28.01.2014 Views

High Speed Machining Precision Tooling - Indobiz.biz

High Speed Machining Precision Tooling - Indobiz.biz

High Speed Machining Precision Tooling - Indobiz.biz

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Vol. 02 / 2008<br />

news<br />

The Indonesian Quarterly Magazine for the Metalworking & Related Manufacturing Industries<br />

Indonesia in action:<br />

RI jadi basis Produksi GM<br />

<strong>High</strong> <strong>Speed</strong> <strong>Machining</strong><br />

<strong>Precision</strong> <strong>Tooling</strong>


e<br />

The Ind o n e s ian Qu a r terly Ma g a z ine for th e M e talwo rking & Re lated Ma n u fac turing Ind u s trie s<br />

The Indo n e sia n Qu a r terly Ma g a z ine for the Me tal wo r kin g & Re lated Ma n u fac t u r ing Ind u s tries<br />

The Ind o n e s ian Q u a r terly Ma g a z ine fo r th e Me tal working & Re lated Ma n u factu ring Ind u s trie s<br />

Contents<br />

Indonesia in action:<br />

RI jadi basis Produksi GM<br />

Indonesia in action:<br />

Vol. 02 / 2008<br />

news<br />

Indonesia in action:<br />

Vol. 02 / 2008<br />

news<br />

Vol. 02 / 2008<br />

news<br />

RI jadi basis Produksi GM<br />

RI jadi basis Produksi GM<br />

Hi<br />

On the Cover<br />

<strong>High</strong> <strong>Speed</strong> <strong>Machining</strong><br />

<strong>Precision</strong> <strong>Tooling</strong><br />

<strong>High</strong> <strong>Speed</strong> <strong>Machining</strong><br />

<strong>Precision</strong> <strong>Tooling</strong><br />

<strong>High</strong> <strong>Speed</strong> <strong>Machining</strong><br />

<strong>Precision</strong> <strong>Tooling</strong><br />

Automation<br />

Re-defi ning <strong>Precision</strong><br />

08<br />

38 Automation in a production shop<br />

The Art and Science of <strong>Precision</strong><br />

cutting Tools<br />

On Course with Xtra.tec ® Drills<br />

12<br />

16<br />

Shop Management<br />

41 Evaluating Shop Management System<br />

Events watch<br />

17<br />

Two for every eventuality<br />

Restructured boring and precision boring<br />

tools from WALTER<br />

43<br />

Indonesia Features<br />

KOIKE MONOGRAPH 1650<br />

Technical Features<br />

Revolution in Sheet-metal<br />

Manufacturing VPSS<br />

Industry & Technology<br />

18<br />

20<br />

52<br />

Industri masih figuran dalam pertumbuhan ekonomi<br />

Industri mesin perlu restrukturisasi<br />

Indonesia masih sulit, namun menjanjikan bagi<br />

bisnis mesin-mesin bekas<br />

Alternatif lebih murah mendapat sambutan<br />

Peraturan mempengaruhi struktur perdagangan<br />

Statistik denagn daya bukti terbatas<br />

Permintaan alat berat rekondisi meningkat<br />

Shrink Fit : The <strong>High</strong> Accuracy<br />

Toolholder of Choice<br />

Technology for Improving<br />

Five-Axis Capability<br />

The Road to Welding Automation<br />

Taking Rapid Prototyping<br />

to The Next Level<br />

Quality & Inspection<br />

Accuracy of Feed Axes<br />

Part Two<br />

Just how good is your<br />

process?<br />

22<br />

26<br />

28<br />

32<br />

34<br />

37<br />

Columns<br />

59 Just for the thought<br />

61 Fresh from the oven<br />

63 News Snippets<br />

65 Calendar of Events<br />

66 Jokes<br />

68 Quotes on work<br />

Indonesia In Action<br />

57<br />

Investasi Industri Elektronik US$2,5 Miliar<br />

RI jadi basis produksi GM<br />

Pemerintah proteksi industri alsintan<br />

RI kejar produksi 1 juta mobil<br />

4<br />

indometalworking news Vol. 2 / 2008


Editorial<br />

CUT TO THE CHASE – LET’S GO PRECISION<br />

Today, precision, productivity and production capability<br />

are the driving forces in every part of the world<br />

manufacturing. As tolerances get tighter and cycle<br />

times become the difference between profi t and loss, tool<br />

users need ever higher skills, equipment and solutions to<br />

be successful. The cutting tool industry is responding with<br />

new tools of their own: Advanced technology, education and<br />

collaboration.<br />

Over the past decade, Asian machine shops have been<br />

through a competitive gauntlet involving too little business<br />

to go around and relentless pressure from imports. Survival<br />

demanded exponentially greater productivity, an improvement<br />

only available with advanced tooling. In these plants, fewer<br />

operators ran more machines, leaving no time to nurse<br />

inferior tools through a day’s work. To survive, Indonesia<br />

industry had to concentrate on decreasing and/or eliminating<br />

machining operations and cycle times. The fi rms that have<br />

made improvements are now positioned to take advantage of<br />

economic changes that are creating new opportunities.<br />

For example, offshore outsourcing, one of the manufacturing<br />

trends over the past decade, is losing much of its luster as<br />

costs and complications reduce its appeal. The demands of<br />

growing Asian domestic economies have not only created<br />

competing demands for shipping, but resulted in rising costs<br />

for materials and energy and rising labor costs for contract<br />

manufacturers. Language barriers and the diffi culties of<br />

implementing in-process changes have taken their toll in<br />

production and delivery losses.<br />

European manufacturers have continued to invest in<br />

technology and successfully adapt to competitive pressures<br />

from all over the world. North America has the technology<br />

available to compete straight up with Asian and European<br />

competition, but needs better access to technology and<br />

supporting education. There is a disparity in the knowledge<br />

pool because mechanical engineers and machinists have not<br />

always had the resources at their disposal to keep up with<br />

new technologies in machining and cutting tools. But this is<br />

changing rapidly with the advent of new technology centers<br />

and closer working relationships between manufacturers and<br />

toolmakers.<br />

We can, and should, be making machined products in this<br />

country and we should be continuously adapting in the<br />

technologies required to make them more effi ciently and<br />

of higher quality. Sometimes, new technology is expensive,<br />

but it allows you to do things faster and more precisely. Over<br />

the past fi ve years, there has been a revolution in Indonesia<br />

manufacturing based on the ability to make things faster and<br />

more cost effectively. We are poised for a similar revolution<br />

in machining. This is why education in the latest advances in<br />

tooling, materials, parts design and CNC machining is vital to<br />

our industry.<br />

Recognizing the importance of demonstrating the value<br />

of advanced tooling and machining methods, cutting<br />

tool manufacturers are reaching out to the users of their<br />

products, inviting them to make their requirements known<br />

and collaborating with them on creating solutions and<br />

demonstrating the value of new technologies and methods.<br />

By investing in technical education, and advanced tool<br />

development for the latest machining methods, we are<br />

helping Indonesia tool up for future success.<br />

Edwin Widjaja<br />

Editor in Chief<br />

PT IndoBiz Connection<br />

Gedung Hero II 8 th fl oor<br />

Jl. Gatot Subroto Kav. 64 No. 177A Jakarta Selatan - Indonesia<br />

Telp. : +62-21-657 00 022<br />

Fax : +62-21-266 45 463<br />

Contact :<br />

Melissa Ng<br />

Edwin Widjaja<br />

sales@indo<strong>biz</strong>.<strong>biz</strong> (advertisement)<br />

editor@indo<strong>biz</strong>.<strong>biz</strong> (articles/editorial)<br />

All rights reserved. No Portion<br />

of this publication covered<br />

by the copyright herein may<br />

be reproduced in any form or<br />

means - graphic, electronic,<br />

mechanical, photocopying,<br />

recording, taping, etc -<br />

without the written consent<br />

of the publisher. Opinions<br />

expressed by contributors and<br />

advertisers are not necessarily<br />

those of the publisher and<br />

editor. All of the articles are<br />

based on the original author.<br />

6<br />

indometalworking news Vol. 2 / 2008


Re-defining<br />

<strong>Precision</strong><br />

It’s important not to limit the defi nition<br />

of precision to one in particular, but<br />

instead expand the defi nition to three<br />

unique precision types: micro precision,<br />

ultra precision and nano precision.<br />

If you were to Google “precision<br />

machining,” the results would be<br />

staggering with more than a half million<br />

hits. If you were to narrow the search with<br />

“precision milling,” the results would be<br />

far less with roughly 41,000 hits. Still<br />

that seems to be an awful lot of hits and<br />

we don’t even know if the hits pertain to<br />

actual machine shops or not. However,<br />

if you were to dig further into the results<br />

and visit many of the actual machining<br />

Web sites from those results, you would<br />

be amazed at the number of companies<br />

that call themselves a precision shop<br />

with no clear indication of what defi nes<br />

them as a precision manufacturer. Some<br />

of these companies go beyond the word<br />

precision and defi ne themselves as<br />

military precision, medical precision<br />

or commonly Swiss precision. So the<br />

question is: What defi nes precision<br />

today?<br />

Defining <strong>Precision</strong><br />

A clear defi nition is needed to uniquely<br />

identify the best in class shops in a<br />

highly competitive market. Because the<br />

market spans over a very broad range<br />

of industries, it’s rather important not to<br />

limit the defi nition to one in particular,<br />

but instead expand the defi nition to<br />

three unique precision types.<br />

These types can be identifi ed as micro<br />

precision, ultra precision and nano<br />

precision.<br />

By these three types, precision can be<br />

identifi ed in regards to the technology<br />

that a shop might have and what you can<br />

expect in quality and accuracy instead<br />

of using a generic term as precision.<br />

Further, each precision type also can<br />

be used to defi ne the technology and<br />

expectations within a machine tool<br />

and can be further used to defi ne the<br />

maximum part quality that can be<br />

expected of the machine without over<br />

complicating things.<br />

<strong>Precision</strong> can now be narrowed to micro<br />

precision as precision defi ned by ±5<br />

microns or less on the workpiece; ultra<br />

precision as precision defi ned by ±2.5<br />

microns or less on the workpiece; and,<br />

nano precision as precision defi ned by 1<br />

micron or less on the workpiece.<br />

Understanding Microns<br />

As you can see we’re no longer talking<br />

in terms of English units, but instead<br />

talking in terms of Metric units. This<br />

method is not only clearer but simpler<br />

to work with than thousands, tenths<br />

or millionths. Working with microns<br />

also is a universally understood unit of<br />

measurement and is clearly known and<br />

widely accepted around the world.<br />

It allows us to defi ne closer tolerances<br />

much easier. For example, rather than<br />

saying 40 millionths or .00004” it is<br />

much easier to say 1 micron or 1 um.<br />

Chart 1 will provide you with a clear<br />

illustration of equivalent units.<br />

In re-defi ning precision, it’s important<br />

to understand the micron unit. There<br />

are several reasons why. First, it gives<br />

a better picture of the three types of<br />

precision.<br />

Secondly, it brings the manufacturing<br />

world in line with the advance technology<br />

that is available on the market today—<br />

from the machine tool to inspection<br />

equipment. Additionally, it articulates<br />

the trends in product designs toward<br />

closer tolerances and miniaturization.<br />

8<br />

indometalworking news Vol. 2 / 2008


Chart 1 Unit Equivalent<br />

Metric to Imperial Equivalent<br />

10 microns<br />

5 microns<br />

1 micron<br />

1 micron<br />

Average Hair diameter<br />

Red Blood Cells<br />

Chart courtesy of Kern <strong>Precision</strong>, Inc<br />

Moving Beyond the Pack<br />

= .0004 inches, UPM<br />

= .0002 inches, MPM<br />

= .00004 inches, NPM<br />

= 1000 nanometers<br />

= 60 microns<br />

= 20 microns<br />

Embracing technology is necessary for<br />

survival in U.S. manufacturing today.<br />

Current machine tool technology has<br />

lowered the bar toward ultra and nano<br />

precision. Once only visible in the lab,<br />

ultra and nano precision technology<br />

has now moved from the lab and R&D<br />

centers to the commercial sector.<br />

Although much of the core technology<br />

in today’s ultra precision machining<br />

(UPM) is not new, it’s the combination of<br />

the improved elements and the careful<br />

systematic unity that has pushed the<br />

technology into a new direction of ultra<br />

precision. Further, the tools used to<br />

bring everything together have also<br />

improved greatly.<br />

To illustrate this, consider the secondary<br />

equipment used to build a Ferrari, a<br />

Lamborghini or perhaps a Lotus. These<br />

unique manufacturers use state-of-theart<br />

equipment to build their cars ensuring<br />

performance and quality. Likewise,<br />

machine tool builders who claim micro,<br />

ultra and nano precision tolerances use<br />

a similar approach by using state-of-theart<br />

technology to build state-of-the-art<br />

machine tools.<br />

Additionally however, machine tool<br />

builders offering these tolerances<br />

need to be extremely concerned with<br />

their surrounding environment, which<br />

includes cleanliness, organization,<br />

air quality and temperature control.<br />

Bringing micro, ultra and nano precision<br />

into the shop and being successful with<br />

it also requires the same approach and<br />

the same high quality environment.<br />

Traditionally reserved for grinding,<br />

nano precision is no longer just limited<br />

to grinding and has now entered the<br />

commercial sector for milling. A nano<br />

precision milling machine offers a<br />

host of new opportunities—ranging<br />

from hard milling for the mold and die<br />

industry to jig grinding holes for mold<br />

bases. By nature, a nano precisioncapable<br />

machine along with superior<br />

build characteristics is going to produce<br />

extraordinary surface fi nishes.<br />

Therefore the possibilities to hold ±1<br />

micron on drilling and milling features<br />

on your parts and holding surface<br />

fi nishes of values of Ra 0.05um are now<br />

achievable. In the past these kinds of<br />

tolerances and surface fi nishes were<br />

only possible in a lab environment on<br />

Figure 1<br />

specially designed machines with a<br />

very small work envelope. In fact today,<br />

workable envelopes as large as 20” x<br />

20” x 15” are possible in a commercial<br />

environment.<br />

Although there’s really no practical<br />

application, Figure 1 shows a hole that<br />

was drilled in a 60-micron diameter<br />

human hair using ultra and nano<br />

precision machining. What should be<br />

a clear observation, the hole has a<br />

very clean and well-defi ned entrance<br />

indicating the preciseness and<br />

Figure 2<br />

smoothness of the drilling motion. The<br />

drill diameter was 30 micron or a little<br />

over .001” diameter and its size is not<br />

visible to the naked eye.<br />

Figure 2 shows an aluminum optical<br />

tool that was diamond milled to a mirror<br />

fi nish using the same milling machine<br />

technology, but equipped with an<br />

ultra precision dividing head. Further,<br />

small to medium size molds as well as<br />

micromolds can also experience similar<br />

results by using ultra and nano precision<br />

machining: UPM and NPM.<br />

Manufacturers that use such advanced<br />

equipment are capable of meeting<br />

the higher demands of new product<br />

designs, tighter tolerance requires and<br />

lower labor cost through a decrease<br />

in part handling by increasing surface<br />

fi nish quality. By investing in the<br />

latest technology, manufacturers can<br />

truly identify themselves as a best in<br />

class micro, ultra or nano precision<br />

manufacturer, and therefore move<br />

beyond the pack.<br />

Behind the Technology<br />

Nano technology within a milling machine<br />

can bring a lot of skepticism. Holding<br />

±1 micron or ±1000 nanometers while<br />

obtaining surface fi nishes of Ra 0.05um,<br />

should certainly be questioned. Anyone<br />

with any experience in holding tight<br />

tolerances should have some doubts<br />

about these capabilities, but rest<br />

indometalworking news Vol. 2 / 2008 9


assured the technology is available and<br />

results are astounding.<br />

Similar to high-speed machining, nano<br />

precision machining or NPM requires<br />

a complete circle of technologies that<br />

complement each other. NPM shouldn’t<br />

be considered machining at slow feeds<br />

and speeds in order achieve closer<br />

tolerances but rather the opposite.<br />

Using HSM practices is actually one<br />

of the center points of NPM where<br />

as HSM doesn’t guarantee precision.<br />

The primary focus in achieving nano<br />

precision tolerances on your parts is<br />

centered on the machine tool itself.<br />

On the other, your CAD/CAM system<br />

must be able to handle the increased<br />

tolerance output requirements and this<br />

would include surface tolerances.<br />

Figure 3<br />

One of the key ingredients of the<br />

machine tool for NPM is the drive system:<br />

hydrostatic drives and guideways.<br />

This drive and guideways technology<br />

uses a very small yet very controlled fi lm<br />

of oil between the surfaces of the two<br />

guideways and between the ball screw<br />

(see Figure 3) and nut thus producing no<br />

metal-to-metal contact in the motion.<br />

This ultimately removes almost all<br />

kinetic and static friction from the drive<br />

system producing the most precise<br />

motion possible.<br />

Another important aspect is the ability<br />

to control heat within the entire machine<br />

Figure 4<br />

tool. A polymer-base machine tool is<br />

the start of precision, but to achieve<br />

even better results every aspect of the<br />

machine tool needs to be completely<br />

temperature controlled. This would<br />

include the table area, spindle, coolant,<br />

electrical cabinet and the fl uids for the<br />

hydrostatic drive and guideways system<br />

(see Figure 4).<br />

Glass scales are also part of a precision<br />

machine tool, but it’s important to<br />

realize that the fi nest in precision glass<br />

scale must be used—such as .1 micron<br />

or 100 nano precision intervals. Some<br />

other important factors to consider are<br />

Figure 5<br />

the precision quality and location of the<br />

tool laser measurement system, the<br />

spindle’s ability to exchange the cutting<br />

tools in the same exact consistent<br />

location and an ultra precision HSK<br />

spindle with near zero runout. This in<br />

combination with the other systems<br />

within the machine tool will no doubt<br />

provide you with the ability to achieve<br />

nano precision (see Figure 5).<br />

Quality Assurance Infrastructure<br />

NPM doesn’t stop at the machine tool.<br />

Having the technology and the quality<br />

assurance infrastructure to check<br />

such precise parts is quite important.<br />

Coordinate measurement systems and<br />

3-D vision inspection systems have<br />

been able to stay ahead of the advances<br />

in precision machine tool technology.<br />

Some of today’s fi nest CMMs have the<br />

ability of measuring uncertainties of<br />

250 nano meters at a resolution of 7.5<br />

nano meters.<br />

Additional, 2-D vision systems now have<br />

the ability to measure depths. Equipped<br />

with a combination-touch probe, laser<br />

and white light sensors, vision systems<br />

have taken vision inspection into a 3-D<br />

world. White light sensor technology for<br />

probing has reached into the submicron<br />

level by splitting pixels into thirds.<br />

To ensure your nano parts are indeed<br />

nano precise, understanding your<br />

quality assurance infrastructure is just<br />

as important as your nano precision<br />

machining infrastructure. If the two<br />

technologies work together, re-defi ning<br />

your precision will move you toward the<br />

ability to reclaim your position as a real<br />

precision manufacturer producing near<br />

perfect parts.<br />

10<br />

indometalworking news Vol. 2 / 2008


The Art And Science Of<br />

<strong>Precision</strong> Cutting Tools<br />

Machine tools become<br />

faster and more stable<br />

while cutting tools get<br />

tougher, longer lasting<br />

and geometrically more<br />

complex. I visited the<br />

web of few premier<br />

cutting tool manufacturer<br />

to look at the state<br />

of the art of making<br />

carbide cutting tools<br />

that complement today’s<br />

machine tool technology<br />

Interested in the precision cutting<br />

tools story, I tracked down every<br />

cutting tools manufacturer to see<br />

the story behind the making of precision<br />

cutting tools and the impact of usage<br />

today.<br />

I hooked up for a quick breeze surfi ng<br />

through the net, and ending up at a<br />

few characteristics that made a new<br />

precision cutting tools story of today<br />

generation. It was a perfect afternoon<br />

for me to write this article with the start<br />

of one company in Germany.<br />

Keeping Ahead Of The Curve<br />

Horn of Germany started business in<br />

1969 specializing in grooving tools<br />

for piston production. Being close to<br />

the automotive industry in Stuttgart<br />

makes the Tübingen location ideal for<br />

serving this market segment. According<br />

to website, the company quickly<br />

established a good reputation for<br />

technology and consistency and began<br />

to grow its product offering.<br />

Horn has managed to stay under the<br />

radar screen of many larger competitors<br />

by positioning themselves more as a<br />

custom tool manufacturer rather than<br />

an off-the-shelf commodity vendor. Their<br />

average batch run is about 70 pieces<br />

and at those volumes, they need to be<br />

smart about manufacturing our cutters<br />

as well as designing specifi c customer<br />

solutions.<br />

To this end, the company uses a<br />

two-prong strategy for its product<br />

development. In addition to developing<br />

new grades, coatings and geometries<br />

for its carbide inserts and solid carbide<br />

tools, the company works hard at its<br />

manufacturing capability as well.<br />

How To Cook An Insert<br />

The indexable insert is a remarkable<br />

piece of technology. Out of an<br />

apparently simple composite primarily<br />

made from two components—a binder<br />

and “powder”—comes a variety of<br />

grades, shapes, sizes and performance<br />

characteristics that help metalworking<br />

manufacturers get the most from their<br />

processes.<br />

Often compared to baking a cake, the<br />

12<br />

indometalworking news Vol. 2 / 2008


ecipe for manufacturing indexable<br />

carbide inserts that deliver the desired<br />

performance characteristics is a function<br />

of the ratios among base components. In<br />

its simplest form, to increase an insert’s<br />

toughness (its resistance to fracture), the<br />

binder content-to-powder ratio is raised.<br />

To create a harder cutting material, the<br />

ratio is lowered, with more powder and<br />

less binder, which vmakes the cutter<br />

grades of carbide substrates refl ect<br />

a sliding scale between the extremes<br />

of toughness and hardness, which are<br />

matched to a given application.<br />

Mixing the binder and powder is a<br />

critical step in the manufacture of<br />

indexable insert tools. Like a “heat”<br />

in steel production, each batch of the<br />

recipe for a given base grade is carefully<br />

controlled for consistency.<br />

After mixing, the “batter” is pressed<br />

into a shape. The pressing process<br />

uses insert molds to impart the insert<br />

shape and some of the geometry, such<br />

as chipbreakers, onto the now “green”<br />

insert.<br />

In addition to the conventional pressing<br />

technology used by most insert<br />

producers, there is a successfully<br />

developed method of injection molding<br />

inserts as well. This gives the user the<br />

ability to mold complex inserts much<br />

closer to a fi nal shape and complete<br />

forms that would be almost impossible<br />

by conventional technology. In turn, it<br />

reduces the amount of grinding required<br />

to achieve a fi nished geometry and<br />

speeds the throughput.<br />

The details of this process are<br />

proprietary, but consist basically of<br />

adding a compound to the binder/<br />

powder mix so it can fl ow under pressure<br />

through gates into a closed mold cavity.<br />

This fl owable material is also extruded<br />

into tooling blanks that become the basis<br />

for some of the company’s solid carbide<br />

products. In the next manufacturing<br />

step, which is sintering, this additional<br />

compound vaporizes leaving no trace in<br />

the fi nal insert grade.<br />

Sintering is the last processing step<br />

before a green insert blank becomes<br />

the rugged carbide substrate that shops<br />

are familiar with. Using the cake-baking<br />

analogy, this step represents the oven.<br />

Under a vacuum at high temperature, the<br />

green insert is heated until the binder<br />

plasticizes, enabling it to fl ow around<br />

the grains of powder fi lling the voids.<br />

Upon cooling, the binder and grains are<br />

chemically and physically linked into a<br />

uniform matrix.<br />

On The Shop Floor<br />

Out of the oven, the inserts are ready<br />

to be machined to their fi nal shapes,<br />

geometry and precision. The shop fl oor<br />

refl ects this rationalization concept.<br />

The grinding department is arranged<br />

in rows of autonomous cells. Four of<br />

these cells are operated by one person.<br />

Each cell is built around a DMG milling<br />

machine converted to grind inserts. In<br />

the machine spindle, an arbor is used<br />

to hold various superabrasive wheels<br />

and brushes allowing all of the grinding<br />

operations to be performed in sequence<br />

without changing wheels.<br />

An automated load/unload system shall<br />

be designed and feeds the machine<br />

tools. As a fi nished insert is removed<br />

from the work zone, it passes through a<br />

laser gaging system that checks critical<br />

dimensions. This cellular concept is<br />

duplicated at every manufacturing<br />

company nowadays.<br />

While the cells are not dedicated to a<br />

specifi c cutting tool product, they are<br />

tooled to accommodate like families<br />

of inserts. It should have several types<br />

of cells to accommodate various insert<br />

parameters. The production schedule is<br />

made up to run similar jobs sequentially,<br />

which simplifi es change-over from one<br />

insert to another. Generally, only the<br />

material handling devices and gaging<br />

units need to be physically adjusted.<br />

To do own insert coating it shall use a<br />

PVD (physical vapor deposit) system.<br />

Inserts to be coated are fi rst cleaned in<br />

an automated (no-touch) batch washing<br />

system. The clean inserts are assembled<br />

into racks for placement in the coating<br />

chamber. Three different coatings can<br />

be used individually or layered.<br />

1. <strong>Precision</strong> 1 : To expedite the grinding process,<br />

an arbor with various wheels and brushes is used<br />

in the grinding cell. The arbor is supported by a<br />

dual contact V-flange connector<br />

2. <strong>Precision</strong> 2: In addition to sintering its own<br />

inserts, the company also uses a PVD process to<br />

coat various insert grades. The racks on the left<br />

are shown prior to coating, and the racks on the<br />

right have been processed.<br />

3. <strong>Precision</strong> 3: Insert grinding is arranged in<br />

cells. These are comprised of converted milling<br />

machines set up to grind inserts. Load/unload and<br />

inspection is automated, enabling one operator to<br />

oversee four cells<br />

indometalworking news Vol. 2 / 2008 13


Planning For The Future<br />

While the manufacturing system for<br />

insert production is proven, every<br />

company shall continue to develop new<br />

process technologies for precision parts<br />

making. Keeping ahead of the curve is<br />

an ongoing process. ew<br />

TIPS<br />

Tips For Choosing The Right Cutter<br />

There are many choices that one must<br />

consider when picking the correct<br />

cutter and insert for an application.<br />

The following article is a brief rundown<br />

of applications involving grooving and<br />

turning with a focus on OD grooving.<br />

Cutting grooves can be one of the most<br />

diffi cult jobs for a turning operation, and<br />

the geometries for these applications<br />

can be some of the most complex. In<br />

a typical grooving operation, forces are<br />

potentially facing both a radial and axial<br />

direction, cutting with the main cutting<br />

edge (sometimes fully engaged and<br />

sometimes partially engaged) as well as<br />

cutting on one or both of the side cutting<br />

edges.<br />

Depending on the operation, an operator<br />

may be using an insert with a sintered<br />

top rake geometry (usually the width<br />

of the groove will be the determining<br />

factor). For grooves that are too narrow,<br />

sintered top rake geometry is not<br />

possible. Full width generally is the<br />

best solution for providing chip control.<br />

However, how does one determine the<br />

correct geometry?<br />

Groove Width<br />

Is the groove that is needed equal to a<br />

standard grooving insert width offered<br />

by a grooving tool manufacturer?<br />

(See Fig. 1.)<br />

If so, generally cutting forces will be only<br />

on the main cutting edge. In this case,<br />

you will be looking for a grooving insert<br />

that will reduce the width of the chip<br />

(form the chip away from the sides of<br />

the groove) to achieve a better fi nish on<br />

the groove side walls. (See Fig. 2.)<br />

If not, the options are to cut on the full<br />

face, and then a partial face (see Fig. 3),<br />

or place axial forces on the insert in a<br />

turning fashion (see Fig. 4). Either way,<br />

choosing the geometry that provides<br />

the best fi nish and most effective<br />

chipbreaking becomes more diffi cult.<br />

When choosing the geometry of the<br />

tool, it is important to choose a positive<br />

cutting geometry and understand the<br />

operation being performed.<br />

If the groove width matches the insert<br />

width, the choices are much easier. You<br />

must now determine the aggressiveness<br />

of the chip formation in relation to the<br />

tensile strength of the material being<br />

cut. If you look at the two chip formers<br />

(see Fig. 5), you will see that the distance<br />

from the front edge to the back edge<br />

varies in length.<br />

The longer length will provide a<br />

smoother cut, but will create a larger<br />

watch spring chip. If the tensile strength<br />

is too low, this watch spring may become<br />

uncontrollable, and the chip may pigtail.<br />

The shorter length will produce a much<br />

tighter watch spring, but if the tensile<br />

strength is too high, chip forces may<br />

damage the main cutting edge.<br />

If the groove width is wider than the<br />

insert width, multiple plunges can be<br />

performed to create the wider groove or<br />

you may plunge and turn the groove.<br />

If you choose to perform multiple<br />

plunges, the easiest way is to take the<br />

fi rst plunge and then step over 50 to 75<br />

percent of the insert width and plunge<br />

again, repeating until the desired groove<br />

width is reached. This is the easiest to<br />

program. However, cuts using only 50<br />

to 75 percent of the groove width can<br />

make chip control diffi cult. If a full cut is<br />

performed, you are collapsing the chip<br />

from both sides onto itself. When taking<br />

a partial cut, you are collapsing the<br />

chip from one direction only, and this<br />

can result in pigtails or unmanageable<br />

chips.<br />

One simple method, using the multiple<br />

plunge process, is to take as many<br />

full cuts as possible, and then cut the<br />

remaining material on the center of the<br />

insert. This uses all of the advantages of<br />

a simple chip former.<br />

For a plunge and turn operation, it’s<br />

Figure 1<br />

Figure 3 Figure 4<br />

Figure 2<br />

14<br />

indometalworking news Vol. 2 / 2008


est to use a chip former that tries to<br />

reduce the chip from the front and also<br />

provides an area on the side of the<br />

insert to control the chip. This requires<br />

more complex programming because<br />

when approaching the bottom of the<br />

groove, material should not be removed<br />

from both the front of the insert and the<br />

side of the insert at the same time. This<br />

will usually damage the insert and the<br />

toolholder.<br />

“Impossible to break the chip” material:<br />

These materials are usually forgings,<br />

carbon and alloy steel of very low tensile<br />

strength carbon and alloy steels, as well<br />

as some tubing material.<br />

In these materials, very aggressive<br />

chipbreakers are required, and in some<br />

instances, a programmed peck cycle is<br />

necessary. Never retract more than the<br />

feed rate per revolution; otherwise you<br />

can pinch a chip between the cutting<br />

edge and the material.<br />

In addition, cutting an ID groove, face<br />

groove and/or form groove follows<br />

these same basic principles, but each<br />

provides its own characteristics.<br />

Material<br />

Figure 5<br />

What type of material is being cut?<br />

These tips are not always 100 percent<br />

accurate, but they provide a good rule<br />

of thumb.<br />

Short chipping material: This is usually<br />

the easiest way to control the chip, and<br />

the chipbreaker is the least important.<br />

However, a strong cutting edge will<br />

be required. The shortest chipping<br />

materials are cast irons, hardened steels<br />

and brass. With these operations, the<br />

groove width is usually not as important<br />

because the chips are easy to control.<br />

Long chipping material: This is where<br />

the largest amount of materials will fall.<br />

The long chipping group could be subgrouped<br />

into different categories. Long<br />

chipping materials include most carbon<br />

steels, alloy steels, stainless steels and<br />

exotics.<br />

The longer length will provide a<br />

smoother cut, but will create a larger<br />

watch spring chip. If the tensile strength<br />

is too low, this watch spring may become<br />

uncontrollable, and the chip may pigtail.<br />

The shorter length will produce a much<br />

tighter watch spring, but if the tensile<br />

strength is too high, chip forces may<br />

damage the main cutting edge.<br />

If the groove width is wider than the<br />

insert width, multiple plunges can be<br />

performed to create the wider groove or<br />

you may plunge and turn the groove.<br />

If you choose to perform multiple<br />

plunges, the easiest way is to take the<br />

fi rst plunge and then step over 50 to 75<br />

percent of the insert width and plunge<br />

again, repeating until the desired groove<br />

width is reached.<br />

This is the easiest to program. However,<br />

cuts using only 50 to 75 percent of the<br />

groove width can make chip control<br />

diffi cult. If a full cut is performed, you are<br />

collapsing the chip from both sides onto<br />

itself. When taking a partial cut, you are<br />

collapsing the chip from one direction<br />

only, and this can result in pigtails or<br />

unmanageable chips.<br />

One simple method, using the multiple<br />

plunge process, is to take as many<br />

full cuts as possible, and then cut the<br />

remaining material on the center of the<br />

insert. This uses all of the advantages of<br />

a simple chip former.<br />

For a plunge and turn operation, it’s<br />

best to use a chip former that tries to<br />

reduce the chip from the front and also<br />

provides an area on the side of the<br />

insert to control the chip. This requires<br />

more complex programming because<br />

when approaching the bottom of the<br />

groove, material should not be removed<br />

from both the front of the insert and the<br />

side of the insert at the same time. This<br />

will usually damage the insert and the<br />

toolholder.<br />

“Impossible to break the chip”<br />

material: These materials are usually<br />

forgings, carbon and alloy steel of very<br />

low tensile strength carbon and alloy<br />

steels, as well as some tubing material.<br />

In these materials, very aggressive<br />

chipbreakers are required, and in some<br />

instances, a programmed peck cycle is<br />

necessary. Never retract more than the<br />

feed rate per revolution; otherwise you<br />

can pinch a chip between the cutting<br />

edge and the material.<br />

In addition, cutting an ID groove, face<br />

groove and/or form groove follows<br />

these same basic principles, but each<br />

provides its own characteristics.<br />

When choosing the geometry of the<br />

tool, it is important to choose a positive<br />

cutting geometry and understand the<br />

operation being performed.<br />

If the groove width matches the insert<br />

width, the choices are much easier. You<br />

must now determine the aggressiveness<br />

of the chip formation in relation to the<br />

tensile strength of the material being<br />

cut. If you look at the two chip formers<br />

(see Fig. 5), you will see that the distance<br />

from the front edge to the back edge<br />

varies in length.<br />

indometalworking news Vol. 2 / 2008 15


Press Release<br />

On Course with Xtra.tec ® Drills<br />

WALTER launches new Xtra.tec ® insert drill<br />

The tried and tested Xtra.tec ® drill product line B40xx<br />

exchangeable tip has been extended by indexable<br />

insert drills. The new Xtra.tec ® insert drills are<br />

launched under the designation B4213 for drilling depths<br />

up to 3xD. Other types and lengths are being planned. While<br />

exchangeable tip allow highest feed rates, the indexable<br />

insert series is characterized by low cutting materials<br />

costs (four cutting edges per insert) as well as an extended<br />

application range such as transversal spot-drilling, cross<br />

drilling or drilling on convex faces. In order to ensure a<br />

better differentiation between the two tools, the B40xx<br />

drills will be launched under the name Xtra.tec ® point<br />

drills.<br />

As with all its Xtra.tec ® tools, WALTER has again made<br />

best use of their engineering expertise in developing this<br />

Xtra.tec ® drill. The inner and outer inserts have a special<br />

design. The inner insert provides for centering, the<br />

outer one, equipped with wiper geometry, for maximum<br />

precision and good surface qualities. The helical tool<br />

shank ensures excellent chip fl ow. For the various<br />

applications, universal Tiger.tec ® or PVD-Tiger.tec ®<br />

cutting materials are available, the latter especially<br />

for the processing of high-alloyed stainless steels.<br />

Currently, the new Xtra.tec ® insert drills are available in<br />

the diameter range 21 to 29 mm, but Walter is already<br />

planning to extend the range downwards step by step to<br />

14 mm, as well as to enlarge the indexable insert product<br />

line.<br />

About Xtra.tec ®<br />

WALTER’s Xtra.tec ® product line sets a benchmark<br />

in the carbide insert sector. Compared to standard<br />

tools, productivity can be increased by up to 100%,<br />

due to the following developments: The inserts are<br />

manufactured from high-performance optimized<br />

Tiger.tec ® cutting materials, and the favorable<br />

hardness/toughness parameters ensure maximum<br />

cutting performance. The geometries of the inserts<br />

are highly positive. The consequences are extremely<br />

soft cuts, excellent surface quality and low impact on<br />

machine and clamping. The hard nickel plated<br />

surface of the tool bodies with their optimum<br />

design ensure an improved chip fl ow and long insert life.<br />

Together, all these characteristics ensure an increase in<br />

productivity as well as maximum process reliability. Furthermore,<br />

the universal applicability for all cast iron, steel<br />

and stainless steel grades, as well as a high number of<br />

cutting edges (depending on the tool type) reduce tool<br />

costs.<br />

Fig.: Xtra.tec ® insert drill B4213<br />

BU: The Xtra.tec ® insert drill with special four-edged inner and<br />

outer inserts extends WALTERs Xtra.tec ® product line.<br />

16<br />

indometalworking news Vol. 2 / 2008


Two for every eventuality<br />

Restructured boring and precision boring<br />

tools from WALTER<br />

To simplify handing for users, WALTER has restructured<br />

its tooling systems for boring and precision boring and<br />

changed the designations it uses. Its two-fl ute boring<br />

tools are now called WALTER Boring MEDIUM (working range<br />

between 20-153mm) and WALTER BoringMAXI (working<br />

range between 150-640mm). There is a widely diverse<br />

selection of indexable inserts available for the two<br />

boring tools, making use of different cutting materials and<br />

positive geometries. These cover the entire spectrum of<br />

metal materials for coarse to medium machining operations.<br />

WALTER Boring MEDIUM comes with NTC modular and<br />

ScrewFit adapters in cartridge versions for CC and WC shaped<br />

ISO indexable inserts. Both the adapter systems are short<br />

and consequently stable, affording outstanding concentricity<br />

properties and process reliability, even under diffi cult<br />

application conditions such as inclined boreholes, stepped<br />

boreholes, spectacle-shaped bores and so on. Positive<br />

locking cartridge fi xtures prevent lift-off or<br />

displacement even in this type of situation. The large<br />

diameter range of the WALTER Boring MAXI is implemented<br />

using an exchangeable bridge module.<br />

The single-fl uted precision boring tools WALTER<br />

<strong>Precision</strong> MEDIUM und WALTER <strong>Precision</strong> MAXI have also<br />

been restructured. As their new designation suggests, these<br />

have now been adapted in line with the boring tools in terms<br />

of their diameter graduations and working ranges. The<br />

WALTER <strong>Precision</strong> MEDIUM series additionally offers<br />

automatic imbalance compensation, permitting cutting<br />

speeds of up to 2000 m/min. Both WALTER precision<br />

tools permit backlash-free precision nonius setting up to<br />

precisely 0.002 mm. For special precision machining<br />

operations, alongside carbide industrial inserts, CBN and<br />

PCD cutting materials with a positive geometry are also<br />

available.<br />

As both the WALTER Boring and WALTER <strong>Precision</strong><br />

series have the same external dimensions, they offer two<br />

additional benefi ts which should not be underestimated:<br />

Firstly the programming input is reduced, and secondly no<br />

separate collision checks need to be performed. Accessories<br />

such as adapters, extensions and so on are also identical.<br />

Xtra.tec ® For precision processing of even smaller<br />

diameters, users are able to call upon the WALTER<br />

<strong>Precision</strong> MINI system (working range 2-45mm). These tools<br />

are fi tted with boring bars in a solid carbide or indexable<br />

insert version. Here too, manual imbalance compensation<br />

permits cutting speeds of up to 2000m/min. Setting<br />

accuracy is also around 0.002mm.<br />

Boring tools / precision tools<br />

The new boring and<br />

precision boring tools<br />

WALTER BoringMEDIUM and<br />

WALTER Boring MAXI /<br />

WALTER <strong>Precision</strong>MEDIUM<br />

and WALTER <strong>Precision</strong> MAXI<br />

have been formed to create<br />

a real tooling family:<br />

Dimensionally coordinated, they<br />

simplify handling and reduce the<br />

input required for programming and collision<br />

control. (picture: WALTER AG)


Technical Features<br />

Automation in the cutting process provides the cutting edge to<br />

Heating Ventilation Air-Conditioning ( HVAC ) industry in Indonesia.<br />

“ Cutting it productively ” every time is the key to automation<br />

success<br />

Every time a shopping mall , an offi ce tower or high rise building pops<br />

up in downtown Jakarta, have you ever wondered how the builders<br />

managed to put up all the sheet metal ducting for air-conditioning<br />

and ventilation so effi ciently? Automation in cutting and accuracy in<br />

fi t up of joints had made it possible.<br />

Some of the products that he is fabricating can<br />

be seen below.<br />

In the past skilled workers had to manually cut the sheet metal<br />

with heavy duty scissors and then knock them into a shape with a<br />

hammer before joining them up to form an air-con ducting for each<br />

fl oor of the building. This process was very skill dependent, labours<br />

intensive, time consuming and results in much waste of materials.<br />

Because it was manually done there were many reworks and rejects<br />

of workpieces which slows the building completion.<br />

Koike Sanso Kogyo Co. Ltd., the world’s leading manufacturer of<br />

cutting machineries, have provided the local contractors with a<br />

portable cutting solution and the cutting edge tool to compete<br />

effectively. The KOIKE MONOGRAPH 1650 CNC Plasma cutting<br />

machine for thin sheet cutting was designed to be a compact,<br />

unitized and portable machine so that it can be transported to the<br />

construction site. This means large cost savings in transportation<br />

for the completed ducting , since all cutting work can now be done<br />

in the basement car park on site. Because the machine is available<br />

on site, any last minute changes can be accommodated easily and<br />

swiftly.<br />

KOIKE MONOGRAPH 1650 CNC Plasma cutting machine for thin<br />

sheet cutting<br />

According to a HVAC contractor he has achieved much savings from<br />

the following:<br />

- Reduced transportation costs from the factory to the<br />

construction site because all cutting are done on site and on<br />

demand.<br />

- Material savings because computer controlled nesting of<br />

parts had resulted in less wastage, rejects and reworks.<br />

- Less reliance on limited skill labour as the machine<br />

provides the technology and automation, only a general<br />

worker can operate the machine and achieve accurate<br />

cuts everytime.<br />

- Last minute changes of work pieces can be easily<br />

accommodated and completed on the same day.<br />

- Project completion can be achieved at a shorter time span.<br />

- More projects can be under taken as a result of the<br />

cutting productivity.<br />

Computer nested parts are accurately cut.<br />

Cutting with rolled sheets reduces<br />

wastages.<br />

He realised that to compete with foreign contractors who have<br />

invested in high technologies and automatic cutting and forming<br />

equipment, he too must upgrade himself or be force out of<br />

business.<br />

In this era of globalisation Indonesia contractors must upgrade<br />

themselves and fi nd new ways of doing things in order to compete.<br />

Compact , Unitized and transportable Monograph 1650.<br />

18<br />

indometalworking news Vol. 2 / 2008


Revolution in Sheet-metal<br />

Manufacturing VPSS<br />

Amada’s guiding principle: “Amada<br />

grows with the voices of our customers<br />

and advances with our customers.” As<br />

such, we at Amada are well aware that<br />

today’s manufacturing industries are<br />

becoming very tough and our customers<br />

have to fi nd new ways to stay relevant<br />

as well as maintain their competitive<br />

edge in the 21st century.<br />

Conventionally, manufacturing has been<br />

a very long and sometimes tedious<br />

process. By combining software,<br />

tooling, and machine technology,<br />

Amada would like to introduce a new<br />

way of manufacturing to reduce cost,<br />

and improve productivity, effi ciency, and<br />

quality. To meet the needs and demands<br />

of the sheet-metal manufacturing<br />

processes, let’s take a look at Amada’s<br />

total solutions package: VPSS – the<br />

sheet-metal revolution for the 21st<br />

century.<br />

the need for “Brain Unfold” (or manual<br />

unfold), exchanges internal setup<br />

time to external usage time, and<br />

eradicates wastes by eliminating test<br />

pieces.<br />

In a conventional process, an<br />

experience staff has to decide on a<br />

product’s program, blank part,<br />

and bend process base on each<br />

orthographic drawing, material type,<br />

material thickness, product forms,<br />

and number of bends. This process<br />

requires 80% of overall time leaving<br />

only 20% for production. The end result<br />

is long delivery time and huge cost due<br />

to multiple test pieces and verifi cation.<br />

Conversely in the VPSS process,<br />

a 3-D model with Amada’s sheet-metal<br />

attributes (BMF – Bend Model File)<br />

is created when an unfold drawing<br />

is generated. Using this 3-D model,<br />

stored in a common data base – SDD<br />

(Sheet-Metal Digital on Demand).<br />

Because all simulation can be done in<br />

the computer, fabrication in the offi ce<br />

computer acts as the 2nd job shop.<br />

Once the simulation is completed, real<br />

manufacturing may begin by simply<br />

retrieving simulated data from SDD.<br />

Because it is no longer necessary<br />

to do “Brain Unfold” or test bends,<br />

internal setup time is reduced allowing a<br />

drastic improvement in actual<br />

production. On top of this, VPSS may<br />

be set up for collection and analysis of<br />

estimate data and actual results<br />

automatically. This switch from<br />

confi rmation via test bends of actual<br />

products to confi rmation via computer<br />

simulation before immediate production<br />

actual products is VPSS.<br />

MAIN CONTENTS THAT<br />

COMPRISES VPSS<br />

#1: AP100<br />

CREATE UNFOLD DRAWING WITH 3-D<br />

MODEL AND INPUT NECESSARY<br />

SHEET-METAL ATTRIBUTES<br />

VPSS CONCEPT<br />

VPSS (Virtual Prototype Simulation<br />

System) realizes a revolution in<br />

sheet-metal fabrication. It eliminates<br />

both blank and bend models may be<br />

created, verifi ed and confi rmed in the<br />

computer before output of fabrication<br />

programs. All VPSS processes are done<br />

automatically in the computer and<br />

3-D model generated by AP100 plays<br />

an important role in VPSS. Using face<br />

attachment and face extrusion from<br />

an orthographic drawing, a solid model<br />

(3-D model) with standard Amada<br />

attributes may be easily created.<br />

In a normal CAD or paper model,<br />

there are no sheet-metal attributes.<br />

However, Amada’s attributes are able<br />

to accurately refl ect the material<br />

elongation of a product to be<br />

fabricated.<br />

#2: FLAT LAYOUT VERIFICATION<br />

20<br />

indometalworking news Vol. 2 / 2008


ELIMIATES IMPROPER UNFOLDING<br />

In VPSS, a programmer verifi es<br />

dimensions and shapes by comparing<br />

the solid model with the orthographic<br />

drawing. As such, improper unfolding is<br />

eliminated without making a test piece.<br />

#3: TEST PIECE VERIFICATION USING<br />

DR. ABE BEND/CAM<br />

AUTOMATIC BENDING DATA CREATION<br />

Dr. Abe Bend/Cam generates bending<br />

operation program for the actual<br />

bending process using AI (Artifi cial<br />

Intelligence). This AI was developed<br />

in collaboration with Dr. Bourne of<br />

Carnegie-Mellon University – the<br />

university with world-wide reputation in<br />

Artifi cial Intelligence for Computer Chess<br />

Tournaments and Mars exploration<br />

robots.<br />

After Flat Layout verifi cation is<br />

completed, an unfold drawing is retrieved<br />

and used by Dr. Abe Bend/Cam for<br />

automatic generation of bending data<br />

in a batch process. The parts to be<br />

fabricated are checked for feasibility<br />

before creating the best bending<br />

programs – bending sequences, tool<br />

selection, L-values, D-values, and tool<br />

placements – automatically without<br />

making any test pieces. If the program<br />

generation results in “Failure” or<br />

“Warning,” reasons shown in Bend/<br />

Cam may be studied to generate<br />

the program manually. This process<br />

greatly increases actual working<br />

because of a reduction in internal<br />

set-up (manual unfold done by an<br />

operator at the job shop) from 80% in<br />

a conventional bending process to 20%<br />

using VPSS.<br />

BEND TOOLING SET UP FOR<br />

MAULTIPLE PARTS<br />

When bending data is generated in<br />

a batch process, common tooling<br />

layout is generated for several parts.<br />

This not only reduces tool set up time as<br />

compared to the conventional way of<br />

arranging tooling layout for each part,<br />

but also realizes higher productivity.<br />

#4: DR.ABE BLANK (LASER/<br />

PUNCHING)<br />

Dr. Abe Blank generates nesting sheet<br />

programs based on the unfolding<br />

drawings created by VPSS. Compared<br />

with creating part data and sheet data<br />

separately and manually, Dr. Abe Blank<br />

reduces the set up for generating<br />

blank processing data and maximizes<br />

material yield.<br />

#5: SDD (SHEET-METAL DIGITAL on<br />

DEMAND)<br />

All data – unfold drawing, solid model<br />

with attributes, set-up information,<br />

processing program information,<br />

etc. – created by VPSS are stored in<br />

SDD as digital information. During<br />

manufacturing, an operator may start<br />

the job immediately and easily by<br />

simply retrieving data from SDD using<br />

a bar-coded “Job Instruction Sheet.”<br />

Stored digital data in SDD results in<br />

common know-how or knowledge,<br />

once reliant on an individual, to<br />

be easily shared within a company.<br />

#6: ASSEMBLING VERIFICATION IN<br />

SHEETWORKS FOR UNFOLD<br />

Sheetworks for Unfold not only enables<br />

verifi cation by assembling solid/sheet<br />

models, but also allows conversion of<br />

solid models into sheet-metal models. All<br />

parts created in Sheetworks for Unfold<br />

may be assembled in a computer and<br />

checked for interference, hole position,<br />

collision, etc. Using this method, solving<br />

errors which conventionally could only be<br />

found only at assembly greatly reduces<br />

wastes in delivery and cost.<br />

#7: vFACTORY<br />

vFactory automatically collects<br />

machines’ information such as machine<br />

history, job history, machine operation,<br />

and machine status by means of<br />

digital data. Therefore, actual working<br />

conditions at a job shop may be<br />

monitored through a remote computer<br />

easily. As such, the capture of present<br />

machine status of machine and results<br />

may be analyzed with the digital data.<br />

It can be seen that VPSS through factory<br />

digitalization will increase cost savings,<br />

productivity, and effi ciency. We trust<br />

that this insight to VPSS will give<br />

you new ideas and technologies that will<br />

not only improve your manufacturing<br />

methods but also increase your<br />

competitive edge and profi tability.<br />

“Amada grows with the voices of our<br />

customers and advances with our<br />

customers.”<br />

indometalworking news Vol. 2 / 2008 21


Shrink Fit:<br />

The <strong>High</strong> Accuracy<br />

Toolholder of Choice<br />

Requirements in the mold industry are much more precise than general<br />

machining, so more attention must be paid toward the selection of the<br />

appropriate toolholder in regards to its features and benefits<br />

Within the last 10 years, the<br />

acceptance and integration<br />

of shrink fi t toolholders in the<br />

mold and die industry has continued in<br />

aiding all world-based mold shops in<br />

remaining globally competitive.<br />

Toolholding for milling machines in<br />

general had often been overlooked by<br />

most manufacturing facilities throughout<br />

the world especially Asia.<br />

However, it was the mold and die<br />

industry that was really the fi rst segment<br />

of the manufacturing market to look for<br />

more precise toolholder options. Due to<br />

numerous inherent benefi ts, shrink fi t<br />

toolholders have predominately become<br />

the high accuracy toolholder of choice<br />

for the mold and die market.<br />

The Challenge<br />

As the mold and die industry in Asia<br />

has become much more of a globally<br />

competitive market, the need to reduce<br />

expensive labor intensive practices has<br />

become an absolute necessity for shop<br />

owners. The goal for most shops is to<br />

reduce or completely eliminate polishing<br />

or spotting time on their molds. This<br />

can be accomplished in numerous<br />

ways including the use of EDM sinker<br />

machines, hard milling of steel or cutting<br />

closer to net shape from the beginning<br />

of the machining process.<br />

In order to address this challenge, the<br />

mold and die shops have been forced to<br />

look at their entire process. For example,<br />

choosing the correct machine tool for the<br />

job is no longer the only consideration. It<br />

is important to investigate and decide on<br />

the appropriate machine control, CAD/<br />

CAM software package, toolholders and<br />

cutting tools in order to complete the job<br />

most effi ciently<br />

The Toolholder Solution<br />

When looking for toolholder solutions for<br />

any type of machining, it is always good<br />

to fi rst focus on three main features that<br />

a toolholder must bring you:<br />

1. Rigidity<br />

Rigidity comes from suffi cient<br />

taper contact and proper clamping<br />

of the toolholder in the machine tool<br />

spindle.<br />

2. Accuracy<br />

Accuracy comes from minimal<br />

run-out at the cutting edge of the<br />

cutting tool.<br />

3. Balance<br />

Balance comes from a balanced<br />

assembly of the toolholder (including<br />

all accessories such as pull-studs)<br />

and cutting tool combination.<br />

However, the requirements in the mold<br />

and die industry are much more precise<br />

than general machining, so more<br />

attention must be made toward the<br />

selection of the appropriate toolholder<br />

for the job.<br />

For example, a mold shop often must<br />

think of the following:<br />

• Geometry of toolholder to avoid<br />

collisions with the workpiece. In<br />

regards to the EDM process,<br />

electrodes must be machined<br />

accurately and effi ciently. Often<br />

times, deep ribs are required in<br />

22<br />

indometalworking news Vol. 2 / 2008


the part process and often<br />

present challenges. Also, deep<br />

cavities such as large door panel or<br />

bumper molds require deep reach<br />

with extreme clearances.<br />

• Cleanliness of the toolholder to<br />

avoid excessive run-out, especially<br />

when machining graphite.<br />

• Extending cutting tool life since<br />

high-end cutting tools are needed<br />

to obtain the best performance in<br />

the shortest time possible. These<br />

cutting tools often have exotic<br />

coatings that lend to an expensive<br />

price.<br />

• Finish. <strong>High</strong>er speeds and feeds<br />

are used with lower depth-ofcuts,<br />

which translates into<br />

better surface fi nishes. This<br />

makes balance even<br />

more important to minimize<br />

vibration at the cutting edge of the<br />

cutting tool. Also, proper chip<br />

evacuation provides better fi nishes.<br />

Based on these additional requirements,<br />

most mold shops have found that<br />

due to some inherent benefi ts, shrink<br />

fi t toolholders give them the best<br />

opportunity to accomplish the job<br />

competitively and accurately. Also, the<br />

evolution of inductive shrink fi t machines<br />

has made the shrinking process easier,<br />

quicker, safer and less costly to invest in<br />

this technology up front.<br />

Shrink Fit Advantages<br />

There are 10 inherent benefi ts that a<br />

good shrink fi t chuck can offer a mold<br />

shop:<br />

1. Unsurpassed accuracy<br />

A properly produced shrink fi t chuck<br />

should be able to guarantee 0.00012”<br />

(3 microns) maximum run-out at<br />

three times the cutting tool diameter.<br />

This accuracy is very repeatable from<br />

operator to operator.<br />

2. Availability of slim profiles<br />

Shrink fi t chucks are available with<br />

three-degree draft angles and<br />

very slim profi les. They can also be<br />

modifi ed to be straight walled if<br />

needed in order to prevent toolholder<br />

collision with the workpiece.<br />

3. Gripping torque<br />

A shrink fi t chuck grips the cutting tool<br />

360 degrees around the shank. This<br />

leads to a very high gripping torque<br />

that prevents the cutting tool from<br />

moving during roughing or fi nishing<br />

operations. This greatly aids in the<br />

reduction of scrapped parts.<br />

4. Extended reach options<br />

Shrink fi t chucks can use shrink fi t<br />

extensions that provide the user with<br />

many options with standard products.<br />

When machining deep cavities, one<br />

can place shrink fi t extensions into<br />

standard shrink fi t chucks, getting<br />

unsurpassed toolholder lengths with<br />

very little run-out.<br />

5. Balance repeatability<br />

and balanceable options<br />

Shrink fi t chucks offer the best<br />

balance repeatability of any<br />

toolholding system on the market<br />

since there are no moving parts. In<br />

many cases, if a shop purchases a<br />

properly balanced shrink fi t chuck<br />

with correct accessories (such as<br />

pull-studs) and uses good cutting<br />

tools without inherent unbalance<br />

(such as fl ats) then they can often<br />

have good balance characteristics<br />

for running at high speeds without<br />

doing an additional fi ne-tune<br />

balancing. Of course, if there is a<br />

need for additional balancing of the<br />

toolholder on a balancing machine<br />

after the assembly of the toolholder<br />

setup (toolholder plus cutting tool,<br />

plus pull-stud or coolant tube) then<br />

many shrink fi t chucks on the market<br />

come with simple to use balanceable<br />

options already built into the chucks.<br />

6. Reduction of toolchanging time/<br />

less toolholder accessory<br />

inventory<br />

Nothing beats the tool change time<br />

of shrink fi t chucks if the process<br />

is joined with a capable inductive<br />

shrink fi t machine. Tool changes can<br />

be done in fi ve to 10 seconds, and<br />

most importantly, consistently. This<br />

allows the toolholder assembly to be<br />

in the machine making chips more<br />

of the time, than out of the machine<br />

waiting to be changed. Also, a shop<br />

needs very little additional toolholder<br />

accessory inventory (i.e., collets,<br />

nuts, seal disks, etc.). This simplifi es<br />

the process.<br />

7. Cleanliness of setup<br />

A shrink fi t chuck typically is a sealed<br />

system by design. Therefore, the<br />

introduction of contaminants in the<br />

bore are minimized (such as graphite<br />

dust or chips). If contaminants are<br />

introduced to the bore of a toolholder,<br />

oftentimes run-out accuracy is<br />

compromised.<br />

8. Coolant options<br />

Shrink fi t chucks often have clever<br />

methods to deliver coolant or air/<br />

indometalworking news Vol. 2 / 2008 23


that sometimes are only available<br />

from one manufacturer.<br />

Selection of the Proper Shrink Fit Chuck<br />

While there are many suppliers of shrink<br />

fi t chucks available, there are good<br />

and bad shrink fi t chucks available. It<br />

is important to do research related to<br />

the selection of a toolholder for your<br />

particular application.<br />

oil mist down to the cutting edge of<br />

the cutting tool. This helps with the<br />

proper removal of chips and can<br />

also aid in providing better fi nishes.<br />

In addition, if a mold shop does high<br />

precision drilling, a shrink chuck<br />

makes an excellent holder for coolant<br />

through drills since no accessories<br />

or special collets are needed—the<br />

sealed design of the toolholder simply<br />

allows the coolant to fl ow through the<br />

cutting tool.<br />

9. Consistency of setup<br />

Shrink fi t holders provide the best<br />

repeatability from toolholder setup<br />

to toolholder setup. This is especially<br />

benefi cial for those shops running<br />

lights out. For example, all toolholder<br />

setup operators set the toolholders<br />

the same with shrink fi t holders.<br />

There are no variables—such as<br />

over-tightening or under-tightening a<br />

collet nut or not cleaning out a chuck<br />

suffi ciently. Also, as mentioned the<br />

balance characteristics are the<br />

most repeatable. This combination<br />

of consistency allows a shop to truly<br />

monitor their tool life and understand<br />

how many parts they can machine<br />

with each toolholder setup—again,<br />

this is truly an important part of<br />

getting to the point of lights out<br />

machining.<br />

10. Availability of shrink chucks<br />

Most of the major toolholder builders<br />

in the world now offer shrink fi t chucks<br />

as a standard. Therefore, mold shops<br />

are not roped into proprietary high<br />

precision collets or press fi t systems<br />

Typically, the initial purchase of your<br />

toolholders will last the life of your<br />

machine tool. Studies have found that<br />

the overall expense of toolholders<br />

equals less than 0.5 percent of the<br />

overall machining process during the<br />

life of the machine tool.<br />

The relationship between the bore of<br />

the holder and the taper lead to the<br />

accuracy of the chuck. It is important<br />

to choose a company that truly makes<br />

their own product and specializes only<br />

in the production of toolholders. This<br />

guarantees you the most consistent<br />

and accurate toolholder available for<br />

your job.<br />

The material of the shrink fi t chucks is<br />

also a key element in making the correct<br />

selection. If a substandard material is<br />

used, one might shorten the life of the<br />

shrink fi t chuck based on limited heating<br />

cycles. A shrink fi t toolholder made of the<br />

correct material should remain effective<br />

indefi nitely.<br />

Also, it is important that the chucks<br />

subscribe to the DIN standards on the<br />

nose dimensions so that all cooling<br />

options from the shrink fi t machine side<br />

can be utilized.<br />

In general, it is recommended to<br />

purchase chucks with many “options”<br />

built-in (such as balanced so that there<br />

is under 1 gmm of unbalance in the<br />

chuck, balanceable design, bore for the<br />

data chip, form “DIN B” coolant delivery<br />

option, etc.) so that you are not limited<br />

in the future as your operation evolves.<br />

Finally, the company making the chucks<br />

should be an industry leader, constantly<br />

putting further efforts into research<br />

and development into new toolholding<br />

concepts that can further strengthen<br />

the role of shrink fi t toolholders in the<br />

mold market.<br />

For example, the recent development<br />

of a shrink fi t chuck1 that provides an<br />

anti-vibration feature in a shrink chuck.<br />

This feature helps dampen the vibration<br />

during roughing operations that had at<br />

one time occurred with standard shrink<br />

fi t chucks due to the extreme rigidity of<br />

the setup.<br />

Summary<br />

It is often stated by shop owners and<br />

plant managers that shrink fi t tooling<br />

has been the best investment they<br />

have made in the past fi ve years.<br />

Acceptance of the use of shrinking<br />

technology in the mold and die market<br />

has played a vital role in strengthening<br />

Asian manufacturing capabilities and<br />

preparing it for continued growth.<br />

24<br />

indometalworking news Vol. 2 / 2008


Technology for Improving<br />

Five-Axis Capability<br />

With fi ve-axis in place, it’s time<br />

to look at the advantages of<br />

investing in new software<br />

technology to improve processes, new<br />

approaches to part setup and the factors<br />

to consider before your purchase.<br />

If you have already embraced fi ve-axis<br />

machining, the following article will<br />

provide information about new software<br />

technology developed to improve<br />

processes and illustrate examples of<br />

new approaches to part setup that might<br />

make your shop more productive. If you<br />

haven’t taken the fi ve-axis leap, this<br />

article will illuminate the advantages of<br />

investing in such technology and things<br />

to consider before your purchase.<br />

Measure Twice. Cut Once<br />

Even though it is considered the<br />

carpenter’s mantra, the gist of the<br />

saying, “Measure twice. Cut once,” is<br />

applicable—spend more time thinking,<br />

preparing and planning instead of<br />

rushing to make chips.<br />

it. The key to peak effi ciency is fi nding<br />

the sweet spot—at what number of parts<br />

is the investment in a palette changing<br />

system worthwhile.<br />

Also, evaluating whether it’s more<br />

effective to machine a part from a<br />

billet versus castings can increase<br />

productivity—one customer found<br />

machining from a billet not only saved<br />

time and money, but gave them more<br />

control over deliverables. By machining<br />

the part from a billet, the customer<br />

eliminated delays due to leadtimes for<br />

the castings and saved time/money on<br />

storing the castings.<br />

Obviously, upgrading your equipment<br />

can provide greater effi ciency. The trick<br />

is to fi gure out how quickly you will see<br />

the return on your investment. One<br />

customer analyzed his primary part<br />

numbers and discovered that upgrading<br />

to a machine with faster feedrates and<br />

more torque would cut cycle time in half<br />

on his biggest job—from three hours to<br />

one hour and 30 minutes.<br />

Technology Solution: Software<br />

Designed to Solve Problems<br />

Beyond the machine specifi cations,<br />

technology benefi ts reside in the<br />

control’s software—features that were<br />

designed to solve problems and help<br />

you be more effi cient.<br />

Multiple Part-Zero Setups<br />

For instance, even an uncomplicated<br />

part that is fi ve-sided requires multiple<br />

part-zero setups. A software feature<br />

called transform part zero (see Figure 1)<br />

reduces setup time and eliminates the<br />

hassle of setting up part zero fi ve times.<br />

The technology does the work so you<br />

can start making chips. You just need to<br />

locate one part zero and the remaining<br />

part zero locations can be defi ned as<br />

incremental measurements from the<br />

original location. Additionally, you can<br />

still program the geometry on each of<br />

the sides if you’re programming in an XY<br />

plane.<br />

Sometimes the most inexpensive way<br />

to fi nd productivity is to take the time to<br />

evaluate each job. Chart 1 shows that<br />

24 percent of a job’s capacity is spent<br />

on fi xturing. To increase effi ciency,<br />

some shops try to minimize time spent<br />

on fi xturing by using a row of vises and<br />

then fl ipping each part into the next vise.<br />

Other shops opt for the more effi cient<br />

index table, but the operator is still<br />

required to handle the part to refi xture<br />

Change of<br />

Fixture 24%<br />

Other 3%<br />

Change Work<br />

Piece 16% Tool Change 7%<br />

<strong>Machining</strong> 50%<br />

Chart 1 – capacity chart<br />

26<br />

indometalworking news Vol. 2 / 2008


Figure 1. The transform part<br />

zero software feature was<br />

designed to minimize steps.<br />

Figure 2. Workpiece surface contact point + tool vector<br />

EXAMPLE: G01 X10.Y10.Z10. I0.5J0.5K0.707106<br />

would be equivalent to: G01 X10.Y10.Z10.B45.C45<br />

Benefits of Tool<br />

Vector Input feature:<br />

• Program is machine<br />

independent<br />

• Control software computes<br />

machine angles and<br />

positions<br />

• Simplifi es post-processor<br />

1.<br />

2.<br />

3.<br />

4.<br />

Create a Rotary Position<br />

data block<br />

Set the Transform Part<br />

Zero fi eld to YES<br />

Insert a Transform Plane<br />

Reference Point data<br />

block<br />

Specify the distance to<br />

shift the part zero relative<br />

to the original setup<br />

Redundancy in Posting a Five-Axis<br />

Program<br />

Each time you refi xture, you have to waste<br />

valuable time re-entering the distance<br />

from part zero to the center lines of<br />

rotation and then repost the program. If<br />

your control has a software feature such<br />

as tool center point management, you<br />

only have to post the program once and<br />

machine the part—no matter where it is<br />

in relation to the center lines of rotation<br />

on the machine.<br />

Tool center point management solves<br />

the problem for CAM software. The CAM<br />

programmer generates the toolpath<br />

based on the part model’s zero location.<br />

Therefore, you can post the program<br />

independent of where the stock is<br />

fi xtured on the table—a substantial time<br />

saver for a fi ve-axis part.<br />

Complex and Diffi cult Post Processors<br />

CAM systems generally use tool vectors<br />

to generate the toolpath. To make<br />

programs independent of the machine’s<br />

rotary confi guration and to simplify the<br />

post processor, there is a tool vector<br />

input control software feature for fi veaxis<br />

machining centers (see Figure 2).<br />

This feature lets you specify the tool tip<br />

location relative to the workpiece and<br />

the tool axis vector instead of using<br />

address letters to specify the B and C<br />

axes angles. Executing the program is<br />

much faster because the post doesn’t<br />

need the machine confi guration and the<br />

centerline of the rotary axes.<br />

Marks on the Part<br />

Simultaneous fi ve-axis toolpaths can<br />

result in odd looping rotary moves<br />

that leave marks on the part when the<br />

program is interpolated by the machine’s<br />

control. One solution is a feature called<br />

toolpath linearization, which is specifi c to<br />

fi ve-axis, G-code programs. It eliminates<br />

the many line segments in the form of<br />

XYZBC moves that a CAM system uses<br />

to create a smooth part.<br />

With toolpath linearization, the tool tip<br />

and tool vector can be interpolated<br />

between tool positions with respect to<br />

the workpiece even with the tool and<br />

Fig 3ab – with toolpath linearization, the tool tip and tool<br />

vector can be interpolated between tool positions with<br />

respect to the workpiece even with the tool and part<br />

rotating inside the machine<br />

part rotating inside the machine (see<br />

Figures 3ab).<br />

Reposting to Adjust for Tool Wear on<br />

3-D Surfaces<br />

For 3-D surfaces, you cut off of the tool<br />

centerline to get a better surface fi nish.<br />

Because you have to adjust the tool<br />

diameter for wear, you are sometimes<br />

forced to repost the program. A software<br />

feature called 3-D tool compensation<br />

eliminates the need to repost the part<br />

program because the control’s software<br />

compensates for the tool geometry (see<br />

Figure 4 for visual explanation).<br />

Summary<br />

In this competitive environment with<br />

skilled labor shortages and demanding<br />

schedules for complex parts, investing<br />

in machine tools with the latest<br />

technology is the most effi cient way to<br />

see measurable productivity gains.<br />

Figure 4. Workpiece surface contact point + contact point<br />

surface normal + tool vector<br />

EXAMPLE: M128 3D Tool Geometry Compensation<br />

G41.2D_ R_G00 X0.Y0.Z0. U0.V0.W1. I0.J0.K1.<br />

G01 X10.Y10.Z10. U0.V0.W1. I0.5J0.5K0.707106 F1000<br />

XYZ = Surface contact point<br />

UVW = Surface normal at contact point<br />

IJK = Tool vector<br />

3-D tool geometry compensation.<br />

indometalworking news Vol. 2 / 2008 27


The Road to<br />

Welding Automation<br />

Why and<br />

When to<br />

Take the<br />

Journey<br />

More companies than ever<br />

before are automating<br />

portions, if not the entirety,<br />

of their welding operations for many<br />

reasons: to address the welder shortage;<br />

improve quality; decrease waste and<br />

rework; and/or to increase productivity.<br />

However, not all companies that attempt<br />

the automation journey are successful.<br />

In fact, those that begin without a wellthought-out<br />

roadmap risk valuable time<br />

and investments and are likely to miss<br />

the full benefi ts of welding automation.<br />

On the other hand, fabricators that<br />

begin with a careful examination of their<br />

welding needs and current processes<br />

- including an accurate assessment<br />

of workfl ow and an evaluation of the<br />

potential return on investment (ROI) -<br />

and develop a detailed plan, with clearly<br />

established goals, are likely to achieve<br />

welding automation success.<br />

WHAT’S THE BENEFIT?<br />

On average, labor accounts for<br />

approximately 70 percent of any welded<br />

part’s cost. An automated system can<br />

potentially reduce that cost because a<br />

robot can typically do the work of two to<br />

four people, operating without attention<br />

defi cits or bad days. You cannot, however,<br />

simply purchase an automated system<br />

and let it go. A skilled welding operator<br />

is needed to program the equipment,<br />

which may involve additional training to<br />

upgrade his/her skill sets and may also<br />

require alleviating this welding operator<br />

of some existing tasks.<br />

The proper automated system can<br />

signifi cantly improve fi rst-pass weld<br />

quality, reduce the need for scrapping<br />

28<br />

indometalworking news Vol. 2 / 2008


automating a broken process. This, in<br />

turn, can lead to increased rework and<br />

scrap.<br />

If you currently rely on your welding<br />

operators to compensate for fi t-up<br />

issues, you will need to look upstream<br />

in the manufacturing process to ensure<br />

consistency. What processes will need<br />

to change to make sure uniform parts<br />

are sent downstream by these welding<br />

operators? Or, if vendors supply the<br />

components, can they guarantee that<br />

consistency?<br />

or reworking parts, and minimize or<br />

eliminate spatter, which in turn reduces<br />

the need to apply anti-spatter or perform<br />

post-weld clean up - both labor-intensive<br />

processes. This means personnel that<br />

currently apply anti-spatter may be<br />

freed up for other, more productive uses<br />

elsewhere.<br />

An automated system can reduce<br />

over-welding, a common and costly<br />

occurrence associated with the semiautomatic<br />

process. For example,<br />

welding operators who weld a bead that<br />

is 1/8 in too large on every pass can<br />

potentially double the cost of welding<br />

(both for labor and for fi ller metals), and<br />

over-welding may adversely affect the<br />

integrity of the part. Automation can<br />

prevent this problem.<br />

REPEAT THAT?<br />

One of the initial things to ask when<br />

considering welding automation is:<br />

“Do we have a blueprint, preferably an<br />

electronic blueprint, of our parts?” If<br />

not, you probably won’t meet the basic<br />

criterion necessary to ensure the part is<br />

repeatable - and repeatability is the key<br />

to automation.<br />

An automated system, whether robotic<br />

or fi xed, must weld in the same place<br />

every time. If a part’s design is unable<br />

to hold its tolerances - if there are gap<br />

and/or fi t-up issues - you will simply be<br />

ROBOTICS OR FIXED AUTOMATION?<br />

No single automation solution is best<br />

for every company. The best solution<br />

depends on many factors, including the<br />

expected lifetime of the job, the cost<br />

of tooling involved and the fl exibility<br />

offered<br />

Fixed automation is the most effi cient<br />

and cost-effective way to weld certain<br />

components, such as those requiring<br />

simple repetitive straight welds or round<br />

welds, where the part is rotated on a<br />

lathe. If you want to redeploy the asset<br />

when the current job ends, however,<br />

a robotic welding system offers more<br />

fl exibility. A robot can also hold programs<br />

Finally, robots are fast. They don’t have<br />

to weld all day to be profi table; they must<br />

only weld more quickly than a manual<br />

welding operator - and they do. This fact<br />

alone increases productivity. Creating<br />

the same number of parts in a shorter<br />

time also decreases labor costs and<br />

raises profi tability. While these benefi ts<br />

may immediately beg the question “How<br />

can our company automate?” a few<br />

questions must be answered fi rst.<br />

indometalworking news Vol. 2 / 2008 29


for multiple jobs; so, depending on<br />

volume, it may be able to handle the<br />

tasks of several fi xed-automation<br />

systems.<br />

A certain volume of parts will justify<br />

the investment of automation for each<br />

company, and an accurate assessment<br />

of goals and workfl ow help determine<br />

what that volume is. If you make only<br />

small runs of parts, automation becomes<br />

more challenging. If, however, you can<br />

identify two or three components that<br />

can be automated, a robot that can be<br />

programmed to recognize those parts<br />

can offer greater fl exibility and may<br />

benefi t even small fabricators who may<br />

not have signifi cant volume of a single<br />

part.<br />

Although a robot is more expensive<br />

than a fi xed-automation system, you<br />

should be sure to consider the cost of<br />

the necessary tooling before deciding<br />

between the two. Fixed automation<br />

systems can become quite expensive<br />

if extensive changes are required to<br />

retool a part to ensure it can be welded<br />

consistently.<br />

READY TO AUTOMATE?<br />

A streamlined workfl ow is one of<br />

automation’s benefi ts. But a smooth<br />

workfl ow requires you to look beyond<br />

the weld cell to ensure your facility<br />

can accommodate a smooth fl ow of<br />

materials. For example, investing in<br />

an automated system to increase<br />

productivity that is placed in a corner<br />

where each part must be handled twice<br />

makes little sense.<br />

You should have a dependable supply of<br />

parts to avoid moving a bottleneck from<br />

one area to another. Also remember<br />

to consider the expected cycle time of<br />

the robot. Can your personnel supply<br />

enough parts to keep up with the<br />

demand of the automated system’s<br />

cycle time? If not, the supply of parts,<br />

including where they are stored and<br />

how they are moved, must be adjusted<br />

for the automation to be successful.<br />

Otherwise, a robot will sit idle waiting for<br />

components to come down the line - a<br />

costly and counterproductive state for<br />

any automated welding system.<br />

You must have the right power and gas<br />

systems in place, or factor in the cost<br />

of implementing these systems. To<br />

move to an automated system, a facility<br />

needs a 480-volt, three-phase power<br />

supply, as well as bulk delivery of gas<br />

and wire. A gas manifold system may<br />

add to the initial cost of automation, but<br />

will minimize downtime for changing gas<br />

cylinders in the long run.<br />

Determining who will oversee the<br />

automated system and providing training<br />

is essential. Most robot OEMs offer a<br />

weeklong training course explaining<br />

how to operate the equipment. This<br />

course, followed by a week of advanced<br />

programming, is recommended.<br />

Because there is more to welding<br />

automation than simply purchasing<br />

a robot, partnering with a competent<br />

integrator or automation specialist can<br />

help ensure success. Your automation<br />

specialist should:<br />

• Help determine if parts are suitable<br />

for automation, and, if not, what<br />

is required to make them suitable.<br />

• Analyze the workfl ow and facility to<br />

identify potential roadblocks.<br />

• Analyze the true costs involved,<br />

including facility updates and<br />

tooling.<br />

• Determine the potential payback<br />

of the automation investment.<br />

• Help identify goals and develop<br />

a precise plan and time table to<br />

achieve those goals.<br />

• Explain automation options and<br />

help select those that best fi t your<br />

needs.<br />

• Help select a welding power<br />

source that has the fl exibility to<br />

maximize travel speed, minimize<br />

spatter, eliminate over-welding,<br />

provide great arc starting<br />

characteristics and increase<br />

fi rst-pass weld quality.<br />

Remember, no single path to successful<br />

welding automation exists, but a wellthought-out<br />

plan that includes accurate<br />

evaluations is a good start to the<br />

journey.<br />

30<br />

indometalworking news Vol. 2 / 2008


Taking Rapid Prototyping<br />

To The Next Level<br />

The rapid prototyoing<br />

indusrty has been<br />

around a couple of<br />

decades. Historically<br />

applied for one-offs,<br />

it is seeing increased<br />

use as a method<br />

of direct digital<br />

manufacturing (DDM).<br />

Although the rapid prototyping<br />

(RP) industry has been around<br />

for a couple of decades now,<br />

a more recent RP development has<br />

been the application of direct digital<br />

manufacturing (DDM). Because of the<br />

increasing sophistication of the parts<br />

being developed, there is the possibility<br />

that DDM could alter manufacturing<br />

trends, and as a result, lessen the<br />

incentive to outsource.<br />

An Industry In Its Infancy<br />

The need to present or develop tangible,<br />

accurate models of ideas, new products,<br />

buildings<br />

and so on has always been around. By<br />

the mid 1980s, prototyping processes<br />

were becoming more accessible as<br />

academics and industry workers<br />

experimented with building models layerby-layer<br />

using rudimentary materials.<br />

And so the RP industry was born with<br />

prototypes being developed in hours<br />

rather than days or weeks. The potential<br />

for a shorter product development cycle<br />

and lower bottom line costs was already<br />

becoming apparent.<br />

As with most industries in their infancy,<br />

there were teething problems. The fi rst<br />

prototypes produced were expensive,<br />

the materials were not the best for the<br />

job and build speeds were slow. The<br />

original machines were also prohibitively<br />

expensive and cumbersome to use.<br />

Fortunately, the industry also had its<br />

champions. Manufacturing fi rms and<br />

designers in particular could see the<br />

vast potential. They could envisage how<br />

Perhaps this represents the machine tool of the future. Not<br />

only is it especially useful for direct digital manufacturing<br />

(DDM), but it uses 32 DDM production parts on each<br />

machine as well<br />

RP would help them avoid mistakes,<br />

prove theories were correct and get<br />

concepts to market quickly.<br />

A Growth Spurt<br />

By the early 1990s, RP users were<br />

becoming more specifi c about their<br />

needs, and the initial novelty created a<br />

demand for quality as a key deliverable.<br />

In only a few years, the accuracy, speed<br />

and precision of both machines and<br />

materials improved. Suppliers surpassed<br />

expectations and the service bureaus<br />

sector expanded, buying machines in<br />

order to offer their clients consistent<br />

accuracy and additional services, as<br />

well as considerably increasing their<br />

own output capacity.<br />

Near the millennium, the fi rst true RP<br />

machines came into being as they were<br />

developed for specifi c applications.<br />

Instead of simply refi ning earlier<br />

machines, developers focused on<br />

the relevant applications and specifi c<br />

needs of individual vertical markets,<br />

such as the automotive and aerospace<br />

industries. These two industries had the<br />

budgets to surge forward, as well as the<br />

foresight to become early adopters and<br />

drivers of this new wave of technology.<br />

They could see the payback.<br />

Today the RP industry is global. Both<br />

Europe and Japan have long-standing<br />

mainstream and niche players, and<br />

Germany and Japan have benefi ted from<br />

major domestic programs. They have<br />

created a strategic RP infrastructure<br />

and culture that plays a key role in<br />

their economies. They, along with other<br />

32<br />

indometalworking news Vol. 2 / 2008


• Part design can be based on<br />

function rather than manufacturing<br />

constraints.<br />

• Design changes can be implemented<br />

immediately at minimal cost.<br />

• Custom products can be produced to<br />

match customer requirements.<br />

DDM starts in design, with something like this CAD image<br />

of a jigsaw<br />

European countries, remain important<br />

clusters of RP innovation.<br />

What Is DDM?<br />

Direct digital manufacturing (DDM) is the<br />

process of using an additive fabrication<br />

system to create parts for end use. In<br />

fact, there is a growth in the number of<br />

manufacturers that are using additive<br />

fabrication systems to build a range<br />

of parts, such as components for new<br />

products, jigs, fi xtures, hand tools and<br />

gages. Design and engineering fi rms are<br />

fi nding further uses for fused deposition<br />

modeling (FDM) machines aside from<br />

the traditional rapid prototyping (RP)<br />

functionality.<br />

A variety of production materials can be<br />

used in the FDM process, including ABS,<br />

polycarbonates, polyphenylsulfones and<br />

blends. These materials allow users to<br />

manufacture parts that are tough enough<br />

for functional testing, installation, and<br />

most importantly, end use. Because<br />

thermoplastics are environmentally<br />

stable, their accuracy does not change<br />

with ambient conditions or time.<br />

Here are advantages for using DDM for<br />

manufacturing:<br />

• Complex parts can be produced<br />

without the need for highly skilled<br />

labor.<br />

• Parts can be produced as needed,<br />

eliminating the need for stock.<br />

Broadening The Scope<br />

The technologies that have dominated<br />

the industry since its inception continue<br />

to remain at the fore. These include<br />

stereolithography and the new Objet<br />

technology, which is a serious contender<br />

to the stereolithography’s historical<br />

crown. Fused Deposition Modeling<br />

(FDM) has also played a signifi cant role<br />

in the development of the industry and<br />

will continue to do so. Because of its<br />

varied material properties, FDM also<br />

plays a large role in the emerging DDM<br />

and rapid tooling markets, alongside<br />

technologies such as selective laser<br />

sintering.<br />

In terms of future use and adoption,<br />

price pressures persist across the<br />

industry as a whole. Profi tability lays<br />

in innovation and fi nding new ways to<br />

develop existing technologies.<br />

In the future, there probably will be more<br />

options in the palette and selection<br />

of materials. We are already using<br />

engineering plastics and materials in<br />

DDM works by compiling a 3D model from CAD data using<br />

an additive process. The machine lays layer after layer of<br />

material until the model is complete<br />

Shown is a production run of about 50 DDM parts (fl ag<br />

hold-downs), made for installation in its high-speed<br />

document scanning machines.<br />

machines and can use them in extremely<br />

high temperatures. For example,<br />

we develop DDM applications for<br />

automotive under-hood components—a<br />

concept practically unthinkable 20<br />

years ago.<br />

DDM and tooling in their limited formats<br />

are already here and are hot topics<br />

among media and industry experts. One<br />

of the most intriguing consequences of<br />

this increase is the potential to reverse<br />

the trend to outsource manufacturing<br />

to places like the Far East in order to<br />

avoid high labor and tooling costs. This<br />

trend could potentially be reversed if<br />

companies instead purchased the DDM<br />

machines of the future, which would<br />

give them a fi xed cost base, reduce<br />

labor intensity and remove high tooling<br />

costs and time, potentially negating the<br />

incentive to outsource. It would be great<br />

to see some manufacturing processes<br />

return to the developed economies.<br />

This brief “growth chart” of the RP<br />

industry is only a snapshot. The<br />

technology is moving so quickly that it is<br />

diffi cult to predict exactly where people’s<br />

ideas and needs will take it. It is up to<br />

the shops to ensure that we keep up<br />

with what customers require. We also<br />

need another shift in imagination as<br />

we once again encourage companies to<br />

raise their expectations. What is certain<br />

is that the results and applications will<br />

be astonishing and exciting, and we<br />

look forward to being at the forefront of<br />

taking the industry forward.<br />

indometalworking news Vol. 2 / 2008 33


Accuracy of Feed Axes<br />

(Part Two)<br />

By Dr. Jan Braasch of Heidenhain<br />

In the total error budget of a machine tool, the positioning error<br />

values of the feed axes play a critical role. The conclusion of<br />

this two-part series examines the influence of the temperature<br />

distribution along the ballscrew<br />

INFLUENCE OF THE TEMPERATURE<br />

DISTRIBUTION ALONG THE<br />

BALLSCREW<br />

Apart from the ratio of bearing stiffness,<br />

the position of the thermal zero point<br />

depends particularly on the distribution<br />

of temperature along the ballscrew.<br />

Figure 12 shows a thermographic<br />

snapshot of a ballscrew drive after<br />

several hours of reciprocating traverse<br />

between two points at a distance of 150<br />

mm. As the thermograph shows, even<br />

after several hours the temperature<br />

increase remains almost exclusively<br />

in the area of ball nut traverse. The<br />

temperature of the ballscrew and<br />

therefore the thermal expansion is very<br />

local.<br />

Because the bearings of the ballscrew<br />

can provide at best only an evenly<br />

distributed mechanical tension and<br />

ensure constant expansion along the<br />

ballscrew, they cannot compensate<br />

the expansion resulting from local<br />

temperature changes.<br />

A simple calculation shows this clearly<br />

(Figure 13). On a 1 m long ball screw<br />

with a fi xed bearing at one end, a<br />

local temperature increase of 10 K as<br />

indicated by the red curve in Figure 13<br />

(left) would result in a positioning error<br />

as indicated by the green curve in Figure<br />

13 (right).<br />

A fi xed/fi xed bearing confi guration with<br />

rigidity of 700 N/μm results in an error<br />

curve as indicated by the blue curve. As<br />

a result of the forces exercised by the<br />

bearing, the ballscrew is compressed in<br />

the ends where the temperature is not<br />

increased.<br />

The area of the ballscrew near its<br />

midpoint expands due to the temperature<br />

increase at almost the same rate as<br />

with the fi xed/fl oating confi guration. At<br />

22 μm, the maximum positioning error<br />

Figure 12. Local heating of a recirculating ballscrew in the<br />

traverse range of the ball nut after six hours of reversing<br />

traverse at 24 m/min between two points 150 mm apart<br />

[6]. For this thermographic snapshot, the machine table<br />

was moved aside at the end of the traverse program. The<br />

illustration shows the higher temperatures of the belt<br />

drive, locating bearing, and ballscrew<br />

from the fi xed/fi xed confi guration is<br />

roughly 2/3 of the error that occurs from<br />

the fi xed/fl oating confi guration.<br />

COUNTER MEASURES<br />

The test results discussed up to this<br />

point show that the thermal expansion<br />

of the ballscrew as a result of friction in<br />

the bearings and particularly in the ball<br />

nut results in signifi cant positioning error<br />

if the axis is controlled in a semiclosed<br />

loop.<br />

Besides the use of linear encoders,<br />

countermeasures aimed at avoiding<br />

this error include coolant-conducting<br />

hollow ballscrews and purely electronic<br />

compensation in the control software.<br />

COOLED BALLSCREWS<br />

The circulation of the coolant requires a<br />

hole in the ball screw and, for rotating<br />

ballscrews, rotating bushings near<br />

the screw bearings. Apart from the<br />

sealing problems, the hole reduces<br />

the ballscrew’s mechanical rigidity<br />

in its already weak axial direction.<br />

The greatest problem, however, is a<br />

suffi ciently accurately temperature<br />

control of the coolant. A 1 deg C change<br />

in temperature changes the length of a<br />

1 m long ballscrew by 11 μm.<br />

34<br />

indometalworking news Vol. 2 / 2008


Figure 13. Positioning error in a semi-closed loop as<br />

a result of local temperature rise in the recirculating<br />

ballscrew<br />

In light of the considerable amount of<br />

heat to be removed it is not an easy<br />

task to maintain a temperature stability<br />

of < 1 K. This is particularly so when the<br />

spindle or its bearings are cooled with<br />

the same system.<br />

In such a case, the required cooling<br />

capacity can easily lie in the kilowatt<br />

range. The temperature constancy<br />

of existing spindle chillers is usually<br />

signifi cantly worse than 1 K. It is<br />

therefore often not possible to use<br />

them to control the temperature of the<br />

ballscrew.<br />

Switching controllers are often used<br />

in the chillers to reduce cost. Since<br />

each switching operation is triggered<br />

by a violation of temperature limits,<br />

the individual switching operation can<br />

be considered to be an expansion of<br />

the cooled ballscrew and therefore an<br />

axis positioning error. Figure 14 shows<br />

the result of a positioning test on a<br />

vertical machining center with liquidcooled<br />

ballscrews in fi xed/fl oating<br />

bearings.<br />

During the test, the axis was moved<br />

slowly at 2.5 m/min between two points<br />

at a distance of 500 mm. The maximum<br />

traverse range was 800 mm. The<br />

position drift of the position farther away<br />

from the fi xed bearing was recorded. The<br />

switching of the chiller is plainly visible.<br />

Its hysteresis was 1 K.<br />

Compared with the noncooled semiclosed<br />

loop design, the absolute position<br />

drift was signifi cantly reduced. However,<br />

the switch operations produce relatively<br />

quick changes in position, which have a<br />

stronger effect during the machining of<br />

workpieces with short machining times<br />

than the slow position drift evident in<br />

the noncooled semi-closed loop design.<br />

SOFTWARE COMPENSATION<br />

Research is underway on compensation<br />

of thermal deformation with the aid<br />

of analytic models, neural networks<br />

and empirical equations. However,<br />

the main focus of these studies is<br />

in the deformation of the machine<br />

tool structure as a result of internal<br />

and external sources of heat. There<br />

is little interest in investigation into<br />

compensation of axis drift.<br />

As a whole, the possibilities of such<br />

software compensation are frequently<br />

overestimated in today’s general<br />

atmosphere of enthusiasm for software<br />

capabilities. Successful compensation<br />

in the laboratory is usually achieved only<br />

after elaborate special adjustments<br />

on the test machine. It is usually not<br />

possible to apply such methods to<br />

machines from series production<br />

Figure 14. X axis of a vertical machining center with liquidcooled<br />

ballscrew in fi xed/fl oating bearings. The diagram<br />

shows the drift of the position farthest away from the fi xed<br />

bearing over 500 mm (800-mm traverse range) at 2.5 m/<br />

min. The axis was also equipped with a linear encoder for<br />

test purposes<br />

without time-consuming adjustment of<br />

the individual machines.<br />

The example of the feed axis shows<br />

the variations on input parameters<br />

to be considered. To compensate<br />

the expansion of the ball screw, its<br />

temperature must be known with<br />

respect to its position, since the<br />

local temperature depends on the<br />

traversing program. Direct temperature<br />

measurement of the rotating<br />

ballscrew, however, is very diffi cult.<br />

Machine tool builders therefore often<br />

attempt to calculate the temperature<br />

distribution.<br />

This is theoretically possible if a heat<br />

analysis can be prepared for individual<br />

sections of the ballscrew. The heat in<br />

such a section is generated by friction in<br />

the ball nut through thermal conductance<br />

along the ballscrew, and through heat<br />

exchange with the environment<br />

The friction of the ball nut depends<br />

almost proportionately on the preload of<br />

the ball nut and, in a complex manner,<br />

from the type, quantity and temperature<br />

of the lubricant. The preload of the<br />

ball nut normally changes by ±10 to<br />

20 percent over its traverse range in<br />

a manner depending on the individual<br />

ballscrew. In the course of the fi rst six<br />

months, the mean preload typically<br />

decreases to 50 percent of its individual<br />

value.<br />

Due to the complex interaction of static<br />

forces at play on the ball screw, certain<br />

jamming effects and an associated<br />

increase in friction are unavoidable.<br />

Even these few of a long list of examples<br />

show that the calculation of the actual<br />

frictional heat presents formidable<br />

problems.<br />

Calculating the heat dissipation is<br />

similarly diffi cult because it depends<br />

strongly on largely unknown ambient<br />

conditions. Even the temperature of<br />

the air surrounding the ballscrew is<br />

indometalworking news Vol. 2 / 2008 35


normally unknown, although it plays a<br />

decisive role in any calculation of heat<br />

dissipation.<br />

On the whole it seems certain that,<br />

even in the relatively simple case<br />

of a fi xed/fl oating bearing, software<br />

compensation of ballscrew expansion<br />

without additional temperature sensors<br />

has little chance of success. In the<br />

case of fi xed/fi xed and fi xed/preloaded<br />

bearing one must also take into account<br />

the bearing rigidity and the preloaddependent<br />

friction in the bearings.<br />

These factors make compensation even<br />

more diffi cult.<br />

COMPARISON OF POSITIONING<br />

ERROR WITH OTHER TYPES OF<br />

ERROR<br />

After this discussion of temperaturedependent<br />

positioning error of feed<br />

drives, it remains to classify these types<br />

of error with the other types of static<br />

and quasistatic error in the total error<br />

budget of the tested machining centers.<br />

The frame deformation resulting from<br />

the heat generated by the spindle was<br />

examined on all three machines in<br />

accordance with ISO/DIS 230- 3.<br />

After several hours of operation with a<br />

maximum spindle speed of 6,000 rpm,<br />

the fi rst machining center showed a<br />

linear deformation of {x: 5 μm, y: 60 μm,<br />

z: 15 μm}. The rotational deformation<br />

was at most {a: 40 μm/m, b: 70 μm/m}.<br />

Under the same conditions, also with<br />

6,000 rpm, it shows a maximum linear<br />

Figure 16. Pitch, roll and yaw angles of feed axes in 16<br />

different NC machine tools<br />

deformation of {x: 5 μm, y: 45 μm, z: 55<br />

μm}. The rotational deformation reached<br />

a maximum of {a: 25 μm/m, b: 10 μm/<br />

m}. The third machine was equipped<br />

with a high-speed spindle and jacket<br />

cooling. At 12,000 rpm it showed linear<br />

deformations of {x: 5 μm, y: 5 μm, z: 40<br />

μm} and rotational deformations of max.<br />

{a: 20 μm/m, b: 30 μm/m}.<br />

The measured axis drift values attain<br />

at least the same magnitude as the<br />

structural deformation. Particularly on<br />

spindles with fi xed/fl oating bearings,<br />

or machines with effective cooling of<br />

the spindle, the positioning error of the<br />

feed axes driven in a semi-closed loop is<br />

signifi cantly greater than the measured<br />

structural deformation. A comparison<br />

with the usual geometric error leads to<br />

similar results.<br />

If one observes the pitch, roll and yaw<br />

error of the feed axes of 16 different NC<br />

machines one sees that these types of<br />

error usually lie in the range of 10 to 50<br />

μm/m (Figure 16). The positioning error<br />

is found by multiplying these values by<br />

the respective Abbe distance. The error<br />

does not attain the values of the feed<br />

axis until over 1 meter traverse.<br />

CONCLUSION<br />

The primary problem involved with<br />

position measurement using rotary<br />

encoder and ballscrew is the thermal<br />

expansion of the ballscrew.<br />

With typical time constants of one to<br />

two hours, thermal expansion causes<br />

positioning error in the magnitude<br />

of 0.1 mm, depending on the nature<br />

of the part program. This positioning<br />

error therefore outweighs the thermally<br />

induced structural deformation<br />

and geometric error of machining<br />

centers.<br />

After every new part program the<br />

ballscrew requires approx. one hour<br />

to attain a thermally stable condition.<br />

This also applies for interruptions in<br />

machining. A rule of thumb for thermal<br />

expansion is that, over the entire length<br />

of a cold ball screw 1 meter in length,<br />

the ballscrew grows by approx. 0.5 to<br />

1 μm after every double stroke. This<br />

expansion accumulates within the time<br />

constant.<br />

As requirements for machine tool<br />

accuracy and velocity increase, the<br />

role of linear encoders for position<br />

measurement grows increasingly<br />

important. This should be taken into<br />

consideration when deciding on the<br />

proper feedback system design.<br />

Literature<br />

1) Schröder, Wilhelm, “Fine Positioning with Kugelgewindetrieben,” Progress Report VDI Row 1 NR. 277, Düsseldorf; VDI Verlag 1997.<br />

2) VDW-Bericht 0153, “Investigation from Waelzfuehrungen to the Improvement of the Static and Dynamic Behavior of Machine Tools.”<br />

3) Weule, Hartmut, Rosum, Jens, “Optimization of the Friction Behavior of Ballscrew Drives Through WC/C Coated Roller Bodies,” Production Engineering, Vol. 1/1 (1993).<br />

4) Golz, Hans Ulrich, “Analysis, Concept and Optimization of the Operational Behavior of Kugelgewindetrieben,” University of Karlsruhe thesis, 1990.<br />

5) Schmitt, Thomas, “Model of the Heat Transfer Procedures in the Mechanical Structure of CNC Steered Feed Systems,” Shaker publishing house, 1996.<br />

6) A. Frank, F. Ruech, “Position Measurement in CNC Machines . . .,” Lamdamap Conference, Newcastle 1999.<br />

36<br />

indometalworking news Vol. 2 / 2008


Just how good is your<br />

process?<br />

Check your O.E.E. and find out<br />

There is no better statistical tool to<br />

use when evaluating the all-around<br />

effi ciency of a production process<br />

than Overall Equipment Effectiveness.<br />

O.E.E. is a simple series of formulas that<br />

be can used with any calculator and<br />

some basic data that are most likely<br />

currently at your disposal. There are 3<br />

factors within the production process<br />

that are evaluated using O.E.E.<br />

• Availability: The actual uptime of<br />

the process divided by the scheduled<br />

available runtime. Example: The<br />

scheduled runtime was 7.2 hours (432<br />

minutes). A broken parts feeder stopped<br />

production for 45 minutes. The uptime<br />

for the shift was 387 minutes. 387/432<br />

= 0.89583 or 89.6 percent.<br />

Bottom line– Availability represents<br />

machine breakdowns.<br />

• Performance efficiency (P.E.): During<br />

the actual uptime, how effi cient was the<br />

process when compared the designed<br />

optimum cycle time. Example: The<br />

optimum cycle time for the process<br />

is 15 seconds per part or 4 parts per<br />

minute. For 387 minutes of uptime, the<br />

process would produce 1548 parts if it<br />

never stopped once. During our shift,<br />

we produced 1357 parts. 1357/1548 =<br />

0.87661 or 87.7 percent.<br />

Bottom line- Performance effi ciency<br />

represents short stoppages of the<br />

process.<br />

• Rate of quality product (R.O.Q.P):<br />

Of the total number of parts produced<br />

during the uptime, what percentage was<br />

conforming. Example: During our 387<br />

minutes in which we produced 1357<br />

parts, 14 were defective and 12 need<br />

re-worked. 1331 conforming parts were<br />

made. 1331/1357 = 0.9808 or 98.1<br />

percent.<br />

Bottom line- Lower your in-process<br />

scrap and rework.<br />

The Overall Equipment Effectiveness is<br />

computed by the formula – Availability x<br />

P.E. x R.O.Q.P.<br />

0.896 x 0.877 x 0.981 equals 77.1<br />

percent, which is our O.E.E. for this<br />

process.<br />

A “World Class” process would produce<br />

a consistent 85 percent O.E.E. (or<br />

an average of 95 percent in each<br />

category).<br />

There are some simple items to look at<br />

for an O.E.E. improvement. Availability<br />

deals with scheduled uptime. Be<br />

sure routine items such as machine<br />

changeovers, preventive maintenance,<br />

and department meetings are scheduled<br />

through the production controller<br />

(however titled) at your facility.<br />

Improving P.E. means correcting a short<br />

stoppage before the cycle time is lost.<br />

Never lose sight of the parts counter at<br />

the end of the process. Some processes<br />

are made up of smaller stations with<br />

their own unique cycle times. The<br />

stations form a chain and the optimum<br />

cycle time of the process will be the<br />

cycle time of the slowest station. This is<br />

benefi cial because it can be determined<br />

which stations are capable of “catching<br />

up” after a stoppage. If more than one<br />

stoppage occurs at the same time, it may<br />

be best to correct them from the closest<br />

to the end of the process and then work<br />

backwards towards the beginning.<br />

This goes against conventional thinking.<br />

If a stoppage occurs down toward the<br />

end of the process and at the same time<br />

a machine jams up right in front of you<br />

(while you’re at the front of the process),<br />

it may be better to walk down to clear<br />

the other stoppage fi rst. The reason<br />

behind this is if the stoppage down the<br />

line is not fi xed fi rst, it is possible the<br />

last process will run out of parts. Each<br />

and every 15 seconds is lost forever. By<br />

fi xing the stoppages toward the end of<br />

the line fi rst, you have a better chance<br />

of parts “catching up” and there will be<br />

no cycle time lost at the last process.<br />

In some situations any stoppage will<br />

shut the entire process down. In that<br />

case I would suggest placing re-settable<br />

trip counters at various intervals. When<br />

a stoppage occurs, the operator can trip<br />

the counter. After a week of production,<br />

the counters will tell you where the most<br />

stoppages are occurring and further<br />

evaluation can be planned.<br />

R.O.Q.P. is too product-specifi c to be<br />

discussed in the article. If your facility<br />

doesn’t have an organized quality<br />

system, I suggest developing one.<br />

Remember that no system will be any<br />

better than the operators who use<br />

it. Machines make parts, but people<br />

make products. Keep an open mind and<br />

always, always, always be creative.<br />

indometalworking news Vol. 2 / 2008 37


Automation<br />

Automation In<br />

A Production Shop<br />

Production turning automation is the<br />

beneficiary of increasingly powerful<br />

design and application tools. This makes<br />

it much easier to create automation that<br />

fits the application<br />

The globalization of manufacturing<br />

is now well established. With<br />

the Internet and “free” worldwide<br />

instantaneous communication,<br />

we are all competing with everyone<br />

for every sliver of business. Survival<br />

for production shops means staying<br />

ahead of thousands of competitors,<br />

not just those within a day’s drive.<br />

Shops all around the world have access<br />

to off-the-shelf machining solutions. If<br />

you can purchase a new machine with<br />

all the latest features, so can your<br />

competitor. Simply having the latest<br />

and best equipment does not give<br />

you a guarantee of being profi table. It<br />

is how you incorporate the tools into<br />

your process that enables you to be<br />

special and maintain profi tability.<br />

Automation is one of these specialties<br />

that will set a shop apart from the rest.<br />

This means that taking advantage of<br />

automation’s benefi ts is essential, not<br />

optional. In order to survive, a shop<br />

must be the least expensive, with the<br />

quickest turnaround and absolutely<br />

no errors.<br />

Automation used to be the domain<br />

of the largest shops and limited to<br />

the highest-volume runs. Automation<br />

was constructed with cams, switches,<br />

timers and relays. Building a process<br />

took months of work, tweaking,<br />

testing and redesigning. Automation<br />

used to be the area of expertise of an<br />

apprenticed craftsman who brought<br />

years of practice and experimentation<br />

with cams, springs, gravity and humility<br />

to the job. Hard-wired controls and<br />

mechanical motions were tough to<br />

confi gure and modify. Once a system<br />

was in place, it took a major effort to<br />

reconfi gure or modify it.<br />

A number of different technologies<br />

have changed this. During the last 25<br />

years, advances in motion control,<br />

Automation in production shop<br />

programmable controllers, off-theshelf<br />

automation components, and<br />

fi nally, 3D CAD software have made<br />

automation accessible to all shops.<br />

The new challenge is to select the<br />

correct type of automation that fi ts<br />

an application. For example, if a<br />

secondary operation is needed on the<br />

end of a shaft, the automation can be<br />

very simple.<br />

Don’t Automate More Than<br />

Necessary<br />

If the setup is simple, it is possible<br />

to cost-justify a loader. Instead of<br />

a vibratory bowl, fancy electronics,<br />

robots or anything programmable,<br />

consider a simple in-feed track that<br />

operators can feed every so often.<br />

This type of “casual tending” loader<br />

is probably one of the most profi table<br />

confi gurations. If a shop keeps this<br />

process simple, inexpensive and<br />

easy to change-over, it is way ahead<br />

of the game. If an operation makes<br />

a few hundred parts per day with<br />

little change-over, a simple track and<br />

shuttle will get the job done.<br />

If, however, it is necessary to make<br />

38<br />

indometalworking news Vol. 2 / 2008


Automation<br />

This simple loader is designed for casually tended<br />

operation. The track is manually loaded, and load/unload<br />

time is 4.5 seconds<br />

5,000 parts per day, the solution is<br />

a little more complicated. And if, in<br />

addition, there is a family of parts<br />

where the lengths vary from 2 to 24<br />

inches, the complexity jumps another<br />

level. Now consider the automation<br />

if the diameters vary from 0.25 to<br />

1 inch, or if fl ats are milled on each<br />

end that need orientation to one<br />

another. Each variable added to the<br />

product makes your automation<br />

choices more important. There are<br />

trade-offs between price, speed and<br />

convertibility.<br />

As the volume grows and the need for<br />

speed becomes a major factor, the<br />

complexity of the loader grows. An<br />

example is a three-axis, pneumatically<br />

driven, pick-and-place loader, which<br />

is very fast. With the gripper for part<br />

pickup, it is easy to change-over for<br />

different part geometries. However,<br />

the cost of this system is almost<br />

double the simple shuttle type.<br />

The simpler automation devices<br />

are virtually part specifi c. That,<br />

of course, makes them limited in<br />

their fl exibility. Change-over of such<br />

“hard automation” to accommodate<br />

different types of parts will be diffi cult,<br />

if not impossible.<br />

The next step up the automation ladder<br />

is either SCARA or fi ve-axis robots.<br />

The advantage of these loaders is<br />

their speed and fl exibility. They can<br />

pick up parts from pallets, re-orient<br />

them for workholding, remove fi nished<br />

parts and replace them to a pallet or<br />

conveyor.<br />

The initial investment is substantially<br />

higher, almost double the cost of<br />

the three-axis pneumatic pick-andplace<br />

style. However, for the most<br />

possibilities and quickest changeovers<br />

for very disparate parts, they<br />

have their place. The benefi ts of the<br />

multi-axis programmable robots,<br />

when integrated with stacking pallet<br />

systems, can be vast.<br />

Automation systems can be confi gured<br />

so machines can run untended for<br />

hours on end. An example of this is a<br />

robot integrated into a pallet system<br />

that will hold 20 pallets with 30 parts<br />

per pallet. That’s a run of 600 parts<br />

throughout 10 hours at 1 minute per<br />

part. At that point, integration of part<br />

inspection can easily be done. Since<br />

the robot has the part, why not perform<br />

basic inspection? There is very little<br />

lost time and much more confi dence<br />

in your fi nished product.<br />

Analyze Your Automation Needs<br />

In most cases, confi guring an<br />

automation solution is unique to the<br />

application or applications being<br />

looked at. Therefore, when thinking<br />

about automation, there will be<br />

different solutions for each shop.<br />

Here is a checklist to follow:<br />

Flexibility of change-over:<br />

• Lot sizes<br />

• Family variations<br />

Part handling concerns:<br />

• Blank variations<br />

• Workholding issues<br />

• Part cosmetics and fragility<br />

concerns<br />

Throughput requirements:<br />

• Simple manually loaded magazines<br />

• Conveyors<br />

• Pallet systems<br />

• Vibratory bowls<br />

Environment:<br />

• Coolant<br />

• Abrasive chips<br />

Shop capability and skill level:<br />

• Electrical and electronic skills<br />

• PLC and motion control axes<br />

• Tool and die custom machining<br />

After fi guring out which automation<br />

direction to go in, its cost is not always<br />

simple to calculate. The following chart<br />

illustrates how the cost of automation<br />

goes up with its complexity. The<br />

chart below is based on typical costs<br />

associated with automating a small<br />

CNC lathe. Mills, grinders, drills and<br />

any other shop process may be<br />

automated; however, their costs will<br />

be different.<br />

The actual cost of the system will be<br />

affected by its speed (time per part),<br />

cost per change-over, frequency of<br />

change-overs and maintenance and<br />

support.<br />

A Sea Change In<br />

Automation Tools<br />

The biggest change in automation<br />

implementation has been the evolution<br />

of 3D modeling software. A common<br />

misconception by shops of all sizes<br />

is that designing in 3D takes a major<br />

investment in capital and time. It used<br />

to be that delving into the world of<br />

CAD took a fair amount of training and<br />

an extended period of practice before<br />

applying the investment.<br />

Even then, the diffi culty of use<br />

and limited tools hampered its<br />

implementation by operators on the<br />

front line. During the evolution phase<br />

of an automated system, the ability<br />

of the designer to experiment, try<br />

out and research solutions requires<br />

This CAD drawing shows a pallet station fed by a SCARA<br />

robot. The pick and place until loads/unloads the<br />

machine, gages fi nished parts and palletizes them<br />

indometalworking news Vol. 2 / 2008 39


Automation<br />

an easy way to digitally build test<br />

models. With older technology, a CAD<br />

translator, also known as an engineer,<br />

was needed to turn the shop ideas<br />

into working models.<br />

This conversion of 3D ideas from the<br />

shop fl oor to 2D drawings in engineering<br />

took time, and time is expensive. Also,<br />

the need of an interpreter between<br />

the shop and a fi nished system can<br />

muddy the creative process. While<br />

engineers are absolutely required to<br />

mature ideas and build systems, they<br />

are not always welcome during the<br />

creation stages. Having to take ideas<br />

from the shop and process those<br />

through someone else’s workstation<br />

can put a chill on the founding of a<br />

new method.<br />

Current 3D software has come a<br />

long way and can have an impact<br />

on a manufacturing business. The<br />

packages available today are easy to<br />

use. Today’s 3D software can be put<br />

into action by anyone wanting to use<br />

it and willing to invest in a few weeks<br />

of training. After implementation, it is<br />

possible to drag and drop off-the-shelf<br />

3D models of standard components<br />

This chart plots the relative costs of simple to complex<br />

automation for turning applications<br />

created by vendors. The Web makes<br />

fi nding and accessing these models a<br />

fast process.<br />

These available pre-built models are<br />

so exact that they emulate working<br />

with the actual items. They have<br />

the look and feel of their real-world<br />

counterparts. Each subassembly from<br />

vendors can have built-in functionality,<br />

so it will perform just like the realworld<br />

equivalent.<br />

As the automation design grows, it can<br />

also take on functionality. The ability<br />

to “digitally prototype” the automated<br />

system using simulation breathes<br />

life into a design. Three-dimensional<br />

models are constrained to their reallife<br />

motions.<br />

When a vendor’s 3 inches of stroke<br />

piston is dropped into the virtual<br />

model, it has 3 inches of stroke.<br />

While this sounds overly basic, the<br />

implications on the functionality of the<br />

digital model are exact. It is possible<br />

to build an animated working model of<br />

a process in a short time.<br />

Once built, it can be tested for form,<br />

fi t and function. This digital testing<br />

will help you fi ne-tune the process<br />

and hopefully eliminate or certainly<br />

reduce the costly “design, build, test,<br />

redesign” cycle. Once the design is<br />

done, 3D software helps generate<br />

shop drawings and a bill of materials<br />

almost automatically. The back end<br />

of the design for the detail generation<br />

can be done in a few days, compared<br />

to what used to take weeks, and the<br />

turnaround for a fi nished system is<br />

now weeks instead of months.<br />

Aside from software, component<br />

selection and ease of integration has<br />

been the biggest change. Everything<br />

from PLCs to smart-axis motion is<br />

easier to set up and change-over.<br />

Now motion control offers off-theshelf<br />

programmable linear slides.<br />

In the simplest form, they can be<br />

programmed at the unit or from a<br />

Detailed models of subassemblies can be found on<br />

numerous vendor web sites. These are dimensionally<br />

accurate and can be imported into a CAD system to<br />

check form, fi t and function<br />

laptop PC. Locations, speeds and<br />

thrusts can be changed, and a setup<br />

can be fi ne-tuned.<br />

Some examples of available<br />

subassemblies include the following:<br />

• Pneumatic slides, rotators, grippers<br />

and thrusters<br />

• Programmable single-axis motion:<br />

pneumatic, step per, servo<br />

• Internal programming or PLC<br />

control or a mix of both<br />

• Self-contained robots<br />

• Multi-axis rectilinear guides (for<br />

example, gantry types)<br />

• SCARA systems<br />

• Five- and six-axis articulating<br />

systems<br />

• Bowls, hoppers, conveyors<br />

• Vision systems<br />

Other “smart” combinations to easy<br />

automation might be conveyors and<br />

vision systems linked together. With<br />

such systems, orientation on the fl y,<br />

inspection and sorting are available.<br />

Timing Is Good<br />

As luck would have it, the development<br />

of powerful design and simulation<br />

tools coupled with the easily<br />

accessed engineered subassemblies<br />

and components coincide with an<br />

extreme need for automation in smallto<br />

medium-sized manufacturing<br />

facilities. The tools are available and<br />

getting better constantly. Imagination<br />

seems to be about the only limit.<br />

40<br />

indometalworking news Vol. 2 / 2008


Shop Management<br />

Evaluating Shop<br />

Management Systems<br />

Organized shop<br />

processes, thorough<br />

knowledge of potential<br />

system capabilities<br />

and careful planning<br />

by the right company<br />

personnel are keys<br />

to acquiring the<br />

most suitable shop<br />

management system<br />

Selecting the right shop<br />

management system for a shop<br />

can be a challenging task. Most<br />

manufacturing companies today that<br />

are looking for a solution are on their<br />

second or third generation system.<br />

Some are using many different<br />

applications, such as Excel, Word,<br />

Access and other databases, along<br />

with an off-the-shelf accounting<br />

package, to assemble the pieces of a<br />

shop management system that works<br />

for them.<br />

The bar has been raised when it comes<br />

to shop management solutions.<br />

Companies are no longer merely<br />

enamored with the fact that these<br />

systems exist. They are looking for<br />

integrated solutions where they can<br />

use the majority of the functionality.<br />

People are tired of purchasing these<br />

expensive systems, taking the time<br />

to implement them and then ending<br />

up using only about 25 percent of the<br />

capabilities.<br />

Before choosing a system, a shop<br />

needs to think carefully about the<br />

conditions of the existing shop<br />

processes and what will be required<br />

from the system to streamline the<br />

business.<br />

Organized Processes<br />

If a shop’s current business processes<br />

are a mess, a new shop management<br />

system will be very diffi cult to implement<br />

and may only compound the existing<br />

problems. Functions such as estimating,<br />

quoting and order entry should be<br />

structured with consistent methodology,<br />

and jobs should be tracked from<br />

beginning to end. Often, shops use<br />

many different applications for these<br />

functions, and if the applications are not<br />

linked to allow communication between<br />

them, there is a risk of redundancy.<br />

Personnel should have quick access to<br />

a list of open jobs and active customers.<br />

Billing should be up to date. When<br />

a job ships out, the invoice should<br />

follow closely behind. This link from<br />

manufacturing to front offi ce operations<br />

is a key to accurate job costing. The<br />

same is true with purchasing. Purchase<br />

orders, receiving and billing must be<br />

accurately matched.<br />

It is good to examine the business<br />

processes and consider changing<br />

them before selecting a new shop<br />

management system. Each existing<br />

process should be studied to be sure<br />

it is truly needed and if improvements<br />

can be made. Opportunities for<br />

growth and improvement will surely be<br />

missed if current processes are simply<br />

automated without re-evaluating their<br />

effectiveness.<br />

A good place to start is by establishing<br />

a clear set of goals and objectives. The<br />

shop should know what problems it can<br />

resolve now and what it is looking for the<br />

new software to correct. Examples might<br />

include resolving scheduling concerns,<br />

establishing accurate job costing,<br />

improving on-time delivery, integrating<br />

sales and production, and developing a<br />

thorough accounting system. However,<br />

the goals need to be realistic. It takes<br />

time, planning and an understanding<br />

that a new shop management system is<br />

not a magic wand that is going to solve<br />

every problem.<br />

It is unlikely that any given software<br />

product will do 100 percent of what a<br />

shop is looking for, so once the desired<br />

features and functional requirements<br />

of the software are identifi ed, the shop<br />

should look to address at least 90<br />

percent of the issues. The key is fi nding<br />

the system that best fi ts the type of<br />

business while not spending too much<br />

time trying to fi nd the “perfect” system.<br />

Some systems are more suited for<br />

screw machine houses. Others might<br />

be better for a fabricating environment.<br />

There are many highly capable systems<br />

in the manufacturing world, but only a<br />

select few will fi t the specifi c needs of<br />

any given shop.<br />

Within 60 to 90 days of using the new<br />

software, the company should be able<br />

to do basic operations such as entering<br />

orders, shipping and billing. Estimating,<br />

scheduling and data collection might<br />

be further down the road. Just getting<br />

the system up and running allows the<br />

shop to see some results in terms of<br />

time savings and then be able to justify<br />

implementing the next steps.<br />

Shopfloor Knowledge<br />

The shop fl oor is the heart of the<br />

business, and that’s where it should<br />

be determined what functionality is<br />

needed from the shop management<br />

system. Better information coming off<br />

the shop fl oor will help everyone in the<br />

offi ce make better business decisions<br />

in a more timely fashion. Getting more<br />

indometalworking news Vol. 2 / 2008 41


Shop Management<br />

profi table work in the shop is the name<br />

of the game, and the key is accurate<br />

job costing. A busy shop fl oor does not<br />

necessarily translate into higher profi t<br />

margins. The shop must be busy with<br />

the most profi table jobs possible.<br />

Accurate costing will get back to the<br />

estimators so they can clearly see what<br />

jobs were successful and which ones<br />

were poor performers. They will then<br />

know not to accept the same bad job<br />

down the road. A real-time bar coding<br />

system on the fl oor, for example, can<br />

eliminate a lot of guesswork by allowing<br />

estimators to obtain an accurate job<br />

history. It can help them identify areas<br />

of miscalculation and where they need<br />

to re-evaluate the manufacture of<br />

particular items from an engineering<br />

standpoint.<br />

Throughput, scheduling and reduction<br />

of labor for a given job are what shop<br />

management personnel look to address<br />

most. They want to try to get as many<br />

jobs through the shop as possible to<br />

reduce the number of days in-house,<br />

from the time an order comes in to the<br />

time the job ships. With the right data,<br />

the shop can easily analyze which jobs<br />

perform best under the given criteria.<br />

Shops are busy, but typically they spend<br />

the majority of their time on the jobs<br />

with the lowest profi t margin. This type<br />

of work can bog a shop down, keeping it<br />

from capitalizing on the profi table jobs. A<br />

suitable shop management system can<br />

provide accurate costing, even broken<br />

down by types of work, so a shop can<br />

determine what types of jobs to take in<br />

the future based on which ones bring in<br />

the most profi t.<br />

Evaluation Team<br />

Because of their direct relationship<br />

to the profi tability of the company, the<br />

shop management personnel are the<br />

most critical players in selecting the new<br />

system. They are the ones who make the<br />

decisions on how to effi ciently get more<br />

jobs through the shop. What happens<br />

on the shop fl oor is what determines<br />

profi tability, but it is not uncommon for<br />

the knowledge accumulated there to take<br />

a back seat to the business decisions<br />

of the fi nancial and IT personnel. The<br />

shop foreman, purchasing manager and<br />

estimators, though, must be involved in<br />

the decision.<br />

Yes, the IT department (or consultants<br />

performing this function) can play a big<br />

part in determining what hardware or<br />

network is needed to run the system.<br />

The IT department should also be<br />

concerned with the tools that were used<br />

in developing the new system. They will<br />

have the best knowledge about whether<br />

the system under consideration is up<br />

to date using the latest tools and if it is<br />

a mainstream package. They will have<br />

a good idea of whether the software<br />

will be around and manageable down<br />

the road and if training will be readily<br />

available. But IT will not be familiar with<br />

the direct implications of the features<br />

and functionality on the shop fl oor, and<br />

therefore, should not drive the decision<br />

of which solution is the best fi t.<br />

The moral of the story is to look at the<br />

big picture in what the new system can<br />

do for the business. It is only human<br />

nature for the people involved within a<br />

company to be concerned solely with<br />

how the new system will affect their own<br />

job. But in the long run, it is the people<br />

who make the biggest difference in the<br />

company who should determine the<br />

direction.<br />

Software Demonstration<br />

Before making a purchasing decision<br />

about the system, a shop should make<br />

sure that the software vendor takes the<br />

company’s shop-specifi c data through<br />

the software. While a demonstration with<br />

sample data can provide a good overview<br />

of the capabilities of the system, it does<br />

not show how it will actually perform on<br />

the job. The demonstration needs to be<br />

geared toward solving the shop’s specifi c<br />

needs, with real customer data.<br />

That’s not to say that the customer<br />

should take control of entering the data<br />

during the demonstration. The software<br />

is complex enough that, without training,<br />

the customer may not be able to make<br />

a reasonable judgement as to its<br />

effectiveness. But if the customer’s job<br />

information, purchasing information and<br />

scheduling requirements are plugged in<br />

by a trained operator and analysis from<br />

the software is effectively presented<br />

to him, he can then see whether the<br />

software can help. The sales person<br />

should ask as many questions about the<br />

requirements of the shop as the shop is<br />

asking about the software.<br />

An integrated system that brings all<br />

elements of shop management together<br />

is modular by nature. As such, it is<br />

important that the entire system was<br />

developed and tested in-house by the<br />

vendor. A shop management system with<br />

a core developed by the vendor, and an<br />

array of bolt-on modules contributed by<br />

external sources can lead to confusing<br />

and inconsistent operational methods.<br />

From one level of functionality to the<br />

next, the software should have the<br />

same look and feel and architecture as<br />

the original, core package. The modules,<br />

then, become an advantage to the<br />

buyer, providing the option to purchase<br />

only the necessary functionality, with<br />

the opportunity to add on later with little<br />

or no learning curve to contend with.<br />

Closing The Deal<br />

After seeing the software demonstration,<br />

it’s time to check the references. It is<br />

always nice to visit other shops on-site<br />

to see how they are using the system.<br />

But more importantly, it is imperative to<br />

talk to people who are in the exact same<br />

industry, doing the same type of work.<br />

It makes little sense for a buyer to visit<br />

a mold shop down the street if a screw<br />

machine shop identical to his is easily<br />

accessible over the phone.<br />

The vendor should supply a detailed<br />

quote of what the customer will receive<br />

and what options are available. Each<br />

module should be listed with its<br />

matching price, giving the customer the<br />

opportunity to purchase only what he or<br />

she needs. Other modules can be added<br />

down the road when the shop is ready to<br />

implement them.<br />

Implementing the right manufacturing<br />

software can signifi cantly improve a<br />

company’s use of available information,<br />

as well as increase productivity and<br />

profi ts. As long as a shop has organized<br />

and effi cient processes, the appropriate<br />

people in line for software evaluation,<br />

and the opportunity to use real data<br />

in testing to solve specifi c problems, a<br />

well-suited shop management system<br />

should be within reach.<br />

42<br />

indometalworking news Vol. 2 / 2008


Events Watch<br />

Specialized & Dedicated<br />

Exhibition in Jakarta<br />

That’s Set Apart From All<br />

Others in Indonesia<br />

This August 27-30, at Jakarta International Expo,<br />

MTT2008 will unveil top-notch and leading brands of<br />

metalworking and tooling products. From machine<br />

tools to cutting tools, from sheetmetal working to laser<br />

cutting and forming technology, from metrology to<br />

quality assurance devices, from steel to metal alloys to<br />

mould bases to moulds, from work-holdings to related<br />

accessories, from CAD/CAM/CAE to all relevant software,<br />

and the list goes on… you will see them ALL when you visit<br />

MTT2008 in Jakarta.<br />

Indonesia’s manufacturing industry boosts export<br />

earnings and contributes to the steady growth of economy<br />

in recent months. Investors’ and stakeholders’ confi dence<br />

are well restored. The Indonesian Chamber of Commerce<br />

and Industry (KADIN) will hold its 6th Reverse / Parts<br />

Exhibition - RPE2008 concurrently with MTT2008, driven<br />

by a strong intent to link local automotive, machinery, and<br />

electronic manufacturers with their regional and global<br />

counterparts.<br />

Sharing comparable objectives, OEM2008 (Outsource<br />

Engineering & Manufacturing Event) will coincide to match<br />

the sourcing needs of the RPE2008 procurers while<br />

tapping on the resources presented by the MTT2008<br />

suppliers. Creaming it up is the concurrently held<br />

MTTIndo Summit which will table out the manufacturing<br />

potentials and challenges of Indonesian manufacturing<br />

sectors while hosting a TechnoSeminar on <strong>Precision</strong><br />

<strong>Tooling</strong> & Design, jointly organised by the Indonesian<br />

Mould & Die Association.<br />

MTT2008 - a MUST See to Know the BEST<br />

Alternative to Optimize Production &<br />

Maximize Profits. It’s Indonesia’s ONLY Market<br />

Leaders’ Choice Event for the Metalworking &<br />

Related Manufacturing Industries:<br />

So If You Are:<br />

In need of the right manufacturing solutions especially on<br />

areas of metalworking or precision engineering or tooling<br />

Considering offshore outsourcing to Southeast Asian<br />

manufacturers or vendors or simply looking for lower-cost<br />

manufacturing options and opportunities<br />

Looking at staying ahead and being in the lead of the most<br />

recent developments in manufacturing industry<br />

Exploring avenues to accelerate industry growth and<br />

increase manufacturing exports<br />

This shall be THE event you should attend ~ Don’t<br />

miss out on the most comprehensive exhibition on<br />

innovative & efficient technologies that provides<br />

alternatives to lower your production costs while<br />

increasing productivity in the long run!<br />

A premier event that’s customised<br />

to meet the varying and yet specific<br />

objectives of its participants –<br />

You Are Invited !<br />

Register now so you won’t miss out to see the latest development from various industry sectors!<br />

Don’t wait to plan your visit!<br />

Email to us : info@mtt-indonesia.com<br />

Call us : +62-21-2664 5464 or HOTLINE :+62-21-657 00023<br />

Fax to us : +62-21-266 45485<br />

Online registration on http://www.mtt-indonesia.com now open till August 1st, 2008.<br />

Li Hwa (lihwa@ecm-intl.com)<br />

Rima W. (rima@ecm-intl.com)<br />

indometalworking news Vol. 2 / 2008 43


SHOW<br />

PREVIEW<br />

No limits for excellence. Amada:<br />

Simply the world’s best<br />

metalworking machinery. Punching,<br />

bending, cutting, stamping: Amada makes machines for every metalworking purpose.<br />

From our machines for come parts for computers and office equipment and<br />

automobiles, etc. They cut and drill the steel that frames buildings, bridges and<br />

other vital infrastructure for society. Metalworking machinery is is integral to to any<br />

production facility that handles metal. We at at Amada are proud of of the broad variety<br />

and high quality of of the machinery we make. No one makes more and better<br />

anywhere and our top position for sales is is the proof. There are no international<br />

boundary for for excellence in in products and service.<br />

EM 2510NT<br />

AC 255NT<br />

The Best Taiwan CNC <strong>Machining</strong> Center<br />

PT. Jaya Metal Teknika introduce<br />

QUASER MV154M<br />

QUASER has been focusing on high<br />

performance machining center with<br />

unique spindle technology and different<br />

concept design with other Taiwan machine<br />

indometalworking news news Vol. Vol. 2 / 2008 2008<br />

44<br />

44<br />

indometalworking news Vol. 2 / 2008


Metalcutting Technologies and Machine Tools<br />

GF AGIECHARMILLES: CUT 20 Wirecut EDM Machine<br />

The CUT 20, an EDM wire-cut unit, has high cutting performances.<br />

It handles wire diameters from 0.15 to 0.30mm easily. The IPG-V<br />

generator of the CUT 20 is based on the latest technology<br />

developed by GF AgieCharmilles.The generator’s tried and tested<br />

electronics gives fast removal rates with cheap brass wire, adding<br />

a low hourly running cost to its features. With the integrated SF<br />

Module (Fine Surfaces), roughness of less and Ra 0.25 μm can be<br />

achieved. Along with performance the up to date electronics used<br />

in manufacture. The generator’s tried and tested electronics gives fast removal rates with cheap<br />

brass wire, adding a low hourly running cost to its features. With the integrated SF Module (Fine<br />

Surfaces), roughness of less and Ra 0.25 μm can be achieved. Along with performance the up<br />

to date electronics used in manufacture ensure that the cost of ownership is the lowest possible.<br />

The CUT 20 has on board technology that optimises main, first and second finishing cuts. This<br />

enables roughness between Ra 0.80 μm and Ra 0.60 μm to be achieved quickly.<br />

Makino Slim3 – Compact Vertical <strong>Machining</strong> Center<br />

Equip with efficient coolant and chip management and can mount larger<br />

components and heavier fixture, this Lean Yet <strong>High</strong> Productive <strong>Machining</strong><br />

Center is a compact, rigid machine with the right ergonomics: Easier tool<br />

loading access, shorter and convenient component loading distance of<br />

400mm and table to floor distance of 810mm.<br />

LITZ DV800 <strong>Machining</strong> Center<br />

The MYNX 650 are specialized designed for heavy duty cutting, long term<br />

accuracy and superior surface finishes. Classic manufacturing methods and<br />

ultra rigid construction, which presented through rugged meehanite casting<br />

and integral box ways to provide unserpasses rigidity; are combined with<br />

advance technological features to deliver exceptional values and years of<br />

trouble free performance.<br />

The CHALLANGER VM series is dedicated for super productivity, through<br />

its high spindle speed up to 10,000 rpm and 32 tool magazine; super<br />

reliability was presented through the rigidity of the large ballscrew; design<br />

uniquely through their extremely large loading capacity and large spindle<br />

diameter.<br />

TAKISAWA NEX-108 Lathe Machine<br />

* Safety Advanced features reduce time<br />

dramatically<br />

* Best solution for small batch production<br />

of complex parts<br />

* Perfect & balanced integration for<br />

controller, servo motors & Mechanics<br />

* Direct Drive Spindle<br />

* Spindle Max speed = 12000 - 15000 rpm<br />

* Tool change time (T-T) = 1.5 s<br />

Our machine is recognized worldwide for superior precision machine tools.<br />

Accuracy, <strong>Speed</strong> and Rigidity, are always supplied uniquely through all of our<br />

product. We effortly invest to all of our product “worry free” with continuously<br />

expanding after sales service and technical assistance. Tsugami product will<br />

contribute to our customer’s production goals and lead a remarkable benefits<br />

through our advanced technology to all new industries.<br />

SKM EDM Machine<br />

PERFECT Surface<br />

Grinder Machine<br />

LAGUN Milling Machine<br />

Leaders in Superabrasives<br />

Finishing Systems<br />

Engis , is headquarter in the USA , was established in<br />

1938 with subsidiaries worldwide. We at Engis builds<br />

machine, configures the components and formulates its<br />

compounds and slurries with one goal in mind; to deliver<br />

a total system of Hyprez products with the capabilities<br />

customers need in their flat lapping and polishing<br />

operations. Capabilities include system compatibility,<br />

operational flexibility and repeatable performance.<br />

indometalworking news Vol. 21 / 2008 45 47


Metalcutting Technologies and Machine Tools<br />

iNEXIV VMA-2520<br />

Vertical Center Nexus Seri II didesign untuk memenuhi kebutuhan produksi.<br />

<strong>Machining</strong> Center ini memberikan stabilitas permesinan dan pengoperasian yang<br />

lebih mudah dengan menggunakan generasi sistem CNC ke 6 yaitu Mazatrol<br />

MATRIX Nexus.<br />

INTEGREX Seri IV<br />

Adalah mesin multifungsi canggih yang dapat menghasilkan produk<br />

dengan tingkat kesulitan paling tinggi dalam satu kali setting<br />

material.<br />

The iNEXIV VMA-2520 is a new multi-sensor measuring system that's<br />

lightweight and compact enough to be used in the factory on the bench<br />

top, with fast, fully automatic and high accuracy features that make it<br />

ideally suited for a wide variety of industrial measuring, inspection and<br />

quality control applications. The iNEXIV is designed to measure 3D<br />

workpieces, is touch probe ready, integrates the latest imaging<br />

processing software and incorporates a new 10x optical zoom system<br />

and Laser Auto Focus option.<br />

Nikon V-12B<br />

The Nikon V-12B Series profile projectors accept larger stages and assure<br />

higher accuracy thanks to the movable head during focusing. They are also<br />

completely user-friendly, complete with a built-in Digital XY Counter and<br />

Digital Protractor Counter. What's more, the V-12B lets you easily view erect<br />

images, making the profile projector a pure joy to use.<br />

MM-400/800 Measuring Microscopes<br />

VARIAXIS Seri II<br />

Dimensi baru untuk proses paling produktif<br />

VARIAXIS Seri II memiliki dimensi baru untuk melengkapi kelas<br />

Vertical <strong>Machining</strong> Center Dengan kemampuan machining untuk<br />

setiap permukaan dalam satu tahap pengaturan. Bentuk permukaan<br />

yang rumit dapat dikerjakan dengan gerakan 5 sumbu secara<br />

bersamaan.<br />

Nikon new MM-400/800 series of Measuring Microscopes<br />

incorporate key performance features expected in an<br />

advanced next generation measuring microscope.<br />

The new Measuring Microscopes can adapt to larger<br />

stage 300 X 200 which allows user to handle large work<br />

piece. Equipped with a TTL Laser AF ( universal type )<br />

and a new Focusing Aid mechanism, the new MM400/800<br />

enables user to achieve sharper and more accurate<br />

focusing. This makes high precision Z-axis measurement much simpler than ever. Combination<br />

with the new Nikon digital camera such as DS-FIL and DS-2MV and metrology software such as<br />

E-MAX, the new MM enables user to achieve rapid measurement with precise auto edge<br />

detection. User can opt for a fully motorized model, where the motorized Z-axis movement<br />

mechanism simplifies accurate vertical motion through the use of a dedicated controller.<br />

ECLIPSE LV Metallurgical Microscope<br />

ECLIPSE LV Series microscopes provide superb performance when<br />

inspecting semiconductors, flat panel displays, packages, electronics<br />

substrates, materials, medical devices, and a variety of other samples.<br />

The modularity of the LV100D permits observations using illumination<br />

by either transmitted or transmitted and reflected light, plus the ability<br />

to design the microscope to suit individual application requirements by<br />

offering choices in stage sizes, epi-illumination systems, optical<br />

performance, binocular/trinocular/tilting trinocular eyepiece tubes,<br />

motorized or non-motorized nosepieces and five different types of<br />

diascopic illumination condensers.<br />

Stereo Microscope<br />

Nikon zoom stereomicroscopes offer users the most extended zoom range<br />

of any such instrument, along with modularity, comfort and ultra-highperformance<br />

optics. The line covers a wide range of functionality, from<br />

sophisticated observation (SMZ1500) to the affordable and ergonomic<br />

(SMZ445/460).<br />

46 48<br />

indometalworking news Vol. 21 / 2008


Laser Cutting, Sheetmetal & Metalforming Machines<br />

New servo operated<br />

wedge moves over the<br />

roll connected to the ram<br />

causing the tool to move<br />

down<br />

FINN-POWER E5 Turret Punch Machine<br />

ZAYER Machine<br />

FINN-POWER Shear Genius Machine<br />

FINN-POWER C5 Turret Punch Machine<br />

FINN-POWER X5 Turret Punch Machine<br />

indometalworking news Vol. 1 2 / 2008 47


Laser Cutting, Sheetmetal & Metalforming Machines<br />

YICK HOE GROUP OF COMPANIES<br />

SUMITOMO PRECISION MACHINE TOOLS<br />

Round Tube Grinding Machine<br />

Hydraulic IronWorkers<br />

CNC Upstroke<br />

Hydraulic Press Brake<br />

RETROFIT NC BACKGAUGE<br />

FOR ALL PRESSBRAKE<br />

SIMPLE INSTALLATION<br />

SG630-JS<br />

Polyurethane Die No Mar Broke Die Film<br />

Sumi / Kyokko / Lotus II<br />

Press Brake <strong>Tooling</strong><br />

NCT Turret Punch & Accessories<br />

Industrial Shear Blades<br />

Fultech Industry Pte Ltd provides an expanding range of heavy duty Bandsaw Machines,<br />

Automatic TCT Circular Saw Machines and Block Saw Machines for precise mass production<br />

and supply excellent quality Bandsaw Blades. Our ever-expanding range of products include<br />

quality aluminium and high precision alloy products with excellent machinability, weldability,<br />

and high strength for versatility with a wide range of applications and end uses.<br />

* Aluminium alloy extrusions -<br />

Flat/Angle/Hex/T-Bar, Round/Square Bar, Round/Square/Rectangular Tube, U-Channel<br />

* Aluminium alloy sheets/plates – 5052, 5083, 6061, 2024, 7075, QC-7, Fortal<br />

* Aluminium precision machined cast plates – MIC-6 and Alca Plus Plate<br />

* Aluminium high-precision alloy plate – Kobelco Alsoran, Aljade and Alhighce Plate<br />

48<br />

indometalworking news Vol. 1 2 / 2008


Cutting Tools, Workholding Systems & Other Machineries<br />

SANDVIK COROMANT<br />

San Sandvik Coromant is the world’s<br />

leading mleading manufacturing of cutting tools<br />

for the meta for the metalworking industry that offers<br />

more thamore than 25,000 products and more<br />

than 2,0 than 2,000 new products introduced<br />

every every year. As customer’s solution<br />

provider, we meet customer demand by offering high productivity through the benefits that our tools<br />

bring and bring tho and thorough our widest application and selection.<br />

TITEX PROTOTYP<br />

A worldwide active machining specialist that offer<br />

double competence to their customer through their<br />

drilling specialization and innovation in threading and<br />

milling. We optimized your machining process from the<br />

beginning to the end to identify the possibilities and<br />

savings potentials.<br />

TITEX PROTOTYP is the perfect solution to your drilling, threading and milling process.<br />

Premium Tool Steel lfor Longer Life<br />

HP Dura-Blade is engineered with a replaceable,<br />

fully-guided blade insert made from Wilson’s new<br />

Ultima Premium Tool Steel, increasing sharpening<br />

intervals by up to 100% over conventional steels. Ultima<br />

dramatically reduces breaking, chipping, cracking, tool<br />

fatigue and other downtime problems and excels under<br />

heavy use.<br />

indometalworking news Vol. 1 2 / 2008 47<br />

49


Cutting Tools, Workholding Systems & Other Machineries<br />

48 50<br />

indometalworking news Vol. 12 / 2008


Cutting Tools, Workholding Systems & Other Machineries<br />

indometalworking news Vol. 2 1 / 2008 51<br />

47


IndonesiaFeatures<br />

Industri masih berperan sebatas<br />

figuran dalam pertumbuhan ekonomi<br />

Untuk bidang ekonomi makro pemerintah Indonesia<br />

memperoleh angka rapor yang baik. Namun gambaran<br />

ini menjadi pudar karena penampilan dunia usaha<br />

yang sedang berjalan saat ini. Memang sejak krisis melanda<br />

Asia, dunia usaha sudah bangun dari tidur panjangnya, namun<br />

berjalan timpang masih jauh dari harapan. Harga minyak<br />

mentah sebagai faktor pengganggu eksternal dapat diterima<br />

oleh para kritikus, namun perubahan struktur internal harus<br />

tetap dilaksanakan, untuk dapat ikut dalam persaingan<br />

internasional.<br />

Dengan tenang pemerintah Indonesia mengadakan<br />

retrospeksi terhadap pertumbuhan ekonomi di tahun 2007<br />

yang lalu. Pada akhirnya tercapai juga satu peningkatan nyata<br />

dari produk nasional bruto (GNP) sebesar 6,32%. Departemen<br />

Perindustrian melaporkan hasil perkembangan industri yang<br />

meleset dari perkiraan sebelumnya. Pertumbuhan industri<br />

berada pada angka 5,15% - masih kurang dari keberhasilan<br />

tahun lalu sebesar 5,27% dan jelas sekali masih jauh dari<br />

target yang telah ditetapkan pemerintah yaitu sebesar<br />

6,31%.<br />

Secara resmi kenaikkan bahan mentah khususnya harga<br />

minyak mentah dianggap sebagai penyebab kegagalan.<br />

Khususnya industri tekstil, kuli, termasuk sepatu dan industri<br />

kayu termasuk sektor yang sangat mengkhawatirkan.<br />

Pertumbuhan dialami sektor bahan pangan dan minuman<br />

termasuk tembakau dan juga industri mesin logam, meski<br />

tidak sebesar tahun sebelumnya.<br />

Menurut Departemen Perindustrian pertumbuhan yang<br />

memuaskan terjadi pada sektor industri kimia seperti pupuk<br />

dan bahan-bahan sintetik, semen, alat-alat transportasi serta<br />

mesin dan komponen.<br />

Angka pertumbuhan yang dicanangkan untuk tahun 2008<br />

adalah 7,43%. Sektor transportasi dan industri mesin<br />

diprediksikan akan menjadi kontributor terbesar terhadap<br />

pertumbuhan yakni dengan pertumbuhan paling sedikit<br />

10%. Berdasarkan perkembangan situasi yang kurang<br />

menguntungkan, Departemen Perindustrian telah melakukan<br />

koreksi pertumbuhan ke bawah tanpa memberikan angka<br />

patokan sehingga dapat berpengaruh negatif terhadap<br />

pertumbuhan ekonomi umumnya.<br />

Dalam kaitan ini harga minyak yang terus bergejolak dan<br />

berkurangnya permintaan dari Amerika disebut-sebut sebagai<br />

penyebabnya, termasuk adanya kelebihan produksi Cina di<br />

berbagai bidang. Sebab yang terakhir dapat mengakibatkan<br />

nusantara kita akan kebanjiran impor legal maupun ilegal<br />

dari negeri tirai bambu tersebut.<br />

Persoalan utama lainnya dari dunia usaha yang sedang<br />

berjalan adalah infrastruktur yang tidak memadai. Terutama<br />

di sektor transportasi seperti penyediaan energi merupakan<br />

faktor penghambat yang berdampak terhadap efi siensi.<br />

Sehingga mau tak mau muncul kembali kekhawatiran akan<br />

deindustrialisasi. Tetapi para ekonom mempertentangkan<br />

eksistensi fenomena ini yang bisa membawa stagnasi atau<br />

malah kemerosotan bagi dunia usaha. Mereka menggaris<br />

bawahi opini mereka dengan menunjukkan kontribusi yang<br />

stabil dalam PDB selama tahun lalu yang melampaui 27%.<br />

Tanpa memperhatikan migas sektor ini mencapai lebih<br />

dari 22%, kurang setengah persen lagi sebelum mencapai<br />

tingkatan seperti saat sebelum krisis moneter sekitar akhir<br />

tahun 90an. Hanya pada beberapa sektor tercatat ada<br />

penurunan dan penyebabnya bisa disebut berdasarkan<br />

penyebabnya.<br />

Industri kayu pada umumnya merugi karena penebangan<br />

ilegal. Sementara sektor tekstil harus berjuang melawan<br />

impor ilegal dari Cina. Dengan demikian yang menjadi korban<br />

dari persaingan internasional adalah perusahaan-perusahaan<br />

kecil. Secara umum investasi yang sedang masuk pun lambat<br />

laun mengkikis karena kekhawatiran ini.<br />

Para pakar ekonomi berpendapat bahwa di masa mendatang<br />

harus dikurangi ketergantungan terhadap bahan mentah,<br />

terutama terhadap bahan-bahan pengolahan industri<br />

dan komponen. Selanjutnya sektor hilir dan hulu harus<br />

bekerjasama lebih kuat dan lebih efi sien: Adapun perubahan<br />

struktur bakal terjadi. Dengan diversifi kasi ketergantungan<br />

dari masing-masing bidang harus dikurangi. Kesempatan<br />

untuk mengintensifkan kegiatan ekonomi di luar daerah yang<br />

padat masih terbuka. Untuk itu perusahaan-perusahaan kecil<br />

dan menengah harus diberdayakan sekuat mungkin. Impor<br />

masih perlu, karena kalau diberhentikan industri nasional<br />

akan kehilangan daya saing internasional.<br />

52<br />

indometalworking news Vol. 2 / 2008


IndonesiaFeatures<br />

Industri Mesin<br />

Perlu Restrukturisasi<br />

Industri permesinan di dalam negeri perlu direstrukturisasi<br />

mengingat kondisi alat produksinya sudah tua karena industri<br />

tersebut mulai masuk dan berkembang pada 1980-an.<br />

“Industri mesin harus mulai peremajaan mesin-mesin yang<br />

ada. Jangan sudah ambruk seperti TPT (tekstil dan produk<br />

tekstil) baru ribut meremajakan mesin,” kata Ketua Gabungan<br />

Asosiasi Perusahaan Pengerjaan Logam dan Mesin Indonesia<br />

(GAMMA), A Safi un, di Jakarta, Kamis.<br />

Ia menjelaskan industri mesin di Indonesia mulai masuk dan<br />

berkembang pada1980-an untuk mendukung program tinggal<br />

landas yang dicanangkan Pemerintah Orde Baru.<br />

Dengan demikian, kata dia, peralatan produksi industri<br />

permesinan di Indonesia sudah banyak yang tua karena<br />

usianya sudah mencapai 32 tahun, sehingga perlu<br />

direstrukturisasi.<br />

Restrukturisasi itu, kata dia, dinilai penting untuk<br />

meningkatkan daya saing produk permesinan nasional, baik<br />

untuk pasar domestik maupun ekspor.<br />

“Umur mesin-mesin itu sejak 1980-an sudah 32 tahun.<br />

Mesin-mesin itu membutuhkan tenaga besar dibandingkan<br />

mesin baru yang produktifi tasnya tinggi dan tingkat cacatnya<br />

sangat rendah,” katanya.<br />

Apalagi kini pemerintah menetapkan proyek yang<br />

menggunakan Anggaran Pendapatan dan Belanja Negara<br />

(APBN) harus menggunakan komponen dalam negeri pada<br />

tingkat tertentu yang dihitung berdasarkan Tingkat Kandungan<br />

Dalam Negeri (TKDN).<br />

Tanpa bantuan restrukturisasi alat produksi, ia pesimis<br />

industri permesinan di dalam negeri mampu mendulang<br />

peluang dari kebijakan TKDN tersebut.<br />

“Sekarang pemerintah mengajurkan investasi, tapi pemerintah<br />

belum melakukan perubahan signifi kan untuk menciptakan<br />

iklim sektor riil yang sehat,” katanya.<br />

Ia mencontohkan, misalnya suku bunga pinjaman masih<br />

tinggi berkisar antara 11-12 persen, meskipun SBI sudah<br />

8,25 persen. Sedangkan negara pesaing seperti Malaysia<br />

dan Singapura, bunga pinjamannya hanya delapan persen.<br />

“Kita kalah dari sisi perbankan. Di sisi lain juga demikian<br />

seperti infrastruktur dengan pelabuhan yang selalu macet,<br />

(biaya) energi yang naik terus, dan listrik yang `byar pet`<br />

(sering padam). Kalau hal itu tidak diperbaiki, kecenderungan<br />

penurunan suku bunga bank, tidak berpengaruh,” katanya.<br />

Oleh karena itu, Safi un menilai sebelum pemerintah<br />

menerapkan kebijakan yang mencoba mendukung sektor<br />

industri dalam negeri, iklim dan peremajaan industri yang<br />

dinilai penting dan menjadi basis perkuatan struktur industri<br />

nasional juga harus dibantu pemerintah terlebih dahulu.<br />

Sementara itu data Departemen Perindustrian (Depperin)<br />

pada 2006 nilai impor mesin di Indonesia mencapai 7,091<br />

miliar dolar AS, sedangkan kemampuan ekspor mesin pada<br />

tahun yang sama hanya 2,485 miliar dolar AS.<br />

Setiap tahun rata-rata pertumbuhan impor mesin sebagai<br />

barang modal di Indonesia meningkat di atas 10 persen,<br />

karena banyak mesin yang belum bisa diproduksi di dalam<br />

negeri. Pada 2002 impor mesin baru mencapai 4,241 miliar<br />

AS naik menjadi 7,091 miliar dolar AS pada 2006.<br />

Sedangkan kemampuan ekspor permesinan nasional,<br />

kendati tumbuh lebih tinggi sebesar 18,19 persen per tahun<br />

dalam lima tahun ini, jumlahnya masih lebih kecil dari sekitar<br />

1,216 miliar pada 2002 menjadi 2,485 miliar dolar AS pada<br />

2006.(*)<br />

indometalworking news Vol. 2 / 2008 53


IndonesiaFeatures<br />

Meski Indonesia<br />

masih dalam situasi<br />

sulit, namun tetap<br />

menjanjikan bagi bisnis<br />

mesin-mesin bekas<br />

Para pedagang mesin-mesin bekas yang<br />

sudah mengamati perdagangan di Indonesia,<br />

di masa mendatang akan bermain dengan<br />

aturan baru. Pada pergantian tahun 2007/2008<br />

pemerintah memperketat ketentuan masuk untuk<br />

beragam barang-barang bekas. Namun segmensegmen<br />

seperti mesin perkakas dan mesin tekstil<br />

masih menawarkan peluang bisnis yang menjanjikan<br />

bagi suplier asing, dimana pasar potensial ini masih<br />

kurang dimanfaatkan oleh perusahaan-perusahaan<br />

asing hingga saat ini.<br />

Ada dua alasan mengapa para kalangan pengambil<br />

kebijakan ekonomi Indonesia menaggapi secara<br />

skeptis impor mesin-mesin bekas. Yang pertama<br />

harus dihindari adalah negara kepulauan ini jangan<br />

sampai digunakan sebagai tempat pembuangan<br />

barang rongsokan oleh negara-negara industri. Alasan<br />

lainnya adalah karena impor seperti itu menghambat<br />

industri lokal untuk berkembang di bidang pembuatan<br />

mesin. Hal tersebut menyebabkan bahwa selama ini<br />

arus impor barang-barang padat modal bekas pada<br />

dasarnya ditolerir untuk bidang industri di tanah air<br />

yang tidak memiliki produksi sendiri.<br />

Alternatif lebih murah<br />

mendapat sambutan<br />

Kebutuhan akan permesinan di sektor<br />

manufakturing masih sangat besar, sehingga<br />

antara lain mesin-mesin second hand<br />

tetap menjadi pilihan pertama bagi kebanyakan<br />

perusahaan industri. Di banyak sektor keberadaan<br />

mesin-mesinnya sudah sangat tua sementara<br />

persaingan internasional semakin menuntut tindakan<br />

modernisasi. Namun hal itu seringkali tidak dapat<br />

terpenuhi dengan sumberdaya lokal. Sebagai jalan<br />

keluar yang murah tetap saja impor mesin-mesin<br />

bekas yang secara teknis dapat menandingi tawaran<br />

murah dari China.<br />

Pada akhir tahun 2007 departemen perdagangan<br />

mengeluarkan peraturan impor mesin-mesin bekas.<br />

Peraturan pemerintah no 49/2007 tersebut efektif<br />

berlaku mulai 1 Februari 2008 dan sekaligus<br />

menggantikan peraturan no 39/2005 yang sudah<br />

berlaku sejak dua tahun lalu. Jumlah dan jenis mesin<br />

yang boleh diimpor khususnya komponen- komponen<br />

dipangkas oleh pihak yang berwenang. Jenis posisi<br />

tarif cukai yang relevan juga dibatasi dari sekitar<br />

1000 menjadi 300 lebih. Jumlah yang dihilangkan<br />

kebanyakan dari jenis mesin-mesin kecil serta<br />

berbagai komponen. Namun yang menonjol adalah<br />

di bidang teknologi informasi serta telekomunikasi,<br />

dimana diberlakukan pembatasan yang lebih ketat.<br />

Meskipun demikian perwakilan dari departemen<br />

perdagangan menekankan bahwa dengan pesyaratan<br />

tertentu mesin-mesin bekas yang ada dalam daftar<br />

negatif masih tetap boleh didatangkan. Untuk itu<br />

perlu dilampirkan izin dari departemen perindustrian.<br />

Macam barang bekas yang tidak boleh diimpor sejak<br />

2008 antara lain mesin turbin uap, mesin turbin<br />

air, mesin-mesin motor lainnya, alat pembakar,<br />

mesin pemanas, pemadam api, pistol semprot,<br />

mesin pemuat barang, mesin pemerah susu, mesin<br />

penyamak, pengelupas seta pengolah kulit, bagian<br />

dan suku cadang mesin perkakas, alat-alat kantor,<br />

mesin komputer, alat-alat telekomunikasi berkabel,<br />

mesin perekam, alat pemancar dan penerima<br />

gelombang dan kamera, mikroskop, kompas.<br />

Sebagai respon terhadap banyaknya permasalahan<br />

yang terjadi di sektor transportasi pada tahun 2007<br />

lalu, maka pengadaan gerbong-gerbong kereta bekas<br />

dan suku cadangnya, parasut dan bermacam kapal<br />

tidak lagi secara otomoatis dapat ditolerir.<br />

Namum demikian spektrum impor mesin-mesin bekas<br />

yang diperbolehkan masih tetap terbuka luas. Ragam<br />

mesin yang termasuk dalam daftar positif antara lain<br />

54<br />

indometalworking news Vol. 2 / 2008


IndonesiaFeatures<br />

generator, motor, motor elektronik, agregat penghasil<br />

listrik, pompa, teknik pendingin, teknik pengangkutan,<br />

mesin-mesin berat, mesin-mesin pertanian dan<br />

perhutanan, mesin-mesin kertas, mesin-mesin cetak,<br />

mesin-mesin pembuat logam, mesin-mesin tekstil,<br />

hampir semua mesin perkakas dan sebagian mesin<br />

untuk bahan sintetis seperti oven elektro.<br />

Statistik dengan<br />

daya bukti terbatas<br />

Perusahaan pemerintah PT. Surveyor Indonesia<br />

melakukan pengawasan, pengujian dan<br />

mengeluarkan dokumen-dokumen penting<br />

(certifi cate of inspection). Menurut statistik pada<br />

tahun 2007 terdapat impor mesin-mesin bekas sekitar<br />

132.000 unit. Angka ini merupakan peningkatan<br />

signifi kan di banding tahun sebelumnya yang tercatat<br />

hanya 74.000 unit. Untuk tahun 2007 menurut<br />

statistik impor ada 624 jenis barang padat modal<br />

atau dua kali lebih banyak dibanding tahun 2006.<br />

Ditanya mengenai nilai impor, para pakar menjawab<br />

dengan keraguan. ”Keterangan seperti itu kurang<br />

berguna, ” demikian jawaban dari PT. Surveyor,<br />

karena surat-surat impor tersebut tidak selalu diisi<br />

secara lengkap. Setiap tahun diperkirakan nilai impor<br />

berkisar antara 25 hingga 250 juta dollar Amerika.<br />

Menurut statistik sebagian besar barang-barang<br />

impor dilakukan melalui jalan pintas Singapura.<br />

Meskipun ada permintaan namun bisnis mesin<br />

”second hand” di tahun-tahun lalu tidak terlalu<br />

bergairah. Hal ini semata-mata tidak hanya<br />

disebabkan oleh berkurangnya minat berinvestasi<br />

di sektor ini. Di satu sisi impor murah mesin-mesin<br />

baru menghambat bisnis tersebut. Di sisi lain kabar<br />

penutupan perusahaan membuat orang mencari<br />

penawaran akan mesin-mesin bekas dari daerah<br />

setempat.<br />

Peraturan<br />

mempengaruhi struktur<br />

perdagangan<br />

Disamping itu pembatasan-pembatasan secara<br />

hukum semakin jelas. Sebagai contoh pada saat<br />

impor alamat perusahaan dari pemilik baru mesin<br />

harus sudah diisi di dokumen. Pemilik yang baru<br />

harus menyimpan mesin tersebut minimal satu tahun.<br />

Dengan demikian perdagangan biasa dalam skala<br />

besar hampir tidak mungkin. Selain itu mesin-mesin<br />

bekas sebagian tidak termasuk dalam programprogram<br />

pemberdayaan pemerintah. Hal ini tentu<br />

dapat memberi dampak pembatasan di sektor tekstil<br />

atau sektor mesin logam, misalnya. Secara umum<br />

biaya pemeliharaan dan servis untuk mesin-mesin<br />

bekas di negara ini sangatlah tinggi, demikian nada<br />

skeptis yang sering diungkapkan para suplier mesinmesin.<br />

Importir mesin-mesin bekas harus memiliki surat<br />

lengkap seperti ijin usaha industi dari Departemen<br />

Perindustrian dan Perdagangan atau ijin usaha<br />

lainnya. Yang disebut terakhir diperoleh perusahaanperusahaan<br />

yang bergerak di bidang usaha pariwisata,<br />

pertanian, perikanan atau bidang bangunan. Seperti<br />

halnya dengan importir, secara resmi perusahaan<br />

pemeliharaan dan pemugaran juga boleh melangkah<br />

asalkan memiliki ijin usaha industri. Impor disini<br />

diperbolehkan dengan alasan penggunaan pihak<br />

yang berwenang memasukkan mesin bekas bagi<br />

keperluan sendiri atau pemasukkan barang dalam<br />

proses produksi. Namun baik dari jenis maupun impor<br />

harus tetap berada dalam kerangka bidang usaha<br />

yang sesuai.<br />

Perusahaan yang akan mengimpor terlebih dahulu<br />

harus mengantongi persetujuan dari Direktorat Impor<br />

Deperindag. Instansi ini akan selanjutnya memberikan<br />

persetujuan atau penolakan dalam jangka waktu<br />

sepuluh hari kerja, demikian janji pihak penanggung<br />

jawab. Jika sudah mendapat lampu hijau maka<br />

sebagai tambahan surat wajib inspeksi ”Certifi cate<br />

of Inspection” harus dilampirkan, dimana dijelaskan<br />

bahwa kondisi mesin atau barang bekas tersebut<br />

masih layak untuk digunakan.<br />

indometalworking news Vol. 2 / 2008 55


IndonesiaFeatures<br />

Permintaan Alat Berat Rekondisi<br />

Meningkat<br />

Pelaksanaan proyek pembangunan infrastruktur yang<br />

dicanangkan pemerintah pada tahun ini, termasuk<br />

terus meningkatnya kinerja sektor perkebunan dan<br />

pertambangan, membutuhkan banyak alat berat.<br />

Namun demikian, industri alat berat nasional hanya mampu<br />

memenuhi 40 persen kebutuhan yang mencapai 20.000-an<br />

unit. Di lain pihak, kebutuhan alat berat bekas yang sudah<br />

direkondisi terus meningkat, khususnya untuk proyek-proyek<br />

di bawah Rp 10 miliar.<br />

Wakil Ketua Harian Asosiasi Perusahaan Rekondisi Alat<br />

Berat dan Truk Indonesia (Aparati) M Noor Alam mengatakan,<br />

selama ini, kontraktor yang menangani proyek di bawah<br />

Rp 10 miliar banyak membutuhkan alat berat rekondisi. Selain<br />

kondisi yang masih baik (80 persen), harganya juga jauh lebih<br />

murah dibanding alat berat baru. Dalam hal ini, alat berat<br />

rekondisi masuk dalam skala ekonomi untuk proyek di bawah<br />

Rp 10 miliar tersebut di mana harga alat berat rekondisi ratarata<br />

mencapai Rp 400-Rp 500 juta, sedangkan alat berat<br />

baru bisa mencapai Rp 2 miliar.<br />

“Tahun ini pemerintah mendorong percepatan pembangunan<br />

infrastruktur di daerah-daerah. Salah satunya rencana<br />

pembangunan jalan tol 1.000 kilometer. Pelaksanaan program<br />

ini jangan sampai terhambat gara-gara tidak ada pasokan<br />

alat berat. Selama ini, industri alat berat di dalam negeri<br />

tidak bisa memasok alat berat dengan cepat dan tidak bisa<br />

menjual produk untuk proyek skala Rp 10-Rp 15 miliar,” kata<br />

M Noor di sela kegiatan lelang alat berat rekondisi (Jakarta<br />

International Machine Center/Jimac) yang diselenggarakan PT<br />

International Auction Machine (IAM) di Jakarta, Sabtu (29/3).<br />

Selain dari kalangan kontraktor nasional dan pemerintah<br />

daerah, pembeli dalam lelang ini juga datang dari negaranegara<br />

di ASEAN dan Timur Tengah. Menurut dia, penjualan<br />

alat berat rekondisi pada tahun 2007 lalu mencapai<br />

12.000 unit. Diperkirakan permintaan alat berat rekondisi<br />

tersebut akan meningkat menjadi 15.000 unit seiring<br />

dilaksanakannya berbagai proyek infrastruktur di daerahdaerah<br />

serta terus meningkatkan kinerja sektor perkebunan<br />

dan pertambangan.<br />

Apalagi alat berat rekondisi yang kondisinya rata-rata mencapai<br />

80 persen ini perawatannya juga relatif mudah. Berdasarkan<br />

survei dari PT Succofi ndo, Departemen Pekerjaan Umum<br />

(DPU) beserta Dinas PU di daerah-daerah serta kalangan<br />

kontraktor, alat berat rekondisi masih dibutuhkan. Survei<br />

juga mengungkapkan bahwa alat berat rekondisi juga tidak<br />

mengganggu pangsa pasar industri alat berat dalam negeri.<br />

Selama ini, alat baru produksi dalam negeri banyak digunakan<br />

untuk proyek infrastruktur, pertambangan, dan perkebunan<br />

skala besar serta untuk jangka panjang. Namun dengan<br />

kapasitas produksi yang ada, industri dalam negeri selama ini<br />

tidak bisa memenuhi permintaan alat berat dan tidak jarang<br />

terpaksa mengimpor produk baru secara utuh (CBU).<br />

“Pangsa pasar alat berat yang baru dan rekondisi berbeda.<br />

Masing-masing saling mendukung. Kontraktor yang<br />

mengerjakan proyek skala besar dan jangka panjang, tentunya<br />

akan membeli alat berat baru. Namun untuk kontraktor skala<br />

menengah dan kecil atau pemerintah daerah, mereka butuh<br />

alat berat rekondisi. Selain kondisinya masih baik dan lebih<br />

murah, perawatannya juga mudah serta sesuai skala ekonomi<br />

proyek yang dikerjakan,” tutur M Noor.<br />

Sementara itu, pengamat otomotif Suhari Sargo mengatakan,<br />

lelang alat berat rekondisi yang dilakukan PT IAM (Jimac)<br />

berkontribusi besar dalam percepatan pembangunan<br />

proyek infrastruktur serta perkebunan dan pertambangan.<br />

Tidak hanya perusahaan jas akonstruksi, perkebunan,<br />

dan pertambangan, alat berat rekondisi juga dibutuhkan<br />

pemerintah daerah yang mengerjakan proyek-proyek<br />

pembangunan lainnya.<br />

“Sekarang ini, permintaan alat berat terus meningkat. Namun<br />

di lain pihak, pasokan alat berat terbatas. Sekarang untuk<br />

menyewa pun kontraktor susah. Ini terkait kondisi industri alat<br />

berat di dalam negeri yang hanya bisa memasok untuk proyekproyek<br />

skala besar. Maka dari itu, alat berat rekondisi sangat<br />

membantu, khususnya untuk kontraktor skala menengah dan<br />

pemda,” ujarnya.<br />

Menurut Suhari Sargo, dari program pembangunan<br />

infrastruktur yang nilainya diperkirakan mencapai Rp 50<br />

triliun, sebanyak 10 persennya (Rp 5 triliun) akan digunakan<br />

untuk membeli alat berat. Ini belum termasuk kebutuhan alat<br />

berat untuk proyek sektor-sektor lainnya.<br />

“Alat berat rekondisi, baik yang didatangkan dari impor atau<br />

dari dalam negeri, masih dibutuhkan,” tuturnya.<br />

56<br />

indometalworking news Vol. 2 / 2008


INDONESIA IN<br />

ACTION<br />

Investasi Industri<br />

Elektronik US$2,5 Miliar<br />

JAKARTA (MI): Sedikitnya 138 perusahaan elektronik<br />

sudah mengarah pada produk berbasis digital. Pemerintah<br />

menargetkan pertumbuhan industri padat modal itu sebesar<br />

11,5% dengan investasi US$2,5 miliar.<br />

“Sudah lebih dari 60% yang mengembangkan teknologi<br />

digital pada produknya. Sisanya akan terus mengurangi yang<br />

nondigital. Tapi ini tuntutan dunia, jadi harus mengikuti,”<br />

terang Menteri Perindustrian (Menperin) Fahmi Idris, di Jakarta,<br />

kemarin. Jumlah produsen elektronik saat ini diperkirakan<br />

mencapai 230 perusahaan, sebagian besar didominasi<br />

perusahaan multinasional (multinational corporation /MNC).<br />

Tahun lalu, pertumbuhan industri elektronik hanya mampu<br />

bergerak di angka 9%. Sektor tersebut termasuk dalam<br />

kelompok tiga besar pencetak pertumbuhan industri di<br />

sektor alat angkut, mesin, dan peralatan. Selain elektronik,<br />

kedua sektor lainnya disumbang industri sepedamotoruan<br />

sejenisnya (9,6%) dan industri kendaraan bermotor roda empat<br />

atau lebih (9%).<br />

Fahmi menjelaskan, elektronika konsumsi dan komponennya<br />

merupakan salah satu industri yang diprioritaskan<br />

pengembangannya, sebagaimana tertuang dalam kebijakan<br />

pengembangan industri nasional (KPIN). Sektor itu ditargetkan<br />

tumbuh 11,5% per tahun dan diharapkan dapat menciptakan<br />

lapangan pekerjaan sebanyak 150.000 orang. “Guna mencapai<br />

target itu diperlukan adanya investasi sekitar US$2,5 miliar,”<br />

cetus Menperin.<br />

Menurut data Departemen Perindustrian (Depperin), angka<br />

investasi yang ditanam dalam industri elektronika mencapai<br />

US$481 juta dengan nilai produksi Rp 87,39 triliun. Nilai<br />

ekspornya mencapai US$6,95 miliar dengan penyerapan<br />

tenaga kerja 235 ribu orang dan tingkat utilisasi 60%. “Target<br />

kita ekspor tahun ini sekitar US$7,8-US$7,9 miliar,” ucap dia.<br />

Hapus PPnBM<br />

Ketua Gabungan Elektronik Indonesia (Gabel) Rachmat Gobel<br />

mendesak pemerintah segera merealisasikan penghapusan<br />

pajak penjualan barang mewah (PPnBM), guna menjaga pasar<br />

elektronik di dalam negeri. “Salah satu jalannya PPnBM ini pun<br />

tidak bisa menghapus penyelundupan, tapi akan mengurangi<br />

keuntungan penyelundup. Kalau berkurang, jadi males kan<br />

mereka menyelundupkan,” cetus CEO PT Panasonic Gobel<br />

Battery Indonesia (PGBI) itu.<br />

Dari pantauan Gabel, peredaran produk elektronik ilegal pada<br />

kuartal II/2008 diprediksi terus meningkat, seiring dengan<br />

membanjirnya produk impor murah ke Indonesia.<br />

Republik Indonesia<br />

Jadi Basis Produksi GM<br />

JAKARTA - Industri otomotif nasional bakal makin marak.<br />

Kini, Indonesia tidak hanya dipandang sebagai pasar empuk<br />

bagi produsen, tapi juga sudah dibidik menjadi basis produksi.<br />

Raksasa otomotif dunia asal AS, General Motors (GM) dipastikan<br />

segera menjadikan Indonesia sebagai basis produksi.<br />

“Perencanaannya terus kami matangkan,” ujar Managing<br />

Director GM AutoWorld Indonesia Mukiat Sutikno di sela<br />

launching All New Chevrolet Captiva Diesel di Jakarta kemarin<br />

(16/4). Menurut Mukiat, rencana itu sudah mendapat lampu<br />

hijau dari kantor pusat GM di Detroit, AS. Karena itu, sekarang<br />

GM Indonesia terus melakukan kajian terkait produk apa yang<br />

bakal diproduksi di Indonesia.<br />

Kajian itu, meliputi produk apa yang kira-kira paling kompetitif<br />

serta prospek local content-nya. Nanti, hal itu dipadukan<br />

dengan blue print bisnis GM di Asia Pasifi k. “Kompleksitasnya<br />

memang cukup tinggi,” katanya. Karena itu, kajian tersebut<br />

kemungkinan baru selesai akhir tahun ini. Berapa dana yang<br />

disiapkan GM untuk investasi perakitan mobil di Indonesia?<br />

“Pembicaraannya belum sampai ke situ,” ucapnya.<br />

Sebagai gambaran, agar perakitan mobil bisa mencapai tingkat<br />

keekonomian, paling tidak harus dibangun dengan kapasitas<br />

produksi full shift sebanyak 20.000 unit per tahun. “Kalau<br />

seperti itu, minimal butuh USD 45 juta,” jelasnya. Rencana<br />

tersebut sebelumnya sempat diutarakan President General<br />

Motors (GM) Asia Pacifi c David Nick Reilly.<br />

Saat berkunjung ke Jakarta, Reilly mengatakan, GM sudah<br />

menyiapkan dana investasi USD 4 miliar untuk pasar Asia<br />

Pasifi k dalam tiga tahun ke depan. Selain membangun basis<br />

manufaktur, dana tersebut digunakan untuk memperluas<br />

jaringan penjualan maupun promosi.<br />

Terkait penjualan, Mukiat mengatakan, pihaknya menargetkan<br />

sales Chevrolet tahun 3.000 unit. Tahun lalu, penjualan<br />

Chevrolet 1.396 unit, di mana 992 unit di antaranya adalah<br />

Captiva. Mukiat optimistis All New Chevrolet Captiva Diesel<br />

bakal memperkuat penetrasi GM di kelas sport utility vehicle<br />

(SUV). Mobil yang diimpor utuh (completely built-up/CBU) dari<br />

Thailand tersebut dibanderol Rp 289,5 juta on the road Jakarta.<br />

“Target kami, Captiva Diesel bisa terjual 600 unit hingga akhir<br />

tahun nanti,” ujarnya.<br />

indometalworking news Vol. 2 / 2008 57


INDONESIA IN ACTION<br />

Pemerintah proteksi<br />

industri alsintan<br />

Pemerintah akan memproteksi industri peralatan mesin<br />

pertanian (alsintan) dari serbuan impor asal China dengan<br />

mekanisme tarif dan tata niaga seiring dengan pertumbuhan<br />

industri yang terus melaju.<br />

Langkah perlindungan yang diberikan pemerintah juga<br />

bertujuan untuk memperkuat struktur industri permesinan<br />

nasional.<br />

Dirjen Industri Logam Mesin Tekstil dan Aneka Departemen<br />

Perindustrian Ansari Bukhari mengatakan Departemen<br />

Keuangan segera menaikkan tarif bea masuk (BM) produk<br />

Alsintan dari 0%-5% menjadi 7,5% untuk mengurangi volume<br />

impor Alsintan.<br />

“Kalau dengan tarif itu volume impor mesin masih tinggi, dalam<br />

satu tahun ke depan pemerintah segera menaikkan kembali<br />

tarif BM produk alsintan secara proporsional,” kata Ansari<br />

pada Workshop Pendalaman Kebijakan Industri, pekan lalu.<br />

Industri alsintan di dalam negeri, lanjutnya, memperlihatkan<br />

perkembangan yang cukup menggembirakan.<br />

Dari tujuh subsektor industri permesinan seperti konstruksi<br />

baja, alat konstruksi, mesin proses, alat energi, penunjang,<br />

dan kelistrikan, hanya subsektor Alsintan yang mencatatkan<br />

tren pengembangan cukup positif, seiring dengan kebutuhan<br />

mesin pra dan pascapanen di sektor pertanian yang terus<br />

meningkat. Kondisi ini dimanfaatkan industri Alsintan lokal<br />

untuk meningkatkan kinerja produksi, karena sejumlah<br />

komponen pendukung mesin-mesin pertanian telah dikuasai<br />

industri lokal. “Basis produksi alsintan tersebar di Yogya,<br />

Jateng, Lampung, Malang, hingga Kalbar, dan telah diekspor<br />

ke sejumlah negara berkembang,” katanya.<br />

Kendati demikian, pertumbuhan industri Alsintan masih lambat<br />

karena tertekan produk impor. Sepanjang tiga tahun terakhir,<br />

perkembangan nilai produksi Alsintan dari industri dalam<br />

negeri naik sangat tipis.<br />

Tidak adanya proteksi pemerintah di sektor alsintan,<br />

menyebabkan pemodal asing enggan berinvestasi di sektor ini<br />

karena tidak menguntungkan, sementara penyerapan tenaga<br />

kerja tidak bertambah.<br />

Memprihatinkan<br />

Ansari mengakui kondisi di industri mesin nasional secara<br />

umum memprihatinkan karena semua komponen bergantung<br />

besar terhadap impor sehingga menumpulkan daya saing.<br />

Tidak adanya penguasaan teknologi yang dihasilkan lembaga<br />

riset dan pengembangan menyebabkan penetrasi pasar dari<br />

produsen lokal menjadi kian terbatas sehingga dikuasai asing.<br />

Direktur Industri Mesin Depperin Chanty Triharso menjelaskan<br />

total nilai impor permesinan termasuk di dalamnya Alsintan<br />

pada tahun lalu membengkak jadi US$8,13 miliar atau naik<br />

27,43% terhadap realisasi impor tahun lalu US$6,38 miliar.<br />

Pada saat yang sama, nilai produksi industri mesin pada 2007<br />

tidak lebih dari US$5,8 miliar (Rp55 triliun).<br />

“Lonjakan impor mesin itu terjadi karena pada saat krisis 1998<br />

pemerintah membuka keran impor mesin termasuk mesin<br />

bekas untuk membantu pemulihan industri mesin di dalam<br />

negeri,” ujarnya.<br />

RI Kejar Produksi 1<br />

Juta Mobil<br />

JAKARTA - Penjualan mobil terus menunjukkan tren positif.<br />

Tak hanya di level domestik, di pasar ekspor pun sektor<br />

otomotif mencatat kinerja lumayan. Karena itu, Departemen<br />

Perindustrian berani menargetkan produksi mobil 1 juta unit<br />

pada 2010.<br />

“Depperin punya mimpi 2010 kita memproduksi satu juta<br />

mobil. Itu harus didukung ekspor 200 ribu-300 ribu unit dalam<br />

tiga tahun ke depan,” ujar Sekretaris Umum Gabungan Industri<br />

Kendaraan Bermotor Indonesia (Gaikindo) Freddy A. Sutrisno<br />

di Jakarta kemarin. Dengan ekspor sebesar itu dan didukung<br />

membaiknya daya serap pasar domestik, target produksi 1 juta<br />

unit bukan mustahil.<br />

Menurut dia, prinsipal otomotif sedang berusaha keras<br />

meningkatkan pangsa pasar ekspor. Tahun ini, ekspor ditarget<br />

100 ribu unit atau lebih tinggi dibanding tahun lalu yang hanya<br />

60 ribu unit. Freddy memperkirakan, jika penjualan domestik<br />

tembus 540 ribu tahun ini dan 600 ribu tahun depan, produksi<br />

1 juta unit bisa tercapai.<br />

“Itu tidak mustahil, karena kebutuhan mobil semakin tinggi.<br />

Ekspor juga terus meningkat,” tegasnya. Saat ini, Indonesia<br />

telah mampu mengekspor mobil ke 55 negara. Yakni negaranegara<br />

di kawasan Amerika Latin, Afrika, Eropa Timur, ASEAN,<br />

dan lain-lain. “Kita mencoba menjaga momentum peningkatan<br />

ini untuk bersaing dengan dua negara ASEAN lainnya, yaitu<br />

Thailand dan Malaysia,” tuturnya.<br />

Ketua Umum Gaikindo Bambang Trisulo menambahkan, selama<br />

triwulan pertama 2008 penjualan otomotif mencapai 137 ribu<br />

unit. Angka itu melampaui target 110 ribu unit. Meski begitu,<br />

target penjualan tahun ini tetap 520 ribu unit atau angka<br />

optimistis 540 ribu unit. Pada 2007, penjualan otomotif hanya<br />

430 ribu unit. “Kita coba lihat enam bulan ke depan. Kalau<br />

cenderung meningkat berarti ekonomi kita sudah membaik,”<br />

ungkapnya.<br />

Dia mengaku bisa memahami jika pemerintah menaikkan<br />

harga BBM. Namun, pihaknya tetap berharap hal tersebut tidak<br />

terjadi. Sebab, kenaikan harga BBM pada 2005 sangat memukul<br />

industri otomotif. Meski begitu, dia menilai masyarakat belum<br />

terpengaruh dengan membatalkan pembelian otomotif karena<br />

harga minyak dunia terus naik. “Entah anomali apa yang terjadi,<br />

tapi penjualan otomotif justru naik,” bebernya. *<br />

58<br />

indometalworking news Vol. 2 / 2008


Just for the thought<br />

Five Steps To<br />

A Prosperous Recession<br />

Recession is said to be in the air. How can producers<br />

of precision machined products ensure a profi table<br />

performance during a possible recession, when<br />

Tier One buyers are squeezing their suppliers for price<br />

concessions?<br />

A recession normally means fewer sales (auto sales are<br />

predicted to fall in 2008, down 7% from last year). But an<br />

alert precision products manufacturer can still manage to<br />

turn a profi t even on a lower volume. A shop’s profi t level,<br />

in booming times or bad times, is a result of management<br />

pushing for a high level of continuous improvement. This<br />

requires a steady attention to what’s going on inside the<br />

company in manufacturing, sales, marketing, fi nance and<br />

human resources.<br />

As Socrates said to Glaucon in Plato’s “Republic,” “The<br />

stars are worthy guides in perilous travel, but on shorter<br />

trips at home we need more earthly guides.”<br />

I have taken the liberty of summarizing the experience of<br />

my study at the IPMI University and more than 10 years as<br />

a company observer for many major companies to provide<br />

more “earthly guides.”<br />

These experiences have led to my identifi cation of the<br />

essential fi ve steps (questions), which deal with factors at<br />

ground level, and are most helpful not only in meeting a<br />

recession but in prospering in such a climate.<br />

Here are the questions:<br />

Are you instituting incentive employee programs to boost<br />

productivity, thereby chopping unit costs and elevating<br />

profi t margin on sales?<br />

Since hourly employees are closest to daily work, do you<br />

have a method to obtain workplace information from them,<br />

such as suggestions on how operations performance can<br />

be improved on the plant fl oor? This requires some special<br />

interviewing techniques.<br />

Have your supervisors been given any special training on<br />

how to improve production, particularly in managing not<br />

so initiative-workers, who may require different kinds of<br />

motivation than regular workers?<br />

Have you explored the reduction of investment in inventory<br />

by shifting inventory responsibilities to suppliers?<br />

Are you continually leaning on department managers to<br />

awaken them to improve profi table operations in their<br />

areas?<br />

These key questions are of special importance for<br />

manufacturers with plants of 50 to 1,200 employees,<br />

which collectively account for 40 percent of Indonesia<br />

manufacturing employment.<br />

To ask these checklist questions is only the beginning. The<br />

answers require an organized and persistent effort, so as<br />

to build your strong defense during a recession.<br />

Executives of companies producing precision machined<br />

products are sometimes bored by internal plant operations.<br />

Typically, they are inclined to give most of their attention to<br />

the world outside, where they can ferret out any increased<br />

sales and profi table opportunities. As a consultant, I<br />

typically insist on asking questions about the prosaic<br />

elements in plant performance. Leaders in business<br />

should determine company goals and priorities and give<br />

their achievement a sense of urgency in protecting against<br />

the strain of a recession.<br />

Many executives settle for the modest results reached<br />

because improvement requires considerable effort and<br />

sweat.<br />

Leadership is not to be confused with affability, nor<br />

perhaps popularity. As reported in the Business Weeks,<br />

Jack Welch, then the president of General Electric, was<br />

quoted in commenting on “leadership” as follows: “I guess<br />

one thing I’ve learned is that with leadership, if everybody<br />

waited until everyone agreed on everything before one did<br />

anything, there wouldn’t be such a thing as leadership…”<br />

Similarly, leaders determine goals and priorities and give<br />

their achievement a sense of urgency. The presidents of<br />

companies producing precision machined products should<br />

exhibit a perpetual drive to improve. Concentration on<br />

digging out answers to the fi ve key questions cited is a sure<br />

method not only to staying alive, but staying alive well<br />

indometalworking news Vol. 2 / 2008 59


Just for the thought<br />

Lima Langkah<br />

untuk Mengatasi Resesi<br />

Resesi diberitakan telah tiba dan menyelimuti kita.<br />

Bagaimana produsen dari produk machining dapat<br />

memastikan performa yang menguntungkan pada<br />

saat resesi terjadi, khususnya jika pembeli utama menekan<br />

kita pada harga?<br />

Resesi biasanya berarti penjualan yang lebih sedikit. Tetapi<br />

manufaktur yang tanggap dapat menyiasati profi t tersebut<br />

walaupun dengan penjualan yang menurun. Keuntungan<br />

dari suatu manufaktur, pada waktu yang baik maupun<br />

buruk, adalah hasil dari keinginan manajemen untuk terus<br />

menyiasati pengembangan berkelanjutan. Ini membutuhkan<br />

perhatian yang konsisten pada segala permasalahan<br />

perusahaan dalam hal manufaktur, penjualan, keuangan dan<br />

sumber daya manusia.<br />

Seperti yang Socrates katakan pada Glaucon di Republik<br />

Plato,” Bintang adalah tuntunan yang sangat berarti dalam<br />

suatu perjalanan, tetapi pada perjalanan singkat kita<br />

membutuhkan tuntunan alam di bumi.”<br />

Saya mendapatkan kebebasan untuk merangkum segala<br />

pengalaman saya selama masa studi maupun bekerja sebagai<br />

pengamat perusahaan – perusahaan untuk memberikan<br />

tuntunan alam di bumi ini.<br />

Pengalaman saya telah membawa saya untuk mengidentifi kasi<br />

lima pertanyaan penting yang berhubungan dengan faktor<br />

pada level dasar yang sangat membantu untuk mengatasi<br />

resesi dan juga melawan resesi.<br />

Inilah pertanyaan penting tersebut.<br />

Apakah anda mengadakan suatu program insentif bagi<br />

karyawan untuk menaikkan produktivitas, dimana termasuk<br />

mengurangi biaya per unit dan meningkatkan marginal<br />

keuntungan pada penjualan anda?<br />

Karena karyawan harian anda adalah yang paling merasakan<br />

aktivitas keseharian, apakah anda mempunyai metoda untuk<br />

mendapatkan informasi lingkungan kerja dari mereka, seperti<br />

usulan bagaimana performa operasional dapat ditingkatkan?<br />

Ini membutuhkan suatu teknik interview yang menyeluruh.<br />

Apakah supervisi anda telah diberikan pelatihan tentang cara<br />

meningkatkan produksi, khususnya mengatur pekerja yang<br />

kurang berinisiatif, dan membutuhkan cara motivasi berbeda<br />

daripada pekerja biasanya?<br />

Apakah anda telah menggali informasi mengenai pengurangan<br />

biaya inventarisasi dengan menempatkan kewajiban<br />

inventarisasi pada vendor anda?<br />

Apakah anda secara berkesinambungan menggantungkan<br />

pada manager di setiap departemen untuk menaikkan<br />

keuntungan operasional di area mereka masing – masing?<br />

Pertanyaan – pertanyaan ini sangat penting bagi para<br />

manufaktur dengan jumlah karyawan antara 50 hingga 1200<br />

pegawai, dimana merupakan 40 persen dari keseluruhan<br />

lapangan kerja di manufaktur Indonesia.<br />

Untuk menanyakan pertanyaan di atas adalah suatu<br />

permulaan. Jawaban membutuhkan suatu usaha yang lebih<br />

persisten dan lebih terorganisir, sehingga dapat membangun<br />

pertahanan anda pada saat resesi.<br />

Eksekutif perusahaan yang memproduksi produk machining<br />

biasanya tidak begitu mau mengetahui internal operasi<br />

pabrik. Biasanya, mereka tidak begitu mengetahui apa<br />

yang terjadi di luar sana, dimana mereka tidak menyadari<br />

kesempatan yang menguntungkan ada di luar sana. Sebagai<br />

konsultan, saya biasanya menanyakan pertanyaan mengenai<br />

elemen prosaic pada performa pabrik. Pemimpin perusahaan<br />

harus menetapkan tujuan perusahaan dan prioritasnya dan<br />

menjadikan suatu pencapaian sebagai hal yang penting<br />

dalam menjaga terjadinya resesi.<br />

Banyak eksekutif cukup puas dengan hasil yang dicapai<br />

karena peningkatan kerja harus membutuhkan usaha yang<br />

luar biasa berat.<br />

Kepemimpinan harus tidak disamakan dengan popularitas.<br />

Seperti yang dikatakan oleh Jack Welch, mantan presiden GE<br />

yang terkenal, bahwa kepemimpinan adalah sesuatu yang<br />

dipelajari dan ditetapkan, jika semua menunggu hingga semua<br />

menyetujui sesuatu hal sebelum hal itu diimplementasikan,<br />

maka itu bukanlah kepemimpinan.<br />

Sama halnya, pemimpin harus menetapkan tujuan<br />

perusahaan dan prioritasnya dan menjadikan pencapaiannya<br />

sebagai sesuatu yang penting. Pemimpin perusahaan<br />

machining harus mempunyai semangat untuk berkembang.<br />

Konsentrasi untuk menggali jawaban dari pertanyaan diatas<br />

bukanlah suatu metoda untuk dapat terus hidup, melainkan<br />

terus hidup secara nyaman di masa datang maupun resesi.<br />

60<br />

indometalworking news Vol. 2 / 2008


Just for the thought<br />

Is Incremental Improvement Enough?<br />

Is incremental improvement enough for our industry’s longterm<br />

survival? How many precision machining companies<br />

will perish in the next 5 years?<br />

The traditional path to continuous improvement will not be<br />

good enough for them. Getting away from mere traditional<br />

thinking is critical if the companies struggling to meet today’s<br />

customer demands for service, competitive pricing, just-intime<br />

and quality are to remain sustainable. These companies<br />

need more than incremental improvement. They have to<br />

develop bold, new visions of where they will be in the future<br />

and then begin to cut a path through the jungle to get there.<br />

Creative thinking versus traditional thinking—adding a new<br />

dimension to “value added.” Traditional thinking and operating<br />

practices are no longer good enough to make it all the way<br />

down the path. Doing the same thing better will not be enough<br />

to get through the jungle; the vines grow rapidly and block our<br />

way.<br />

Creative thinking, innovative practices and vision are the tools<br />

we can use to cut a path to our sustainable success—the<br />

beach where the fruits of our labor are abundant. How do we<br />

get there?<br />

First and foremost, we must understand our customers and<br />

continue to open the communication channel with them. Are<br />

they successful and profi table? Do their visions for the future<br />

parallel our vision for the future? Do we understand their<br />

current and future wants and needs? Can we react quickly<br />

enough to fulfi ll their wants and needs?<br />

Understanding our customers’ businesses will keep us aligned<br />

with their wants and needs and provide a path to the doors<br />

of opportunity and success. Open, honest communication is<br />

essential in a long-lasting relationship. Second and equally<br />

important, our vision for the future has to be a shared vision.<br />

Everyone in the organization must understand and agree<br />

with the vision. Even more important is the unifi ed effort of<br />

the organization to continually review our success and make<br />

adjustments to stay on the most direct path to our vision.<br />

Third, redefi ne “value added.” If we are profi table and<br />

customers agree to pay us for our products and services,<br />

everything we do in our organization is “value added.”<br />

Continuous improvement and long-term success depend on<br />

our abilities to fi nd and implement value added cost reductions<br />

everywhere possible throughout the organization.<br />

Doing the same thing we have always done just a little bit<br />

better will eventually lead to a dead end with no escape, in<br />

a jungle fi lled with known and not-yet-known hazards to our<br />

organizational survival.<br />

Fourth, make sure you are in the right business. Make sure you<br />

understand your business. There are a lot of articles written<br />

on strategy and management for business. What we don’t see<br />

a lot of is information on properly defi ning your business.<br />

If your business’ mission, means of production, market and<br />

methods are aligned, strategy will not be important. You<br />

will be advantaged by being properly equipped for your trip<br />

through the jungle.<br />

When was the last time your team sat down to discuss what<br />

your business’ purpose and defi nition really are? Do you have<br />

the right assets and people to match the defi nition?<br />

There are a lot of noises in the jungle. Are you paying attention<br />

to the right ones to ensure your future success? We are all<br />

vulnerable during those moments when we are so occupied by<br />

the immediate issues that we forget to check our surroundings<br />

and our own status. In such moments, we can fall victim to the<br />

perils of the jungle.<br />

Do you know and are you using the appropriate survival skills<br />

to fi nd your way? Do you have a process to make sure you<br />

know the status of your markets, customers and competitors?<br />

These are important clues to help you stay on the path.<br />

Do you have a process to evaluate your organization’s status?<br />

If the path takes a steep turn up ahead, are you fi t for the<br />

climb? Are you on the right path? How do you know?<br />

Continuous improvement through incremental improvements<br />

is a skill of daily living. Without it, you lose competitiveness.<br />

Others grow and improve while you slowly decline. But<br />

incremental improvement is not enough. Taking proactive<br />

steps to assure that you understand your customers and<br />

can anticipate their needs is essential to remaining their<br />

preferred supplier. Having—and sharing—your vision is critical<br />

if your organization is to execute successfully as a team when<br />

confronted with impossible challenges. Relentlessly reduce<br />

cost and improve value. Value-added cost reductions can be<br />

found throughout your organizations. Have a system to reduce<br />

cost and improve value—everywhere.<br />

Finally, make sure you know, understand and keep your actions<br />

consistent with your defi nition of your business. Trying to be<br />

all things to all people is a sure way to become yet another<br />

casualty on the path.<br />

Traditional thinking got us here. We thank those who helped<br />

us get here. We will honor their contributions by employing our<br />

best creative thinking to meet the challenges we face today.<br />

To do anything less is to ultimately fail<br />

indometalworking news newsVol. Vol. 1 / 22008 / 2008 61 61


Just for the thought<br />

Apakah perubahan bertahap cukup ?<br />

Apakah perubahan bertahap cukup untuk kelangsungan<br />

jangka panjang industri kita? Berapa banyakkah<br />

perusahaan machining yang akan hilang dalam<br />

lima tahun ke depan? Jalur tradisional dalam perubahaan<br />

berkelanjutan tidak akan cukup untuk kita. Perubahan drastic<br />

dari konsep “out of box” sangat diperlukan dan sangat kritikal<br />

jika perusahaan kita sedang berjuang untuk memenuhi<br />

permintaan pelanggan dalam hal pelayanan, harga yang<br />

kompetitif dan kualitas yang harus tetap dipertahankan.<br />

Perusahaan perusahaan ini membutuhkan lebih dari sekedar<br />

perubahan bertahap. Mereka harus mengembangkan visi<br />

baru dan berani dimana mereka akan tetap berada di depan<br />

dan memulai untuk menjadi terdepan.<br />

Pemikiran kreatif dan Pemikiran tradisional – membawa<br />

nilai dimensi baru yakni “nilai tambah”. Pemikiran tradisional<br />

dan praktek operasional sudah tidak lagi cukup baik untuk<br />

membawa mereka menjadi yang terdepan. Melakukan<br />

sesuatu yang sama dengan lebih baik tidak akan membawa<br />

mereka menembus hutan dan menjadi terdepan.<br />

Pemikiran kreatif, praktek inovasi dan visi adalah alat yang<br />

dapat membawa mereka untuk melaju dengan lebih cepat<br />

dan menjadi sukses. Pertanyaannya adalah bagaimana kita<br />

dapat mengarah ke sana?<br />

Pertama – tama, kita harus mengerti kemauan pelanggan dan<br />

selalu membuka jalur komunikasi dengan mereka. Apakah<br />

pelanggan cukup sukses dan meraih laba yang baik? Apakah<br />

visi mereka berjalan parallel dengan visi kita ke depan?<br />

Apakah mereka mengerti kemauan dan kebutuhan mereka<br />

di masa kini dan depan? Apakah kita dapat bereaksi cepat<br />

untuk memenuhi kebutuhan dan kemauan mereka?<br />

Mengerti akan bisnis pelanggan akan membuat kita<br />

mengakomodir kemampuan kita dengan kebutuhan dan<br />

kemauan mereka dan membuka pintu kesempatan dan<br />

kesuskesan kita. Terbuka dan komunikasi yang jujur sangatlah<br />

penting untuk menciptakan hubungan jangka panjang.<br />

Kedua, dan tak kalah pentingnya, visi kita di masa depan<br />

harus berupa visi yang dibagi. Semua pihak dalam organisasi<br />

harus mengerti dan memaknai visi tersebut. Bahkan tak kalah<br />

pentingnya, jika ada usaha bersama dalam organisasi untuk<br />

mereview ulang kesuksesannya dan membuat perubahan<br />

kecil agar tetap bersama sama berjalan dalam menuju visi<br />

yang diciptakan.<br />

Ketiga, mendefi niskan ulang pengertian “nilai tambah”. Jika<br />

laba perusahaan kita sudah cukup baik, dan pelanggan tetap<br />

setuju untuk berhubungan bisnis dengan kita baik dalam<br />

hal jasa maupun produk, maka apapun yang kita lakukan<br />

dalam organisasi berupa ”nilai tambah”. Pengembangan<br />

berkelanjutan dan kesuksesan jangka panjang tergantung<br />

pada kemampuan kita untuk mencari dan<br />

mengimplementasikan nilai tambah serta mereduksi biaya<br />

dimanapun dalam suatu organisasi.<br />

Keempat, pastikan anda telah berada di jalur bisnis yang<br />

tepat. Pastikan bahwa anda telah mengerti bisnis anda secara<br />

holistik. Banyak sekali artikel tertulis mengenai strategi dan<br />

manajemen untuk suatu bisnis. Yang tidak sering kita lihat<br />

adalah informasi yang memadai mengenai bisnis yang kita<br />

geluti.<br />

Jika misi usaha anda mengartikan produksi, market dan<br />

metode yang dipakai menjadi suatu kesatuan tak terpisahkan,<br />

maka strategi tidak begitu penting. Sebab, anda telah<br />

beruntung mengarungi peralatan yang cukup baik dalam<br />

menjelajahi kesuksesan anda.<br />

Kapankan terakhir kali, tim anda duduk dan mendiskusikan<br />

maksud usaha dan defi nisi bisnis anda? Apakah anda<br />

mempunyai aset yang cukup dan SDM untuk mencakupi<br />

defi nisi bisnis anda tersebut?<br />

Apakah anda mempunyai suatu sistim proses untuk<br />

mengevaluasi status organisasi anda? Apakah anda sudah<br />

dijalur yang benar? Bagaimana anda tahu?<br />

Pengembangan berkelanjutan melalui perubahan bertahap<br />

adalah teknik pertahanan hidup. Tanpa itu, anda akan kalah<br />

dalam berkompetisi. Tetapi perubahan bertahap saja tidaklah<br />

cukup. Mengambil langkah proaktif untuk memastikan bahwa<br />

anda mengerti pelanggan anda dan dapat mengantisipasi<br />

kemauan mereka sangatlah penting untuk menjadi supplier<br />

favorit atau terpilih.<br />

Mempunyai dan membagi visi anda sangatlah kritikal jika<br />

organisasi anda dapat mengeksekusi sebagai tim jika<br />

terkonfrontasi dengan tantangan yang mustahil sekalipun.<br />

Terus tanpa henti untuk mereduksi biaya dan meningkatkan<br />

nilai. Nilai tambah biaya yang direduksi dapat dicari pada<br />

semua sisi organisasi anda. Punyailah suatu sistim yang<br />

dapat mereduksi biaya dan meningkatakan nilai – dimana<br />

saja pada semua sisi organisasi.<br />

Akhirnya, pastikan bahwa anda mengerti dan dapat memulai<br />

aksi anda secara konsisten dengan defi nisi pada bisnis<br />

anda. Pemikiran tradisional telah membawa kita ke sini.<br />

Kita harus berterima kasih pada mereka yang membantu<br />

kita hingga kesini. Kita akan menghormati mereka dengan<br />

memberlakukan pemikiran kreatif untuk memastikan bahwa<br />

kita tetap dapat menghadapi tantangan kedepan.<br />

62<br />

indometalworking news Vol. 12 / 2008


News Snippets<br />

PT. TVS MOTOR AKAN<br />

MEMPRODUKSI 300 RIBU<br />

MOTOR<br />

Sofyan: Mittal mitra paling<br />

tepat bagi KS<br />

BONTANG: Rencana privatisasi PT Krakatau Steel (KS)<br />

hampir dipastikan menggunakan pola penjualan strategis<br />

(strategic sales/SS) setelah Menteri Negara BUMN Sofyan<br />

Djalil memberikan sinyal bahwa ArcelorMittal merupakan<br />

mitra paling tepat bagi KS.<br />

Selain memiliki kekuatan fi nansial yang besar, perusahaan<br />

baja terbesar di dunia itu dinilai memiliki program paling<br />

konkret dibandingkan dengan empat kandidat investor baja<br />

lain seperti Tata Steel, Blue Scope International, Essar Steel<br />

Holding, bahkan Pohang Steel and Co (Posco/perusahaan<br />

baja Korsel) yang belakangan juga berminat membeli KS<br />

dengan pola SS.<br />

Yogyakarta (ANTARA News) - PT TVS Motor Company<br />

Indonesia akan memproduksi 300 ribu sepeda motor pada<br />

2008.<br />

Sofyan menjelaskan pertumbuhan konsumsi baja pada<br />

beberapa tahun mendatang bahkan berpotensi mencapai 15<br />

juta ton, sehingga KS perlu mencari partner strategis yang<br />

mampu memacu produksi baja nasional menjadi 12 juta ton<br />

sehingga impor baja nasional dapat direduksi secara besarbesaran.<br />

“Kami optimistis target sebesar itu terpenuhi, dan semuanya<br />

terserap pasar,” kata National Sales Manager PT TVS Roly<br />

Mahendra di Yogyakarta, Kamis.<br />

Menurut dia pada pembukaan dealer TVS, target produksi itu<br />

setiap tahun terus ditingkatkan, dan pada 2011 ditargetkan<br />

mampu memproduksi satu juta unit sepeda motor.<br />

“Untuk merealisasikan target tersebut, pabrik yang berada di<br />

Karawang, Jawa Barat akan dikembangkan dan ditingkatkan<br />

kapasitas produksinya,” katanya.<br />

Sehubungan dengan hal itu, investasi yang ditanamkan juga<br />

akan ditambah. Modal awal sebesar Rp500 miliar akan<br />

ditambah menjadi Rp1 triliun.<br />

“Upaya itu dilakukan untuk menjadikan Indonesia sebagai<br />

distributor sepeda motor TVS di kawasan Asia Tenggara,”<br />

katanya. Sementara itu, Regional Distributor TVS Jateng dan<br />

DIY Andrie Mustika mengatakan untuk penjualan produk di<br />

kedua wilayah tersebut ditargetkan sebesar tiga persen dari<br />

total `market share`.<br />

“Market share untuk produk sepeda motor semua merk di<br />

wilayah Jateng dan DIY saat ini sebanyak 8.000 unit per bulan.<br />

Dari angka sebanyak itu kami akan `ambil` tiga persennya,”<br />

katanya.<br />

Dalam pemaparannya di kantor BUMN belum lama ini,<br />

katanya, Mittal menawarkan tiga rencana besar. Pertama,<br />

membeli saham KS sebagai pemegang minoritas. Kedua,<br />

melakukan kerja sama patungan (joint venture/JV) bersama<br />

KS membangun pabrik kedua berkapasitas 7 juta ton di<br />

Cilegon, Banten. Ketiga, KS dan Mittal bekerja sama dengan<br />

PT Aneka Tambang Tbk (Antam) untuk mencari bijih besi.<br />

Sofyan menilai selama ini KS salah menerapkan teknologi<br />

sehingga berakibat pada pemborosan keuangan dan energi.<br />

Dari sisi produksi, mesin-mesin BUMN baja itu tidak inline<br />

antara hulu dan hilir sehingga KS perlu berinvestasi secara<br />

menyeluruh dari hulu hingga hilir.<br />

indometalworking news newsVol. Vol. 1 / 22008 / 2008 63 63


News Snippets<br />

Sofyan menegaskan perusahaan baja global yang nantinya<br />

masuk KS melalui pola SS tetap akan memegang saham<br />

dan berperan minoritas, sehingga pemerintah tetap dapat<br />

mengendalikan BUMN baja itu secara penuh. Jika pemerintah<br />

menjual sekitar 35%-40% saham KS kepada Mittal, ujarnya,<br />

pemerintah hanya memberikan satu kursi direktur dan satu<br />

komisaris dalam manajemen KS kepada perusahaan asal<br />

India itu.<br />

Produk Jerman ramaikan<br />

pasar motor<br />

Boediono: Ekonomi Pulih<br />

Dua Tahun Lagi<br />

JAKARTA: Pasar motor nasional bakal diramaikan oleh produk<br />

asal Jerman, menyusul masuknya perusahaan otomotif asal<br />

Jerman Sachs Germany di Indonesia.<br />

Perusahaan yang di negara asalnya ini dikenal sebagai<br />

pabrikan yang memproduksi motor berkualitas dan inovatif<br />

tersebut menggandeng produsen motor dalam negeri yakni<br />

PT Minerva Motor Indonesia (PT MMI) dalam kerja sama<br />

strategis berupa joint manufacturing dan co-branding.<br />

Jakarta: Pemerintah mentargetkan pertumbuhan ekonomi<br />

akan pulih dalam beberapa tahun kedepan. Menteri Kordinator<br />

Perekonomian Boediono menyebutkan pertumbuhan ekonomi<br />

Indonesia bisa tumbuh 6,5 - 7 persen dalam waktu dua tahun<br />

kedepan.<br />

Di tengah turbulensi ekonomi dunia yang saat ini terjadi,<br />

Boediono menilai pertumbuhan ekonomi sebesar 6,2-6,3<br />

persen saat ini masih cukup baik. Ia optimis pertumbuhan<br />

ekonomi akan membaik dengan ditunjang kondisi sosial<br />

politik yang aman. Boediono mengakui pertumbuhan<br />

ekonomi saat ini tidak banyak menyerap tenaga kerja formal,<br />

tetapi lebih terserap di sektor informal. Hal ini, kata Boediono,<br />

karena kebijakan pemerintah memang lebih didorong untuk<br />

mendukung pertumbuhan di sektor non pemerintah.<br />

“Pergeseran penyerapan (tenaga kerja) itu suatu hal yang<br />

biasa,” katanya. Dengan pertumbuhan ekonomi yang lebih<br />

baik, menurut Boediono pergeseran akan kembali ke sektor<br />

formal.<br />

BPS kemarin melansir pertumbuhan ekonomi year to<br />

year pada kuartal I 2008 sebesar 6,28 persen. Jumlah<br />

pengangguran juga turun akan tetapi lebih banyak terserap<br />

di sektor informal. *<br />

Dengan adanya co-branding ini, maka untuk wilayah<br />

pemasaran di Indonesia akan dipakai nama merek Minerva<br />

Sachs. Pada tahap awal, Minerva & Sachs meluncurkan motor<br />

MadAss 125 yang diproduksi di pabrik PT MMI.<br />

MadAss 125 adalah salah satu produk unggulan dari Sachs.<br />

Tipe ini sebelumnya telah diluncurkan di pasaran Eropa,<br />

Australia, Amerika, dan negara-negara Asia seperti Thailand,<br />

Filipina, Vietnam, Malaysia, Singapura, dan Hong Kong. Motor<br />

MadAss 125 memiliki desain yang unik dan dilengkapi dengan<br />

mesin yang sesuai standar Sachs Germany, sppedometer<br />

digital elektrik, desain tanki bahan bakar yang inovatif,<br />

serta dilengkapi dengan standar emisi euro III sehingga<br />

ramah lingkungan. Khusus untuk model ini, Minerva Sachs<br />

menargetkan volume penjualannya akan mencapai 10.000<br />

unit sepanjang tahun dengan target per bulan yang dipatok<br />

sebesar 1.000 unit.<br />

Presiden Direktur PT MMI Kristianto Goenadi optimistis<br />

mampu meraih target itu, sebab harga yang dipatok relatif<br />

murah dan sangat kompetitif. “Di negara asalnya model<br />

tersebut dibanderol dengan harga 20.000 euro, sementara<br />

di pasaran Indonesia model ini dihargai Rp13,950 juta on the<br />

road Jakarta,” katanya disela-sela penandatanganan kerja<br />

sama sekaligus peluncuran model Minerva Sachs pertama<br />

yaitu MadAss 125. (ln)<br />

64 64<br />

indometalworking news news Vol. Vol. 2 / 12008<br />

/ 2008


Calendar of Events<br />

2008<br />

9 - 12 July 2008<br />

MTA-Vietnam 2008<br />

Giang Vo Exhibition Center, Hanoi<br />

Organiser : Singapore Exhibition Services Pte Ltd<br />

Tel : +65-6738 6776<br />

Fax : +65-6732 6776<br />

URL<br />

: www.mtavietnam.com<br />

27 - 30 August 2008<br />

MTT Indonesia 2008<br />

JIExpo PRJ Kemayoran, Jakarta<br />

Organiser : PT ECMI Services<br />

Tel : +62-21-2664 5464<br />

Fax : +62-21-2664 5485<br />

URL<br />

: www.mtt-indonesia.com<br />

3 - 6 September 2008<br />

MTA Vietnam 2008<br />

Ho Chi Minh International Exhibition and Conference Centre<br />

Ho Chi Minh City, Vietnam<br />

Organiser : Singapore Exhibition Services Pte Ltd<br />

Tel : +65-6738 6776<br />

Fax : +65-6732 6776<br />

URL<br />

: www.mtavietnam.com<br />

1 – 3 October 2008<br />

Metalex Vietnam 2008<br />

Ho Chi Minh International Exhibition and Conference Centre<br />

Ho Chi Minh City, Vietnam<br />

Organiser : Reed Tradex Company<br />

Tel : +66-2- 686 7299<br />

Fax : +66-2-686 7288<br />

URL<br />

: www.metalexvietnam.com<br />

30 October - 4 November 2008<br />

JIMTOF 2008<br />

Tokyo Big Sight, Japan<br />

Organiser : JIMTOF Fair Management (JMTBA)<br />

Tel : +81-3-5530 1333<br />

Fax : +81-3-5530 1222<br />

URL<br />

: www.jimtof.org<br />

30 October - 2 November 2008<br />

EPM - Machine Tool Saigon 2008<br />

Saigon Exhibition & Convention Center, Ho Chi Minh<br />

Organiser : Hannover-Messe International GmbH<br />

Chan Chao International Co Ltd<br />

Tel : +84-8-827 9156<br />

Fax : +84-8-827 9157<br />

URL<br />

: www.epm-machinetool-saigon.com<br />

20 - 23 November 2008<br />

Thai Metalex 2008<br />

Bangkok International Trade & Exhibition Centre, Bangkok<br />

Organiser : Reed Tradex Company<br />

Tel : +66-2- 686 7299<br />

Fax : +66-2-686 7288<br />

URL<br />

: www.metalex.co.th<br />

8 - 13 September 2008<br />

IMTS 2008<br />

McCormick Place, Chicago<br />

Organiser<br />

: AMT Association For Manufacturing<br />

Technology<br />

Tel : +1-800-524-0475<br />

Fax : +1-703-893-1151<br />

URL<br />

: www.imts.com<br />

3 - 6 December 2008<br />

Manufacturing Indonesia 2008<br />

JIExpo PRJ Kemayoran, Jakarta<br />

Organiser : PT Pamerindo Buana Abadi<br />

Tel : +62-21-316 2001<br />

Fax : +62-21-316 2016<br />

URL<br />

: www.pamerindo.com<br />

indometalworking news Vol. Vol. 1 2 / 2008 / 65 65


Jokes<br />

Jokes Jokes<br />

Always on Duty<br />

A new soldier was on sentry duty at<br />

the main gate. His orders were clear:<br />

No car was to enter unless it had a<br />

special sticker on the windshield.<br />

A big Army car came up with a<br />

general seated in the back. The<br />

sentry said, “Halt, who goes there?”<br />

The chauffeur, a corporal, says,<br />

“General Wheeler.”<br />

“I’m sorry, I can’t let you through.<br />

You’ve got to have a sticker on the<br />

windshield.”<br />

The general said, “Drive on!”<br />

The sentry said, “Hold it! You really<br />

can’t come through. I have orders to<br />

shoot if you try driving in without a<br />

sticker.”<br />

The general repeated, “I’m telling you,<br />

son, drive on!”<br />

The sentry walked up to the rear<br />

window and said, “General, I’m new<br />

at this. Do I shoot you or the the<br />

driver?”<br />

Car Problem<br />

One day, a mechanical engineer,<br />

electrical engineer, chemical<br />

engineer, and computer engineer<br />

were driving down the street in the<br />

same car when it broke down.<br />

The mechanical engineer said,<br />

“I think a rod broke.”<br />

The chemical engineer said, “The way<br />

it sputtered at the end, I think it’s not<br />

getting enough gas.”<br />

The electrical engineer said, “I think<br />

there was a spark and something’s<br />

wrong with the electrical system.”<br />

All three turned to the computer<br />

engineer and said, “What do you<br />

think?”<br />

The computer engineer said,<br />

“I think we should all get out and then<br />

get back in.”<br />

Engineer in a bar<br />

There was a mine in a small town<br />

that completely collapsed. One of the<br />

engineers who miraculously survived<br />

the disaster went into the local watering<br />

hole. The bar was empty except<br />

for one lonely soul at the other end of<br />

the bar.<br />

“Hey bartender” said the Engineer,<br />

“I’ll have a beer and pour another one<br />

for my friend down at the end there.”<br />

The bartender responded, “I’m sorry<br />

sir but that guy’s a commie and we<br />

don’t serve his kind around here.”<br />

“Well, you’d better because if it<br />

weren’t for that guy, I wouldn’t be<br />

here. You remember that mine that<br />

caved in, well I was in that mine and<br />

so was that guy.<br />

When the last of us were escaping,<br />

he held the roof of the mine up with<br />

his head! So get him a beer and if you<br />

don’t believe me, look at the top of<br />

his head and you’ll see that it’s fl at<br />

from holding the roof up.”<br />

The bartender skeptically served the<br />

commie his beer and then came back<br />

to talk to the Engineer: “I saw the fl at<br />

spot on his head but I also couldn’t<br />

help noticing the bruising under his<br />

chin. What is that all about?” the Engineer<br />

responded: “Oh...that’s where<br />

we put the jack.”<br />

66<br />

indometalworking news Vol. 2 / 2008


Helicopter Problem<br />

A helicopter was fl ying around above<br />

Seattle yesterday when an electrical<br />

malfunction disabled all of the<br />

aircraft’s electronic navigation and<br />

communications equipment. Due<br />

to the clouds and haze, the pilot<br />

could not determine the helicopter’s<br />

position and course to steer to the<br />

airport. The pilot saw a tall building,<br />

fl ew toward it, circled, drew<br />

a handwritten sign, and held it in the<br />

helicopter’s window. The pilot’s sign<br />

said “WHERE AM I?” in large letters.<br />

People in the tall building quickly<br />

responded to the aircraft, drew a<br />

large sign, and held it in a building<br />

window. Their sign said “YOU ARE IN A<br />

HELICOPTER.”<br />

The pilot smiled, waved, looked at his<br />

map, determined the course to steer<br />

to SEATAC airport, and landed safely.<br />

After they were on the ground, the<br />

co-pilot asked the pilot how the “YOU<br />

ARE IN A HELICOPTER” sign helped<br />

determine their position in Seatle.<br />

The pilot responded “I knew that<br />

had to be the MICROSOFT building<br />

because, similar to their help-lines,<br />

they gave me a technically correct but<br />

completely useless answer.”<br />

Man with no experience<br />

I hate my job<br />

When you have an “I hate my job”<br />

day, try this: On your way home from<br />

work, stop at the pharmacy, go to the<br />

thermometers section and purchase<br />

a rectal thermometer made by “Best<br />

Thermo”. Be very sure you get this<br />

brand.<br />

When you get home, lock your doors,<br />

draw the drapes, and disconnect the<br />

phone so you will not be disturbed<br />

during your therapy. Change to very<br />

comfortable clothing, such as a<br />

sweat suit and lie down on your bed.<br />

Open the package and remove the<br />

thermometer. Carefully place it on<br />

the bedside table so that it will not<br />

become chipped or broken.<br />

Take out the material that comes with<br />

the thermometer and read it. You will<br />

notice that in small print there is a<br />

statement: “Every rectal thermometer<br />

made by Best Thermo is personally<br />

tested.” Now close your eyes and<br />

repeat out loud fi ve times: “I am so<br />

glad I do not work for quality control<br />

at the Best Thermo Company.”<br />

Office Skills<br />

“So tell me, Mrs. Smith,” asked the<br />

interviewer, “have you any other<br />

skills you think might be worth<br />

mentioning?”<br />

A Manager of a retail clothing store<br />

is reviewing a potential employee’s<br />

application and notices that the man<br />

has never worked in retail before.<br />

He says to the man, “For a man with<br />

no experience, you are certainly<br />

asking for a high wage.”<br />

“Well Sir,” the applicant replies, “the<br />

work is so much harder when you<br />

don’t know what you’re doing!”<br />

Newsflash: The world will end within the hour.<br />

But first some words from our sponsors.<br />

“Actually, yes,” said the applicant<br />

modestly. “Last year I had two<br />

short stories published in national<br />

magazines, and I fi nished my novel.”<br />

“Very impressive,” he commented,<br />

“but I was thinking of skills you could<br />

apply during offi ce hours.”<br />

Mrs. Smith explained brightly, “Oh,<br />

that was during offi ce hours.”<br />

indometalworking news Vol. 2 / 2008 67


Quotes on work<br />

Oscar Wilde:<br />

I put all my genius into my life; I put only my talent into my works.<br />

Albert Einstein:<br />

If A equals success, then the formula is A equals X plus Y and Z, with X being work, Y play, and Z<br />

keeping your mouth shut.<br />

Donald Kendall:<br />

The only place where success comes before work is in the dictionary.<br />

Francesca Reigler:<br />

Happiness is an attitude. We either make ourselves miserable, or happy and strong. The amount of<br />

work is the same.<br />

Henry Ford :<br />

Coming together is a beginning. Keeping together is progress. Working together is success.<br />

Grant Fairley:<br />

A positive attitude may not solve every problem but it makes solving any problem a more pleasant<br />

experience.<br />

Bertrand Russell:<br />

One of the symptoms of an approaching nervous breakdown is the belief that one’s work is terribly<br />

important.<br />

Alexander Graham Bell :<br />

Concentrate all your thoughts upon the work at hand. The sun’s rays do not burn until brought<br />

to a focus.<br />

Julia Cameron:<br />

What we really want to do is what we are really meant to do. When we do what we are meant to do,<br />

money comes to us, doors open for us, we feel useful, and the work we do feels like play to us.<br />

68<br />

indometalworking news Vol. 2 / 2008

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!