31.10.2014 Views

Steel Forming and Heat Treating Handbook - Antonio Gorni On Line

Steel Forming and Heat Treating Handbook - Antonio Gorni On Line

Steel Forming and Heat Treating Handbook - Antonio Gorni On Line

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

STEEL FORMING AND<br />

HEAT TREATING<br />

HANDBOOK<br />

<strong>Antonio</strong> Augusto <strong>Gorni</strong><br />

São Vicente SP<br />

Brazil<br />

agorni@iron.com.br<br />

www.gorni.eng.br<br />

This Version: 20 February 2014


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

i<br />

FOREWORD<br />

This is a compilation of some useful mathematical formulas, graphics <strong>and</strong> data in the area of forming, heat treatment <strong>and</strong><br />

physical metallurgy of steels. The very first version arose about thirty years ago as a h<strong>and</strong>written sheet with a few formulas.<br />

Afterwards it was converted to a digital format <strong>and</strong> eventually posted on-line, hoping that it could be also helpful worldwide.<br />

It must be noted that these formulas were compiled at r<strong>and</strong>om, generally in a need-to-know basis. So, this H<strong>and</strong>book is in<br />

permanent construction <strong>and</strong> very far to be complete. Finally, the author thanks Seok-Jae Lee for his contribution.<br />

DISCLAIMER<br />

The formulas <strong>and</strong> information compiled in this text are provided<br />

without warranty of any kind.<br />

Use them at your own risk!<br />

However, any help regarding the correction of eventual mistakes<br />

is appreciated.<br />

A Non-Stop Work<br />

First <strong>On</strong>-<strong>Line</strong> Release: 04 April 2002


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

SUMMARY<br />

ii<br />

Austenite Formation Temperature ...........................................................................................................................1<br />

Austenite Grain Size ...............................................................................................................................................8<br />

Austenite No-Recrystallization Temperature ............................................................................................................9<br />

Austenite Solubility Products ................................................................................................................................ 11<br />

Austenite Solubilization Temperature .................................................................................................................... 16<br />

Austenite Transformation Temperatures: Ar 3 <strong>and</strong> Ar 1 ............................................................................................ 17<br />

Austenite Transformation Temperatures: Bs <strong>and</strong> Bf ............................................................................................... 27<br />

Austenite Transformation Temperatures: Ms <strong>and</strong> Mf .............................................................................................. 34<br />

Critical Diameter – Austenite Hardenability ........................................................................................................... 48<br />

Density of Bulk <strong>Steel</strong> at Ambient Temperature ...................................................................................................... 49<br />

Density of Bulk <strong>Steel</strong> at High Temperature ............................................................................................................ 51<br />

Density of Liquid <strong>Steel</strong> .......................................................................................................................................... 54<br />

Density of Microstructural Components at Ambient Temperature .......................................................................... 55<br />

Density of Microstructural Components at High Temperature ............................................................................... 59<br />

Dimensional Changes during Austenite Transformation ........................................................................................ 62<br />

Equivalent Carbon – H.A.Z. Hardenability ............................................................................................................. 65<br />

Equivalent Carbon – Hydrogen Assisted Cold Cracking .......................................................................................... 69<br />

Equivalent Carbon – Peritectic Point ...................................................................................................................... 74<br />

Fe-C Equilibrium Diagram .................................................................................................................................... 76<br />

Fe-C Equilibrium Equations in the Solidification <strong>and</strong> Eutectoid Range .................................................................. 78<br />

Ferrite Solubility Products ..................................................................................................................................... 80<br />

Hardness After Austenite Cooling .......................................................................................................................... 82<br />

Hardness After Tempering ..................................................................................................................................... 87<br />

Hardness After Welding ......................................................................................................................................... 88<br />

Hardness-Tensile Properties Equivalence .............................................................................................................. 90


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

iii<br />

Hot Strength of <strong>Steel</strong> ............................................................................................................................................. 92<br />

Jominy Curves .................................................................................................................................................... 104<br />

Lattice Parameters of Phases ............................................................................................................................... 106<br />

Liquid <strong>Steel</strong> Solubility Products ........................................................................................................................... 108<br />

Liquidus Temperature of <strong>Steel</strong>s ........................................................................................................................... 109<br />

Poisson Ratio ...................................................................................................................................................... 110<br />

Precipitate Isothermal Solubilization Kinetics ...................................................................................................... 111<br />

Solidus Temperature of <strong>Steel</strong>s ............................................................................................................................. 115<br />

Relationships Between Chemical Composition x Process x Microstructure x Properties ........................................ 116<br />

Schaeffler Diagram .............................................................................................................................................. 133<br />

Shear Modulus of <strong>Steel</strong> <strong>and</strong> its Phases ................................................................................................................ 134<br />

Sheet <strong>and</strong> Plate Cutting Force <strong>and</strong> Work ............................................................................................................. 136<br />

Specimen Orientation for Mechanical Testing ...................................................................................................... 139<br />

Thermal Properties of <strong>Steel</strong>.................................................................................................................................. 141<br />

Thermal Properties of <strong>Steel</strong> Scale ........................................................................................................................ 149<br />

Thermomechanical Processing of <strong>Steel</strong> ................................................................................................................ 150<br />

Time-Temperature Equivalency Parameters for <strong>Heat</strong> <strong>Treating</strong> .............................................................................. 152<br />

Welding Effects ................................................................................................................................................... 156<br />

Welding Pool Phenomena .................................................................................................................................... 157<br />

Young Modulus ................................................................................................................................................... 158<br />

Appendixes<br />

Useful Data <strong>and</strong> Constants ................................................................................................................................. 160<br />

Unit Conversions ................................................................................................................................................ 167<br />

General Statistical Formulas ............................................................................................................................... 169


<strong>Gorni</strong><br />

- Austenite Formation Temperatures<br />

. Andrews<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

1<br />

Ae 723 16.9 Ni 29.1 Si 6.38W<br />

10.7 Mn 16.9 Cr 290 As<br />

1<br />

<br />

Ae<br />

3<br />

910 203<br />

400 Ti<br />

C<br />

44.7<br />

Si<br />

15.2<br />

Ni<br />

31.5 Mo 104 V<br />

13,1 W 30.0<br />

Mn 11.0 Cr<br />

20.0 Cu<br />

700<br />

P 400<br />

Al<br />

120<br />

As<br />

<br />

Notation:<br />

Ae1: Lower Equilibrium Temperature Between Ferrite <strong>and</strong> Austenite [°C]<br />

Ae3: Upper Equilibrium Temperature Between Ferrite <strong>and</strong> Austenite [°C]<br />

Alloy Content: [weight %]<br />

Observations:<br />

- Both formulas are valid for low alloy steels with less than 0.6%C.<br />

Source: ANDREWS, K.W. Empirical Formulae for the Calculation of Some Transformation Temperatures. Journal of the<br />

Iron <strong>and</strong> <strong>Steel</strong> Institute, 203, Part 7, July 1965, 721-727.<br />

. Eldis<br />

Ae 712 17.8 Mn 19.1 Ni 20.1 Si 11.9 Cr 9. 8 Mo<br />

1<br />

<br />

Ae 871 254.4 C 14.2 Ni 51. 7 Si<br />

3<br />

<br />

Notation:<br />

Ae1: Lower Equilibrium Temperature Between Ferrite <strong>and</strong> Austenite [°C]<br />

Ae3: Upper Equilibrium Temperature Between Ferrite <strong>and</strong> Austenite [°C]


<strong>Gorni</strong><br />

Alloy Content: [weight %]<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

2<br />

Observations:<br />

- Both formulas were proposed by ELDIS for low alloy steels with less than 0.6%C.<br />

Source: BARRALIS, J. & MAEDER, G. Métallurgie Tome I: Métallurgie Physique. Collection Scientifique ENSAM,<br />

1982, 270 p.<br />

. Grange<br />

Ae1 1333 25 Mn 40 Si 42 Cr 26 Ni<br />

Ae3 1570 323 C 25 Mn 80 Si 3 Cr 32 Ni<br />

Notation:<br />

Ae1: Lower Equilibrium Temperature Between Ferrite <strong>and</strong> Austenite [°F]<br />

Ae3: Upper Equilibrium Temperature Between Ferrite <strong>and</strong> Austenite [°F]<br />

Alloy Content: [weight %]<br />

Source: GRANGE, R.A. Estimating Critical Ranges in <strong>Heat</strong> Treatment of <strong>Steel</strong>s. Metal Progress, 70:4, April 1961, 73-75.<br />

. Hougardy<br />

Ac 739 22 C 7 Mn 2 Si 14 Cr 13 Mo 13 Ni<br />

1<br />

<br />

Ac 902 255 C 11<br />

Mn 19 Si 5 Cr 13 Mo 20 Ni 55V<br />

3<br />

<br />

Notation:<br />

Ac1: Lower Temperature of the Ferrite-Austenite Field During <strong>Heat</strong>ing [°C]


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

Ac3: Upper Temperature of the Ferrite-Austenite Field During <strong>Heat</strong>ing [°C]<br />

Alloy Content: [weight %]<br />

3<br />

Source: HOUGARDY, H.P. Werkstoffkunde Stahl B<strong>and</strong> 1: Grundlagen. Verlag Stahleisen GmbH, Düsseldorf, 1984, p.<br />

229.<br />

. Kariya<br />

Ac 754.83 32.25 C 17.76<br />

Mn 23.32 Si 17.3<br />

Cr 4.51 Mo 15. 62 V<br />

1<br />

<br />

Notation:<br />

Ac1: Lower Temperature of the Ferrite-Austenite Field During <strong>Heat</strong>ing [°C]<br />

Alloy Content: [weight %]<br />

Source: KARIYA, N. High Carbon Hot-Rolled <strong>Steel</strong> Sheet <strong>and</strong> Method for Production Thereof. European patent<br />

Application EP 2.103.697.A1, 23.09.2009, 15 p.<br />

. Kasatkin<br />

Ac<br />

1<br />

723 7.08 Mn 37.7 Si 18.1 Cr 44.2 Mo 8.95 Ni 50.1V<br />

21.7 Al 3.18 W<br />

297 S 830 N 11.5<br />

C Si 14.0 Mn Si <br />

3.10 Si Cr 57.9 C Mo 15.5 Mn Mo 5.28 C Ni 6.0 Mn Ni 6.77 Si Ni 0.80 Cr Ni 27.4 C V 30.8 Mo V 0.84 Cr<br />

2<br />

2<br />

2<br />

3.46 Mo 0.46 Ni 28 V<br />

2<br />

<br />

Observations:<br />

- Multiple Correlation Coefficient r = 0.96<br />

- Residual Mean-Square Deviation √do = 10.8°C


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

4<br />

Ac<br />

3<br />

912 370 C 27.4 Mn 27.3 Si 6.35 Cr 32.7 Ni 95.2 V<br />

900 B 16.2 C Mn 32.3 C Si 15.4 C Cr 48.0 C Ni 4.32 Si Cr 17.3 Si Mo 18.6 Si Ni 4.80 Mn Ni 40.5 Mo V <br />

174 C<br />

2<br />

2.46 Mn<br />

2<br />

6.86 Si<br />

2<br />

0.322 Cr<br />

2<br />

9.90 Mo<br />

2<br />

1.24 Ni<br />

190 Ti 72.0 Al 64.5 Nb 5.57 W<br />

2<br />

60.2 V<br />

2<br />

332 S 276 P 485 N<br />

<br />

Observations:<br />

- Multiple Correlation Coefficient r = 0.98<br />

- Residual Mean-Square Deviation √do = 14.5°C<br />

T<br />

188 370 C 7.93 Mn 26.8 Cr 33.0 Mo 23.5 Ni 52.5 V<br />

20.7 C Cr 6.26 Si Cr 64.2 C Mo 55.2 C Ni 10.8 Mn Ni 1.33 Cr<br />

194 Ti 47.8 Al 87.4 Nb 3.82 W<br />

2<br />

8.83 Mo<br />

2<br />

1.91 Ni<br />

2<br />

266 P 53.0 C Si <br />

37.8 V<br />

2<br />

Notation:<br />

Ac1: Upper Temperature of the Ferrite-Austenite Field During <strong>Heat</strong>ing [°C]<br />

Ac3: Upper Temperature of the Ferrite-Austenite Field During <strong>Heat</strong>ing [°C]<br />

ΔT: Intercritical Temperature Range [°C]<br />

Alloy Content: [weight %]<br />

Observations:<br />

- Multiple Correlation Coefficient r = 0.97<br />

- Residual Mean-Square Deviation √do = 16.8°C<br />

- These equations (Ac1, Ac3, ΔT) are valid within these composition limits: C ≤ 0.83%, Mn ≤ 2.0%, Si ≤ 1.0%, Cr ≤<br />

2.0%, Mo ≤ 1.0%, Ni ≤ 3.0%, V ≤ 0.5%, W ≤ 1.0%, Ti ≤ 0.15%, Al ≤ 0.2%, Cu ≤ 1.0%, Nb ≤ 0.20%, P ≤ 0.040%, S<br />

≤ 0.040%, N ≤ 0.025%, B ≤ 0.010%.<br />

Source: KASATKIN, O.G. et al. Calculation Models for Determining the Critical Points of <strong>Steel</strong>. Metal Science <strong>and</strong> <strong>Heat</strong><br />

Treatment, 26:1-2, January-February 1984, 27-31.<br />

. Lee


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

5<br />

A cm<br />

224.4 992.4 C 465.1 C<br />

7<br />

2<br />

46.7 Cr<br />

19.0 C Cr 6.1 Cr<br />

2<br />

7.6 Mn 10.0 Mo 6.8 Cr Mo 6.9<br />

Ni 3.7 C<br />

Ni 2.7 Cr<br />

Ni <br />

0.8 Ni<br />

2<br />

16.<br />

Si<br />

Notation:<br />

Acm: Upper Equilibrium Temperature Between Ferrite <strong>and</strong> Cementite [°C]<br />

Alloy Content: [weight %]<br />

Observations:<br />

- Equation valid for the following alloy range: 0.2% C 0.7%; Mn 1.5%; Si 0.3%; Ni 2.8%; Cr 1.5%; Mo <br />

0.6%.<br />

- Regression coefficient r² = 0.998837; precision interval: 3°C.<br />

Source: LEE, S.J. & LEE, Y.K. Thermodynamic Formula for the Acm Temperature of Low Alloy <strong>Steel</strong>s. ISIJ<br />

International, 47:5, May 2007, 769-774.<br />

. Park<br />

Ac 955 350 C 25 Mn 51 Si 106 Nb 100 Ti 68 Al 11Cr<br />

33 Ni 16<br />

Cu 67 Mo<br />

3<br />

<br />

Notation:<br />

Ac3: Upper Temperature of the Ferrite-Austenite Field During <strong>Heat</strong>ing [°C]<br />

Alloy Content: [weight %]<br />

Observations:<br />

- Formula specifically developed for TRIP steels.<br />

Source: PARK, S.H. et al. Development of Ductile Ultra-High Strength Hot Rolled <strong>Steel</strong>s. Posco Technical Report, 1996,<br />

50-128.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

6<br />

. Roberts<br />

Ae 3<br />

910 25 Mn 11 Cr 20 Cu 60 Si 700 P 250 Al F n<br />

Notation:<br />

Ae3: Upper Equilibrium Temperature Between Ferrite <strong>and</strong> Austenite [°C]<br />

Alloy Content: [weight %]<br />

Fn: value defined according to the table below:<br />

C Fn<br />

0.05 24<br />

0.10 48<br />

0.15 64<br />

0.20 80<br />

0.25 93<br />

0.30 106<br />

0.35 117<br />

0.40 128<br />

Source: ROBERTS, W.L.: Flat Processing of <strong>Steel</strong>; Marcel Dekker Inc., New York, 1988.<br />

. Trzaska<br />

Ac 739 22.8 C 6.8 Mn 18.2 Si 11.7 Cr 15<br />

Ni 6.4 Mo 5V<br />

28 Cu<br />

1<br />

<br />

Ac 937.3 224.5 C 17<br />

Mn 34 Si 14<br />

Ni 21.6 Mo 41.8 V 20 Cu<br />

3<br />

<br />

Notation:


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

Ac3: Lower Temperature of the Ferrite-Austenite Field During <strong>Heat</strong>ing [°C]<br />

Ac3: Upper Temperature of the Ferrite-Austenite Field During <strong>Heat</strong>ing [°C]<br />

Alloy Content: [weight %]<br />

7<br />

Source: TRZASKA, J. et al. Modelling of CCT Diagrams for Engineering <strong>and</strong> Constructional <strong>Steel</strong>s. Journal of Materials<br />

Processing Technology, 192-193, 2007, 504-510.


<strong>Gorni</strong><br />

- Austenite Grain Size<br />

. Lee & Lee<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

8<br />

d<br />

89098 3581 C 1211 Ni 1443 Cr 4031 Mo<br />

76671 exp<br />

t<br />

R T<br />

<br />

<br />

<br />

<br />

<br />

0.211<br />

Notation:<br />

d: Austenite Grain Size [μm]<br />

R: Universal Gas Constant, 8.314 J/mol.K<br />

T: Austenitizing Temperature [K]<br />

t: Austenitizing Time [s]<br />

Observations:<br />

- Equation valid under the following alloy range: 0.15% C 0.41%; 0.73% Mn 0.85; 0.20% Si 0.25%; Ni<br />

1.80%; Cr 1.45%; Mo 0.45.<br />

Source: LEE, S.J. et al.: Prediction of Austenite Grain Growth During Austenitization of Low Alloy <strong>Steel</strong>s. Materials <strong>and</strong><br />

Design, 29, 2008, 1840-1844.


<strong>Gorni</strong><br />

- Austenite No-Recrystallization Temperature<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

9<br />

. Boratto et al.<br />

Tnr 887 464 C ( 6445 Nb 644 Nb) ( 732 V 230 V ) 890 Ti 363 Al 357 Si<br />

Notation:<br />

Tnr: Temperature of No-Recrystallization [°C]. A temperature below which austenite recrystallization stops<br />

completely.<br />

Alloy Content: [weight %]<br />

Observations:<br />

- Equation valid under the following alloy range: 0.04% C 0.17%; 0.41% Mn 1.90; 0.15% Si 0.50%;<br />

0.002% Al 0.650; Nb 0.060%; V 0.120%; Ti 0.110%; Cr 0.67%; Ni 0.45.<br />

Source: BORATTO, F. et al.: Effect of Chemical Composition on Critical Temperatures of Microalloyed <strong>Steel</strong>s. In:<br />

THERMEC ‘88. Proceedings. Iron <strong>and</strong> <strong>Steel</strong> Institute of Japan, Tokyo, 1988, p. 383-390.<br />

T pr<br />

. Bai et al.<br />

12 <br />

174 logNb<br />

C<br />

N 1444<br />

14<br />

<br />

<br />

T<br />

nr<br />

T<br />

pr<br />

75<br />

Notation:<br />

Tpr: Temperature of Partial Recrystallization [°C]. Temperature below which full recrystallization between<br />

deformation steps is no longer possible.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

Tnr: Temperature of No-Recrystallization [°C]. Temperature below which austenite recrystallization stops<br />

completely.<br />

Alloy Content: [weight %]<br />

Observations:<br />

- In the specific case of steels including Ti, N content in the first equation is the effective N obtained by<br />

subtracting the N combined with Ti from the total N in the steel.<br />

Source: BAI, D. et al.: Development of Discrete X80 <strong>Line</strong> Pipe Plate at SSAB Americas. In: International Symposium on<br />

the Recent Developments in Plate <strong>Steel</strong>s. Proceedings. Association for Iron <strong>and</strong> <strong>Steel</strong> Technology,<br />

Warrendale, 2011, p. 13-22.<br />

10


<strong>Gorni</strong><br />

- Austenite Solubility Products<br />

. General<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

11<br />

m n<br />

( aM<br />

) ( a<br />

X<br />

)<br />

log<br />

10<br />

ks<br />

log<br />

10<br />

log<br />

10<br />

a<br />

M<br />

m<br />

X<br />

n<br />

m<br />

[ M ] [ X ]<br />

[ MX ]<br />

n<br />

Q <br />

<br />

<br />

RT<br />

<br />

2.303 <br />

C<br />

<br />

2.303<br />

A<br />

B<br />

T<br />

Notation:<br />

MmXn: Precipitate Considered for Calculation<br />

Ai: Activity<br />

M, X: Alloy Contents [weight %]<br />

T: Temperature [K]<br />

C: Constant<br />

A, B: Constants of the Solubility Product, given in the table below:<br />

Precipitate A B Source<br />

7060 1.55 Narita<br />

AlN 6770 1.03 Irvine<br />

7750 1.80 Ashby<br />

BN 13970 5.24 Fountain<br />

Cr23C6 7375 5.36 Ashby<br />

Mo2C 7375 5.00 Ashby<br />

NbC<br />

7900 3.42 Narita<br />

7290 3.04 Meyer<br />

9290 4.37 Johansen


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

5860 1.54 Meyer<br />

NbCN<br />

6770 2.26 Ashby<br />

NbC0.87<br />

NbN<br />

7520 3.11 Ashby<br />

7700 3.18 Mori<br />

8500 2.80 Narita<br />

10230 4.04 Smith<br />

10800 3.70 Ashby<br />

TiC 7000 2.75 Irvine<br />

TiN<br />

15020 3.82 Narita<br />

8000 0.32 Ashby<br />

VC 9500 6.72 Narita<br />

V4C3 8000 5.36 Ashby<br />

VN<br />

8330 3.46 Irvine<br />

7070 2.27 Irvine<br />

12<br />

Observations:<br />

- aAmBn is equal to one if the precipitate is pure.<br />

- aAmBn 1 if there is co-precipitation with another element.<br />

- The product [M] m [X] n (that is, ks) defines the graphical boundary of solubilization in a graph [M] x [X].<br />

Sources:<br />

- ASHBY, M.F. & EASTERLING, K.E. A First Report on Diagrams for Grain Growth in Welds. Acta Metallurgica,<br />

30, 1982, 1969-1978.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

13<br />

- FOUNTAIN, R. & CHIPMAN, J. Solubility <strong>and</strong> Precipitation of Vanadium Nitride in Alpha <strong>and</strong> Gamma Iron.<br />

Transactions of the AIME, Dec. 1958, 737-739<br />

- GLADMAN, T. The Physical Metallurgy of Microalloyed <strong>Steel</strong>s. The Institute of Materials, London, 1997, 363 p.<br />

- IRVINE, K.J. et al. Grain-Refined C-Mn <strong>Steel</strong>s. Journal of the Iron <strong>and</strong> <strong>Steel</strong> Institute, 205:2, Feb. 1967,<br />

161-182.<br />

- JOHANSEN, T.G. et al. The Solubility of Niobium (Columbium) Carbide in Gamma Iron. Transactions of the<br />

Metallurgical Society of AIME, 239:10, October 1967, 1651-1654.<br />

- NARITA, K.et al. Physical Chemistry of Ti/Zr, V/Nb/Ta <strong>and</strong> Rare Elements in <strong>Steel</strong>. Transactions of the ISIJ,<br />

15:5, May 1975, 145-151.<br />

- SMITH, R.P. Transactions of the AIME, 224, 1962, 190.<br />

- Values compiled by Rajindra Clement Ratnapuli <strong>and</strong> Fúlvio Siciliano from assorted references when not<br />

specified above.<br />

. Irvine<br />

12 <br />

log[ Nb] C N .<br />

<br />

<br />

<br />

2 26<br />

14<br />

<br />

6770<br />

T<br />

Notation:<br />

T: Temperature [K]<br />

Alloy Content: [weight %]


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

Source: IRVINE, K.J. et al. Grain-Refined C-Mn <strong>Steel</strong>s. Journal of the Iron <strong>and</strong> <strong>Steel</strong> Institute, 205:2, Feb. 1967,<br />

161-182.<br />

14<br />

. Mori<br />

log [ Nb]<br />

[ N]<br />

0.65<br />

[ C]<br />

0.24<br />

10400<br />

4.09 <br />

T<br />

Notation:<br />

T: Temperature [K]<br />

Alloy Content: [weight %]<br />

Source: MORI, T. et al.: Thermodynamic Behaviors of Niobium-Carbide-Nitride <strong>and</strong> Sulfide in <strong>Steel</strong>. Tetsu-to-Hagané,<br />

51:11, 1965, 2031-2011.<br />

. Siciliano<br />

. .<br />

12 <br />

[ Mn] [ Si]<br />

log[ Nb] C N .<br />

<br />

<br />

<br />

838 0 246 1730 0 594 6440<br />

2 26<br />

14<br />

T<br />

Notation:<br />

T: Temperature [K]<br />

Alloy Content: [weight %]<br />

Source: SICILIANO JR., F..: Mathematical Modeling of the Hot Strip Rolling of Nb Microalloyed <strong>Steel</strong>s. Ph.D. Thesis,<br />

McGill University, February 1999, 165 p.<br />

. Dong


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

15<br />

<br />

log [ Nb]<br />

<br />

C<br />

<br />

<br />

12<br />

14<br />

<br />

N<br />

<br />

<br />

1371 [ Mn]<br />

923 [ Si]<br />

8049<br />

3.14 0.35 [ Si]<br />

0.91[ Mn]<br />

<br />

T<br />

Notation:<br />

T: Temperature [K]<br />

Alloy Content: [weight %]<br />

Source: DONG, J.X. et al.: Effect of Silicon on the Kinetics of Nb(C,N) Precipitation during the Hot Working of Nb-bearing<br />

<strong>Steel</strong>s. ISIJ International, 40:6, June 2000, 613-618.<br />

. Irvine<br />

log [ V ]<br />

<br />

N<br />

<br />

3.46 0.12 Mn <br />

8330<br />

T<br />

Notation:<br />

T: Temperature [K]<br />

Alloy Content: [weight %]<br />

Source: ASHBY, M.F. & EASTERLING, K.E. A First Report on Diagrams for Grain Growth in Welds. Acta Metallurgica,<br />

30, 1982, 1969-1978.


<strong>Gorni</strong><br />

- Austenite Solubilization Temperature<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

16<br />

0<br />

T ( C)<br />

<br />

d<br />

B log<br />

10<br />

A<br />

( a<br />

A<br />

)<br />

m<br />

( a<br />

B<br />

)<br />

n<br />

273<br />

Notation:<br />

AmBn: Precipitate considered for calculation<br />

Td: Solubilization temperature [°C]<br />

ax: Alloy content [weight %]<br />

A, B: Constants of the solubility product, given in the table at the topic Austenite Solubilization Products.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

17<br />

- Austenite Transformation Temperatures: Ar3 <strong>and</strong> Ar1<br />

. Blás<br />

Ar 903 328 C 102<br />

Mn 116 Nb 0. 909 v<br />

3<br />

<br />

Notation:<br />

Ar3: Ferrite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

v: Cooling Rate [°C/s]<br />

Observations:<br />

- This formula was determined using temperature data got from samples cooled directly from hot rolling<br />

experiments. Thus it includes the effects of hot forming over austenite decomposition.<br />

- Useful range: 0.024-0.068% C, 0.27-0.39% Mn, 0.004-0.054% Al, 0.000-0.094% Nb, 0.0019-0.0072% N, 1.0-<br />

35°C/s<br />

- r = 0.934; St<strong>and</strong>ard Error of Deviation = 5°C<br />

Source: BLÁS, J.G. et al.: Influência da Composição Química e da Velocidade de Resfriamento sobre o Ponto Ar3 em Aços<br />

de Baixo C Microligados ao Nb. In: 44° Congresso Anual da Associação Brasileira de Metais, ABM, São<br />

Paulo, vol. 1, Outubro 1989, p 11-29.<br />

. Choquet<br />

Ar3 902 527 C 62 Mn 60 Si<br />

Notation:<br />

Ar3: Ferrite Start Temperature [°C]<br />

Alloy Amount: [weight %]


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

Observations:<br />

- This formula was determined using data got from samples cooled directly from hot rolling experiments. Thus it<br />

includes the effects of hot forming over austenite decomposition.<br />

Source: CHOQUET, P. et al.: Mathematical Model for Predictions of Austenite <strong>and</strong> Ferrite Microstructures in Hot Rolling<br />

Processes. IRSID Report, St. Germain-en-Laye, 1985. 7 p.<br />

18<br />

. Kariya<br />

Ar 910 203 C 30 Mn 44.7 Si 11Cr<br />

31.5 Mo 15. 2 Ni<br />

3<br />

<br />

Notation:<br />

Ar3: Ferrite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Source: KARIYA, N. High Carbon Hot-Rolled <strong>Steel</strong> Sheet <strong>and</strong> Method for Production Thereof. European Patent<br />

Application EP 2.103.697.A1, 23.09.2009, 15 p.<br />

. Mintz<br />

First Proposal:<br />

2<br />

Ar 833.6 190.6 C 67.4 Mn 1522 S 2296 Nti 1532<br />

Nb 7.91 d<br />

1/ 0. 117 CR<br />

3<br />

<br />

N<br />

ti<br />

<br />

N<br />

t<br />

<br />

Ti<br />

3.5<br />

Notation:


<strong>Gorni</strong><br />

Ar3: Ferrite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Nt: Total Nitrogen Content [weight %]<br />

d = Austenite Grain Diameter [mm]<br />

CR = Cooling Rate [°C/min]<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

19<br />

Observations:<br />

- This formula was determined using temperature data got from non-hot deformed samples.<br />

- Useful range: 0.04-0.75% C, 0.30-1.60% Mn, 0.02-0.49% Si, 0.014-0.085% Al, 0.00-0.31% Nb, 0.004-0.008%<br />

N, 0.003-0.032% S, d: 0.070-0.950 mm, CR: 25-200°C/min<br />

- r = 0.949; St<strong>and</strong>ard Error of Deviation = 15.9°C. The coefficients for Nti (82.2%), d (87.4%) <strong>and</strong> CR (92.8%) were<br />

not significant for a 95% minimum confidence level.<br />

- The unexpected positive effect of S can be associated to the enhanced nucleation of ferrite at sulphides.<br />

Second Proposal:<br />

Ar 868 181 C 75.8 Mn 1086 S 3799 Nti 1767<br />

Nb 0. 0933 CR<br />

3<br />

<br />

N<br />

ti<br />

<br />

N<br />

t<br />

<br />

Ti<br />

3.5<br />

Notation:<br />

Ar3: Ferrite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Nt: Total Nitrogen Content [weight %]<br />

CR = Cooling Rate [°C/min]<br />

Observations:<br />

- This formula was determined using temperature data got from non-hot deformed samples <strong>and</strong> includes TRIP<br />

steels.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

- Useful range: 0.04-0.75% C, 0.31-2.52% Mn, 0.01-1.22% Si, 0.00-1.55% Al, 0.000-0.042% Nb, 0.0012-0.014%<br />

N, 0.002-0.110% P, 0.001-0.032% S, d: 0.1-1.0 mm, CR: 10-200°C/min<br />

- r = 0.939; St<strong>and</strong>ard Error of Deviation = 18.1°C.<br />

Source: MINTZ, B. et al. Regression Equation for Ar3 Temperature for Coarse Grained as Cast <strong>Steel</strong>s. Ironmaking <strong>and</strong><br />

<strong>Steel</strong>making, 38:3, March 2011, 197-203.<br />

20<br />

. Ouchi<br />

Ar3 910 310 C 80 Mn 20 Cu 15 Cr 55 Ni 80 Mo 0, 35 ( h 8)<br />

Notation:<br />

Ar3: Ferrite Start Temperature [°C]<br />

Alloy Content: [weight %]<br />

h: Plate Thickness [mm]<br />

Observations:<br />

- This formula was determined using temperature data got from samples of Nb microalloyed steels cooled directly<br />

from hot rolling experiments. Thus it includes the effects of hot forming over austenite decomposition.<br />

Source: OUCHI, C. et al. The Effect of Hot Rolling Condition <strong>and</strong> Chemical Composition on the <strong>On</strong>set Temperature of<br />

Gamma-Alpha Transformation After Hot Rolling. Transactions of the ISIJ, March 1982, 214-222.<br />

. Pickering<br />

Ar 910 230 C 21 Mn 15 Ni 32 Mo 45 Si 13W<br />

104 V<br />

3<br />

<br />

Notation:<br />

Ar3: Ferrite Start Temperature [°C]


<strong>Gorni</strong><br />

Alloy Content: [weight %]<br />

Observations:<br />

- Applicable to Plain C <strong>Steel</strong>s.<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

21<br />

Source: PICKERING, F.B.: <strong>Steel</strong>s: Metallurgical Principles. In: Encyclopedia of Materials Science <strong>and</strong> Engineering,<br />

vol. 6, The MIT Press, Cambridge, 1986.<br />

. Santos<br />

Ar3 874.44 512.0465 C 40.915 Mn 23.075 Si 567.126 C²<br />

199.551<br />

C Mn 265.797 C Si 4.148 A 1.03<br />

CR 11.334<br />

ln CR<br />

<br />

<br />

A<br />

0.002<br />

2 ln<br />

<br />

ln<br />

d <br />

2<br />

<br />

<br />

Notation:<br />

Ar3: Ferrite Start Temperature [°C]<br />

Alloy Content: [weight %]<br />

A: Austenite Grain Size [ASTM units]<br />

CR: Continuous Cooling Rate [°C/s]<br />

dγ: Austenite Grain Size [μm]<br />

Observations:<br />

- Equation fitted with data from 94 points; r² = 0.9888<br />

- Applicable to plain C <strong>Steel</strong>s.<br />

Source: SANTOS, A.A.: Previsão das Temperaturas Críticas de Decomposição da Austenita em Ferrita e Perlita Durante<br />

Resfriamento Contínuo. In: 41° Seminário de Laminação – Processos e Produtos Laminados e Revestidos,<br />

Associação Brasileira de Metalurgia e Materiais, Joinville, 2004, 10 p.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

22<br />

. Sekine<br />

Ar 868 396 C 68.1 Mn 24.6 Si 36.1 Ni 24.8 Cr 20. 7 Cu<br />

3<br />

<br />

Notation:<br />

Ar3: Ferrite Start Temperature [°C]<br />

Alloy Content: [weight %]<br />

Observations:<br />

- This formula was determined using temperature data got from samples cooled directly from hot rolling<br />

experiments. Thus it includes the effects of hot forming over austenite decomposition.<br />

Source: TAMURA, I. et al.: Thermomechanical Processing of High-Strength Low-Alloy <strong>Steel</strong>s. Butterworths,<br />

London, 1988, 248 p.<br />

. Shiga<br />

Ar 910 273 C 74 Mn 56 Ni 16<br />

Cr 9 Mo 5 Cu<br />

3<br />

<br />

Notation:<br />

Ar3: Ferrite Start Temperature [°C]<br />

Alloy Content: [weight %]<br />

Observations:<br />

- This formula was determined using temperature data got from samples cooled directly from hot rolling<br />

experiments. Thus it includes the effects of hot forming over austenite decomposition.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

Source: SHIGA, C. et al.: Development of Large Diameter High Strength <strong>Line</strong> Pipes for Low Temperature Use. Kawasaki<br />

<strong>Steel</strong> Technical Report, December 1981, 97-109.<br />

23<br />

. Proprietary #1<br />

Ar 879.4 516.1 C 65.7 Mn 38.0 Si 274. 7 P<br />

3<br />

<br />

Notation:<br />

Ar3: Ferrite Start Temperature [°C]<br />

Alloy Content: [weight %]<br />

. Proprietary #2<br />

Ar 901 325 C 92 Mn 33 Si 287 P 40 Al 20 Cr<br />

3<br />

<br />

Notation:<br />

Ar3: Ferrite Start Temperature [°C]<br />

Alloy Content: [weight %]<br />

Observations:<br />

- The previous conditioning of the steel samples that supplied data for the deduction of this formula is unknown.<br />

Source: Unknown.<br />

. Proprietary #3<br />

Ar 706.4 350.4 C 118. 2 Mn<br />

1


<strong>Gorni</strong><br />

Notation:<br />

Ar1: Ferrite End Temperature [°C]<br />

Alloy Content: [weight %]<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

24<br />

Observations:<br />

- The previous conditioning of the steel samples that supplied data for the deduction of this formula is unknown.<br />

- Samples cooled at 20°C/s.<br />

Source: Unknown.<br />

. Yuan<br />

Non-Deformed Austenite:<br />

D <br />

370 exp <br />

<br />

0.1<br />

2<br />

Ar3 325 CR 5649 Nb 78194 Nb 1019<br />

6.7 <br />

<br />

Notation:<br />

Ar3: Ferrite Start Temperature [°C]<br />

CR: Continuous Cooling Rate [°C/s]<br />

Nb: Niobium content [weight %]<br />

Observations:<br />

- This formula was determined using temperature data got from non-hot deformed samples.<br />

- Base steel: 0.11% C, 1.20% Mn, 0.20% Si, 0.005% N. Useful range: 0.000-0.038% Nb, CR: 0.5-30°C/s.<br />

Deformed Austenite:


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

25<br />

D <br />

1<br />

370 exp <br />

<br />

0.1<br />

2<br />

<br />

Ar<br />

3<br />

198 CR 6646 Nb 2327 Nb 66<br />

830<br />

6.7<br />

<br />

<br />

<br />

t<br />

0.05<br />

<br />

<br />

Notation:<br />

Ar3: Ferrite Start Temperature [°C]<br />

CR: Continuous Cooling Rate [°C/s]<br />

Nb: Niobium content [weight %]<br />

t0.05: Nb(CN) Precipitation Start Time [s]<br />

Δ: Residual Strain in Austenite<br />

Observations:<br />

- This formula was determined using temperature data got from samples cooled directly from hot rolling<br />

experiments. Thus it includes the effects of hot forming over austenite decomposition.<br />

- Base steel: 0.11% C, 1.20% Mn, 0.20% Si, 0.005% N. Useful range: 0.000-0.038% Nb, CR: 0.5-30°C/s. See<br />

reference for details about the calculation of t0.05 <strong>and</strong> Δ, which requires external models.<br />

Source: YUAN, X.Q. et al.: The <strong>On</strong>set Temperatures of to -Phase Transformation in Hot Deformed <strong>and</strong> Non-Deformed<br />

Nb Micro-Alloyed <strong>Steel</strong>s. ISIJ International, 46:4, Apr. 2006, 579-585.<br />

. Zhao<br />

2<br />

M a<br />

820 603.76 C 247.13 C 66.24 Mn 55.72 Ni<br />

2<br />

3<br />

0.165 Co 0.00255 Co 28. 01 Ru<br />

Notation:<br />

Ma: Massive Ferrite Start Temperature [°C]<br />

Alloy Content: [weight %]<br />

3.97 Ni<br />

2<br />

0.151 Ni<br />

3<br />

31.10 Cr 2.348 Cr<br />

2<br />

24.29 Mo 31.88 Cu 0.196 Co


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

Source: ZHAO, J.: Continuous Cooling Transformations in <strong>Steel</strong>s. Materials Science <strong>and</strong> Technology, 8:11, November<br />

1992, 997-1002.<br />

26


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

27<br />

- Austenite Transformation Temperatures: Bs <strong>and</strong> Bf<br />

. Bodnar<br />

B s<br />

844 597 C 63 Mn 16<br />

Ni 78 Cr<br />

Notation:<br />

Bs: Bainite Start Temperature [°F]<br />

Alloy Amount: [weight %]<br />

Source: ZHAO, Z. et al. A New Empirical Formula for the Bainite Upper Temperature Limit of <strong>Steel</strong>. Journal of Materials<br />

Science, 36, 2001, 5045-5056.<br />

. Kirkaldy<br />

B s<br />

656 57.7 C 35 Mn 75 Si 15.3<br />

Ni 34 Cr 41. 2 Mo<br />

Notation:<br />

Bs: Bainite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Observations:<br />

- This is a modification of Steven & Haynes’ formula using isothermal transformation diagrams determined for<br />

low <strong>and</strong> high alloy steels produced by U.S. <strong>Steel</strong>.<br />

Source: KIRKALDY, J.S. et al. Prediction of Microstructure <strong>and</strong> Hardenability in Low Alloy <strong>Steel</strong>s. In: Phase<br />

Transformations in Ferrous Alloys, AIME, Philadelphia, 1983, 125-148.<br />

. Kunitake & Okada


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

28<br />

B s<br />

732 202 C 85 Mn 216 Si 37 Ni 47 Cr 39 Mo<br />

Notation:<br />

Bs: Bainite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Observations:<br />

- These authors concluded that the measured Bs temperature for steels with a greater ni or Cr content is much<br />

higher than that predicted by Steven & Haynes.<br />

- Reliable chemical composition range: 0.11-0.56% C, 0.34-1.49% Mn, 0.14-0.40% Si, 0.07-1.99% Mo, 0.14-<br />

4.80% Cr, 0.23-4.33% Ni.<br />

Source: KUNITAKE, T. & OKADA, Y. The Estimation of Bainite Transformation Temperatures in <strong>Steel</strong>s by Empirical<br />

Formulas. Tetsu-to-Hagané, 84:2, February 1998, 137-141.<br />

. Lee<br />

2<br />

B s<br />

984.4 361.9 C 261.9 C 28.3 Mn 43. 7 Si<br />

Notation:<br />

Bs: Bainite Start Temperature [K]<br />

Alloy Amount: [weight %]<br />

Observations:<br />

- Formula specifically developed for TRIP steels.<br />

Source: LEE, J.K. et al. Prediction of Tensile Deformation Behaviour of Formable Hot Rolled <strong>Steel</strong>s. Posco Technical<br />

Research Laboratories Report, Pohang, 1999.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

29<br />

. Lee<br />

B s<br />

<br />

2<br />

2<br />

745 110<br />

C 59 Mn 39 Ni 68 Cr 106<br />

Mo 17 Mn Ni 6 Cr 29 Mo<br />

Notation:<br />

Bs: Bainite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Observations:<br />

- This formula is based in the equations of Steven & Haynes, Kirkaldy <strong>and</strong> Kunitake & Okada, as well data from<br />

many time-temperature diagrams for several steels, including low alloy steels <strong>and</strong> steels with Ni <strong>and</strong> Cr<br />

contents up to 4.5%, which were published in the Atlas of Time-Temperature Diagrams for Iron <strong>and</strong> <strong>Steel</strong>s<br />

by G.F. V<strong>and</strong>er Voort through ASM International, Metals Park, in 1991.<br />

- Reliable chemical composition range: 0.10-0.80% C, 0.26-1.63% Mn, 0.13-0.67% Si, 0.00-1.96% Mo, 0.00-<br />

4.48% Cr, 0.00-4.34% Ni.<br />

Source: LEE, Y.K. et al. Empirical Formula of Isothermal Bainite Start Temperature of <strong>Steel</strong>s. Journal of Materials<br />

Science Letters, 21:16, 2002, 1253-122.<br />

. Li<br />

B s<br />

637 58 C 35 Mn 15<br />

Ni 34 Cr 41 Mo<br />

Notation:<br />

Bs: Bainite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Observations:


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

- This formula is a modification of Kirkaldy’s Bs equation.<br />

- It assumes that Si amount is constant <strong>and</strong> equal to 0.25%, as most low alloy steels exhibit a content of this<br />

alloy element in this order of magnitude.<br />

- Reliable chemical composition range: 0.20-0.41% C, 0.31-1.01% Mn, 0.10-0.28% Si, 0.00-0.44% Mo, 0.02-<br />

0.98% Cr, 0.02-3.04% Ni, 0.05-0.11% Cu.<br />

Source: LI, M. et al. A Computational Model for the Prediction of <strong>Steel</strong> Hardenability. Metallurgical <strong>and</strong> Materials<br />

Transactions B, 29:6, June 1998, 661-672.<br />

30<br />

. Steven & Haynes<br />

B s<br />

830 270 C 90 Mn 37 Ni 70 Cr 83 Mo<br />

B<br />

50<br />

B s<br />

50<br />

B<br />

100<br />

B s<br />

120<br />

Notation:<br />

Bs: Bainite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Bx: Temperature Required for the Formation of x% of Bainite [°C]<br />

Observations:<br />

- Reliable chemical composition range: 0.10-0.55% C, 0.2-1.7% Mn, 0.0-1.0% Mo, 0.0-3.5% Cr, 0.0-5.0% Ni.<br />

Source: STEVEN, W. & HAYNES, A.G. The Temperature of Formation of Martensite <strong>and</strong> Bainite in Low Alloy <strong>Steel</strong>s.<br />

Journal of the Iron <strong>and</strong> <strong>Steel</strong> Institute, 183, 1956, 349-359.<br />

. Suehiro


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

31<br />

Bs 718 425 C 42.<br />

5 Mn<br />

Notation:<br />

Bs: Bainite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Source: SUEHIRO, M. et al. A Kinetic Model for Phase Transformation of Low C <strong>Steel</strong>s during Continuous Cooling. Tetsuto-Hagané,<br />

73:8, June 1987, 1026-1033.<br />

. Takada<br />

B s<br />

1336 1446<br />

C 62.3 Mn 36.5 Si 47.8 Cr 160<br />

V 77. 5 Mo<br />

Notation:<br />

Bs: Bainite Start Temperature [K]<br />

Alloy Amount: [weight %]<br />

Observations:<br />

- Formula developed specifically for forging steels.<br />

- Reliable chemical composition range: 0.11-0.40% C, 0.50-2.52% Mn, 0.31-1.26% Si, 0.20-1.96% Cr.<br />

Source: TAKADA, H. Alloy Designing of High Strength Bainite <strong>Steel</strong>s for Hot Forging. Tetsu-to-Hagané, 88:9, September<br />

2002, 534-538.<br />

. van Bohemen<br />

B s<br />

839 86 Mn 23 Si 67 Cr 33 Ni 75 Mo 270 1 exp( 1.33<br />

C)


<strong>Gorni</strong><br />

Notation:<br />

Bs: Bainite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

32<br />

Observation:<br />

- Factors multiplying substitutional elements are less than 10% different from the factors found by Steven <strong>and</strong><br />

Haynes.<br />

- St<strong>and</strong>ard error of estimate σ = 13°C; correlation coefficient R² = 0.97.<br />

Source: van Bohemen, S.M.C. Bainite <strong>and</strong> Martensite Start Temperature Calculated with Exponential Carbon<br />

Dependence. Materials Science <strong>and</strong> Technology, 28:4, April 2012, 487-495.<br />

. Wang & Cao<br />

B 36. 6<br />

s<br />

Mn eq<br />

Mn eq<br />

Mn 3.43<br />

Mo 0. 56 Ni<br />

Notation:<br />

Bs: Bainite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Source: WANG, S. & KAO, P. The Effect of Alloying Elements on the Structure <strong>and</strong> Mechanical Properties of ULCB <strong>Steel</strong>s.<br />

J. of Materials Science, 28, 1993, 5169-75.<br />

. Zhao


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

33<br />

2<br />

B s<br />

720 585.63 C 126.60 C 91.68 Mn 7.82 Mn²<br />

0.3378 Mn³<br />

66.34 Ni 6.06 Ni²<br />

0.232 Ni³<br />

31.66 Cr 2.17 Cr²<br />

<br />

42.37 Mo 9.16 Co 0.1255 Co²<br />

0.000284 Co³<br />

36.02 Cu 46. 15 Ru<br />

Source: ZHAO, J.: Continuous Cooling Transformations in <strong>Steel</strong>s. Materials Science <strong>and</strong> Technology, 8:11, Nov. 1992,<br />

997-1002.<br />

B s<br />

630 45 Mn 40 V 35 Si 30 Cr 25 Mo 20 Ni 15W<br />

Source: ZHAO, Z. et al. A New Empirical Formula for the Bainite Upper Temperature Limit of <strong>Steel</strong>. Journal of Materials<br />

Science, 36, 2001, 5045-5056.<br />

Notation:<br />

Bs: Bainite Start Temperature [°C]<br />

Alloy Amount: [weight %]


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

34<br />

- Austenite Transformation Temperatures: MS <strong>and</strong> Mf<br />

. Andrews<br />

M s<br />

539 423 C 30.4 Mn 17.7 Ni 12.1 Cr 11.0 Si 7. 0 Mo<br />

2<br />

M s<br />

512 453 C 16.9 Ni 9.5 Mo 217 C 71.5 C Mn 15 Cr 67. 6 C Cr<br />

Notation:<br />

Ms: Martensite Start Temperature [°C]<br />

Alloy Content: [weight %]<br />

Observations:<br />

- Formula valid for low alloy steels with less than 0.6%C, 4.9% Mn, 5.0% Cr, 5.0% Ni <strong>and</strong> 5.4% Mo.<br />

Source: ANDREWS, K.W. Empirical Formulae for the Calculation of Some Transformation Temperatures. Journal of the<br />

Iron <strong>and</strong> <strong>Steel</strong> Institute, 203, Part 7, July 1965, 721-727.<br />

. Capdevila<br />

M s<br />

764.2<br />

302.6 C 30.6 Mn 16.6 Ni 8.9 Cr 2.4 Mo 11.3<br />

Cu 8.58 Co 7.4 W 14.<br />

5 Si<br />

Notation:<br />

Ms: Martensite Start Temperature [K]<br />

Alloy Content: [weight %]<br />

Observations:


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

- Equation valid for steels with chemical composition between the following limits: 0.001 ≤ C ≤ 1.65, Mn ≤ 3.76,<br />

Si ≤ 3.40, Cr ≤ 17.9, Ni ≤ 27.2, Mo ≤ 5.10, V ≤ 4.55, Co ≤ 30.0, Al ≤ 1.10, W ≤ 12.9, Cu ≤ 0.98, Nb ≤ 0.23, B ≤<br />

0,0010, 0.0001 ≤ N ≤ 0.060.<br />

Source: CAPDEVILA, C. et al. Determination of Ms Temperature in <strong>Steel</strong>s: A Bayesian Neural Network Model. ISIJ<br />

International, 42:8, August 2002, 894-902.<br />

35<br />

M s<br />

. Carapella<br />

496.1 (1 0.344 C)<br />

(1 0.051 Mn)<br />

(1 0.018 Si)<br />

(1 0.025 Ni)<br />

(1 0.039 Cr)<br />

(1 0.016 Mo)<br />

(1 0.010 W)<br />

(1 0.067 Co)<br />

Notation:<br />

Ms: Start Temperature of the Martensitic Transformation [°C]<br />

Alloy Amount: [weight %]<br />

Source: CARAPELLA, L.A. Computing A 11 or Ms (Transformation Temperature on Quenching), Metal Progress, 46, 1944,<br />

108.<br />

. Eichelman & Hull<br />

M s<br />

8.9<br />

Ni)<br />

33.3 (1.33 Mn)<br />

27.8 (0.47 Si)<br />

1666.7 (0.068 C N 17. 8<br />

41.7 (14.6 Cr)<br />

5.6<br />

<br />

Notation:<br />

Ms: Martensite Start Temperature [°C]<br />

Alloy Content: [weight %]<br />

Observations:<br />

- Equation valid for 18-8 stainless steels.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

Source: EICHELMAN, G.H. & HULL, F.C. The Effects of Composition on the Temperature of Spontaneous Transformation<br />

of Austenite to Martensite in 18-8 Stainless <strong>Steel</strong>s. Transactions of the American Society for Metals, 45,<br />

1953, p. 77-104.<br />

36<br />

. Eldis<br />

M s<br />

531 391.2 C 43.3 Mn 21.8 Ni 16. 2 Cr<br />

Notation:<br />

Ms: Martensite Start Temperature [°C]<br />

Alloy Content: [weight %]<br />

Observations:<br />

- Equation valid for steels with chemical composition between the following limits: 0.10~0.80% C; 0.35~1.80%<br />

Mn; < 1.50% Si; < 0.90% Mo; < 1.50% Cr; < 4.50% Ni.<br />

Source: BARRALIS, J. & MAEDER, G. Métallurgie Tome I: Métallurgie Physique. Collection Scientifique ENSAM,<br />

1982, 270 p.<br />

. Finkler & Schirra<br />

C<br />

0.86 N<br />

0.15 ( Nb Zr)<br />

0.066 ( Ta Hf ) 33<br />

Mn 17 Cr 17 Ni 21 Mo 39 V W <br />

M s<br />

635 474<br />

11<br />

Notation:<br />

Ms: Martensite Start Temperature [°C]<br />

Alloy Content: [weight %]<br />

Observations:<br />

- Equation valid for high temperature martensitic steels with 8,0 to 14% Cr.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

37<br />

Source: FINKLER, H. & SCHIRRA, M. Transformation Behavior of High Temperature Martensitic <strong>Steel</strong>s with 8 to 14%<br />

Chromium. <strong>Steel</strong> Research, 67:8, August 1986, p. 328-336.<br />

. Grange & Stewart<br />

M s<br />

537.8<br />

361.1 C 38.9 ( Mn Cr)<br />

19.4<br />

Ni 27. 8 Mo<br />

Notation:<br />

Ms: Martensite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Source: GRANGE, R.A. & STEWART, H.M. The Temperature Range of Martensite Formation. Transactions of the<br />

AIME, 167, 1946, 467-490.<br />

. Hougardy<br />

M<br />

s<br />

0.495 M<br />

sjh<br />

0.00095 M<br />

2<br />

sjh<br />

40<br />

Notation:<br />

Ms: Corrected Martensite Start Temperature [°C]<br />

Msjh: Martensite Temperature Start According to Jaffe & Hollomon [°C]<br />

Alloy Amount: [weight %]<br />

Observation:<br />

- Correction of Jaffe & Hollomon equation considering several other similar equations already published.


<strong>Gorni</strong><br />

<br />

V 1<br />

exp k ( M T)<br />

M<br />

s<br />

q<br />

<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

38<br />

k<br />

<br />

3<br />

4<br />

6<br />

2<br />

8<br />

3<br />

11<br />

4<br />

0.36<br />

10<br />

0.10 10<br />

M<br />

s<br />

0.34 10<br />

M<br />

s<br />

0.32 10<br />

M<br />

s<br />

0.52 10<br />

M<br />

s<br />

q<br />

<br />

2<br />

4<br />

2<br />

8<br />

3<br />

2.08<br />

0.76 10<br />

M<br />

s<br />

0.16 10<br />

M<br />

s<br />

0.90 10<br />

M<br />

s<br />

Notation:<br />

VM: Volume Fraction of Martensite<br />

Ms: Temperature at Which 1% Martensite Forms [ºC]<br />

T: Temperature [ºC]<br />

Source: HOUGARDY, H.P. Description <strong>and</strong> Control of Transformations in Technical Applications. <strong>Steel</strong>: A H<strong>and</strong>book for<br />

Materials Research <strong>and</strong> Engineering – Volume 1: Fundamentals, Springer-Verlag, Berlin, 1992, 167-200.<br />

. Jaffe & Hollomon<br />

M S<br />

550 350 C 40 Mn 35V<br />

20 Cr 17<br />

Ni 10<br />

Cu 10<br />

Mo 8W<br />

15 Co 30 Al<br />

Notation:<br />

Ms: Start Temperature of the Martensitic Transformation [°C]<br />

Alloy Amount: [weight %]<br />

Observation:<br />

- Hougardy proposed a correction to this formula.<br />

Source: GRANGE, R.A. & STEWART, H.M. Hardenability <strong>and</strong> Quench Cracking. Transactions of the AIME, 167, 1946,<br />

617-646.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

39<br />

. Krauss<br />

M s<br />

561 474 C 33 Mn 17 Cr 17 Ni 21 Mo<br />

Notation:<br />

Ms: Martensite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Source: KRAUSS, G. Principles of <strong>Heat</strong> Treatment <strong>and</strong> Processing of <strong>Steel</strong>s, ASM International, 1990, p. 43-87.<br />

. Kunitake<br />

M s<br />

560.5<br />

407.3 C 37.8 Mn 14.8 Cr 19.5 Ni 4.5 Mo 7.3 Si 20. 5 Cu<br />

Notation:<br />

Ms: Martensite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Source: KUNITAKE, T. Prediction of Ac1, Ac3 <strong>and</strong> Ms Temperatures by Empirical Formulas. <strong>Heat</strong> <strong>Treating</strong> (Japan),<br />

41, 2001, p. 164-168.<br />

M<br />

. Lee & Van Tyne<br />

<br />

V 1<br />

exp K ( M T)<br />

LV<br />

s<br />

n LV<br />

K LV<br />

0.0231<br />

0.0105 C 0.0017 Ni 0.0074 Cr 0. 0193 Mo


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

40<br />

2<br />

n LV<br />

1.4304 1.1836<br />

C 0.7527 C 0.0258 Ni 0.0739 Cr 0. 3108 Mo<br />

Notation:<br />

VM: Volume Fraction of Martensite<br />

Ms: Martensite Start Temperature [K]<br />

T: Temperature [K]<br />

Alloy Amount: [weight %]<br />

Observation:<br />

- Start Temperature of Martensitic Transformation Calculated According to Capdevila.<br />

Source: LEE, S.J. & VAN TYNE, C.J. A Kinetics Model for Martensite Transformation in Plain C <strong>and</strong> Low-Alloyed <strong>Steel</strong>s.<br />

Metallurgical <strong>and</strong> Materials Transactions A, 43A:12, February 2012, 423-427.<br />

. Li<br />

M s<br />

540 420 C 35 Mn 12 Cr 20 Ni 21 Mo 10.5<br />

Si 10.5<br />

W 20 Al 140 V<br />

Notation:<br />

Ms: Martensite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Source: LI, C. et al. Computation of Ms Temperature in Carbon Equivalence Method. Journal of Liaoning<br />

Technology University, 17, 1998, 293-298.<br />

. Liu<br />

. C < 0.05%


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

41<br />

M s<br />

550 350 C 45 Mn 30 Cr 20 Ni 16<br />

Mo 5 Si 8W<br />

6 Co 15 Al 35 ( V Nb Zr Ti)<br />

. C > 0.05%<br />

M s<br />

525 350 ( C 0.05) 45 Mn 30 Cr 20 Ni 16<br />

Mo 5 Si 8W<br />

6 Co 15 Al 35 ( V Nb Zr Ti)<br />

Notation:<br />

Ms: Martensite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Source: LIU, C. et al. A New Empirical Formula for Ms Temperature in Pure Iron <strong>and</strong> Ultra Low Carbon Alloy<br />

<strong>Steel</strong>s. Journal of Materials Processing Technology, 113:1-3, 2001, 556-562.<br />

. Mahieu<br />

M s<br />

539 423 C 30.4 Mn 7.5 Si 30. 0 Al<br />

Notation:<br />

Ms: Martensite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Observation:<br />

- Equation valid for TRIP steels with 0.91 Al 1.73%. Apparently it is a development of the Andrews formula.<br />

Source: MAHIEU, J. et al. Phase Transformation <strong>and</strong> Mechanical Properties of Si-free CMnAl Transformation-Induced<br />

Plasticity-Aided <strong>Steel</strong>. Metallurgical <strong>and</strong> Materials Transactions A, 33A:8, August 2002, 2573-2580.


<strong>Gorni</strong><br />

. Mikula & Wojnar<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

42<br />

M s<br />

635.02<br />

549.82 C 85.441 Mn 68.967 Si 18.07<br />

Cr 30,965 Ni 69.301 Mo 6.603 V 420.26 Nb 553.8 Ti 1746.<br />

5 B<br />

Notation:<br />

Ms: Martensite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Source: LIS, A.K. & LIS, J. High Strength Hot Rolled <strong>and</strong> Aged Microalloyed 5% Ni <strong>Steel</strong>. Journal of Achievements in<br />

Materials <strong>and</strong> Manufacturing Engineering, 18:1-2, September-October 2006, 37-42.<br />

M s<br />

. Nehrenberg<br />

498.9<br />

300 C 33.3 Mn 22.2 Cr 16.7<br />

Ni 11.1(<br />

Si Mo)<br />

Notation:<br />

Ms: Martensite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Source: NEHRENBERG, A.E. In: Contribution to Discussion on Grange <strong>and</strong> Stewart. Transactions of the AIME, 167,<br />

1946, 494-498.<br />

M s<br />

. Payson & Savage<br />

498.9<br />

316.7 C 33.3 Mn 27.8 Cr 16.7<br />

Ni 11.1(<br />

Si Mo W)<br />

Notation:<br />

Ms: Martensite Start Temperature [°C]<br />

Alloy Amount: [weight %]


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

43<br />

Source: PAYSON, P. & SAVAGE, C.H. Martensite Reactions in Alloy <strong>Steel</strong>s. Transactions A.S.M., 33, 1944, 261-280.<br />

M s<br />

. Rowl<strong>and</strong> & Lyle<br />

498.9<br />

333.3 C 33.3 Mn 27.8 Cr 16.7<br />

Ni 11.1(<br />

Si Mo W)<br />

Notation:<br />

Ms: Martensite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Source: ROWLAND, E.S. & LYLE, S.R. The Application of Ms Points to Case Depth Measurement. Transactions A.S.M.,<br />

37, 1946, 27-47.<br />

. Steven & Haynes<br />

M s<br />

561.1<br />

473.9 C 33 Mn 16.7 ( Cr Ni)<br />

21. 1 Mo<br />

M<br />

10<br />

M<br />

s<br />

18<br />

M<br />

50<br />

M<br />

s<br />

85<br />

M<br />

90<br />

M<br />

s<br />

185<br />

M<br />

100<br />

M<br />

s<br />

387<br />

Notation:<br />

Ms: Martensite Start Temperature [°F]


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

Mx: Temperature Required for the Formation of x% of Martensite [°F]<br />

44<br />

Source: STEVEN, W. & HAYNES, A.G. The Temperature of Formation of Martensite <strong>and</strong> Bainite in Low Alloy <strong>Steel</strong>s.<br />

Journal of the Iron <strong>and</strong> <strong>Steel</strong> Institute, 183, 1956, 349-359.<br />

M s<br />

. Sverdlin-Ness<br />

520 320 C 50 Mn 30 Cr 20 ( Ni Mo)<br />

5 ( Cu Si)<br />

Notation:<br />

Ms: Martensite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Source: SVERDLIN, A.V. & NESS, A.R. The Effects of Alloying Elements on the <strong>Heat</strong> Treatment of <strong>Steel</strong>. In: <strong>Steel</strong> <strong>Heat</strong><br />

Treatment H<strong>and</strong>book, Marcel Dekker, New York, 1997, p. 45-91.<br />

. Tamura<br />

M s<br />

550 361 C 39 Mn 20 Cr 17<br />

V 17<br />

Ni 10<br />

Cu 5 ( Mo W)<br />

15<br />

Co 30 Al<br />

Notation:<br />

Ms: Martensite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Source: TAMURA, I. <strong>Steel</strong> Material Study on the Strength. Nikkan Kogyo Shinbun Ltd., Tokyo, 1970, 40.<br />

. van Bohemen


f<br />

<strong>Gorni</strong><br />

<br />

1 exp <br />

( T T)<br />

m<br />

KM<br />

<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

45<br />

T KM<br />

462 273 C 26 Mn 13<br />

Cr 16<br />

Ni 30 Mo<br />

<br />

m<br />

0.0224<br />

0.0107 C 0.0007Mn<br />

0.00012 Cr 0.00005 Ni 0. 0001 Mo<br />

*<br />

Notation:<br />

f: Volume Fraction of Martensite as a Function of Undercooling Below TKM Temperature (TKM – T)<br />

T: Temperature [°C]<br />

TKM: Theoretical Martensite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Observation:<br />

- Formula based from Koistinen <strong>and</strong> Marburger equation.<br />

- αm: St<strong>and</strong>ard error of estimate σ = 0.0014 K -1 ; correlation coefficient R² = 0.79.<br />

Source: VAN BOHEMEN, S.M.C <strong>and</strong> SIETSMA, J. Effect of Composition on Kinetics of Athermal Martensite Formation in<br />

Plain Carbon <strong>Steel</strong>s. Materials Science <strong>and</strong> Technology, 25:8, August 2009, 1009-1012.<br />

M s<br />

565 31 Mn 13<br />

Si 10<br />

Cr 18<br />

Ni 12<br />

Mo 600 1 exp( 0.96<br />

C)<br />

<br />

<br />

Notation:<br />

Ms: Martensite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Observation:<br />

- St<strong>and</strong>ard error of estimate σ = 13°C; correlation coefficient R² = 0.95.<br />

f<br />

<br />

1 exp <br />

( M T)<br />

m<br />

s


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

46<br />

<br />

m<br />

27.2<br />

0.14 Mn 0.21 Si 0.11Cr<br />

0.08 Ni 0.05 Mo 19.8<br />

1 exp( 1.56<br />

C)<br />

<br />

<br />

Notation:<br />

f: Volume Fraction of Martensite as a Function of Undercooling Below Ms Temperature (Ms – T)<br />

T: Temperature [°C]<br />

Ms: Martensite Start Temperature [°C]<br />

Alloy Amount: [weight %]<br />

Observation:<br />

- Formula based from Koistinen <strong>and</strong> Marburger equation.<br />

- αm: St<strong>and</strong>ard error of estimate σ = 0.005 K -1 ; correlation coefficient R² = 0.97.<br />

Source: VAN BOHEMEN, S.M.C. Bainite <strong>and</strong> Martensite Start Temperature Calculated with Exponential Carbon<br />

Dependence. Materials Science <strong>and</strong> Technology, 28:4, April 2012, 487-495.<br />

. Zhao<br />

M TM<br />

s<br />

420 208.33 C 33.428 Mn 1.296 Mn²<br />

0.02167 Mn³<br />

16.08 Ni 0.7817 Ni²<br />

0.02464Ni³<br />

2.473 Cr 30.00 Mo 12.86 Co <br />

0.2654 Co²<br />

0.001547 Co³<br />

7.18 Cu 72.65 N 43.36 N<br />

2<br />

16.28 Ru 1.72 Ru<br />

2<br />

0.08117 Ru<br />

3<br />

M LM<br />

s<br />

540 356.25 C 47.59 Mn 2.25 Mn²<br />

0.0415 Mn³<br />

24.56 Ni 1.36 Ni²<br />

0.0384 Ni³<br />

17.82 Cr 1.42 Cr<br />

21.87 Co 0.468 Co²<br />

0.00296 Co³<br />

16.52 Cu 260.64 N 17.66 Ru<br />

2<br />

17.50 Mo <br />

Notation:<br />

Ms TM : Twinned Martensite Start Temperature [°C]<br />

Ms LM : Lath Martensite Start Temperature [°C]<br />

Alloy Amount: [weight %]


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

Observation:<br />

- If Ms LM is higher than Ms TM , both lath martensite <strong>and</strong> twinned martensite can be present in steel.<br />

- However, if Ms LM is lower than Ms TM , only twinned martensite can exist. This condition is fulfilled for some<br />

steels above a critical composition, which can be determined setting Ms LM = Ms TM .<br />

Source: ZHAO, J.: Continuous Cooling Transformations in <strong>Steel</strong>s. Materials Science <strong>and</strong> Technology, 8:11, Nov. 1992,<br />

997-1002.<br />

47


<strong>Gorni</strong><br />

- Critical Diameter - Austenite Hardenability<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

48<br />

. Dearden & O’Neill<br />

D i<br />

<br />

6 exp 7.1<br />

C<br />

<br />

<br />

Mn<br />

5.87<br />

<br />

Mo Cr<br />

<br />

3.13 6.28<br />

Si<br />

<br />

18<br />

Ni <br />

<br />

15 <br />

Notation:<br />

Di: Critical Diameter [mm]<br />

Alloy Content: [weight %]<br />

Source: DEARDEN, J & O’NEIL, H.: A Guide to the Selection <strong>and</strong> Welding of Low Alloy Structural <strong>Steel</strong>s. Transactions<br />

of the Institute of Welding, 3, Oct. 1940, 203-214.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

49<br />

- Density of Bulk <strong>Steel</strong> at Ambient Temperature<br />

. Austenitic <strong>Steel</strong>s<br />

<br />

<br />

<br />

(1.231 Fe 3.178 C<br />

sol<br />

1<br />

1.307<br />

Mn 2.436 Si 1.431<br />

Cr 1.205<br />

Cu 1.018<br />

Mo 1.137<br />

Ni 1.890<br />

Ti 1.111<br />

Co 2.186 N 2.032 TiC) .10<br />

6<br />

Notation:<br />

: Austenite Density [kg/m³]<br />

Alloy/TiC Content: [weight %]<br />

Observations:<br />

- Csol is the content of this element not bound in TiC.<br />

- Density calculated at 20°C.<br />

Source: BOHNENKAMP, U. et al.: Evaluation of the Density of <strong>Steel</strong>s. <strong>Steel</strong> Research, 71:3, March 2000, 88-93.<br />

. Ferritic <strong>Steel</strong>s<br />

<br />

<br />

1<br />

(1.270 Fe 1.380<br />

C 1.524 Mn 2.381 Si 1.384<br />

Cr 0.8477 Cu 1.076 Mo 1.370 Ni 2.012 V<br />

4.046 S)<br />

.10<br />

6<br />

Notation:<br />

: Ferrite Density [kg/m³]<br />

Alloy Content: [weight %]<br />

Observations:<br />

- C is considered insoluble in ferrite (that is, all C has gone to cementite).<br />

- The solubilities of the other alloy elements in cementite are zero.<br />

- Density calculated at 20°C.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

50<br />

Source: BOHNENKAMP, U. et al.: Evaluation of the Density of <strong>Steel</strong>s. <strong>Steel</strong> Research, 71:3, March 2000, 88-93.<br />

. Density of Fe-C Alloys in Heterogeneous Phase Mixtures<br />

1<br />

<br />

<strong>Steel</strong><br />

f1<br />

f<br />

2<br />

f<br />

3<br />

f<br />

n<br />

... <br />

<br />

1<br />

2<br />

3<br />

n<br />

Notation:<br />

<strong>Steel</strong>: <strong>Steel</strong> Density [kg/m³]<br />

fi: Fraction of the phase i in the microstructure<br />

ρi: Density of the phase i<br />

Source: JABLONKA, A.: Thermomechanical Properties of Iron <strong>and</strong> Iron-Carbon Alloys: Density <strong>and</strong> Thermal Contraction,<br />

<strong>Steel</strong> Research, 62:1, September 1991, 24-33.


<strong>Gorni</strong><br />

- Density of Bulk <strong>Steel</strong> at High Temperature<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

51<br />

. BISRA<br />

ρ<br />

T<br />

1008 1023 1040 1524<br />

0 7861 7863 7858 7854<br />

15 7856 7859 7854 7849<br />

50 7847 7849 7845 7840<br />

100 7832 7834 7832 7826<br />

150 7816 7819 7817 7811<br />

200 7800 7803 7801 7794<br />

250 7783 7787 7784 7777<br />

300 7765 7770 7766 7760<br />

350 7748 7753 7748 7742<br />

400 7730 7736 7730 7723<br />

450 7711 7718 7711 7704<br />

500 7792 7699 7692 7685<br />

550 7673 7679 7672 7666<br />

600 7653 7659 7652 7646<br />

650 7632 7635 7628 7622<br />

700 7613 7617 7613 7605<br />

750 7594 7620 7624 7615<br />

800 7582 7624 7643 7641<br />

850 7589 7625 7617 7614<br />

900 7600 7600 7590 7590


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

52<br />

950 7572 7574 7564 7561<br />

1000 7543 7548 7538 7532<br />

1050 7515 7522 7512 7503<br />

1100 7488 7496 7486 7474<br />

Notation:<br />

ρ: Density of steel [kg/m³]<br />

T: Temperature [°C]<br />

Observations:<br />

- Chemical composition of the steels [wt %]:<br />

<strong>Steel</strong> C Mn Si P S Cu<br />

1008 0.08 0.31 0.08 0.029 0.050 -<br />

1023 0.23 0.64 0.11 0.034 0.034 0.13<br />

1040 0.42 0.64 0.11 0.031 0.029 0.12<br />

1524 0.23 1.51 0.12 0.037 0.038 0,11<br />

Source: Physical Constants of Some Commercial <strong>Steel</strong>s at Elevated Temperatures, BISRA/Butterworths Scientific<br />

Publications, London, 1953, 1-38.<br />

. Picquè<br />

5<br />

2<br />

7875.96<br />

0.297 T 5.62 10<br />

T (T ≤ Ar3)<br />

8099.79<br />

0.506 T (T > Ar3)<br />

Notation:


<strong>Gorni</strong><br />

ρ: Density of steel [kg/m³]<br />

T: Temperature [°C]<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

53<br />

Observation:<br />

- Formulas specific for a 0.16% C, 0.5% Mn steel<br />

Source: PICQUÉ, B. Experimental Study <strong>and</strong> Numerical Simulation of Iron Oxide Scales Behavior in Hot Rolling. Doctor<br />

Thesis, École de Mines de Paris, 2004, p. 247.


<strong>Gorni</strong><br />

- Density of Liquid <strong>Steel</strong><br />

. Jablonka<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

54<br />

<br />

<strong>Steel</strong><br />

( 8319.49 0.835 T)<br />

(1 0.01C)<br />

Notation:<br />

Liquid Iron: Liquid Iron Density [kg/m³]<br />

T: Temperature, [°C]<br />

C: Carbon content [weight %]<br />

Source: JABLONKA, A.: Thermomechanical Properties of Iron <strong>and</strong> Iron-Carbon Alloys: Density <strong>and</strong> Thermal Contraction,<br />

<strong>Steel</strong> Research, 62:1, September 1991, 24-33.<br />

. Yaws<br />

<br />

Liquid Iron<br />

1.9946<br />

<br />

0.22457<br />

T <br />

0.7<br />

1<br />

<br />

9340<br />

Notation:<br />

Liquid Iron: Liquid Iron Density [g/ml]<br />

T: Absolute Temperature, [K]<br />

Source: YAWS, C.L.: Liquid Density of the Elements. Chemical Engineering, November 2007, 44-46.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

- Density of Microstructural Constituents at Ambient Temperature<br />

55<br />

. Common Phases <strong>and</strong> Constituents<br />

Notation:<br />

C: Carbon Content [weight %]<br />

Phase/Constituent<br />

C<br />

[weight %]<br />

Specific Volume<br />

[cm³/g] at 20°C<br />

Austenite<br />

0.00 ~ 2.00 0.1212 + 0.0033 C<br />

Martensite<br />

0.00 ~ 2.00 0.1271 + 0.0025 C<br />

Ferrite 0.00 ~ 0.02 0.1271<br />

Cementite (Fe3C) 6.7 0.2 0.130 0.001<br />

Carbide 8.5 0.7 0.140 0.002<br />

Graphite 100 0.451<br />

Ferrite + Cementite<br />

0.00 ~ 2.00 0.1271 + 0.0005 C<br />

Low C Martensite + Carbide 0.25 ~ 2.00 0.1277 + 0.0015 (C – 0.25)<br />

Ferrite + Carbide<br />

0.00 ~ 2.00 0.1271 + 0.0015 C<br />

Source: THELNING, K.E.: <strong>Steel</strong> <strong>and</strong> its <strong>Heat</strong> Treatment – Bofors H<strong>and</strong>book. Butterworths, London, 1981, 570 p.<br />

. Density <strong>and</strong> Molar Volume of Microalloy Carbides <strong>and</strong> Nitrides<br />

Compound Structure Molecular<br />

Mass<br />

Lattice<br />

Parameter<br />

[nm]<br />

Molecules per<br />

Unit Cell<br />

Density<br />

[g/cm³]<br />

Molar Volume<br />

[cm³/mol]<br />

NbC FCC 105 0.4462 4 7.84 13.39<br />

NbN FCC 107 0.4387 4 8.41 12.72<br />

VC FCC 63 0.4154 4 5.83 10.81<br />

VN FCC 65 0.4118 4 6.18 10.52


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

TiC FCC 60 0.4313 4 4.89 12.27<br />

TiN FCC 62 0.4233 4 5.42 11.44<br />

AlN CPH 41<br />

c = 0.4965<br />

a = 0.311<br />

6 3.27 12.54<br />

-Fe FCC 56 0.357 4 8.15 6.85<br />

-Fe BCC 56 0.286 2 7.85 7.11<br />

56<br />

Observations:<br />

- Data based on room temperature lattice parameters.<br />

Source: GLADMAN, T. The Physical Metallurgy of Microalloyed <strong>Steel</strong>s. The Institute of Materials, London, 1997, 363 p.<br />

. Density <strong>and</strong> Molar Volume of Precipitates <strong>and</strong> Metals<br />

Compound Density<br />

[kg/m³]<br />

Molar Volume<br />

[cm³/mol]<br />

NbCN 9291 12,80<br />

ZrC 6,572 -<br />

ZrN 7,30 -<br />

Mn 7470 7,35<br />

Si 2330 12,06<br />

Cr 7140 7,23<br />

Cu 8920 7,11<br />

C 2267 5,29<br />

N - 13,54<br />

<strong>Steel</strong> 7850 7,00<br />

Observations:<br />

- Data based on room temperature lattice parameters.


<strong>Gorni</strong><br />

Sources:<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

57<br />

- SAN MARTIN, D. et al. Estudio y Modelización de la Influencia de las Partículas de Segunda Fase sobre el<br />

Crecimiento de Grano Austenítico en um Acero Microaleado com Niobio. Revista de Metalurgia – Madrid, 42:2,<br />

Marzo-Abril 2006, 128-137.<br />

- Web Elements (www.webelements.com)<br />

- NISHIZAWA, T. Thermodynamics of Microstructure Control by Particle Dispersion. ISIJ International, 40:12,<br />

December 2000, 1269-1274.<br />

- ADRIAN, H. Thermodynamical Model for Precipitation of Carbonitrides in HSLA <strong>Steel</strong>s Containing Up to Three<br />

Microalloying Elements with or without Additions of Aluminum. Materials Science <strong>and</strong> Tecnology, 8:5, May<br />

1992, 406-420.<br />

. Relationship Between Lattice Parameter <strong>and</strong> Density<br />

<br />

( a<br />

n M<br />

10<br />

10 ) 3<br />

N<br />

Notation:<br />

: Density [kg/m³]<br />

n: Number of atoms per unit cell (depends on crystalline structure):<br />

. Cubic body-centered: 2<br />

. Cubic face-centered: 4<br />

M: Molecular mass [kg/mol]:<br />

. Pure Fe: 0.055847<br />

. Cementite: 0.179552<br />

a: Lattice Parameter [Å]<br />

N: Avogrado’s number: 6.023 . 10 23


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

58<br />

Source: JABLONKA, A.: Thermomechanical Properties of Iron <strong>and</strong> Iron-Carbon Alloys: Density <strong>and</strong> Thermal Contraction,<br />

<strong>Steel</strong> Research, 62:1, September 1991, 24-33.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

- Density of Microstructural Constituents at High Temperature<br />

59<br />

. Fink<br />

<br />

T 20C<br />

<br />

<br />

<br />

T 20C<br />

<br />

<br />

0.47 T<br />

0.33 T<br />

Notation:<br />

T : Austenite Density at Temperature T [kg/m³]<br />

<br />

20°C : Austenite Density at 20°C [kg/m³]<br />

T : Ferrite Density at Temperature T [kg/m³]<br />

<br />

20°C : Ferrite Density at 20°C [kg/m³]<br />

T: Temperature[°C]<br />

Source: FINK, K. et al.: Physikalische Eigenschaften von Stählen, insbesondere von warmfesten Stählen.<br />

Thyssenforschung, 2:2, 1970, 65-80.<br />

<br />

T<br />

<br />

<br />

T<br />

<br />

T<br />

<br />

<br />

. Jablonka<br />

5<br />

2<br />

2<br />

7875.96<br />

0.297 T 5.62 10<br />

T (1 2.6210<br />

C)<br />

<br />

8099.79<br />

0.506 T (1 1.4610<br />

2 C)<br />

5<br />

2<br />

2<br />

7875.96<br />

0.297 T 5.62 10<br />

T (1 2.6210<br />

C)<br />

<br />

T<br />

<br />

Fe3C<br />

<br />

10<br />

2<br />

4<br />

2<br />

7686.45<br />

6.63 10<br />

T 3.12 T


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

60<br />

Notation:<br />

T : Delta Ferrite Density at Temperature T [kg/m³]<br />

T : Austenite Density at Temperature T [kg/m³]<br />

T : Ferrite Density at Temperature T [kg/m³]<br />

Fe3C T : Cementite Density at Temperature T [kg/m³]<br />

T: Temperature[°C]<br />

C: Carbon content [weight %]<br />

Observations:<br />

- Carbon content in ferrite is limited to 0.02% maximum.<br />

Source: JABLONKA, A.: Thermomechanical Properties of Iron <strong>and</strong> Iron-Carbon Alloys: Density <strong>and</strong> Thermal Contraction,<br />

<strong>Steel</strong> Research, 62:1, September 1991, 24-33.<br />

. Molar Volume of Austenite as Function of Temperature<br />

<br />

6<br />

5<br />

V M<br />

6.688726 10<br />

exp 7.3097 10<br />

Notation:<br />

<br />

T <br />

VM : Molar Volume of Austenite, [m³/mol]<br />

T: Temperature [K]<br />

Source: FERNÁNDEZ, D.M.S.M. Modelización de la Cinética de Austenización y Crecimiento de Grano Austenítico en<br />

Aceros Ferrítico-Perlíticos. Tesis Doctoral, Centro Nacional de Investigaciones Metalúrgicas, Madrid, Julio<br />

2003, 258 p.<br />

. Relationship Between Density <strong>and</strong> Thermal Expansion


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

61<br />

<br />

th<br />

<br />

3<br />

(<br />

T<br />

0<br />

)<br />

(<br />

T)<br />

1<br />

Notation:<br />

th : Thermal Expansion/Contraction<br />

ρ(T0): Density at lower/higher T0<br />

ρ(T): Densotu at temperature T<br />

T0: Reference temperature<br />

Source: JABLONKA, A.: Thermomechanical Properties of Iron <strong>and</strong> Iron-Carbon Alloys: Density <strong>and</strong> Thermal Contraction,<br />

<strong>Steel</strong> Research, 62:1, September 1991, 24-33.


<strong>Gorni</strong><br />

- Dimensional Changes during Austenite Transformation<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

62<br />

L<br />

C<br />

<br />

<br />

L<br />

. During Cooling<br />

<br />

2<br />

5<br />

3<br />

3<br />

2<br />

6<br />

9<br />

2<br />

1.232<br />

10<br />

1.347<br />

10<br />

T 6.544 10<br />

C<br />

5.829 10<br />

C<br />

9.766 10<br />

C<br />

T 2.379 10<br />

T<br />

C0 (1 X<br />

<br />

X<br />

A<br />

A<br />

) C<br />

tr<br />

Notation:<br />

ΔLγ→α: Specimen Length Change During Austenite Transformation [μm];<br />

L: Specimen Original Length [μm]<br />

T: Temperature [°C]<br />

Cγ: Carbon Content in Austenite [wt %]<br />

C0: Initial Carbon Content [wt %]<br />

Ctr: Carbon Content of Transformed Phases [wt %]<br />

XA: Untransformed Austenite Volume Fraction<br />

Source: PARK, S.H. Microstructural Evolution of Hot Rolled TRIP <strong>Steel</strong>s During Cooling Control. In: 40th Mechanical<br />

Working <strong>and</strong> <strong>Steel</strong> Processing Conference, ISS/AIME, Pittsburgh, October 1998, 283-291.<br />

. After General <strong>Heat</strong> <strong>Treating</strong><br />

Transformation<br />

V<br />

[%]<br />

l<br />

[mm/mm]


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

Spheroidized Pearlite Austenite -4.64 + 2.21 C -0.0155 + 0.0074 C<br />

Austenite Martensite 4.64 – 0.53 C 0.0155 – 0.0018 C<br />

Spheroidized Pearlite Martensite 1.68 C 0.0056 C<br />

Austenite Lower Bainite 4.64 – 1.43 C 0.0155 – 0.0048 C<br />

Spheroidized Pearlite Lower Bainite 0.78 C 0.0026 C<br />

Austenite Upper Bainite 4.14 – 2.21 C 0.0155 – 0.0074 C<br />

Spheroidized Pearlite Upper Bainite 0 (Zero) 0<br />

63<br />

Notation:<br />

- C: Carbon Content [weight %].<br />

Sources:<br />

- THELNING, K.E.: <strong>Steel</strong> <strong>and</strong> its <strong>Heat</strong> Treatment – Bofors H<strong>and</strong>book. Butterworths, London, 1981, 570 p.<br />

- KRAUSS, G. <strong>Steel</strong>: Processing, Structure <strong>and</strong> Performance. ASM International, Metals Park, 2005, 420 p.<br />

. After Quenching<br />

V<br />

V<br />

100<br />

VC<br />

V<br />

<br />

100<br />

A<br />

<br />

1.68 C<br />

<br />

M<br />

VA<br />

( 4.64<br />

2.21 C<br />

100<br />

A<br />

)<br />

Notation:<br />

- V/V: Volumetric Change after Quenching [%]<br />

- VC: Non-solubilized Cementite Volumetric Fraction [%]<br />

- VA: Austenite Volumetric Fraction [%]<br />

- 100 – VC – VA: Martensite Volumetric Fraction [%]<br />

- CM: Carbon Content Solubilized in Martensite [weight %]


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

- CA: Carbon Content Solubilized in Austenite [weight %]<br />

64<br />

Source: THELNING, K.E.: <strong>Steel</strong> <strong>and</strong> its <strong>Heat</strong> Treatment – Bofors H<strong>and</strong>book. Butterworths, London, 1981, 570 p.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

65<br />

- Equivalent Carbon – H.A.Z. Hardenability<br />

. Dearden & O’Neill<br />

C<br />

EQ _ Dearden<br />

C<br />

<br />

Mn<br />

6<br />

<br />

Mo Cr V<br />

<br />

4 5<br />

<br />

Cu<br />

<br />

13<br />

Ni<br />

<br />

15<br />

P<br />

2<br />

Notation:<br />

CEQ_Dearden: Equivalent Carbon (Dearden) [%]<br />

Alloy Content: [weight %]<br />

Source: DEARDEN, J & O’NEIL, H.: A Guide to the Selection <strong>and</strong> Welding of Low Alloy Structural <strong>Steel</strong>s. Transactions<br />

of the Institute of Welding, 3, October 1940, 203-214.<br />

. Bastien<br />

C<br />

EQ _ Bastien<br />

C<br />

Mn<br />

4,4<br />

Mo Cr<br />

<br />

7,7 15,4<br />

<br />

Ni<br />

10,3<br />

ln( CR<br />

) 13,9 10,6<br />

m<br />

C EQ _ Bastien<br />

Notation:<br />

CEQ_Bastien: Equivalent Carbon (Bastien) [%]<br />

Alloy Content: [weight %]<br />

CRm: Critical Cooling Rate at 700°C [°C/s], that is, minimum cooling rate that produces a fully martensitic<br />

structure)<br />

Source: BASTIEN, P.G.: Metal Construction <strong>and</strong> British Welding Journal, 49, 1970, 9.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

66<br />

. IIW - International Institute of Welding<br />

C<br />

EQ _ IIW<br />

C<br />

<br />

Mn<br />

6<br />

Cr<br />

<br />

<br />

Mo V<br />

5<br />

<br />

Cu Ni<br />

15<br />

Notation:<br />

CEQ_IIW: Equivalent Carbon (IIW) [%]<br />

Alloy Content: [weight %]<br />

Source: HEISTERKAMP, F. et al.: Metallurgical Concept And Full-Scale Testing of High Toughness, H2S Resistant<br />

0.03%C - 0.10%Nb <strong>Steel</strong>. C.B.M.M. Report, São Paulo, February 1993.<br />

. Kihara<br />

C<br />

EQ _ Kihara<br />

C<br />

<br />

Mn<br />

6<br />

Mo Cr<br />

<br />

4 5<br />

V<br />

<br />

14<br />

Ni<br />

<br />

40<br />

Si<br />

24<br />

Notation:<br />

CEQ_Kihara: Equivalent Carbon (Kihara) [%]<br />

Alloy Content: [weight %]<br />

Source: KIHARA, H. et al. Technical Report of JRIM, 1, 1959, 93.<br />

. Shinozaki<br />

C<br />

EQ _ FBW<br />

C<br />

<br />

Mn<br />

5<br />

Si Cr<br />

<br />

15 9<br />

V<br />

7 Nb (1 10C)<br />

<br />

(50 C 1)<br />

3<br />

1.3 Ti (1 5 C)<br />

<br />

Mo (1 6 C)<br />

29 B (11 C 1)<br />

2


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

Notation:<br />

CEQ_FBW: Equivalent Carbon Designed Specifically for Flash Butt Welding [%]<br />

Alloy Content: [weight %]<br />

67<br />

Source: SHINOZAKI, M. et al.: Effects of Chemical Composition <strong>and</strong> Structure of Hot Rolled High Strength <strong>Steel</strong> Sheets on<br />

the Formability of Flash Butt Welded Joints. Kawasaki <strong>Steel</strong> Technical Report, 6, Sept. 1982, 21-30.<br />

. Stout<br />

C<br />

EQ _ Stout<br />

1000 C<br />

<br />

<br />

<br />

Mn<br />

6<br />

Cr Mo Ni Cu <br />

<br />

10 20 40 <br />

Notation:<br />

CEQ_Stout: Equivalent Carbon (Kihara) [%]<br />

Alloy Content: [weight %]<br />

Source: STOUT, R.D. et al. Welding Journal Research Supplement, 55, 1976, 89s-94s.<br />

. Yurioka<br />

C<br />

EQ _ Yurioka<br />

C<br />

<br />

Mn<br />

6<br />

Mo Cr<br />

<br />

4 8<br />

<br />

Ni<br />

12<br />

<br />

Si<br />

24<br />

<br />

Cu<br />

15<br />

log( t ) 10,6<br />

_<br />

4,8<br />

m<br />

C EQ<br />

Yurioka<br />

Notation:<br />

CEQ_Yurioka: Equivalent Carbon (Yurioka) [%]<br />

Alloy Content: [weight %]


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

tm: Critical Cooling Time from 800 to 500°C [s] (that is, maximum cooling time that produces a fully martensitic<br />

structure)<br />

Source: YURIOKA, N. et al.: Metal Construction, 19, 1987, 217R.<br />

68


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

69<br />

- Equivalent Carbon – Hydrogen Assisted Cold Cracking<br />

. Bersch & Koch (Hoesch)<br />

C<br />

EQ _ Bersch<br />

C<br />

<br />

Mn <br />

Si<br />

Cr<br />

Mo V Cu<br />

20<br />

<br />

Ni<br />

Notation:<br />

CEQ_Bersch: Equivalent Carbon for Pipeline <strong>Steel</strong>s [%]<br />

Alloy Content: [weight %]<br />

Observations:<br />

- Formula deduced for pipeline steels<br />

Source:<br />

- BERSCH, B. et al. Weldability of Pipe <strong>Steel</strong>s for Low Operating Temperatures. 3R International, 1, 1977.<br />

- PATCHETT, B.M. et al.: Casti Metals Blue Book: Welding Filler Metals. Casti Publishing Corp., Edmonton,<br />

February 1993, 608 p. (CD Edition).<br />

. DNV<br />

C<br />

EQ _ DNV<br />

C<br />

<br />

Mn<br />

10<br />

<br />

Si<br />

24<br />

Ni Cu<br />

<br />

40<br />

Cr<br />

<br />

5<br />

V<br />

<br />

10<br />

Mo<br />

4<br />

Notation:<br />

CEQ_DNV: Equivalent Carbon (DNV) [%]<br />

Alloy Content: [weight %]


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

Source: HANNERZ, N.E.: The Influence of Si on the Weldability of Mild <strong>and</strong> High Tensile Structural <strong>Steel</strong>s. IIW<br />

Document IX-1169-80, 1980.<br />

70<br />

. Graville<br />

C<br />

EQ _ HSLA<br />

C<br />

<br />

Mn<br />

16<br />

Ni<br />

<br />

50<br />

Cr<br />

<br />

23<br />

Mo<br />

<br />

7<br />

Nb V<br />

<br />

5 9<br />

Notation:<br />

CEQ_HSLA: Equivalent Carbon (Uwer & Graville) [%]<br />

Alloy Content: [weight %]<br />

Observations:<br />

- Formula deduced for pipeline steels<br />

Source: GRAVILLE, B.A.: In: Proc. Conf. on Welding of HSLA Structural <strong>Steel</strong>s, ASM, Materials Park, 1976.<br />

. Ito & Bessyo (I)<br />

P C Si Mn Cu Cr Ni Mo V<br />

cm<br />

5 B<br />

30 20 60 15 10<br />

Notation:<br />

Pcm: Cracking Parameter [%]<br />

Alloy Content: [weight %]<br />

Observations:<br />

- Formula deduced for pipeline steels with C < 0.15%<br />

- This is the most popular formula for this kind of material.


<strong>Gorni</strong><br />

Sources:<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

- Equation valid under the following conditions: 0.07% C 0.22%; 0.40% Mn 1.40%; Si 0.60%; V <br />

0.12%; Cr 1.20%; Ni 1.20%; Cu 0.50%, Mo 0.7%, B 0,005%.<br />

- ITO, Y. et al.: Journal of the Japan Welding Society., 37, 1968, 983.<br />

- ITO, Y. & BESSYO, K. Weldability Formula of High Strength <strong>Steel</strong>s Related to <strong>Heat</strong>-Affected-Zone Cracking. The<br />

Sumitomo Search, 1, 1969, 59-70.<br />

71<br />

. Ito & Bessyo (II)<br />

P Si Mn Cu Cr Mo V d H<br />

c<br />

C <br />

<br />

30 20 15 10 600 60<br />

Notation:<br />

Pc: Cracking Parameter [%]<br />

Alloy Content: [weight %], except<br />

H: Hydrogen amount in the weld metal, [cm³/100 g]<br />

d: Plate Thickness, [mm]<br />

Source: ITO, Y. & BESSYO, K.: Weldability Formula of High Strength <strong>Steel</strong>s. I.I.W. Document IX-576-68.<br />

. Mannesmann<br />

C<br />

EQ _ PLS<br />

C<br />

<br />

Si<br />

25<br />

Mn Cu<br />

<br />

16<br />

<br />

Cr<br />

20<br />

<br />

Ni<br />

60<br />

<br />

Mo<br />

40<br />

V<br />

<br />

15<br />

Notation:


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

72<br />

CEQ_PLS: Equivalent Carbon for Pipeline <strong>Steel</strong>s [%]<br />

Alloy Content: [weight %]<br />

Observations:<br />

- Formula deduced for pipeline steels<br />

- A version of this formula divides V by 10<br />

Sources:<br />

- DUREN, C. & NIEDEROFF, K.: In: Proc. on Welding <strong>and</strong> Performance of Pipeline, TWI, London, 1986.<br />

- HEISTERKAMP, F. et al.: Metallurgical Concept And Full-Scale Testing of High Toughness, H2S Resistant<br />

0.03%C - 0.10%Nb <strong>Steel</strong>. C.B.M.M. Report, São Paulo, February 1993.<br />

. Uwer & Hohne<br />

C<br />

EQ _ Uwer<br />

C<br />

<br />

Mn<br />

10<br />

<br />

Cu<br />

20<br />

Ni Cr<br />

<br />

40 20<br />

Mo<br />

10<br />

Notation:<br />

CEQ_Uwer: Equivalent Carbon (Uwer & Hohne) [%]<br />

Alloy Content: [weight %]<br />

Source: UWER, D. & HOHNE, H.: Determination of Suitable Minimum Preheating Temperature for the Cold-Crack-Free<br />

Welding of <strong>Steel</strong>s. IIW Document IX-1631-91, 1991.<br />

. Yurioka


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

73<br />

Mn Si Cr Mo V Cu Ni Nb<br />

C EQ _ Yurioka<br />

C A(<br />

C)<br />

<br />

5<br />

6 24 5 15 20 5<br />

A ( C)<br />

0.75 0.25 tanh 20 ( C <br />

<br />

0.12) <br />

Notation:<br />

CEQ_Yurioka: Equivalent Carbon for Pipeline <strong>Steel</strong>s [%]<br />

Alloy Content: [weight %]<br />

Observations:<br />

- Formula for C-Mn <strong>and</strong> microalloyed pipeline steels<br />

- This formula combines Carbon Equivalent equations from IIW <strong>and</strong> Pcm<br />

Sources:<br />

- YURIOKA, N.: Physical Metallurgy of <strong>Steel</strong> Weldability. ISIJ International, 41:6, June 2001, 566-570.<br />

<br />

B<br />

<br />

- PATCHETT, B.M. et al.: Casti Metals Blue Book: Welding Filler Metals. Casti Publishing Corp., Edmonton,<br />

February 1993, 608 p. (CD Edition).


<strong>Gorni</strong><br />

- Equivalent Carbon – Peritectic Point<br />

. Mills<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

74<br />

C P _ Mills<br />

C 0.02 Mn 0.04 Ni 0.1 Si 0.04 Cr 0. 1 Mo<br />

Notation:<br />

CP_Mills: Equivalent Carbon for Peritectic Point [%]<br />

Alloy Content: [weight %]<br />

Source: XU, J. et al. Effect of Elements on Peritectic Reaction in Molten <strong>Steel</strong> Based on Thermodynamic Analysis. ISIJ<br />

International, 52:12, October 2012, 1856-1861.<br />

C<br />

P _ Inf<br />

. Miyake et al.<br />

f<br />

1<br />

0.10<br />

C Sup<br />

f<br />

P _<br />

2<br />

0.05<br />

f<br />

1<br />

0.0828 Si 0.0195 Mn 0.07398 Al 0.04614 Ni 0.02447 Cr 0.01851 Mo 0.090<br />

f<br />

2<br />

0.2187 Si 0.03291<br />

Mn 0.2017 Al 0.06715 Ni 0.04776 Cr 0.04601 Mo 0.173<br />

Notation:<br />

CP_Inf: Lower Bound of Carbon Peritectic Content Range [%]<br />

CP_Sup: Upper Bound of Carbon Peritectic Content Range[%]<br />

Alloy Content: [weight %]<br />

Observations:


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

- Alloy elements contents are assumed to be 4.0% or less, excluding 0%.<br />

75<br />

Source: MIYAKE, T. et al. Method of Continuous Casting of High-Aluminum <strong>Steel</strong> <strong>and</strong> Mold Powder. U.S. Patent n° US<br />

8,146,649 B2, April 3, 2012, 13 p.<br />

. Wolf<br />

C P _ Wolf<br />

C 0.04 Mn 0.1 Ni 0.7 N 0.14 Si 0.04 Cr 0.1 Mo 0. 4 Ti<br />

Notation:<br />

CP_Wolf: Equivalent Carbon for Peritectic Point [%]<br />

Alloy Content: [weight %]<br />

Source: WOLF, M.M. Estimation of Crack Susceptibility for New <strong>Steel</strong> Grades. In: 1 st European Conference on<br />

Continuous Casting, Florence, 1991, 2.489-2.499.


<strong>Gorni</strong><br />

- Fe-C Equilibrium Diagram<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

76


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

77<br />

Source: ASM’s <strong>Heat</strong> <strong>Treating</strong> <strong>On</strong>e-Minute Mentor,<br />

http://www.asminternational.org/pdf/HTSRefCharts/Vol4p4Fig1.pdf.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

78<br />

- Fe-C Equilibrium Equations in the Solidification <strong>and</strong> Eutectoid Range<br />

. Liquidus of -iron<br />

% C<br />

1536 T<br />

<br />

79<br />

. Liquidus of -iron<br />

% C<br />

1525 T<br />

<br />

56.0198<br />

3<br />

1.1284 10<br />

( T 1525)<br />

<br />

56.0198<br />

2<br />

Notation:<br />

%C: coordinate in the Fe-C diagram [%]<br />

T: Temperature [°C]<br />

. Solidus of -iron<br />

% C<br />

1536 T<br />

<br />

460<br />

. Solidus of -iron<br />

1525 T<br />

% C <br />

185


<strong>Gorni</strong><br />

. Start of transformation of -iron (on cooling)<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

79<br />

% C<br />

1392<br />

T<br />

1140<br />

. End of transformation of -iron (on cooling)<br />

% C<br />

1392<br />

T<br />

624.3749<br />

. A3 <strong>Line</strong><br />

% C<br />

<br />

4<br />

911 T 2.818 10<br />

( T 911)<br />

<br />

484.785 484.785<br />

2<br />

5<br />

2.8574 10<br />

( T 911)<br />

<br />

484.785<br />

3<br />

. Acm <strong>Line</strong><br />

% C<br />

0.8 <br />

4<br />

T 723 7.7917 10<br />

( T 723)<br />

<br />

453.7137 453.7137<br />

2<br />

Source: JABLONKA, A.: Thermomechanical Properties of Iron <strong>and</strong> Iron-Carbon Alloys: Density <strong>and</strong> Thermal Contraction,<br />

<strong>Steel</strong> Research, 62:1, September 1991, 24-33.


<strong>Gorni</strong><br />

- Ferrite Solubility Products<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

80<br />

. General<br />

log 10<br />

( a<br />

A<br />

)<br />

a<br />

m<br />

A<br />

( a<br />

m B n<br />

B<br />

)<br />

n<br />

<br />

A<br />

B<br />

T<br />

Notation:<br />

AmBn: Precipitate Considered for Calculation<br />

ax: Alloy Content [weight %]<br />

T: Temperature [K]<br />

A, B: Constants of the Solubility Product, given in the table below:<br />

Precipitate A B Source<br />

AlN 9595 2.65 Kunze & Reichert<br />

BN 13560 4.53 Fountain & Chipman<br />

MnS 8400 2.77 Ivanov<br />

NbC 10990 4.62 Kunze<br />

NbN 10650 3.87 Kunze<br />

TiN 17640 6.17 Kunze<br />

VC 12265 8.05 Taylor<br />

VN 7830 2.45 Froberg<br />

VN 8120 2.48 Roberts & S<strong>and</strong>bert<br />

ZrN 18160 5.24 Kunze<br />

Observations:


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

- aAmBn is equal to one if the precipitate is pure.<br />

- aAmBn 1 if there is co-precipitation with another element.<br />

81<br />

Sources:<br />

- TAYLOR, K.A. et al. Scripta Metallurgica, 32, 1995, 7.<br />

- FROBERG, M.G. & GRAF, H. Stahl und Eisen, 80, 1960, 539.<br />

- KUNZE, J. Nitrogen <strong>and</strong> Carbon in Iron <strong>and</strong> <strong>Steel</strong>s – Thermodynamics. Akademie Verlag, Berlin, 1991, p.<br />

192.<br />

- FOUNTAIN, R.W. & CHIPMAN, J. In: Transactions of the Metallurgical Society of AIME, 224, 1964, 599.<br />

- KUNZE, J. & REICHERT, J. Neue Hütte, 26, 1981, 23.<br />

- ROBERTS, W. & SANDBERG, A. Report IM 1489. Institute for Metallurgical Research, Stockholm, 1990.<br />

- IVANOV, B.S. et al. Stahl, 8, 1996, 52.


<strong>Gorni</strong><br />

- Hardness After Austenite Cooling<br />

. Blondeau<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

82<br />

HV<br />

<br />

f<br />

FP<br />

HV<br />

FP<br />

<br />

f<br />

B<br />

HV<br />

B<br />

<br />

f<br />

M<br />

HV<br />

M<br />

HV<br />

HV<br />

HV<br />

42 223 C 53 Si 30 Mn 7 Cr 19 Mo 12.6 Ni (10 19<br />

Si 8 Cr 4 Ni 130 V)<br />

log<br />

FP<br />

v r<br />

323 185 C 330 Si 153 Mn 144 Cr 191 Mo 65 Ni (89 53 C 55 Si 22 Mn 20 Cr 33 Mo 10<br />

Ni)<br />

log<br />

B<br />

v r<br />

127 949 C 27 Si 11 Mn 16 Cr 8 Ni 21 log<br />

M<br />

v r<br />

<br />

<br />

<br />

<br />

<br />

<br />

log( v 1<br />

) 9.81 4.62 C 1.05 Mn 0.54 Ni 0.5 Cr 0.66 Mo 0. 00183<br />

log( v 2<br />

) 10.17<br />

3.80 C 1.07 Mn 0.70 Ni 0.57 Cr 1.58 Mo 0. 0032<br />

PA<br />

PA<br />

log( v 3<br />

) 6.36 0.43 C 0.49 Mn 0.78 Ni 0.27 Cr 0.38 Mo 2 Mo 0. 0019<br />

PA<br />

1<br />

PA <br />

T<br />

<br />

4.58 log( t)<br />

<br />

H<br />

<br />

<br />

1<br />

Notation:<br />

HV: Global Hardness [Vickers]<br />

fFP: Fraction of Ferrite-Pearlite in Microstructure<br />

fB: Fraction of Bainite in Microstructure<br />

fM: Fraction of Martensite in Microstructure<br />

HVFP: Hardness of Ferrite-Pearlite [Vickers]<br />

HVB: Hardness of Bainite [Vickers]


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

HVM: Hardness of Martensite [Vickers]<br />

Alloy Content: [weight %]<br />

vr: Applied Cooling Rate at 700°C [°C/h]<br />

v1: Critical Cooling Rate at 700°C for Martensitic Quenching [°C/h]<br />

v2: Critical Cooling Rate at 700°C for Bainitic Quenching [°C/h]<br />

v3: Critical Cooling Rate at 700°C for Annealing [°C/h]<br />

PA: Austenitization Parameter [K]<br />

T: Austenitization Temperature [K]<br />

t: Austenitization Soaking Time [h]<br />

H: Austenitization Activation Energy: 240 kJ/mol for C <strong>Steel</strong>s; 418 kJ/mol if Mo 0.04%<br />

83<br />

Observations:<br />

- Limits for Austenitization: 1073 K (800°C) ≤ T ≤ 1373 K (1100°C) <strong>and</strong> t ≤ 1 h.<br />

- Equations Valid for the Following Chemical Composition Range: 0.10% < C < 0.50%, Mn < 2.0%, Si < 1.0%, Ni<br />

≤ 4.0%, Cr < 3.0%, Mo < 1.0%, Cu < 0.5%, V < 0.2%, 0.010% < Al < 0.050% <strong>and</strong> Mn + Ni + Cr + Mo < 5.0%.<br />

Source: BLONDEAU, R. et al.: Mathematical Model for the Calculation of Mechanical Properties of Low-Alloy <strong>Steel</strong><br />

Products: A Few Examples of its Application. In: 16 th International <strong>Heat</strong> Treatment Conference – <strong>Heat</strong><br />

<strong>Treating</strong> ‘76, The Metals Society Stratford-upon-Avon, 1976, 189-200.<br />

. Lorenz<br />

HV<br />

<br />

Si Mn Cu Cr Ni Mo V <br />

2019 C<br />

(1 0.5 log t8 / 5<br />

) 0.3 66 (1 0.8 log t8 / 5<br />

)<br />

11 8 9 5 17 6 3<br />

<br />

<br />

<br />

<br />

Notation:<br />

HV: Maximum Hardness for a Martensitic-Bainitic HAZ Microstructure [Vickers, 10 kg Load]<br />

Alloy Content: [weight %]<br />

t8/5: Cooling Time Between 800°C <strong>and</strong> 500°C [s]


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

Source: LORENZ, K. et al.: Evaluation of Large Diameter Pipe <strong>Steel</strong> Weldability by Means of the Carbon Equivalent. In:<br />

International Conference on <strong>Steel</strong>s for <strong>Line</strong>pipe <strong>and</strong> Fittings, Metals Society, London, Oct. 1981, 322-332.<br />

84<br />

. Murry<br />

HV<br />

HV<br />

max<br />

<br />

0<br />

HV<br />

<br />

max<br />

HV0<br />

exp <br />

n n<br />

t<br />

t0<br />

<br />

<br />

0.6 U t<br />

n<br />

<br />

0.04 <br />

t0<br />

C exp 2.3<br />

<br />

0<br />

<br />

i<br />

Ci<br />

<br />

d <br />

<br />

n C exp 2.3<br />

<br />

0<br />

<br />

0.03 0.09<br />

<br />

d C<br />

<br />

<br />

0.43<br />

i<br />

Ci<br />

<br />

<br />

<br />

U<br />

1 <br />

<br />

p exp <br />

0.35<br />

ln<br />

<br />

<br />

t<br />

<br />

t M<br />

2<br />

<br />

<br />

<br />

t M<br />

t<br />

0<br />

12<br />

1<br />

n<br />

<br />

p <br />

<br />

<br />

HV<br />

C<br />

t<br />

0<br />

<br />

<br />

<br />

3.1<br />

<br />

exp 2.3<br />

<br />

0<br />

<br />

<br />

<br />

i<br />

C i<br />

<br />

700<br />

HV<br />

300 9<br />

<br />

0<br />

HVmin<br />

.055<br />

max<br />

lg<br />

0 t<br />

300


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

85<br />

HVmin 63 <br />

i<br />

0.75<br />

i<br />

Z i<br />

Notation:<br />

HVmax: Maximum Hardness for a Martensitic Structure<br />

C: Carbon [weight %]<br />

Ci: Alloy Content [weight %]<br />

d: Mean Austenite Grain Size [mm]<br />

t 700 300: Cooling time between 700°C <strong>and</strong> 300°C [s]<br />

HVmin: Minimum Hardness at Equilibrium Calculated According to the Substitution Solid Solution Hardening<br />

Effect According Lacy <strong>and</strong> Gensamer<br />

Zi: Concentration of the Element i in solid solution with ferrite at equilibrium [at %]<br />

μi: Action Coefficient of the Element i, as described in the following table:<br />

Element Mn Si P Ni Cr Mo V W<br />

μi 14.27 22.42 61.16 12.44 2.84 19.57 8.15 22.42<br />

General Constants: α0 = 0.89, β0 = 1.22, γ0 = 1.82<br />

Constants: αi, βi <strong>and</strong> γi according to the alloy element:<br />

Observations:<br />

Element i αi βi γi<br />

Mn 0.39 0.94 1.40<br />

Si 0.20 0.15 0.80<br />

Ni 0.22 0.40 0.12<br />

Cr 067 0.09 2.40<br />

Mo 0.17 0.72 0.79<br />

V 0.20 0.50 0.90<br />

Nb 0.40 1.20 1.00


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

- Equations Valid for the Following Chemical Composition Range: 0.05% ≤ C ≤ 0.80%, 0.50% ≤ Mn ≤ 2.5%,<br />

0.15% ≤ Si ≤ 0.35%, Ni ≤ 1.0%, Cr ≤ 1.5%, Mo ≤ 0.5%, V ≤ 0.1%, Nb ≤ 0.040%.<br />

Source: MURRY, G.: Transformations Dans les Aciers, Document M 1 115, Techniques de l'Ingénieur, Paris, 1985,<br />

54 p.<br />

86


<strong>Gorni</strong><br />

- Hardness After Tempering<br />

. Spies<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

87<br />

HB 2.84<br />

HRC 75 C 0.78 Si 14.24 Mn 14.77 Cr 128.22 Mo 54.0 V 0.55 T 435.66<br />

Notation:<br />

HB: Brinell Hardness After Hardening <strong>and</strong> Tempering<br />

HRC: Rockwell Hardness (C Scale) After Hardening<br />

Alloy Content: [weight %]<br />

T: Tempering Temperature [°C]<br />

Observations:<br />

- This equation is valid within the following ranges: HRC: 20~65; C: 0.20~0.54%; Mn: 0.50~1,90%; Si:<br />

0.17~1.40%; Cr: 0.03~1.20%; T: 500~650°C.<br />

Source: SPIES, H.J. et al.: Möglichkeiten der Optimierung der Auswahl vergütbarer Baustähle durch<br />

Berechnung der Härt-und-vergütbarkeit. Neue Hütte, 8:22, 1977, 443-445.


<strong>Gorni</strong><br />

- Hardness After Welding<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

88<br />

. Dearden & O’Neill<br />

HV<br />

max<br />

1200 C EQ _<br />

Dearden<br />

200<br />

C<br />

EQ _ Dearden<br />

C<br />

<br />

Mn<br />

6<br />

<br />

Mo CrV<br />

<br />

4 5<br />

<br />

Cu<br />

<br />

13<br />

Ni<br />

<br />

15<br />

P<br />

2<br />

Notation:<br />

CEQ_Dearden: Equivalent Carbon (Dearden) [%]<br />

Alloy Content: [weight %]<br />

HVmax = Maximum Hardness [Vickers]<br />

Observations:<br />

- This equation calculates maximum hardness after welding.<br />

Source: DEARDEN, J & O’NEIL, H.: Trans. Int. Weld., 3, 1940, 203.<br />

. Shinozaki et al.<br />

HV 78 331<br />

C EQ _ FBW<br />

C<br />

EQ _ FBW<br />

C<br />

<br />

Mn<br />

5<br />

Si Cr<br />

<br />

15 9<br />

V<br />

7 Nb (1 10C)<br />

<br />

(50 C 1)<br />

3<br />

1.3 Ti (1 5 C)<br />

<br />

Mo (1 6 C)<br />

29 B (11 C 1)<br />

2<br />

Notation:<br />

CEQ_FBW: Equivalent Carbon Designed Specifically for Flash Butt Welding [%]<br />

Alloy Content: [weight %]


<strong>Gorni</strong><br />

HV: Hardness at the Welding Interface [Vickers]<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

89<br />

Source: SHINOZAKI, M. et al.: Effects of Chemical Composition <strong>and</strong> Structure of Hot Rolled High Strength <strong>Steel</strong> Sheets on<br />

the Formability of Flash Butt Welded Joints. Kawasaki <strong>Steel</strong> Technical Report, 6, Sept. 1982, 21-30.


<strong>Gorni</strong><br />

- Hardness-Tensile Properties Equivalence<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

90


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

91<br />

Source: ASM H<strong>and</strong>book – Mechanical Testing <strong>and</strong> Evaluation. ASM International, vol. 8, Metals Park, 2000, 275.


<strong>Gorni</strong><br />

- Hot Strength of <strong>Steel</strong><br />

. Solid Solution Effect<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

92


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

93<br />

Alloy Element<br />

[%/atomic %] [%/weight %]<br />

Mn 2.1 2.13<br />

Si 3.8 7.52<br />

Cr 1.8 1.93<br />

Mo 21 12.31<br />

Cu 0 0<br />

Ni 0 0<br />

Nb 210 127.06<br />

V 29 31.76<br />

Ti 63 59.76<br />

Observations:<br />

- Plot generated from data available in the original source.<br />

Source: TAMURA, I. et al.: Thermomechanical Processing of High Strength Low Alloy <strong>Steel</strong>s. Butterworths,<br />

London, 1988, 248 p.<br />

. Misaka<br />

2<br />

0, 13<br />

2851<br />

2968 C C <br />

0,21 d<br />

<br />

2 1120<br />

exp 0.126<br />

1.75 C 0.594 C <br />

<br />

T<br />

Notation:<br />

: <strong>Steel</strong> Mean Flow Stress [kgf/mm²]<br />

<br />

<br />

<br />

<br />

<br />

<br />

dt


<strong>Gorni</strong><br />

C: C content [weight %]<br />

T: Absolute Temperature [K]<br />

: True Strain<br />

έ: Strain Rate [s -1 ]<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

94<br />

Observations:<br />

- The mean flow stress calculated by this equation is given in effective (von Mises) units, as it was determined<br />

under plane strain conditions.<br />

- Equation valid for the following parameter range: C 1.20%; 750 έ 1200°C; 0.5; 20 έ 200 s -1 .<br />

Source: MISAKA, Y. et al. Formulatization of Mean Resistance to Deformation of Plain C <strong>Steel</strong>s at Elevated Temperature.<br />

Journal of the Japan Society for the Technology of Plasticity, 8:79, 1967-1968, 414-422.<br />

. Misaka Reloaded<br />

<br />

f<br />

2<br />

0, 13<br />

2851<br />

2968 C C <br />

0,21 d<br />

<br />

2 1120<br />

g exp 0.126<br />

1.75 C 0.594 C <br />

<br />

T<br />

<br />

<br />

<br />

<br />

<br />

<br />

dt <br />

f 0,916<br />

0,18 Mn 0,389 V 0,191 Mo 0, 004 Ni<br />

If T, expressed in Celsius degrees, is between Ar3 <strong>and</strong> Ar1, then g must be calculated according to the formula below.<br />

Otherwise g is equal to unity.<br />

g 0,7893<br />

0, 769 C<br />

Ar 974,76 734, 65 C<br />

3<br />

<br />

Ar 876,81 336, 26 C<br />

1


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

95<br />

Notation:<br />

: <strong>Steel</strong> Mean Flow Stress [kgf/mm²]<br />

f: Effect of alloy elements on Mean Flow Stress.<br />

g: Softening Factor Due to Intercritical Deformation<br />

C: Carbon Content [weight %]<br />

T: Absolute Temperature [K]<br />

: True Strain<br />

t: Time [s]<br />

Mn: Manganese Content [weight %]<br />

V: Vanadium Content [weight %]<br />

Mo: Molybdenum Content [weight %]<br />

Ni: Nickel Content [weight %]<br />

Ar3: Temperature of Start Austenite Transformation in Proeutectoid Ferrite [°C]<br />

Ar1: Temperature of Finish Austenite Transformation in Proeutectoid Ferrite [°C]<br />

Observations:<br />

- The mean flow stress calculated by this equation is given in effective (von Mises) units, as it was determined<br />

under plane strain conditions.<br />

Source: MISAKA, Y. et al. Estimation of Rolling Force in Computer Controlled Hot Rolling of Plates <strong>and</strong> Strip - Theme III:<br />

Mathematical Model for Estimating Deformation Resistance in Hot Rolling of <strong>Steel</strong>s. Tetsu-to-Hagané, 67:2,<br />

1981, A53-A56.<br />

. Senuma & Yada<br />

a<br />

<br />

(1 X ) <br />

n<br />

dyn<br />

s<br />

X<br />

dyn


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

96<br />

<br />

n<br />

c (1 e<br />

b<br />

b<br />

<br />

)<br />

e<br />

<br />

0<br />

b<br />

<br />

b 9850 <br />

0.315<br />

e<br />

8000<br />

<br />

T <br />

(Senuma 1984)<br />

b 6227 <br />

0.28<br />

e<br />

7500<br />

<br />

T <br />

(Wang & Tseng)<br />

c 1.0<br />

10<br />

11<br />

(Senuma 1984)<br />

<br />

c 8.5 10<br />

10 1<br />

1 <br />

D0<br />

<br />

<br />

<br />

(Yada & Senuma)<br />

8000<br />

<br />

4<br />

T <br />

<br />

c<br />

4.76 10<br />

e (Senuma)<br />

2500<br />

<br />

T <br />

0.05 e (Wang & Tseng 1996)<br />

c<br />

If ε εc:<br />

X dyn<br />

1 e<br />

<br />

<br />

2<br />

( <br />

<br />

C )<br />

0.693<br />

<br />

0.5


<strong>Gorni</strong><br />

2<br />

9 0.2 (1613<br />

T)<br />

<br />

3.8242<br />

10<br />

<br />

<br />

<br />

<br />

s<br />

<br />

<br />

290<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

97<br />

. According to Senuma (1984):<br />

5<br />

0.28 0.05<br />

1.144<br />

D0<br />

<br />

0 .5<br />

10 <br />

e<br />

6420<br />

<br />

T <br />

. According to Wang & Tseng:<br />

2<br />

0.28 0.03<br />

1.07<br />

D0<br />

<br />

<br />

0.5<br />

10 <br />

e<br />

2650<br />

<br />

T <br />

8670<br />

<br />

0.27<br />

T <br />

D dyn<br />

22600 e<br />

If Xdyn > 0.95:<br />

. According to Yada & Senuma:<br />

D<br />

p<br />

D<br />

dyn<br />

( D<br />

pd<br />

D<br />

dyn<br />

<br />

) 1<br />

e<br />

<br />

8000<br />

<br />

0.1<br />

e<br />

T<br />

295<br />

t<br />

<br />

<br />

<br />

. According to Wang & Tseng:


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

98<br />

D<br />

p<br />

D<br />

dyn<br />

1.1 ( D<br />

pd<br />

D<br />

dyn<br />

<br />

) 1<br />

e<br />

<br />

8000<br />

<br />

0.1<br />

e<br />

T<br />

295<br />

t<br />

<br />

<br />

<br />

D pd<br />

5380 e<br />

6840<br />

<br />

T <br />

If ε < εc:<br />

D<br />

st<br />

<br />

5<br />

<br />

S 0. 6<br />

V<br />

<br />

<br />

<br />

24 (0.4914 e 0.155 e 0.1433 e<br />

S V<br />

<br />

D<br />

0<br />

3 )<br />

X<br />

st<br />

1 e<br />

<br />

<br />

2<br />

( t t <br />

<br />

s )<br />

0.693<br />

<br />

t0.5<br />

<br />

. According to Senuma (1984):<br />

t<br />

0.5<br />

0.286 10<br />

<br />

S<br />

v<br />

7<br />

<br />

0.2<br />

<br />

2<br />

e<br />

18000<br />

<br />

T <br />

. According to Wang & Tseng:


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

99<br />

t<br />

0.5<br />

<br />

2.2 10<br />

S<br />

v<br />

12<br />

<br />

0.2<br />

<br />

2<br />

e<br />

30000<br />

<br />

T <br />

t 4 t<br />

0.95<br />

. 322<br />

0.5<br />

If Xst < 0.95 (i.e., tip < t0.95):<br />

D<br />

u<br />

D<br />

st<br />

( 0.2 0.8 X<br />

st)<br />

If Xst 0.95 <strong>and</strong> tip t0.95:<br />

. According to Senuma (1984):<br />

D<br />

g<br />

<br />

D<br />

2<br />

st<br />

1.44<br />

10<br />

12<br />

t<br />

g<br />

e<br />

63800<br />

<br />

T <br />

. According to Wang & Tseng:<br />

D<br />

g<br />

<br />

D<br />

2<br />

st<br />

1.44<br />

10<br />

12<br />

t<br />

g<br />

e<br />

32100<br />

<br />

T <br />

t<br />

g<br />

t<br />

ip<br />

<br />

t 0.95


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

100<br />

In case of multipass hot rolling:<br />

<br />

R<br />

(1 X<br />

t<br />

dyn<br />

) (1 X<br />

st<br />

) X<br />

s<br />

dyn<br />

( D<br />

( D<br />

pd<br />

pd<br />

D<br />

D<br />

p<br />

dyn<br />

)<br />

)<br />

e<br />

t<br />

n<br />

8000<br />

<br />

<br />

T<br />

90e<br />

<br />

ta<br />

<br />

<br />

0.7<br />

<br />

<br />

<br />

<br />

(<br />

b c <br />

0<br />

)<br />

ln<br />

r<br />

b c<br />

<br />

(<br />

)<br />

<br />

<br />

r<br />

<br />

b<br />

Notation:<br />

: <strong>Steel</strong> Mean Flow Stress [kgf/mm²]<br />

ρ: Dislocation Density [cm - ²]<br />

ρ0: Initial Dislocation Density [cm - ²]<br />

ρn: Dislocation Density in the Dynamically Recovered Region [cm - ²]<br />

ρs: Dislocation Density in the Dynamically Recristallized Region [cm - ²]<br />

ρr: Dislocation Density After Deformation/Static Recovery [cm - ²]<br />

ρt: Remaining Dislocation Density in the Dynamically Recovered Region [cm - ²]<br />

Xdyn: Fraction of Dynamic Recrystallization<br />

Xst: Fraction of Static Recrystallization<br />

T: Absolute Temperature [K]<br />

: True Strain<br />

εc: Critical Strain for the <strong>On</strong>set of Dynamic Recrystallization<br />

ε0.5: Strain Required for 50% Dynamic Recrystallization<br />

εr: Residual Strain After <strong>On</strong>e Pass of Hot Rolling<br />

̇: Strain Rate [s -1 ]


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

D0: Grain Size Before Deformation [μm]<br />

Ddyn: Dynamically Recrystallized Grain Size [μm]<br />

Dp: Transition Grain Size from Ddyn to Dpd at a time t after deformation [μm]<br />

Dpd: Grain Size resulted from driving force due to the decrease of dislocation density [μm]<br />

Dst: Statically Recrystallized Grain Size [μm]<br />

Du: Mixed Grain Size Due to Incomplete Static Recrystallization [μm]<br />

Dg: Grain Size After Complete Static Recrystallization Plus Growth [μm]<br />

Sv: Nucleation Site Area [μm -1 ]<br />

t: Time [s]<br />

ts: Incubation Time for Static Recrystallization [s]<br />

t0.5: Time Required for 50% Static Recrystallization [s]<br />

t0.95: Time Required for 95% Static Recrystallization [s]<br />

tip: Time Interval Between Successive Rolling Passes [s]<br />

tg: Time Available for Grain Growth [s]<br />

ta: Time After Deformation [s]<br />

101<br />

Observations:<br />

- This model is very interesting as it links hot strength with microstructural evolution.<br />

- The mean flow stress calculated by this equation is given in effective (von Mises) units, as it was determined<br />

under plane strain conditions.<br />

- The value of constant a depends on steel composition. For instance:<br />

. 0.00175 MN/m² (Senuma 1984: 0.08-0.81% C, 0.62-1.14% Mn, 0.20-0.24% Si)<br />

. 0.00165 MN/m² (Yada & Senuma: 0.05-0.40% C, 0.00-1.00% Mn, 0.00-0.50% Si)<br />

. 0.00180 MN/m² (Wang & Tseng: 0.05-0.81% C, 0.20-1.50% Mn, 0.01-0.50% Si)<br />

- Suggested value for ρ0: 1 x 10 -8 cm -2 (Wang & Tseng)<br />

- ts can be assumed as being zero as it is negligibly short for the deformation conditions of hot flat rolling (Wang<br />

& Tseng).<br />

- If εr from the former pass is greater than 0, then it must be added to value of ε of the next pass.<br />

Sources:


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

- SENUMA, T. & YADA, H. Microstructure Evolution of Plain Carbon <strong>Steel</strong>s. 7 th Riso International Symposium<br />

on Metallurgy <strong>and</strong> Materials Science, Riso National Laboratory, Roskilde, 1986, p. 547-552.<br />

- WANG, S.R. & TSENG, A.A. Macro- <strong>and</strong> Micro-Modeling of Hot Rolling of <strong>Steel</strong> Coupled by a Micro Constitutive<br />

Relationship. Iron <strong>and</strong> <strong>Steel</strong>maker, September 1996, 49-61.<br />

- SENUMA, T. et al. Structure of Austenite of Carbon <strong>Steel</strong>s in High Speed Hot Working Process. Tetsu-to-<br />

Hagané, 70:15, November 1984, 2112-2119.<br />

- YADA, H. & SENUMA, T. Resistance to Hot Deformation of <strong>Steel</strong>s. Journal of the Japan Society for<br />

Technology of Plasticity, 27:300, 1986, 34-9.<br />

- YANAGIMOTO, J. & LIU, J. Incremental Formulation for the Prediction of Microstructural Change in Multi-Pass<br />

Hot <strong>Forming</strong>. ISIJ International, 39:2, February 1999, 171-175.<br />

102<br />

. Shida<br />

Calculation algorithm expressed in Visual Basic:<br />

Function Shida(C, T, Def, VelDef)<br />

Dim nShida, Td, g, Tx, mShida, SigF As Single<br />

nShida = 0.41 – 0.07 * C<br />

Td = 0.95 * (C + 0.41) / (C + 0.32)<br />

T = (T + 273) / 1000<br />

If T >= Td Then<br />

g = 1<br />

Tx = T<br />

mShida = (-0.019 * C + 0.126) * T + (0.075 * C – 0.05)<br />

Else


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

103<br />

g = 30 * (C + 0.9) * (T – 0.95 * (C + 0.49) / (C + 0.42)) ^ 2 + (C + 0.06) / (C + 0.09)<br />

Tx = Td<br />

mShida = (0.081 * C – 0.154) * T + (-0.019 * C + 0.207) + 0.027 / (C + 0.32)<br />

End If<br />

SigF = 0.28 * g * Exp(5 / Tx – 0.01 / (C + 0.05))<br />

Shida = 2 / Sqr(3) * SigF * (1.3 * (Def / 0.2) ^ nShida – 0.3 * (Def / 0.2)) * _<br />

(VelDef / 10) ^ mShida<br />

End Function<br />

Notation:<br />

Shida: <strong>Steel</strong> Mean Flow Stress [kgf/mm²]<br />

C: C content [weight %]<br />

T: Temperature [°C]<br />

Def: True Strain<br />

VelDef: Strain Rate [s -1 ]<br />

Observation:<br />

- The mean flow stress calculated is this algorithm is already expressed in effective (von Mises) units, that is,<br />

corrected for plane strain conditions, as it is multiplied by 2/√3.<br />

- Equation valid for the following parameter range: C 1.20%; 700 έ 1200°C; 0.7; 0.1 έ 100 s -1 .<br />

- The effect of some alloy elements over hot strength can be considered by Shida equation. In this case carbon<br />

content must be replaced by an equivalent carbon (Ceq) content, which formula is described below:<br />

C eq<br />

C <br />

Mn Cr V Nb<br />

<br />

6 12<br />

Sources:<br />

where Mn is the manganese content, Cr is the chromium content, V is the vanadium content <strong>and</strong> Nb is the<br />

niobium content, all expressed as weight percent.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

104<br />

- SHIDA, S. Empirical Formula of Flow Stress of C <strong>Steel</strong>s - Resistance to Deformation of C <strong>Steel</strong>s at Elevated<br />

Temperature. Journal of the Japan Society for Technology of Plasticity, 10:103, 1969, 610-7.<br />

- LENARD, J.G. et al. : Mathematical <strong>and</strong> Physical Simulation of the Properties of Hot Rolled Products.<br />

Elsevier, Amsterdam, 1999, 248 p.


<strong>Gorni</strong><br />

- Jominy Curves<br />

. Just<br />

- d < 6,4 mm<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

105<br />

J d<br />

60 C 20<br />

- 6,4 ≤ d < 39,7 mm<br />

J d<br />

98<br />

C<br />

0.00992 d<br />

2<br />

C<br />

20 Cr 6.4 Ni 19 Mn 34 Mo 28V<br />

19.05<br />

d<br />

1.80 d<br />

7<br />

- C < 0.28% <strong>and</strong> 6,4 mm ≤ d < 39,7 mm<br />

J d<br />

87 C 14 Cr 5.3 Ni 16 Mn 29 Mo 16.8<br />

d 1.39 d 22<br />

- C > 0.29% <strong>and</strong> 6,4 mm ≤ d < 39,7 mm<br />

J d<br />

78 C 22 Cr 6.9 Ni 21 Mn 33 Mo 16.1<br />

d 1.17 d 18<br />

Observation:<br />

- Equations valid for the following chemical composition range: 0.10% ≤ C ≤ 0.60%, 0.45% ≤ Mn ≤ 1.75%, 0.15%<br />

≤ Si ≤ 1.95%, Ni ≤ 5.0%, Cr ≤ 1.55%, Mo ≤ 0.52% <strong>and</strong> V ≤ 0.2%.<br />

- Equation Considering the Effect of Austenite Grain Size


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

106<br />

J d <br />

88 C 0.00553 C 19 Cr 6.3 Ni 16 Mn 35 Mo 5 Si 0.82 G 15.9<br />

d 1.33 d 2<br />

Observation:<br />

- Equation valid for the following conditions: 0.08% ≤ C ≤ 0.56%, 0.20% ≤ Mn ≤ 1.88, Si ≤ 3.80, Ni ≤ 8.94%, Cr ≤<br />

1.97, Mo ≤ 0.53 <strong>and</strong> 1.5 ≤ Gγ ≤ 11.<br />

Notation:<br />

Jd: Hardness [Rockwell C]<br />

Alloy Content: [weight %]<br />

d: Distance from the Cooled End [mm]<br />

Gγ: Austenite Grain Size Index [mm]<br />

Source: JUST, E. New Formulas for Calculating Hardenability. Metal Progress, 96, November 1969, 87-88.


<strong>Gorni</strong><br />

- Lattice Parameters of Phases<br />

. Ferrite<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

107<br />

a <br />

2.8863[1 17.5 10<br />

6<br />

( T<br />

800)]<br />

Notation:<br />

aα: Ferrite Lattice Parameter [Ǻ]<br />

T: Temperature [K]<br />

Observations:<br />

- 800 K < T < 1200 K<br />

. Austenite<br />

a 3.573 0.033 C 0.00095 Mn 0.0002 Ni 0.0006 Cr 0.0031 Mo 0. 0018V<br />

<br />

0<br />

<br />

Notation:<br />

aγ: Austenite Lattice Parameter [Ǻ]<br />

T: Temperature [K]<br />

ξ: C [Atomic Fraction]<br />

Observations:<br />

- 1000 K < T < 1250 K<br />

- 0.0005 < ξ < 0.0365<br />

a<br />

<br />

(3.6306 0.78 ) [1 (24.9 50 )<br />

10<br />

6<br />

( T<br />

1000)]


<strong>Gorni</strong><br />

Notation:<br />

aγ: Austenite Lattice Parameter [Ǻ]<br />

Alloy Content: [Weight Percent]<br />

Observations:<br />

- 1000 K < T < 1250 K<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

108<br />

. Cementite<br />

a <br />

4.5234 [1 (5.31110<br />

6<br />

1.942<br />

10<br />

9<br />

T<br />

9.655 10<br />

12<br />

T<br />

2<br />

) ( T<br />

293)]<br />

b <br />

5.0883[1 (5.31110<br />

6<br />

1.942<br />

10<br />

9<br />

T<br />

9.655 10<br />

12<br />

T<br />

2<br />

) ( T<br />

293)]<br />

c <br />

6.7426 [1 (5.31110<br />

6<br />

1.942<br />

10<br />

9<br />

T<br />

9.655 10<br />

12<br />

T<br />

2<br />

) ( T<br />

293)]<br />

Notation:<br />

aθ, bθ, cθ: Cementite Lattice Parameter [Ǻ]<br />

T: Temperature [K]<br />

Observations:<br />

- 300 K < T < 1000 K<br />

Source: CABALLERO, F.G. et al. Modelling of Kinetics <strong>and</strong> Dilatometric Behaviour of Austenite Formation in a Lowcarbon<br />

<strong>Steel</strong> with a Ferrite Plus Pearlite Inicial Microstructure. Journal of Materials Science, 37, 2002, 3533-<br />

3540.


<strong>Gorni</strong><br />

- Liquid <strong>Steel</strong> Solubility Products<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

109<br />

. General<br />

log<br />

( a<br />

A<br />

)<br />

a<br />

m<br />

A<br />

( a<br />

m B n<br />

B<br />

)<br />

n<br />

<br />

A<br />

B<br />

T<br />

Notation:<br />

AmBn: Precipitate Considered for Calculation<br />

ax: Alloy Content [weight %]<br />

T: Temperature [K]<br />

A, B: Constants of the Solubility Product, given in the table below:<br />

Precipitate A B<br />

MnS 8236 5.03<br />

TiN 16586 5.90<br />

TiS 8000 4.00<br />

ZrN 17000 6.38<br />

Observations:<br />

- aAmBn is equal to one if the precipitate is pure.<br />

- aAmBn 1 if there is co-precipitation with another element.<br />

Source: Values compiled by Rajindra Clement Ratnapuli from assorted references.


<strong>Gorni</strong><br />

- Liquidus Temperature of <strong>Steel</strong>s<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

110<br />

<br />

TLiq 1536 78 C 7, 6 Si 4, 9 Mn 34 P 30 S 5 Cu 31 , Ni 13 , Cr 3,<br />

6 Al 2 Mo 2V 18 Ti<br />

Notation:<br />

TLíq: <strong>Steel</strong> Melting Temperature [°C]<br />

Alloy Content: [weight %]<br />

Source: GUTHMANN, K. Günstige Giesstemperatur im Vergleich zum Erstarrungspunkt von Eisen- und Stahlschmelzen.<br />

Stahl und Eisen, 71(1951), 8, 399-402.


<strong>Gorni</strong><br />

- Poisson Ratio<br />

. Definition<br />

: Poisson Ratio<br />

. Elastic Range: 0.3<br />

. Plastic Range: 0.5<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

111<br />

Source: WILSON, A.D. Guidelines for Fabricating <strong>and</strong> Processing Plate <strong>Steel</strong>. Bethlehem-Lukens Plate Report, Burns<br />

Harbor, 2000, 97 p.<br />

. Fletcher<br />

Temperature <br />

[°C]<br />

600 0.327<br />

700 0.335<br />

800 0.344<br />

900 0.352<br />

1000 0.360<br />

Source: PICQUÉ, B. Experimental Study <strong>and</strong> Numerical Simulation of Iron Oxide Scales Behavior in Hot Rolling. Doctor<br />

Thesis, École de Mines de Paris, 2004, p. 243.


<strong>Gorni</strong><br />

- Precipitate Isothermal Solubilization Kinetics<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

112<br />

t<br />

<br />

r<br />

2<br />

0<br />

2 c D<br />

Notation:<br />

AmBn: Spheric precipitate considered for calculation<br />

t: Time for solubilization of the precipitate [s]<br />

r0: Radius of the precipitate [m], [cm] or [mm]<br />

c <br />

C<br />

C<br />

i<br />

p<br />

C<br />

m<br />

C<br />

i<br />

C<br />

<br />

C<br />

i<br />

p<br />

Cm: Solute concentration in the bulk metal [%]<br />

Ci: Solute concentration in the precipitate/matrix interface [%]<br />

C<br />

i<br />

A <br />

B <br />

T <br />

a<br />

B<br />

10 T: Temperature [K]<br />

A, B: Constants of the Solubility Product, given in the table at the topic Austenite Solubilization Products.<br />

aB: Alloy content [weight percent]<br />

Cp: Solute content in the precipitate [%]<br />

C<br />

p<br />

<br />

m M<br />

A<br />

m M n M<br />

A<br />

B<br />

Mx : Atomic mass of the element [g]


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

Cm: Solute content in a position far away from the precipitate [%]<br />

D: Solute Diffusion Coefficient [m²/s, cm²/s or mm²/s], calculated according to the general equation below:<br />

113<br />

D D<br />

0<br />

Q <br />

exp <br />

RT <br />

D0: Constant<br />

Q: Activation Energy for Diffusion [J] or [cal]<br />

R: Universal Gas Constant, 1.981 cal/mol.K<br />

R’: Universal Gas Constant, 8.314 J/mol.K<br />

Element Phase Equation Source<br />

Al<br />

Ferrite D [m 2 /s] = 0.30 * 10 -2 * Exp(-234500/R’ T) Pickering<br />

Austenite D [m 2 /s] = 0.49 * 10 -4 * Exp(-284100/R’ T)<br />

Austenite D [m 2 /s] = 2.10 * 10 -3 * Exp(-286000/R’ T) Borggren<br />

B Austenite D [m 2 /s] = 2 * 10 -4 * Exp(-87864/R’ T)<br />

C<br />

Ferrite<br />

D [cm 2 /s] = 0.02 * Exp(-20100/RT)<br />

Ferrite D [m 2 /s] = 0.62 * 10 -6 * Exp(-80400/R’ T) Pickering<br />

Austenite D [m 2 /s] = 0.10 *10 -4 * Exp(-135700/R’ T)<br />

Cr<br />

Ferrite<br />

D [cm 2 /s] = 8.52 * Exp(-59900/RT)


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

114<br />

Austenite<br />

D [cm 2 /s] = 10.80 * Exp(-69700/RT)<br />

Fe<br />

Ferrite D [m 2 /s] = 1.67 * 10 -4 * Exp(-256700/R’ T) Pickering<br />

Austenite D [m 2 /s] = 0.49 * 10 -4 * Exp(-284100/R’ T) Pickering<br />

Austenite D [m 2 /s] = 7.00 * 10 -5 * Exp(-28600/R’ T) Borggren<br />

Mn<br />

Austenite D [mm 2 /s] = 140 * Exp(-286000/R’ T)<br />

Austenite D [cm 2 /s] = 0.65 * Exp(-276000/R’ T)<br />

Austenite D [m 2 /s] = 1.78 * 10 -5 * Exp(-264000/R’ T) Borggren<br />

N<br />

Ferrite<br />

D [cm 2 /s] = 6.6 * 10 -3 * Exp(-18600/RT)<br />

Ferrite D [m 2 /s] = 0.50 * 10 -6 * Exp(-77000/R’ T) Pickering<br />

Austenite D [m 2 /s] = 0.91 * 10 -4 * Exp(-168600/R’ T) Pickering<br />

Nb<br />

Austenite<br />

D [mm 2 /s] = 5.90 * 10 -4 * Exp(-343000/R’ T) Andersen<br />

Austenite D [m 2 /s] = 5.30 * 10 -2 * Exp(-344600/R’ T) Pickering<br />

Austenite D [m 2 /s] = 5.60 * 10 -4 * Exp(-286000/R’ T) Borggren<br />

P<br />

Austenite D [mm 2 /s] = 51 * Exp(-230120/R’ T)<br />

Austenite<br />

D [cm 2 /s] = 2.90 * Exp(-55000/RT)


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

Si Austenite D [m 2 /s] = 7.00 * 10 -4 * Exp(-286000/R’ T) Borggren<br />

Ti Austenite D [m 2 /s] =1.50 * 10 -5 * Exp(-251000/R’ T) Borggren<br />

115<br />

Ferrite<br />

D [cm 2 /s] = 3.92 * Exp(-57600/RT)<br />

V<br />

Ferrite D [m 2 /s] = 0.61 * 10 -4 * Exp(-267100/R’ T) Pickering<br />

Austenite<br />

D [cm 2 /s] = 0.25 * Exp(-63100/RT)<br />

Austenite D [m 2 /s] = 0.25 * 10 -4 * Exp(-264200/R’ T) Pickering<br />

Sources:<br />

- ANDERSEN, I. & GRONG, O. Analytical Modelling of Grain Growth in Metals <strong>and</strong> Alloys in the Presence of<br />

Growing <strong>and</strong> Dissolving Precipitates – I. Normal Grain Growth. Acta Metallurgica <strong>and</strong> Materialia, 43:7, 1995,<br />

2673-2688.<br />

- GLADMAN, T. The Physical Metallurgy of Microalloyed <strong>Steel</strong>s. The Institute of Materials, London, 1997, 363 p.<br />

- BORGGREN, U. e al. A Model for Particle Dissolution <strong>and</strong> Precipitation in HSLA <strong>Steel</strong>s. Advanced Materials<br />

Research, 15-17, 2007, 714-719.<br />

- Information compiled by Rajindra Clement Ratnapuli from assorted references.


<strong>Gorni</strong><br />

- Solidus Temperature of <strong>Steel</strong>s<br />

<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

T Sol<br />

1536 415,5 C 12,3 Si 6,8 Mn 124,5 P 183,9 S 4,3 Ni 1,4 Cr 4, 1<br />

Al<br />

116<br />

Notation:<br />

TSol: <strong>Steel</strong> Solidus Temperature [°C]<br />

Alloy Content: [weight %]<br />

Source: TAKEUCHI, E. & BRIMACOMBE, J.K. Effect of Oscillation-Mark Formation on the Surface Quality of<br />

Continuously Cast <strong>Steel</strong> Slabs. Metallurgical Transactions B, 16B, 9, 1985, 605-25.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

117<br />

- Relationships Between Chemical Composition x Process x Microstructure x Properties<br />

. C-Mn Mild <strong>Steel</strong>s<br />

YS<br />

17.4<br />

53.9<br />

32.3 Mn 83.2 Si 354.2 N<br />

sol<br />

<br />

d<br />

TS<br />

294.1<br />

27.7 Mn 83.2 Si 2.85 Pearl <br />

7.7<br />

d<br />

d<br />

15.4<br />

370 120 C 23.1 Mn 116 Si 554 P 143 Sn 1509 N<br />

sol<br />

d<br />

d<br />

<br />

0.28<br />

0.20 C 0.25 Mn 0.044 Si 0.039 Sn 1.<br />

2<br />

unif<br />

N sol<br />

1.40<br />

2.90 C 0.20 Mn 0.16 Si 2.2 S 3.9 P 0.25 Sn <br />

tot<br />

0.017<br />

d<br />

11.5<br />

50%<br />

ITT 19<br />

44 Si 700 N<br />

sol<br />

2.2 Pearl <br />

d<br />

Y 12.32<br />

19250<br />

Nsol 162 Mn 462 O<br />

Notation:<br />

YS: Yield Strength at 0.2% Real Strain [MPa]<br />

TS: Tensile Strength [MPa]<br />

d/d: Strain Hardening Coefficient at 0.2% Real Strain [1/MPa]<br />

unif: Uniform Elongation, Expressed as Real (Logarithmic) Strain


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

tot: Total Elongation, Expressed as Real (Logarithmic) Strain<br />

Pearl: Pearlite Fraction in Microstructure [%]<br />

50% ITT: Impact Transition Temperature for 50% Tough Fracture [°C]<br />

Y: Strain Ageing After 10 Days at Room Temperature [MPa]<br />

Alloy Content: [weight %]<br />

d: Grain Size [mm]<br />

118<br />

Source: PICKERING, F.B.: Physical Metallurgy <strong>and</strong> the Design of <strong>Steel</strong>s. Allied Science Publishers, London, 1978,<br />

275 p.<br />

. C-Mn <strong>Steel</strong>s Processed at a Hot Strip Mill<br />

d<br />

11.5<br />

2.2 (6 C Mn 30 P 35 S 23 Al 0.01 (723 Tcoil<br />

) 0.01 etot<br />

0.002 Tfin<br />

100<br />

Nsol)<br />

Pearl <br />

C eq<br />

0.06<br />

100<br />

0.78<br />

S<br />

0<br />

0. 1<br />

723 <br />

T coil<br />

YS<br />

0.016 Pearl<br />

99.08 (38.2 <br />

S<br />

0<br />

5.5 Mn 43 Si 114 P 45 S 31<br />

N<br />

12.6<br />

0.02<br />

d<br />

sol<br />

T fin<br />

)<br />

0.004 Pearl<br />

11.5<br />

TS 130.47 (19.8 <br />

8.03 Mn 41.4 Si 57.7 P 69 S 262 N<br />

sol<br />

)<br />

S<br />

0<br />

d


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

0.12<br />

100 (0.000096 Pearl S0 0.05 Mn 4.23 P 4.36 S 2.37 Sn 1.16 N<br />

sol<br />

0.0006 T<br />

fin<br />

)<br />

d<br />

119<br />

Notation:<br />

YS: Yield Strength at 0.2% Real Strain [MPa]<br />

TS: Tensile Strength [MPa]<br />

: Total Elongation [%]<br />

d: Ferrite Grain Size [m]<br />

Alloy Content: [weight %]<br />

Tcoil: Coiling Temperature [°C]<br />

etot: Total Hot Rolling Conventional Strain [%]<br />

Tfin: Finishing Temperature [°C]<br />

Nsol: Solubilized (Free) Nitrogen [%]<br />

Pearl: Pearlite Fraction Present in Microstructure [%]<br />

S0: Pearlite Lamelar Spacing [mm]<br />

C eq<br />

C <br />

Mn<br />

<br />

6<br />

Si<br />

S<br />

24<br />

<br />

T T<br />

fin<br />

T<br />

fin<br />

coil<br />

Observations:<br />

- These equations are valid under the following conditions: Slab Reheating Temperature: 1250°C; Tfin:<br />

850~880°C; Tcoil: 615~650°C; Final Thickness: 1.8~4.0 mm; C: 0.08~0.18%; Mn: 0.40~1.00%; P < 0.020%; S<br />

< 0.020%; Si < 0.030%; Al: 0.020~0.050%; N: 0.0030~0.0090%.<br />

Source: ARTIGAS, A. et al.: Prediction de Propiedades Mecánicas y Microestructurales em Aceros Laminados em<br />

Caliente. Revista Metalurgica CENIM, 38, 2002, 339-347.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

120<br />

. Hot/Cold Rolled <strong>and</strong> Annealed Mild <strong>Steel</strong><br />

d<br />

d<br />

CR<br />

CR<br />

0.013<br />

0.28 d ( after 60% cold rolling <strong>and</strong> annealing )<br />

HR<br />

0.011<br />

0.29 d ( after 70% cold rolling <strong>and</strong> annealing )<br />

HR<br />

YS<br />

2.72<br />

3.37<br />

<br />

YS 28.16<br />

154 d<br />

HR<br />

d CR<br />

<br />

6.27<br />

78.5<br />

yield<br />

d CR<br />

n<br />

0.33<br />

<br />

0.01<br />

d CR<br />

Notation:<br />

dCR: Grain Size of Cold Rolled Strip [mm]<br />

dHR: Grain Size of Hot Rolled Strip [mm]<br />

YS: Yield Strength at 0.2% Real Strain [MPa]<br />

yield: Yield Elongation [%]<br />

n: Strain Hardening Coefficient Measured during Tension Test<br />

Observations:<br />

- These equations are valid under the following conditions: C: 0.005~0,10%; Mn: 0.40%; P < 0.016%; S <<br />

0.026%; Si < 0.010%; Al: < 0.040%; N: 0.0020~0.0040%.<br />

- Cold rolled steel was box annealed at 700°C; the time of treatment, including heating of the samples, was<br />

equal to 32 hours, being followed by furnace cooling.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

121<br />

Source: LANGENSCHEID, G. et al.: Untersuchungen über den Einflu der Korngröe des Warmb<strong>and</strong>es auf die<br />

Kaltb<strong>and</strong>eigenschaften. Hoesch Berichte aus Forschung und Entwicklung unserer Werke, 2, 1971, 64-70.<br />

. Mild <strong>Steel</strong>, Full Annealed<br />

5<br />

n <br />

10 <br />

1<br />

d<br />

Notation:<br />

n: Strain Hardening Coefficient Measured during Tension Test<br />

d: Grain Size [mm]<br />

Source: MORRISON, W.: The Effect of Grain Size on the Stress-Strain-Relationship in Low-Carbon <strong>Steel</strong>. Transactions<br />

of the ASM, 59, 1966, 824-845.<br />

. C-Mn <strong>Steel</strong>s with Ferrite-Pearlite Structure (Grozier & Bucher)<br />

YS<br />

95.84<br />

40.68 Mn 70.40 Si 1.517 Pearl <br />

3.282<br />

d<br />

TS<br />

223.11<br />

56.74 Mn 101.97<br />

Si 4.323 Pearl <br />

2.344<br />

d<br />

Notation:<br />

YS: Yield Strength [MPa]<br />

TS: Tensile Strength [MPa]<br />

Pearl: Pearlite Fraction in Microstructure [%]


<strong>Gorni</strong><br />

Alloy Content: [weight %]<br />

d: Grain Size [mm]<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

122<br />

Observations:<br />

- These equations were fitted using at least 50 points of data.<br />

- Useful range: Mn: 0.00 ~ 1.60%; Si 0.00 ~ 0.80%; Pearl: 0 ~ 80%; d: 0.000252 ~ 0.002770 cm.<br />

- 95% confidence limits: yield strength, 26MPa; tensile strength, 52 MPa.<br />

- Eventually pearlite fraction can be calculated with the equation below:<br />

Pearl 10.7<br />

110.9<br />

C 11.3 Mn 48. 4 Si<br />

which was fitted used 32 points of date of ferritic-pearlitic hot rolled, air cooled <strong>and</strong> normalized steel , cooled<br />

in air with a mean cooling rate of 1°C/s at 760°C. Its useful range is 0.00~0.30% C; 0.00~1.80% Mn,<br />

0.00~0.25% Si <strong>and</strong> 0~40% Pearl. Its 95% confidence limit is 7%; correlation coefficient r is equal to 0.89.<br />

Source: GROZIER, J.D. & BUCHER, J.H.: Influence du Niobium et de l’Azote sur la Résistance des Aciers a Structure<br />

Ferrite-Perlite. Revue de Métallurgie, 63:11, Novembre 1966, 939-941.<br />

. C-Mn <strong>Steel</strong>s with Ferrite-Pearlite Structure (Pickering)<br />

YS<br />

TS<br />

14.9<br />

246 4.15 Pearl 44.6 Mn 138<br />

Si 923 P 169 Sn 3754 N<br />

sol<br />

<br />

d<br />

492 3.38 Pearl 246 Mn 277 Si 2616 S 723 P 246 Cr 6616 N <br />

sol<br />

44.6<br />

d<br />

d<br />

15.4<br />

385 1.39 Pearl 111 Si 462 P 152 Sn 1369 N<br />

sol<br />

d<br />

d


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

123<br />

<br />

0.27<br />

0.016 Pearl 0.015 Mn 0.040 Si 0.043 Sn 1.<br />

0<br />

unif<br />

N sol<br />

1,30<br />

0.020 Pearl 0.30 Mn 0.20 Si 3.4 S 4.4 P 0.29 Sn <br />

tot<br />

0.015<br />

d<br />

6. 2<br />

T trans<br />

43 1.5 Pearl 37 Mn <br />

d<br />

Notation:<br />

YS: Yield Strength at 0.2% Real Strain [MPa]<br />

TS: Tensile Strength [MPa]<br />

d/d: Strain Hardening Coefficient at 0.2% Real Strain [1/MPa]<br />

unif: Uniform Elongation, Expressed as Real (Logarithmic) Strain<br />

tot: Total Elongation, Expressed as Real (Logarithmic) Strain<br />

Pearl: Pearlite Fraction in Microstructure [%]<br />

Ttrans: Fracture Appearance Transition Temperature [°C]<br />

Alloy Content: [weight %]<br />

d: Grain Size [mm]<br />

Source: PICKERING, F.B.: The Effect of Composition <strong>and</strong> Microstructure on Ductility <strong>and</strong> Toughness; in: Towards<br />

Improved Ductility <strong>and</strong> Toughness, Climax Molybdenum Company, Tokyo, 1971, p. 9-32<br />

. Microalloyed <strong>Steel</strong>s (Hodgson)<br />

YS<br />

<br />

62 .6<br />

26.1 Mn 60.2 Si<br />

759.0 P 212.9 Cu 3286.0<br />

N<br />

sol<br />

19.7<br />

<br />

d<br />

<br />

ppt


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

124<br />

TS<br />

164 .9 634.7 C 53.6 Mn 99.7 Si<br />

651.9 P 472.6 Ni 3339.4<br />

N<br />

sol<br />

11.0<br />

<br />

d<br />

<br />

ppt<br />

<br />

ppt<br />

57 log CR 700 V 7800 N 19<br />

sol<br />

Notation:<br />

YS: Yield Strength at 0.2% Real Strain [MPa]<br />

TS: Tensile Strength [MPa]<br />

Alloy Content: [weight %]<br />

d: Grain Size [mm]<br />

ppt: Precipitation Strengthening [MPa], only for steels with V [MPa]<br />

CR: Cooling Rate [°C/s]<br />

Source: HODGSON, P.D. & GIBBS, R.K. A Mathematical Model to Predict the Mechanical Properties of Hot Rolled C-Mn<br />

<strong>and</strong> Microalloyed <strong>Steel</strong>s. ISIJ International, 32:12, December 1992, 1329-1338.<br />

. Microalloyed <strong>Steel</strong>s (Pickering)<br />

YS<br />

<br />

0<br />

37 Mn 83 Si<br />

2918 N<br />

sol<br />

15.1<br />

<br />

d<br />

ppt<br />

Notation:<br />

YS: Yield Strength at 0.2% Real Strain [MPa]<br />

0: Friction Stress [MPa]<br />

Alloy Content: [weight %]<br />

d: Grain Size [mm]<br />

ppt: Precipitation Strengthening [MPa], for steels with Nb, Ti <strong>and</strong>/or V, defined by the formula below [MPa].<br />

Observations:


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

- The Friction Stress 0 value depends on the previous treatment of the material <strong>and</strong> can be found in the table<br />

below:<br />

125<br />

Condition 0<br />

[MPa]<br />

Mean 70<br />

Air Cooled 88<br />

Overaged 62<br />

- The effect of solid solution strengthening from another alloy elements solubilized in ferrite can be included in<br />

this equation, using the following linear coefficients:<br />

Element MPa/weight %<br />

Ni 33<br />

Cr -30<br />

P 680<br />

Cu 38<br />

Mo 11<br />

Sn 120<br />

C 5000<br />

N 5000<br />

- The precipitation strengthening contribution is calculated according to the Ashby-Orowan model.<br />

<br />

ppt<br />

5.9<br />

f x<br />

ln<br />

<br />

x 2.5 10<br />

4<br />

<br />

<br />

<br />

Notation:<br />

ppt: Precipitation Strengthening According to the Ashby-Orowan Model [MPa]


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

f: Volume Fraction of the Precipitate<br />

x: Mean Planar Intercept Diameter of the Precipitate [m]<br />

126<br />

Observations:<br />

- Relationship adequate for the calculation of the precipitation strengthening of quench-aged carbides <strong>and</strong><br />

precipitate carbonitrides in Nb, V <strong>and</strong> Ti steels.<br />

- ppt can be calculated using a more simplified approach, multiplying the total content of the precipitating<br />

alloy by the factor B shown in the table below:<br />

Alloy <strong>and</strong><br />

Precipitate<br />

Bmax<br />

[MPa/weight %]<br />

Bmin<br />

[MPa/weight %]<br />

Alloy Range<br />

[weight %]<br />

V as V4C3 1000 500 0,00 ~ 0,15<br />

V as VN 3000 1500 0,00 ~ 0,06<br />

Nb as Nb(CN) 3000 1500 0,00 ~ 0,05<br />

Ti as TiC 3000 1500 0,03 ~ 0,18<br />

Source: PICKERING, F.B. Some Aspects of the Relationships between the Mechanical Properties of <strong>Steel</strong>s <strong>and</strong> their<br />

Microstructures. TISCO. Silver Jubilee Volume, Jan-Oct 1980, 105-132.<br />

. V-Ti-N <strong>Steel</strong>s Processed by Recrystallization Controlled Rolling<br />

YS<br />

41.4<br />

575.20 C (27401 N 2) V <br />

eq<br />

ef<br />

419.5<br />

h<br />

f<br />

TS<br />

181.5<br />

74.1<br />

985.1 Ceq<br />

(31125 Nef<br />

39) V <br />

h<br />

f<br />

Notation:<br />

YS: Yield Strength at 0.2% Real Strain [MPa]


<strong>Gorni</strong><br />

TS: Tensile Strength [MPa]<br />

Alloy Content: [weight %]<br />

hf: Plate Thickness [mm]<br />

C Mn Cr Mo Ni Cu<br />

eq<br />

C <br />

<br />

6 5 15<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

127<br />

N<br />

ef<br />

<br />

N<br />

tot<br />

<br />

Ti<br />

3.42<br />

Observations:<br />

- Formula Derived for <strong>Steel</strong>s with Al Content over 0.010% <strong>and</strong> Si Content between 0.25 <strong>and</strong> 0.35%.<br />

- Precision of the Formulas: 40 MPa.<br />

Source: MITCHELL, P.S. et al.: Effect of Vanadium on Mechanical Properties <strong>and</strong> Weldability of Structural <strong>Steel</strong>s. In:<br />

Low Carbon <strong>Steel</strong>s for the 90’s. Proceedings. American Society for Metals/The Metallurgical Society,<br />

Pittsburgh, Oct. 1993.<br />

. Dual Phase <strong>Steel</strong>s<br />

YS<br />

203 855<br />

1<br />

L <br />

TS 266 548<br />

1 1741<br />

L<br />

<br />

f<br />

d


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

128<br />

d<br />

1<br />

266 548 1741<br />

d<br />

L<br />

<br />

f<br />

d<br />

<br />

<br />

<br />

unif<br />

32 64<br />

1<br />

L<br />

<br />

Notation:<br />

LE: Yield Strength [MPa]<br />

LR: Tensile Strength [MPa]<br />

d/d: Strain Hardening Coefficient at Uniform Elongation [1/MPa]<br />

aunif: Uniform Elongation [%]<br />

L : Mean Ferritic Free Path [m]<br />

d : Mean Diameter of Martensite Isl<strong>and</strong>s [m]<br />

Sources:<br />

- GORNI, A.A. & BRANCHINI, O.L.G. Análise da Evolução do Encruamento de um Aço Bifásico. In: 4° Simpósio<br />

de Conformação Mecânica, EPUSP/UNICAMP/ABAL, São Paulo, Nov. 1990, 23-42.<br />

- GORNI, A.A. & BRANCHINI, O.L.G. Relações Microestrutura-Propriedades Mecânicas em um Aço Bifásico<br />

Laminado a Quente. In: 1º Seminário sobre Chapas Metálicas para a Indústria Automobilística, ABM/AEA,<br />

São Paulo, Set. 1992, 127-145.<br />

. Acicular Ferrite/Low Carbon Bainite <strong>Steel</strong>s<br />

YS<br />

88 <br />

37 Mn 83 Si<br />

2900<br />

N<br />

sol<br />

<br />

15.1<br />

d<br />

L<br />

<br />

disc<br />

ppt


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

TS 246 1900 C 230 ( Mn Cr)<br />

185<br />

Mo 90 W 125 Ni 65 Cu 385 ( V Ti)<br />

129<br />

ITT<br />

11.5<br />

19 44 Si 700 N<br />

sol<br />

0.26 ( <br />

disc<br />

<br />

ppt)<br />

<br />

d<br />

Notation:<br />

YS: Yield Strength at 0.2% Real Strain [MPa]<br />

TS: Tensile Strength [MPa]<br />

ITT: Impact Transition Temperature for 50% Tough Fracture [°C]<br />

Alloy Content: [weight %]<br />

Nsol: Solubilized (Free) Nitrogen [%]<br />

dL: BainiteFerrite Lath Size [mm]<br />

disc: Strength Due to Dislocations [MPa]<br />

ppt: Precipitation Strengthening According to the Ashby-Orowan Model [MPa]<br />

Nsol: Solubilized (Free) Nitrogen [%]<br />

d: Mean Spacing between High Angle Boundaries (“Packet” or Prior Austenite Grain Boundaries)<br />

<br />

disc<br />

b<br />

1.2<br />

10<br />

3<br />

( PICKERING ) or 8 10<br />

4<br />

( KEH )<br />

<br />

ppt<br />

5.9<br />

f x<br />

ln<br />

<br />

x 2.5 10<br />

4<br />

<br />

<br />

<br />

Notation:<br />

: Empirical Constant<br />

: Shear Modulus [MPa]<br />

b: Burger’s Vector [cm]<br />

: Dislocation Density [lines/cm²]<br />

f: Volume Fraction of the Precipitate<br />

x: Mean Planar Intercept Diameter of the Precipitate [m]


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

130<br />

Sources:<br />

- PICKERING, F.B. Some Aspects of the Relationships between the Mechanical Properties of <strong>Steel</strong>s <strong>and</strong> their<br />

Microstructures. TISCO. Silver Jubilee Volume, Jan-Oct 1980, 105-132.<br />

- KEH, A.S., Work Hardening <strong>and</strong> Deformation Sub-Structure in Iron Single Crystals in Tension at 298K,<br />

Philosophical Magazine, 12:115, 1965, 9-30.<br />

. Medium C <strong>Steel</strong>s<br />

3.8 <br />

1<br />

<br />

3<br />

f 178<br />

<br />

<br />

63 Si N<br />

sol<br />

<br />

17.4 <br />

YS <br />

3 f 35 58 Mn <br />

42<br />

d <br />

S <br />

<br />

<br />

<br />

<br />

<br />

0 <br />

3.5 <br />

1<br />

<br />

3<br />

f 720<br />

Si<br />

<br />

18.2 <br />

TS <br />

3 f 246 1140 N<br />

sol<br />

<br />

97<br />

d <br />

S <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0 <br />

11.5 5.6 13.3<br />

<br />

ITT f<br />

<br />

46 <br />

762<br />

d <br />

S0<br />

p<br />

<br />

6<br />

1<br />

f<br />

<br />

335 3.48 10<br />

t<br />

48.7 Si N<br />

sol<br />

Notation:<br />

YS: Yield Strength at 0.2% Real Strain [MPa]<br />

TS: Tensile Strength [MPa]<br />

ITT: Impact Transition Temperature for 50% Tough Fracture [°C]<br />

f: Volume Fraction of Ferrite<br />

d: Ferrite Grain Size [mm]<br />

Alloy Content: [weight %]


<strong>Gorni</strong><br />

Nsol: Solubilized (Free) Nitrogen [%]<br />

S0: Pearlite Lamelar Spacing [mm]<br />

p: Pearlite Colony Size [mm]<br />

t: Pearlitic Carbide Lamellar Thickness [mm]<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

131<br />

Sources:<br />

- GLADMAN, T. e outros. Some Aspects of the Structure-Property Relationships in High Carbon Ferrite-Pearlite<br />

<strong>Steel</strong>s. Journal of the Iron <strong>and</strong> <strong>Steel</strong> Institute, 210, Dec. 1972, 916-930.<br />

- PICKERING, F.B. Some Aspects of the Relationships between the Mechanical Properties of <strong>Steel</strong>s <strong>and</strong> their<br />

Microstructures. TISCO. Silver Jubilee Volume, Jan-Oct 1980, 105-132.<br />

. Si Non-Oriented Electrical <strong>Steel</strong>s<br />

22.0<br />

YS 34.3<br />

258 P 34.2 Mn 52. 8 Si<br />

d<br />

11.2<br />

TS 183 506 P 48.7 Mn 109 Si 48.8 Al 2450 B<br />

d<br />

0.0412<br />

YR 0.424<br />

0.078 Si 0. 170 Al<br />

d<br />

Notation:<br />

YS: Lower Yield Strength [MPa]<br />

TS: Tensile Strength [MPa]<br />

YR: Yield Ratio<br />

d: Ferrite Grain Size [mm]


<strong>Gorni</strong><br />

Alloy Content: [weight %]<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

132<br />

Observations:<br />

- These equations are valid under the following conditions: ULC <strong>Steel</strong>; Mn: 0.075~0.578%; P < 0.109%; S:<br />

0.003~0.004%; Si < 0.34%; Al: < 0.432%; N: 0.0014~0.0020%; B < 0.0030%.<br />

- Cold rolled steel was box annealed at 700°C; the time of treatment, including heating of the samples, was<br />

equal to 32 hours, being followed by furnace cooling.<br />

Source: PINOY, L et al. Influence of Composition <strong>and</strong> Hot Rolling Parameters on the Magnetic <strong>and</strong> Mechanical Properties<br />

of Fully Processed Non-Oriented Low-Si Electrical <strong>Steel</strong>s. J. Phys. IV France, 8, 1998, Pr2-487/Pr2-490.<br />

PT 0.658<br />

0.474 Si 2.311 Al 25.99 O 12.51C<br />

123.7 Sinit<br />

130.2 S<br />

137.5<br />

N 5. 266 h<br />

Notation:<br />

PT: Core Loss [W/kg]<br />

Alloy Content: [weight %]<br />

h: Thickness [mm]<br />

Observations:<br />

- This equation ise valid under the following conditions: C: 0.002~0.040%; S: 0.004~0.015%; N:<br />

0.003~0.007%.<br />

- Negative effects of O <strong>and</strong> N are in direct contradiction with specific experimental results.<br />

- Adjusted Squared Multiple Correlation: 0.823; Residual Mean Square: 0.082 W²/kg²<br />

2<br />

h<br />

P T<br />

4.29<br />

66.4 C 0.0282 GBI 16.2 r<br />

Notation:<br />

PT: Total Core Loss at 15 KG [W/kg]


<strong>Gorni</strong><br />

Alloy Content: [weight %]<br />

GBI: Number of Grain Boundary Intercepts per mm<br />

h: Thickness [mm]<br />

: Density [g/mm³]<br />

r: Resistivity [.mm]<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

133<br />

Source: LYUDKOVSKY, G. et al. Non-Oriented Electrical <strong>Steel</strong>s. Journal of Metals, January 1986, 18-26.


<strong>Gorni</strong><br />

- Schaeffler Diagram<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

134<br />

Source: Air Products Web Site<br />

(http://www.airproducts.com/maxx/software/UK/WeldingFaultFinder/wff22413.html).


<strong>Gorni</strong><br />

- Shear Modulus of <strong>Steel</strong> <strong>and</strong> its Phases<br />

. Ferrite<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

135<br />

( T 300) <br />

64000 1<br />

<br />

(-273°C < T < 300°C)<br />

2235 <br />

<br />

<br />

<br />

( T 300) <br />

2235 <br />

<br />

2<br />

64000 1 0.032 ( T 573)<br />

(300°C T < 700°C)<br />

<br />

<br />

<br />

( T 300) <br />

2235 <br />

<br />

2<br />

2<br />

64000 1 0.032 ( T 573) 0.024 ( T 923) (700°C T < 770°C)<br />

( T 300) <br />

69200 1<br />

<br />

(770°C T < 911°C)<br />

1382 <br />

. Austenite<br />

( T 300) <br />

81000 1<br />

<br />

1989 <br />

(911°C T < 1392°C)<br />

. Delta Ferrite<br />

( T 300) <br />

39000 1<br />

<br />

(1392°C T < 1537°C)<br />

2514


<strong>Gorni</strong><br />

Notation:<br />

: Shear Modulus [MPa]<br />

T: Temperature [K]<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

136<br />

Source: FROST, H.J. & ASHBY, M.F.: Pure Iron <strong>and</strong> Ferrous Alloys. In: Deformation-Mechanism Maps, The<br />

Plasticity <strong>and</strong> Creep of Metals <strong>and</strong> Ceramics. Pergamon Press, Cambridge, 1982.


<strong>Gorni</strong><br />

- Sheet <strong>and</strong> Plate Cutting Force <strong>and</strong> Work<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

137<br />

. Mesquita<br />

K c<br />

0. 88 TS<br />

F t P<br />

c<br />

K c<br />

Notation:<br />

Kc: Cutting Specific Pressure or Shear Stress [MPa]<br />

TS: Tensile Strength [MPa]<br />

Fc: Cutting Force [N]<br />

t: Thickness [mm]<br />

P: Cutting Perimeter [mm]<br />

Source: MESQUITA, E.L.A. Conformação dos Aços Inoxidáveis. Manual da Acesita. Dezembro 1997, 39 p.<br />

. Tschaetsch<br />

F<br />

W t <br />

B<br />

a F t<br />

W <br />

1000<br />

F v<br />

P <br />

<br />

Notation:<br />

F: Cutting Force [N]


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

W: Width [mm]<br />

t: Thickness [mm]<br />

W: Cutting Work [N.mm]<br />

a: Mean Force/Maximum Force Ratio (≈ 0.6 for shearing)<br />

P: Cutting Power [W]<br />

v: Shear Speed [m/s]<br />

η: Machine Efficiency (≈ 0.7)<br />

τB: Shear Stress [MPa], as defined by the table or formulas described in the observation below.<br />

138<br />

Observations:<br />

- The value of τB can be calculated from the following equations, where C is the carbon weight content of steel:<br />

<br />

B<br />

223 550 C<br />

<br />

B<br />

249 786 C<br />

. Hot rolled or annealed steel (soft) – r² = 0.992, St<strong>and</strong>ard Error of Deviation = 13 MPa:<br />

. Cold rolled steel (hard) – r² = 0.988, St<strong>and</strong>ard Error of Deviation = 9 MPa:<br />

- These equations were fitted using the τB data available below, expressed in N/mm²:<br />

<strong>Steel</strong> C Mn Si Soft Hard<br />

St 12 0.10 max 0.50 max - 240 300<br />

St 13 0.10 max 0.50 max - 240 300<br />

St 14 0.08 max 0.40 max - 250 320


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

St 37 0.20 max 1.25 max 0.25 max 310 -<br />

St 42 0.25 max 1.25 max 0.25 max 400 -<br />

C10 0.08-0.13 0.30-0.60 0.30 max 280 340<br />

C20 0.18-0.23 0.30-0.70 0.30 max 320 380<br />

C30 0.27-0.34 0.50-0.80 0.10-0.40 400 500<br />

C60 0.57-0.65 0.60-0.90 0.15-0.35 550 720<br />

139<br />

Source: TSCHAETSCH, H. Shearing. Metal <strong>Forming</strong> Practice - Processes, Machines, Tools; Springer-Verlag, Berlin,<br />

2006, 218-40.


<strong>Gorni</strong><br />

- Specimen Orientation for Mechanical Testing<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

140


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

The first letter denotes the direction of the applied main tensile stress.<br />

141<br />

The second letter denotes the direction of crack propagation.<br />

Source: ASTM St<strong>and</strong>ard E399-06. St<strong>and</strong>ard Test Method for <strong>Line</strong>ar-Elastic Plane-Strain Fracture Toughness KIC<br />

of Metallic Materials. ASTM International, West Conshohocken, 2006, 32 p.


<strong>Gorni</strong><br />

- Thermal Properties of <strong>Steel</strong><br />

. BISRA<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

142<br />

T<br />

k<br />

1008 1023 1040 1524<br />

75 481.39 485.58 485,58 477,20<br />

125 502.32 506.51 502.32 493.95<br />

175 523.25 519.16 514.88 510.69<br />

225 544.18 531.62 527.44 527.44<br />

275 556.74 556.74 548.37 544.18<br />

325 569.30 537.48 569.30 565.11<br />

375 594.41 598.60 586.04 590.23<br />

425 623.71 623.71 611.16 615,34<br />

475 661.39 661.39 648.83 648.83<br />

525 694.88 703.25 690.69 694.88<br />

575 740.92 749.29 707.43 740.92<br />

625 753.48 78697 732.55 753.48<br />

675 858.13 845.57 770.22 837.20<br />

725 1138.59 1431.61 1582.31 1448.36<br />

775 958.59 950.22 602.78 820.46<br />

825 866.50 736.74 611.16 573.48<br />

875 648.83 648.83 615.34 581.85<br />

925 648.83 648.83 623.71 590.23<br />

975 657.20 648.83 623.71 598.60<br />

1025 657.20 648.83 632.09 606.97


<strong>Gorni</strong><br />

1075 661.39 648.83 632.09 615.34<br />

1125 661.39 657.20 640.46 623.71<br />

1175 665.57 665.57 653.02 632.09<br />

1225 665.57 678.13 669.76 636.27<br />

1275 665.57 686.50 686.50 644.64<br />

T<br />

c<br />

1008 1023 1040 1524<br />

75 481.39 485.58 485.58 477.20<br />

125 502.32 506.51 502.32 493.95<br />

175 523.25 519.06 514.88 510.69<br />

225 544.18 531.92 527.44 527.44<br />

275 556.74 556.74 548.37 544.18<br />

325 569.30 573.48 569.30 565.11<br />

375 594.41 598.60 586.04 590.23<br />

425 623.71 623.71 611.16 615.34<br />

475 661.39 661.39 648.83 648.83<br />

525 694.88 703.23 690.69 694.88<br />

575 740.92 749.29 707.43 740.92<br />

625 753.48 786.97 732.55 753.48<br />

675 858.13 845.57 770.22 837.20<br />

725 1138.59 1431.61 1582.31 1448.36<br />

775 958.59 950.22 602.78 820.46<br />

825 866.50 736.74 611.16 573.48<br />

875 648.83 648.83 615.34 581.85<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

143


<strong>Gorni</strong><br />

925 648.83 648.83 623.71 590.23<br />

975 657.20 648.83 623.71 598.60<br />

1025 657.20 648.83 632.09 606.97<br />

1075 661.39 648.83 632.09 615.32<br />

1125 661.39 657.20 640.46 623.71<br />

1175 665.57 665.57 653.06 632.09<br />

1225 665.57 678.13 669.76 636.27<br />

1275 665.57 686.50 686.50 644.64<br />

T<br />

H<br />

1008 1023 1040 1524<br />

0 0 0 0 0<br />

25 11.459 11.564 11.613 11.407<br />

75 35.005 35.319 35.467 34.848<br />

125 59.598 60.121 60.164 59.127<br />

175 85.237 85.761 85.594 84.243<br />

225 111.923 112.028 111.652 110.196<br />

275 139.446 139.237 138.547 136.987<br />

325 167.597 167.492 167.489 164,719<br />

375 196.960 196.794 195,372 193.603<br />

425 227.143 227.352 225.302 223.742<br />

475 259.270 259.480 256.802 255.346<br />

525 293.177 293.596 290.290 288.939<br />

575 329.072 329.909 325.243 324.834<br />

625 366.432 368.316 361.242 362.194<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

144


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

675 406.722 409.129 398.812 401.961<br />

725 456.640 466.059 457.625 459.100<br />

775 509.070 525.605 512.252 515.820<br />

825 554.697 567.779 542.601 550.668<br />

875 592.581 602.418 573.263 579.552<br />

925 625.022 634.859 604.240 608.854<br />

975 657.673 667.307 635.425 638.574<br />

1025 690.533 699.742 666.820 668.714<br />

1075 723.498 732.184 698.425 699.271<br />

1125 756.567 764.835 730.238 730.248<br />

1175 789.741 797.904 762.575 761.643<br />

1225 823.020 831.497 795.644 793.352<br />

1275 856.299 865.612 829.551 825.375<br />

145<br />

Notation:<br />

k: Thermal Conductivity [W/(m.°C)]<br />

c: Specific <strong>Heat</strong> Capacity [J/(kg.ºC)]<br />

H: Enthalpy [J/kg]<br />

T: Temperature [°C]<br />

Observations:<br />

- Chemical composition of the steels [wt %]:<br />

<strong>Steel</strong> C Mn Si P S Cu<br />

1008 0.08 0.31 0.08 0.029 0.050 -<br />

1023 0.23 0.64 0.11 0.034 0.034 0.13<br />

1040 0.42 0.64 0.11 0.031 0.029 0.12


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

146<br />

1524 0.23 1.51 0.12 0.037 0.038 0,11<br />

Source: Physical Constants of Some Commercial <strong>Steel</strong>s at Elevated Temperatures, BISRA/Butterworths Scientific<br />

Publications, London, 1953, 1-38.<br />

. Chou<br />

k<br />

2<br />

5<br />

2<br />

80.91<br />

9.9269 10<br />

T 4.613 10<br />

T (T ≤ Ar3)<br />

3<br />

k 20.14 9.31310<br />

T (T > Ar3)<br />

9<br />

1.10948310<br />

c 4720.324 4.583364 T <br />

2<br />

T<br />

(800K < T < 1000K)<br />

c 11501.07<br />

12.<br />

476362 T<br />

(1000K < T < 1042K)<br />

c 34871.21<br />

32. 02658 T<br />

(1042K < T < 1060K)<br />

9<br />

5.21765710<br />

c 10068.18<br />

5.98686 T <br />

(1060K < T < 1184K)<br />

2<br />

T<br />

c 429.8495<br />

0. 1497802 T<br />

(1084K < T < 1665K)<br />

Notation:<br />

k: Thermal Conductivity [J/m.K.s]<br />

c: Specific <strong>Heat</strong> Capacity [J/kg.K]<br />

T: Temperature [K]


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

Source: SEREDYNSKI, F.: Performance Analysis <strong>and</strong> Optimization of the Plate-Rolling Process. In: Mathematical<br />

Process Models in Iron <strong>and</strong> <strong>Steel</strong>making. Proceedings. Iron <strong>and</strong> <strong>Steel</strong> Institute, Amsterdam, 1973.<br />

147<br />

. Krzyzanowski<br />

5<br />

c p<br />

422.7 48.66 exp 0.319 10<br />

<br />

T <br />

(T ≤ 700°C)<br />

c p<br />

<br />

T <br />

657.0 0.084 <br />

1000<br />

<br />

<br />

24,6<br />

23.16 51.96 exp 2.02519 10<br />

3<br />

T <br />

(T > 700°C)<br />

<br />

7850<br />

6<br />

2<br />

1<br />

0.004 10<br />

T 3<br />

Notation:<br />

cp: Specific <strong>Heat</strong> [J/kg.°C]<br />

T: Temperature [°C]<br />

λ: Thermal Conductivity [J/m.°C.s]<br />

ρ: Density [kg/m³]<br />

Source: KRZYZANOWSKI, M. et al.: Finite Element Model of <strong>Steel</strong> oxide Failure During Tensile Testing Under Hot Rolling<br />

Conditions. Materials Science <strong>and</strong> Technology, 15:10, October 1999, 1191-1198.<br />

. Seredynski<br />

3<br />

k 58.6 10<br />

T 72.5 (T < 810°C)


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

148<br />

3<br />

k 10.75<br />

10<br />

T 16.8 (T > 810°C)<br />

7<br />

4<br />

D 0.15 10<br />

T 0.07825 10<br />

(700°C < T < 875°C)<br />

7<br />

4<br />

D 0.02667 10<br />

T 0.02966 10<br />

(T > 875°C)<br />

T T<br />

<br />

0.12491<br />

0.38012<br />

1.0948<br />

1000 1000 <br />

Notation:<br />

k: Thermal Conductivity [J/m.°C.s]<br />

D: Thermal Diffusivity [m²/s]<br />

: Emissivity<br />

T: Temperature [°C]<br />

Observation:<br />

- Formulas specific for BS En 3 or SAE 1021 steel: 0.17-0.23% C; 0.60-0.90% Mn<br />

Source: SEREDYNSKI, F.: Performance Analysis <strong>and</strong> Optimization of the Plate-Rolling Process. In: Mathematical<br />

Process Models in Iron <strong>and</strong> <strong>Steel</strong>making. Proceedings. Iron <strong>and</strong> <strong>Steel</strong> Institute, Amsterdam, 1973.<br />

<br />

. Touloukian<br />

0,85<br />

[1 exp(42.68 0,02682<br />

Notation:<br />

: Emissivity<br />

T sup<br />

)<br />

0,0115<br />

]


<strong>Gorni</strong><br />

Tsup: Superficial Temperature [K]<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

149<br />

Source: HARDIN, R.A. et al.: A Transient Simulation <strong>and</strong> Dynamic Spray Cooling Control Model for Continuous <strong>Steel</strong><br />

Casting. Metallurgical <strong>and</strong> Materials Transactions B, 34B:6, June 2003, 297-306.


<strong>Gorni</strong><br />

- Thermal Properties of <strong>Steel</strong> Scale<br />

. Krzyzanowski<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

150<br />

4<br />

k 1<br />

7.83310<br />

T<br />

(873K < T < 1473K)<br />

5<br />

c 674.969 0.297 T 4.36710<br />

T<br />

(600°C < T < 1100°C)<br />

<br />

E 240 1 4.7 10<br />

4<br />

<br />

<br />

T 25<br />

Notation:<br />

k: Conductivity [W/m.K]<br />

c: Specific <strong>Heat</strong> Capacity [J/kg.°C]<br />

E: Young’s Modulus [GPa]<br />

T: Temperature [°C]<br />

<br />

Source: KRZYZANOWSKI, M. et al.: Finite Element Model of <strong>Steel</strong> oxide Failure During Tensile Testing Under Hot Rolling<br />

Conditions. Materials Science <strong>and</strong> Technology, 15:10, October 1999, 1191-1198.


<strong>Gorni</strong><br />

- Thermomechanical Processing of <strong>Steel</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

151


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

Source: Requirements Concerning Materials <strong>and</strong> Welding. IACS – International Association of Classification<br />

Societies Requirement 1975, Revision 2, 2004, 228 p.<br />

152


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

- Time-Temperature Equivalency Parameters for <strong>Heat</strong> <strong>Treating</strong><br />

153<br />

. Anisothermal Austenitizing<br />

In this case the Austenitization Time-Temperature Equivalence Parameter in Terms of Grain Size, Pa, is the period of<br />

heating/cooling time between Tmax <strong>and</strong> Tmin, where<br />

Tmax: Maximum Temperature during the Austenitizing Treatment [°C];<br />

Tmin: Temperature Calculated According to the Following Equation [°C]:<br />

T<br />

min<br />

T<br />

max<br />

<br />

R T<br />

H<br />

2<br />

max<br />

a<br />

Notation:<br />

R: Molar Gas Constant, 8.314 JK -1 mol -1<br />

Ha: Activation Energy of Austenitic Grain Coarsening, 460 kJmol -1 for low alloy steels<br />

Source: BARRALIS, J. & MAEDER, G. Métallurgie Tome I: Métallurgie Physique. Collection Scientifique ENSAM,<br />

1982, 270 p.<br />

. Isothermal Austenitizing<br />

P<br />

a<br />

<br />

1<br />

1 2,<br />

3 R<br />

<br />

Ta<br />

Ha<br />

<br />

log ta<br />

<br />

<br />

Notation:<br />

Pa: Austenitization Time-Temperature Equivalence Parameter in Terms of Grain Size [K]


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

154<br />

Ta: Austenitization Temperature [K]<br />

R: Molar Gas Constant, 8.314 JK -1 mol -1<br />

ta: Soaking time under Ta<br />

Ha: Activation Energy of Austenitic Grain Coarsening, 460 kJmol -1 for low alloy steels<br />

Source: BARRALIS, J. & MAEDER, G. Métallurgie Tome I: Métallurgie Physique. Collection Scientifique ENSAM,<br />

1982, 270 p.<br />

. Microstructural B<strong>and</strong>ing Homogeneization<br />

t<br />

0.05<br />

<br />

0.3 l<br />

D<br />

0<br />

e<br />

2<br />

Q<br />

RT<br />

Notation:<br />

t0.05: Treatment Time Necessary to Achieve 5% Microstructure B<strong>and</strong>ing [min]<br />

l: Mean Spacing between B<strong>and</strong>s [mm]<br />

Do: Diffusion Constant for the Alloy Element being Considered [cm²/s]:<br />

- P: 0.01 cm²/s<br />

- Mn: 0.16 cm²/s<br />

Q: Activation Energy for the Alloy Element Being Considered [cal/mol]:<br />

- P: 43700 cal/mol<br />

- Mn: 62500 cal/mol<br />

R: Molar Gas Constant, 1.987 JK -1 mol -1<br />

T: Austenitization Temperature [K]<br />

Source: YIMING, X. et al.: A Metallographic Investigation of B<strong>and</strong>ing <strong>and</strong> Diffusion of Phosphorus in <strong>Steel</strong>s.<br />

Microstructural Science, 20, 1993, 457-470.


<strong>Gorni</strong><br />

. Tempering (Hollomon-Jaffe)<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

155<br />

P T<br />

( c log t)<br />

c 21.53<br />

5. 8 C<br />

Notation:<br />

P: Hollomon-Jaffe Parameter [K]<br />

T: Tempering Temperature [K]<br />

c: Constant Characteristic of the <strong>Steel</strong> Being Tempered<br />

t: Soaking time under T [h]<br />

C: Carbon Content [wt%]<br />

Observations:<br />

- Other values for the constant c were proposed by several authors for carbon, microalloyed <strong>and</strong> low alloy<br />

steels:<br />

. 18 (Grange & Baughman)<br />

. 20 (Larson & Miller, Irvine et al., Thelning)<br />

Sources:<br />

- This expression was also deduced by Larson & Miller, which applied it to the study of metal creep. In that case<br />

c is equal to 20 <strong>and</strong> P is divided by 1000. Such relationship was also used for the study of hydrogen<br />

resistance <strong>and</strong> HAZ hardness of steels.<br />

- HOLLOMON, J.H. & JAFFE, L.D. Time-Temperature Relations in Tempering <strong>Steel</strong>. Transactions of the AIME,<br />

162, 1945, 223-249.<br />

- LARSON, F.R. & MILLER, J. A Time-Temperature Relationship for Rupture <strong>and</strong> Creep Stresses. Transactions of<br />

the American Society of Mechanical Engineers, 74, 1952, 765-775.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

- GRANGE, R.A. & BAUGHMAN, R.W. Hardness of Tempered Martensite in Carbon <strong>and</strong> Low Alloy <strong>Steel</strong>s.<br />

Transactions of the American Society for Metals, 68, 1956, 165-197.<br />

- THELNING, K.E.: <strong>Steel</strong> <strong>and</strong> its <strong>Heat</strong> Treatment – Bofors H<strong>and</strong>book. Butterworths, London, 1981, 570 p.<br />

- IRVINE, K.J. et al. Grain-Refined C-Mn <strong>Steel</strong>s. Journal of the Iron <strong>and</strong> <strong>Steel</strong> Institute, Feb. 1967, 161-182.<br />

156


<strong>Gorni</strong><br />

- Welding Effects<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

157<br />

. Weld Interface Cracking Susceptibility during Flash Butt Welding<br />

F eq<br />

<br />

( C 0.03) Si<br />

<br />

2<br />

2<br />

Mn <br />

<br />

10 <br />

(4 Al)<br />

2<br />

3 Cr<br />

<br />

2<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

Notation:<br />

Feq: Weld Interface Cracking Susceptibility during Flash Butt Welding (No Crack = Zero)<br />

Alloy Content: [weight %]<br />

Source: MIZUI, M. et al.: Application of High-Strength <strong>Steel</strong> Sheets to Automotive Wheels. Nippon <strong>Steel</strong> Technical<br />

Report, 23, June 1984, 19-30.<br />

. Tensile Strength after Flash Butt Welding<br />

TS eq<br />

52 Mn Si Cr V <br />

C<br />

30<br />

5 7 9 2 <br />

<br />

Notation:<br />

TSeq: Tensile Strength After Flash Butt Welding [kgf/mm²]<br />

Alloy Content: [weight %]<br />

Source: MIZUI, M. et al.: Application of High-Strength <strong>Steel</strong> Sheets to Automotive Wheels. Nippon <strong>Steel</strong> Technical<br />

Report, 23, June 1984, 19-30.


<strong>Gorni</strong><br />

- Welding Pool Phenomena<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

158<br />

Source: ROGER, F. Modeling Finds the Minimum Energy for the Best Weld. Comsol News, 2010, p. 55-58.


<strong>Gorni</strong><br />

- Young Modulus<br />

. Definition<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

159<br />

E<br />

2 G (1 )<br />

Notation:<br />

E: Young Modulus<br />

G: Shear Modulus<br />

: Poisson Ratio<br />

. Elastic Range: 0.3<br />

. Plastic Range: 0.5<br />

Source: WILSON, A.D. Guidelines for Fabricating <strong>and</strong> Processing Plate <strong>Steel</strong>. Bethlehem-Lukens Plate Report, Burns<br />

Harbor, 2000, 97 p.<br />

. <strong>Steel</strong>, High Temperature: Pietrzyk<br />

<br />

T T <br />

E 2.07<br />

0.87438 10.0906<br />

<br />

<br />

1000<br />

1000<br />

<br />

2<br />

T <br />

14.48466 <br />

1000<br />

<br />

3<br />

T <br />

6.20767 <br />

1000<br />

<br />

4<br />

<br />

10<br />

<br />

5<br />

Notation:<br />

E: Young Modulus [MPa]<br />

T: Temperature [°C]<br />

Observation:<br />

- Valid for steel. No information available about the range of valid temperatures.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

Source: PICQUÉ, B. Experimental Study <strong>and</strong> Numerical Simulation of Iron Oxide Scales Behavior in Hot Rolling. Doctor<br />

Thesis, École de Mines de Paris, 2004, p. 243.<br />

160<br />

. <strong>Steel</strong>, High Temperature: Tselikov<br />

E<br />

2<br />

2<br />

308250 42924 C 144000<br />

C 20525 Si 5289 Mn 12000<br />

P 174000 S 225,6 T 0,01379 T<br />

Notation:<br />

E: Young Modulus [kgf/cm²]<br />

C: C content [weight %]<br />

Mn: Mn content [weight %]<br />

Si: Si content [weight %]<br />

P: P content [weight %]<br />

S: S content [weight %]<br />

T: Temperature [°C]<br />

Observation:<br />

- Valid for carbon, alloy <strong>and</strong> stainless steels between 20 <strong>and</strong> 900°C.<br />

Source: ROYZMAN, S.E. Thermal Stresses in Slab Solidification. Asia <strong>Steel</strong>, 1996, 158-162.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

APENDIXES<br />

USEFUL DATA AND CONSTANTS<br />

161<br />

Fuels <strong>and</strong> Combustion Gases:<br />

- Density (Gas)<br />

. Natural Gas: 0.81 kg/Nm³<br />

. Butane: 2.44 kg/Nm³<br />

. Propane: 1.85 kg/Nm³<br />

. Liquified Petroleum Gas (LPG): 2.29 kg/Nm³<br />

. Air: 1.27 kg/Nm³<br />

- Density (Liquid)<br />

. Butane: 0.58 kg/l<br />

. Propane: 0.51 kg/l<br />

. Liquified Petroleum Gas (LPG): 0.54 kg/Nm³<br />

. Water: 1.00 kg/Nm³<br />

- <strong>Heat</strong> Capacity in Function of Temperature<br />

. <strong>Heat</strong> Capacity [kcal/°C m³] = a + bT [°C]. Values of a <strong>and</strong> b for some gases are seen below:<br />

Gas a b<br />

C2H6 0.600 0.000540<br />

C3H8 0.871 0.001226<br />

CH4 0.380 0.000210<br />

CO 0.302 0.000022<br />

CO2 0.406 0.000090


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

H2 0.301 0.000200<br />

N2 0.302 0.000022<br />

O2 0.320 0.000059<br />

162<br />

- Net <strong>Heat</strong>ing Value<br />

. Acetylene (C2H2): 13412 Kcal/Nm³<br />

. Basic Oxygen <strong>Steel</strong>making Off-Gas (OG Gas): 770 kcal/Nm³<br />

. Blast Furnace Gas: 770 Kcal/Nm³<br />

. Benzene (C6H6): 33,823 Kcal/Nm³<br />

. Butane (C4H10): 29,560 Kcal/Nm³<br />

. Butene/Buthylene (C4H8): 27,900 Kcal/Nm³<br />

. Charcoal: 6,800 kcal/kg<br />

. Carbon Monoxide (CO): 3,019 Kcal/Nm³<br />

. Coke Oven Gas: 4,400 Kcal/Nm³<br />

. Diesel Oil: 10.200 kcal/kg<br />

. Electricity: 860 kcal/kW<br />

. Ethane (C2H6): 15,236 Kcal/Nm³<br />

. Ethene/Ethylene (C2H4): 14,116 Kcal/Nm³<br />

. Fuel Oil: 8,640~9,000 kcal/l or 9,600 ~ 10,000 kcal/kg<br />

. Hexane (C6H14): 41,132 Kcal/Nm³<br />

. Hydrogen (H): 2,582 Kcal/Nm³<br />

. Hydrogen Sulfide (H2S): 5,527 Kcal/Nm³<br />

. i-Butane (C4H10): 28,317 Kcal/Nm³<br />

. i-Pentane (C5H12): 34,794 Kcal/Nm³<br />

. Liquified Petroleum Gas (LPG): 25,300 ~ 27,300 kcal/Nm³<br />

. Methane (CH4): 8,557 Kcal/Nm³<br />

. Natural Gas: 9,000 ~ 9,400 Kcal/Nm³<br />

. Pentane (C5H12): 34,943 Kcal/Nm³<br />

. Propane (C3H8): 21,809 Kcal/Nm³<br />

. Propene/Propylene (C3H6): 20,550 Kcal/Nm³<br />

. Toluene (C7H8): 40,182 Kcal/Nm³<br />

. Xylene (C8H10): 46,733 Kcal/Nm³


<strong>Gorni</strong><br />

. Wood: 2,500 kcal/kg<br />

- Typical Chemical Compositions<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

163<br />

[% vol] N2 H2 CH4 C2H6 C3H8 CO CO2 O2<br />

Coke Oven Gas 3.09 61.55 24.54 0.42 0.06 8.04 0.00 0.26<br />

Natural Gas 1.83 ---- 87.91 7.08 1.91 ---- 0.59 0.00<br />

Mathematical Constants<br />

- e: 2.718281828<br />

- Pi: 3.141592654<br />

Physical Constants<br />

- Acceleration of gravity: g = 9.805 m/s²<br />

- Avogrado: NA = 6.022 x 10 23 1/mol<br />

- Boltzmann: k = 1.38065 x 10 -23 J/K<br />

- Ideal Gas Constant R:<br />

. 1.98717 cal/(K mol)<br />

. 82.056 cm³ atm/(K.mol)<br />

. 0.082056 l atm/(K.mol)<br />

. 8.31433 x 10 7 erg/(K.mol)<br />

. 8.31433 J/(K.mol)<br />

- Stefan-Boltzmann: σ = 5.6704 x 10 -8 W/(m² K²)<br />

Physical Properties of Scale (Iron Oxide)


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

164<br />

- Thermal Conductivity:<br />

. Industrial Scale: 3.0 W/(m.K)<br />

. Hematite (Fe2O3): 1.2 W/(m.K)<br />

. Magnetite (Fe3O4): 1.5 W/(m.K)<br />

. Wustite (FeO): 3.2 W/(m.K)<br />

- Density:<br />

. Industrial Scale:<br />

- 4.86 g/cm³ (Combustol)<br />

- 5.00 g/cm³ (Picqué)<br />

- 5.70 g/cm³ (Krzyzanowski)<br />

. Hematite (Fe2O3): 4.90 g/cm³<br />

. Magnetite (Fe3O4): 5.00 g/cm³<br />

. Wustite (FeO): 5.70 g/cm³<br />

. Bulk, Porous Scale as Raw Material, Room Temperature:<br />

- 2.40~2.89 t/m³<br />

- Stowage Factor: 0,38 m³/t<br />

- Hardness:<br />

. Hematite (Fe2O3): 1000 HV<br />

. Magnetite (Fe3O4): 320 ~ 500 HV<br />

. Wustite (FeO): 270 ~ 350 HV<br />

- Iron Content in Scale: 74.6% (Stoichiometric)<br />

- <strong>Line</strong>ar Coefficient of Thermal Contraction:<br />

. Fe: 19 x 10 -6 m/°C<br />

. Wustite: 14 x 10 -6 m/°C<br />

- Melting Point:<br />

. Fayalite (2FeO.SiO2): 1177°C<br />

- Specific <strong>Heat</strong>:<br />

. Industrial Scale: 766 J/(kg.K) (600°C)<br />

. Hematite (Fe2O3): 980 J/(kg.K)<br />

. Magnetite (Fe3O4): 870 J/(kg.K)<br />

. Wustite (FeO): 725 J/(kg.K)


<strong>Gorni</strong><br />

- Thermal Expansion Coefficient:<br />

. Ferrite (0 ~ 900°C): 15.3 x 10 -6 K -1<br />

. Hematite (Fe2O3):<br />

- 20 ~ 900°C: 14.9 x 10 -6 K -1<br />

- 100 ~ 300°C: 10.8 x 10 -6 K -1<br />

- 100 ~ 1000°C: 12.2 x 10 -6 K -1<br />

- 400 ~ 800°C: 13.0 x 10 -6 K -1<br />

. Magnetite (Fe3O4): 1.5 W/(m.K)<br />

- 25°C: 11.0 x 10 -6 K -1<br />

- 400°C: 14.0 x 10 -6 K -1<br />

- 550°C: 27.0 x 10 -6 K -1<br />

. Wustite (FeO):<br />

- 100 ~ 1000°C: 12.2 x 10 -6 K -1<br />

- 400 ~ 800°C: 15.0 x 10 -6 K -1<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

165<br />

Physical Properties of <strong>Steel</strong> <strong>and</strong> its Microstructural Constituents<br />

- Densities:<br />

. Bulk <strong>Steel</strong>: 7850 kg/m³<br />

. Ferrite (Fe ):<br />

- Caballero: 7882 kg/m³<br />

- Jablonka: 7870 kg/m³ (20°C)<br />

. Cementite (Fe3C):<br />

- Caballero: 7687 kg/m³<br />

- Jablonka: 7685 kg/m³ (20°C)<br />

. NbC: 7790 kg/m³<br />

. VC: 5700 kg/m³<br />

- Electrical Resistivity at 15.6°C: 17 x 10 -8 Ω.m<br />

- Emissivity of Polished Metal Surface:<br />

. 0.07 @ 38°C


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

. 0.10 @ 260°C<br />

. 0.14 @ 540°C<br />

- Emissivity of Oxidized <strong>Steel</strong> Plate at 15.6°C: 0.80<br />

- <strong>Heat</strong> Transfer Coefficient at Scale/<strong>Steel</strong> Interface: 30,000 W/m².K<br />

- Lattice Parameters (Ambient Temperature):<br />

. Ferrite (pure Fe): 2.866 Ǻ<br />

. Cementite: a = 4.5246 Ǻ, b = 5.0885 Ǻ, c = 6.7423 Ǻ<br />

- <strong>Line</strong>ar Coefficient of Thermal Expansion:<br />

. Bulk: 11.7 x 10 -6 °C -1<br />

. Ferrite: 1.244 x 10 -5 °C -1<br />

. Austenite: 2.065 x 10 -5 l°C -1<br />

- Melting Point: 1300 ~ 1450°C<br />

- Modulus:<br />

. Bulk: 159,000 MPa<br />

. Shear: 83,000 MPa<br />

. Young: 207,000 MPa<br />

- Poisson’s Ratio:<br />

. Elastic Range: 0.3<br />

. Plastic Range: 0.5<br />

- Specific <strong>Heat</strong>: 0.12 cal/g.°C<br />

- Speed of Sound through <strong>Steel</strong>: 5,490 m/s<br />

- Thermal Conductivity at 15.6°C: 58.9 W/m.K<br />

- Volumetric Coefficient of Thermal Expansion: 35.1 x 10 -6 °C -1<br />

166<br />

Sources:<br />

- AL-OTAIBI, S. Recycling <strong>Steel</strong> Mill Scale as Fine Aggregate in Cement Mortars. European Journal of Scientific<br />

Research, 24:3, 2008, 332-338.<br />

- ANON.: Practical Data for Metallurgists. The Timken Company, Canton, September 2006, 130 p.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

167<br />

- CABALLERO, F.G. et al. Modelling of Kinetics <strong>and</strong> Dilatometric Behaviour of Austenite Formation in a Low-<br />

Carbon <strong>Steel</strong> with a Ferrite Plus Pearlite Initial Microstructure. Journal of Materials Science, 37, 2002, 3533-<br />

3540.<br />

- HEIDEMANN, M. Fours Pits - Établissement de Bilans Thermiques Globaux et Étages dans les Temps. Rapport<br />

IRSID 77-02, Saint-Germain-en-Laye, Juillet 1976, 15 p.<br />

- JABLONKA, A.: Thermomechanical Properties of Iron <strong>and</strong> Iron-Carbon Alloys: Density <strong>and</strong> Thermal Contraction,<br />

<strong>Steel</strong> Research, 62:1, September 1991, 24-33.<br />

- KRZYZANOWSKI, M. et al.: Finite Element Model of <strong>Steel</strong> oxide Failure During Tensile Testing Under Hot Rolling<br />

Conditions. Materials Science <strong>and</strong> Technology, 15:10, October 1999, 1191-1198.<br />

- METNUS, G.E. et al. Comparing CO2 Emissions <strong>and</strong> Energy Dem<strong>and</strong>s for Alternative Ironmaking Routes. <strong>Steel</strong><br />

Times International, March 2006, 32-36.<br />

- PICQUÉ, B. Experimental Study <strong>and</strong> Numerical Simulation of Iron Oxide Scales Behavior in Hot Rolling. Doctor<br />

Thesis, École de Mines de Paris, 2004, p. 248.<br />

- SCHÜTZE, M. Protective Scales <strong>and</strong> Their Breakdown. John Wiley & Sons-The Institute of Corrosion,<br />

Chichester, 1997, 184 p.<br />

- WILSON, A.D. Guidelines for Fabricating <strong>and</strong> Processing Plate <strong>Steel</strong>. Bethlehem-Lukens Plate Report, Burns<br />

Harbor, 2000, 97 p.


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

UNIT CONVERSIONS<br />

168<br />

From Multiply by To<br />

A 10 -10 m<br />

bar 1.019716 kg/cm²<br />

BTU 1058.201058 J<br />

BTU 251.9958 cal<br />

cal 4.184 J<br />

F 5/9 (°F-32) °C<br />

ft 12 inch<br />

ft 0.30485126 m<br />

ft.lb 1.356 J ou N.m<br />

ft.lb 0.324 cal<br />

ft.lb 1.355748373 J<br />

ft.lb/s 1.355380862 W<br />

ft.lbf 1.355818 J or N.m<br />

ft.lbf 0.1382 kg<br />

ft² 92.90 x 10 -3 m²<br />

ft³ 0.02831685 m³<br />

gallon 3.78541178 liters<br />

HP 0.7456999 kW<br />

HP 745.7121551 W<br />

in 25.4 mm<br />

in² 645.2 mm²<br />

in³ 16387.064 mm³<br />

in-lb/in² 0.000175127 J/mm²<br />

J 9.45 x 10 -4 BTU<br />

J 0.2390 cal<br />

J 0.7376 ft.lb<br />

From Multiply by To<br />

J 2.389 x 10 -7 th<br />

J 1 W.s<br />

J 2.777 x 10 -9 kWh<br />

Kcal/m² h °C 1,163 W/m² °C<br />

Kg 2.205 lb<br />

kgf 9.80665 N<br />

kgf.m 9.80665 J<br />

kgf/mm² 9.80665 MPa<br />

Kip 1000 lbf<br />

kN 224.8 lbf<br />

kN/mm 5.71 x 10 3 lbf/ft<br />

ksi 6.894757 MPa<br />

ksi 1000 psi<br />

ksi.√in 1.098901099 MPa.√m<br />

kW 1.341022 HP<br />

kW 0.860 th/h<br />

kW.h 3.6 x 10 6 J<br />

kW.h 3.412 x 10 3 BTU<br />

kW.h 8.6 x 10 5 cal<br />

lb 0.4535924 kg<br />

lb.in 0.1129815 J ou N.m<br />

lb/ft³ 0.016020506 g/cm³<br />

lb/in³ 27.67783006 g/cm³<br />

lbf 4.448222 N<br />

lbf/in² 1 psi<br />

long ton 1016.047 kg


<strong>Gorni</strong><br />

From Multiply by To<br />

M 10 10 A<br />

M 3.281 ft<br />

m² 10.76 ft²<br />

MBTU 1,000,000 BTU<br />

mm 0.0394 in<br />

mm² 1.550 x 10³ in²<br />

MMBTU 1,000,000 BTU<br />

MPa 1 N/mm²<br />

MPa 0.145 ksi<br />

MPa 145 lbf/in²<br />

MPa.m 910.06 psi.in<br />

MPa.m 0.920 Ksi.in<br />

N.m 1 J<br />

nm 10 -9 m<br />

oz 0.028352707 kg<br />

Pa 1 N/m²<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

From Multiply by To<br />

Pa 1.449 x 10 -4 psi<br />

Pa 1.020 x 10 -7 Kg/mm²<br />

pct (%) 10000 ppm<br />

ppm 0.0001 %<br />

psi 0.001 ksi<br />

psi 0.0068947573 MPa<br />

psi 0.0007030697 kgf/mm²<br />

Psi in 0.001098829 MPa m<br />

Rad 57.2958 °<br />

Short Ton 907.1847 Kg<br />

Th 1 Mcal<br />

Th 4.186 x 10 6 J<br />

th/h 1.163 kW<br />

W 1 J/s<br />

W 0.001341 HP<br />

169


<strong>Gorni</strong><br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

GENERAL STATISTICAL FORMULAS<br />

170<br />

- Correlation Coefficient<br />

r <br />

_<br />

( Yest<br />

Y)<br />

_<br />

2<br />

( Y Y)<br />

2<br />

Notation:<br />

r: Correlation Coefficient<br />

Y: Raw Data<br />

Yest: Estimated Data Calculated by the Fitted Equation<br />

Y _ : Mean of the Raw Data<br />

Source: SPIEGEL, M.R. Estatística, Editora McGraw-Hill do Brasil Ltda., São Paulo, 1976, 580 p.<br />

- St<strong>and</strong>ard Error of Estimation<br />

<br />

( Y Y<br />

est<br />

n<br />

real<br />

2<br />

)<br />

Notation:<br />

: St<strong>and</strong>ard Error of Estimation<br />

Yest: Estimated Data Calculated by the Fitted Equation<br />

Yreal: Real Data


<strong>Gorni</strong><br />

n: Number of Points of Data<br />

<strong>Steel</strong> <strong>Forming</strong> <strong>and</strong> <strong>Heat</strong> <strong>Treating</strong> H<strong>and</strong>book<br />

171<br />

Source: SPIEGEL, M.R. Estatística, Editora McGraw-Hill do Brasil Ltda., São Paulo, 1976, 580 p.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!