypt
SVA-S7Z	Greece
TAA-TCZ	Turkey
TFA-TFZ	.Iceland
TGA-TGZ	Guatemala
TIA-TIZ-Costa Rica

TKA-TZZ

ly one ocean? It is nothing. A hollow, oval zero! Short-wavers who cannot now drag in Australia by daylight on a home-grown, two-lunger wire puzzle, are-to blurt badly-mentioned and censored in one breath. To win first degree standing in the Kilocycle Klan, you must dial the VK station as above, then hold for two hours, make a "recording" of the program, ship same to Sydney and have the message verified by cousin 2ME

Becoming a "short-wave trapper" is simple. You merely sprain a neck or ankle, settle yourself at home for a month, borrow a radio parts catalog and let science have its way with you! Science asks only a workbench, a 22 hour day, two old screw-drivers, shockproof ears, 1 heaping bedroomful magnet wire and $\$ 8.91$ for parts (ear-

The "DX" Fever Epidemic
 (Continued from page 157)

phones, battery ,tubes, insurance, solder and patience extra).

Interviewed recently, a man who had fashed open the wrong door claims to have had a brief, terrifying glimpse of a short-wave prisoner's den. It was (he relates) such a complete mass of wires that for one appalling second he idiled to grasp the idea of wireless! He narrowly escaped entering that sparking, crackling whirlpool! The patient struggled feebly in a flood of bright gadgets, of which the gasping visitor (in backing out) recognized
orily chokes, dials, grommets, binding posts, meters, switches ,audio transformers, sockets and bandaged fingers.
In a few years hence we will be hardening ourselves to hearing babies christened Bandspread-Bandspread, Single-Signal, QSL, Superheterodyne, Dual Wave, Select-o-band, Megacycle and probably "Shadow Tuning"! It would be painful to forecast the nicknames
It is a waste of vocal vibration to cren your Thursday newspaper and drawl," "I see this Pufsky in Siberia says-" to your short-wave friend with the degree SWL (L as in Listener) because the SWL has heard Pufsky (directly) at noon Tuesday. The SWL knows all languages. Or he may have gone whole hog in his hobby, and I.earned Code!

$\begin{array}{ll}\text { This list of short-wave relay broadcasting, } & \text { dresses included wherever possible so that you } \\ \text { commercial and experimental stations is the re- } & \text { may know where to write. The blank spaces are } \\ \text { sult of several years of work. Names and ad- } & \text { for the dial settings of your own set. }\end{array}$

Station	d•al	Station	Dial	Station	Dial	Station	Dial
						$\begin{aligned} & 9530 \mathrm{kc} \quad \star \mathrm{~W} 2 \mathrm{XAF} \\ & \text { 31.43 meters } \\ & \text { G- GENERAL ELECRIC } \end{aligned}$	
				$\begin{aligned} & 9760 \mathrm{kc} \text {. VLJ-VLZ2 } \\ & \text { 30.74 meters } \\ & \text { C- } \\ & \text { AMALGAMATED WIRELESS } \\ & \text { OF AUSTRALIA } \\ & \text { SYDNEY. AUSTRALIA } \\ & \text { Phones Java and N. Zealand } \end{aligned}$			
						MELBOURN. P. Bó AUSTRALIA Wed., Thirs., Fri., sat. 5:00-7:000 $\begin{array}{ll}\text { a.m.... }\end{array}$	
						$\begin{aligned} & 9500 \text { kC. } \\ & \text { B- } \begin{array}{l} 31.58 \text { meters } \\ \text { RIO DE JANEIRO. BRAZIL } \\ \text { Daily } \\ \text { except Sun. } 5: 30-6: 15 \\ \text { p.m. } \end{array} \end{aligned}$	
\qquad							
11830 kc . ${ }^{\text {W }}$ 2XE		10410 kc . KES					
		BOLINAS, CALIF. ests evenings				9415 kc . C. 31.87 meters BANDOENG. JAVA	
11811 kc . \quad 2RO		$\left\lvert\, \begin{aligned} & 10350 \mathrm{kc} . \\ & 28.98 \\ & \text { meters } \\ & \text { LSX } \end{aligned}\right.$		GENEVA, SWIT ERLAND Mon. at 1.45 a.m.		Phones Holland around 9:45 a.m.	
						- B . 32.88 meters "RADIOLABOR" GYALI-UT, 22	
30 p.m.		10330 kc . ORK				Sunday $6.7{ }^{\text {p P.m. }}$	
		-B. C- 29.04 meters BySSELEDE, BELGIUM Broadeasts 1:30-3 p.m.				$9010 \mathrm{kc} \quad \text { KEJ }$	
$11790 \mathrm{kc} \quad \text { WIXAL }$		Broadeasts irregularly		$90 \mathrm{kc} \underset{31.28}{ } \underset{\text { meters }}{\text { W }}$ SXAU		bogota. colombia	
BOSTON. MASS. Irregularly in the afternoon		10260 kc. PMN				gular ; 6:30 p.m.-12 m.	
		C- BANDOENG, JAVA Calls Australia 5 a.m.		$9580 \mathrm{kc} . \quad \star \mathrm{GSC}$			
broadcasting house, 		$10250 \mathrm{kc} . \quad \text { LSK3 }$		B- $\begin{gathered}34.32 \text { meters } \\ \text { BRITISH BROAD. COPP. } \\ \text { DAVENTRY. ENGLAND }\end{gathered}$.		$\frac{\text { Relays }}{8214 \mathrm{kc} \text {. } \quad \text { HCJB }}$	
$11750 \mathrm{kc} . \quad \star \text { GSD }$		HURLINGHAM. ARGENTINA Calls Europe and noon and evening.		$9580 \mathrm{kc} \underset{-\mathrm{B} .32}{ }+\mathrm{Veters} \mathrm{VK} 3 \mathrm{LR}$			
		10055 kc. ZFB				8185 kc . PSK	
		-C. $\begin{aligned} & \text { 29.84 meters } \\ & \text { HAMILON } \\ & \text { Phis }\end{aligned}$ Phones N. Y. C. daytime		MELBOURNE, AUSTRALIA $\begin{array}{ccc}\text { 3:15-7:30 } & \text { a.m. } & \text { except Sun. } \\ \text { Also } & \text { Fri., } & 10: 30 \\ \text { p.m.. } 2 & \text { a.m }\end{array}$			
						8036 kc. 37.33 meters RABAT, MOROCCO Sunday, $2: 30-5$ p.m.	
		$\begin{array}{ll} 9890 \mathrm{kc} . & \text { LSN } \\ \hline 0.33 \text { meters } \end{array}$		9570 kc. *WIXK		$\overline{7880 \mathrm{kc.}} \mathrm{JYR}$	
		HURLINGHAM, ARGENTINA Calls New York evenings \qquad		Relays WBZ. 6 a.m. 12 m .		KEMIKAWA-CHO. CHIBA. KEN, JAPAN Sun. 4:14-10:44 \quad D.m.	
P. O. BOX 50, MEDELLIN, COLOMBIA rregularly $5-11$ p.m.		7860 kc . ${ }^{2}$ EAQ		9596 kc VUB		7860 kc . HC2JSB	
$\overline{11680 \mathrm{kc}} \underset{\text { K. }}{ } \mathrm{KIO}$		MAD ${ }^{\text {P. }}$ BIO, SPAIN ailiy 5:15-7-30 p.m. Saturday also 12 n. 2 p.m.				$\begin{gathered} \text { 38.17 meters } \\ \text { GUAYAQU1L, ECUADOR } \\ 8: 15 \mathrm{p} . \mathrm{m} .-12 \mathrm{~m} . \\ \hline \end{gathered}$	
Tests in the evening		9840 kc. JYS		9560 kc . \quad DJA		7799 kc . ${ }^{\text {chBP }}$	
						- B . 38.47 meters LEAGUE OF NATIONS. 5:30-6:15 p.m., Saturday	

Police Radio Alarm Stations

CGZ	Vancouver, B.C.
CJW	St. Johns, N.B.
CJZ	Verdeen, Que.
KGHA	
KGHB	Portable-Mobile
KGHC	In State of Wash.
KGED	
KGHE	
KGHG	Las Vegas, Nev.
KGHK	Palo Alto, Cal.
KGHM	Reno, Nev.
KGHN	Hutchinson, Kans.
KGHO	Des Moines, Iowa
KGHP	Lakton, Okla.
KGHQ	Chinook Pass, W.
KGHR	(Mobile) in Wash.
KGES	Spokane, Wash.
KGHT	Brownsville, Tex.
KGHU	Austin, Tex
KGHV	Corpus Christi, Tex.
KGEW	Centralia, Wash.
KGHX	Santa Ana, Cal.
KGHY	Whittier. Cal.
KGHZ	Little Rock. Ark.
KGJX	Pasadena, Cal.
KGLX	Albuquerque, N.M.
KGOZ	Cedar Rapids, Iowa
KGPA	Seattle, Wash.
KGPB	Minneapolis, Minn.
KGPC	St. Louis, Mo.
KGPD	San Francisco, Cal.
KGPE	Kansas City, Mo.
KGPF	Sante Fe, N. Mex.
KGPG	Vallejo, Cal.
KGPH	Oklahoma City, Okla.
KGPI	Omaha, Neb
KGPJ	Beaumont, Tex.
KGPK	Sioux City, Iowa
KGPL	Los Angeles, Cal.
KGPM	San Jose, Cal.
KGPN	Davenport, Iowa
KGPO	Tulsa, Okla.
KGPP	Portland, Ore.
KGPQ	Honolulu, T.H.
KGPR	Minneapolis, Minn.
KGPS	Bakersfield, Cal.
KGPW	Salt Lake City, Utah
KGPX	Denver, Colo.
KGPY	Baton Rouge, La.
KGPZ	Wichita, Kans.
KGZA	Fresno, Calif.
KGZB	Houston, Tex.
KGZC	Topeka, Kans.
KGZD	San Diego, Cal.
KGZE	San Antonio, Tex.
KGZF	Chanute, Kans.
KGZG	Des Moines, Iowa
KGZH	Klamath Falls, Ore.
KGZI	Wichita Falls, Tex.
KGZJ	Phoenix, Ariz.
KGZL	Shreveport, La.
KGZM	El Paso, Tex.
KGZN	Tacoma, Wash.
KGZO	Santa Barbara, Cel.
KGZP	Coffeyville, Kans.
KGZQ	Waco, Tex.
KGZR	$\cdots \mathrm{l}$ ¢m. Ore.
KGZS	McAlester, Okla.
KGZT	Santa Cruz, Cal.
KGZU	Lincoln, Neb.
KGZV	Aherdeen, Wash.
KGZW	Lubbock, Tex.
KGZX	Albuquerque, N. Mex.
KGZY	San Bernardino, Cal.
KIUK	Jefferson City, Mo. Clovis, N. Mex.

KNFB	Idaho Falls, Idaho (Wash.) ${ }^{2414 \mathrm{kc} .}$	
KNFC		
K		2490 kc .
	S	2490 kc .
KNFE	Duluth, Minn.	2382 kc .
KNFF	Leavenworth, Kans.	2422 kc .
KNFG	Olympia, Wash.	2490 kc .
KNFH	Garden City, Kans.	2474 kc .
KNFI	Mt. Vernon, Wash.	2414 kc .
KNFJ	Pomona, Cal.	1712 kc.
KNFK	Bellingham, Wash.	2490 kc.
KNFL	Shuksan, Wash.	2490 kc .
KNFM	Compton, Cal.	2490 kc.
KNFN	Waterloo, Ia.	1682 kc .
KNFO	Storm Lake, Ia.	1682 kc .
KNFP	Everett, Wash.	2414 kc .
KNFQ	Skykomish, Wash.	2490 kc.
KNGE	Cleburne, Tex.	1712 kc .
KNGF	Sacramento, Cal.	2422 kc .
KNGG	Phoenix, Ariz.	1698 kc.
KNGH	Dodge City, Kans.	2474 kc.
KNGJ	El Centro, Cal.	2490 kc .
KNGK	Duncan, Okla.	2450 kc .
KNGL	Galveston, Tex.	1712 kc .
KSNE	Duluth, Minn.	2382 kc .
KSW	Berkeley, Cal.	1658 kc.
KVP	Dallas, Tex.	1712 kc .
VDM	Halifax, N.S.	1690 kc .
VYR	Montreal, Can.	1706 kc.
VYW	Winnipeg. Man.	2396 kc .
WCK	Belle Island, Mich.	2414 kc .
WEY	Boston, Mass.	1630 kc .
WKDT	Detroit. Mich.	1630 kc .
WKDU	Cincinnati, Ohio	1706 kc .
WMDZ	Indianapolis, Ind.	2442 kc .
WMJ	Buffalo, N. Y.	2422 kc .
WMO	Highland Park, Mich.	2414 kc .
WMP	Framingham, Mass.	1666 kc .
WNFP	Niagara Falls, N. Y.	2422 kc .
WPDA	Tulare, Cal.	2414 kc .
WPDB	Chicago, Ill.	1712 kc .
WPDC	Chicago, Ill.	1712 kc ,
WPDD	-Chicago, Ill.	1712 kc .
WPDE	Louisville, Ky.	2442 kc .
WPDF	Flint, Mich.	2466 kc.
WPDG	Youngstown, Ohio	2458 kc .
WPDE	Richmond, Ind.	2442 kc .
WPDI	Columbus, Ohio	2430 kc .
WPDK	Milwaukee, Wis.	2450 kc .
WPDL	Lansing, Mich.	2442 kc .
WPDM	Dayton, Ohio	2430 kc .
WPDN	Auburn, N. Y.	2382 kc .
WPDO	Akron, Ohio	2458 kc.
WPDP	Philadelphia, Pa.	2474 kc .
WPDR	Rochester, N. Y.	2422 kc .
WPDS	St. Paul, Minn.	2430 kc .
WPDT	Kokomo, Ind.	2490 kc.
WPDU	Pittsburgh, Pa.	1712 kc .
WPDV	Charlotte, N. C.	2458 kc.
WPDW	Washington, D. C.	2422 kc .
WPDX	Detroit, Mich.	2414 kc.
WPDY	Atlanta, Ga.	2414 kc .
WPDZ	Fort Wayne, Ind.	2490 kc.
WPEA	Syracuse, N. Y.	2382 kc .
WPEB	Grand Rapids, Mich.	2442 kc .
WPEC	Memphis, Tenn.	2466 kc .
W PED	Arlington, Mass.	1712 kc .
WPEE	New York, N. Y.	2450 kc .
WPEF	New York, N. Y.	2450 kc .
WPEG	New York, N. Y.	2450 kc .
WPEH	Somerville, Mass.	1712 kc .
W PEI	E. Providence, R. I.	1712 kc .
WPEK	New Orleans, La.	2430 kc .
WPEL	W. Bridgewater, Mass.	1666 kc .

Television Stations

2000-2100 kc.
VEgAU-Lonion, Ont., Can.
VE9DS-Montreal. Que
W $2 \times \mathrm{DR}$-Long Island City. N. Y
W8XAN-Jackson. Mich
W9XK-Iowa City, Ia.
W9XAK-Manhattan, Kans. W9XAK-Manhattan,
W9XAO-Chieago, In W6XAH-Bakersfild, Calif.

 \qquad						

2750-2850 kc.
w3XAK—Portable
W9XAP—Chicago, Ill.
W9XAP-Chicago, Inl.
W9xAL-Kansas City, Mo.
W9XG-W: Lafayette, Ind.
W $2 \times A B-$ New York, N.
W2XAB-New York, N.
VE9AR-Saskatoon, Sask., Can
VE9ED-Mt. Joli. Que., Can.

42000-56000, 60000-86000 kc. W2XAX New York, N. Y.
W6XA0-Ins Angeles, Cal W9XD-Milwaukee, Wis. W2XBT-rortable W $2 \times F-N e w$ York. N. Y
W3 W3XAD-Camden, N. J. wioxx-Portable \& Mohile (Virinity of Camden)

Kenosha, Wis.
Saginaw, Mich

WPEP	Kenosha, Wis.	2450 kc .
WPES	Saginaw, Mich.	2442 kc.
WPET	Lexington, Ky.	1706 kc .
WPEV	Portable (in Mass.)	1666 kc .
WPEW	Northampton, Mass.	1666 kc .
WPFA	Newton, Mass.	1712 kc ,
WPFC	Muskegon, Mich.	2442 kc .
WPFE	Reading, Pa,	2442
WPFG	Jacksonville, Fla.	2442 kc
WPFH	Baltimore, Md.	2414 kc.
WPFI	Columbus, Ga.	2414 kc .
WPFJ	Hammond, Ind.	1712 kc .
WPFK	Hackensack, N. J.	2430
WPFL	Gary. Ind.	2470
WPFM	Birmingham, Ala.	2382 kc .
WPFN	Fairhaven, Mass.	1712 kc .
WPFO	Knoxville, Ten.	2474 kc.
WPFP	Clarksburg, W. Va.	2490
WPFQ	Swathmore, Pa.	2474 kc
WPFR	Johnson City, Tenn.	2470
WPFS	Asheville, N. C.	2474 kc
W PFT	Lakeland, Fla.	2442 kc .
WPFU	Portland, Me.	2422
WPFV	Pawtucket, R. I.	2466
WPFW	Bridgeport. Conn.	2466
WPFX	Palm Beach, Fla.	2442
WPFY	Yonkers, N. Y.	2442
W PFZ	Miami, Fla.	2442
W PGA	Bay City, Mich.	2466
WPGB	Port Huron, Mich.	2466
WPGC	S. Schenectady, N. Y.	1658
W PGD	Rockford, Ill.	2458 kc .
WPGF	Providence, R. I.	1712 kc .
WPGG	Findlay, Ohio	1596 kc .
WPGH	Albany, N. Y.	2414
WPGI	Portsmot ${ }^{4}$ h, Ohio	2430
WPGJ	Utica, N. Y.	2414
WPGK	Cranston, R. I.	2466
W PGL	Binghamton, N. Y.	2442 kc .
WPGN	South Bend, Ind.	2490 kc.
WPGO	Huntington, N. Y.	2490
W PGP	Muncie, Ind.	2442 kc .
WPGQ	Columbus, Ohio	1596 kc .
WPGS	Mineola, N. Y.	2490
WPGT	New Castle, Pa.	2482 kc.
WPGU	Cohasset, Mass.	1712 kc .
W PGV	Boston, Mass.	1712 kc .
WPGGW	Mobile, Ala.	2382
WPGX	Worcester. Mass.	2466 kc.
WPGZ	Johnson City. Tenn.	2474 kc.
WPHA	Fitchburg, Mass.	2466 kc.
WPHE	Nashua. N. H.	2422 kc
WPHC	Massillon, O.	1682 k
WPHD	Steubenville, 0.	2458
WPHE	Marion Co., Ind.	1634 kc.
WPHF	Richmond, Va.	2450
WPHG	Medford, Mass.	1712 kc
WPHI	Charleston, W. Va.	2490
W PHJ	Fairmont, W. Va.	2490 kc .
W PHK	Wilmington, 0 .	1596
WPHL	Portable in Ohio	1682
WPHM	Orlando, Fla.	2442 kc
WPHN	Tampa, Fla.	2466
WPHO	Zanesville, Ohio	2430
W PHP	Jackson, Mich.	2466
WPHQ	Parkersburg, W. Va.	2490 kc.
WPHS	Culver. Ind.	1634
WPHT	Cambridge, Ohio	1682
WPHV	Bristol, Va.	2450
WPHY	Elizabethton, Tenn.	2474 kc
WPSP	Harrisburg, Pa.	1674 kc
WQFE	Seymour, Ind.	1634
WRBH	Cleveland, Ohio	2458
WRDQ	Toledo, Ohio	2474
WRDR	Grosse Pt. Village, Mich.	2414
W RDS	E. Lansing, Mich.	1666

Grand Short-Wave Station List

- This Grand List of Short-Wave Stations of the World is a carefully edited one, and especially compiled by the editors. Only those short-wave stations which the average listener is likely to hear have been included in this list. A special "Quick Reference" list appears elsewhere in the magazine, giving the "Star" short-wave broadcasting stations, while another specially edited list contains the "Television" and "Police" station call letters.

The editors will be glad at all times to receive corrections from our readers, and particularly any additional information on new stations not found in this list. In giving this information, please write such data on a separate sheet if the letter contains references to any other subject, so that these corrections can be handed directly to the editor of this department. A postcard will frequently serve the purpose for sending us such information.

Short Wave Phone Stations By Order of Frequency in Megacycles

$\begin{aligned} & \text { Freq. } \\ & \text { Mc. } \end{aligned}$		ALL and LOCATION	Freq. Mc.	CALL and LOCATION		Freq. Mc.	CALL and LOCATION	
		99 TO 180 METERS	1.600	PIC	Schereningen Lighthouse Dep.	1.819		Ringsted
1.510	VAF	Alert Pay, Can. ${ }^{\text {a }}$	1.615	PIB	Netheriands Brandaris Lighthouse, Neth.	1.840 1.860	YDJ4 YDK6	Cheribon, Netherl. Indie, (B) semarang. Netherl. India, (B)
1.510 1.510	CJD	Camplell River, B.C., Can. Cape Lazo, Can.	1.615 1.615	PCD	Haaks Lightship, Netherlands			semarang. Netherl. India, (B)
1.510	CJN	Cape Lazo, Can. ${ }^{\text {Cardero Chanel, }}$ B.C., Can.	1.615	PIA	Kykduin Semaphore, Neth.			60 1O 120 METERS
1.510	CJE	Ceepeecee, B.C., Can.			Terstherlands	$\begin{aligned} & 1.875 \\ & 1.875 \end{aligned}$	EAU	San Lorenzo, Canary Islands
1.510	CJK	Knight lulet, B.C., Can.	1.615	YDB4	Tjepoe, Netherland India (B)	1.875	DCA	Adergrund Lightship, Germany Bremen Lightship, Germany
1.510	VCU	Merry Island, Can.	1.620	CZB	Bellevue, P.Q., Canada (B)	1.875	DCK	
1.510	CFV	Namu, B.C., Can.	1.620	CFC	Cub Lake, Sask., Canada	1.875	DCG	Elbe Lightship No. 2, Germany
1.510	CKQ	Powell River, B.C., Can.	1.620	CGV	Emma Lake, Sask., Canada	1.875	DCI	Elbe Lightship No. 4, Germany
1.510 1.510	YLZ	Riga, Latvia (X) ${ }^{\text {Theodosia Arm, B.C., Can. }}$	1.620 1.620	CZJ	Me-a-la-Crosse, Sask., Canada	1.875	DAC	Fllbe-Weser, Geruany
1.510	CYG	Thurston Bay, B.C., Can.	1.620	CGQ	Kenora, Ont., Canada	1.875	DCU	Robbinplate Lighthouse, Ger.
1.510	VAI	Vancouver, B.C., Can.	1.620	CMF	Manicouagan River, P. Qanada	1.875		Rugan, Gurmany
1.510	CJH	Viner Sound, B.C. Can	1.620	czy	Riviere du Chef, P.Q., Canada	1.875	TFH	Husavik, Iceland
1.510	CJR	Wakemmn Sound, B.C., Can..	1.620	Czz	St. Felicien, P. Q., Canada	1.875	RFAW	Moscow, Russia
1.520	VIA	Adclaide, Australia	1.620	CFL	Tabouret, P. Q., Canada	1.875	RLXS	Saratov, Russia
1.520	VKO	Aydnes, Australia	1.620	CJC	Thunder Mt., Sask.. Canada	1.880	YDO9	Soerabaja, Netherl. India, (B)
1.523	GUF	Alerney, United Kingdom	1.620 1.622	VKA	lixperimental, Canada	1.898	ESP	Parnu. Estonia
1.523	GUB	Lechboisdale. United lingot	1.622	VJE	Bogolara, Australia	1.900 1.900	YDG6 RW69	Batavia, Netherl. India, (B)
1.523	GUA	Tobermory. United Kingdom	1.622	VJF	Cootanuondra, Austral	1.910	RW6.	Odessa, Russia, (T)
1.530	W9XBY	Kansas City, Missouri, USA	1.622	VJH	Gundagai, Australia	1.920	YOH9	Buitenzorg. Xetherl. India, (B)
		(BX) ${ }^{\text {Prospert }}$ Twp Conn USA (BX)	1.622	VJO	Koorawatha, Anstr	1.940	OHN	Hango, Fimland
$\begin{aligned} & 1.530 \\ & 1.530 \end{aligned}$	W1xbs	Srospert Twp, Conn., USA (BX)	1.622	VKJ	Lithgow, Australia	1.940	YDN3	Kediri, Netherlan
1.532	CFC	Cul, Lake, Sask., Can.	1.622	VKB	mburrah, Austra	1.960		Ship Stations, Germany
1.532	CGV	Emma Lakp. Satk., Can.	1.622		Portable, Burrinjuck, Australia	2.000	TFG	Treraa. Denmark
1.532	CZJ	Tle-a-1a-('rosse, Sask., Can.	1.622		Portable, Lithgow, Australia	$\begin{aligned} & 2.000 \\ & 2.020 \end{aligned}$	RIAD	Grimsey. Iteland
1.532	CGQ	Lac la Ronge. Sask., Can.	1.622	OXB	Blavand, Denmark. 2 B	2.020		Dijni-Chkaft, Russia
1.532	CJC	Thunder Mountain, Sask., Can.	1.622	OUY	Vyl Lightship, Denmark	2.050	VJI	
1.538	osw	Antwerp. Belgium	1.629	ESS	Onmussaar, Fistonia	2.090	DAS	
1.538	OYM	Christianso, Denmark	1.630	YDD2	Bandoeng, Netherland India	2.098	-	Kronborer
1.538	OXJ	Thorshavn, Denmark	1.640	YDA3	Buitenzorg, Netherl. India, B	2.110		Ship-to-Short radiophone, USA
1.538	OZK	Thorshavn, Denmark	1.648	TFA	Reykjarik, Iceland	2.110	YDI2	Soekaboemi, Yetherl. India, (B)
1.538	TFO	Malmey, Iceland	1.648	TFX	Siglufjordur, Iceland	2.126		Ship-to-shore. USA
1.538	TFS	Stykkixholmur, Irel	1.648	TFV	Vestmannaeyjar. Ireland	2.140	DAC	Elbe-Weser, Germany
1.540	VBY	Linnenburg. N.S., Can	1.660	YDB3	Ijokojakarta Netherl. Ind.. (B)	2.140	VHO	Miltourne, Australia
1.540	VK3EJ	Melbourne, Australia (Fir			80 TO 160 METERS	2.174		Ship-to-Shore, USA
1.540	CJD	Thurston Bay, B.C., Can	1.690		Burnham, Inited Kingl	2.198 2.206	VYV	Chip-to-Shore, USA
1.550	W6XAI	Bakersfield, Calif. (B3X)	1.712	CZG	Prince Rupert, B. C., Canada	2.212	VYZ	
1.550	W2XR	Long Island City, N.Y., USA	1.712	CZF	Yancouver, B. O., Canada	2.230	RT 7	Azor-on-le-Don, Russia
			1.712	CZE	Victoria. 13. C., Canada	2.252	KIUG	Portable, ITSA
1.550	YDA4	Soekaboemi, Neth. India (B)	1.714	ESG	Tallinn-(tlemiste, Etonia	2.252	KIUF	Portable, USA
1.550		Naral stations, United Kingdom	1.715		Amateurs, Argentina	2.252	KIUE	Portable, USA
1.560	CZA	1)rummondville, P.(Q., Can.	1.715		Amateurs, Canada	2.252	KIUD	Portable, USA
1.560	VBQ	Halifax, N.S., Can,	1.715		Amateurs, Ecuador	2.252	KIUC	Portable. ITSA
1.570	YDBG	Malang. Netherland India	1,715		Amateurs, Estonia	2.252	KIUB	Portable, USA
1.579	VLA	Cape Bruny, Australia	1.715 1.716		Amateurs, Union of So. Africa	2.255	DAC	Fibe-W ${ }^{\text {a }}$ Ser, Germany
1.579	VLB	Mantsuyker Isl.. Australia	1.716		(1)	2.284	CKO	Crane Inland, P. Q.. Canada
1.579	VLC	Tasman Isl. Australia	,		Amateurs, USA	2.284	CFI	Flages Cove, N. B., Canada
1.579 1 1 1	DCA	Adtergrund Lightship, Germany	2.000			2.284	CFT	Leamington, Ont.. Canada
1.579	DCV	Bremen Lightship, Germany	1.720	DAL	Bremerhaven Lloydhalle, Ger.	2.284	CKP	Montmagny, P. Q., Camada
1.579 1.579	DCK DCG	Etbe Lightship No. 2, Germany	1.730	YLY	Liepaja, Latvia, (X)	2.284	CFX	Pelee Tsland. Ont.. Canada
1.579	DCG	Eibe Lightship No. 3, Germany	1.735	RFAU	Bykovo (Moskow Obl.) Russia	2.284	CKB	P'ictou, N. S., Canada
1.579 1.579	DCI	Ethe Lightship No. 4, Germany	1.754	OYE	Ronne. Denmark	2.284	CKU	Pictou Island, P. Q., Canada
1.579	DCU	Robbe nuplate lighthouse, Germ.	1.760	GMH	Main Head, Irish Free Sta	2.284	CFZ	Welehpool, N. B., Canada
1.579		Ship Stations. Germany	1.760	GCK	Valentia Irish Free State	2.290	CFW	Bones Bay, B. C., Canada
1.579	OYG	Jakobshavn, Greenland	1.760		Burnham, Cnited Kingdom	2.290	CJE	Ceepercee, B, C., Camada
1.580	CJM	Borden. P.E.I., Canada	1.760		Cullercoats, Urited Kingdom	2.290	VFJ	Homalko, B. C., Canada
1.582	YDD3	Butavia. Netherland India (13)	1.760		Fishguard. Tnited Kingdom	2.290	CZL	Humpback Bay. I3. C., Canada
1.585	PCC	Noordhinder Lightship, Neth.	1.760		Humber Wnited Kingdom	2.290	CJY	Tackson Bay, B. C., Canada
1.585	PID	Vlissingen Conal Watch, Neth.	1.760		Lands Find, United Kingdon	2.290	CFV	Namu, B. C., Canada
1.595	OZP	Lynghy Denmark (B)	1.760		Niton, United Kingdom	2.290	CJL	Selwy Inlet, B. C., Canada
1.595	YDB5	Solo, Netherland India (B)	1.760.		North Foreland. United King.	2.290	CJR	Wakeman Sound, B. C., Canada
		Experimental, USS ${ }^{\text {S }}$	1.760		Portpatrick. United Kingdom	2.300	RHEA	Armavir, Russia
1.596	CFC	Cub Lake, Sask., Canada	1.760	----	Seaforth, United Kingdom	2.300	RKPU	Loubny, Rusxia
1.596	CGV	Fimma Lake, Sask., Canada	1.760		Wirk, United Kingdora	2.343	RFCQ	Moscow. Russia
1.596	CZJ	Ite-la--Cross, Sask., Canady	1.764	EAI	Teneriffe, Canary Istands	2.350	VBQ	Halifax, N. S.. Canada
1.596	CGG	Lac la Ronge, Sask, Canada	1.764	DCS	Tonning, Germany	2.355		Burnham, United Kingdom
1.596	CJC	Thunder Mountain, Sask., Can.	1.765	TFF	Flatey a Skjalfanda, Iceland	2.355		Cultercouts, United Kingdom
1.596	TFZ	Isafjordur, Iceland	1.775	RHBD	Leningrad, Russia	2.355		Fishguard. United Kingdom
1.596	TFA	Reykjavik, Iceland	1.775	ESR	Rulinu, Estonia	2.355		Inmber, United Kingdom
1.596	TFX	Siglufjordur, Iceland	1.775		Ship Stations, Germany	2.355		Lands Find. Trited Kingdom
1.596	TFV	Vestmannaeyjar, Iceland	1.818	OUY	Vyl Lithtship, Denmark	2.355		Malin Head, United Kingdom
1.600 1.600	PIE PCB	Hoek ran Holland, Netherlands	1.818	PDN	Scheveningen, Netherlands	2.355		Niton Radio, Tnited Kingdom
1.600	PCB	Mass Lightship, Netherlands	1.818	RHBD	Ieningrad, Russia	2.355		North Foreland, Traited King.

[^0]

F'req. Mc.	CALL and LOCATION		Freq. Mc.		ALL and LOCATION	Freq. Mc.		ALL and LOCATION
3.630	RFF	Kharkov, Russia	4.110	HCJB	Quito, Ecuador, (B)	4.490	RLBY	Kirensk, Russia
3.630	RENC	Temir, Russia	4.110	RELO	Boukhta, Bertys, Russia	4.490	RKOR	Krasnyi Loutch, Russia
3.630	RGFW	Viatka, Russia	4.110	RENA	Bourondal, Russia	4.490	RENC	Temir, Russia
3.640	RKOV	Grichino, Russia	4.110	RKNX	Debaltsevo, Russia	4.500	RELB	Boukhta Bertys, Russia
3.640	RKME	Kharkov, Russia	4.110	RISA	Novosibirsk, Russia	4.500	RELO	Boukhta Bertys, Russia
3.640	RCTS	Mamadych, Russia	4.130	RTU	Dolgoproudnaia, Russia	4.500		Naval Stations, Germany
3.640	RIBC	Penza, Russia	4.130	DAF	Norddeich, Germany	4.505	$C Z P$	Claydon Bay, B. C., Canada
3.650 3.650	RENT	Gourier, Russia	4.135	W7XAQ	Portable, USA	$\begin{aligned} & 4.505 \\ & 4.505 \end{aligned}$	CGO	Ocean Falls, B. C., Canada
3.650 3.650	RKPA	Nikolaev, Russia	4.140 4.140	RELW	Karalinsk. Russia	$\begin{aligned} & 4.505 \\ & 4.510 \end{aligned}$	CZO VPN	Prince George, B. C., Canuda
3.658	RFAJ	Moscow, Russia	4.440 4.140	RJCU	Maagnent, Russia	4.510 4.510	RKKOA	Nassau, Bahamas
3.660	RKOB	Bobrinskaia, Russia	4.150	SQZ	Warsaw, Poland	4.512	ZFS	Nassau, Bahamas
3.660		honigs Wusterhausen, Ger.	4.150	REIB	Alma Ata, Russia	4.520	RCNO	Briansk, Russia
3.670	RKNK	Kharkov, Russia	4.150	RLEN	Nijne Oudinsk, Russia	4.535	WDG	Rocky Point, N. Y., USA
3.670	RHIY	'Tatsinskaia, Russia	4.150	RMCC	Roukhlovo, Russia	4.540	WIR	Rocky Point, N. Y., USA
3.680	RJAJ	Moscow, Russia	4.150	REJB	Sergiopol, Russia	4.540	RMXB	kokand, Russia
3.685	RAJ	Sovgavan, Russia	4.150	REJA	Tandy-Kourgan, Russia	4.545	RFAJ	Moscow, Russia
3.690	REAS	Chouia, Russia	4.150	RLEQ	Trhita, Russia	4.545	WDW	New Brunswick, N, J., USA
3.690	RKNC	Kharkov, Russia	4.150	RLEV	Verkneoudinsk, Russia	4.550	KIKC	Bolinas, Calif., USA
3.690	RCRJ	Lenkoran, Russia	4.160	SQB	Bialystok, Poland	4.550	WAD	Rocky Point, N. Y., USA
3.700	VK3LR	Lyndhurst, Victora, Australia, (i)	$\begin{aligned} & 4.165 \\ & 4.165 \end{aligned}$	$\begin{aligned} & \text { LOB } \\ & \text { SQZ } \end{aligned}$	Puerto Aguirre, Argentine Warsaw, Poland	$\begin{aligned} & 4.555 \\ & 4.570 \end{aligned}$	WDN RIBJ	Rocky Point, N. Y., USA Kachirinsk, Russia
3.700	VK3XX	Lyndhurst, Victoria, Australia,	4.170	SQA	Lwow, Poland	4.570	RKOQ	Karevka, Russia
3.700	JPY	Tobata, Japan	4.174		British ships	4.600	HC2ET.	Ipartado 249, Guayaquil, Ecu-
3.710	RIBB	Abdoulinskoe, Russia	4.177		Ship telephone			ador, (B)
3.710	RIAZ	Andreeoskoe, Russia	4.190	RJXC	Makhatch-Kala, Russia	4.600	RK	Gorlorka, Rus
3.710	RGAQ	Ijersk, Russia	4.190	RMAT	Vludivostok, Russia	4.615	RLXI	Stalingrad, Russia
3.710	RFCJ	liachira, Kussia	4.272	WOY	Lawrenceville, N. J., USA	4.615	RJRS	Toronei, Russia
3.710	RKND	Kharkov, Russia	4.272	WOO	Ocean drate, N. J., US.l	4.625	ZGF	Kumntan, Federtd. Malay States
-3.720	RCNQ	Novosokolniki, Russia	4.273	RV15	Khabarown, Russia, (B)	4.670	RIBK	Rouzaetka, Russia
3.720	RHJS	Orist Labinskaia, Russia	4.280	RFAK	Koutchino, Russia	4.687	RFCO	Moseow, Russia
3.720 3.730	RIBE RKNB	Simara, Russia			70 TO 60 METERS	4.700	RCRB	Erivan, Russia
3.730	RCGA	Kharkov, Russia Koutais, Russia	4.283		Ship telephone	4.710	RIAL	Arzran, Russia
3.740	RKOU	Kharkov, Russia	4.286	RKMF	ditomir, Russia	4.710	RKLM	Kaporojie, Russia
3.740	RJEJ	Sverdloonk. Russia	4.286	RKPL	Jitomir, Russia	4.715	EDP	Palma de Mallorea, Spain
		80 TO 70 METERS	$\begin{aligned} & 4.286 \\ & 4.295 \end{aligned}$	RCNF WTDW	Smolemsk, Russia st. Croix, Virgin	$\begin{aligned} & 4.720 \\ & 4.730 \end{aligned}$	RFAJ RKMD	Moscow, Russia
3.750	F8KR	Constantine Algeria, (B)	4.295	WTDX	St. John, Virgin Islands	4.740	RCNP	mmolensk, Russia
3.750	VK3LR	Lyndhurst, ${ }^{-1}$ Victoria, Australia,	4.295	WTDV	St. Thomas, Virgin Islands	4.740	RIBF	Syzran, Russia
		(1s) ${ }^{\text {(1) }}$	4.300 4.300	RKPE	derohautical, Europe	4.750 4.753	RLGL	Kabansk, Russia
3.750	12RO	Rome, Italy (B)	4.300	RKDM	Medvejia Gora, Russia	4.753	woo	
3.750	RENY	Dozzor, Russia	4.300	RKDO	I'araudoyo, Russiat	4.761	RMFN	Grodekovo, Russiá
3.750	REJQ	Ganiouchkino, Russia	4.300	RHIK	Rostor on Don, Russia	4.775	CFD	henora, Ont., Canada
3.750	REBO	Iavnovo, Russia	4.305	RGFK	Kanavino, Russia	4.785	CZA	Drummondville, P. Q., Canada
3.750	RFCV	Kalinin, Russia	4.305	RKOG	Vapniarka, Russia	4.790	RKMI	Krivoi Rog, Russia
3.750	CT1CT	Lisbon, Portugal, (B)	4.310	RMDP	Erofei Pavlovitch, Russia	4.795	VE9BY	London, Ont., C'anada, (B)
3.760	RENU	Aktinbinsk, Russia	4.310	RMDT	Staibo, Russia	4.800	RKMH	Khristinovka, Ru
3.760		Konigs Wusterhausen, Germany	4.310	RLEC	Tshita, Russia	4.800	RCNG	Novosokolniki, Russia
3.760	RMWP	Samarkand, Russia	4.315	RGFK	Kanavino, Russia	4.810	CGP	Prince Rupert, B. Co, Canada
3.760	RKOH	Znamenka, Russia	4.315	RKOG	Vapniarka, Russia	4.810	YDE2	Solo, Netherland India,
3.769	ZEZ	Broken Hill, Northern Rhodesia	4.320	G6RX	Hillmorton, United King., (X)	4.810	RKMG	Vinnitsa, Russia
3.769	ZDH	Sameson, Northern Rhodesia	4.320	GDB	Rugby United Kingdom, ($\mathrm{B}^{\text {) }}$	4.820	PRO	Olinda, Brazil
3.769	ZDA	Livingston, Northern Rhodesia	4.330	RKLP	Rovenki, Russia	4.820	REJK	Karsakpai, Russia
3.769	2DI	Mongu-Lealui, Northr. Khodesia	4.355	IAC	Coltano, Italy, (X)	4.820	GDW	Rugby, United Kingdom
3.769	ZFF	Mpika, Northern Rhodesia	4.350	RKOP	Kiev, Russia	4.838	RJRV	Kozlov, Russia
3.770	RRR	Briansk, Russia	4.350	PROF	Proskurov, Russia	4.839	RNZ	Petroparlovsk, Russia
3.780	RLW	Artemovsk, Russia	4.350	RIMK	Topki, Russia	4.840	GDW	Rugby, United Kingdom
3.780	RLX	Artemovsk, Russia	4.360	RMDV	Ekimitchan, Russia	4.850	RELO	Boukhta Bertys, Russia
3.780	RELO	Boukhta Bertys, Russia	4.360	RMDU	Ouroulga, Russia	4.850	RKMF	Jitomir, Russia
3.790	RPNA	Kharkov, Russia	4.375	RUF	Moscow, Russia	4.860	CGT	Campbell River, B. C., Canada
3.800	RKOL	Krementchoug, Russ	4.380	RMDW	Dambouki, Russia	4.860	RKMM	Konstantinovka, Russia
3.800	RMPH	Stalinabad, Russia	4.380	RUF	Moscow, Russia	4.860	RKF	Moscow, Russia
3.810	RKPP	Ouman, Russia	4.385			4.860	RJCZ	Sevrdlosk, Russia
3.820	RMSE	Karabougaz, Russia	4.390	RENG	Atchi Sai, Russia	4.875	RKF	Moscow, Russia
3.830		Hykovo, Russia	4.400	RMDX	Komsomolsk, Russia	4.880	RKME	Kharkow Russia
3.830	RHAB	Leningrad, Russia	4.400	DAF	Norddeich. Germany	4.895	CEC	La (iranja, Chile
3.830	RIAL	Syzran, Russia	4.410	RFAY	Moscow. Russia	4.900	RKMN	Sorokino, Russia
3.830	RCOY	Tiflis, Russia	4.410	REIK	Petrovarlovsk, Russia	4.910	RENJ	Korsakpai, Russia
3.840	RKOD	Kazatin, Russia	4.	ZGC	Kuala Lompur, Federated Ma-	4.920	LCL	drloy. Norway, (X)
3.850	RKMC	Odessa, Russia			Iay States	4.930	RFAJ	Moscow, Russia
3.850	RGLC	Syktykvar, Russia	4.412	CNR	Rabat, Morocco	4.930	RIBE	Samara, Russia
3.860 3	RKLO	Sorokino, Russia	4.412	RFAJ	Moseow, Russia	4.930	RKMK	Zouevka, Russia
3.860	RKPO	Vororhilovsk, Russia	4.420	RKLS	T'rhistiakovo, Russia	4.940	REIL	Koounrad, Russia
3.870	RW77	Moscow, Russia	4.430	RLED	Chilka, Russia	4.950	RKMJ	Zaporojie, Russia
3.880	RIBA	Bouzoulousk, Russia	4.430	DOA	Doeberitz, Germany	4.960	RHIE	Elizavetopolskaia, Russia
3.880	RKLQ	Innppropetrovsk, Russia	4.430	RMDH	Ouroucha, Russia	4.960 .	RCND	Nerel, Russia
3.880	RCBA	गobin, Russia	4.430	RMDI	Svobodnyi, Russia	4.970	RLY	Kharkov, Russia
3.880	RENV	Karaton, Russia	4.430	RMDJ	Tynda, Russia	4.975	GBC	Rugby Cuited Kingdom
3.885	RCRH	Batoum, Russia	4.430	RLEZ	Zilowo, Russia	4.980	RMWP	Simmarkand, Russia
3.890	RLY	Kharkow, liussia	4.430	GBC	Rughy, United Kingdom	4.988		. iirplanes, USA
3.900	RFAX	Moscow, Russia	4.440	RBX RMXC	Moscow, Russia			60 TO 50 METERS
3.910 3.910	RLEG	Tehita, Russia	4.440 4.445	RMXC WUM	Tehimion, Russia			Lvon TSA Frame
3.910 3.910	RLEV RMCC	Verkhne Oudinsk, Russia Roukhlovo, Russial	4.445 4.450	WUM	Tucson, Ariz.. US. Noscow, Russia	5.000 5.000	$\begin{aligned} & \text { FY3 } \\ & \text { FHH3 } \end{aligned}$	Lyon, T.s.F., France Pointe-Noire, French Equatorial
3.920	RKLA	Kramatorsk, Russia	4.450	RKOS	Routchenkovo. Russia			Africt
3.920	RFAO	Moscow, Russia	4.455	RRY	Moscow, Russia	5.000	RCRI	Nakhitrhevan, Arakse, Russia
3.950	RHAX	Leningrad. Russia	4.460	RKOT	Dmepropetrorsk, Russia	5.000	RLXI	Rtalingrad, Russia
3.998	HCJB	Quito, Ecuador, (B)	4.460	RKOW	Kharkov, Russia	5.000	RCNA	Viazmat: Russia
4.000	ZGE	Kuala Lumpur, Federated Ma-	4.460	RKOI	Kiov, Russia	5.000	RJRS	Voronej, Russia
		lay States, (B)	4.460	RKOE	Odessa, Russia	5.015	KUF	Manita. Philippine Is.
4.000	REJM	Karagandi, Russia	4.460	RKOJ	Stalino, Russia	5.023	ICQ	Naples, Italy
4.002	CT2AJ	Ponta Delgada, Sao Miguel,	4.460	RHIZ	Taganrog. Russia	5.025	ZFA	Hamilon, Bermuda
		Azores, (13)	4.460	RKOC	Vinuitsa. Russia	5.030	REJJ	Koustamai. Russia
4.010	RFAU	Bykovo, Russia	4.465	CGA4	Drummondville, P. Q., Canada	5.040	RIR	Tiflis. Russia
4.030	RFAW	Moscow, Russia	4.470	YID	Baghdad. Iraq. (13)	5.050	VRT	Itimilton. Bermuda
4.050	DAS	Rugen, Germany	4.470	YDE	Soerabaya, Netherl. India, (B)	5.050	RMLD	Mouinak. Russia
4.054	CNW	Tangier, Morocco	4.470	RBT	Samarov, Russia	5.058	TFI	Reykjarik, Iceland
4.060 4.080	RGKX	Archangel, Russia	4.475 4.477	RRKNK	Khharkov, Russia	5.060 5.060	EDO EDR2	Madrid, Spain Madrid, Spain
4.080 4.097	RFAO	Moscow, Russia Hialeah. Fla,	4.477 4.480	RMGI RKME	Khabarovsk, Russia Gorlovka. Russia	5.060 5.060	EDR2	Madrid, Spain Madrid, Spain
14.100	LCL	Jeloy, Norway. (X)	4.490	RMXA	Kim, Russia	5.070	RMLC	Tourtkonl, Russia

Freq. Mc.	CALL and LOCATION	Freq. Mc.	CALL and LOCATION		$\begin{aligned} & \text { Freq. } \\ & \text { Mc. } \end{aligned}$	CALL and LOCATION	
6.120	YDA Bandoeng, Netherl. India, (B)	6.593	ZEB				
6.120	RKOM Dnepropetrovsk, Russia	6.593 6.593	ZEA	Bulawayo, Southern Rhodesia Salisbury, Southern Rhodesia	6.910	RJBD	Sverdlovsk, Russia
6.128	HJ1ABH Cienaga, Colombia, (X)	6.593	ZTG	Germiston, Union of S.A.	$\begin{aligned} & 6.915 \\ & 6.920 \end{aligned}$	$\begin{aligned} & \text { ZCI } \\ & \text { RFAX } \end{aligned}$	Cape Whguilar, Hong Kong Moscow, liussia
6.128	YV11RMO Maracaibo, Venezuela	6.600	RJTL	Dmitriev-İgovsky, Russia	6.930	RENU	Aktubinsk, Russia
6.128	LKJ1 Jeloy, Norway, (IS)	6.600	RKLX	Odessa, Russia	6.930	RGKX	Archangel, Russia
$\begin{aligned} & 6.130 \\ & 6.130 \end{aligned}$	VE9BA Montreal, P. Q., Canada, (B)	6.605	OQW	Tanningrille Belian Congo	6.930	RLEV	Verkhne-Óudinsk, Russia
$\begin{aligned} & 6.130 \\ & 6.135 \end{aligned}$	XETE Mexico City: Mexico, (13)	6.610	HI4D	Sauto Domingo, Dominican Rep.,	6.940	RFAU	Bykoro, Russia
6.135	uala Lumpur, Fed Malay			(B)	6.950	RLXS	Sarator. Russia
	(B)	$\begin{aligned} & 6.610 \\ & 6.610 \end{aligned}$	RV72	Moscow, Russia, (B)	6.958	WEO	New Irunswick, N, J., ESA
6.135	YID Bayhdad. Iraq. (1s)	6.620	PRADO	errio, Montevideo, Erus	$\begin{aligned} & 6.960 \\ & 6.965 \end{aligned}$	OTS KZGG	
6.135	RKK Moscow, Russia	6.630		Moscow, Russia, (13) ${ }^{\text {a }}$	6.966	EDO	Madrid, Spain
6.140 6.140	W8XK Saxonburg, Pa., US.L. (13)	6.635	OTC	Coquilhatville, Belgian Congo	6.970	EDR2	Madrid, Spain
	VK3LR Lyndhurst, Vic... Australia, (B)	6.650	IAC	Coltano, Italy, (X)	6.976	EA4AQ	Madrid, Spain, (B)
6.	KZRM Manila, P. I.. (l3)	6.6		Natal stations, Japar	6.977		-
6.150	CJRO Winuipeg, Manitoba, Can.,	6.650 6.650	XFD HC2RL		6.977	Z	Petroparlorsk, Russia
6.150	HJ5ABC (aili. Colombia, (${ }^{\text {a }}$) ${ }^{\text {a }}$)	6.650		P.O. Box 599 , Guayaquil, Lecuador, S..s., (I3)	$\begin{aligned} & 6.980 \\ & 6.980 \end{aligned}$	I2RO VGR	$\begin{aligned} & \text { Rome Italy } \\ & \text { Nairobi, Kenya } \end{aligned}$
6.150	HJ2ABA Tunja, colombia, (B)	6.660	TGW	Guatemala (ity, Guatemala. (B)	6.980	KZGH	Iloilo. Philippine Islands
$\begin{aligned} & 6.150 \\ & 6.150 \end{aligned}$	RKOO Udessa, Russia	6.660	TIEP	La-Voz lel Tropico, San Jome,	6.980	RKNZ	khitrkov, Kussia
6.150	YV3RC Garacas. Venez				6.980	RFAO	ossow, Russia
6.155	CO9GC Grau \& Camum			45 TO 40 METERS	980	EAR110	.
	137, Santiago. Cuba, (B)	6.664	YNCRG	dranada. Nicaragu	6.990		loy, Norway
6.160 6.170	I2RO Rome, ltaly	6.665	LPG4	Gencral Parheco, Arg	7.000	HJ5AB	C'ali, Columbia, (B)
$\begin{aligned} & 6.170 \\ & 6.170 \end{aligned}$	CFD Kenora, Ont., Cinada	6.672	YVQ	Maracay, Venezuela	7.000		
$\begin{aligned} & 6.170 \\ & 6.170 \end{aligned}$	CFG Piekle Lake Ont. Mana	6.674	IRT	Rome. Italy	to		mateurs,
6.170	CFB Red Sioux Lookout.. Ont Coan	6.675	HBQ	Prangins. Switzerland	7.300		
6.175	OND Bananal. Bulqian Congo	$\begin{aligned} & 6.677 \\ & 6.680 \end{aligned}$	$\begin{aligned} & \text { FZ14 } \\ & \text { DGP } \end{aligned}$	Brazzarille. Fr, Equa, Africa	7.010 7.020	RHCU	Leningrad.
6.175	FTX St. Issise, France	6.680	OZS	Skamlebak, Denmark	7.020	RFBL EAR125	Moscow, Russia Madrid, Suain.
6.180	HJ3ABF Borota, Colombia, (13)	6.685	ZGA	Kuala Limpur, Fed. Malay	7.030	HRP1	San Pedro Sula Honduras, (B)
6.	TGW Guatemala (ity, (inatemala,			Statrs	7.050		Experimental Sta., Japan (X)
6.180 6.180	RKOP Kier, Russia	6.685	YNL	Managua, Nicaragua, (B)	7.050	R	Arzama
6.180 6.185	REIK Petropavlovsk. Rnssia	6.690	CFA	Drummoudville, P. Q., Ca	7.050	RFBO	Mojaisk, Russia
	HIAA P.O. Box te3. Mantiago, Dom-	6.690	VQR	Nairobi, Kenya	7.060	RENB	Bouklita Bertys, Russia
	incan Rep.e. (B)	6.690	2DB	Broken ITill, Northern Rhodwsia	7.0	RENA	Rouroundal, Russia
	Barnaoul, Russia	6.690	ZDG	Mpika, Northern Rhoderia	7.070	RHAX	Leningrad, Ru
6.198	CT1GO Portuguese Radio	6.690 6.690	ZEB	Bulawayo, Southern Rhodesia	7.080	LU5CZ	Buenos Aires, Argentina, (B)
	Portugal. (B)	6.690	ZTG	Germiston, Southern R	7.080		Dolgopr
6.200	RMDP Frofei Pawlovitch, Russia	6.690	ZTF	Maitland Cape Un. of S. Africa	7.100		Colombia. (
	RMDM Mogoteha, Russiat	6.695	OQI	Lisala, Iselgian Congo			tal
6.200	RMWW Tashkent, Russia	6.700	RIBF	Syzran, Russia	7.160	OA4B	Lima, ${ }^{\text {², ru, }}$
6.210	HJN Bugota. Colombia, (B)	6.703	TIK	Cartago, Costa Rica	7.170	RELD	Boukhta Bertys, Russia
6.230	OAX4B Apartado 1242, Lima, Peru, (B)	6.707	YNCRG	Gramada, Nicaragua, (3)	7.170	RELO	Boukhta Bertis, Russia
6.235	OCN Lima, Peru, (B)	6.718	WDB	Rocky Point, N. Y., US.l	7.177	CR6AA	Lobito, Ankola, (B)
6.240	RMAS Tafouin, Russia	6.718	KBK	Manila, P. I. ${ }^{\text {a }}$	7.211	EA8AB	T'eneriffe. Canary Islands, (B)
6.240	RMAY Troitse Zaroubino, Russia	6.733	WDA	Rocky Point. N. Y.. USA	7.220		Experimental, .lapan, (X)
6.245	OQE Costermansville Belgian Congo	6.738	TIGP	San Jose. Costa Rica, (B)	7.225	RPK	Moscow, Russia
6.250	Airways, Germany	6.745	OQB	Sumba, Belgian Congo	7.230	DOA	Doberitz. Germany
6.250	OCI Lima. leru	6.750	JVT	Tokyo, Japar	7.250		Rome, Italv
6.250	REIX Akmolinsk, Russia	6.750	RMSE	Karabougaz, Russia	7.260	RFF	Kharkor, Rassia
6.250	RGAZ Kotelnich, Russia	6.755	WOA	Lawrenceville, N. J., USA	7.260	VS1AB	Singapory, S. S., (B)
6.250	RFAQ Moscow, Russia	6.755	KZGF	Manila, Philippine İslands	7.275	RTZ I	Irkutsk. Russia
6.250	REIA Ouialy, Russia	6.760	CFA2	Drumnondville, P. Q., Canada	7.300	---	Rome, Italy
6.250	REIM Ouzounkair, Russia	6.760	RENJ	Karsakpai. Russia	7310	RFBY	Moscow, Russia
6.250	HJ4ABC Periera, Col., (B)	6.770	KZGF	Manila, Philippine	7.310	RMWP	Samarkand, Russia
6.260	PBB Den Helder, Netherlands	6.775	OQK	Aketi. Belgian Congo	7.310	HJ1ABD	Cartagena, Colo.. (B)
6.280	Hl1A Santo Domingo. Jom. Rep., (B)	6.780	RENT	Gourier, Russia	7.320	HJ5ABD	('ali, Colombia, (B)
6.285	CZA Drummondville. P. Q.. Canada	6.780	EAH	Madrid. Spain	7.320		Tohanneshurg. ('r. of S. Africa
6.300 6.300	RCE Leningrad, Russia	6.785	OQD	Kindu, Ibelyian Congo	7.330	RKMI	Krivoi Rog, Russia (B)
6.320	RMBA Preohrajema, Russia	6.790 6.790	SQB	Bialystnk, Poland	7.333	DFH	Nanen, Germany
6.320	HIZ Santo Domingo, Dominican	6.792	RIBO HAP3	Krarkeno, Russia	7.340	RGLC	ussia
		6.792	SQZ	Warsaw, Pola	$\begin{aligned} & 7.345 \\ & 7.360 \end{aligned}$	$\begin{aligned} & \text { GDL } \\ & \text { ZEZ } \end{aligned}$	Rughy, Inited Kingdom Broken Hill. Northern Rhodesia
6.320	OQA Kigoma, Tanganyika	6.795		Rughy. United Kingdom	\bigcirc	ZnH	Ft. Jameson, Northern Rhodesia
6.330	Tokyo, Japan	6.800	EDR3	Tahlero, Canary Islands	7.360	ZDA	Livingstone. Northern Rhodesia
6.335	VE9AP Drummondville,	6.800	SQA	Lwow, Poland	7.360	2FF	Mpika. Northern lehodesia
	(13)	6.800	HIH	San Pedro de Macoris,	7.360	ZDI	Mongu-Lealui, Northr. Rhodesia
6.3	OSD Kigali, Belgian Congo, (B)			ican Repl., (13)	7.370	RFBX	Moscow, Russia
6.375	YV4RC Caracas, Venezuela	6.810	OSK	Kitega, Brlgian Congo	7.370	RKLX	Odessa, Russia
6.375	OQR Usumbura, Belrian Congo	6.810	RENG	Ateh-Sai, Russia	7.380	XECR	Foreign Office, Mexico City,
6.380 6.383	HC1DR Quito, Eruador. (B)	6.818	RELZ	Spasskyi Zavod, Russia			Mex., (B)
6.383	RNZ Petropavlousk, Russia	6.840	OQG	Kongolo, Relgian Congo	7.390	JVR	Tokyo, ,Tapan
6.405	OQJ Inongo, Belgian Congo	6.840	CFA	Drummondville. P' Q.. Canada	7.390	ZLT	Welington. N. 7.
6.4	RGXX Minsk. Russia ${ }^{\text {Re9AS }}$ Fredericton. N. B., Canada,	6.840 6.840	HAS HAT2	Szekesveherrar, Hungary,	7.390 7400	RKNE	Kharkoy, Russia
6.425	W3XL Breund Brook. N.,.,., USA, (B)	6.840 6.840	HAT2 RKNP	Szekesvehervar, ILungary	7.400 7400	WEM P	Rocky Point, N. Y., TSA
6.425	CZE Vistoria, B. C., Canada	6.850	LPG5	General Parheo, Argentina	7.400 7.400	HJJABD RRRH	Khabarousk. Kı
6.425	CZF Vancouver, B. C.. Canadi	6.850	VPE	Labasa, Fiji Tslands. (X)	7.407	WEN	New Brunswick, N. T., US.
6.425	CZG Prince Rupert, B. C.. Canada	6.850	VGL	Savu-Savu. Fiji Islands, (X)	7.408	RFAJ	Moscow, Russia,
6.4	VE9BY London, Ont.. Canada, (B)	6.850	VRO	Sura, Fiji Tslands, (X) ${ }^{\text {(}}$)	7.410	XGV	Shanghai. China
6.430	OQF Port Franqui. Belgian Congo	6.850	VPF	Taveuni, Fiji Islands, (X)	7.410	VQR	Nairohi. Kenya
6.440	RTA Novosilirsk. Russia	6.850	RKF	Mrosrow. Russia	7.415	WEG	Rocky Point. Y . Y., US
5.4	OTO Leopoldville. Belpian Congo	6.860	KEL	Bolinas, Calif.. (X)	7.430	RKM. 1	Zaporojie, Russia
6.450	HJ1ABB Barranquilla. Colnmbia, (${ }^{\text {) }}$	6.860	OTL	Lesopoldville, Belgian Conco	7.440	RKMH	Khristinovkia. Russia
6.460	RHCC Khibinogorsk, Russia	6.870	EAK	Kan Lorenzo. Canary Islands	7.444	HBQ	Prancins. Switzerland, (B)
6.465	OQO Basoko. l3elgian Congo	6.870	RFK	Moscow. Russia	7.450	RUK	Stalinabad, Russia
6.470	RCAD Minsk, Russia	6.880	OQN	Irumu, Relgita Congo	7.460	CZG	Prince Rupert, B . C.. Canada
6.480	EDR4 Palma de Mallorea	6.880	CFA4	Brammondville, P. Q., Canada	7.460	CZF	Vancouver. B. C.. Canala
6.4	OTH Flizahethrille, Belgian Congo	6.880	RKF	Moscow, Russia	7.460	CZE	Victoria, B. C., Canada
6.500	HJ5ABD Manizales, Col., (B)	6.880	RINY	Oirat-Toura, Russia	7.460	RKMF	Titomir, Russia
6.520	RELT Rourli-Tinbe. Russia	6.890	RLGL	Kabansk, Russia	7.470	JVQ	Tokyo. Tapan
6.520	YV6RV Valencia, Venezuma, (B)	6.895	EDK	San Lorenzo, Canary Islands	7.470	RKME	Kharkor. Russia
6.528		6.895 6.900	EDT	San Lorenzo. Canary Islands			TO 35 METERS
6.550	T12PG San Iose, Costa Rica, (${ }^{\text {a }}$	6.905	GDS	Rnsrow, Russia Ruglv, Tnited Kingrom			
6.550	RKLM Zaporojip. Russia	6.910	ZEZ	Broken Hill. Northern Rhodesia	7.500	ZGB	Kuala Lumpur, Fed. Malay
6.570	OQV Whertsille. Belgian Congo	6.910	20H	Fort Jameson. Northrn Rhodesia			
6.580	HJ1ABB Barranquilla, Colombia, (B)	6.910	ZDA	Tivingstone, Northern Rhodesia	7.500	JVP	Tokyo, Tap
6. 590	VQR Nairobi, Kenya	6.910	zDI	Mangu-Lealui, Northn. Rhadesia	7.500	RKI	Moscow, Russia
6.593	ZDG Mnik?. Northern Rhodesia	6.910	ZFF	Mpika. Northern Rhodesia	7.510	JVP	Nazaki, , rapan

preq. Mc.	CALL and LOCATION		$\begin{aligned} & \text { Freq. } \\ & \text { Mc. } \end{aligned}$		ALL and LOCATION	rizeq. Mc.		LL and LOCATION
7.510	REJK	Karsapkai, Russia	8.195	OQL	Leopoldville, Belgian Congo	8.890	WYG K	Kelly Fieid, Tex., USA
7.510	RKND	Kharkor, Russia	8.200	LPG7	General Pacheco, Argentina	8.890	WYR h	Kingley Field. Philippine Is.
7.518	IRV	Rome, Italy	8.205	EDR2	Madrid, Spain	8.890	WYZ	Lordsburg, New Mexico, USA
7.520	KKH	kahuku, Hiawaii	8.205	EDS	Madrid, Spain	8.890	WUG ${ }^{\text {W }}$	Alarfa, Texas,
7.520	RKI	Moscow, Russia	8.214	HCJB	Quito, Ecuador, (13) (\%)	8.890		Nichols Field, Philippine Is.
7.545	RK1	Moscow, Russia	8.215	HJ5ABF	Popasan, Colombia, (\mathbf{X})	8.890		Tucson, Ariz., US. Wellimpton, New Zealand
7.565	KWY	1) xon, Calif., U'SA	8.220	----	Aeronatical, Lurope	$\begin{aligned} & 8.900 \\ & 8.900 \end{aligned}$	ZLS	Wellington, New Zealand
7.580	RKNC	Kharkov, Russia	8.220	$\begin{aligned} & \text { 2SV } \\ & \text { RRD } \end{aligned}$	Walvis Bay, ln. of so. Africa	$\begin{aligned} & 8.900 \\ & 8.902 \end{aligned}$	RLT	Wellington, New Zealand Moscow, Russia
7.610	$k w x$	Sixon, Calif, USA	8.225 8.230 8	$\begin{aligned} & \text { RRD } \\ & \text { EAP } \end{aligned}$	Moscow, Russia S. Lorenzo Cimary Islands	$\begin{aligned} & 8.902 \\ & 8.920 \end{aligned}$	$\begin{aligned} & \text { RKN } \\ & \text { GC } \end{aligned}$	Moscow, Russia Rarly, United Kingdom
7.610 7.620	RKPO	Konigs Wusterhausen, Germany Vorochilovsk, Russia	8.230 8.235	$\begin{aligned} & \text { EAP } \\ & \text { OOC } \end{aligned}$	S. Lomenzo, Camary Islands (oquilhatrile. Belgian Congo	$\begin{array}{\|l} 8.920 \\ 8.925 \end{array}$	$\begin{aligned} & \text { GCX } \\ & \text { OQH } \end{aligned}$	Rugby United Kingdom Lisengo
$\begin{aligned} & 7.620 \\ & 7.626 \end{aligned}$	$\begin{aligned} & \text { RKPO } \\ & \text { RMM } \end{aligned}$	Vorochilovsk, Russia 1rkutak, Russia	$\begin{aligned} & 8.235 \\ & 8.250 \end{aligned}$	$\begin{aligned} & \text { OOC } \\ & \text { RKNK } \end{aligned}$	Coquilhatvile. Belgian Congo Kharkos, Russia	$\begin{aligned} & 8.925 \\ & 8.935 \\ & \hline \end{aligned}$	CNR	Rabat, Morocto, (B)
7.626	RIM	Tanhkent, Russia	8.270	OQDI	Kindu, Beigian Congo	8.940	KZGG	Cebu, ''hilippinte lstand
7.632	OEJ	Vienna, Sustria	8.290	RIKW	Omsk. Russia	8.950	TGX (Guatemala City, Guatemala, (1)
7.650	REAJ	Moscow, Russia	8.305	OQEI	Costermansille, Bugian Congo	8.955	ZGB	knala Lumpur. Fid Matay
7.660	FTL	Ste. Assise, Frau	8.328		Shid telephone	8.960		Apiers-bucalyptus, Alge
7.660		Taihoku, dapan	8.333	YQI	Consituta, Rumania	8.965	OQC	Coquithatsille, Belgian (ongo
7.685	TIO	Cartage (onta Rica	8.333	LPD	General lacheco, Argentina	8.975	VWY K	Kirkee. India
7.688	TYC3	Pario, France	8.333	LOB	Purto Aguirra Argentima	9.005	OQN1 I	Irumu. Belgian Congo
7.700	ONE	Bamanar Belgian Congo	8.333 8.333	OXM	Scorestrambd, (iremband Vladirostok, USS.R.	$\begin{aligned} & 9.010 \\ & 9.020 \end{aligned}$	KEN GCS	
7.700	TYC2 RKNB	Paris France	8.333 8.340	RMAT	Chorttranequi, Belgian (ongo	9.023	TYA2	Paris. Tas... Fran
7.715	KEE	Mbatinas, Calif.	8.345 8.345	FFK	St. Nataire, France	9.050	OQR1	Utsumbura, B̈elyian Congo
7.725		ladom, Poland	8.380	IAC	Coltano, Italy. (${ }^{\text {(}}$	9.060	TFK l	Rowkjavik. Itret
7.730	WEV	New Brunswick. N. J., L'SA	8.380	RJXC	Makhat ${ }^{\text {che }}$ Kiala, Russia	9.091	XDA	Chapultrper. Mexion
7.730	PDL	Liootwijk, Netherlands	8.396	HSP	Bangkok. Miam	9.091	XFD	Mexiro (ity, Mexico. (13)
7.735			8.400		Aeronantical, Europe	9.104	LST	Olices. Aprobtit
7.740	CEC	La Cranja, Chile	8.420	EAK	San Larenzo. Canary Islands	9.110	KUW	Manila, Phitippine Islands
7.755	OQA1	kigoma Tanganyika	8.430	EAK	San Lurenze. Canary Isands	9.110	EAH	Madrid. Spain
7.760	PCK	Lootwijk, Netheriands	8.440	SPU	Warsaw. Pobind	9.120	CP5	1,a Paz, Bolivit, (B)
7.760	PDM	Kootwijk. Netherands	8.445	OSB1	Kikwit Bupian Congo	9.125	OSIt	crule. Brlitian Congo
7.765	PDM	Kootwijk. Notherlands	8.450	PRAG	Porte deme, Brazil, (13)	9.125	HAT	sutksinhervar. Hungary
7.770	FTF	Ste. Ansise, France	8.455	CWF	Carrito. Monterideo, Liruguay	9.150	YVR	Maramay Vemezneata
7.770	PDM	Kootwijk, Xethertands	8.460	FFK	St. Xalaite, Frame	9.170	WNA	Lawreneville, N. J., VS.
7.780	PSZ	Siputila, Brazil	8.470	DAF	Norddreht (brmany	9.170	KZGF	Mania, Philippine Ishans
7.785	TIR	('artago, Costa Lidea	8.485	OQ11	lissalat lbigian Congo	9.180	2SR	Kliphenvel. ${ }^{\text {rab }}$ of to. Air
7.790	HBP	Prangins, Switzrrand. (13)	8.510	RILD	Omsk, Russia	9.195	OQZ1	Kamina, Belgian. Congo
7.795	LPZ	Bunos Sires. Argentina, (P)	8.515	CZA	Drummondville, P. Q., Canada	9.200	GBS	Rugly, Trited lingdom
7.800	RKNA	Kharkov, liussia	8.515	IAC	('oltano, Italy. (X)	9.230	FLJ	Parix. Fratice
1.805	KZGF	Manila, Philipzine Islands	8.525	OQJ1	Inongo, Belgian Congo	9.235	PDP	Kootwijk, Netherlands
7.810	VRR	Stony IIill. damaica	8.540	EAK	San lorenzo, Camary Islands	9.240	PDP	Kontwijk. Netherrand
7.813	DFT	Natuen, Germans	8.540	DAS	Rugen, Germany	9.250	GBK	Bodmin, Truital Kingdom
7.815	LPZ	Buenos Aires, Argentina, (P)	8.540	RLEC	Tehita. Russia	9.275	GCS	Ongar, Tnited Kingdom
7.820	OCO	Lima, Peru	8.550	HSG	Bangkok, Siam	9.280	GCB	Kugly ${ }^{\text {che }}$ Vnited Kinclom
7.830	PGA	Kootwijk, Netherlands	8.555	OQK1	Nketi, Belyian Congo	9.300	CNR	Rabat, Morocro. (B)
7.830	PZGG	Cebu, lhilippine lstands	8.560	WOY	Lawrencesille N. J.. USA	9.310	GBC	Rughy. Cuitud Kimg ${ }^{\text {dom }}$
7.835	PDV	Kootwijk. Netherlands	8.560	woo	Ocean Gate. N. J. ITSA	9.315	OQT1	Buta. Belgian Congo
7.835	LCN	Teloy, Norway, (B)	8.565	HAT3	Szekesfehervar, Hungary	9.330	VLJ4	Sydree. Australia
7.840	PGA	Kootwijk. Netherlands	8.566		Ship Telephone	9.332	$\mathrm{C}, 1 \mathrm{~A} 2$	Prummondville. P
7.851	SUX	Abou Zabal, Egypt	8.570	RRRQ	Nownibirsk, Linssia	9.350	CEC	La Grianja, Chile.
7.853 7.855					35 TO 30 METERS	$\begin{aligned} & 9.355 \\ & 9.370 \end{aligned}$	oGU1 VQR	Basankisu. Belgian Congo Nairobi, Kemat
7.860	HC2JSE	B (iuayaquil, licuador, (B)	8.580	RKOM	Dnepropetrovsk. Rus	9.370	PGC	Kootwijk, Netherlands
7.860	SUX	Abou Zabal, Egypt	8.585	OQX1	Kabinda, Belgian Cot	9.375	XDA	Chapulteper, Me
7.867			8.595	OXU	Skamldath. Denmark	?. 375	PGC	Kootwijk, Netherlan
7.869			8.600		Aeronantical. Burope	9.375	RFCQ	Mospow. Russia
7.870	RXC	Panama City, Pana	8.600	RIPV	Barnaoul, Russ	9.380		Aeromatitical, Japan
7.877	SUX	Abou Rabal. Egypt	8.610	TYD2	Paris, T.S.s.. Franco	9.400	XDC	Mexico City, Mexico, (X)
7.880	JYR	Chibat rapan. (X)	8.630	VJI	Cloncurry Austratia	9.415	PLV	Bandoeng. Java
7.890	VPD	Susa, Fiji Islands	8.630		pen Helder Netherlands	9.428	COH	Habana Cuha, (B) (I)
7.895	RMGI	Khabarosek, Russia Hurlingham, Argentina, (X)	8.635	OXC1	Poenda, Bedgian Congo London Ontario C'anada, (X)	$\begin{aligned} & 9.435 \\ & 0.405 \end{aligned}$	LPZ ${ }_{\text {OR1 }}$	Buenos Airts. Argentina, (P) Mhertville, Belgian Congo
7.901 7.905	LSL		8.650 8.650	VE9BY	Ioondon, Ontario C'anada, (X)	$\begin{aligned} & 9.445 \\ & 9.450 \end{aligned}$	OPV1	Abertville, Belgian Congo Roeky Point. N. Y., USA
$\begin{aligned} & 7.905 \\ & 7.910 \end{aligned}$	OSKI	Kitega, Belgian Congo Semipatatinsk, Russia	8.650 8.680	HAS	Szekesfehervar, Munagrs, (B)	$\begin{aligned} & 9.450 \\ & 9.470 \end{aligned}$	WES	Rocky Point. N. Y., USd
7.920	RCKJ	Lenkoran, Russia	8.691	VWZ	Kirkee, India	9.470	RRRN	Irkutsk. Russia
7.920	GCP	Rughy, United Kingdom	8.693			9.480	KET	Bolinas. Calif., USA
7.930	DOA	Doberitz, Germany	8.700	vWZ	Kirkee, India	9.480	LPR5	General Pacheoo, Argen
7.935	PSL	Marapicu, Brazil	8.700	RKLX	Odessa, Russia	a.48n	FAH	adrid-Vallecas, Spain
7.935	KZGF	Manila, Plibippine Islands	8.707	VWZ	Kirkee, India	9.490	KE1	Bolimas Calif., U
7.945	VK2ME	Esydney, Australia	8.709			9.490	KZGH	Iloilo, Philippine Posen, Poland,
7.960	VLZ ${ }_{\text {OQP1 }}$	Sydney, Australia	8.710 8.715			9.493 9.495		
7.965 7.968	OQP1 HSP	Astrida, Belgian Congo Bangkok, Siam	8.715 8.730	$\mathrm{OSD}^{\mathrm{GCl}}$	Kigali. Belgian Congo	9.495 9.500	OXY PREA	Skamlabak. Denmark. (B) Rio de Janeiro, Irazil. (B)
7.968	HSP	Bangkok, Siam	8.730 8.750	GCl	Rugher, United Kingdom	9.500	PRRE	kio de Janeiro, Brazil, (B)
7.980		Syduey. Australia	8.750 8.760	GCQ	Rugby, [nited Kingom	9.500	YROX	Nanking, China, (B)
7.980 7.980	$\begin{aligned} & \text { VLZ4 } \\ & \text { HSS } \end{aligned}$	Sydney, Mustralia	8.760 8.765	GCQ	$\xrightarrow[\text { Rugher }]{\text { Natat }}$ Stations, Germany	9.500	RFAJ	Moscow, Russia
$\begin{aligned} & 7.980 \\ & 7990 \end{aligned}$	HSJ OQM1	langkok. Siamian Congo	8.765 8.770	RSZ	Naval Stations, Germany	9.500	RFAP	Mangknk, Siam, (B)
7.995	HC2JS	SB Guayaquil. Eeudaor, (B)	8.775	PNI	Makassar, Netherland Indies	9.500	YV3RC	(aracas, Venezuela, (B)
8.020	HSJ	Bangkok. Siam	8.790	OQQ1	Libenge, Bulgian Congo	9.510	VK3ME	Melhourne, Anstralia, (B)
8.035	OQB1	Bumba. Belgian Congo	8.790	TIN	Cartago, Costa Rica	9.510	CSB	Daventry, United Kingdom
8.035	CNR	Rabat. Moroces.	8.790	TIR	Cartamo, Costa Rica	9.510	YV3RC	Cararas. Venezucla
8.050	RCNV	Smolensk. Russia	8.793	CNP	Casablanea, Morocco	9.5.20	OXY	Skamlebak, Denmark,
8.055	OnW1	Banningville, Belgian Congn	8.795	HKV	Bogota, Colombia, (X)	9.535	OSG1	Luluahourg. Belgian Congo Schenectady. N. Y., USA,
8.065	LPZ	Bumnos Aires. Mrgentina, (P)	8.830		Portable-Interior Commission,	$\begin{aligned} & 9.520 \\ & 95.30 \end{aligned}$	W2XAF YNA	Manarua. Nicaragua
8.068					Ship Teleph	9.540	DJN	Zepenen. Germany, (B)
8.075 8.075	TYE2	Packy Phist jrance	8.830 8.850	OQO1	Basoko, Bellgian Congo	9.540		luataria, Netheriand India, (B)
8085	OQS	Stanleyvilla. Belgian (ongo	8.870	NPO	Cavite, I'. I.. (Time)	9.545	EAQ	Aranjuez. Spain, (B) (${ }^{\text {a }}$ (
8.095	VLK3	Sydues . Iustralia, (B)	8.875	CWK	(errito. Montavideo, lruguay	9.550	NAA	Washington. D. C., (13) (B)
8.100	EATH	Vientia. Austria	8.880	---	Naval Stations. Japan	9.560	DJA	Zeesen, (ermany, (B)
8.100	J1AA	Tokyo. Tapan	8.890	WYL	Barksdale Fiold. La., Vist	9.560		Tapan, (B)
8.103	HCJB	Quito Ecudanr. (1)	8.890	WUK	Chapman biedd. Fla, ['st	9 5 ¢5	VUB	Bombar India. (B)
8.110	RELR	Bonkita Bertys, Russia	8.890	WYS	Clark Fiold, Plisippine Isl.	570	W1XK	Westinclonise Elec
8.110	RELO	Boukhta Burtys. Rustia	8.890	WYY	Dryden. Tex., US.l			Springficd,
8.120	KAZ	Manila Philiprin Islands	8.890	WZO	F't. Bliss, Tex., CSS	9.570	W8xK	Sixombrer
8.120	KTP	Manila Philip,ine Islands	8.890	WZG	Ft. Brarge N. CuISA	9.570	Sliv	. Thoul Zathat. Egypt. ((\%)
8.130	OSF1	Pamy, Belgian Congo	8.890	WZB	Pt. 'lark. Tex. GSA	9.570	KZRM	Manila. Philippine Islands. Jelos. Norway. (B)
8.135	VIG	Baghdad. Mraq.	8.890 8.890	WZI	Ft. Mrphrrson, Ga..	9.572	VUC	Calcutta. India. (B)
8.140	FRS9			WVE				Shanghai, China, (B)
8.155 8.160	$\begin{aligned} & \text { PGB } \\ & \text { OSE } \end{aligned}$	Kootwijk. Netherlands	8.890 8.890	$\begin{aligned} & \text { WVB } \\ & \text { WYN } \end{aligned}$	Flathox Field, Okla., lica	$\begin{aligned} & 9.579 \\ & 9.580 \end{aligned}$	VK3LR	Tindhurst, Tic.. Australia, (B)
8.160 8.170	OSE1 RV50	Kanda-kanda, Belyian Congo Moscow, Ruscia. (i3)	8.890 8.890	WYO	liensley Field. Trx., USA	9.5880	VE9DR	Trummondville. P.Q.. (ian.., (B)
8.170 8.185	PSK	Rio de Jammiro, Brazil. (B3)	8.890	WXA	Tuncali, Alaska	9.580	HBL	Prancins, Switzerland, (B)

$\begin{aligned} & \text { Freq. } \\ & \text { Mc. } \end{aligned}$	CALL and LOCATION		$\begin{aligned} & \text { Freq. } \\ & \text { Mc. } \end{aligned}$	CALL and LOCATION		Freq. Mc.	CALL and LOCATION	
17.850	LSN	Buenos Aires, Argentina, (B)	18.830	PLE	Bandoeng, Java, (C)	20.730		Monte Grande, Argentina
17.850	RRRV	Khabarovsk, Russia	18.860	WKM	Rocky Point, N. Y., USA	20.740	DGP	Nauen, Germany
17.860	WQC	Rocky Point, N. Y., USA	18.890	ZSS	Klipheuvel, Un, of So. Africa	20.780	KMM E	Bolinas, Calif., USA
17.860	RRRV	Klabarovsk, Russia	18.910	JVA	Tokyo, Japan	$\begin{aligned} & 20.820 \\ & 1008 \end{aligned}$	$K S S$	Bolinas, Calif., USA
17.870	RRRV	Khabarovsk, Russia USA	18.950	HBF	Prangins, Switzerland	$\begin{aligned} & 20.825 \\ & 20.830 \end{aligned}$		Kootwijk, Netherlands Kootwijk, Netherlands
17.880	WQ1	New Brunswick. N. J., USA	$\begin{aligned} & 18.960 \\ & 18960 \end{aligned}$	LSR	Buenos Aires, Argentina Madrid, Spain	$\begin{aligned} & 20.830 \\ & 20.835 \end{aligned}$		Kootwijk, Netherlands
$\left\lvert\, \begin{aligned} & 17.890 \\ & 17.890 \end{aligned}\right.$	TFN	Reykjavik, leeland Tanamarive, Madagascar	$\begin{aligned} & 18.960 \\ & 18.970 \end{aligned}$	EAH	Madrid, Spain Kingdom	$\begin{aligned} & 20.835 \\ & 20.860 \end{aligned}$	EDM M	Madrid, Spain
17.900	WLL	Rocky Point, N. Y', USA	18.980	WFX	Rocky Point, N. Y. USA	20.860	EDR2	Madrid, Spain
17.900	FZT	Tananarive, Madagascar	19.000	HSJ	Bangkok, Siam	20.860	EDS ?	Madrid, Spain
17.910	CWO	Cerrito. Montevidro, Uruguay	19.010	PSB	Marapicu, Brazil	20.860	EHY	Madrid, Spain
17.910	RRRV	Khabarorsk, kussia	19.030	EDM	Madrid, Spain	20.960	EAH	Madrid, Spain
17.920	WGF	Rocky Point, N. Y., USA	19.030	EDR2	Madrid, Spain	$\left[\begin{array}{l} 21.000 \\ 31.020 \end{array}\right.$	OKI	Podebrady. ('zerhoslovakia
17.920	RRRV	Khabarovsk, Russia	19.030	EDS	Madrid, Spain	21.020	LSN	Buenos dires, Argentina, (B)
17.930	RRH	'rashkent, Russia	19.030	EHY	Madrid, Spain	21.060 21.060	KWN I	Dawon, Calif., Lisd
17.940	WQB	Rocky Point. N. Y., USA	19.160	GAP	Rugby, United Kingdom	$\begin{aligned} & 21.060 \\ & 21.080 \end{aligned}$	$\begin{aligned} & \text { WKA } \\ & \text { PSSA } \end{aligned}$	Lawrenceville, N. J., USA
17.980	KGZ	luolinas, Calif.. Lisa	19.200 19.220	ORG	Ruyssplede, begium	21.110	CEC	Lataphen Granja, Chile
${ }_{18.040}^{18.030}$	$\begin{aligned} & \text { RRI } \\ & \text { GAB } \end{aligned}$	Novosibirsk. Russia	19.240 19.240	DFA	Nanen, Germany	21.130	LSM	Bueonos Aires, Argentina (B)
18.050	RRRX	Khabarovsk, Russia	19.250	FZV3	Tanamarive, Madagasear	21.140	KBI	Manila, Philippine lslands
18.060	KUN	Bolinas, Calif., US.	19.260	PPU	Scpetiba, 13razil	21.150	HAS4	Szekesfehervar, Hungary (B)
18.060	RRRX	Khabarorsk, Russia	19.300	VLK2	Sydney, Anstralia	21.160	LSL	Buenos Aires, Argentina
18.070	RRRX	hhabarorsk, Rnssi	19.355	FTM	Fi. issise, France	21.180		Nanen, Cremtr
18.080		Camalguey. Cuba	19.380	WOP	Ocean Gate, N. J.. USA	21.220	WQA	Rocky loint, N. Y., US.
18.080	RRRX	Kinamrorsk, Russia	19.400	LRE	Monte Grande, Argentina	21.240 21.260	WBU	hoocky Pooint, N. Y., USS
18.100	RRRX	Khararorsk, linssia	19.400 19.430	FRE	St, Assise France Elisabethrille, Belgian Congo	21.260 21.340	DGM	Nituen, (fermany
18.110 18.15	RRRX	Khabarovsk, Russia Monte Grande, -lrge	19.4335	ERR2	Madrid, Spain	21.420	WKK	Lawrencevild, N. .J. US.l
18.150	RRRX	Monte Grande, -	19.435	EDS	Madrid. Spain	21.460	W1XAL	loston. Mass.. ISS.1, (B)
18.135	PMC	13andoeng, Java	19.460	DFM	Natun, Germany	21.470	GSH	Daventry, United Kingdon, (B)
18.150		Camaguey, Cuba	19.500	LSQ	Bumos Aires, Argentina, (13)	21.480		Warsaw, Poland. (13)
18.150	RRRX	Khabarovsk. Russia	19.520	IRW	Rome, Italy	21.490		Pontoise, prance (B)
18.160	RRRX	Khalmarovk Russia	19.530	EDR2	Madrid, Spain	21.500 21.530	NAA	Washington. ${ }^{\text {baventry }}$ United Kinsdom
18.170	CGA	1)rummondville 1'. Q , Canada	19.530	EDS	Madrid, spain	$\begin{aligned} & 11.530 \\ & 21.540 \end{aligned}$	W8XK	Pitaverry,
18.170	RRRX	Khabarorsk, Russia	19.600	$\begin{aligned} & \text { LSF } \\ & \text { LSN } \end{aligned}$	Murlinghan, Argentina	21.540	VK3LR	landhurst, Vir., Sus., (B)
$1 \begin{aligned} & 18.190 \\ & 18.200\end{aligned}$	JVB	Tokyo, Japan Rusber	19.656	IRL	Rome, Italy	21.550	XGBA	Shanghai, (hina. (13)
18.200	KUS	Manila. P'hilippine forands	19.680	CEC	La Granja. Chile	21.600	CGG	1rummondville, P. Q., Canada
18.230	EAH	Madrid, Spain	19.700	DFJ	Nauch, Germany	22.300	GBU	Rughy. United Kingdom
18.240	FRE	St. Assise, France	19.720	EAG	Aranjuez, Spain, (B)	22.460	EDS	Madrid, Spain
18.240	JVB	Tokyo, dapan	19.800		Tokro, Japan	22.520 22.600	DGE	Naterl, Germany
18.250	FTO	St. Issise, lrance	19.820	WKN	Lawrencevile, N.	22.600	DGF2	
$\left\lvert\, \begin{aligned} & 18.295 \\ & 18.310 \end{aligned}\right.$	FVR	Maracay, Venezuela	19.840 19.900	LSG	Monte Grande, Argentina	22.820	CEC	La Gramja, Chil
18.310	GBS	Rugby, [nited kingdon	19.920	HSJ	Bangkok, Siam	23.240	HSJ	l3angkok, Siam
18.340	WLA	Lawrenceville. N. J., US.	19.947	DIH		26.100 28.000	GSK	Daventry, United Kingdom (B) Amateurs
18.340	ZLW	Wellington, N. Z.	19.980	KAX	Manila. Philippine I-lands	28.000		Amateurs,
18.345	FZS3	Saigon, French Indo-China			15 TO 6 METERS	30.000		
18.390 18.400	PCK	Karsaw, Potand	20.020	DHO	Nauen. (terman	29.817	IAF	Fiumicino, Italy
18.405		Kontwis, -	20.040	OPL	Leopoldville, Belgian Congo	30.604	IAG	Golfo Iranci, Italy
18.410	PCK	Kontwijk, Netherlands	20.140	DGW	Nauen, Germany	36.144	TYZ	Calenzana, France
18.411	vWZ	Kirkee, India	20.140	DWG	Nauen, Germany	36.300	KGXM	aikiki, Hawaii
18.413			$\begin{aligned} & 20.165 \\ & 20.180 \end{aligned}$		Warsaw. Poland Rocky Point, N Y. USA	36.800		Amatelur and Experimental, Ja-
18.420	VWZ	Kirkee, India	$\begin{aligned} & 20.180 \\ & 20.260 \end{aligned}$	WQX WQQ	Rocky Point, N. Y., USA	37.400	KGXC	Manawahua. Hawai
$\begin{aligned} & 18.4 \\ & 18.2 \end{aligned}$			20.310	RFAJ	Moscow, Russia	39.473	TY4	La Turbie, France
18,48	HBH	rangins, Switzerland	20.360	EAH	Madrid, Spain	39.600	KGXA	Manawahua, Hawaii
18.535	PCM	Kootwijk, Netherlands	20.380	GAA	Rugly, United Kingdom	40.700	KGXJ	Mupalakua. Iawa
18.535		Warsaw, Poland	20.400	VLK7	Sydney, Australia	41.040	LGL	Monte Grande, Argentina
18.540	PCM	Kootwijk, Netherlands	20.430	IRK	Rome, Italy	41.400	LGK	Monte Grande, Argentina
18.545	PCM	Kootwijk, Nt therlinds	20.500	DGQ	Nauen, Germany	46.200	KGXO	Kalepa. Hawaii
18.595	GLS	Ongar, United Kingdom	20.570	EDR2	Madrid, Spain	47.300	KGXB	Manawnhua, Hawai
18.600	PDM	Kootwijk, Netherlands	20.570	EDS	Madrid, Spain		KGXH	Ulupalakua, Haw
18.610	RRK	Tifis, Russia	20.570	EHX	Madrid, Spain	49.500 56.000	KGXK	Waikiki, Hawaii
18.620	GBJ	Rodmin, United Kingdom	20.585	ORS	Stanleyville, Belgian Congo	56.000 to		dmateurs, [s.
18.620	GAU	Rughy, United Kingdom	20.595 20.610	$\begin{aligned} & \text { ORL } \\ & \text { EAH } \end{aligned}$	Madrid, Spain ${ }^{\text {Leopoldian Congo }}$			
$\begin{aligned} & 18.630 \\ & 18.640 \end{aligned}$	IRZ PSC	Rome, Italy Marapicu, Brazil	20.610 20.620	CEC	La Granja. Chile	400.000		Amateurs, USA
18.680	OCI	Lima, Peru	20.640	FSR	Paris France			
18.680	GAX	Rugby, United Kingdom	20.670	EHX	Madrid, Spain	401.00		
18.700	DFQ	Nauen, Germany	20.680	LSN	Buenos Aires, Argentina, (B)			
18.770	TYD3	Paris. T.S.F.. France	20.680	LSX	Monte Grande. Argentina, (B)			

$B=$ Broadcasting ; $X=$ Experimental.

Kilocycle Meter Conversion Table

W/ITH this simplified chart, meters can be converted into kilocycles 10 is meters, 29.982 will be kilocycles; or if 10 were kilocycles, the ITH this simplified chart, meters can be converted into kilocycles 10 is meters, 29.982 will be
or vice versa, very simply. For instance. in the first column if nthar woyld he 29.982 metpra

terer m	morkc	*c or m	morke	ke orm	morkc	keorm	morkc	ke	morke	kcor m	mork	te or m	markc	*corm	morke	kearm	mor ke	kcor	or
10	29, 982	1,010	290.9	2, 010	149.2	3, 010	99. 61	4, 010	74.77	5, 010	59.84	0, 010	49.89	7,010	42. 77	8, 010	37. 43	9, 010	33. 28
20	14,991	1,020	293.9	2, 020	148.4	3, 020	95. 28	4, 020	74. 58	5, 020	59.73	6,020	49. 80	7, 020	42. 71	8, 020	37. 38	9, 020	33. 24
30	9,994	1,030	291. 1	2,030	147.7	3, 030	98. 95	4, 030	74. 40	5, 0.30	59. 61	6, 030	49. 72	7, 030	42. 65	8, 030	37. 34	9, 030	33. 20
40	7,496	1,040	288.3	2, 040	147. 0	3, 040	98. 62	4,040	74. 21	5, 040	59. 49	6, 040	49. 64	7, 040	42. 59	8, 040	37. 29	9, 040	33. 17
50	5,996	1,050	285.5	2, 050	146.3	3, 050	98. 30	4, 050	74.03	5, 050	59.37	6, 050	49.50	7, 050	42. 53	8, 050	37. 24	9, 050	33. 13
60	4,997	1,060	282.8	2, 060	145.5	3, 060	97. 98	4,060	73. 85	5,060	59.25	6,060	49. 48	7, 060	42. 47	8, 060	37. 20	9, 060	33. 09
70	4, 283	1,070	${ }^{250} 2$	2,070	144.8	3, 070	97. 60	4,070	73. 67	5,070	59.13	6, 070	49. 39	7, 070	42. 41	8, 070	37. 15	9, 070	33. 06
80	3,748	1, 080	277.6	2, 080	144. 1	3, 080	97. 34	4, 080	73. 49	5, 080	59.02	6. 080	49.31	7, 080	42.35	8, 080	37. 11	9, 080	33. 02
90	3, 331	1,090	${ }^{275.1}$	2, 090	143. 5	3, 090	97. 03	4, 090	73. 31	5,090	58. 90	6, 090	49.23	7,090	42. 29	8, 090	37. 06	9,090	32. 98
100	2,998	1,100	272.6	2, 100	142.8	3,100	96. 72	4,100	73.13	5,100	58. 79	6, 100	49.15	7,100	42. 23	8, 100	37. 01	9, 100	32.95
110	2,726	1,110	270.1	2, 110	142.1	3,110	96.41	4,110	72.95	5, 110	58. 67	6, 110	49. 07	7, 110	42. 17	8. 110	36. 97	9, 110	32. 91
120	2,499	1,120	267.7	2,120	141.4	3, 120	96. 10	4,120	72. 77	5, 120	58. 56	6, 120	48.90	7, 120	42. 11	8,120	36. 92	9, 120	32. 88
130	2,306	1,130	265. 3	2, 130	140.8	3,130	95. 79	4,130	72. 60	5, 130	58. 44	6, 130	48.91	7,130	42. 05	8, 130	36. 88	9, 130	32. 84
140	2,142	1. 140	263. 0	2. 140	140. 1	3, 140	95. 48	4,140	72. 42	5, 140	58. 33	6, 140	48.83	7.140	41.99	8, 140	36.83	9, 140	32. 80
150	1, 999	1, 150	260.7	2,150	139.5	3,150	95. 18	4,150	72. 25	S, 150	58. 22	6,150	48.75	7, 150	41.93	8, 150	36. 79	9, 150	32. 77
160	1,874	1,160	258.5	2, 160	138.8	3,160	94. 88	4,160	72. 07	5,160	58.10	6, 160	48. 67	7,150	41. 87	8, 160	36. 74	9, 180	32.73
170	1,764	1,170	256.3	2, 170	138.1	3, 170	94. 58	4,170	71. 00	5. 170	57.98	6. 170	48. 59	7, 170	41. 82	8, 170	36.70	9, 170	33.70
180	1, 866	1. 180	254.1	2. 180	137. 5	3, 180	94. 28	4, 180	71. 73	5. 130	57. 88	6. 180	43. 51	7,180	41.76	${ }^{8} 18180$	36. 65	9, 180	32. 60
190	I, 578	1,190	252. 0	2,190	136.9	3, 190	93. 92	4, 190	71. 56	5, 190	57.77	6, 190	48. 44	7, 100	41. 70	${ }^{8,190}$	36. 61	9, 190	32. 62
200	1,499	1,200	249.9	2, 200	136.3	3, 200	93. 69	4,200	71. 39	5,200	57.60	6, 200	48.36	7, 200	41. 64	8, 200	36. 56	9,200	32. 59
210	1,428	1, 210	247.	2,210	135.7	3, 210	93. 40	4,210	71. 22	5. 210	57. 55	6, 210	48. 28	7. 210	41. 58	8, 210	36. 52	9, 210	32.
220	1,363	1,220	245.8	2, 220	135.1	3, 220	93. 11	4,220	71.05	5, 220	57. 43	6,220	48. 20	7. 2220	41. 53	${ }_{8}^{8} 8220$	36. 37	9,220	32. 52
230	1, 304	1, 230	243. 8	2, 230	134. 4	3, 230	92. 82	4. 230	70. 88	5, 230	57. 33	6. 239	48.13	7. 230	41. 47	8, 230	36. 43	0, 230	32. 48
240	1,249	1. 240	241.8	2,240	133.8	3, 240	92. 54	4,240	70.71	5, 240	57. 22	6, 270	4805	7. 240	41. 41	8, 240	36. 39	9, 240	32. 45
250	1,199	t, 250	239.9	2,250	133.3	3,250	92. 25	4, 250	70.55	5,250	57. 11	6,250	47. 97	7, 250	41.35	8,250	36. 34	9, 250	32. 41
26	1,153	1. 260	238.0	2, 260	132.7	3,260	91.97	4, 260	70. 38	5,260	57.00	6, 260	47. 89	7,260	41. 30	8, 260	36. 30	9, 260	32. 38
27	1, 110	1.270	236. 1	2, 270	132.1	3,270	91. 69	4,270	70.22	5, 270	56. 89	6, 270	47.82	7, 270	41. 24	8, 270	36.25	9, 270	32. 34
280	1, 071	1. 280	234. 2	2,280	131.5	3, 280	91. 41	4,280	70.05	5. 280	56. 78	6, 280	47. 74	7. 280	41.18	8, 280	36. 21	9, 280	32. 31
290	1,034	1, 290	232.4	2, 290	130.9	3,290	91. 13	4. 290	69.89	5, 290	56.68	6, 290	47. 67	7, 290	41. 13	8,290	36. 17	9, 200	32. 27
300	999.4	1,300	230.0	2,300	130.4	3, 300	90. 86	4,300	69.73	5,300	56.57	6, 300	4759	7, 300	41.07	8, 300	30.12	9,300	32. 24
310	067.2	1,310	228.9	2,310	129.8	3,310	90. 58	4,310	69. 56	5,310	56. 46	6, 310	47. 52	7, 310	41. 02	8,310	36. 08	9,310	32. 20
320	936.9	1,320	227.1	2, 320	129.2	3. 320	90. 31	4, 320	69. 40	5,320	5636	6. 320	47. 44	7, 320	40.96	8, 320	36. 04	9, 320	32. 17
330	908.6	1,330	2254	2,330	128.7	3,330	90. 04	4,230	59. 24	5,330	56. 25	6. 330	47. 36	7. 330	40.90	8, 330	35. 99	9, 330	32. 14
340	881.8	1, 340	2237	2, 340	128.1	3,340	89. 77	4, 340	69. 08	5, 340	56. 15	6, 340	47. 29	7, 340	40. 85	8, 340	35. 95	9,340	32. 10
350	856.6	1, 350	22.1	2, 350	127.6	3,350	89. 50	4,350	68. 92	5,350	56. 04	6,350	47. 22	7, 350	40. 79	8,350	35. 91	9, 350	32.07
360	2.8	1,360	220.4	2, 360	127.0	3,360	89. 23	4,360	68. 77	5,360	55. 94	6,360	47. 14	7, 360	40.74	8,360	35.86	9, 360	32. 03
370	810.3	1,370	218.3	2, 370	126.5	3,370	88. 97	4, 370	68.61	5; 370	55. 83	6, 370	47. 07	7, 370	40.68	8, 370	35. 82	9, 370	32.09
380	789.0	1,380	217.3	2, 380	126. 0	3,380	88. 70	4,380	68. 45	5, 380	55. 73	6, 380	46. 99	7, 380	40. 63	8, 380	35. 78	9, 380	3196
390	768.8	1,390	215.7	2, 390	125. 4	3,390	88, 44	4,390	08. 30	5,390	55. 63	6. 390	46.92	7, 390	40. 57	8,340	35. 74	9, 390	31.93
400	749.6	1,400	214. 2	2, 400	124.9	3,400	88. 18	4,400	68.14	5,400	55. 52	6, 400	46. 85	7,400	40. 52	8, 400	35. 69	9,400	31.90
410	731.	1, 410	212.6	2, 410	124.4	3,410	87.92	4, 410	67. 99	5,410	55. 42	6, 410	46. 77	7,410	40. 46	8,410	35. 65	9, 410	31. 86
420	713.9	1, 420	211.1	2, 4:0	123.9	3,420	87. 67	4,420	67. 83	5,420	55. 32	6, 420	4670	7,420	40. 41	8, 420	35. 61	9, 420	31.83
430	607.3	1,430	200.7	2,430	323. 4	3,430	87. 41	4,430	67. 68	5, 430	55. 22	6, 430	46. 63	7, 430	40. 35	8, 430	35. 57	9, 430	31. 79
440	581.4	1,440	203. 2	2, 440	122.9	3, 440	87. 16	4,440	67. 53	5,440	55. 11	6, 440	46. 56	7,440	40. 30	8, 440	35. 52	9,440	31. 76
450	660.3	1,450	206.3	E, 450	122.4	3, 450	86. 90	4, 450	67. 38	5,450	55. 01	6, 450	46.48	7,450	40. 24	8,450	35. 48	9, 450	31.73
460	651	1, 960	205.	2, 460	121. 0	3,460	86. 65	4,400	67.	5,460	54. 91	6, 460	46.41	7,460	40. 19	8, 460	35. 44		
470	637.9	1,470	204.0	2,470	121.4	3,470	86. 40	4,470	67. 07	5, 470	54. 81	6, 470	46. 34	7,470	40.14	8,470	35. 40	9, 470	31. 66
480	624.6	1,480	202.6	2, 480	120.9	3,480	86. 10	4,480	60. 92	5,480	54. 71	o, 480	46. 27	7,480	40.08	8,480	35. 36	9, 480	${ }^{31.63}$
490	611.9	1,490	201. 2	2, 490	120.4	3, 190	85. 91	4,490	66. 78	5,490	54. 61	6,490	45. 20	7,490	40. 03	8,490	35. 31	490	31. 59
500	599:6	1, 300	199.9	2,500	119.9	3,500	85. 66	4,500	66.63	5, 500	54. 51	6. 500	4613	7, 500	39.98	8, 500	35. 27	9,500	31.56
510	587.	1,510	198.6	2, 510	119.5	3,510	85. 42	4, 310	66. 48	5,510	54.41	6. 510	46.06	7,510	39.92	8, 510	35. 23	9, 510	31. 53
520	576.6	1, 520	197. 2	2, 520	119.0	3,520	85. 18	4,520	66. 33	5,520	54.32	6, 520	45. 98	7,520	39. 87	8, 520	35. 19	9,520	31. 49
530	565.7	1, 530	${ }^{196 .} 0$	2, 530	118.5	3,530	84. 94	4, 530	66. 19	5, 330	54. 22	6, 530	45. 91	530	39. 82	8, 530	35. 15	\%, 530	31.46
54	555.2	1,540	1947	2,540	118.0	3,540	84. 70	4,540	66.04	5. 540	54.12	6, 540	45. 84	7, 540	39.76	8, 540	35. 11	9,540	31. 43
550	545.1	1. 550	193.4	2, 550	117:6	3,550	84. 46	4,550	65. 89	5, 550	54.02	6,550	45. 77	7, 550	39.71	8, 550	35. 07	9,550	31. 39
50	535. 4	1,560	102.2	2,560	117.1	3,560	84. 22	4,560	55. 75	5, 560	53. 92	6, 500	45. 70	7, 560	39.66	8,500	35. 03	9, 560	31. 36
570	526.0	1, 570	1910	2,570	116. 7	3,570	83. 98	4, 570	65. 61	5, 570	53.83	6, 570	45. 63	7, 570	39.61	8,570	34. 98	9, 570	31. 33
580	516.9	1,580	18%. 8	2,580	116.2	3,580	83. 75	4,580	65. 46	5,580	53.73	6, 580	45. 57	7, 580	39. 55	8, 580	34. 94	9,580	31. 30
590	508. 2	1,590	1886	2, 500	115.3	3,590	83. 52	4,590	65. 32	5,590	53.64	6, 590	45. 50	7, 590	39.50	8, 590	34.90	9,590	31. 26
600	499.7	1,600	187. 4	2, 600	115.3	3,600	83. 28	4,600	65. 18	5,600	53. 54	6,600	45. 43	7,600	39. 45	8, 600	34.86	9, 600	31. 23
61	401.5	1, 610	1862	2.610	114.9	3,610	83. 05	4,010	65. 04	5,610	53. 44	6,610	45. 36	7,610	39. 40	8, 610	34.82	9,610	31. 20
620	4836	1,620	185. 1	2,620	114. 4	3,620	82. 82	4,620	64. 90	5,620	53. 35	6,620	45. 29	7, 620	39. 35	8, 620	34. 78	9,620	31. 17
630	475.8	${ }_{4} 6.630$	183. 9	2,630	114.0	3,630	82. 60	4,630	64. 76	5,630	53. 25	6,630	45. 22	7,630	39. 29	8, 630	34. 74	9,630	31. 13
030	458.	1,640	182.8	2,640	113.3	3,640	82. 37	4, 640	64. 62	5, 540	53.15	6,640	45. 15	7,640	39. 24	8, 040	34.70	9,040	31. 10
Eso	4513	1,650	181.7	2.650	113. 1	3,650	82. 14	4,650	64. 48	5,650	5307	6,650	45. 09	7,650	39. 19	8, 050	34.66	9, 650	31.07
sor	454.	1,660	180	2,660	112.7	3,660	81. 92	4,660	64. 34	5,660	52.9:	6,060	45. 02	7,660	39. 14	8,600	34. 62	9, 660	31.04
570	4475	1,670	179. 5	2,670	112.3	3, 670	81. 70	4, 670	64. 20	5,670	52.58	0,670	44.95	7, 670	39.09	8, 670	34. 58	9, 670	31.01
680	440.9	1,680	178. 5	2. 680	411.9	3,680	81. 47	4,680	64. 06	5, 680	52.73	8, 080	44. 88	7,680	39.04	8, 680	34. 54	9, 680	30. 97
¢0	4345	1, 890	1774	2. 690	111.5	3,600	81. 25	4, 690	63. 93	5,640	52. 69	O, 690	44. 82	7,690	38.99	8, 690	34. 50	9, 690	30.94
700	4:8.3	1,700	176. 4	2,700	1110	3,700	81.03	4,700	63. 79	5,700	52.60	6,700	44.75	7,700	38. 94	8,700	34.46	9, 700	30.91
710	422.3	1,710	175. 3	2,710	110.6	3,710	80. 81	4,710	63. 66	5,710	5251	0,710	44.88	7,710	38. 89	8,710	34. 42	9, 710	
720	116.4	1,720	174. 3	2,720	110.2	3,720	80. 60	4,720	63. 52	5, 720	52: 42	6,720	44. 02	7,720	38.8.4	8,720	34. 38	9, 720	30. 85
730	4107	1,730	173. 3	2,730	109. 8	3,730	80. 38	4,730	63. 39	5, 730	52. 32	6,730	44. 55	7,730	38.71	8.730	34. 34	9.730	30. 81
740	405.2	1,740	172.3 171.3	2, 740 2, 750	109.4 109.0	3,740 3,750	${ }^{80} 17$	4,740	63. 25	5,740	52. 23	6, 740	44. 48	7,740	38.74	8,740	34. 30	9, 740	30.78
750	399.8	1,750	171.3	2,750	109.0	3,750	79.95	4,750	63. 12	5,750	52.14	6,750	44.42	7,750	38.60	8,750	34. 27	9,750	30.75
7×0	3945	1,760	170.4	2,760	108.6	3,760	79. 74	4. 760	62. 99	5,700	52.05	6,760	44. 35	7,760	38. 64	8,760	34. 23		
770	389.4	1,770	169. 4	2,770	108. 2	3,770	79. 53	4,770	62. 86	5,770	51. 96	6,770	4429	7,770	38. 57	8,770	34. 19	9,770	30.69
780	384.4	1,780	${ }^{168.4}$	2,780	107.8	3,780	79.32	4,780	62.72	5.780	51.87	0,780	44. 22	7,780	38.54	8,780	34. 15	9,780	${ }^{30.66}$
790	379.5	1,790	167.5	2,790	107. 5	3, 790 3,800	79. 11	4,790	62. 59	5,790	51.78	6,790	44. 16	7,700	38. 49	8,790	34. 11	9,790	30.03 30.50
800	374.8	1,800	166.6	2,800	107.1	3,800	78.90	4,800	62. 46	5,800	51.69	6, 800	44.09	7,800	38.44	8, 800	34.07	9,800	30, 59
810	370.2	L, 810	165. 8	2,810	106. 7	3, 810	78. 69	4,810	62.33	5,810	51. 60	ぐ, 810	44.03	7,810	38.39	88810	34. 03		
820	365: 6	1,820	164.7	2,820	106. 3	3, 820	78.49	4, 820	62. 20	5,820	51.52	0,820	43.96	7,820	38. 34	8, 820	33. 99	9, 820	30. 53
830	361.2	1, 830	163. 8	2,830	105.9	3, 330	78. 28	4,830	62. 07	5,830	51. 43	6,830	43. 90	7, 830	38. 29	8, 830	33. 95	9, 830	30. 50
840	356.9	1,840	162. 9	2,840	105. 6	3,840	78.88	4,840	61. 55	5, 840	51. 3.4	6, 840	43. 83	7,840	38. 24	8, 340	33. 92	9, 840	30. 47
850	352.7	1,850	162.1	2,850	105. 2	3,850	77. 88	4,850	61.82	5,850	51. 25	6, 850	43. 77	7,850	18. 19	8,850	33.88	9,850	30. 44
860	348. 6	1, 860	161.2	2,800	104.8	3,860	77. 67	4,850	61.69	5,800	51. 16	0,860	43. 71	7,860	38. 44	2,860	33. 84	9,860	30.41
870	344.6	1, 870	160.3	2,870	1045	3,870	77. 47	4, 870	61. 56	5, 870	51. 08	6, 870	43.64	7, 778	38:0	8, 370	33. 80	9, 870	30. 38
880	340. 7	1, 880	159.5	2,880	104.1	3,880	77. 27	4, 880	61. 44	5, 180	50.99	6, 880	43. 58	7,880	38. 105	8. 880	33. 76	9, 880	30, 35
890	336.9	1,890	158. 6	2,890	103.7	3,890	77.07	4,890	61.31	5, 897	50.90	6, 890	43. 52	7,890	38.00	8,890	33. 73	9,890	30. 32
900	333.1	1,900	1578	2,900	103. 4	3,900	76. 88	4,900	61.19	5,900	50. 82	6, 900	43. 45	7,900	37. 25	8, 900	33. 69	9,900	30. 28
910	328.5	:, 910	157. 0	2, 910	103. 0	3,910	76. 68	4,910	61.06	5,910	50.73	0,910	43. 39	7.910	37. 90	8, 410	33.65	9,910	30. 25
920	325.4	1,920	156. 2	2,920	102. 7	3,920	76.48	4,920	60.94	5, 920	50.65	6,920	43. 33	7,920	37. 80	8, 920	33. 01	9,920	30.22
930	322.4	1,930	1553	2,930	102.3	3,930	76. 29	4,930	60.82	5,930	50. 56	8, 030	43. 26	7,930	37.81	8,930	33. 57	9,930	30. 19
940	315.0	1,940	154. 5	2,940	102.0	3,940	76. 10	4, 940	60.69	5,940	50.47	0,950	43. 20	7,940	37. 78	8, 940	33. 54	9,940	30. 16
950	315.6	1,950	153.8	2,950	101.6	3,950	75	4,950	60.57	5,950	50.39	6,950	43. 14	7,950	37. 71	8,950	30	9,950	30. 13
960	312.3	1,900	153.0	2,960	101.3	3,960	75. 71	4,900	60. 45	5,960	50.31	6,960	43. 08	7,960	37. 67	8,960	33. 46	9,900	30.10
970	309.1	1,970	152. 2	2,970	100.9	3,970	75. 52	4,970	60.33	5, 970	S0. 22	6,970	43. 02	7,970	37. 62	8, 970	33. 42	9,970	30.07
980	${ }^{363.8} 8$	1,980	151.4	2,980	100.6	3,980	75. 33	4, 080	60. 20	5,980	50. 14	6. 980	42. 95	7,980	37. 57	8,980	33. 39	9,980	30.04
990	302, 8	1,990	150.7	2,990	${ }^{100.3}$	3,090	75. 14	4,990	60. 08	5,990	50. 05	6,990	42.89	7,990	37. 52	8,990	33. 35	9,990	30.01
1,000	299.8	2,000	149.9	3,000	99.94	4,000	74.96	5,000	59.96	6,000	49.97	7,000	42. 83	8,000	37.48	9,000	33. 31	10,000	29.98

STANDARD TIME ZONES OF THE WORLD AND OUTLINE CHART OF THE WORLD'S COUNTRIES

Vote For Subjects You Like

- THE editurs are particularly anxious to make the ') FFICIAL SIIGRT WAVE LISTENER just the kind of pinblication please would inke it to be; thereform minutes time and glance down the accompanying list of subjects and either cut out the marked balsubjects and erther cut out the narked olitor, OFFICIAL SHDR'T WAVE LISTENER, 99 101 Hudson Street, Now York City.

| SUBJECTS |
| :--- | :--- | :--- |
| Description and Photos of S.W |
| Broadcasting Stations |

The Nairobi, Africa Si-W Station

The Nairobi Broadcasting Station was opened in August, 1928, with the object of providing the whole of Kenya Colory (Africa), Nith programs at reasonable strength for at least three hours daily. In view of the curious geographical formation and the equally unusual distribution of population in this Colony, it was found nevessary, after considerable experimental work, to utilize two wave-lengths simutaneously for this service The considerable population living within 50 miles of Nairobi is served by a transmitter working on 350 metres (858 kc .), while listeners beyond that distance receive a service from another transmitter, radiating the same program on VQ7LCI, 49.5 meters (6060 kc .) It will be realized that as the whole of Kenya Colony is situated within a fer degrees of the Equator, the static level is so high on the long wave-

The Boy Who Made Good : :
 BY WEBSTER

lengths that reception of the 350 meter transmissions is rarely possible at greater distances than 50 miles!

The whole of the equipment compris ing transmitters, control room, studio, etc., is situated at Kabete, about 5 miles from Nairobi, and approximately 6000 feet above sea-level.

Each transmitter consists essentially of five stages, viz.; oscillator, isolator, modulated amplifier, final amplifier, and modulator. Air-cooled valves are used throughout. Modulation is carried out at low power (about 60 watts) and the modulated radio-frequency currents are then amplified by the final stage. which delivers about 500 watts to the aerial.

The aerial used with the 350 meter transmitter is a plain "T," one end being supported from steel mast which also helps to carry the beam aerial used by station V.Q.G., while the other is at-

THE
 LISTENER

Choosing the proper antenna is quite a problem
for the short-wave "Fan."

LIGHTNING ARRESTER FOR

 DOUBLET ANTENNASArthur Blackley, Springfield, Mass.
(Q) I have recently constructed a new doublet antenna, however, I have not seen any printed information regarding the lightning arresters or protection against lightning necessary for this type of antenna. I would like to know whether I need a special switch or lightning arrester and just how it should be connected.
(A) All radio receiver antennas, regardless of the type, require some sort of protection against lightning and probably the most convenient and simplest method of obtaining this protection is through the use of the socalled lightning arresters, because if a switch were used, one is liable to forget to throw it in the grounding position and therefore it is not really 100% safe. In the case of doublet antennas two lightning arresters or a special double lightning arrester is necessary. Where two separate arresters are used, they should be connected to each of the two lead-ins and the remaining connection on each lightning arrester should be connected, to the ground.

Lightning does not often strike the radio aerial. Recently, however, we had an experience where the antenna was struck and melted loose from the supporting insulator, even though it was fully protected with lightning arresters, so by all means, use some safety device because you are not only in danger of having the antenna torn down by the lightning, but in some cases the receiving set suffers a great amount of damage, which will amount to considerably more than the price of a few fairly cheap arresters. The fire insurance companies require adequate protection against lightning strokes and should damage be done in your
home and it were proven that the aerial was not equipped with the necessary protective devices you would not be able to collect from the insurance company.

CAGE OR SINGLE WIRE ANTENNA?

Frank Olson, Cincinnati, Ohio.
(Q) A number of my friends have informed me that I would obtain better results if I were to replace my present single wire antenna with a multi-wire cage-type antenna; however, it seems that I have read somewhere that for general reception, the cage antenna offers no appreciable advantage over the single wire type. I would be pleased to have your opinion in this matter.
(A) From our personal experience in the past, we can safely say that it is practically impossible to notice the

The advantages of both the superhet and the T.R.F. receivers are explained in the text.
difference between an antenna consisting of just one single wire and one having several wires built in the form of a cage antenna. We do not believe it would be worthwhile to replace the single wire antenna. It would be much better for you to check your present antenna and make sure that it is of proper length and well insulated. Some worthwhile data on short-wave antennas was given in the last issue of the LISTENER.

SCRAMBLED SPEECH

Frank Wiley, Providence, R. I.

(Q) I heard a good many shortwave stations transmitting what appears to be voice, but I am not able to bring it in clear enough to understand what they are saying. These stations come in very loud and I can hear them most any time of the day or night. I wish you would be kind enough to let me know whether this is a natural condition or whether there is something
wrong with my receiver or location.
(A) Undoubtedly the stations you referred to are those used by the telephone companies for their long-distance short-wave telephone work. There are a great many of these stations in operation during the day and evening and the speech has been purposely scrambled in order that you and other experimenters cannot listen in on the private telephone conversation. There is a machine which is used in the receiving station to unscramble the voice and make it sound natural to the parties holding the conversation. Elsewhere in this issue you will find more complete data concerning this subject.

T.R.F. OR SUPERHETERODYNE RECEIVER?

Oiiver Campbell, Atlantic City, N. J.
(Q) I have recently started buying your Listener Magazine and find it just what I am looking for as I am becoming interested in short waves. However, I am about to purchase a receiver and do not know whether to buy a superheterodyne or a T.R.F. (tuned radio frequency) receiver. I would appreciate your comments and will undoubtedly follow your advice.
(A) Of course, in purchasing a short-wave receiver, or any radio receiver for that matter, the quality of the set you purchase is in all cases dependent upon the amount of money you pay for it. The higher priced sets, of course, do perform better than the cheaper ones. Regarding the tuned R.F. and superhet receivers, we can only say that a good superheterodyne is always better than a tuned R.F. set; a cheap superheterodyne or one that is poorly designed cannot be compared with a properly designed T.R.F. set. Our advice is that you either purchase a good T.R.F. receiver or a good superheterodyne.

The peculiar sounds that you hear coming over some short-wave stations are usually "scrambled speech."

ASKS

involved nature will be given here-only those which the Editors feel will be of value to the average nontechnical "Short-Wave Listener."

HOME RECORDING

F'rank Wilson, Buffalo, N. Y.
(Q) I am interested in recording programs and would like to know just how to go abcut the situat:on. I do not wish to spend a large sum of raney, however, I want to do a successful job. Your advice will be appreciated very much.
(A) There are a great many methods by which program may be recorded, The simplest and bes: arrangement would be to either purchase or build a power amplifier with an output from 3 to 6 watts and procure a turn table and cutting head or recording head, which ever you may prefer. With this equipment the output of the shortwave receiver if it is an earphone set, will be connerted to the amplifier and the recording head will connect to the output of the small amplifier. For more powerfal receivers special connections can be made so that the recording instrument connects directly to the outpur amplifier of your radio set.

If you are a reader of Short Wave Craft and have saved your back copies, we suggest that you refer to the February 1935 issue on page 586 of which there is a very elaborate article eovering all the angles of home recording.

HOW TO GET "VERIS"

 George Miller, Los Angeles, Calit.(Q) I hare read a great deal abrut the differert contests sponsored by Short Wave Craft and the Short Wave Listener where prizes are awarded to those submitting a large number of verification cards. Please be kind enough to explain just how to go about obtaining verification cards as I would like to enter one of your contests.
(A) Probably the easicst way to

Keeping a log-book is beneficial when collecting veris.
obtain verification cards from foreign stations is to write them a letter explaining the type of program heard, the date and time, together with whatever comments you feel will be interesting to the station operators. If you give them information regarding the quality, etc., of their program, you will of course be aiding them and stand more of a chance of receiving a card from them. In most cases it is advisable to include in your letter an International Reply Coupon, costing but 9 cents at your local postoffice, in order that the station will not have to bear the cost of answering your letter. As they receive hundreds of letters daily you can appreciate the cost is quite great and many listeners fail to obtain verifications because they do not forward the necessary postage. Do not, of course, send them American stamps.

The short-wave converter and broadcast receiver, versus a modern "all-wave" receiver.
CONVERTER OR ALL-WAVE SET? Walter Sullivan, Allentown, Pa.
(Q) I have hard a great many comments regarding shortwave converters and wonder if you would be kind enough to advise me through your columns which is the best; a regular all-wave receiver or a standard broadcast set operated in conjunction with a short-wave converter?
(A) If you are referring to a good short-wave converter, such as those having 3 or 4 tubes, there is really no difference between a combination of such a converters and a regular broadcast receiver, and a complete all-wave superhet. If you have a good sensitive broadcast receiver we see no reason why you should not use a converter in conjunction with it, however, if your broadcast set is of the old style, we Eelieve you will have much better results with some of the newer up-to-date all-wave receivers.

Eliminating broadcast interference from shortwave receivers.

BROADCAST INTERFERENCE ON

 SHORT WAVESTom Kerry, Letroit, Mich.
(Q) I have a 4 -tube short-wave receiver and experience a great deal of trouble due to interference from a local broadcast station. I have been told that this trouble can be cleared up by inserting a wave-trap in the circuit. Will you please inform me as to just what a wave-trap is and also let me know if such a device as this will climinate such interference? I can hear this station all over the S-W hands and of course, cannot receive short-wave stations unless the broadcast transmitter has gone off the air.
(A) A wave-trap consists of a coil of wire and a condenser and is a very simple device to construct. The condenser is connected across the coil and the whole circuit is then tuned exactly to the frequency of the broadcast station and is very effective; it will undoubtedly eiiminate the trouble you are experiencing. In the drawing we have shown the connections for the vave trap and how to construct the coil.

Other short-wave "Fans" experiencing similar trouble will do well to construct this wave trap.
WHAT KIND OF ANTENNA WIRE? Paul Ames, Wichita, Kansas.
(Q) I am going to put up a new short-wave antenna, however, the question of the type of wire to use arises and I am consulting you for advice.
(A) In most cases we prefer the enameled wire for short-wave antennas. This can either be solid number 12 or 14 , or stranded wire such as the popular type having 7 strands of 22 gauge, with each strand enamelled. The stranded wire is much easier to handle, inasmuch as it does not kink, although there is no difference in the efficiency.
wouldn't mean anything to you. But I am afraid I am going to have just one more noise to battle. When that shoe repair shop moved out of the building next door to the bank it sure cut my noise, and I have been expecting something to take its place just to make sure I don't get through to GSE or DJC."

Land soldered the final connections on the coil socket leads.
"Well, I guess we're ready for the test," he announced, plugging in an old tube and snapping the switch. "She lights-no shorts!" He replaced it with three good tubes and inserted a coil. "Turn off the big set, will you?"

As Kurt silenced the all-waver, Dick pushed the toggle to "On." Whirling the rheostat and moving the dial he let cut a whoop. "Hooray, success, she works the first time. Last time I tried to build a set I had to tear it down three times before I could get it going."
"What do you hear?"
"Nothing but noise yet. Listen... there. . .that new noise is in here." The grinding and crunching and frying vibrated the high-pitched, tiny cone. "Must be close. I tell you what, grab your hat and we'll walk around the block with it and see if we can locate the noise."
Land reached for his coat, hunched into it and picked up the baby set, resting it tenderly on a crooked forearm.
"I hope nobody will hear it," muttered the reporter as the pair descended the stairs to the street level.
"Don't worry, nobody will pay' any attention to us," laughed Dick. "This set hasn't enough volume for that."

They paced slowly down the street to the left. At the corner, they swung again to the left. "Getting weaker now," commented Land. At the next corner, they once again turned left. Here it was still fainter. "Going the wrong way, I guess," suggested Karl.
"Yeah." They completed the circuit of the block. "Getting louder now... well, I'll be darned! It's loudest right in front of the house. It would be. But I didn't notice anybody moving into the neighborhood lately."
"Well, you can't watch all the apartments around here."
"No, but I sure as heck can hear 'em!"
"Yes. Where to now?"
"Straight across the street, I guess. We'll go around the other block, it may be over there."
They stepped off the curb and crossed to the bank.
"Say! You can really hear it now.; It tops everything else. Come on!" The reporter, catching Land's enthusiasm of the chase, increased his pace to meet that of the radio fan as they hopped the curb and swung off to the right along the sidewalk.

They neared and turned a corner. "Getting a little weaker," muttered Dick.
"When we circle this block we should know which way to go, anyway," put in Rexford.
"Right. Say, that's funny, it gets louder again as we get around near my place. See, the noises just seek me out!"

Just Another Racket!

(Continued from page 152)

They neared the bank again as they completed the circuit.
"Yes, it's loader here all right."
"Must be coming from the bank. That's funny. Nobody there at this hour."
"Wait a minute, Dick, turn back a bit. It was louder back a bit." The two, engrossed in the man made static which rippled from the little speaker, paced back and forth along the sidewalk.
"You're right, Kurt, it's loudest right here." They looked about. "That's darn funny. This shoe shop has been empty for a week and there shouldn't be anybody or anything in there to make a noise."
"What do you think it is?"
"I don't know. Maybe in pulling out the machines, they left a wire hanging or "something."
"But," interposed the reporter, "the juice would be off. Anyway, the noise would be continaous, wouldn't it? You said it came on at the same time every night."
"That's right, all right. Well, it's got me. I guess I will have to wait till morning and phone the trouble department of the electric company. Maybe they can find something."
"Well, good luck, noise hunter. I guess I'd better be drifting as tomorrow is Nick's day off and I'll have two beats to cover."
"Yeah, O.K., g'nite, Kurt. I guess I'll fool around a bit as tomorrow's my day off at the theatre."
"G'nite."
Kurt, winding up his lunch hour with a game of poker in the press room of the police station the following morning, was interrupted by the telephone. "Hullo?"
"Lo, Kurt? Say, listen. This is Dick. Say you know that noise last night? Yeah, well the light company is over there now and they just found some wires attached at the metersomebody jumped the meter and is tapping the juice. Yeah. The wires run down into the basement of the vacant store. I gotta get back and see what they find. I thought maybe you could run up in case it is a story. Yeah. Goodbye."

Dick hung up the receiver and dashed back across the street. "Find anything else?" he demanded of the troubleshooters as he appeared on the scene.
"Wires go downstairs along a hall and through the wall," was the reply. "We can't force the door so we don't know what's on the other side. If anybody is using the basement they must come in from the alley and that means they are up to no good, so we are going to notify the cops to bust open the door. Gotta phone around here?"
"Yeah, sure, right across the street," panted Dick.
A prowl car was soon racing to the scene-with Kurt aboard.
The trouble-shooters and the shortwave listener met then in the alley. As the cops examined the door, Kurt remarked, "Looks like somebody might be tunneling into the bank."
"I was thinking of that," answered a policeman. "That's a husky padlock on the door and it's been used recent. Look at the key scratches."
"If that's the case, somebody ought to lay for the guy. It's a cinch, there's nobody in there now, because the door's locked from the outside."

The police debated. "I think we'd better report to central station and see about having someone hide here."
IT WAS dark in the hallway. The sun had long since set and Dick and two burly detectives were becoming impatient with the delay as they crouched, cramped, behind the stairway. Their only diversion was the portable set which brought in a few amateurs, the police calls and Lindbergh Field radio reports.
Snatches of hoarse music spotted the dial.
"What station's that?" the officers asked whenever Dick passed one.
"Just a harmonic," he explained. "KGB has 'em all over the dial. It's funny, you get a lot of KGB ,harmonics but only a few from KFSD."
"Uh-huh.' '
At last, after weary hours, a noise was heard in the alley.
"Douse that set," commanded the detective in a loud whisper. "Somebody's comin'."
Footsteps descended the stairs. Boards cracked inches overhead. A flashlight cut through the darkness like a yellow claw. The trio froze, afraid of discovery.

The back of a man, overcoated, feltratted, appeared before the door. He flashed his light on the lock, inserted a key...
The door swung open.
"Up with 'em, we got you covered!" roared the detectives. They sprang forward from their hiding place and quickly secured their victim.
"Gonna rob a bank, eh?" snarled one. "Now we'll see what you got in here." Grabbing the man's flashlight, one of the officers swung it around the room. A desklamp stood on a box. He switched it on. "Oh ho, what's all this?" he exclaimed.
"What's this, you mean," retorted the other, holding up a small black object from which a cord dangled. "Found it in this bird's pocket."

Dick pushed into the room. "Plug it in, plug it in," he cried. The detectives, who had forgotten him, stared blankly for a moment. Dick snatched the instrument and quickly inserted the plug in a receptacle. It vibrated sharply in his hand.
"See, see," he shouted, as he snapped on the radio. "That's the noise I heard, every night at 8:30." A fine buzz was agitating the cone.
"Holy cats! It's an engraving needle!"

A light spread over the second detective's face. "I thought I recognized you," he boomed at the stranger. "Greenback Murphoni, the counterfeiter! You sure picked a swell spot to work in this time. Last time it was a swanky bungalow."

Dick spent the reward money-part of it-for a battery super. He and Kurt are out near Julian somewhere, trying high-frequency reception in the higher altitudes. But he'll be back soon. Land doesn't squawk about a noisy neighborhood arymore.

Musical Artists from Australia (Continued from page 150)

the interest of every music lover throughout Australia, and when in May this great musical festival was further advanced by the performances of Melbourne and Sydney Symphony orchestras under the baton of the world famous English conductor, Sir Hamilton Harty, a highwater mark was set upon broadcasting achievements. Laelia Finneberg, the Irish prima donna, who first appeared under Sir Hamilton Harty's baton, continued a broadcasting tour of great National interest. Other eminent artist. who have since been touring under the aegis of the Commission have included the SpivakovskyKurtz Trio; Stella Power; Yelland Richards, the English pianist; Percy Grainger; and Lione'lo Cecil. At the present moment broadcasting tours are in progress in which listeners are hearing with obvious appreciation the artistry of such distinguished Australian artists as Rosa Pinkerton; Margot McGibbon and Frederic Jackson. Elise Steele and Lorna Trist, two very popular Australian instrumentalists concluded their tour on April 23rd. The future would seem assured of a similar high standard of artistry by the engagement of that very great Australian singer Florence Austral and her husband the world's premior flautist, John Amadio, Ben Williams tenor and Sydney de Vries bariton from the Royal Grand Opera Company, and a further broadcasting season by Percy Grainger.

A notable feature of the current programs of the Broadcasting Commission is the manner in which overseas rebroadcasts and relays arc leirg presented to listeners. Every week and almost every day some outstanding broadcast from the Empire stations at Daventry is relayed to Australian listeners. The broadcast of the Royal Wedding gave many listeners an insight into the technical achievements of these overseas broadcast, In respect to the clarity and aksolute perfection of transmission the finest effort to date was probably the speech of the New Zealand aviatrix, Jea: Batten, who spoke from her aeroplane at the Croydon aerodrome on the completion of her record-breaking solo flight from Australia. The
reception of Miss Batten's speech by Australian listeners at 4.20 p.m. E.S.T. was almost uncannily clear, and it was actually possible to hear Miss Batten moisten and open her lips in the nervousness of her opening remarks.

3LR's Shortwave Voice

(Continued from page 148)
from the output of the high frequency transmitter. The aerial that has been used continually since March for regular broadcasting consists of a horizontal half-wave doublet, the true bearing of which is $95^{\circ} 30^{\prime}$.

Since March the station has been operating on a frequency of 9580 kc between the hours of $6.15 \mathrm{p} . \mathrm{m}$. and 10.30 p.m.-Australian Eastern Standard time (G.M.T. 8.15 to 12.30). Program matter is taken from the studios of the National System. Until 8 p.m. the city program from either 3AR or 3 LO Melbourne is radiated, but after that hour the main National program is sent out from 3LR. This program may originate in the National studios of any of the Australian capital cities.

The stations in the National System are as follows:

The Nairobi Station
 (Continued from page 185)

transmitters. The proceedings at public functions in Nairobi are broadcast when it is considered that they will appeal to up-country listeners, and a church service is regularly relayed on Sunday evenings.
Two periods, each lasting one-half hour weekly, are devoted to Indian programmes, there being a fair number of Indian residents in Kenya and holding receiving licenses. The bulk of the license revenue, however, is derived from Europeans.

The license fee is at present 50 shillings (about $\$ 12.50$) per annum, which includes transmission, if the applicant can satisfy the Post Office Authorities that he possesses the necessary qualifications.

You can thoroughly ENJOY All Foreign programs without disturbing others.

Order from your dealer.
If he cannot supply you, we will.
Write for illustrated
circular L.9.

CANNONBALL

HEAD SETS
to your
SHORT WAVE
or
ALL WAVE

RECEIVERS

Reception that is faint
over the loudspeaker is clear whon you use our headsets.
C. F. CANNON COMPANY

Our Readers Ideas
 (Continued from page 165)

ed any real difficulty due to code interference. You neglect to mention whether or not you meant Amateurs and also whether or not you are using a superheterodyne receiver. We have found that there is absolutely no trouble caused by Amateurs whatsoever, but due to lack of preselection, it is possible to receive two stations on entirely different wavelengths (several hundred kilocycles apart) at the same time. These are usually commercial code stations which occasionally interfere in this manner and not Amateurs!

We do not believe that it is fair to the radio industry for you to discourage your friends so far as short-wave reception is concerned. We also believe it is very unfair to them, because we know for a positive fact that they urould receive many hours of enjoyment with short waves on a GOOD receiver and experience no trouble due to code interference.-Editor.)

CLIFF FIELD A REGULAR LISTENER
 (Continued from page 159)

I am highly pleased with this little receiver, inasmuch as I never find it necessary to use the phones except to copy "code" signals, and I have not used the 45 amplifier in nearly six months, Hi!
I greatly prefer experimenting to logging DX (distant) stations, and at the present time I am experimenting with automatic regeneration control. I have heard 55 short-wave stations, fifteen of which were verified. Besides this I have heard 39 commercial code stations.
I have had all of the U.S. Amateur districts both on phone and C.W., as well as a great part of Canada.

The following are some DX 20 meter phone stations I have heard:-V1G, CN2RA, K4SA, C6SA, H17G, CO2LL, C02WZ, V01I, and CT1BY.

Wishing you and The Official Short Wave Listener the best of luck, I am,

> Very truly yours,
> Clifford O. Field.
> P. O. Box 82
> Fair Haven, N. Y.

OLIVER AMLIE-A DEMON LISTENER
 (Continued from page 159)

Mr. W. T. Conder of their three stations $2 \mathrm{ME}, 3 \mathrm{ME}, 3 \mathrm{LR}$, from October 1934 to March 1935, reports are sent on each test from 1 to $21 / 2$ hours, 85 mornings in all. This post was assigned by the Australian Government to report signals to them, due to the poor reports from both American and foreign listeners. I will take their station check-up for one full year, ending September 1935.

Apparatus

TESLA OR OUDIN COILS
Dataprint containing data for construction
 see ilst below, includes condenter data, 4
inch spark, data for building, Including con-
denser data; requires $1 / 4 \mathrm{~K}$. W . 15.000 volt

 "plolt A.C. or D. D.C. type: 1 " spark; used for 0 How to operate oudin coll from a vacuum tube 0.50 osclliator
3 inch spart Tesle coll; operates on Ford 1g-
0.50 3 nition coil sark Oudin coll; 110 volt A.C. "KIck3 Coh, spark Oudin coll; 110 volt A.C. "Kick-
20 Tricks with Tesla and Oudin Colls --_ 0.50 TRANSFORMER DATA
1 k.w. 20,000 -volt transformer data, 110 -volt, 60 -cycle prlmary. Sultable for operating 3 ft Oudin coll
 inch Oudin coll s.aitable or operating 0. Electric Welding Transformer (18 Vt . Sec. and other Sec. Voltage Data)
Spark Coils-1 to 12 inch sparls data -__ 0.50 ARTIFICIAL FEVER Apparatus (for doctors) 0.75 (Low. Medium \& High Power Data Given)

SLIDE

 RULE MIDGETMetal 4" Dia.
Price $\$ 1.50$
Case 50c Fxtra Solves problems in multiplication, urvisiun, aduition, subtraction, and proportion; it also glves roots and
powers of numbers; sines, cosines. tangents and cotangents of all angles; also logs of numbers. Adds and subtracts fractions. Approved by colleges. 10" Dla., 27" Scale "Spectal" Rule, \$2.75 Multiplles and Divides, but has no "Trig" Scales.

Powerful battery electro-magnet; lifts 40 lbs. $\$ 0.50$ 110 Volt D.C. magnet to lift 25 lbs. 0.50
 110 Volt D.C. solenoid; lifts 2 lb . through 1 in .0 .50
110 Volt D.C. solenold; lifts 6 lb . through 1 in .0 .50 110 Volt D.C. solenold; lifts 6 lb . through 1 in .0 .50
12 lifenold, lifts 2 lb . through 1 in .50 A. C. Solenoid, powerful, 110 -volt, 60 -cycle 0.50
MoToR $1 / 16$ H.P., 110 volt A.C., 60 cycle MotoR-1/16 H.P., 110 volt A.C., 60 cycle
(sultable for driving $122^{\prime \prime}$ fan, etc.)
60 Data
0.50
0.50 60 or 1,200 cycle Synchronous motor $\quad 0.50$
 Electro-medical coll, (shocking coll) 0.50 Water-Wheels-How to Build and Light your 20 Electric Bell circuits
Electric chime ringer; fits any clock ….......................... 0.5

How to Fry Eggs on Cake of Ice Electrically $\$ 0.50$ Rewinding", Small Motor Armatures
Sales to New Jersey
residents subject to Sales to New Jersey residents sub

The DATAPRINT COMPANY
Lock Box 322 A
RAMSEY, N. J.

I hope to bring to America the first Australian Traphy, and at least will receive the first verification for one year from them on the three Australian stations $2 \mathrm{ME}, 3 \mathrm{ME}, 3 \mathrm{LR}$, with more than 250 hours on the air, or 175 reports. I alone (for March) received the three Australian stations for 26 reports from March 2nd to 19th, holding two stations at the same time, and logging their programs. Try it out just for fun.

Dliver Amlie,
56th City Line Ave.,
Overbrook,
Philadelphia, Pa.

Scrambled Speech
 (Continued from page 153)

they produce the original English. Demonstrations have been made where the operator speaks into an inverter, words which are entirely unintelligible and they come out clear and perfect English. I- is very interesting, to say the least, to witness such a demonstration. There would seem to be scarcely a possibility that such a horrible and hideous sound spoken into the microphone could ever emerge as plain everyday English. Inverted speech as used to maintain the secrecy of radio telephone channels, is one of the major advancements in public telephone communication in the past decade. Incidentally, the words "Short Wave Listener" would sound something like this: "Sharp yove ylispumur."

CALL LETTERS OF A. T. \& T. RADIO STATIONS

Lawrenceville, N. J.	WNB
WFA	WOB
WLA	WKK
WMA	WLK
WNA	WOK
WJA	WOY
WKN	Rocky Point, Me.
WMN	WNL
WON	
WCN	Hialeah, Fla.
WKF	WNC
WMF	WND
WOF	

Best S-W Stations

(Bontinued from page 172)

Get a real education on short and all waves Edited in simple language that anyone can understand. and foreign countries) for 8 monthly issues.
Technical articlea written by experts. 68 pages, hundreds of illustrations.

Edited by Hugo Gernsback
SHORT WAVE CRAFT, Dept. L 99 Hudson Street New York, N. Y.

Dixon, Calif.	KWY
KWN	Ocean Gate, N. J.
KWO	WOG
KWU	
KWV	

Call Letters of Ships Having

Radio Telephone Service

EWV	Majestic	DHRL	New Yo
GLSQ	Olympic	ICE	Rex
GDLJ	Homeric	DOBX	Columbus
GMBJ	Empress of	IBLI	Conte Di
	Britain		Savoia.
VQJM	Monarch of	VQJP	Queen of
	Bermuda		
DJNB	Deutschland	GLRZ	Aquitania
DOAH	Bremen	GBZW	Berengari
DOAI	Europa	FNSM	Ile De
DHAO	Albert Bal-		France
	lin	DHTY	Resolute
DHSZ	Hamburg	FNSK	Normandi

Station	Station	Station
6010 kc . B. 49.92 meters P- 0 . BOX 98		
Daily t:30-11 a.m.. 4-7 p.m. and 8-10 p.m. Sat also at 11:30 p.m.	$\frac{{ }^{\text {APARTAD.m. }}{ }_{7-11_{\text {p.m. }}}}{5968 \mathrm{kc} .}$	5850 kc . \quad YV5RMO
6000 Kc. \quad RV59	B- vatic 50.27 meters (ROME) 2-2:I5 p.m., daily. Sun. 5-5:30	
5990 kc. 7 p.m.-1 a.m.	a. m. 5950 kc. \qquad II a.m.-1 p.m., 7-9 p.m.	

JOIN THE SHORT WAVE LEAGUE The SHCRT WAVE LEAGUE is a sclentifhc membership org nization for the promotion of the short wave art. There are no dues, no fees, no initialtons, in con-
nection witn the LEAGUE. No one makes any money nection witn the LEALGUE. No one make any none which the LEAGUE has is from its short wave essentials.

SHORT WAVE
 LEAGUE MEMBERS

IDENTIEY THEMSELVES WITH THE ORGANIZATION

In order that fellow members of the LEAGUE may be able to recognize each other when they meat, we have designed this button, which is sold only to members and which will give you a professional appearance-

If $y * u$ are a member of the LEAGUE, you
cannot afford to be without this insignia of
your membership. It is sold only to those
belonging to the LEAGUE and when you see
a mumber.
Lapel Batton, made In bronze, gold filled,
not plated, prepald

35c
Lapel Eutton, like one descrlbed above, \$200
but in solid gold, prepaid
pamphlot setting forth the LEAGUE'S numerous asA pamphlet settling forth the LEAGUE'S numerous as-
pirationts and purposes will be sent to anyone on repirations and purposes will be sent to
ceipt of a 3 c stamp to cover postage.

SHORT WAVE LEAGUE

99 HUDSON ST., Dept. L-9, NEW YORK, N. Y.

ILL SEND MY FIRST LESSON FREE

J. E. SMITH, President National Radio Institute. The man who has directed the Home-Study Training of more men for the Radio industry than any other man in America.

$\$ 5,000$ on Repair Work Alone

C. D. THOMPSON,
R. F. D. 2,

Troy, Alabama
$\$ 1,000$ a Year While Learning

"During the course of my training. my spare time earnings from sales and service netted me
an average of $\$ 1000$ to $\$ 1500$ yearly. For about two years, while other work was practically out, I cashed in nicely on Radio."

JAMES R. RITZ, 3525 Chapline St., Wheeling, W. Va.
Does Police Radio Work
"I am now doing
the work on the
Radio cars of the
Police Depart-
ment of W e s t
Seneca township.
This is not a
full-time job, but
averages about $\$ 25-00$ a
week. Besides this. I am
working as assistant man-
ager in a local Radio store
gnd average $\$ 20.00$ a week
on this job. I say, "Take
the N. R. I. Course-it is
the best." "I am now doing
the work on the
Radio cars of the
Police Depart-
ment of W e st
Seneca township.
This is not a
full-time job, but
averages about $\$ 25-00$ a
week. Besides this, I am
working as assistant man-
ager in a local Radio store
and average $\$ 20.00$ a week
on this job. I say, "Take
the N. R. I. Course-it is
the best."
J. M. TICKNOR,

Buffalo, N. Y. 111 Edson Street,

It shows how EASY it is to learn at home to fill a

 GOOD JOB IN RADIOClip the coupon and mail it. I'm so sure that I can train you at home in your spare time to be a RADIO EXPERT that I'll send you my first lesson free. Examine it, read it, see how clear and easy it is to understand. Then you will know why many men with less than a grammar school education and no technical experience have become Radio Experts and are earning more money than ever before as a result of my training.
MANY RADIO EXPERTS MAKE $\$ 30, \$ 50, \$ 75$ A WEEK
In about 15 years, the Radio Industry has grown to a billion dollar industry. Over 3000,000 jobs have been created by this growth, and thousands more will be created by its continued development. Many men and young men with the right training-the kind of training I give you in the N. R. I. Course-have stepped into Radio and quickly increased their earnings.

GET READY NOW FOR JOBS LIKE THESE

Broadcasting stations use engineers, operatorc, station managers and nay up to $\$ 5,000$ a year. Manufacturers continually employ testers, inspectors, foremen, engineers, servicemen, buyers, for jobs paying up to $\$ 6,000$ a year. Radio operators on ships enjoy life, see the world, with board and lodging free, and get good pay besides. Dealers and jobbers employ servicemen, salesmen, buyers, managers, and pay up to $\$ 75$ a week. My book tells you about these and many other interesting opportunities to make more money in Radio.
MANY MAKE \$5, \$10, \$15 A WEEK EXTRA IN SPARE TIME WH|LE LEARNING
The day you enroll I start sending you Extra Money Job Sheets which quickly show you how to do Radio repair jobs common in most every neighborhood. Throughout your training, I send you information for servicing popular good spare time money for hundreds of fellows. My Training is famous as "the Course that pays for itself."

TELEVISION, SHORT WAVE, LOUD SPEAKER SYSTEMS INCLUDED

There's opportunity for you in Radio. Its future is certain. Television, short wave. loud speaker systems, police Radio. automobile Radio, aviation Radio-in every branch, developments and improvements are taking place. Here is a real future for men who really know Radio-men with N. R. I. training. Act now to get the training that opens the road to grod pay and success.
YOU GET A MONEY BACK AGREEMENT I am so sure that N. R. I, can train you satisfactorily that I will agree in writing to refund every penny of your tuition if you are not satisfied with my Lesson and Instruction Service upon graduation.

FREE 64-PAGE BOOK OF FACTS

Mail the coupon now. In addition to the sample lesson, I send my book, "Rich Rewards in Radio." It tells you about the opportunities in Radio, tells you about my Course, what others who have taken it are doing and earning. This offer is free to any ambitious fellow over 15 years old. Find out what Radio offers you without the slightest obligation. ACT NOW: Mail coupon in an envelope or paste on a 1 c postcard.

J. E. SMITH, President National Radio Institute, Dept. 5JH1

 Washington, D. C.

You Get PRACTICAL EXPERIENCE with Radio Equipment I GIVE YOII
I'll show you how to use my special Radio Equipment for conducting experiments and building circuits which illustrate important principles used in such well-known sets as Westinghouse, General Electric. Philco, R. C. A., Victor, Atwater-Kent and wthers. You work out with your own hands many of the things you read in my lesson books. This 50-50 method of training makes learning at home easy. interesting, fascinating. intensely practical. You learn how sets work, why they work, how to make them work when they are out of order. Training like this shows up in your pay envelope-when you graduate you have had training and experience you're not simply looking for a job where you can get experience.

I have helped

 hundreds of men make more money
MAIL THIS NOW

J. E. SMITH, President

National Radio Institute, Dept. 5JH1
Washington, D. C.
I want to take advantage of your offer. Without obligat. ing me, send me your Free Sample Lesson and your book, "Rich Rewards in Radio."

```
                                    (Please Print Plainly.)
```


SHORT-WAVE RADIO BOOKS!

Without doubt you will nave to go along way to buy better books on short waves than you find on this page. Each book is written by a well-known authority on short waves . . . each book has been carefally illustrated with photographs and diagrams to
make the study of this field of radio much simpler. The volumes on this page are the finest hooks on short-waves which are published anywhere today. Order one or two copies today . . . find out for yourself if they are not educational. Prices are postpaid.

HOW TO BUILD AND OPERATE SHORT-WAVERECEIVERS

THE SHORT-WAVE BEGINNER'S BOOK

Partial List of Contents

25c $\begin{aligned} & 75 \text { Illustrations, } 40 \mathrm{P} \\ & \text { Stiff, flexible covers }\end{aligned}$

101 SHORT-WAVE HOOKUPS

HOW TO BECOME AN AMATEUR RADIO OPERATOR

Partial List of Contents

TEN MOST POPULAR SHORT-WAVE RECEIVERS

-HOW TO MAKE AND WORK THEM

 CONTENTS

 The Denton 2-Tuthe Ali-Ware feceiver, by Clifford E. The Denton "Stand-By," by Clifford E. Denton.
The Sund-By" Elretritiod
 75 IIlustrations, 40 Pages, $25 C$
Stiff, flexible covers

SAVE $\% 50 \%$ by BUYING YOUR RADIO Dirset from MIDWEST LABORATORIES

Exciting World-Wide Entertainment... Glorious New Acousti-Tone

 Guavanteed with Amazing New 1936 super Deluxe MTDWEST

Everywhere, radio enthusiasts are saying: "Have you seen the new 18 -tube, 6 band, Acousti-Tone V-Spread Midwest?" It's an improvement over Midwest's 16 -tube set, so popular last season. This amazingly beautiful, bigger, better, more powerful, super selective, 18 tube radio obtainable in retail stores . . but is sold protected with: One-Year Guarantee direct to you from Midwest Laboratories at Foreign Reception Guarantee and a positive saving of 30% to 50%. Out Money-Back Guarantee.

PUSH-\&UTTON TUNING

Now, offered for first time! Simply pushing Silencer Button hushes set between stations . . . while pressing Station Finder Button automatically indicates propei dial position for bringing in exiremely weak stations. METAL TUBES
This Midwest is furnished with the new glassmetal counterpart tubes. Set sockets are designed to accept glass-metal or METAL tubes, with-

80 ADVANCED 1936 FEATURES

 Midwest's brilliant performance made possible by scores of advanced features, many of them exclusive. Only Midwest tunes as low as $41 / 2$ meters and as high as 2400 meters... 6 bands... 18 tubes... push button tuning...acoustitone V-spread design ...pre-aged adjustments...Fidel-A-Stat...Triple Calibration.aetc. Sec pages 12 to 20 in FREE catalog. Six-bands ... offered for first time! E, A, L, M, H and U make this super deluxe 18 -tube set the equivalent of six ditterent radios, ofler wave bandsnot obtainable in other radios at any price! Now, thrill out change. Write for FREE facts.

[^0]: -Broadcasting; X=Experimental.

