13.07.2015 Views

Electrical Installation Guide 2009 - the global specialist in energy ...

Electrical Installation Guide 2009 - the global specialist in energy ...

Electrical Installation Guide 2009 - the global specialist in energy ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Technical collection<strong>Electrical</strong><strong>in</strong>stallation guide<strong>2009</strong>Accord<strong>in</strong>g toIEC <strong>in</strong>ternationalstandardshttp://<strong>the</strong>guide.schneider-electric.com


This guide has been written for electrical Eng<strong>in</strong>eers who have todesign, realize, <strong>in</strong>spect or ma<strong>in</strong>ta<strong>in</strong> electrical <strong>in</strong>stallations <strong>in</strong> compliancewith <strong>in</strong>ternational Standards of <strong>the</strong> International ElectrotechnicalCommission (IEC).“Which technical solution will guarantee that all relevant safety rules aremet?” This question has been a permanent guidel<strong>in</strong>e for <strong>the</strong> elaboration ofthis document.An <strong>in</strong>ternational Standard such as <strong>the</strong> IEC 60364 “<strong>Electrical</strong> <strong>Installation</strong><strong>in</strong> Buld<strong>in</strong>gs” specifies extensively <strong>the</strong> rules to comply with to ensuresafety and predicted operational characteristics for all types of electrical<strong>in</strong>stallations. As <strong>the</strong> Standard must be extensive, and has to be applicableto all types of products and <strong>the</strong> technical solutions <strong>in</strong> use worldwide, <strong>the</strong>text of <strong>the</strong> IEC rules is complex, and not presented <strong>in</strong> a ready-to-use order.The Standard cannot <strong>the</strong>refore be considered as a work<strong>in</strong>g handbook, butonly as a reference document.The aim of <strong>the</strong> present guide is to provide a clear, practical and stepby-stepexplanation for <strong>the</strong> complete study of an electrical <strong>in</strong>stallation,accord<strong>in</strong>g to IEC 60364 and o<strong>the</strong>r relevant IEC Standards. Therefore, <strong>the</strong>first chapter (B) presents <strong>the</strong> methodology to be used, and each chapterdeals with one out of <strong>the</strong> eight steps of <strong>the</strong> study. The two last chapter aredevoted to particular supply sources, loads and locations, and appendixprovides additional <strong>in</strong>formation. Special attention must be paid to <strong>the</strong>EMC appendix, which is based on <strong>the</strong> broad and practical experience onelectromagnetic compatibility problems.We all hope that you, <strong>the</strong> user, will f<strong>in</strong>d this handbook genu<strong>in</strong>ely helpful.Schneider Electric S.A.This technical guide is <strong>the</strong> result ofa collective effort.Technical advisor:Serge Volut - Jacques SchonekIllustrations and production:AXESS - Valence -FrancePr<strong>in</strong>t<strong>in</strong>g:Les Deux-Ponts - FranceEditionDecember 2008Price: 90 ISBN: 978.2.9531643.0.5N° dépôt légal: 1er semestre 2008© Schneider ElectricAll rights reserved <strong>in</strong> all countriesThe <strong>Electrical</strong> <strong>Installation</strong> <strong>Guide</strong> is a s<strong>in</strong>gle document cover<strong>in</strong>g <strong>the</strong>techniques, regulations and standards related to electrical <strong>in</strong>stallations.It is <strong>in</strong>tended for electrical professionals <strong>in</strong> companies, design offices,<strong>in</strong>spection organisations, etc.This Technical <strong>Guide</strong> is aimed at professional users and is only <strong>in</strong>tendedto provide <strong>the</strong>m guidel<strong>in</strong>es for <strong>the</strong> def<strong>in</strong>ition of an <strong>in</strong>dustrial, tertiary ordomestic electrical <strong>in</strong>stallation. Information and guidel<strong>in</strong>es conta<strong>in</strong>ed <strong>in</strong> this<strong>Guide</strong> are provided AS IS. Schneider Electric makes no warranty of anyk<strong>in</strong>d, whe<strong>the</strong>r express or implied, such as but not limited to <strong>the</strong> warrantiesof merchantability and fitness for a particular purpose, nor assumes anylegal liability or responsibility for <strong>the</strong> accuracy, completeness, or usefulnessof any <strong>in</strong>formation, apparatus, product, or process disclosed <strong>in</strong> this <strong>Guide</strong>,nor represents that its use would not <strong>in</strong>fr<strong>in</strong>ge privately owned rights.The purpose of this guide is to facilitate <strong>the</strong> implementation of International<strong>in</strong>stallation standards for designers & contractors, but <strong>in</strong> all cases <strong>the</strong>orig<strong>in</strong>al text of International or local standards <strong>in</strong> force shall prevail.This new edition has been published to take <strong>in</strong>to account changes <strong>in</strong>techniques, standards and regulations, <strong>in</strong> particular electrical <strong>in</strong>stallationstandard IEC 60364.We thank all <strong>the</strong> readers of <strong>the</strong> previous edition of this guide for <strong>the</strong>ircomments that have helped improve <strong>the</strong> current edition.We also thank <strong>the</strong> many people and organisations, to numerous to namehere, who have contributed <strong>in</strong> one way or ano<strong>the</strong>r to <strong>the</strong> preparation of thisguide.


AcknowlegementsThis guide has been realized by a team ofexperienced <strong>in</strong>ternational experts, on <strong>the</strong> baseof IEC 60364 standard, and <strong>in</strong>clude <strong>the</strong> latestdevelopments <strong>in</strong> electrical standardization.We shall mention particularly <strong>the</strong> follow<strong>in</strong>gexperts and <strong>the</strong>ir area of expertise:ChapterChristian Collombet DBernard Jover QCharley Gros L, MDidier Fulchiron BDidier Mignardot JEmmanuel Genevray E, PEric Breuillé FFranck Mégret GGeoffroy De-Labrouhe KJacques Schonek A, C, D, G, NJean Marc Lup<strong>in</strong> L, MJean Paul Baudet NJean Paul Lionet EJérome Lecomte HMatei Iurascu F, HMichel Sacotte BYou can ask questions to <strong>the</strong>se experts bysend<strong>in</strong>g a mail at <strong>the</strong> follow<strong>in</strong>g address:FR-Tech-Com@schneider-electric.com


This guide has been written for electrical Eng<strong>in</strong>eers who have todesign, realize, <strong>in</strong>spect or ma<strong>in</strong>ta<strong>in</strong> electrical <strong>in</strong>stallations <strong>in</strong> compliancewith <strong>in</strong>ternational Standards of <strong>the</strong> International ElectrotechnicalCommission (IEC).“Which technical solution will guarantee that all relevant safety rules aremet?” This question has been a permanent guidel<strong>in</strong>e for <strong>the</strong> elaboration ofthis document.An <strong>in</strong>ternational Standard such as <strong>the</strong> IEC 60364 “<strong>Electrical</strong> <strong>Installation</strong><strong>in</strong> Buld<strong>in</strong>gs” specifies extensively <strong>the</strong> rules to comply with to ensuresafety and predicted operational characteristics for all types of electrical<strong>in</strong>stallations. As <strong>the</strong> Standard must be extensive, and has to be applicableto all types of products and <strong>the</strong> technical solutions <strong>in</strong> use worldwide, <strong>the</strong>text of <strong>the</strong> IEC rules is complex, and not presented <strong>in</strong> a ready-to-use order.The Standard cannot <strong>the</strong>refore be considered as a work<strong>in</strong>g handbook, butonly as a reference document.The aim of <strong>the</strong> present guide is to provide a clear, practical and stepby-stepexplanation for <strong>the</strong> complete study of an electrical <strong>in</strong>stallation,accord<strong>in</strong>g to IEC 60364 and o<strong>the</strong>r relevant IEC Standards. Therefore, <strong>the</strong>first chapter (B) presents <strong>the</strong> methodology to be used, and each chapterdeals with one out of <strong>the</strong> eight steps of <strong>the</strong> study. The two last chapter aredevoted to particular supply sources, loads and locations, and appendixprovides additional <strong>in</strong>formation. Special attention must be paid to <strong>the</strong>EMC appendix, which is based on <strong>the</strong> broad and practical experience onelectromagnetic compatibility problems.We all hope that you, <strong>the</strong> user, will f<strong>in</strong>d this handbook genu<strong>in</strong>ely helpful.Schneider Electric S.A.This technical guide is <strong>the</strong> result ofa collective effort.Technical advisor:Serge Volut - Jacques SchonekIllustrations and production:AXESS - Valence -FrancePr<strong>in</strong>t<strong>in</strong>g:Les Deux-Ponts - FranceEditionDecember 2008Price: 90 ISBN: 978.2.9531643.0.5N° dépôt légal: 1er semestre 2008© Schneider ElectricAll rights reserved <strong>in</strong> all countriesThe <strong>Electrical</strong> <strong>Installation</strong> <strong>Guide</strong> is a s<strong>in</strong>gle document cover<strong>in</strong>g <strong>the</strong>techniques, regulations and standards related to electrical <strong>in</strong>stallations.It is <strong>in</strong>tended for electrical professionals <strong>in</strong> companies, design offices,<strong>in</strong>spection organisations, etc.This Technical <strong>Guide</strong> is aimed at professional users and is only <strong>in</strong>tendedto provide <strong>the</strong>m guidel<strong>in</strong>es for <strong>the</strong> def<strong>in</strong>ition of an <strong>in</strong>dustrial, tertiary ordomestic electrical <strong>in</strong>stallation. Information and guidel<strong>in</strong>es conta<strong>in</strong>ed <strong>in</strong> this<strong>Guide</strong> are provided AS IS. Schneider Electric makes no warranty of anyk<strong>in</strong>d, whe<strong>the</strong>r express or implied, such as but not limited to <strong>the</strong> warrantiesof merchantability and fitness for a particular purpose, nor assumes anylegal liability or responsibility for <strong>the</strong> accuracy, completeness, or usefulnessof any <strong>in</strong>formation, apparatus, product, or process disclosed <strong>in</strong> this <strong>Guide</strong>,nor represents that its use would not <strong>in</strong>fr<strong>in</strong>ge privately owned rights.The purpose of this guide is to facilitate <strong>the</strong> implementation of International<strong>in</strong>stallation standards for designers & contractors, but <strong>in</strong> all cases <strong>the</strong>orig<strong>in</strong>al text of International or local standards <strong>in</strong> force shall prevail.This new edition has been published to take <strong>in</strong>to account changes <strong>in</strong>techniques, standards and regulations, <strong>in</strong> particular electrical <strong>in</strong>stallationstandard IEC 60364.We thank all <strong>the</strong> readers of <strong>the</strong> previous edition of this guide for <strong>the</strong>ircomments that have helped improve <strong>the</strong> current edition.We also thank <strong>the</strong> many people and organisations, to numerous to namehere, who have contributed <strong>in</strong> one way or ano<strong>the</strong>r to <strong>the</strong> preparation of thisguide.


General rules of electrical<strong>in</strong>stallation designConnection to <strong>the</strong> MV utilitydistribution networkConnection to <strong>the</strong> LV utilitydistribution networkMV & LV architecture selectionguideLV DistributionProtection aga<strong>in</strong>st electricshocksSiz<strong>in</strong>g and protection ofconductorsLV switchgear: functions &selectionProtection aga<strong>in</strong>st voltagesurges <strong>in</strong> LVEnergy Efficiency <strong>in</strong> electricaldistributionPower factor correction andharmonic filter<strong>in</strong>gHarmonic managementCharacteristics of particularsources and loadsResidential and o<strong>the</strong>r speciallocationsEMC guidel<strong>in</strong>esABCDEFGHJKLMNPQ


Guid<strong>in</strong>g tools for more efficiency <strong>in</strong> electricaldistribution designTechnical knowledgePre-design help for budgetapproachDesign support Specification help Help <strong>in</strong> <strong>in</strong>stallation, use &ma<strong>in</strong>tenance10-30mn eLearn<strong>in</strong>g modules for<strong>in</strong>dividual tra<strong>in</strong><strong>in</strong>gArticles giv<strong>in</strong>g base skills aboutgeneral subjects: “CahiersTechniques”Selection criterias & methodto follow <strong>in</strong> order to pre-def<strong>in</strong>eproject specification:b Architecture guideb ID-Spec softwarePractical data & methodsthrough major design guides:b <strong>Electrical</strong> <strong>Installation</strong> <strong>Guide</strong>b Protection guideb Industrial electrical networkdesign guideb ...Technical specification onproducts & solutions for tenderrequestProduct <strong>in</strong>stallation dataProduct how to use dataProduct ma<strong>in</strong>tenance dataProduct presentation of technicalcharacteristics <strong>in</strong> all SchneiderElectric product CataloguesSolutions and examples withrecommended architectures <strong>in</strong>Solution guides:b airportb automativeb foodb retailb officeb <strong>in</strong>dustrial build<strong>in</strong>gsb healthcareb ...Design Software:b My EcodialEcodial software provides acomplete design package forLV <strong>in</strong>stallations, <strong>in</strong> accordancewith IEC standards andrecommendations.Ma<strong>in</strong> features:v Create diagramsv Optimise circuit breakers curvesv Determ<strong>in</strong>e source powerv Follow step by step calculationv Pr<strong>in</strong>t <strong>the</strong> project design fileb SISPRO build<strong>in</strong>gb ...Draw<strong>in</strong>g source files forconnection, dimension, diagram,mount<strong>in</strong>g & safety: CAD librarySchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong> Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


General contentsABCDEFGHGeneral rules of electrical <strong>in</strong>stallation design1 Methodology A22 Rules and statutory regulations A43 Installed power loads - Characteristics A104 Power load<strong>in</strong>g of an <strong>in</strong>stallation A15Connection to <strong>the</strong> MV utility distribution network1 Supply of power at medium voltage B22 Procedure for <strong>the</strong> establishment of a new substation B143 Protection aspect B164 The consumer substation with LV meter<strong>in</strong>g B225 The consumer substation with MV meter<strong>in</strong>g B306 Constitution of MV/LV distribution substations B35Connection to <strong>the</strong> LV utility distribution network1 Low voltage utility distribution networks C22 Tariffs and meter<strong>in</strong>g C16MV & LV architecture selection guide1 Stakes for <strong>the</strong> user D32 Simplified architecture design process D43 <strong>Electrical</strong> <strong>in</strong>stallation characteristics D74 Technological characteristics D115 Architecture assessment criteria D136 Choice of architecture fundamentals D157 Choice of architecture details D198 Choice of equiment D249 Recommendations for architecture optimization D2610 Glossary D2911 ID-Spec software D3012 Example: electrical <strong>in</strong>stallation <strong>in</strong> a pr<strong>in</strong>tworks D31LV Distribution1 Earth<strong>in</strong>g schemes E22 The <strong>in</strong>stallation system E153 External <strong>in</strong>fluences (IEC 60364-5-51) E25Protection aga<strong>in</strong>st electric shocks1 General F22 Protection aga<strong>in</strong>st direct contact F43 Protection aga<strong>in</strong>st <strong>in</strong>direct contact F64 Protection of goods due to <strong>in</strong>sulation fault F175 Implementation of <strong>the</strong> TT system F196 Implementation of <strong>the</strong> TN system F237 Implementation of <strong>the</strong> IT system F298 Residual current differential devices RCDs F36Siz<strong>in</strong>g and protection of conductors1 General G22 Practical method for determ<strong>in</strong><strong>in</strong>g <strong>the</strong> smallest allowable G7cross-sectional area of circuit conductors3 Determ<strong>in</strong>ation of voltage drop G204 Short-circuit current G245 Particular cases of short-circuit current G306 Protective earth<strong>in</strong>g conductor G377 The neutral conductor G428 Worked example of cable calculation G46LV switchgear: functions & selection1 The basic functions of LV switchgear H22 The switchgear H53 Choice of switchgear H104 Circuit breaker H11Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


General contentsJKLMNPQProtection aga<strong>in</strong>st voltage surges <strong>in</strong> LV1 General J22 Overvoltage protection devices J63 Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV J114 Choos<strong>in</strong>g a protection device J14Energy Efficiency <strong>in</strong> electrical distribution1 Introduction K22 Energy efficiency and electricity K33 Diagnosis through electrical measurement K74 Energy sav<strong>in</strong>g solutions K135 How to value <strong>energy</strong> sav<strong>in</strong>gs K316 From returns on <strong>in</strong>vestment to susta<strong>in</strong>ed performance K34Power factor correction and harmonic filter<strong>in</strong>g1 Reactive <strong>energy</strong> and power factor L22 Why to improve <strong>the</strong> power factor? L53 How to improve <strong>the</strong> power factor? L74 Where to <strong>in</strong>stall power correction capacitors? L105 How to decide <strong>the</strong> optimum level of compensation? L126 Compensation at <strong>the</strong> term<strong>in</strong>als of a transformer L157 Power factor correction of <strong>in</strong>duction motors L188 Example of an <strong>in</strong>stallation before and after power factor correction L209 The effects of harmonics L2110 Implementation of capacitor banks L24Harmonic management1 The problem: M2Why is it necessary to detect and elim<strong>in</strong>ate harmonics?2 Standards M33 General M44 Ma<strong>in</strong> effects of harmonics <strong>in</strong> <strong>in</strong>stallations M65 Essential <strong>in</strong>dicators of harmonic distortion and M11measurement pr<strong>in</strong>ciples6 Measur<strong>in</strong>g <strong>the</strong> <strong>in</strong>dicators M147 Detection devices M168 Solutions to attenuate harmonics M17Characteristics of particular sources and loads1 Protection of a LV generator set and <strong>the</strong> downstream circuits N22 Un<strong>in</strong>terruptible Power Supply Units (UPS) N113 Protection of LV/LV transformers N244 Light<strong>in</strong>g circuits N275 Asynchronous motors N45Residential and o<strong>the</strong>r special locations1 Residential and similar premises P22 Bathrooms and showers P83 Recommendations applicable to special <strong>in</strong>stallations and locations P12EMC guidel<strong>in</strong>es1 <strong>Electrical</strong> distribution Q22 Earth<strong>in</strong>g pr<strong>in</strong>ciples and structures Q33 Implementation Q54 Coupl<strong>in</strong>g mechanism and counter-measures Q165 Wir<strong>in</strong>g recommendations Q22Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Chapter AGeneral rules of electrical<strong>in</strong>stallation designA1234ContentsMethodologyRules and statutory regulations2.1 Def<strong>in</strong>ition of voltage ranges A42.2 Regulations A52.3 Standards A52.4 Quality and safety of an electrical <strong>in</strong>stallation A62.5 Initial test<strong>in</strong>g of an <strong>in</strong>stallation A62.6 Periodic check-test<strong>in</strong>g of an <strong>in</strong>stallation A72.7 Conformity (with standards and specifications) of equipmentused <strong>in</strong> <strong>the</strong> <strong>in</strong>stallationA72.8 Environment A8Installed power loads - CharacteristicsA103.1 Induction motors A103.2 Resistive-type heat<strong>in</strong>g appliances and <strong>in</strong>candescent lamps(conventional or halogen)A12Power load<strong>in</strong>g of an <strong>in</strong>stallationA154.1 Installed power (kW) A154.2 Installed apparent power (kVA) A154.3 Estimation of actual maximum kVA demand A164.4 Example of application of factors ku and ks A174.5 Diversity factor A184.6 Choice of transformer rat<strong>in</strong>g A194.7 Choice of power-supply sources A20A2A4© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


A - General rules of electrical <strong>in</strong>stallation design1 MethodologyAFor <strong>the</strong> best results <strong>in</strong> electrical <strong>in</strong>stallation design it is recommended to read all <strong>the</strong>chapters of this guide <strong>in</strong> <strong>the</strong> order <strong>in</strong> which <strong>the</strong>y are presented.A - General rules of electrical <strong>in</strong>stallation designB – Connection to <strong>the</strong> MV utility distributionnetworkC - Connection to <strong>the</strong> LV utility distributionnetworkD - MV & LV architecture selection guideE - LV DistributionF - Protection aga<strong>in</strong>st electric shocksList<strong>in</strong>g of power demandsThe study of a proposed electrical <strong>in</strong>stallation requires an adequate understand<strong>in</strong>g ofall govern<strong>in</strong>g rules and regulations.The total power demand can be calculated from <strong>the</strong> data relative to <strong>the</strong> location andpower of each load, toge<strong>the</strong>r with <strong>the</strong> knowledge of <strong>the</strong> operat<strong>in</strong>g modes (steadystate demand, start<strong>in</strong>g conditions, non simultaneous operation, etc.)From <strong>the</strong>se data, <strong>the</strong> power required from <strong>the</strong> supply source and (where appropriate)<strong>the</strong> number of sources necessary for an adequate supply to <strong>the</strong> <strong>in</strong>stallation arereadily obta<strong>in</strong>ed.Local <strong>in</strong>formation regard<strong>in</strong>g tariff structures is also required to allow <strong>the</strong> best choiceof connection arrangement to <strong>the</strong> power-supply network, e.g. at medium voltage orlow voltage level.Service connectionThis connection can be made at:b Medium Voltage levelA consumer-type substation will <strong>the</strong>n have to be studied, built and equipped. Thissubstation may be an outdoor or <strong>in</strong>door <strong>in</strong>stallation conform<strong>in</strong>g to relevant standardsand regulations (<strong>the</strong> low-voltage section may be studied separately if necessary).Meter<strong>in</strong>g at medium-voltage or low-voltage is possible <strong>in</strong> this case.b Low Voltage levelThe <strong>in</strong>stallation will be connected to <strong>the</strong> local power network and will (necessarily) bemetered accord<strong>in</strong>g to LV tariffs.<strong>Electrical</strong> Distribution architectureThe whole <strong>in</strong>stallation distribution network is studied as a complete system.A selection guide is proposed for determ<strong>in</strong>ation of <strong>the</strong> most suitable architecture.MV/LV ma<strong>in</strong> distribution and LV power distribution levels are covered.Neutral earth<strong>in</strong>g arrangements are chosen accord<strong>in</strong>g to local regulations, constra<strong>in</strong>tsrelated to <strong>the</strong> power-supply, and to <strong>the</strong> type of loads.The distribution equipment (panelboards, switchgears, circuit connections, ...) aredeterm<strong>in</strong>ed from build<strong>in</strong>g plans and from <strong>the</strong> location and group<strong>in</strong>g of loads.The type of premises and allocation can <strong>in</strong>fluence <strong>the</strong>ir immunity to externaldisturbances.Protection aga<strong>in</strong>st electric shocksThe earth<strong>in</strong>g system (TT, IT or TN) hav<strong>in</strong>g been previously determ<strong>in</strong>ed, <strong>the</strong>n <strong>the</strong>appropriate protective devices must be implemented <strong>in</strong> order to achieve protectionaga<strong>in</strong>st hazards of direct or <strong>in</strong>direct contact.© Schneider Electric - all rights reservedG - Siz<strong>in</strong>g and protection of conductorsH - LV switchgear: functions & selectionCircuits and switchgearEach circuit is <strong>the</strong>n studied <strong>in</strong> detail. From <strong>the</strong> rated currents of <strong>the</strong> loads, <strong>the</strong> levelof short-circuit current, and <strong>the</strong> type of protective device, <strong>the</strong> cross-sectional areaof circuit conductors can be determ<strong>in</strong>ed, tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> nature of <strong>the</strong>cableways and <strong>the</strong>ir <strong>in</strong>fluence on <strong>the</strong> current rat<strong>in</strong>g of conductors.Before adopt<strong>in</strong>g <strong>the</strong> conductor size <strong>in</strong>dicated above, <strong>the</strong> follow<strong>in</strong>g requirements mustbe satisfied:b The voltage drop complies with <strong>the</strong> relevant standardb Motor start<strong>in</strong>g is satisfactoryb Protection aga<strong>in</strong>st electric shock is assuredThe short-circuit current Isc is <strong>the</strong>n determ<strong>in</strong>ed, and <strong>the</strong> <strong>the</strong>rmal and electrodynamicwithstand capability of <strong>the</strong> circuit is checked.These calculations may <strong>in</strong>dicate that it is necessary to use a conductor size largerthan <strong>the</strong> size orig<strong>in</strong>ally chosen.The performance required by <strong>the</strong> switchgear will determ<strong>in</strong>e its type andcharacteristics.The use of cascad<strong>in</strong>g techniques and <strong>the</strong> discrim<strong>in</strong>ative operation of fuses andtripp<strong>in</strong>g of circuit breakers are exam<strong>in</strong>ed.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


A - General rules of electrical <strong>in</strong>stallation design1 MethodologyAJ – Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LVK – Energy efficiency <strong>in</strong> electrical distributionL - Power factor correction and harmonic filter<strong>in</strong>gM - Harmonic managementN - Characteristics of particular sources andloadsP - Residential and o<strong>the</strong>r special locationsQ - EMC guidel<strong>in</strong>eProtection aga<strong>in</strong>st overvoltagesDirect or <strong>in</strong>direct lightn<strong>in</strong>g strokes can damage electrical equipment at a distanceof several kilometers. Operat<strong>in</strong>g voltage surges, transient and <strong>in</strong>dustrial frequencyover-voltage can also produce <strong>the</strong> same consequences.The effects are exam<strong>in</strong>edand solutions are proposed.Energy efficiency <strong>in</strong> electrial distributionImplementation of measur<strong>in</strong>g devices with an adequate communication systemwith<strong>in</strong> <strong>the</strong> electrical <strong>in</strong>stallation can produce high benefits for <strong>the</strong> user or owner:reduced power consumption, reduced cost of <strong>energy</strong>, better use of electricalequipment.Reactive <strong>energy</strong>The power factor correction with<strong>in</strong> electrical <strong>in</strong>stallations is carried out locally,<strong>global</strong>ly or as a comb<strong>in</strong>ation of both methods.HarmonicsHarmonics <strong>in</strong> <strong>the</strong> network affect <strong>the</strong> quality of <strong>energy</strong> and are at <strong>the</strong> orig<strong>in</strong> of manydisturbances as overloads, vibrations, age<strong>in</strong>g of equipment, trouble of sensitiveequipment, of local area networks, telephone networks. This chapter deals with <strong>the</strong>orig<strong>in</strong>s and <strong>the</strong> effects of harmonics and expla<strong>in</strong> how to measure <strong>the</strong>m and present<strong>the</strong> solutions.Particular supply sources and loadsParticular items or equipment are studied:b Specific sources such as alternators or <strong>in</strong>vertersb Specific loads with special characteristics, such as <strong>in</strong>duction motors, light<strong>in</strong>gcircuits or LV/LV transformersb Specific systems, such as direct-current networksGeneric applicationsCerta<strong>in</strong> premises and locations are subject to particularly strict regulations: <strong>the</strong> mostcommon example be<strong>in</strong>g residential dwell<strong>in</strong>gs.EMC <strong>Guide</strong>l<strong>in</strong>esSome basic rules must be followed <strong>in</strong> order to ensure Electromagnetic Compatibility.Non observance of <strong>the</strong>se rules may have serious consequences <strong>in</strong> <strong>the</strong> operation of<strong>the</strong> electrical <strong>in</strong>stallation: disturbance of communication systems, nuisance tripp<strong>in</strong>gof protection devices, and even destruction of sensitive devices.Ecodial softwareEcodial software (1) provides a complete design package for LV <strong>in</strong>stallations, <strong>in</strong>accordance with IEC standards and recommendations.The follow<strong>in</strong>g features are <strong>in</strong>cluded:b Construction of one-l<strong>in</strong>e diagramsb Calculation of short-circuit currentsb Calculation of voltage dropsb Optimization of cable sizesb Required rat<strong>in</strong>gs of switchgear and fusegearb Discrim<strong>in</strong>ation of protective devicesb Recommendations for cascad<strong>in</strong>g schemesb Verification of <strong>the</strong> protection of peopleb Comprehensive pr<strong>in</strong>t-out of <strong>the</strong> forego<strong>in</strong>g calculated design data(1) Ecodial is a Merl<strong>in</strong> Ger<strong>in</strong> product and is available <strong>in</strong> Frenchand English versions.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>© Schneider Electric - all rights reserved


A - General rules of electrical <strong>in</strong>stallation design2 Rules and statutory regulationsALow-voltage <strong>in</strong>stallations are governed by a number of regulatory and advisory texts,which may be classified as follows:b Statutory regulations (decrees, factory acts,etc.)b Codes of practice, regulations issued by professional <strong>in</strong>stitutions, job specificationsb National and <strong>in</strong>ternational standards for <strong>in</strong>stallationsb National and <strong>in</strong>ternational standards for products2.1 Def<strong>in</strong>ition of voltage rangesIEC voltage standards and recommendationsThree-phase four-wire or three-wire systems S<strong>in</strong>gle-phase three-wire systemsNom<strong>in</strong>al voltage (V)Nom<strong>in</strong>al voltage (V)50 Hz 60 Hz 60 Hz– 120/208 120/240– 240 –230/400 (1) 277/480 –400/690 (1) 480 –– 347/600 –1000 600 –(1) The nom<strong>in</strong>al voltage of exist<strong>in</strong>g 220/380 V and 240/415 V systems shall evolvetoward <strong>the</strong> recommended value of 230/400 V. The transition period should be as shortas possible and should not exceed <strong>the</strong> year 2003. Dur<strong>in</strong>g this period, as a first step, <strong>the</strong>electricity supply authorities of countries hav<strong>in</strong>g 220/380 V systems should br<strong>in</strong>g <strong>the</strong>voltage with<strong>in</strong> <strong>the</strong> range 230/400 V +6 %, -10 % and those of countries hav<strong>in</strong>g240/415 V systems should br<strong>in</strong>g <strong>the</strong> voltage with<strong>in</strong> <strong>the</strong> range 230/400 V +10 %,-6 %. At <strong>the</strong> end of this transition period, <strong>the</strong> tolerance of 230/400 V ± 10 % shouldhave been achieved; after this <strong>the</strong> reduction of this range will be considered. All <strong>the</strong>above considerations apply also to <strong>the</strong> present 380/660 V value with respect to <strong>the</strong>recommended value 400/690 V.Fig. A1 : Standard voltages between 100 V and 1000 V (IEC 60038 Edition 6.2 2002-07)© Schneider Electric - all rights reservedSeries ISeries IIHighest voltage Nom<strong>in</strong>al system Highest voltage Nom<strong>in</strong>al systemfor equipment (kV) voltage (kV) for equipment (kV) voltage (kV)3.6 (1) 3.3 (1) 3 (1) 4.40 (1) 4.16 (1)7.2 (1) 6.6 (1) 6 (1) – –12 11 10 – –– – – 13.2 (2) 12.47 (2)– – – 13.97 (2) 13.2 (2)– – – 14.52 (1) 13.8 (1)(17.5) – (15) – –24 22 20 – –– – – 26.4 (2) 24.94 (2)36 (3) 33 (3) – – –– – – 36.5 34.540.5 (3) – 35 (3) – –These systems are generally three-wire systems unless o<strong>the</strong>rwise <strong>in</strong>dicated.The values <strong>in</strong>dicated are voltages between phases.The values <strong>in</strong>dicated <strong>in</strong> paren<strong>the</strong>ses should be considered as non-preferred values. It isrecommended that <strong>the</strong>se values should not be used for new systems to be constructed<strong>in</strong> future.Note 1: It is recommended that <strong>in</strong> any one country <strong>the</strong> ratio between two adjacentnom<strong>in</strong>al voltages should be not less than two.Note 2: In a normal system of Series I, <strong>the</strong> highest voltage and <strong>the</strong> lowest voltage donot differ by more than approximately ±10 % from <strong>the</strong> nom<strong>in</strong>al voltage of <strong>the</strong> system.In a normal system of Series II, <strong>the</strong> highest voltage does not differ by more <strong>the</strong>n +5 %and <strong>the</strong> lowest voltage by more than -10 % from <strong>the</strong> nom<strong>in</strong>al voltage of <strong>the</strong> system.(1) These values should not be used for public distribution systems.(2) These systems are generally four-wire systems.(3) The unification of <strong>the</strong>se values is under consideration.Fig. A2 : Standard voltages above 1 kV and not exceed<strong>in</strong>g 35 kV(IEC 60038 Edition 6.2 2002-07)Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


A - General rules of electrical <strong>in</strong>stallation design2 Rules and statutory regulationsA2.2 RegulationsIn most countries, electrical <strong>in</strong>stallations shall comply with more than one set ofregulations, issued by National Authorities or by recognized private bodies. It isessential to take <strong>in</strong>to account <strong>the</strong>se local constra<strong>in</strong>ts before start<strong>in</strong>g <strong>the</strong> design.2.3 StandardsThis <strong>Guide</strong> is based on relevant IEC standards, <strong>in</strong> particular IEC 60364. IEC 60364has been established by medical and eng<strong>in</strong>eer<strong>in</strong>g experts of all countries <strong>in</strong> <strong>the</strong>world compar<strong>in</strong>g <strong>the</strong>ir experience at an <strong>in</strong>ternational level. Currently, <strong>the</strong> safetypr<strong>in</strong>ciples of IEC 60364 and 60479-1 are <strong>the</strong> fundamentals of most electricalstandards <strong>in</strong> <strong>the</strong> world (see table below and next page).IEC 60038 Standard voltagesIEC 60076-2 Power transformers - Temperature riseIEC 60076-3 Power transformers - Insulation levels, dielectric tests and external clearances <strong>in</strong> airIEC 60076-5 Power transformers - Ability to withstand short-circuitIEC 60076-10 Power transformers - Determ<strong>in</strong>ation of sound levelsIEC 60146 Semiconductor convertors - General requirements and l<strong>in</strong>e commutated convertorsIEC 60255 <strong>Electrical</strong> relaysIEC 60265-1 High-voltage switches - High-voltage switches for rated voltages above 1 kV and less than 52 kVIEC 60269-1 Low-voltage fuses - General requirementsIEC 60269-2 Low-voltage fuses - Supplementary requirements for fuses for use by unskilled persons (fuses ma<strong>in</strong>ly for household and similar applications)IEC 60282-1 High-voltage fuses - Current-limit<strong>in</strong>g fusesIEC 60287-1-1 Electric cables - Calculation of <strong>the</strong> current rat<strong>in</strong>g - Current rat<strong>in</strong>g equations (100% load factor) and calculation of losses - GeneralIEC 60364 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gsIEC 60364-1 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Fundamental pr<strong>in</strong>ciplesIEC 60364-4-41 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Protection for safety - Protection aga<strong>in</strong>st electric shockIEC 60364-4-42 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Protection for safety - Protection aga<strong>in</strong>st <strong>the</strong>rmal effectsIEC 60364-4-43 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Protection for safety - Protection aga<strong>in</strong>st overcurrentIEC 60364-4-44 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Protection for safety - Protection aga<strong>in</strong>st electromagnetic and voltage disrurbanceIEC 60364-5-51 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Selection and erection of electrical equipment - Common rulesIEC 60364-5-52 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Selection and erection of electrical equipment - Wir<strong>in</strong>g systemsIEC 60364-5-53 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Selection and erection of electrical equipment - Isolation, switch<strong>in</strong>g and controlIEC 60364-5-54 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Selection and erection of electrical equipment - Earth<strong>in</strong>g arrangementsIEC 60364-5-55 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Selection and erection of electrical equipment - O<strong>the</strong>r equipmentsIEC 60364-6-61 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Verification and test<strong>in</strong>g - Initial verificationIEC 60364-7-701 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Requirements for special <strong>in</strong>stallations or locations - Locations conta<strong>in</strong><strong>in</strong>g a bath tub or shower bas<strong>in</strong>IEC 60364-7-702 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Requirements for special <strong>in</strong>stallations or locations - Swimm<strong>in</strong>g pools and o<strong>the</strong>r bas<strong>in</strong>sIEC 60364-7-703 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Requirements for special <strong>in</strong>stallations or locations - Locations conta<strong>in</strong><strong>in</strong>g sauna heatersIEC 60364-7-704 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Requirements for special <strong>in</strong>stallations or locations - Construction and demolition site <strong>in</strong>stallationsIEC 60364-7-705 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Requirements for special <strong>in</strong>stallations or locations - <strong>Electrical</strong> <strong>in</strong>stallations of agricultural and horticulturalpremisesIEC 60364-7-706 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Requirements for special <strong>in</strong>stallations or locations - Restrictive conduct<strong>in</strong>g locationsIEC 60364-7-707 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Requirements for special <strong>in</strong>stallations or locations - Earth<strong>in</strong>g requirements for <strong>the</strong> <strong>in</strong>stallation of dataprocess<strong>in</strong>g equipmentIEC 60364-7-708 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Requirements for special <strong>in</strong>stallations or locations - <strong>Electrical</strong> <strong>in</strong>stallations <strong>in</strong> caravan parks and caravansIEC 60364-7-709 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Requirements for special <strong>in</strong>stallations or locations - Mar<strong>in</strong>as and pleasure craftIEC 60364-7-710 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Requirements for special <strong>in</strong>stallations or locations - Medical locationsIEC 60364-7-711 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Requirements for special <strong>in</strong>stallations or locations - Exhibitions, shows and standsIEC 60364-7-712 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Requirements for special <strong>in</strong>stallations or locations - Solar photovoltaic (PV) power supply systemsIEC 60364-7-713 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Requirements for special <strong>in</strong>stallations or locations - FurnitureIEC 60364-7-714 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Requirements for special <strong>in</strong>stallations or locations - External light<strong>in</strong>g <strong>in</strong>stallationsIEC 60364-7-715 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Requirements for special <strong>in</strong>stallations or locations - Extra-low-voltage light<strong>in</strong>g <strong>in</strong>stallationsIEC 60364-7-717 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Requirements for special <strong>in</strong>stallations or locations - Mobile or transportable unitsIEC 60364-7-740 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gs - Requirements for special <strong>in</strong>stallations or locations - Temporary electrical <strong>in</strong>stallations for structures,amusement devices and booths at fairgrounds, amusement parks and circusesIEC 60427 High-voltage alternat<strong>in</strong>g current circuit-breakersIEC 60439-1 Low-voltage switchgear and controlgear assemblies - Type-tested and partially type-tested assembliesIEC 60439-2 Low-voltage switchgear and controlgear assemblies - Particular requirements for busbar trunk<strong>in</strong>g systems (busways)IEC 60439-3 Low-voltage switchgear and controlgear assemblies - Particular requirements for low-voltage switchgear and controlgear assemblies <strong>in</strong>tended tobe <strong>in</strong>stalled <strong>in</strong> places where unskilled persons have access for <strong>the</strong>ir use - Distribution boardsIEC 60439-4 Low-voltage switchgear and controlgear assemblies - Particular requirements for assemblies for construction sites (ACS)IEC 60446 Basic and safety pr<strong>in</strong>ciples for man-mach<strong>in</strong>e <strong>in</strong>terface, mark<strong>in</strong>g and identification - Identification of conductors by colours or numeralsIEC 60439-5 Low-voltage switchgear and controlgear assemblies - Particular requirements for assemblies <strong>in</strong>tended to be <strong>in</strong>stalled outdoors <strong>in</strong> public places- Cable distribution cab<strong>in</strong>ets (CDCs)IEC 60479-1 Effects of current on human be<strong>in</strong>gs and livestock - General aspectsIEC 60479-2 Effects of current on human be<strong>in</strong>gs and livestock - Special aspectsIEC 60479-3 Effects of current on human be<strong>in</strong>gs and livestock - Effects of currents pass<strong>in</strong>g through <strong>the</strong> body of livestock(Cont<strong>in</strong>ued on next page)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


A - General rules of electrical <strong>in</strong>stallation design2 Rules and statutory regulationsAIEC 60529IEC 60644IEC 60664IEC 60715IEC 60724IEC 60755IEC 60787IEC 60831IEC 60947-1IEC 60947-2IEC 60947-3IEC 60947-4-1IEC 60947-6-1IEC 61000IEC 61140IEC 61557-1IEC 61557-8IEC 61557-9IEC 61557-12IEC 61558-2-6IEC 62271-1IEC 62271-100IEC 62271-102IEC 62271-105IEC 62271-200IEC 62271-202Degrees of protection provided by enclosures (IP code)Spécification for high-voltage fuse-l<strong>in</strong>ks for motor circuit applicationsInsulation coord<strong>in</strong>ation for equipment with<strong>in</strong> low-voltage systemsDimensions of low-voltage switchgear and controlgear. Standardized mount<strong>in</strong>g on rails for mechanical support of electrical devices <strong>in</strong> switchgearand controlgear <strong>in</strong>stallations.Short-circuit temperature limits of electric cables with rated voltages of 1 kV (Um = 1.2 kV) and 3 kV (Um = 3.6 kV)General requirements for residual current operated protective devicesApplication guide for <strong>the</strong> selection of fuse-l<strong>in</strong>ks of high-voltage fuses for transformer circuit applicationShunt power capacitors of <strong>the</strong> self-heal<strong>in</strong>g type for AC systems hav<strong>in</strong>g a rated voltage up to and <strong>in</strong>clud<strong>in</strong>g 1000 V - General - Performance, test<strong>in</strong>gand rat<strong>in</strong>g - Safety requirements - <strong>Guide</strong> for <strong>in</strong>stallation and operationLow-voltage switchgear and controlgear - General rulesLow-voltage switchgear and controlgear - Circuit-breakersLow-voltage switchgear and controlgear - Switches, disconnectors, switch-disconnectors and fuse-comb<strong>in</strong>ation unitsLow-voltage switchgear and controlgear - Contactors and motor-starters - Electromechanical contactors and motor-startersLow-voltage switchgear and controlgear - Multiple function equipment - Automatic transfer switch<strong>in</strong>g equipmentElectromagnetic compatibility (EMC)Protection aga<strong>in</strong>st electric shocks - common aspects for <strong>in</strong>stallation and equipment<strong>Electrical</strong> safety <strong>in</strong> low-voltage distribution systems up to 1000 V AC and 1500 V DC - Equipment for test<strong>in</strong>g, measur<strong>in</strong>g or monitor<strong>in</strong>g of protectivemeasures - General requirements<strong>Electrical</strong> safety <strong>in</strong> low-voltage distribution systems up to 1000 V AC and 1500 V DC - Equipment for test<strong>in</strong>g, measur<strong>in</strong>g or monitor<strong>in</strong>g of protectivemeasures<strong>Electrical</strong> safety <strong>in</strong> low-voltage distribution systems up to 1000 V AC and 1500 V DC - Equipment for <strong>in</strong>sulation fault location <strong>in</strong> IT systems<strong>Electrical</strong> safety <strong>in</strong> low-voltage distribution systems up to 1000 V AC and 1500 V DC - Equipment for test<strong>in</strong>g, measur<strong>in</strong>g or monitor<strong>in</strong>g of protectivemeasures. Performance measur<strong>in</strong>g and monitor<strong>in</strong>g devices (PMD)Safety of power transformers, power supply units and similar - Particular requirements for safety isolat<strong>in</strong>g transformers for general useCommon specifications for high-voltage switchgear and controlgear standardsHigh-voltage switchgear and controlgear - High-voltage alternat<strong>in</strong>g-current circuit-breakersHigh-voltage switchgear and controlgear - Alternat<strong>in</strong>g current disconnectors and earth<strong>in</strong>g switchesHigh-voltage switchgear and controlgear - Alternat<strong>in</strong>g current switch-fuse comb<strong>in</strong>ationsHigh-voltage switchgear and controlgear - Alternat<strong>in</strong>g current metal-enclosed switchgear and controlgear for rated voltages above 1 kV and up toand <strong>in</strong>clud<strong>in</strong>g 52 kVHigh-voltage/low voltage prefabricated substations(Concluded)2.4 Quality and safety of an electrical <strong>in</strong>stallationIn so far as control procedures are respected, quality and safety will be assuredonly if:b The <strong>in</strong>itial check<strong>in</strong>g of conformity of <strong>the</strong> electrical <strong>in</strong>stallation with <strong>the</strong> standard andregulation has been achievedb The electrical equipment comply with standardsb The periodic check<strong>in</strong>g of <strong>the</strong> <strong>in</strong>stallation recommended by <strong>the</strong> equipmentmanufacturer is respected.2.5 Initial test<strong>in</strong>g of an <strong>in</strong>stallation© Schneider Electric - all rights reservedBefore a utility will connect an <strong>in</strong>stallation to its supply network, strict precommission<strong>in</strong>gelectrical tests and visual <strong>in</strong>spections by <strong>the</strong> authority, or by itsappo<strong>in</strong>ted agent, must be satisfied.These tests are made accord<strong>in</strong>g to local (governmental and/or <strong>in</strong>stitutional)regulations, which may differ slightly from one country to ano<strong>the</strong>r. The pr<strong>in</strong>ciples ofall such regulations however, are common, and are based on <strong>the</strong> observance ofrigorous safety rules <strong>in</strong> <strong>the</strong> design and realization of <strong>the</strong> <strong>in</strong>stallation.IEC 60364-6-61 and related standards <strong>in</strong>cluded <strong>in</strong> this guide are based on an<strong>in</strong>ternational consensus for such tests, <strong>in</strong>tended to cover all <strong>the</strong> safety measures andapproved <strong>in</strong>stallation practices normally required for residential, commercial and (<strong>the</strong>majority of) <strong>in</strong>dustrial build<strong>in</strong>gs. Many <strong>in</strong>dustries however have additional regulationsrelated to a particular product (petroleum, coal, natural gas, etc.). Such additionalrequirements are beyond <strong>the</strong> scope of this guide.The pre-commission<strong>in</strong>g electrical tests and visual-<strong>in</strong>spection checks for <strong>in</strong>stallations<strong>in</strong> build<strong>in</strong>gs <strong>in</strong>clude, typically, all of <strong>the</strong> follow<strong>in</strong>g:b Insulation tests of all cable and wir<strong>in</strong>g conductors of <strong>the</strong> fixed <strong>in</strong>stallation, betweenphases and between phases and earthb Cont<strong>in</strong>uity and conductivity tests of protective, equipotential and earth-bond<strong>in</strong>gconductorsb Resistance tests of earth<strong>in</strong>g electrodes with respect to remote earthb Verification of <strong>the</strong> proper operation of <strong>the</strong> <strong>in</strong>terlocks, if anyb Check of allowable number of socket-outlets per circuitSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


A - General rules of electrical <strong>in</strong>stallation design2 Rules and statutory regulationsAb Cross-sectional-area check of all conductors for adequacy at <strong>the</strong> short-circuitlevels prevail<strong>in</strong>g, tak<strong>in</strong>g account of <strong>the</strong> associated protective devices, materials and<strong>in</strong>stallation conditions (<strong>in</strong> air, conduit, etc.)b Verification that all exposed- and extraneous metallic parts are properly ear<strong>the</strong>d(where appropriate)b Check of clearance distances <strong>in</strong> bathrooms, etc.These tests and checks are basic (but not exhaustive) to <strong>the</strong> majority of <strong>in</strong>stallations,while numerous o<strong>the</strong>r tests and rules are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> regulations to coverparticular cases, for example: TN-, TT- or IT-ear<strong>the</strong>d <strong>in</strong>stallations, <strong>in</strong>stallations basedon class 2 <strong>in</strong>sulation, SELV circuits, and special locations, etc.The aim of this guide is to draw attention to <strong>the</strong> particular features of different typesof <strong>in</strong>stallation, and to <strong>in</strong>dicate <strong>the</strong> essential rules to be observed <strong>in</strong> order to achievea satisfactory level of quality, which will ensure safe and trouble-free performance.The methods recommended <strong>in</strong> this guide, modified if necessary to comply with anypossible variation imposed by a utility, are <strong>in</strong>tended to satisfy all precommission<strong>in</strong>gtest and <strong>in</strong>spection requirements.2.6 Periodic check-test<strong>in</strong>g of an <strong>in</strong>stallationIn many countries, all <strong>in</strong>dustrial and commercial-build<strong>in</strong>g <strong>in</strong>stallations, toge<strong>the</strong>r with<strong>in</strong>stallations <strong>in</strong> build<strong>in</strong>gs used for public ga<strong>the</strong>r<strong>in</strong>gs, must be re-tested periodically byauthorized agents.Figure A3 shows <strong>the</strong> frequency of test<strong>in</strong>g commonly prescribed accord<strong>in</strong>g to <strong>the</strong>k<strong>in</strong>d of <strong>in</strong>stallation concerned.Type of <strong>in</strong>stallationTest<strong>in</strong>gfrequency<strong>Installation</strong>s which b Locations at which a risk of degradation, Annuallyrequire <strong>the</strong> protection fire or explosion existsof employeesb Temporary <strong>in</strong>stallations at worksitesb Locations at which MV <strong>in</strong>stallations existb Restrictive conduct<strong>in</strong>g locationswhere mobile equipment is usedO<strong>the</strong>r casesEvery 3 years<strong>Installation</strong>s <strong>in</strong> build<strong>in</strong>gs Accord<strong>in</strong>g to <strong>the</strong> type of establishment From one toused for public ga<strong>the</strong>r<strong>in</strong>gs, and its capacity for receiv<strong>in</strong>g <strong>the</strong> public three yearswhere protection aga<strong>in</strong>st<strong>the</strong> risks of fire and panicare requiredResidentialAccord<strong>in</strong>g to local regulationsFig A3 : Frequency of check-tests commonly recommended for an electrical <strong>in</strong>stallationConformity of equipment with <strong>the</strong> relevantstandards can be attested <strong>in</strong> several ways2.7 Conformity (with standards and specifications)of equipment used <strong>in</strong> <strong>the</strong> <strong>in</strong>stallationAttestation of conformityThe conformity of equipment with <strong>the</strong> relevant standards can be attested:b By an official mark of conformity granted by <strong>the</strong> certification body concerned, orb By a certificate of conformity issued by a certification body, orb By a declaration of conformity from <strong>the</strong> manufacturerThe first two solutions are generally not available for high voltage equipment.Declaration of conformityWhere <strong>the</strong> equipment is to be used by skilled or <strong>in</strong>structed persons, <strong>the</strong>manufacturer’s declaration of conformity (<strong>in</strong>cluded <strong>in</strong> <strong>the</strong> technical documentation),is generally recognized as a valid attestation. Where <strong>the</strong> competence of <strong>the</strong>manufacturer is <strong>in</strong> doubt, a certificate of conformity can re<strong>in</strong>force <strong>the</strong> manufacturer’sdeclaration.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


A - General rules of electrical <strong>in</strong>stallation design2 Rules and statutory regulationsANote: CE mark<strong>in</strong>gIn Europe, <strong>the</strong> European directives require <strong>the</strong> manufacturer or his authorizedrepresentative to affix <strong>the</strong> CE mark<strong>in</strong>g on his own responsibility. It means that:b The product meets <strong>the</strong> legal requirementsb It is presumed to be marketable <strong>in</strong> EuropeThe CE mark<strong>in</strong>g is nei<strong>the</strong>r a mark of orig<strong>in</strong> nor a mark of conformity.Mark of conformityMarks of conformity are affixed on appliances and equipment generally used byord<strong>in</strong>ary non <strong>in</strong>structed people (e.g <strong>in</strong> <strong>the</strong> field of domestic appliances). A mark ofconformity is delivered by certification body if <strong>the</strong> equipment meet <strong>the</strong> requirementsfrom an applicable standard and after verification of <strong>the</strong> manufacturer’s qualitymanagement system.Certification of QualityThe standards def<strong>in</strong>e several methods of quality assurance which correspond todifferent situations ra<strong>the</strong>r than to different levels of quality.AssuranceA laboratory for test<strong>in</strong>g samples cannot certify <strong>the</strong> conformity of an entire productionrun: <strong>the</strong>se tests are called type tests. In some tests for conformity to standards,<strong>the</strong> samples are destroyed (tests on fuses, for example).Only <strong>the</strong> manufacturer can certify that <strong>the</strong> fabricated products have, <strong>in</strong> fact,<strong>the</strong> characteristics stated.Quality assurance certification is <strong>in</strong>tended to complete <strong>the</strong> <strong>in</strong>itial declaration orcertification of conformity.As proof that all <strong>the</strong> necessary measures have been taken for assur<strong>in</strong>g <strong>the</strong> quality ofproduction, <strong>the</strong> manufacturer obta<strong>in</strong>s certification of <strong>the</strong> quality control system whichmonitors <strong>the</strong> fabrication of <strong>the</strong> product concerned. These certificates are issuedby organizations specializ<strong>in</strong>g <strong>in</strong> quality control, and are based on <strong>the</strong> <strong>in</strong>ternationalstandard ISO 9001: 2000.These standards def<strong>in</strong>e three model systems of quality assurance controlcorrespond<strong>in</strong>g to different situations ra<strong>the</strong>r than to different levels of quality:b Model 3 def<strong>in</strong>es assurance of quality by <strong>in</strong>spection and check<strong>in</strong>g of f<strong>in</strong>al products.b Model 2 <strong>in</strong>cludes, <strong>in</strong> addition to check<strong>in</strong>g of <strong>the</strong> f<strong>in</strong>al product, verification of <strong>the</strong>manufactur<strong>in</strong>g process. For example, this method is applied, to <strong>the</strong> manufacturer offuses where performance characteristics cannot be checked without destroy<strong>in</strong>g <strong>the</strong>fuse.b Model 1 corresponds to model 2, but with <strong>the</strong> additional requirement that <strong>the</strong>quality of <strong>the</strong> design process must be rigorously scrut<strong>in</strong>ized; for example, where it isnot <strong>in</strong>tended to fabricate and test a prototype (case of a custom-built product made tospecification).2.8 Environment© Schneider Electric - all rights reservedEnvironmental management systems can be certified by an <strong>in</strong>dependent body if <strong>the</strong>ymeet requirements given <strong>in</strong> ISO 14001. This type of certification ma<strong>in</strong>ly concerns<strong>in</strong>dustrial sett<strong>in</strong>gs but can also be granted to places where products are designed.A product environmental design sometimes called “eco-design” is an approach ofsusta<strong>in</strong>able development with <strong>the</strong> objective of design<strong>in</strong>g products/services bestmeet<strong>in</strong>g <strong>the</strong> customers’ requirements while reduc<strong>in</strong>g <strong>the</strong>ir environmental impactover <strong>the</strong>ir whole life cycle. The methodologies used for this purpose lead to chooseequipment’s architecture toge<strong>the</strong>r with components and materials tak<strong>in</strong>g <strong>in</strong>to account<strong>the</strong> <strong>in</strong>fluence of a product on <strong>the</strong> environment along its life cycle (from extraction ofraw materials to scrap) i.e. production, transport, distribution, end of life etc.In Europe two Directives have been published, <strong>the</strong>y are called:b RoHS Directive (Restriction of Hazardous Substances) com<strong>in</strong>g <strong>in</strong>to force onJuly 2006 (<strong>the</strong> com<strong>in</strong>g <strong>in</strong>to force was on February 13 th , 2003, and <strong>the</strong> applicationdate is July 1 st , 2006) aims to elim<strong>in</strong>ate from products six hazardous substances:lead, mercury, cadmium, hexavalent chromium, polybrom<strong>in</strong>ated biphenyls (PBB) orpolybrom<strong>in</strong>ated diphenyl e<strong>the</strong>rs (PBDE).Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


A - General rules of electrical <strong>in</strong>stallation design2 Rules and statutory regulationsAb WEEE Directive (Waste of <strong>Electrical</strong> and Electronic Equipment) com<strong>in</strong>g <strong>in</strong>toforce <strong>in</strong> August 2005 (<strong>the</strong> com<strong>in</strong>g <strong>in</strong>to force was on February 13 th , 2003, and<strong>the</strong> application date is August 13 th , 2005) <strong>in</strong> order to master <strong>the</strong> end of life andtreatments for household and non household equipment.In o<strong>the</strong>r parts of <strong>the</strong> world some new legislation will follow <strong>the</strong> same objectives.In addition to manufacturers action <strong>in</strong> favour of products eco-design, <strong>the</strong> contributionof <strong>the</strong> whole electrical <strong>in</strong>stallation to susta<strong>in</strong>able development can be significantlyimproved through <strong>the</strong> design of <strong>the</strong> <strong>in</strong>stallation. Actually, it has been shown that anoptimised design of <strong>the</strong> <strong>in</strong>stallation, tak<strong>in</strong>g <strong>in</strong>to account operation conditions, MV/LVsubstations location and distribution structure (switchboards, busways, cables),can reduce substantially environmental impacts (raw material depletion, <strong>energy</strong>depletion, end of life)See chapter D about location of <strong>the</strong> substation and <strong>the</strong> ma<strong>in</strong> LV switchboard.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


A10A - General rules of electrical <strong>in</strong>stallation design3 Installed power loads -CharacteristicsAn exam<strong>in</strong>ation of <strong>the</strong> actual apparentpowerdemands of different loads: anecessary prelim<strong>in</strong>ary step <strong>in</strong> <strong>the</strong> design of aLV <strong>in</strong>stallationThe exam<strong>in</strong>ation of actual values of apparent-power required by each load enables<strong>the</strong> establishment of:b A declared power demand which determ<strong>in</strong>es <strong>the</strong> contract for <strong>the</strong> supply of <strong>energy</strong>b The rat<strong>in</strong>g of <strong>the</strong> MV/LV transformer, where applicable (allow<strong>in</strong>g for expected<strong>in</strong>creased load)b Levels of load current at each distribution boardThe nom<strong>in</strong>al power <strong>in</strong> kW (Pn) of a motor<strong>in</strong>dicates its rated equivalent mechanical poweroutput.The apparent power <strong>in</strong> kVA (Pa) supplied to<strong>the</strong> motor is a function of <strong>the</strong> output, <strong>the</strong> motorefficiency and <strong>the</strong> power factor.Pa =Pnηcosϕ3.1 Induction motorsCurrent demandThe full-load current Ia supplied to <strong>the</strong> motor is given by <strong>the</strong> follow<strong>in</strong>g formulae:b 3-phase motor: Ia = Pn x 1,000 / (√3 x U x η x cos ϕ)b 1-phase motor: Ia = Pn x 1,000 / (U x η x cos ϕ)whereIa: current demand (<strong>in</strong> amps)Pn: nom<strong>in</strong>al power (<strong>in</strong> kW)U: voltage between phases for 3-phase motors and voltage between <strong>the</strong> term<strong>in</strong>alsfor s<strong>in</strong>gle-phase motors (<strong>in</strong> volts). A s<strong>in</strong>gle-phase motor may be connected phase-toneutralor phase-to-phase.η: per-unit efficiency, i.e. output kW / <strong>in</strong>put kWcos ϕ: power factor, i.e. kW <strong>in</strong>put / kVA <strong>in</strong>putSubtransient current and protection sett<strong>in</strong>gb Subtransient current peak value can be very high ; typical value is about 12to 15 times <strong>the</strong> rms rated value Inm. Sometimes this value can reach 25 times Inm.b Merl<strong>in</strong> Ger<strong>in</strong> circuit-breakers, Telemecanique contactors and <strong>the</strong>rmal relays aredesigned to withstand motor starts with very high subtransient current (subtransientpeak value can be up to 19 times <strong>the</strong> rms rated value Inm).b If unexpected tripp<strong>in</strong>g of <strong>the</strong> overcurrent protection occurs dur<strong>in</strong>g start<strong>in</strong>g, thismeans <strong>the</strong> start<strong>in</strong>g current exceeds <strong>the</strong> normal limits. As a result, some maximumswitchgear withstands can be reached, life time can be reduced and even somedevices can be destroyed. In order to avoid such a situation, oversiz<strong>in</strong>g of <strong>the</strong>switchgear must be considered.b Merl<strong>in</strong> Ger<strong>in</strong> and Telemecanique switchgears are designed to ensure <strong>the</strong>protection of motor starters aga<strong>in</strong>st short-circuits. Accord<strong>in</strong>g to <strong>the</strong> risk, tables show<strong>the</strong> comb<strong>in</strong>ation of circuit-breaker, contactor and <strong>the</strong>rmal relay to obta<strong>in</strong> type 1 ortype 2 coord<strong>in</strong>ation (see chapter N).Motor start<strong>in</strong>g currentAlthough high efficiency motors can be found on <strong>the</strong> market, <strong>in</strong> practice <strong>the</strong>ir start<strong>in</strong>gcurrents are roughly <strong>the</strong> same as some of standard motors.The use of start-delta starter, static soft start unit or variable speed drive allows toreduce <strong>the</strong> value of <strong>the</strong> start<strong>in</strong>g current (Example : 4 Ia <strong>in</strong>stead of 7.5 Ia).© Schneider Electric - all rights reservedCompensation of reactive-power (kvar) supplied to <strong>in</strong>duction motorsIt is generally advantageous for technical and f<strong>in</strong>ancial reasons to reduce <strong>the</strong> currentsupplied to <strong>in</strong>duction motors. This can be achieved by us<strong>in</strong>g capacitors withoutaffect<strong>in</strong>g <strong>the</strong> power output of <strong>the</strong> motors.The application of this pr<strong>in</strong>ciple to <strong>the</strong> operation of <strong>in</strong>duction motors is generallyreferred to as “power-factor improvement” or “power-factor correction”.As discussed <strong>in</strong> chapter L, <strong>the</strong> apparent power (kVA) supplied to an <strong>in</strong>duction motorcan be significantly reduced by <strong>the</strong> use of shunt-connected capacitors. Reductionof <strong>in</strong>put kVA means a correspond<strong>in</strong>g reduction of <strong>in</strong>put current (s<strong>in</strong>ce <strong>the</strong> voltagerema<strong>in</strong>s constant).Compensation of reactive-power is particularly advised for motors that operate forlong periods at reduced power.kW <strong>in</strong>putAs noted above cos = so so that a kVA <strong>in</strong>put reduction <strong>in</strong> will kVA <strong>in</strong>crease <strong>in</strong>put willkVA <strong>in</strong>put<strong>in</strong>crease (i.e. improve) (i.e. improve) <strong>the</strong> value <strong>the</strong> of cos value ϕ. of cosSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


A - General rules of electrical <strong>in</strong>stallation design3 Installed power loads -CharacteristicsA11The current supplied to <strong>the</strong> motor, after power-factor correction, is given by:cos I=Iacos 'where cos ϕ is <strong>the</strong> power factor before compensation and cos ϕ’ is <strong>the</strong> power factorafter compensation, Ia be<strong>in</strong>g <strong>the</strong> orig<strong>in</strong>al current.Figure A4 below shows, <strong>in</strong> function of motor rated power, standard motor currentvalues for several voltage supplies.kW hp 230 V 380 - 400 V 440 - 500 V 690 V415 V 480 VA A A A A A0.18 - 1.0 - 0.6 - 0.48 0.350.25 - 1.5 - 0.85 - 0.68 0.490.37 - 1.9 - 1.1 - 0.88 0.64- 1/2 - 1.3 - 1.1 - -0.55 - 2.6 - 1.5 - 1.2 0.87- 3/4 - 1.8 - 1.6 - -- 1 - 2.3 - 2.1 - -0.75 - 3.3 - 1.9 - 1.5 1.11.1 - 4.7 - 2.7 - 2.2 1.6- 1-1/2 - 3.3 - 3.0 - -- 2 - 4.3 - 3.4 - -1.5 - 6.3 - 3.6 - 2.9 2.12.2 - 8.5 - 4.9 - 3.9 2.8- 3 - 6.1 - 4.8 - -3.0 - 11.3 - 6.5 - 5.2 3.83.7 - - - - - - -4 - 15 9.7 8.5 7.6 6.8 4.95.5 - 20 - 11.5 - 9.2 6.7- 7-1/2 - 14.0 - 11.0 - -- 10 - 18.0 - 14.0 - -7.5 - 27 - 15.5 - 12.4 8.911 - 38.0 - 22.0 - 17.6 12.8- 15 - 27.0 - 21.0 - -- 20 - 34.0 - 27.0 - -15 - 51 - 29 - 23 1718.5 - 61 - 35 - 28 21- 25 - 44 - 34 -22 - 72 - 41 - 33 24- 30 - 51 - 40 - -- 40 - 66 - 52 - -30 - 96 - 55 - 44 3237 - 115 - 66 - 53 39- 50 - 83 - 65 - -- 60 - 103 - 77 - -45 - 140 - 80 - 64 4755 - 169 - 97 - 78 57- 75 - 128 - 96 - -- 100 - 165 - 124 - -75 - 230 - 132 - 106 7790 - 278 - 160 - 128 93- 125 - 208 - 156 - -110 - 340 - 195 156 113- 150 - 240 - 180 - -132 - 400 - 230 - 184 134- 200 - 320 - 240 - -150 - - - - - - -160 - 487 - 280 - 224 162185 - - - - - - -- 250 - 403 - 302 - -200 - 609 - 350 - 280 203220 - - - - - - -- 300 - 482 - 361 - -250 - 748 - 430 - 344 250280 - - - - - - -- 350 - 560 - 414 - -- 400 - 636 - 474 - -300 - - - - - - -Fig. A4 : Rated operational power and currents (cont<strong>in</strong>ued on next page)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


A12A - General rules of electrical <strong>in</strong>stallation design3 Installed power loads -CharacteristicskW hp 230 V 380 - 400 V 440 - 500 V 690 V415 V 480 VA A A A A A315 - 940 - 540 - 432 313- 540 - - - 515 - -335 - - - - - - -355 - 1061 - 610 - 488 354- 500 - 786 - 590 - -375 - - - - - - -400 - 1200 - 690 - 552 400425 - - - - - - -450 - - - - - - -475 - - - - - - -500 - 1478 - 850 - 680 493530 - - - - - - -560 - 1652 - 950 - 760 551600 - - - - - - -630 - 1844 - 1060 - 848 615670 - - - - - - -710 - 2070 - 1190 - 952 690750 - - - - - - -800 - 2340 - 1346 - 1076 780850 - - - - - - -900 - 2640 - 1518 - 1214 880950 - - - - - - -1000 - 2910 - 1673 - 1339 970Fig. A4 : Rated operational power and currents (concluded)3.2 Resistive-type heat<strong>in</strong>g appliances and<strong>in</strong>candescent lamps (conventional or halogen)The current demand of a heat<strong>in</strong>g appliance or an <strong>in</strong>candescent lamp is easilyobta<strong>in</strong>ed from <strong>the</strong> nom<strong>in</strong>al power Pn quoted by <strong>the</strong> manufacturer (i.e. cos ϕ = 1)(see Fig. A5).Nom<strong>in</strong>al Current demand (A)power 1-phase 1-phase 3-phase 3-phase(kW) 127 V 230 V 230 V 400 V0.1 0.79 0.43 0.25 0.140.2 1.58 0.87 0.50 0.290.5 3.94 2.17 1.26 0.721 7.9 4.35 2.51 1.441.5 11.8 6.52 3.77 2.172 15.8 8.70 5.02 2.892.5 19.7 10.9 6.28 3.613 23.6 13 7.53 4.333.5 27.6 15.2 8.72 5.054 31.5 17.4 10 5.774.5 35.4 19.6 11.3 6.55 39.4 21.7 12.6 7.226 47.2 26.1 15.1 8.667 55.1 30.4 17.6 10.18 63 34.8 20.1 11.59 71 39.1 22.6 1310 79 43.5 25.1 14.4© Schneider Electric - all rights reservedFig. A5 : Current demands of resistive heat<strong>in</strong>g and <strong>in</strong>candescent light<strong>in</strong>g (conventional orhalogen) appliancesSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


A - General rules of electrical <strong>in</strong>stallation design3 Installed power loads -CharacteristicsA13The currents are given by:b 3-phase case: I a =Pn U 3(1)(1)b 1-phase case: I a = PnUwhere is <strong>the</strong> voltage between <strong>the</strong> term<strong>in</strong>als of <strong>the</strong> equipment.where U is <strong>the</strong> voltage between <strong>the</strong> term<strong>in</strong>als of <strong>the</strong> equipment.For an <strong>in</strong>candescent lamp, <strong>the</strong> use of halogen gas allows a more concentrated lightsource. The light output is <strong>in</strong>creased and <strong>the</strong> lifetime of <strong>the</strong> lamp is doubled.Note: At <strong>the</strong> <strong>in</strong>stant of switch<strong>in</strong>g on, <strong>the</strong> cold filament gives rise to a very brief but<strong>in</strong>tense peak of current.Fluorescent lamps and related equipmentThe power Pn (watts) <strong>in</strong>dicated on <strong>the</strong> tube of a fluorescent lamp does not <strong>in</strong>clude<strong>the</strong> power dissipated <strong>in</strong> <strong>the</strong> ballast.The current is is given by: by:P +I a = ballast PnU cos If no power-loss value is <strong>in</strong>dicated for <strong>the</strong> ballast, a figure of 25% of Pn may be used.Where U = <strong>the</strong> voltage applied to <strong>the</strong> lamp, complete with its related equipment.If no power-loss value is <strong>in</strong>dicated for <strong>the</strong> ballast, a figure of 25% of Pn may be used.Standard tubular fluorescent lampsWith (unless o<strong>the</strong>rwise <strong>in</strong>dicated):b cos ϕ = 0.6 with no power factor (PF) correction (2) capacitorb cos ϕ = 0.86 with PF correction (2) (s<strong>in</strong>gle or tw<strong>in</strong> tubes)b cos ϕ = 0.96 for electronic ballast.If no power-loss value is <strong>in</strong>dicated for <strong>the</strong> ballast, a figure of 25% of Pn may be used.Figure A6 gives <strong>the</strong>se values for different arrangements of ballast.Arrangement Tube power Current (A) at 230 V Tubeof lamps, starters (W) (3) Magnetic ballast Electronic lengthand ballasts ballast (cm)Without PF With PFcorrection correctioncapacitor capacitorS<strong>in</strong>gle tube 18 0.20 0.14 0.10 6036 0.33 0.23 0.18 12058 0.50 0.36 0.28 150Tw<strong>in</strong> tubes 2 x 18 0.28 0.18 602 x 36 0.46 0.35 1202 x 58 0.72 0.52 150(3) Power <strong>in</strong> watts marked on tubeFig. A6 : Current demands and power consumption of commonly-dimensioned fluorescentlight<strong>in</strong>g tubes (at 230 V-50 Hz)Compact fluorescent lampsCompact fluorescent lamps have <strong>the</strong> same characteristics of economy and long lifeas classical tubes. They are commonly used <strong>in</strong> public places which are permanentlyillum<strong>in</strong>ated (for example: corridors, hallways, bars, etc.) and can be mounted <strong>in</strong>situations o<strong>the</strong>rwise illum<strong>in</strong>ated by <strong>in</strong>candescent lamps (see Fig. A7 next page).(1) Ia <strong>in</strong> amps; U <strong>in</strong> volts. Pn is <strong>in</strong> watts. If Pn is <strong>in</strong> kW, <strong>the</strong>nmultiply <strong>the</strong> equation by 1,000(2) “Power-factor correction” is often referred to as“compensation” <strong>in</strong> discharge-light<strong>in</strong>g-tube term<strong>in</strong>ology.Cos ϕ is approximately 0.95 (<strong>the</strong> zero values of V and Iare almost <strong>in</strong> phase) but <strong>the</strong> power factor is 0.5 due to <strong>the</strong>impulsive form of <strong>the</strong> current, <strong>the</strong> peak of which occurs “late”<strong>in</strong> each half cycle© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


A14A - General rules of electrical <strong>in</strong>stallation design3 Installed power loads -CharacteristicsType of lamp Lamp power Current at 230 V(W)(A)Separated 10 0.080ballast lamp 18 0.11026 0.150Integrated 8 0.075ballast lamp 11 0.09516 0.12521 0.170Fig. A7 : Current demands and power consumption of compact fluorescent lamps (at 230 V - 50 Hz)The power <strong>in</strong> watts <strong>in</strong>dicated on <strong>the</strong> tube ofa discharge lamp does not <strong>in</strong>clude <strong>the</strong> powerdissipated <strong>in</strong> <strong>the</strong> ballast.Discharge lampsFigure A8 gives <strong>the</strong> current taken by a complete unit, <strong>in</strong>clud<strong>in</strong>g all associatedancillary equipment.These lamps depend on <strong>the</strong> lum<strong>in</strong>ous electrical discharge through a gas or vapourof a metallic compound, which is conta<strong>in</strong>ed <strong>in</strong> a hermetically-sealed transparentenvelope at a pre-determ<strong>in</strong>ed pressure. These lamps have a long start-up time,dur<strong>in</strong>g which <strong>the</strong> current Ia is greater than <strong>the</strong> nom<strong>in</strong>al current In. Power and currentdemands are given for different types of lamp (typical average values which maydiffer slightly from one manufacturer to ano<strong>the</strong>r).© Schneider Electric - all rights reservedType of Power Current In(A) Start<strong>in</strong>g Lum<strong>in</strong>ous Average Utilizationlamp (W) demand PF not PF Ia/In Period efficiency timelife of(W) at corrected corrected (m<strong>in</strong>s) (lumens lamp (h)230 V 400 V 230 V 400 V 230 V 400 V per watt)High-pressure sodium vapour lamps50 60 0.76 0.3 1.4 to 1.6 4 to 6 80 to 120 9000 b Light<strong>in</strong>g of70 80 1 0.45 large halls100 115 1.2 0.65 b Outdoor spaces150 168 1.8 0.85 b Public light<strong>in</strong>g250 274 3 1.4400 431 4.4 2.21000 1055 10.45 4.9Low-pressure sodium vapour lamps26 34.5 0.45 0.17 1.1 to 1.3 7 to 15 100 to 200 8000 b Light<strong>in</strong>g of36 46.5 0.22 to 12000 autoroutes66 80.5 0.39 b Security light<strong>in</strong>g,91 105.5 0.49 station131 154 0.69 b Platform, storageareasMercury vapour + metal halide (also called metal-iodide)70 80.5 1 0.40 1.7 3 to 5 70 to 90 6000 b Light<strong>in</strong>g of very150 172 1.80 0.88 6000 large areas by250 276 2.10 1.35 6000 projectors (for400 425 3.40 2.15 6000 example: sports1000 1046 8.25 5.30 6000 stadiums, etc.)2000 2092 2052 16.50 8.60 10.50 6 2000Mercury vapour + fluorescent substance (fluorescent bulb)50 57 0.6 0.30 1.7 to 2 3 to 6 40 to 60 8000 b Workshops80 90 0.8 0.45 to 12000 with very high125 141 1.15 0.70 ceil<strong>in</strong>gs (halls,250 268 2.15 1.35 hangars)400 421 3.25 2.15 b Outdoor light<strong>in</strong>g700 731 5.4 3.85 b Low light output (1)1000 1046 8.25 5.302000 2140 2080 15 11 6.1(1) Replaced by sodium vapour lamps.Note: <strong>the</strong>se lamps are sensitive to voltage dips. They ext<strong>in</strong>guish if <strong>the</strong> voltage falls to less than 50% of <strong>the</strong>ir nom<strong>in</strong>al voltage, and willnot re-ignite before cool<strong>in</strong>g for approximately 4 m<strong>in</strong>utes.Note: Sodium vapour low-pressure lamps have a light-output efficiency which is superior to that of all o<strong>the</strong>r sources. However, use of<strong>the</strong>se lamps is restricted by <strong>the</strong> fact that <strong>the</strong> yellow-orange colour emitted makes colour recognition practically impossible.Fig. A8 : Current demands of discharge lampsSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


A - General rules of electrical <strong>in</strong>stallation design4 Power load<strong>in</strong>g of an <strong>in</strong>stallationA16Fluorescent light<strong>in</strong>g (corrected to cos ϕ = 0.86)Type of application Estimated (VA/m 2 ) Average light<strong>in</strong>gfluorescent tube level (lux = lm/m 2 )with <strong>in</strong>dustrial reflector (1)Roads and highways 7 150storage areas, <strong>in</strong>termittent workHeavy-duty works: fabrication and 14 300assembly of very large work piecesDay-to-day work: office work 24 500F<strong>in</strong>e work: draw<strong>in</strong>g offices 41 800high-precision assembly workshopsPower circuitsType of application Estimated (VA/m 2 )Pump<strong>in</strong>g station compressed air 3 to 6Ventilation of premises 23<strong>Electrical</strong> convection heaters:private houses 115 to 146flats and apartments 90Offices 25Dispatch<strong>in</strong>g workshop 50Assembly workshop 70Mach<strong>in</strong>e shop 300Pa<strong>in</strong>t<strong>in</strong>g workshop 350Heat-treatment plant 700(1) example: 65 W tube (ballast not <strong>in</strong>cluded), flux 5,100 lumens (Im),lum<strong>in</strong>ous efficiency of <strong>the</strong> tube = 78.5 Im / W.Fig. A9 : Estimation of <strong>in</strong>stalled apparent power4.3 Estimation of actual maximum kVA demandAll <strong>in</strong>dividual loads are not necessarily operat<strong>in</strong>g at full rated nom<strong>in</strong>al power nornecessarily at <strong>the</strong> same time. Factors ku and ks allow <strong>the</strong> determ<strong>in</strong>ation of <strong>the</strong>maximum power and apparent-power demands actually required to dimension <strong>the</strong><strong>in</strong>stallation.Factor of maximum utilization (ku)In normal operat<strong>in</strong>g conditions <strong>the</strong> power consumption of a load is sometimes lessthan that <strong>in</strong>dicated as its nom<strong>in</strong>al power rat<strong>in</strong>g, a fairly common occurrence thatjustifies <strong>the</strong> application of an utilization factor (ku) <strong>in</strong> <strong>the</strong> estimation of realistic values.This factor must be applied to each <strong>in</strong>dividual load, with particular attention toelectric motors, which are very rarely operated at full load.In an <strong>in</strong>dustrial <strong>in</strong>stallation this factor may be estimated on an average at 0.75 formotors.For <strong>in</strong>candescent-light<strong>in</strong>g loads, <strong>the</strong> factor always equals 1.For socket-outlet circuits, <strong>the</strong> factors depend entirely on <strong>the</strong> type of appliances be<strong>in</strong>gsupplied from <strong>the</strong> sockets concerned.© Schneider Electric - all rights reservedFactor of simultaneity (ks)It is a matter of common experience that <strong>the</strong> simultaneous operation of all <strong>in</strong>stalledloads of a given <strong>in</strong>stallation never occurs <strong>in</strong> practice, i.e. <strong>the</strong>re is always some degreeof diversity and this fact is taken <strong>in</strong>to account for estimat<strong>in</strong>g purposes by <strong>the</strong> use of asimultaneity factor (ks).The factor ks is applied to each group of loads (e.g. be<strong>in</strong>g supplied from a distributionor sub-distribution board). The determ<strong>in</strong>ation of <strong>the</strong>se factors is <strong>the</strong> responsibilityof <strong>the</strong> designer, s<strong>in</strong>ce it requires a detailed knowledge of <strong>the</strong> <strong>in</strong>stallation and <strong>the</strong>conditions <strong>in</strong> which <strong>the</strong> <strong>in</strong>dividual circuits are to be exploited. For this reason, it is notpossible to give precise values for general application.Factor of simultaneity for an apartment blockSome typical values for this case are given <strong>in</strong> Figure A10 opposite page, and areapplicable to domestic consumers supplied at 230/400 V (3-phase 4-wires). In <strong>the</strong>case of consumers us<strong>in</strong>g electrical heat-storage units for space heat<strong>in</strong>g, a factor of0.8 is recommended, regardless of <strong>the</strong> number of consumers.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


A - General rules of electrical <strong>in</strong>stallation design4 Power load<strong>in</strong>g of an <strong>in</strong>stallationA17Number of downstream Factor ofconsumerssimultaneity (ks)2 to 4 15 to 9 0.7810 to 14 0.6315 to 19 0.5320 to 24 0.4925 to 29 0.4630 to 34 0.4435 to 39 0.4240 to 49 0.4150 and more 0.40Fig. A10 : Simultaneity factors <strong>in</strong> an apartment blockExample (see Fig. A11):5 storeys apartment build<strong>in</strong>g with 25 consumers, each hav<strong>in</strong>g 6 kVA of <strong>in</strong>stalled load.The total <strong>in</strong>stalled load for <strong>the</strong> build<strong>in</strong>g is: 36 + 24 + 30 + 36 + 24 = 150 kVAThe apparent-power supply required for <strong>the</strong> build<strong>in</strong>g is: 150 x 0.46 = 69 kVAFrom Figure A10, it is possible to determ<strong>in</strong>e <strong>the</strong> magnitude of currents <strong>in</strong> differentsections of <strong>the</strong> common ma<strong>in</strong> feeder supply<strong>in</strong>g all floors. For vertical ris<strong>in</strong>g ma<strong>in</strong>sfed at ground level, <strong>the</strong> cross-sectional area of <strong>the</strong> conductors can evidently beprogressively reduced from <strong>the</strong> lower floors towards <strong>the</strong> upper floors.These changes of conductor size are conventionally spaced by at least 3-floor<strong>in</strong>tervals.In <strong>the</strong> example, <strong>the</strong> current enter<strong>in</strong>g <strong>the</strong> ris<strong>in</strong>g ma<strong>in</strong> at ground level is:3150 x 0.46 x 10= 100 A400 3<strong>the</strong> current enter<strong>in</strong>g <strong>the</strong> third floor is:3(36 + 24) x 0.63 x 10= 55 A400 34thfloor6 consumers36 kVA0.783 rdfloor4 consumers24 kVA0.632ndfloor5 consumers30 kVA0.531 stfloor6 consumers36 kVA0.49groundfloor4 consumers24 kVA0.46Fig. A11 : Application of <strong>the</strong> factor of simultaneity (ks) to an apartment block of 5 storeys© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


A - General rules of electrical <strong>in</strong>stallation design4 Power load<strong>in</strong>g of an <strong>in</strong>stallationA18Factor of simultaneity for distribution boardsFigure A12 shows hypo<strong>the</strong>tical values of ks for a distribution board supply<strong>in</strong>g anumber of circuits for which <strong>the</strong>re is no <strong>in</strong>dication of <strong>the</strong> manner <strong>in</strong> which <strong>the</strong> totalload divides between <strong>the</strong>m.If <strong>the</strong> circuits are ma<strong>in</strong>ly for light<strong>in</strong>g loads, it is prudent to adopt ks values close tounity.Number ofFactor ofcircuitssimultaneity (ks)Assemblies entirely tested 0.92 and 34 and 5 0.86 to 9 0.710 and more 0.6Assemblies partially tested 1.0<strong>in</strong> every case chooseFig. A12 : Factor of simultaneity for distribution boards (IEC 60439)Factor of simultaneity accord<strong>in</strong>g to circuit functionks factors which may be used for circuits supply<strong>in</strong>g commonly-occurr<strong>in</strong>g loads, areshown <strong>in</strong> Figure A13.Circuit functionFactor of simultaneity (ks)Light<strong>in</strong>g 1Heat<strong>in</strong>g and air condition<strong>in</strong>g 1Socket-outlets 0.1 to 0.2 (1)Lifts and cater<strong>in</strong>g hoist (2) b For <strong>the</strong> most powerfulmotor 1b For <strong>the</strong> second mostpowerful motor 0.75b For all motors 0.60(1) In certa<strong>in</strong> cases, notably <strong>in</strong> <strong>in</strong>dustrial <strong>in</strong>stallations, this factor can be higher.(2) The current to take <strong>in</strong>to consideration is equal to <strong>the</strong> nom<strong>in</strong>al current of <strong>the</strong> motor,<strong>in</strong>creased by a third of its start<strong>in</strong>g current.Fig. A13 : Factor of simultaneity accord<strong>in</strong>g to circuit function4.4 Example of application of factors ku and ks© Schneider Electric - all rights reservedAn example <strong>in</strong> <strong>the</strong> estimation of actual maximum kVA demands at all levels of an<strong>in</strong>stallation, from each load position to <strong>the</strong> po<strong>in</strong>t of supply is given Fig. A14 (oppositepage).In this example, <strong>the</strong> total <strong>in</strong>stalled apparent power is 126.6 kVA, which correspondsto an actual (estimated) maximum value at <strong>the</strong> LV term<strong>in</strong>als of <strong>the</strong> MV/LV transformerof 65 kVA only.Note: <strong>in</strong> order to select cable sizes for <strong>the</strong> distribution circuits of an <strong>in</strong>stallation, <strong>the</strong>current I (<strong>in</strong> amps) through a circuit is determ<strong>in</strong>ed from <strong>the</strong> equation:I = kVA x 10 3U 3where kVA is <strong>the</strong> actual maximum 3-phase apparent-power value shown on <strong>the</strong>diagram for <strong>the</strong> circuit concerned, and U is <strong>the</strong> phase to- phase voltage (<strong>in</strong> volts).4.5 Diversity factorThe term diversity factor, as def<strong>in</strong>ed <strong>in</strong> IEC standards, is identical to <strong>the</strong> factor ofsimultaneity (ks) used <strong>in</strong> this guide, as described <strong>in</strong> 4.3. In some English-speak<strong>in</strong>gcountries however (at <strong>the</strong> time of writ<strong>in</strong>g) diversity factor is <strong>the</strong> <strong>in</strong>verse of ks i.e. it isalways u 1.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


A - General rules of electrical <strong>in</strong>stallation design4 Power load<strong>in</strong>g of an <strong>in</strong>stallationA19Level 1 Level 2 Level 3UtilizationApparent Utilization Apparent Simultaneity Apparent Simultaneity Apparent Simultaneity Apparentpower factor power factor power factor power factor power(Pa) max. demand demand demand demandkVA max. kVA kVA kVA kVAWorkshop A La<strong>the</strong> no. 1 5 0.8no. 2no. 3no. 4no. 1no. 25 socketoutlets10/16 A30 fluorescentlamps55522180.80.80.80.80.81Distributionbox3 1 3144441.61.6180.750.214.43.63PowercircuitPedestaldrillSocketouletsLight<strong>in</strong>gcircuitWorkshop Adistributionbox0.918.9Ma<strong>in</strong>generaldistributionboardMGDBWorkshop B Compressor3 socketoutlets10/16 A10 fluorescentlampsWorkshop C Ventilation no. 1Ovenno. 2no. 1no. 25 socketoutlets10/16 A20 fluorescentlamps1510.612.52.515151820.8111111111210.612.52.5151518210.41Distributionbox10.28113552Light<strong>in</strong>gcircuitPowvercircuitPowercircuit12 Workshop BSocketouletsdistribution4.3 boxSocketouletsLight<strong>in</strong>gcircuit0.9Workshop Cdistributionbox0.915.637.80.965LV / MVFig A14 : An example <strong>in</strong> estimat<strong>in</strong>g <strong>the</strong> maximum predicted load<strong>in</strong>g of an <strong>in</strong>stallation (<strong>the</strong> factor values used are for demonstration purposes only)4.6 Choice of transformer rat<strong>in</strong>gWhen an <strong>in</strong>stallation is to be supplied directly from a MV/LV transformer and<strong>the</strong> maximum apparent-power load<strong>in</strong>g of <strong>the</strong> <strong>in</strong>stallation has been determ<strong>in</strong>ed, asuitable rat<strong>in</strong>g for <strong>the</strong> transformer can be decided, tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> follow<strong>in</strong>gconsiderations (see Fig. A15):b The possibility of improv<strong>in</strong>g <strong>the</strong> power factor of <strong>the</strong> <strong>in</strong>stallation (see chapter L)b Anticipated extensions to <strong>the</strong> <strong>in</strong>stallationb <strong>Installation</strong> constra<strong>in</strong>ts (e.g. temperature)b Standard transformer rat<strong>in</strong>gsApparent power In (A)kVA 237 V 410 V100 244 141160 390 225250 609 352315 767 444400 974 563500 1218 704630 1535 887800 1949 11271000 2436 14081250 3045 17601600 3898 22532000 4872 28162500 6090 35203150 7673 4436Fig. A15 : Standard apparent powers for MV/LV transformers and related nom<strong>in</strong>al output currents© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


A - General rules of electrical <strong>in</strong>stallation design4 Power load<strong>in</strong>g of an <strong>in</strong>stallationA20The nom<strong>in</strong>al full-load current In on <strong>the</strong> LV side of a 3-phase transformer is given by:a x 10 3In = P U 3whereb Pa = kVA rat<strong>in</strong>g of <strong>the</strong> transformerb U = phase-to-phase voltage at no-load <strong>in</strong> volts (237 V or 410 V)b In is <strong>in</strong> amperes.For a s<strong>in</strong>gle-phase transformer:a x 10 3In = P Vwherewhereb V = voltage between LV term<strong>in</strong>als at no-load (<strong>in</strong> volts)Simplified equation for 400 V (3-phase load)b In = kVA x 1.4The IEC standard for power transformers is IEC 60076.4.7 Choice of power-supply sourcesThe importance of ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a cont<strong>in</strong>uous supply raises <strong>the</strong> question of <strong>the</strong> use ofstandby-power plant. The choice and characteristics of <strong>the</strong>se alternative sources arepart of <strong>the</strong> architecture selection, as described <strong>in</strong> chapter D.For <strong>the</strong> ma<strong>in</strong> source of supply <strong>the</strong> choice is generally between a connection to <strong>the</strong>MV or <strong>the</strong> LV network of <strong>the</strong> power-supply utility.In practice, connection to a MV source may be necessary where <strong>the</strong> load exceeds(or is planned eventually to exceed) a certa<strong>in</strong> level - generally of <strong>the</strong> order of250 kVA, or if <strong>the</strong> quality of service required is greater than that normally availablefrom a LV network.Moreover, if <strong>the</strong> <strong>in</strong>stallation is likely to cause disturbance to neighbour<strong>in</strong>g consumers,when connected to a LV network, <strong>the</strong> supply authorities may propose a MV service.Supplies at MV can have certa<strong>in</strong> advantages: <strong>in</strong> fact, a MV consumer:b Is not disturbed by o<strong>the</strong>r consumers, which could be <strong>the</strong> case at LVb Is free to choose any type of LV earth<strong>in</strong>g systemb Has a wider choice of economic tariffsb Can accept very large <strong>in</strong>creases <strong>in</strong> loadIt should be noted, however, that:b The consumer is <strong>the</strong> owner of <strong>the</strong> MV/LV substation and, <strong>in</strong> some countries,he must build and equip it at his own expense. The power utility can, <strong>in</strong> certa<strong>in</strong>circumstances, participate <strong>in</strong> <strong>the</strong> <strong>in</strong>vestment, at <strong>the</strong> level of <strong>the</strong> MV l<strong>in</strong>e for exampleb A part of <strong>the</strong> connection costs can, for <strong>in</strong>stance, often be recovered if a secondconsumer is connected to <strong>the</strong> MV l<strong>in</strong>e with<strong>in</strong> a certa<strong>in</strong> time follow<strong>in</strong>g <strong>the</strong> orig<strong>in</strong>alconsumer’s own connectionb The consumer has access only to <strong>the</strong> LV part of <strong>the</strong> <strong>in</strong>stallation, access to <strong>the</strong>MV part be<strong>in</strong>g reserved to <strong>the</strong> utility personnel (meter read<strong>in</strong>g, operations, etc.).However, <strong>in</strong> certa<strong>in</strong> countries, <strong>the</strong> MV protective circuit-breaker (or fused load-breakswitch) can be operated by <strong>the</strong> consumerb The type and location of <strong>the</strong> substation are agreed between <strong>the</strong> consumer and<strong>the</strong> utility© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Chapter BConnection to <strong>the</strong> MV utilitydistribution network123456ContentsSupply of power at medium voltage1.1 Power supply characteristics of medium voltage B2utility distribution network1.2 Different MV service connections B111.3 Some operational aspects of MV distribution networks B12Procedure for <strong>the</strong> establishment of a new substation B142.1 Prelim<strong>in</strong>ary <strong>in</strong>formations B142.2 Project studies B152.3 Implementation B152.4 Commission<strong>in</strong>g B15Protection aspectB2B163.1 Protection aga<strong>in</strong>st electric shocks B163.2 Protection of transformer and circuits B173.3 Interlocks and conditioned operations B19The consumer substation with LV meter<strong>in</strong>gB224.1 General B224.2 Choice of MV switchgear B224.3 Choice of MV switchgear panel for a transformer circuit B254.4 Choice of MV/LV transformer B254.5 Instructions for use of MV equipment B29The consumer substation with MV meter<strong>in</strong>gB325.1 General B325.2 Choice of panels B345.3 Parallel operation of transformers B35Constitution of MV/LV distribution substationsB376.1 Different types of substation B376.2 Indoor substation B376.3 Outdoor substation B39B© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network1 Supply of power at mediumvoltageBThe term "medium voltage" is commonly used for distribution systems with voltagesabove 1 kV and generally applied up to and <strong>in</strong>clud<strong>in</strong>g 52 kV (see IEC 601-01-28Standard).In this chapter, distribution networks which operate at voltages of 1,000 V or lessare referred to as Low-Voltage systems, while systems of power distribution whichrequire one stage of stepdown voltage transformation, <strong>in</strong> order to feed <strong>in</strong>to low voltagenetworks, will be referred to as Medium- Voltage systems.For economic and technical reasons <strong>the</strong> nom<strong>in</strong>al voltage of medium-voltagedistribution systems, as def<strong>in</strong>ed above, seldom exceeds 35 kV.The ma<strong>in</strong> features which characterize a powersupplysystem <strong>in</strong>clude:b The nom<strong>in</strong>al voltage and related <strong>in</strong>sulationlevelsb The short-circuit currentb The rated normal current of items of plantand equipmentb The earth<strong>in</strong>g system1.1 Power supply characteristics of medium voltageutility distribution networkNom<strong>in</strong>al voltage and related <strong>in</strong>sulation levelsThe nom<strong>in</strong>al voltage of a system or of an equipment is def<strong>in</strong>ed <strong>in</strong> IEC 60038 Standardas “<strong>the</strong> voltage by which a system or equipment is designated and to which certa<strong>in</strong>operat<strong>in</strong>g characteristics are referred”. Closely related to <strong>the</strong> nom<strong>in</strong>al voltage is <strong>the</strong>“highest voltage for equipment” which concerns <strong>the</strong> level of <strong>in</strong>sulation at normalwork<strong>in</strong>g frequency, and to which o<strong>the</strong>r characteristics may be referred <strong>in</strong> relevantequipment recommendations.The “highest voltage for equipment” is def<strong>in</strong>ed <strong>in</strong> IEC 60038 Standard as:“<strong>the</strong> maximum value of voltage for which equipment may be used, that occurs undernormal operat<strong>in</strong>g conditions at any time and at any po<strong>in</strong>t on <strong>the</strong> system. It excludesvoltage transients, such as those due to system switch<strong>in</strong>g, and temporary voltagevariations”.Notes:1- The highest voltage for equipment is <strong>in</strong>dicated for nom<strong>in</strong>al system voltageshigher than 1,000 V only. It is understood that, particularly for some categoriesof equipment, normal operation cannot be ensured up to this "highest voltage forequipment", hav<strong>in</strong>g regard to voltage sensitive characteristics such as losses ofcapacitors, magnetiz<strong>in</strong>g current of transformers, etc. In such cases, IEC standardsspecify <strong>the</strong> limit to which <strong>the</strong> normal operation of this equipment can be ensured.2- It is understood that <strong>the</strong> equipment to be used <strong>in</strong> systems hav<strong>in</strong>g nom<strong>in</strong>al voltagenot exceed<strong>in</strong>g 1,000 V should be specified with reference to <strong>the</strong> nom<strong>in</strong>al systemvoltage only, both for operation and for <strong>in</strong>sulation.3- The def<strong>in</strong>ition for “highest voltage for equipment” given <strong>in</strong> IEC 60038 Standardis identical to <strong>the</strong> def<strong>in</strong>ition given <strong>in</strong> IEC 62271-1 Standard for “rated voltage”.IEC 62271-1 Standard concerns switchgear for voltages exceed<strong>in</strong>g 1,000 V.The follow<strong>in</strong>g values of Figure B1, taken from IEC 60038 Standard, list <strong>the</strong>most-commonly used standard levels of medium-voltage distribution, and relate<strong>the</strong> nom<strong>in</strong>al voltages to correspond<strong>in</strong>g standard values of “Highest Voltage forEquipment”.These systems are generally three-wire systems unless o<strong>the</strong>rwise <strong>in</strong>dicated. Thevalues shown are voltages between phases.The values <strong>in</strong>dicated <strong>in</strong> paren<strong>the</strong>ses should be considered as non-preferred values.It is recommended that <strong>the</strong>se values should not be used for new systems to beconstructed <strong>in</strong> future.It is recommended that <strong>in</strong> any one country <strong>the</strong> ratio between two adjacent nom<strong>in</strong>alvoltages should be not less than two.© Schneider Electric - all rights reservedSeries I (for 50 Hz and 60 Hz networks)Nom<strong>in</strong>al system voltage Highest voltage for equipement(kV)(kV)3.3 (1) 3 (1) 3.6 (1)6.6 (1) 6 (1) 7.2 (1)11 10 12- 15 17.522 20 2433 (2) - 36 (2)- 35 (2) 40.5 (2)(1) These values should not be used for public distribution systems.(2) The unification of <strong>the</strong>se values is under consideration.Fig. B1 : Relation between nom<strong>in</strong>al system voltages and highest voltages for <strong>the</strong> equipmentSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network1 Supply of power at mediumvoltageIn order to ensure adequate protection of equipment aga<strong>in</strong>st abnormally-mediumshort term power-frequency overvoltages, and transient overvoltages caused bylightn<strong>in</strong>g, switch<strong>in</strong>g, and system fault conditions, etc. all MV equipment must bespecified to have appropriate rated <strong>in</strong>sulation levels.A "rated <strong>in</strong>sulation level" is a set of specified dielectric withstand values cover<strong>in</strong>gvarious operat<strong>in</strong>g conditions. For MV equipment, <strong>in</strong> addition to <strong>the</strong> "highest voltagefor equipment", it <strong>in</strong>cludes lightn<strong>in</strong>g impulse withstand and short-duration powerfrequency withstand.SwitchgearFigure B2 shown below, lists normal values of “withstand” voltage requirementsfrom IEC 62271-1 Standard. The choice between List 1 and List 2 values of tableB2 depends on <strong>the</strong> degree of exposure to lightn<strong>in</strong>g and switch<strong>in</strong>g overvoltages (1) ,<strong>the</strong> type of neutral earth<strong>in</strong>g, and <strong>the</strong> type of overvoltage protection devices, etc. (forfur<strong>the</strong>r guidance reference should be made to IEC 60071).BRated Rated lightn<strong>in</strong>g impulse withstand voltage Rated short-durationvoltage (peak value) power-frequencyU (r.m.s.withstand voltagevalue) List List 2 (r.m.s. value)To earth, Across <strong>the</strong> To earth, Across <strong>the</strong> To earth, Across <strong>the</strong>between isolat<strong>in</strong>g between isolat<strong>in</strong>g between isolat<strong>in</strong>gpoles distance poles distance poles distanceand across and across and acrossopen open openswitch<strong>in</strong>g switch<strong>in</strong>g switch<strong>in</strong>gdevice device device(kV) (kV) (kV) (kV) (kV) (kV) (kV)3.6 20 23 40 46 10 127.2 40 46 60 70 20 2312 60 70 75 85 28 3217.5 75 85 95 110 38 4524 95 110 125 145 50 6036 145 165 170 195 70 8052 - - 250 290 95 11072.5 - - 325 375 140 160Note: The withstand voltage values “across <strong>the</strong> isolat<strong>in</strong>g distance” are valid only for<strong>the</strong> switch<strong>in</strong>g devices where <strong>the</strong> clearance between open contacts is designed to meetrequirements specified for disconnectors (isolators).Fig. B2 : Switchgear rated <strong>in</strong>sulation levelsIt should be noted that, at <strong>the</strong> voltage levels <strong>in</strong> question, no switch<strong>in</strong>g overvoltagerat<strong>in</strong>gs are mentioned. This is because overvoltages due to switch<strong>in</strong>g transients areless severe at <strong>the</strong>se voltage levels than those due to lightn<strong>in</strong>g.TransformersFigure B3 shown below have been extracted from IEC 60076-3.The significance of list 1 and list 2 is <strong>the</strong> same as that for <strong>the</strong> switchgear table, i.e.<strong>the</strong> choice depends on <strong>the</strong> degree of exposure to lightn<strong>in</strong>g, etc.(1) This means basically that List 1 generally applies toswitchgear to be used on underground-cable systems whileList 2 is chosen for switchgear to be used on overhead-l<strong>in</strong>esystems.Highest voltage Rated short duration Rated lightn<strong>in</strong>g impulsefor equipment power frequency withstand voltage(r.m.s.) withstand voltage (peak)(r.m.s.) List 1 List 2(kV) (kV) (kV) (kV)y 1.1 3 - -3.6 10 20 407.2 20 40 6012 28 60 7517.5 38 75 9524 50 95 12536 70 145 17052 95 25072.5 140 325Fig. B3 : Transformers rated <strong>in</strong>sulation levelsSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>© Schneider Electric - all rights reserved


B - Connection to <strong>the</strong> MV publicdistribution network1 Supply of power at mediumvoltageBThe national standards of any particular countryare normally rationalized to <strong>in</strong>clude one or twolevels only of voltage, current, and fault-levels,etc.A circuit-breaker (or fuse switch, over a limitedvoltage range) is <strong>the</strong> only form of switchgearcapable of safely break<strong>in</strong>g all k<strong>in</strong>ds of faultcurrents occurr<strong>in</strong>g on a power system.O<strong>the</strong>r componentsIt is evident that <strong>the</strong> <strong>in</strong>sulation performance of o<strong>the</strong>r MV components associatedwith <strong>the</strong>se major items, e.g. porcela<strong>in</strong> or glass <strong>in</strong>sulators, MV cables, <strong>in</strong>strumenttransformers, etc. must be compatible with that of <strong>the</strong> switchgear andtransformers noted above. Test schedules for <strong>the</strong>se items are given <strong>in</strong> appropriateIEC publications.The national standards of any particular country are normally rationalized to <strong>in</strong>cludeone or two levels only of voltage, current, and fault-levels, etc.General note:The IEC standards are <strong>in</strong>tended for worldwide application and consequentlyembrace an extensive range of voltage and current levels.These reflect <strong>the</strong> diverse practices adopted <strong>in</strong> countries of different meteorologic,geographic and economic constra<strong>in</strong>ts.Short-circuit currentStandard values of circuit-breaker short-circuit current-break<strong>in</strong>g capability arenormally given <strong>in</strong> kilo-amps.These values refer to a 3-phase short-circuit condition, and are expressed as <strong>the</strong>average of <strong>the</strong> r.m.s. values of <strong>the</strong> AC component of current <strong>in</strong> each of <strong>the</strong> threephases.For circuit-breakers <strong>in</strong> <strong>the</strong> rated voltage ranges be<strong>in</strong>g considered <strong>in</strong> this chapter,Figure B4 gives standard short-circuit current-break<strong>in</strong>g rat<strong>in</strong>gs.kV 3.6 7.2 12 17.5 24 36 52kA 8 8 8 8 8 8 8(rms) 10 12.5 12.5 12.5 12.5 12.5 12.516 16 16 16 16 16 2025 25 25 25 25 2540 40 40 40 40 4050Fig. B4 : Standard short-circuit current-break<strong>in</strong>g rat<strong>in</strong>gs© Schneider Electric - all rights reservedI pCurrent (I)22I'' kt m<strong>in</strong>22I bI DC22I kTime (t)Fig. B5 : Graphic representation of short-circuit quantities asper IEC 60909Short-circuit current calculationThe rules for calculat<strong>in</strong>g short-circuit currents <strong>in</strong> electrical <strong>in</strong>stallations are presented<strong>in</strong> IEC standard 60909.The calculation of short-circuit currents at various po<strong>in</strong>ts <strong>in</strong> a power system canquickly turn <strong>in</strong>to an arduous task when <strong>the</strong> <strong>in</strong>stallation is complicated.The use of specialized software accelerates calculations.This general standard, applicable for all radial and meshed power systems, 50 or60 Hz and up to 550 kV, is extremely accurate and conservative.It may be used to handle <strong>the</strong> different types of solid short-circuit (symmetrical ordissymmetrical) that can occur <strong>in</strong> an electrical <strong>in</strong>stallation:b Three-phase short-circuit (all three phases), generally <strong>the</strong> type produc<strong>in</strong>g <strong>the</strong>highest currentsb Two-phase short-circuit (between two phases), currents lower than three-phase faultsb Two-phase-to-earth short-circuit (between two phases and earth)b Phase-to-earth short-circuit (between a phase and earth), <strong>the</strong> most frequent type(80% of all cases).When a fault occurs, <strong>the</strong> transient short-circuit current is a function of time andcomprises two components (see Fig. B5).b An AC component, decreas<strong>in</strong>g to its steady-state value, caused by <strong>the</strong> variousrotat<strong>in</strong>g mach<strong>in</strong>es and a function of <strong>the</strong> comb<strong>in</strong>ation of <strong>the</strong>ir time constantsb A DC component, decreas<strong>in</strong>g to zero, caused by <strong>the</strong> <strong>in</strong>itiation of <strong>the</strong> current and afunction of <strong>the</strong> circuit impedancesPractically speak<strong>in</strong>g, one must def<strong>in</strong>e <strong>the</strong> short-circuit values that are useful <strong>in</strong>select<strong>in</strong>g system equipment and <strong>the</strong> protection system:b I’’ k : rms value of <strong>the</strong> <strong>in</strong>itial symmetrical currentb I b : rms value of <strong>the</strong> symmetrical current <strong>in</strong>terrupted by <strong>the</strong> switch<strong>in</strong>g device when<strong>the</strong> first pole opens at tm<strong>in</strong> (m<strong>in</strong>imum delay)b I k : rms value of <strong>the</strong> steady-state symmetrical currentb I p : maximum <strong>in</strong>stantaneous value of <strong>the</strong> current at <strong>the</strong> first peakb I DC : DC value of <strong>the</strong> currentSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network1 Supply of power at mediumvoltageThese currents are identified by subscripts 3, 2, 2E, 1, depend<strong>in</strong>g on <strong>the</strong> type ofshort-circuit, respectively three-phase, two-phase clear of earth, two-phase-to-earth,phase-to-earth.The method, based on <strong>the</strong> Theven<strong>in</strong> superposition <strong>the</strong>orem and decomposition <strong>in</strong>tosymmetrical components, consists <strong>in</strong> apply<strong>in</strong>g to <strong>the</strong> short-circuit po<strong>in</strong>t an equivalentsource of voltage <strong>in</strong> view of determ<strong>in</strong><strong>in</strong>g <strong>the</strong> current. The calculation takes place <strong>in</strong>three steps.b Def<strong>in</strong>e <strong>the</strong> equivalent source of voltage applied to <strong>the</strong> fault po<strong>in</strong>t. It represents <strong>the</strong>voltage exist<strong>in</strong>g just before <strong>the</strong> fault and is <strong>the</strong> rated voltage multiplied by a factortak<strong>in</strong>g <strong>in</strong>to account source variations, transformer on-load tap changers and <strong>the</strong>subtransient behavior of <strong>the</strong> mach<strong>in</strong>es.b Calculate <strong>the</strong> impedances, as seen from <strong>the</strong> fault po<strong>in</strong>t, of each branch arriv<strong>in</strong>g atthis po<strong>in</strong>t. For positive and negative-sequence systems, <strong>the</strong> calculation does not take<strong>in</strong>to account l<strong>in</strong>e capacitances and <strong>the</strong> admittances of parallel, non-rotat<strong>in</strong>g loads.b Once <strong>the</strong> voltage and impedance values are def<strong>in</strong>ed, calculate <strong>the</strong> characteristicm<strong>in</strong>imum and maximum values of <strong>the</strong> short-circuit currents.The various current values at <strong>the</strong> fault po<strong>in</strong>t are calculated us<strong>in</strong>g:b The equations providedb A summ<strong>in</strong>g law for <strong>the</strong> currents flow<strong>in</strong>g <strong>in</strong> <strong>the</strong> branches connected to <strong>the</strong> node:v I’’ k (see Fig. B6 for I’’ k calculation, where voltage factor c is def<strong>in</strong>ed by <strong>the</strong>standard; geometric or algebraic summ<strong>in</strong>g)v I p = κ x 2 x I’’ k , where κ is less than 2, depend<strong>in</strong>g on <strong>the</strong> R/X ratio of <strong>the</strong> positivesequence impedance for <strong>the</strong> given branch; peak summ<strong>in</strong>gv I b = μ x q x I’’ k , where μ and q are less than 1, depend<strong>in</strong>g on <strong>the</strong> generators andmotors, and <strong>the</strong> m<strong>in</strong>imum current <strong>in</strong>terruption delay; algebraic summ<strong>in</strong>gv I k = I’’ k , when <strong>the</strong> fault is far from <strong>the</strong> generatorv I k = λ x I r , for a generator, where Ir is <strong>the</strong> rated generator current and λ is a factordepend<strong>in</strong>g on its saturation <strong>in</strong>ductance; algebraic summ<strong>in</strong>g.BType of short-circuit3-phase2-phase2-phase-to-earthPhase-to-earth + 0 + 1 0I’’ kGeneral situationc Un3 Z 1c UnZ1 + Z2c Un 3 Z 2Z1 Z2 + Z2 Z0 + Z1 Z0c Un 3Z1 +Z 2 +Z 0Distant faultsc Un3 Z 1c Un2Z 1c Un 3Z 1 + 2Z 0c Un 32 Z1 + Z0Fig. B6 : Short-circuit currents as per IEC 60909CharacterizationThere are 2 types of system equipment, based on whe<strong>the</strong>r or not <strong>the</strong>y react when afault occurs.Passive equipmentThis category comprises all equipment which, due to its function, must have<strong>the</strong> capacity to transport both normal current and short-circuit current.This equipment <strong>in</strong>cludes cables, l<strong>in</strong>es, busbars, disconnect<strong>in</strong>g switches, switches,transformers, series reactances and capacitors, <strong>in</strong>strument transformers.For this equipment, <strong>the</strong> capacity to withstand a short-circuit without damageis def<strong>in</strong>ed <strong>in</strong> terms of:b Electrodynamic withstand (“peak withstand current”; value of <strong>the</strong> peak currentexpressed <strong>in</strong> kA), characteriz<strong>in</strong>g mechanical resistance to electrodynamic stressb Thermal withstand (“short time withstand current”; rms value expressed <strong>in</strong> kAfor duration between 0,5 and 3 seconds, with a preferred value of 1 second),characteriz<strong>in</strong>g maximum permissible heat dissipation.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network1 Supply of power at mediumvoltageBActive equipmentThis category comprises <strong>the</strong> equipment designed to clear short-circuit currents, i.e.circuit-breakers and fuses. This property is expressed by <strong>the</strong> break<strong>in</strong>g capacity and,if required, <strong>the</strong> mak<strong>in</strong>g capacity when a fault occurs.b Break<strong>in</strong>g capacity (see Fig. B7)This basic characteristic of a fault <strong>in</strong>terrupt<strong>in</strong>g device is <strong>the</strong> maximum current (rmsvalue expressed <strong>in</strong> kA) it is capable of break<strong>in</strong>g under <strong>the</strong> specific conditions def<strong>in</strong>edby <strong>the</strong> standards; <strong>in</strong> <strong>the</strong> IEC 62271-100 standard, it refers to <strong>the</strong> rms value of <strong>the</strong>AC component of <strong>the</strong> short-circuit current. In some o<strong>the</strong>r standards, <strong>the</strong> rms valueof <strong>the</strong> sum of <strong>the</strong> 2 components (AC and DC) is specified, <strong>in</strong> which case, it is <strong>the</strong>“asymmetrical current”.The break<strong>in</strong>g capacity depends on o<strong>the</strong>r factors such as:v Voltagev R/X ratio of <strong>the</strong> <strong>in</strong>terrupted circuitv Power system natural frequencyv Number of break<strong>in</strong>g operations at maximum current, for example <strong>the</strong> cycle:O - C/O - C/O (O = open<strong>in</strong>g, C = clos<strong>in</strong>g)The break<strong>in</strong>g capacity is a relatively complicated characteristic to def<strong>in</strong>e and it<strong>the</strong>refore comes as no surprise that <strong>the</strong> same device can be assigned differentbreak<strong>in</strong>g capacities depend<strong>in</strong>g on <strong>the</strong> standard by which it is def<strong>in</strong>ed.b Short-circuit mak<strong>in</strong>g capacityIn general, this characteristic is implicitly def<strong>in</strong>ed by <strong>the</strong> break<strong>in</strong>g capacity because adevice should be able to close for a current that it can break.Sometimes, <strong>the</strong> mak<strong>in</strong>g capacity needs to be higher, for example for circuit-breakersprotect<strong>in</strong>g generators.The mak<strong>in</strong>g capacity is def<strong>in</strong>ed <strong>in</strong> terms of peak value (expressed <strong>in</strong> kA) because <strong>the</strong>first asymmetric peak is <strong>the</strong> most demand<strong>in</strong>g from an electrodynamic po<strong>in</strong>t of view.For example, accord<strong>in</strong>g to standard IEC 62271-100, a circuit-breaker used <strong>in</strong> a 50 Hzpower system must be able to handle a peak mak<strong>in</strong>g current equal to 2.5 times <strong>the</strong>rms break<strong>in</strong>g current (2.6 times for 60 Hz systems).Mak<strong>in</strong>g capacity is also required for switches, and sometimes for disconnectors, evenif <strong>the</strong>se devices are not able to clear <strong>the</strong> fault.b Prospective short-circuit break<strong>in</strong>g currentSome devices have <strong>the</strong> capacity to limit <strong>the</strong> fault current to be <strong>in</strong>terrupted.Their break<strong>in</strong>g capacity is def<strong>in</strong>ed as <strong>the</strong> maximum prospective break<strong>in</strong>g current thatwould develop dur<strong>in</strong>g a solid short-circuit across <strong>the</strong> upstream term<strong>in</strong>als of <strong>the</strong> device.Specific device characteristicsThe functions provided by various <strong>in</strong>terrupt<strong>in</strong>g devices and <strong>the</strong>ir ma<strong>in</strong> constra<strong>in</strong>ts arepresented <strong>in</strong> Figure B8.Current (I)I ACTime (t)Device Isolation of Current switch<strong>in</strong>g Ma<strong>in</strong> constra<strong>in</strong>stwo active conditionsnetworks Normal FaultDisconnector Yes No No Longitud<strong>in</strong>al <strong>in</strong>put/output isolationSwitch No Yes No Mak<strong>in</strong>g and break<strong>in</strong>g of normalload currentShort-circuit mak<strong>in</strong>g capacityContactor No Yes No Rated mak<strong>in</strong>g and break<strong>in</strong>gcapacitiesMaximum mak<strong>in</strong>g and break<strong>in</strong>gcapacitiesDuty and endurancecharacteristicsCircuit-breaker No Yes Yes Short-circuit break<strong>in</strong>g capacityShort-circuit mak<strong>in</strong>g capacity© Schneider Electric - all rights reservedI DCI AC : Peak of <strong>the</strong> periodic componentI DC : Aperiodic componentFig. B7 : Rated break<strong>in</strong>g current of a circuit-breaker subjectedto a short-circuit as per IEC 60056Fuse No No Yes M<strong>in</strong>imum short-circuit break<strong>in</strong>gcapacityMaximum short-circuit break<strong>in</strong>gcapacityFig. B8 : Functions provided by <strong>in</strong>terrupt<strong>in</strong>g devicesSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network1 Supply of power at mediumvoltageThe most common normal current rat<strong>in</strong>g forgeneral-purpose MV distribution switchgear is400 A.Rated normal currentThe rated normal current is def<strong>in</strong>ed as “<strong>the</strong> r.m.s. value of <strong>the</strong> current which can becarried cont<strong>in</strong>uously at rated frequency with a temperature rise not exceed<strong>in</strong>g thatspecified by <strong>the</strong> relevant product standard”.The rated normal current requirements for switchgear are decided at <strong>the</strong> substationdesign stage.The most common normal current rat<strong>in</strong>g for general-purpose MV distributionswitchgear is 400 A.In <strong>in</strong>dustrial areas and medium-load-density urban districts, circuits rated at 630 Aare sometimes required, while at bulk-supply substations which feed <strong>in</strong>to MVnetworks,800 A; 1,250 A; 1,600 A; 2,500 A and 4,000 A circuit-breakers are listed as standardrat<strong>in</strong>gs for <strong>in</strong>com<strong>in</strong>g-transformer circuits, bus-section and bus-coupler CBs, etc.For MV/LV transformer with a normal primary current up to roughly 60 A,a MV switch-fuse comb<strong>in</strong>ation can be used . For higher primary currents,switch-fuse comb<strong>in</strong>ation usually does not have <strong>the</strong> required performances.There are no IEC-recommended rated current values for switch-fuse comb<strong>in</strong>ations.The actual rated current of a given comb<strong>in</strong>ation, mean<strong>in</strong>g a switchgear baseand def<strong>in</strong>ed fuses, is provided by <strong>the</strong> manufacturer of <strong>the</strong> comb<strong>in</strong>ation as a table"fuse reference / rated current". These values of <strong>the</strong> rated current are def<strong>in</strong>ed byconsider<strong>in</strong>g parameters of <strong>the</strong> comb<strong>in</strong>ation as:b Normal <strong>the</strong>rmal current of <strong>the</strong> fusesb Necessary derat<strong>in</strong>g of <strong>the</strong> fuses, due to <strong>the</strong>ir usage with<strong>in</strong> <strong>the</strong> enclosure.When comb<strong>in</strong>ations are used for protect<strong>in</strong>g transformers, <strong>the</strong>n fur<strong>the</strong>r parametersare to be considered, as presented <strong>in</strong> Appendix A of <strong>the</strong> IEC 62271-105 and <strong>in</strong> <strong>the</strong>IEC 60787. They are ma<strong>in</strong>ly:b The normal MV current of <strong>the</strong> transformerb The possible need for overload<strong>in</strong>g <strong>the</strong> transformerb The <strong>in</strong>rush magnetiz<strong>in</strong>g currentb The MV short-circuit powerb The tapp<strong>in</strong>g switch adjustment range.Manufacturers usually provide an application table "service voltage / transformerpower / fuse reference" based on standard distribution network and transformerparameters, and such table should be used with care, if deal<strong>in</strong>g with unusual<strong>in</strong>stallations.In such a scheme, <strong>the</strong> load-break switch should be suitably fitted with a tripp<strong>in</strong>gdevice e.g. with a relay to be able to trip at low fault-current levels which must cover(by an appropriate marg<strong>in</strong>) <strong>the</strong> rated m<strong>in</strong>imum break<strong>in</strong>g current of <strong>the</strong> MV fuses. Inthis way, medium values of fault current which are beyond <strong>the</strong> break<strong>in</strong>g capability of<strong>the</strong> load-break switch will be cleared by <strong>the</strong> fuses, while low fault-current values, thatcannot be correctly cleared by <strong>the</strong> fuses, will be cleared by <strong>the</strong> tripped load-breakswitch.Influence of <strong>the</strong> ambient temperature and altitude on <strong>the</strong> rated currentNormal-current rat<strong>in</strong>gs are assigned to all current-carry<strong>in</strong>g electrical appliances,and upper limits are decided by <strong>the</strong> acceptable temperature rise caused by <strong>the</strong>I 2 R (watts) dissipated <strong>in</strong> <strong>the</strong> conductors, (where I = r.m.s. current <strong>in</strong> amperes andR = <strong>the</strong> resistance of <strong>the</strong> conductor <strong>in</strong> ohms), toge<strong>the</strong>r with <strong>the</strong> heat producedby magnetic-hysteresis and eddy-current losses <strong>in</strong> motors, transformers, steelenclosures, etc. and dielectric losses <strong>in</strong> cables and capacitors, where appropriate.The temperature rise above <strong>the</strong> ambient temperature will depend ma<strong>in</strong>ly on <strong>the</strong>rate at which <strong>the</strong> heat is removed. For example, large currents can be passedthrough electric motor w<strong>in</strong>d<strong>in</strong>gs without caus<strong>in</strong>g <strong>the</strong>m to overheat, simply becausea cool<strong>in</strong>g fan fixed to <strong>the</strong> shaft of <strong>the</strong> motor removes <strong>the</strong> heat at <strong>the</strong> same rate as itis produced, and so <strong>the</strong> temperature reaches a stable value below that which coulddamage <strong>the</strong> <strong>in</strong>sulation and result <strong>in</strong> a burnt-out motor.The normal-current values recommended by IEC are based on ambientairtemperatures common to temperate climates at altitudes not exceed<strong>in</strong>g1,000 metres, so that items which depend on natural cool<strong>in</strong>g by radiation andair-convection will overheat if operated at rated normal current <strong>in</strong> a tropical climateand/ or at altitudes exceed<strong>in</strong>g 1,000 metres. In such cases, <strong>the</strong> equipment has to bederated, i.e. be assigned a lower value of normal current rat<strong>in</strong>g.The case of transformer is addressed <strong>in</strong> IEC 60076-2.B© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network1 Supply of power at mediumvoltage© Schneider Electric - all rights reservedBEarth faults on medium-voltage systemscan produce dangerous voltage levels onLV <strong>in</strong>stallations. LV consumers (and substationoperat<strong>in</strong>g personnel) can be safeguardedaga<strong>in</strong>st this danger by:b Restrict<strong>in</strong>g <strong>the</strong> magnitude of MV earth-faultcurrentsb Reduc<strong>in</strong>g <strong>the</strong> substation earth<strong>in</strong>g resistanceto <strong>the</strong> lowest possible valueb Creat<strong>in</strong>g equipotential conditions at <strong>the</strong>substation and at <strong>the</strong> consumer’s <strong>in</strong>stallationFaultHVI fI fLVR sFig. B9 : Transferred potentialV= I f R sConsumer(1) The o<strong>the</strong>rs be<strong>in</strong>g unear<strong>the</strong>d. A particular case of earth-faultcurrent limitation is by means of a Petersen coil.123NEarth<strong>in</strong>g systemsEarth<strong>in</strong>g and equipment-bond<strong>in</strong>g earth connections require careful consideration,particularly regard<strong>in</strong>g safety of <strong>the</strong> LV consumer dur<strong>in</strong>g <strong>the</strong> occurrence of a shortcircuitto earth on <strong>the</strong> MV system.Earth electrodesIn general, it is preferable, where physically possible, to separate <strong>the</strong> electrodeprovided for earth<strong>in</strong>g exposed conductive parts of MV equipment from <strong>the</strong> electrode<strong>in</strong>tended for earth<strong>in</strong>g <strong>the</strong> LV neutral conductor. This is commonly practised <strong>in</strong> ruralsystems where <strong>the</strong> LV neutral-conductor earth electrode is <strong>in</strong>stalled at one or twospans of LV distribution l<strong>in</strong>e away from <strong>the</strong> substation.In most cases, <strong>the</strong> limited space available <strong>in</strong> urban substations precludes thispractice, i.e. <strong>the</strong>re is no possibility of separat<strong>in</strong>g a MV electrode sufficiently froma LV electrode to avoid <strong>the</strong> transference of (possibly dangerous) voltages to <strong>the</strong>LV system.Earth-fault currentEarth-fault current levels at medium voltage are generally (unless deliberatelyrestricted) comparable to those of a 3-phase short-circuit.Such currents pass<strong>in</strong>g through an earth electrode will raise its voltage to a mediumvalue with respect to “remote earth” (<strong>the</strong> earth surround<strong>in</strong>g <strong>the</strong> electrode will beraised to a medium potential; “remote earth” is at zero potential).For example, 10,000 A of earth-fault current pass<strong>in</strong>g through an electrode with an(unusually low) resistance of 0.5 ohms will raise its voltage to 5,000 V.Provid<strong>in</strong>g that all exposed metal <strong>in</strong> <strong>the</strong> substation is “bonded” (connected toge<strong>the</strong>r)and <strong>the</strong>n connected to <strong>the</strong> earth electrode, and <strong>the</strong> electrode is <strong>in</strong> <strong>the</strong> form of (or isconnected to) a grid of conductors under <strong>the</strong> floor of <strong>the</strong> substation, <strong>the</strong>n <strong>the</strong>re is nodanger to personnel, s<strong>in</strong>ce this arrangement forms an equipotential “cage” <strong>in</strong> whichall conductive material, <strong>in</strong>clud<strong>in</strong>g personnel, is raised to <strong>the</strong> same potential.Transferred potentialA danger exists however from <strong>the</strong> problem known as Transferred Potential. It will beseen <strong>in</strong> Figure B9 that <strong>the</strong> neutral po<strong>in</strong>t of <strong>the</strong> LV w<strong>in</strong>d<strong>in</strong>g of <strong>the</strong> MV/LV transformeris also connected to <strong>the</strong> common substation earth electrode, so that <strong>the</strong> neutralconductor, <strong>the</strong> LV phase w<strong>in</strong>d<strong>in</strong>gs and all phase conductors are also raised to <strong>the</strong>electrode potential.Low-voltage distribution cables leav<strong>in</strong>g <strong>the</strong> substation will transfer this potential toconsumers <strong>in</strong>stallations. It may be noted that <strong>the</strong>re will be no LV <strong>in</strong>sulation failurebetween phases or from phase to neutral s<strong>in</strong>ce <strong>the</strong>y are all at <strong>the</strong> same potential. It isprobable, however, that <strong>the</strong> <strong>in</strong>sulation between phase and earth of a cable or somepart of an <strong>in</strong>stallation would fail.SolutionsA first step <strong>in</strong> m<strong>in</strong>imiz<strong>in</strong>g <strong>the</strong> obvious dangers of transferred potentials is to reduce<strong>the</strong> magnitude of MV earth-fault currents. This is commonly achieved by earth<strong>in</strong>g <strong>the</strong>MV system through resistors or reactors at <strong>the</strong> star po<strong>in</strong>ts of selected transformers (1) ,located at bulk-supply substations.A relatively medium transferred potential cannot be entirely avoided by this means,however, and so <strong>the</strong> follow<strong>in</strong>g strategy has been adopted <strong>in</strong> some countries.The equipotential earth<strong>in</strong>g <strong>in</strong>stallation at a consumer’s premises represents a remoteearth, i.e. at zero potential. However, if this earth<strong>in</strong>g <strong>in</strong>stallation were to be connectedby a low-impedance conductor to <strong>the</strong> earth electrode at <strong>the</strong> substation, <strong>the</strong>n <strong>the</strong>equipotential conditions exist<strong>in</strong>g <strong>in</strong> <strong>the</strong> substation would also exist at <strong>the</strong> consumer’s<strong>in</strong>stallation.Low-impedance <strong>in</strong>terconnectionThis low-impedance <strong>in</strong>terconnection is achieved simply by connect<strong>in</strong>g <strong>the</strong> neutralconductor to <strong>the</strong> consumer’s equipotential <strong>in</strong>stallation, and <strong>the</strong> result is recognized as<strong>the</strong> TN earth<strong>in</strong>g system (IEC 60364) as shown <strong>in</strong> diagram A of Figure B10 next page.The TN system is generally associated with a Protective Multiple Earth<strong>in</strong>g (PME)scheme, <strong>in</strong> which <strong>the</strong> neutral conductor is ear<strong>the</strong>d at <strong>in</strong>tervals along its length (every3 rd or 4 th pole on a LV overhead-l<strong>in</strong>e distributor) and at each consumer’s serviceposition. It can be seen that <strong>the</strong> network of neutral conductors radiat<strong>in</strong>g from asubstation, each of which is ear<strong>the</strong>d at regular <strong>in</strong>tervals, constitutes, toge<strong>the</strong>r with<strong>the</strong> substation earth<strong>in</strong>g, a very effective low-resistance earth electrode.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network1 Supply of power at mediumvoltageBDiagramRs valueA - TN-aMVLV12B - IT-aMVLV12Cases A and BNo particular resistance value for Rs is imposed<strong>in</strong> <strong>the</strong>se cases33NNR SR SC - TT-aMVLV1D - IT-bMVLV1Cases C and DUw - UoRs yIm23N23NWhereUw = <strong>the</strong> rated normal-frequency withstandvoltage for low-voltage equipment atconsumer <strong>in</strong>stallationsUo = phase to neutral voltage at consumer's<strong>in</strong>stallationsIm = maximum value of MV earth-fault currentR SR SE - TT-bMVR SLVR N123NF - IT-cIn cases E and F <strong>the</strong> LV protective conductors (bond<strong>in</strong>g exposed conductive parts) <strong>in</strong> <strong>the</strong> substationare ear<strong>the</strong>d via <strong>the</strong> substation earth electrode, and it is <strong>the</strong>refore <strong>the</strong> substation LV equipment (only)that could be subjected to overvoltage.MVR SLVR N123NCases E and FRs y Uws - UImWhereUws = <strong>the</strong> normal-frequency withstand voltagefor low-voltage equipments <strong>in</strong> <strong>the</strong>substation (s<strong>in</strong>ce <strong>the</strong> exposed conductiveparts of <strong>the</strong>se equipments are ear<strong>the</strong>dvia Rs)U = phase to neutral voltage at <strong>the</strong> substationfor <strong>the</strong> TT(s) system, but <strong>the</strong> phase-tophasevoltage for <strong>the</strong> IT(s) systemIm = maximum value of MV earth-fault currentNotes:b For TN-a and IT-a, <strong>the</strong> MV and LV exposed conductive parts at <strong>the</strong> substation and those at <strong>the</strong> consumer’s <strong>in</strong>stallations, toge<strong>the</strong>r with <strong>the</strong>LV neutral po<strong>in</strong>t of <strong>the</strong> transformer, are all ear<strong>the</strong>d via <strong>the</strong> substation electrode system.b For TT-a and IT-b, <strong>the</strong> MV and LV exposed conductive parts at <strong>the</strong> substation, toge<strong>the</strong>r with <strong>the</strong> LV neutral po<strong>in</strong>t of <strong>the</strong> transformer are ear<strong>the</strong>d via<strong>the</strong> substation electrode system.b For TT-b and IT-c, <strong>the</strong> LV neutral po<strong>in</strong>t of <strong>the</strong> transformer is separately ear<strong>the</strong>d outside of <strong>the</strong> area of <strong>in</strong>fluence of <strong>the</strong> substation earth electrode.Uw and Uws are commonly given <strong>the</strong> (IEC 60364-4-44) value Uo + 1200 V, where Uo is <strong>the</strong> nom<strong>in</strong>al phase-to-neutral voltage of <strong>the</strong> LV systemconcerned.Fig. B10 : Maximum earth<strong>in</strong>g resistance Rs at a MV/LV substation to ensure safety dur<strong>in</strong>g a short-circuit to earth fault on <strong>the</strong> medium-voltage equipment for differentearth<strong>in</strong>g systemsThe comb<strong>in</strong>ation of restricted earth-fault currents, equipotential <strong>in</strong>stallations andlow resistance substation earth<strong>in</strong>g, results <strong>in</strong> greatly reduced levels of overvoltageand limited stress<strong>in</strong>g of phase-to-earth <strong>in</strong>sulation dur<strong>in</strong>g <strong>the</strong> type of MV earth-faultsituation described above.Limitation of <strong>the</strong> MV earth-fault current and earth resistance of <strong>the</strong> substationAno<strong>the</strong>r widely-used earth<strong>in</strong>g system is shown <strong>in</strong> diagram C of Figure B10. It will beseen that <strong>in</strong> <strong>the</strong> TT system, <strong>the</strong> consumer’s earth<strong>in</strong>g <strong>in</strong>stallation (be<strong>in</strong>g isolated fromthat of <strong>the</strong> substation) constitutes a remote earth.This means that, although <strong>the</strong> transferred potential will not stress <strong>the</strong> phase-to-phase<strong>in</strong>sulation of <strong>the</strong> consumer’s equipment, <strong>the</strong> phase-to-earth <strong>in</strong>sulation of all threephases will be subjected to overvoltage.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network1 Supply of power at mediumvoltageB10© Schneider Electric - all rights reservedThe strategy <strong>in</strong> this case, is to reduce <strong>the</strong> resistance of <strong>the</strong> substation ear<strong>the</strong>lectrode, such that <strong>the</strong> standard value of 5-second withstand-voltage-to-earth forLV equipment and appliances will not be exceeded.Practical values adopted by one national electrical power-supply authority, on its20 kV distribution systems, are as follows:b Maximum earth-fault current <strong>in</strong> <strong>the</strong> neutral connection on overhead l<strong>in</strong>e distributionsystems, or mixed (O/H l<strong>in</strong>e and U/G cable) systems, is 300 Ab Maximum earth-fault current <strong>in</strong> <strong>the</strong> neutral connection on underground systems is1,000 AThe formula required to determ<strong>in</strong>e <strong>the</strong> maximum value of earth<strong>in</strong>g resistance Rs at<strong>the</strong><strong>the</strong>substation,substation,totoensureensurethatthat<strong>the</strong><strong>the</strong>LVLVwithstandwithstandvoltagevoltage willwillnotnotbebeexceeded,exceeded,is:is:Uw UoRs = <strong>in</strong> ohms (see cases C and D <strong>in</strong> Figure B10). C10).ImWhereWhereUw = <strong>the</strong> lowest standard value (<strong>in</strong> volts) of short-term (5 s) withstand voltage for <strong>the</strong>consumer’s <strong>in</strong>stallation and appliances = Uo + 1200 V (IEC 60364-4-44)Uo = phase to neutral voltage (<strong>in</strong> volts) at <strong>the</strong> consumer’s LV service positionIm = maximum earth-fault current on <strong>the</strong> MV system (<strong>in</strong> amps). This maximum earthfault current Im is <strong>the</strong> vectorial sum of maximum earth-fault current <strong>in</strong> <strong>the</strong> neutralconnection and total unbalanced capacitive current of <strong>the</strong> network.A third form of system earth<strong>in</strong>g referred to as <strong>the</strong> “IT” system <strong>in</strong> IEC 60364 iscommonly used where cont<strong>in</strong>uity of supply is essential, e.g. <strong>in</strong> hospitals, cont<strong>in</strong>uousprocessmanufactur<strong>in</strong>g, etc. The pr<strong>in</strong>ciple depends on tak<strong>in</strong>g a supply from anunear<strong>the</strong>d source, usually a transformer, <strong>the</strong> secondary w<strong>in</strong>d<strong>in</strong>g of which isunear<strong>the</strong>d, or ear<strong>the</strong>d through a medium impedance (u1,000 ohms). In <strong>the</strong>se cases,an <strong>in</strong>sulation failure to earth <strong>in</strong> <strong>the</strong> low-voltage circuits supplied from <strong>the</strong> secondaryw<strong>in</strong>d<strong>in</strong>gs will result <strong>in</strong> zero or negligible fault-current flow, which can be allowed topersist until it is convenient to shut-down <strong>the</strong> affected circuit to carry out repair work.Diagrams B, D and F (Figure B10)They show IT systems <strong>in</strong> which resistors (of approximately 1,000 ohms) are <strong>in</strong>cluded<strong>in</strong> <strong>the</strong> neutral earth<strong>in</strong>g lead.If however, <strong>the</strong>se resistors were removed, so that <strong>the</strong> system is unear<strong>the</strong>d, <strong>the</strong>follow<strong>in</strong>g notes apply.Diagram B (Figure B10)All phase wires and <strong>the</strong> neutral conductor are “float<strong>in</strong>g” with respect to earth, to which<strong>the</strong>y are “connected” via <strong>the</strong> (normally very medium) <strong>in</strong>sulation resistances and (verysmall) capacitances between <strong>the</strong> live conductors and ear<strong>the</strong>d metal (conduits, etc.).Assum<strong>in</strong>g perfect <strong>in</strong>sulation, all LV phase and neutral conductors will be raised byelectrostatic <strong>in</strong>duction to a potential approach<strong>in</strong>g that of <strong>the</strong> equipotential conductors.In practice, it is more likely, because of <strong>the</strong> numerous earth-leakage paths of all liveconductors <strong>in</strong> a number of <strong>in</strong>stallations act<strong>in</strong>g <strong>in</strong> parallel, that <strong>the</strong> system will behavesimilarly to <strong>the</strong> case where a neutral earth<strong>in</strong>g resistor is present, i.e. all conductorswill be raised to <strong>the</strong> potential of <strong>the</strong> substation earth.In <strong>the</strong>se cases, <strong>the</strong> overvoltage stresses on <strong>the</strong> LV <strong>in</strong>sulation are small or nonexistent.Diagrams D and F (Figure B10)In <strong>the</strong>se cases, <strong>the</strong> medium potential of <strong>the</strong> substation (S/S) earth<strong>in</strong>g system acts on<strong>the</strong> isolated LV phase and neutral conductors:b Through <strong>the</strong> capacitance between <strong>the</strong> LV w<strong>in</strong>d<strong>in</strong>gs of <strong>the</strong> transformer and <strong>the</strong>transformer tankb Through capacitance between <strong>the</strong> equipotential conductors <strong>in</strong> <strong>the</strong> S/S and <strong>the</strong>cores of LV distribution cables leav<strong>in</strong>g <strong>the</strong> S/Sb Through current leakage paths <strong>in</strong> <strong>the</strong> <strong>in</strong>sulation, <strong>in</strong> each case.At positions outside <strong>the</strong> area of <strong>in</strong>fluence of <strong>the</strong> S/S earth<strong>in</strong>g, system capacitancesexist between <strong>the</strong> conductors and earth at zero potential (capacitances betweencores are irrelevant - all cores be<strong>in</strong>g raised to <strong>the</strong> same potential).The result is essentially a capacitive voltage divider, where each “capacitor” isshunted by (leakage path) resistances.In general, LV cable and <strong>in</strong>stallation wir<strong>in</strong>g capacitances to earth are muchlarger, and <strong>the</strong> <strong>in</strong>sulation resistances to earth are much smaller than those of <strong>the</strong>correspond<strong>in</strong>g parameters at <strong>the</strong> S/S, so that most of <strong>the</strong> voltage stresses appear at<strong>the</strong> substation between <strong>the</strong> transformer tank and <strong>the</strong> LV w<strong>in</strong>d<strong>in</strong>g.The rise <strong>in</strong> potential at consumers’ <strong>in</strong>stallations is not likely <strong>the</strong>refore to be a problemwhere <strong>the</strong> MV earth-fault current level is restricted as previously mentioned.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network1 Supply of power at mediumvoltageOverhead l<strong>in</strong>eAll IT-ear<strong>the</strong>d transformers, whe<strong>the</strong>r <strong>the</strong> neutral po<strong>in</strong>t is isolated or ear<strong>the</strong>d througha medium impedance, are rout<strong>in</strong>ely provided with an overvoltage limit<strong>in</strong>g devicewhich will automatically connect <strong>the</strong> neutral po<strong>in</strong>t directly to earth if an overvoltagecondition approaches <strong>the</strong> <strong>in</strong>sulation-withstand level of <strong>the</strong> LV system.In addition to <strong>the</strong> possibilities mentioned above, several o<strong>the</strong>r ways <strong>in</strong> which <strong>the</strong>seovervoltages can occur are described <strong>in</strong> Clause 3.1.This k<strong>in</strong>d of earth-fault is very rare, and when does occur is quickly detected andcleared by <strong>the</strong> automatic tripp<strong>in</strong>g of a circuit-breaker <strong>in</strong> a properly designed andconstructed <strong>in</strong>stallation.Safety <strong>in</strong> situations of elevated potentials depends entirely on <strong>the</strong> provision ofproperly arranged equipotential areas, <strong>the</strong> basis of which is generally <strong>in</strong> <strong>the</strong> form of awidemeshed grid of <strong>in</strong>terconnected bare copper conductors connected to verticallydrivencopper-clad (1) steel rods.The equipotential criterion to be respected is that which is mentioned <strong>in</strong> Chapter Fdeal<strong>in</strong>g with protection aga<strong>in</strong>st electric shock by <strong>in</strong>direct contact, namely: that <strong>the</strong>potential between any two exposed metal parts which can be touched simultaneouslyby any parts <strong>the</strong> body must never, under any circumstances, exceed 50 V <strong>in</strong> dryconditions, or 25 V <strong>in</strong> wet conditions.Special care should be taken at <strong>the</strong> boundaries of equipotential areas to avoid steeppotential gradients on <strong>the</strong> surface of <strong>the</strong> ground which give rise to dangerous “steppotentials”.This question is closely related to <strong>the</strong> safe earth<strong>in</strong>g of boundary fences and is fur<strong>the</strong>rdiscussed <strong>in</strong> Sub-clause 3.1.B111.2 Different MV service connectionsAccord<strong>in</strong>g to <strong>the</strong> type of medium-voltage network, <strong>the</strong> follow<strong>in</strong>g supply arrangementsare commonly adopted.Fig. B11 : S<strong>in</strong>gle-l<strong>in</strong>e serviceS<strong>in</strong>gle-l<strong>in</strong>e serviceThe substation is supplied by a s<strong>in</strong>gle circuit tee-off from a MV distributor (cable orl<strong>in</strong>e).In general, <strong>the</strong> MV service is connected <strong>in</strong>to a panel conta<strong>in</strong><strong>in</strong>g a load-break/isolat<strong>in</strong>g switch-fuse comb<strong>in</strong>ation and earth<strong>in</strong>g switches, as shown <strong>in</strong> Figure B11.In some countries a pole-mounted transformer with no MV switchgear or fuses(at <strong>the</strong> pole) constitutes <strong>the</strong> “substation”. This type of MV service is very common <strong>in</strong>rural areas.Protection and switch<strong>in</strong>g devices are remote from <strong>the</strong> transformer, and generallycontrol a ma<strong>in</strong> overhead l<strong>in</strong>e, from which a number of <strong>the</strong>se elementary service l<strong>in</strong>esare tapped.Underground cabler<strong>in</strong>g ma<strong>in</strong>Fig. B12 : R<strong>in</strong>g-ma<strong>in</strong> service(1) Copper is cathodic to most o<strong>the</strong>r metals and <strong>the</strong>reforeresists corrosion.(2) A r<strong>in</strong>g ma<strong>in</strong> is a cont<strong>in</strong>uous distributor <strong>in</strong> <strong>the</strong> form of aclosed loop, which orig<strong>in</strong>ates and term<strong>in</strong>ates on one set ofbusbars. Each end of <strong>the</strong> loop is controlled by its own circuitbreaker.In order to improve operational flexibility <strong>the</strong> busbarsare often divided <strong>in</strong>to two sections by a normally closed bussectioncircuit-breaker, and each end of <strong>the</strong> r<strong>in</strong>g is connectedto a different section.An <strong>in</strong>terconnector is a cont<strong>in</strong>uous untapped feeder connect<strong>in</strong>g<strong>the</strong> busbars of two substations. Each end of <strong>the</strong> <strong>in</strong>terconnectoris usually controlled by a circuit beaker.An <strong>in</strong>terconnector-distributor is an <strong>in</strong>terconnector whichsupplies one or more distribution substations along its length.R<strong>in</strong>g-ma<strong>in</strong> serviceR<strong>in</strong>g-ma<strong>in</strong> units (RMU) are normally connected to form a MV r<strong>in</strong>g ma<strong>in</strong> (2) or<strong>in</strong>terconnector-distributor (2) , such that <strong>the</strong> RMU busbars carry <strong>the</strong> full r<strong>in</strong>g-ma<strong>in</strong> or<strong>in</strong>terconnector current (see Fig. B12).The RMU consists of three units, <strong>in</strong>tegrated to form a s<strong>in</strong>gle assembly, viz:b 2 <strong>in</strong>com<strong>in</strong>g units, each conta<strong>in</strong><strong>in</strong>g a load break/isolat<strong>in</strong>g switch and a circuitearth<strong>in</strong>g switchb 1 outgo<strong>in</strong>g and general protection unit, conta<strong>in</strong><strong>in</strong>g a load-break switch andMV fuses, or a comb<strong>in</strong>ed load-break/fuse switch, or a circuit-breaker and isolat<strong>in</strong>gswitch, toge<strong>the</strong>r with a circuit-earth<strong>in</strong>g switch <strong>in</strong> each case.All load-break switches and earth<strong>in</strong>g switches are fully rated for short-circuit currentmak<strong>in</strong>gduty.This arrangement provides <strong>the</strong> user with a two-source supply, <strong>the</strong>reby reduc<strong>in</strong>gconsiderably any <strong>in</strong>terruption of service due to system faults or operations by <strong>the</strong>supply authority, etc.The ma<strong>in</strong> application for RMUs is <strong>in</strong> utility supply MV underground-cable networks <strong>in</strong>urban areas.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network1 Supply of power at mediumvoltageB12Parallel feeders serviceWhere a MV supply connection to two l<strong>in</strong>es or cables orig<strong>in</strong>at<strong>in</strong>g from <strong>the</strong> samebusbar of a substation is possible, a similar MV switchboard to that of a RMU iscommonly used (see Fig. B13).The ma<strong>in</strong> operational difference between this arrangement and that of a RMU is that<strong>the</strong> two <strong>in</strong>com<strong>in</strong>g panels are mutually <strong>in</strong>terlocked, such that one <strong>in</strong>com<strong>in</strong>g switch onlycan be closed at a time, i.e. its closure prevents <strong>the</strong> closure of <strong>the</strong> o<strong>the</strong>r.On <strong>the</strong> loss of power supply, <strong>the</strong> closed <strong>in</strong>com<strong>in</strong>g switch must be opened and <strong>the</strong>(formerly open) switch can <strong>the</strong>n be closed.The sequence may be carried out manually or automatically.This type of switchboard is used particularly <strong>in</strong> networks of medium-load density and<strong>in</strong> rapidly-expand<strong>in</strong>g urban areas supplied by MV underground cable systems.1.3 Some operational aspects of MV distributionnetworks© Schneider Electric - all rights reservedParalleled undergroundcable distributorsFig. B13 : Parallel feeders serviceOverhead l<strong>in</strong>esMedium w<strong>in</strong>ds, ice formation, etc., can cause <strong>the</strong> conductors of overhead l<strong>in</strong>es totouch each o<strong>the</strong>r, <strong>the</strong>reby caus<strong>in</strong>g a momentary (i.e. not permanent) short-circuitfault.Insulation failure due to broken ceramic or glass <strong>in</strong>sulators, caused by air-bornedebris; careless use of shot-guns, etc., or aga<strong>in</strong>, heavily polluted <strong>in</strong>sulator surfaces,can result <strong>in</strong> a short-circuit to earth.Many of <strong>the</strong>se faults are self-clear<strong>in</strong>g. For example, <strong>in</strong> dry conditions, broken<strong>in</strong>sulators can very often rema<strong>in</strong> <strong>in</strong> service undetected, but are likely to flashover toearth (e.g. to a metal support<strong>in</strong>g structure) dur<strong>in</strong>g a ra<strong>in</strong>storm. Moreover, pollutedsurfaces generally cause a flashover to earth only <strong>in</strong> damp conditions.The passage of fault current almost <strong>in</strong>variably takes <strong>the</strong> form of an electric arc, <strong>the</strong><strong>in</strong>tense heat of which dries <strong>the</strong> current path, and to some extent, re-establishes its<strong>in</strong>sulat<strong>in</strong>g properties. In <strong>the</strong> meantime, protective devices have usually operated toclear <strong>the</strong> fault, i.e. fuses have blown or a circuit-breaker has tripped.Experience has shown that <strong>in</strong> <strong>the</strong> large majority of cases, restoration of supply byreplac<strong>in</strong>g fuses or by re-clos<strong>in</strong>g a circuit-breaker will be successful.For this reason it has been possible to considerably improve <strong>the</strong> cont<strong>in</strong>uity of serviceon MV overhead-l<strong>in</strong>e distribution networks by <strong>the</strong> application of automatic circuitbreakerreclos<strong>in</strong>g schemes at <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> circuits concerned.These automatic schemes permit a number of reclos<strong>in</strong>g operations if a first attemptfails, with adjustable time delays between successive attempts (to allow de-ionizationof <strong>the</strong> air at <strong>the</strong> fault) before a f<strong>in</strong>al lock-out of <strong>the</strong> circuit-breaker occurs, after all(generally three) attempts fail.O<strong>the</strong>r improvements <strong>in</strong> service cont<strong>in</strong>uity are achieved by <strong>the</strong> use of remotelycontrolledsection switches and by automatic isolat<strong>in</strong>g switches which operate <strong>in</strong>conjunction with an auto-reclos<strong>in</strong>g circuit-breaker.This last scheme is exemplified by <strong>the</strong> f<strong>in</strong>al sequence shown <strong>in</strong> Figure B14 nextpage.The pr<strong>in</strong>ciple is as follows: if, after two reclos<strong>in</strong>g attempts, <strong>the</strong> circuit-breaker trips,<strong>the</strong> fault is assumed to be permanent, <strong>the</strong>n <strong>the</strong>re are two possibilities:b The fault is on <strong>the</strong> section downstream <strong>the</strong> Automatic L<strong>in</strong>e Switch, and while <strong>the</strong>feeder is dead <strong>the</strong> ALS opens to isolate this section of <strong>the</strong> network, before <strong>the</strong> third(and f<strong>in</strong>al) reclos<strong>in</strong>g takes place,b The fault is on <strong>the</strong> section upstream <strong>the</strong> ALS and <strong>the</strong> circuit-breaker will make athird reclos<strong>in</strong>g attempt and thus trip and lock out.While <strong>the</strong>se measures have greatly improved <strong>the</strong> reliability of supplies fromMV overhead l<strong>in</strong>e systems, <strong>the</strong> consumers must, where considered necessary, make<strong>the</strong>ir own arrangements to counter <strong>the</strong> effects of momentary <strong>in</strong>terruptions to supply(between reclosures), for example:b Un<strong>in</strong>terruptible standby emergency powerb Light<strong>in</strong>g that requires no cool<strong>in</strong>g down before re-strik<strong>in</strong>g (“hot restrike”).Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network1 Supply of power at mediumvoltageB13O21- Cycle 1SRI O1 fI o15 to 30 sI nSRO3fault0.3 s 0.4 sPermanent fault2 - Cycle 2SRa - Fault on ma<strong>in</strong> feederI O1fO2SR1O3SR2O4I nI o0.3 s 0.4 s15 to 30s15 to 30 sfault0.4 sPermanent fault0.45 sb - Fault on section supplied through Automatic L<strong>in</strong>e SwitchI fO1O2SR1 O3I n15 to 30 s15 to 30 sSR2I oFault0.3 s 0.4 s0.4 sOpen<strong>in</strong>g of ALSFig. B14 : Automatic reclos<strong>in</strong>g cycles of a circuit-breaker controll<strong>in</strong>g a radial MV feederUnderground cable networksFaults on underground cable networks are sometimes <strong>the</strong> result of carelessworkmanship by cable jo<strong>in</strong>ters or by cable lay<strong>in</strong>g contractors, etc., but are morecommonly due to damage from tools such as pick-axes, pneumatic drills and trenchexcavat<strong>in</strong>g mach<strong>in</strong>es, and so on, used by o<strong>the</strong>r utilities.Insulation failures sometimes occur <strong>in</strong> cable term<strong>in</strong>at<strong>in</strong>g boxes due to overvoltage,particularly at po<strong>in</strong>ts <strong>in</strong> a MV system where an overhead l<strong>in</strong>e is connected to anunderground cable. The overvoltage <strong>in</strong> such a case is generally of atmosphericorig<strong>in</strong>, and electromagnetic-wave reflection effects at <strong>the</strong> jo<strong>in</strong>t box (where <strong>the</strong> naturalimpedance of <strong>the</strong> circuit changes abruptly) can result <strong>in</strong> overstress<strong>in</strong>g of <strong>the</strong> cablebox<strong>in</strong>sulation to <strong>the</strong> po<strong>in</strong>t of failure. Overvoltage protection devices, such as lightn<strong>in</strong>garresters, are frequently <strong>in</strong>stalled at <strong>the</strong>se locations.Faults occurr<strong>in</strong>g <strong>in</strong> cable networks are less frequent than those on overhead (O/H)l<strong>in</strong>e systems, but are almost <strong>in</strong>variably permanent faults, which require more time forlocalization and repair than those on O/H l<strong>in</strong>es.Where a cable fault occurs on a r<strong>in</strong>g, supply can be quickly restored to all consumerswhen <strong>the</strong> faulty section of cable has been determ<strong>in</strong>ed.If, however, <strong>the</strong> fault occurs on a radial feeder, <strong>the</strong> delay <strong>in</strong> locat<strong>in</strong>g <strong>the</strong> fault andcarry<strong>in</strong>g out repair work can amount to several hours, and will affect all consumersdownstream of <strong>the</strong> fault position. In any case, if supply cont<strong>in</strong>uity is essential on all,or part of, an <strong>in</strong>stallation, a standby source must be provided.Centralized remote control, based on SCADA(Supervisory Control And Data Acquisition)systems and recent developments <strong>in</strong> IT(Information Technology) techniques, isbecom<strong>in</strong>g more and more common <strong>in</strong> countries<strong>in</strong> which <strong>the</strong> complexity of highly <strong>in</strong>terconnectedsystems justifies <strong>the</strong> expenditure.Remote control of MV networksRemote control on MV feeders is useful to reduce outage durations <strong>in</strong> case of cablefault by provid<strong>in</strong>g an efficient and fast mean for loop configuration. This is achievedby motor operated switches implemented <strong>in</strong> some of <strong>the</strong> substations along <strong>the</strong> loopassociated with relevant remote telecontrol units. Remote controled substation willalways be reenergized through telecontroled operation when <strong>the</strong> o<strong>the</strong>r ones couldhave to wait for fur<strong>the</strong>r manual operation.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network2 Procedure for <strong>the</strong> establishmentof a new substationB14Large consumers of electricity are <strong>in</strong>variably supplied at MV.On LV systems operat<strong>in</strong>g at 120/208 V (3-phase 4-wires), a load of 50 kVA might beconsidered to be “large”, while on a 240/415 V 3-phase system a “large” consumercould have a load <strong>in</strong> excess of 100 kVA. Both systems of LV distribution are common<strong>in</strong> many parts of <strong>the</strong> world.As a matter of <strong>in</strong>terest, <strong>the</strong> IEC recommends a “world” standard of 230/400 V for3-phase 4-wire systems. This is a compromise level and will allow exist<strong>in</strong>g systemswhich operate at 220/380 V and at 240/415 V, or close to <strong>the</strong>se values, to complywith <strong>the</strong> proposed standard simply by adjust<strong>in</strong>g <strong>the</strong> off-circuit tapp<strong>in</strong>g switches ofstandard distribution transformers.The distance over which <strong>the</strong> <strong>energy</strong> has to be transmitted is a fur<strong>the</strong>r factor <strong>in</strong>consider<strong>in</strong>g an MV or LV service. Services to small but isolated rural consumers areobvious examples.The decision of a MV or LV supply will depend on local circumstances andconsiderations such as those mentioned above, and will generally be imposed by <strong>the</strong>utility for <strong>the</strong> district concerned.When a decision to supply power at MV has been made, <strong>the</strong>re are two widelyfollowedmethods of proceed<strong>in</strong>g:1 - The power-supplier constructs a standard substation close to <strong>the</strong> consumer’spremises, but <strong>the</strong> MV/LV transformer(s) is (are) located <strong>in</strong> transformer chamber(s)<strong>in</strong>side <strong>the</strong> premises, close to <strong>the</strong> load centre2 - The consumer constructs and equips his own substation on his own premises, towhich <strong>the</strong> power supplier makes <strong>the</strong> MV connectionIn method no. 1 <strong>the</strong> power supplier owns <strong>the</strong> substation, <strong>the</strong> cable(s) to <strong>the</strong>transformer(s), <strong>the</strong> transformer(s) and <strong>the</strong> transformer chamber(s), to which he hasunrestricted access.The transformer chamber(s) is (are) constructed by <strong>the</strong> consumer (to plans andregulations provided by <strong>the</strong> supplier) and <strong>in</strong>clude pl<strong>in</strong>ths, oil dra<strong>in</strong>s, fire walls andceil<strong>in</strong>gs, ventilation, light<strong>in</strong>g, and earth<strong>in</strong>g systems, all to be approved by <strong>the</strong> supplyauthority.The tariff structure will cover an agreed part of <strong>the</strong> expenditure required to provide<strong>the</strong> service.Whichever procedure is followed, <strong>the</strong> same pr<strong>in</strong>ciples apply <strong>in</strong> <strong>the</strong> conception andrealization of <strong>the</strong> project. The follow<strong>in</strong>g notes refer to procedure no. 2.© Schneider Electric - all rights reservedThe consumer must provide certa<strong>in</strong> data to <strong>the</strong>utility at <strong>the</strong> earliest stage of <strong>the</strong> project.2.1 Prelim<strong>in</strong>ary <strong>in</strong>formationBefore any negotiations or discussions can be <strong>in</strong>itiated with <strong>the</strong> supply authorities,<strong>the</strong> follow<strong>in</strong>g basic elements must be established:Maximum anticipated power (kVA) demandDeterm<strong>in</strong>ation of this parameter is described <strong>in</strong> Chapter A, and must take <strong>in</strong>toaccount <strong>the</strong> possibility of future additional load requirements. Factors to evaluate atthis stage are:b The utilization factor (ku)b The simultaneity factor (ks)Layout plans and elevations show<strong>in</strong>g location of proposed substationPlans should <strong>in</strong>dicate clearly <strong>the</strong> means of access to <strong>the</strong> proposed substation, withdimensions of possible restrictions, e.g. entrances corridors and ceil<strong>in</strong>g height,toge<strong>the</strong>r with possible load (weight) bear<strong>in</strong>g limits, and so on, keep<strong>in</strong>g <strong>in</strong> m<strong>in</strong>d that:b The power-supply personnel must have free and unrestricted access to <strong>the</strong>MV equipment <strong>in</strong> <strong>the</strong> substation at all timesb Only qualified and authorized consumer’s personnel are allowed access to <strong>the</strong>substationb Some supply authorities or regulations require that <strong>the</strong> part of <strong>the</strong> <strong>in</strong>stallation operatedby <strong>the</strong> authority is located <strong>in</strong> a separated room from <strong>the</strong> part operated by <strong>the</strong> customer.Degree of supply cont<strong>in</strong>uity requiredThe consumer must estimate <strong>the</strong> consequences of a supply failure <strong>in</strong> terms of itsduration:b Loss of productionb Safety of personnel and equipmentSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network2 Procedure for <strong>the</strong> establishmentof a new substationThe utility must give specific <strong>in</strong>formation to <strong>the</strong>prospective consumer.2.2 Project studiesFrom <strong>the</strong> <strong>in</strong>formation provided by <strong>the</strong> consumer, <strong>the</strong> power-supplier must <strong>in</strong>dicate:The type of power supply proposed, and def<strong>in</strong>e:b The k<strong>in</strong>d of power-supply system: overheadl<strong>in</strong>e or underground-cable networkb Service connection details: s<strong>in</strong>gle-l<strong>in</strong>e service, r<strong>in</strong>g-ma<strong>in</strong> <strong>in</strong>stallation, or parallelfeeders, etc.b Power (kVA) limit and fault current levelThe nom<strong>in</strong>al voltage and rated voltage (Highest voltage for equipment)Exist<strong>in</strong>g or future, depend<strong>in</strong>g on <strong>the</strong> development of <strong>the</strong> system.Meter<strong>in</strong>g details which def<strong>in</strong>e:b The cost of connection to <strong>the</strong> power networkb Tariff details (consumption and stand<strong>in</strong>g charges)B15The utility must give official approval of <strong>the</strong>equipment to be <strong>in</strong>stalled <strong>in</strong> <strong>the</strong> substation,and of proposed methods of <strong>in</strong>stallation.2.3 ImplementationBefore any <strong>in</strong>stallation work is started, <strong>the</strong> official agreement of <strong>the</strong> power-suppliermust be obta<strong>in</strong>ed. The request for approval must <strong>in</strong>clude <strong>the</strong> follow<strong>in</strong>g <strong>in</strong>formation,largely based on <strong>the</strong> prelim<strong>in</strong>ary exchanges noted above:b Location of <strong>the</strong> proposed substationb S<strong>in</strong>gle-l<strong>in</strong>e diagram of power circuits and connections, toge<strong>the</strong>r with earth<strong>in</strong>gcircuitproposalsb Full details of electrical equipment to be <strong>in</strong>stalled, <strong>in</strong>clud<strong>in</strong>g performancecharacteristicsb Layout of equipment and provision for meter<strong>in</strong>g componentsb Arrangements for power-factor improvement if requiredb Arrangements provided for emergency standby power plant (MV or LV) if eventuallyrequiredAfter test<strong>in</strong>g and check<strong>in</strong>g of <strong>the</strong> <strong>in</strong>stallation byan <strong>in</strong>dependent test authority, a certificate isgranted which permits <strong>the</strong> substation to be put<strong>in</strong>to service.2.4 Commission<strong>in</strong>gWhen required by <strong>the</strong> authority, commission<strong>in</strong>g tests must be successfully completedbefore authority is given to energize <strong>the</strong> <strong>in</strong>stallation from <strong>the</strong> power supply system.Even if no test is required by <strong>the</strong> authority it is better to do <strong>the</strong> follow<strong>in</strong>g verification tests:b Measurement of earth-electrode resistancesb Cont<strong>in</strong>uity of all equipotential earth-and safety bond<strong>in</strong>g conductorsb Inspection and functional test<strong>in</strong>g of all MV componentsb Insulation checks of MV equipmentb Dielectric strength test of transformer oil (and switchgear oil if appropriate), ifapplicableb Inspection and test<strong>in</strong>g of <strong>the</strong> LV <strong>in</strong>stallation <strong>in</strong> <strong>the</strong> substationb Checks on all <strong>in</strong>terlocks (mechanical key and electrical) and on all automaticsequencesb Checks on correct protective-relay operation and sett<strong>in</strong>gsIt is also imperative to check that all equipment is provided, such that any properlyexecuted operation can be carried out <strong>in</strong> complete safety. On receipt of <strong>the</strong> certificateof conformity (if required):b Personnel of <strong>the</strong> power-supply authority will energize <strong>the</strong> MV equipment and checkfor correct operation of <strong>the</strong> meter<strong>in</strong>gb The <strong>in</strong>stallation contractor is responsible for test<strong>in</strong>g and connection of <strong>the</strong>LV <strong>in</strong>stallationWhen f<strong>in</strong>ally <strong>the</strong> substation is operational:b The substation and all equipment belongs to <strong>the</strong> consumerb The power-supply authority has operational control over all MV switchgear <strong>in</strong> <strong>the</strong>substation, e.g. <strong>the</strong> two <strong>in</strong>com<strong>in</strong>g load-break switches and <strong>the</strong> transformer MV switch(or CB) <strong>in</strong> <strong>the</strong> case of a R<strong>in</strong>gMa<strong>in</strong>Unit, toge<strong>the</strong>r with all associated MV earth<strong>in</strong>g switchesb The power-supply personnel has unrestricted access to <strong>the</strong> MV equipmentb The consumer has <strong>in</strong>dependent control of <strong>the</strong> MV switch (or CB) of <strong>the</strong> transformer(s)only, <strong>the</strong> consumer is responsible for <strong>the</strong> ma<strong>in</strong>tenance of all substation equipment,and must request <strong>the</strong> power-supply authority to isolate and earth <strong>the</strong> switchgear toallow ma<strong>in</strong>tenance work to proceed. The power supplier must issue a signed permitto-workto <strong>the</strong> consumers ma<strong>in</strong>tenance personnel, toge<strong>the</strong>r with keys of locked-offisolators, etc. at which <strong>the</strong> isolation has been carried out.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network3 Protection aspectB16The subject of protection <strong>in</strong> <strong>the</strong> electrical power <strong>in</strong>dustry is vast: it covers all aspectsof safety for personnel, and protection aga<strong>in</strong>st damage or destruction of property,plant, and equipment.These different aspects of protection can be broadly classified accord<strong>in</strong>g to <strong>the</strong>follow<strong>in</strong>g objectives:b Protection of personnel and animals aga<strong>in</strong>st <strong>the</strong> dangers of overvoltages andelectric shock, fire, explosions, and toxic gases, etc.b Protection of <strong>the</strong> plant, equipment and components of a power system aga<strong>in</strong>st<strong>the</strong> stresses of short-circuit faults, atmospheric surges (lightn<strong>in</strong>g) and power-system<strong>in</strong>stability (loss of synchronism) etc.b Protection of personnel and plant from <strong>the</strong> dangers of <strong>in</strong>correct power-systemoperation, by <strong>the</strong> use of electrical and mechanical <strong>in</strong>terlock<strong>in</strong>g. All classes ofswitchgear (<strong>in</strong>clud<strong>in</strong>g, for example, tap-position selector switches on transformers,and so on...) have well-def<strong>in</strong>ed operat<strong>in</strong>g limits. This means that <strong>the</strong> order <strong>in</strong> which<strong>the</strong> different k<strong>in</strong>ds of switch<strong>in</strong>g device can be safely closed or opened is vitallyimportant. Interlock<strong>in</strong>g keys and analogous electrical control circuits are frequentlyused to ensure strict compliance with correct operat<strong>in</strong>g sequences.It is beyond <strong>the</strong> scope of a guide to describe <strong>in</strong> full technical detail <strong>the</strong> numerousschemes of protection available to power-systems eng<strong>in</strong>eers, but it is hoped that <strong>the</strong>follow<strong>in</strong>g sections will prove to be useful through a discussion of general pr<strong>in</strong>ciples.While some of <strong>the</strong> protective devices mentioned are of universal application,descriptions generally will be conf<strong>in</strong>ed to those <strong>in</strong> common use on MV andLV systems only, as def<strong>in</strong>ed <strong>in</strong> Sub-clause 1.1 of this Chapter.Protection aga<strong>in</strong>st electric shocks andovervoltages is closely related to <strong>the</strong>achievement of efficient (low resistance)earth<strong>in</strong>g and effective application of <strong>the</strong>pr<strong>in</strong>ciples of equipotential environments.3.1 Protection aga<strong>in</strong>st electric shocksProtective measures aga<strong>in</strong>st electric shock are based on two common dangers:b Contact with an active conductor, i.e. which is live with respect to earth <strong>in</strong> normalcircumstances. This is referred to as a “direct contact” hazard.b Contact with a conductive part of an apparatus which is normally dead, but whichhas become live due to <strong>in</strong>sulation failure <strong>in</strong> <strong>the</strong> apparatus. This is referred to as an“<strong>in</strong>direct contact” hazard.It may be noted that a third type of shock hazard can exist <strong>in</strong> <strong>the</strong> proximity of MV orLV (or mixed) earth electrodes which are pass<strong>in</strong>g earth-fault currents. This hazardis due to potential gradients on <strong>the</strong> surface of <strong>the</strong> ground and is referred to as a“step-voltage” hazard; shock current enters one foot and leaves by <strong>the</strong> o<strong>the</strong>r foot, andis particular dangerous for four-legged animals. A variation of this danger, known asa “touch voltage” hazard can occur, for <strong>in</strong>stance, when an ear<strong>the</strong>d metallic part issituated <strong>in</strong> an area <strong>in</strong> which potential gradients exist.Touch<strong>in</strong>g <strong>the</strong> part would cause current to pass through <strong>the</strong> hand and both feet.Animals with a relatively long front-to-h<strong>in</strong>d legs span are particularly sensitive tostep-voltage hazards and cattle have been killed by <strong>the</strong> potential gradients caused bya low voltage (230/400 V) neutral earth electrode of <strong>in</strong>sufficiently low resistance.Potential-gradient problems of <strong>the</strong> k<strong>in</strong>d mentioned above are not normallyencountered <strong>in</strong> electrical <strong>in</strong>stallations of build<strong>in</strong>gs, provid<strong>in</strong>g that equipotentialconductors properly bond all exposed metal parts of equipment and all extraneousmetal (i.e. not part of an electrical apparatus or <strong>the</strong> <strong>in</strong>stallation - for examplestructural steelwork, etc.) to <strong>the</strong> protective-earth<strong>in</strong>g conductor.© Schneider Electric - all rights reservedDirect-contact protection or basic protectionThe ma<strong>in</strong> form of protection aga<strong>in</strong>st direct contact hazards is to conta<strong>in</strong> all live parts<strong>in</strong> hous<strong>in</strong>gs of <strong>in</strong>sulat<strong>in</strong>g material or <strong>in</strong> metallic ear<strong>the</strong>d hous<strong>in</strong>gs, by plac<strong>in</strong>g out ofreach (beh<strong>in</strong>d <strong>in</strong>sulated barriers or at <strong>the</strong> top of poles) or by means of obstacles.Where <strong>in</strong>sulated live parts are housed <strong>in</strong> a metal envelope, for example transformers,electric motors and many domestic appliances, <strong>the</strong> metal envelope is connected to<strong>the</strong> <strong>in</strong>stallation protective earth<strong>in</strong>g system.For MV switchgear, <strong>the</strong> IEC standard 62271-200 (Prefabricated Metal Enclosedswitchgear and controlgear for voltages up to 52 kV) specifies a m<strong>in</strong>imum ProtectionIndex (IP cod<strong>in</strong>g) of IP2X which ensures <strong>the</strong> direct-contact protection. Fur<strong>the</strong>rmore,<strong>the</strong> metallic enclosure has to demonstrate an electrical cont<strong>in</strong>uity, <strong>the</strong>n establish<strong>in</strong>ga good segregation between <strong>in</strong>side and ouside of <strong>the</strong> enclosure. Proper ground<strong>in</strong>g of<strong>the</strong> enclosure fur<strong>the</strong>r participates to <strong>the</strong> electrical protection of <strong>the</strong> operators undernormal operat<strong>in</strong>g conditions.For LV appliances this is achieved through <strong>the</strong> third p<strong>in</strong> of a 3-p<strong>in</strong> plug and socket.Total or even partial failure of <strong>in</strong>sulation to <strong>the</strong> metal, can raise <strong>the</strong> voltage of <strong>the</strong>envelope to a dangerous level (depend<strong>in</strong>g on <strong>the</strong> ratio of <strong>the</strong> resistance of <strong>the</strong> leakagepath through <strong>the</strong> <strong>in</strong>sulation, to <strong>the</strong> resistance from <strong>the</strong> metal envelope to earth).Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network3 Protection aspectIndirect-contact protection or fault protectionA person touch<strong>in</strong>g <strong>the</strong> metal envelope of an apparatus with a faulty <strong>in</strong>sulation, asdescribed above, is said to be mak<strong>in</strong>g an <strong>in</strong>direct contact.An <strong>in</strong>direct contact is characterized by <strong>the</strong> fact that a current path to earth exists(through <strong>the</strong> protective earth<strong>in</strong>g (PE) conductor) <strong>in</strong> parallel with <strong>the</strong> shock currentthrough <strong>the</strong> person concerned.Case of fault on L.V. systemExtensive tests have shown that, provid<strong>in</strong>g <strong>the</strong> potential of <strong>the</strong> metal envelope is notgreater than 50 V with respect to earth, or to any conductive material with<strong>in</strong> reach<strong>in</strong>gdistance, no danger exists.Indirect-contact hazard <strong>in</strong> <strong>the</strong> case of a MV faultIf <strong>the</strong> <strong>in</strong>sulation failure <strong>in</strong> an apparatus is between a MV conductor and <strong>the</strong> metalenvelope, it is not generally possible to limit <strong>the</strong> rise of voltage of <strong>the</strong> envelope to50 V or less, simply by reduc<strong>in</strong>g <strong>the</strong> earth<strong>in</strong>g resistance to a low value. The solution<strong>in</strong> this case is to create an equipotential situation, as described <strong>in</strong> Sub-clause 1.1“Earth<strong>in</strong>g systems”.B173.2 Protection of transformer and circuitsGeneralThe electrical equipment and circuits <strong>in</strong> a substation must be protected <strong>in</strong> orderto avoid or to control damage due to abnormal currents and/or voltages. Allequipment normally used <strong>in</strong> power system <strong>in</strong>stallations have standardized short-timewithstand rat<strong>in</strong>gs for overcurrent and overvoltage. The role of protective scheme isto ensure that this withstand limits can never be exceeded. In general, this meansthat fault conditions must be cleared as fast as possible without miss<strong>in</strong>g to ensurecoord<strong>in</strong>ation between protective devices upstream and downstream <strong>the</strong> equipementto be protected. This means, when <strong>the</strong>re is a fault <strong>in</strong> a network, generally severalprotective devices see <strong>the</strong> fault at <strong>the</strong> same time but only one must act.These devices may be:b Fuses which clear <strong>the</strong> faulty circuit directly or toge<strong>the</strong>r with a mechanical tripp<strong>in</strong>gattachment, which opens an associated three-phase load-break switchb Relays which act <strong>in</strong>directly on <strong>the</strong> circuit-breaker coilTransformer protectionStresses due to <strong>the</strong> supply networkSome voltage surges can occur on <strong>the</strong> network such as :b Atmospheric voltage surgesAtmospheric voltage surges are caused by a stroke of lightn<strong>in</strong>g fall<strong>in</strong>g on or near anoverhead l<strong>in</strong>e.b Operat<strong>in</strong>g voltage surgesA sudden change <strong>in</strong> <strong>the</strong> established operat<strong>in</strong>g conditions <strong>in</strong> an electrical networkcauses transient phenomena to occur. This is generally a high frequency or dampedoscillation voltage surge wave.For both voltage surges, <strong>the</strong> overvoltage protection device generally used is avaristor (Z<strong>in</strong>c Oxide).In most cases, voltage surges protection has no action on switchgear.Stresses due to <strong>the</strong> loadOverload<strong>in</strong>g is frequently due to <strong>the</strong> co<strong>in</strong>cidental demand of a number of smallloads, or to an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> apparent power (kVA) demand of <strong>the</strong> <strong>in</strong>stallation,due to expansion <strong>in</strong> a factory, with consequent build<strong>in</strong>g extensions, and so on. Load<strong>in</strong>creases raise <strong>the</strong> temperature of <strong>the</strong> wir<strong>in</strong>gs and of <strong>the</strong> <strong>in</strong>sulation material. Asa result, temperature <strong>in</strong>creases <strong>in</strong>volve a reduction of <strong>the</strong> equipment work<strong>in</strong>g life.Overload protection devices can be located on primary or secondary side of <strong>the</strong>transformer.The protection aga<strong>in</strong>st overload<strong>in</strong>g of a transformer is now provided by a digital relaywhich acts to trip <strong>the</strong> circuit-breaker on <strong>the</strong> secondary side of <strong>the</strong> transformer. Suchrelay, generally called <strong>the</strong>rmal overload relay, artificially simulates <strong>the</strong> temperature,tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> time constant of <strong>the</strong> transformer. Some of <strong>the</strong>m are able totake <strong>in</strong>to account <strong>the</strong> effect of harmonic currents due to non l<strong>in</strong>ear loads (rectifiers,computer equipment, variable speed drives…).This type of relay is also able topredict <strong>the</strong> time before overload tripp<strong>in</strong>g and <strong>the</strong> wait<strong>in</strong>g time after tripp<strong>in</strong>g. So, this<strong>in</strong>formation is very helpful to control load shedd<strong>in</strong>g operation.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network3 Protection aspectB18In addition, larger oil-immersed transformers frequently have <strong>the</strong>rmostats with twosett<strong>in</strong>gs, one for alarm purposes and <strong>the</strong> o<strong>the</strong>r for tripp<strong>in</strong>g.Dry-type transformers use heat sensors embedded <strong>in</strong> <strong>the</strong> hottest part of <strong>the</strong> w<strong>in</strong>d<strong>in</strong>gs<strong>in</strong>sulation for alarm and tripp<strong>in</strong>g.Internal faultsThe protection of transformers by transformer-mounted devices, aga<strong>in</strong>st <strong>the</strong> effectsof <strong>in</strong>ternal faults, is provided on transformers which are fitted with airbreath<strong>in</strong>gconservator tanks by <strong>the</strong> classical Buchholz mechanical relay (see Fig. B15). Theserelays can detect a slow accumulation of gases which results from <strong>the</strong> arc<strong>in</strong>g of<strong>in</strong>cipient faults <strong>in</strong> <strong>the</strong> w<strong>in</strong>d<strong>in</strong>g <strong>in</strong>sulation or from <strong>the</strong> <strong>in</strong>gress of air due to an oil leak.This first level of detection generally gives an alarm, but if <strong>the</strong> condition deterioratesfur<strong>the</strong>r, a second level of detection will trip <strong>the</strong> upstream circuit-breaker.An oil-surge detection feature of <strong>the</strong> Buchholz relay will trip <strong>the</strong> upstream circuitbreaker“<strong>in</strong>stantaneously” if a surge of oil occurs <strong>in</strong> <strong>the</strong> pipe connect<strong>in</strong>g <strong>the</strong> ma<strong>in</strong> tankwith <strong>the</strong> conservator tank.Such a surge can only occur due to <strong>the</strong> displacement of oil caused by a rapidlyformed bubble of gas, generated by an arc of short-circuit current <strong>in</strong> <strong>the</strong> oil.By specially design<strong>in</strong>g <strong>the</strong> cool<strong>in</strong>g-oil radiator elements to perform a concert<strong>in</strong>g action,“totally filled” types of transformer as large as 10 MVA are now currently available.Fig. B15 : Transformer with conservator tankExpansion of <strong>the</strong> oil is accommodated without an excessive rise <strong>in</strong> pressure by <strong>the</strong>“bellows” effect of <strong>the</strong> radiator elements. A full description of <strong>the</strong>se transformers isgiven <strong>in</strong> Sub-clause 4.4 (see Fig. B16).Evidently <strong>the</strong> Buchholz devices mentioned above cannot be applied to this design; amodern counterpart has been developed however, which measures:b The accumulation of gasb Overpressureb OvertemperatureThe first two conditions trip <strong>the</strong> upstream circuit-breaker, and <strong>the</strong> third condition trips<strong>the</strong> downstream circuit-breaker of <strong>the</strong> transformer.Internal phase-to-phase short-circuitInternal phase-to-phase short-circuit must be detected and cleared by:b 3 fuses on <strong>the</strong> primary side of <strong>the</strong> tranformer orb An overcurrent relay that trips a circuit-breaker upstream of <strong>the</strong> transformerInternal phase-to-earth short-circuitThis is <strong>the</strong> most common type of <strong>in</strong>ternal fault. It must be detected by an earth faultrelay. Earth fault current can be calculated with <strong>the</strong> sum of <strong>the</strong> 3 primary phasecurrents (if 3 current transformers are used) or by a specific core current transformer.If a great sensitivity is needed, specific core current transformer will be prefered. Insuch a case, a two current transformers set is sufficient (see Fig. B17).Fig. B16 : Totally filled transformerProtection of circuitsThe protection of <strong>the</strong> circuits downstream of <strong>the</strong> transformer must comply with <strong>the</strong>IEC 60364 requirements.HV LV123123Discrim<strong>in</strong>ation between <strong>the</strong> protective devices upstream anddownstream of <strong>the</strong> transformerThe consumer-type substation with LV meter<strong>in</strong>g requires discrim<strong>in</strong>ative operationbetween <strong>the</strong> MV fuses or MV circuit-breaker and <strong>the</strong> LV circuit-breaker or fuses.The rat<strong>in</strong>g of <strong>the</strong> MV fuses will be chosen accord<strong>in</strong>g to <strong>the</strong> characteristics of <strong>the</strong>transformer.© Schneider Electric - all rights reservedOvercurrent relay E/F relayFig. B17 : Protection aga<strong>in</strong>st earth fault on <strong>the</strong> MV w<strong>in</strong>d<strong>in</strong>gNThe tripp<strong>in</strong>g characteristics of <strong>the</strong> LV circuit-breaker must be such that, for anoverload or short-circuit condition downstream of its location, <strong>the</strong> breaker will tripsufficiently quickly to ensure that <strong>the</strong> MV fuses or <strong>the</strong> MV circuit-breaker will not beadversely affected by <strong>the</strong> passage of overcurrent through <strong>the</strong>m.The tripp<strong>in</strong>g performance curves for MV fuses or MV circuit-breaker and LV circuitbreakersare given by graphs of time-to-operate aga<strong>in</strong>st current pass<strong>in</strong>g through<strong>the</strong>m. Both curves have <strong>the</strong> general <strong>in</strong>verse-time/current form (with an abruptdiscont<strong>in</strong>uity <strong>in</strong> <strong>the</strong> CB curve at <strong>the</strong> current value above which “<strong>in</strong>stantaneous”tripp<strong>in</strong>g occurs).These curves are shown typically <strong>in</strong> Figure B18.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network3 Protection aspectTimeDCABM<strong>in</strong>imum pre-arc<strong>in</strong>gtime of MV fuseB/A u 1.35 at anymoment <strong>in</strong> timeD/C u 2 at anycurrent valueCircuit breakertripp<strong>in</strong>gcharacteristicCurrentFig. B18 : Discrim<strong>in</strong>ation between MV fuse operation and LVcircuit-breaker tripp<strong>in</strong>g, for transformer protectionU 1 MV LV U 2Fig. B19 : MV fuse and LV circuit-breaker configurationb In order to achieve discrim<strong>in</strong>ation:All parts of <strong>the</strong> fuse or MV circuit-breaker curve must be above and to <strong>the</strong> right of <strong>the</strong>CB curve.b In order to leave <strong>the</strong> fuses unaffected (i.e. undamaged):All parts of <strong>the</strong> m<strong>in</strong>imum pre-arc<strong>in</strong>g fuse curve must be located to <strong>the</strong> right of <strong>the</strong> CBcurve by a factor of 1.35 or more (e.g. where, at time T, <strong>the</strong> CB curve passes througha po<strong>in</strong>t correspond<strong>in</strong>g to 100 A, <strong>the</strong> fuse curve at <strong>the</strong> same time T must pass througha po<strong>in</strong>t correspond<strong>in</strong>g to 135 A, or more, and so on...) and, all parts of <strong>the</strong> fuse curvemust be above <strong>the</strong> CB curve by a factor of 2 or more (e.g. where, at a current level I<strong>the</strong> CB curve passes through a po<strong>in</strong>t correspond<strong>in</strong>g to 1.5 seconds, <strong>the</strong> fuse curveat <strong>the</strong> same current level I must pass through a po<strong>in</strong>t correspond<strong>in</strong>g to 3 seconds, ormore, etc.).The factors 1.35 and 2 are based on standard maximum manufactur<strong>in</strong>g tolerancesfor MV fuses and LV circuit-breakers.In order to compare <strong>the</strong> two curves, <strong>the</strong> MV currents must be converted to <strong>the</strong>equivalent LV currents, or vice-versa.Where a LV fuse-switch is used, similar separation of <strong>the</strong> characteristic curves of <strong>the</strong>MV and LV fuses must be respected.b In order to leave <strong>the</strong> MV circuit-breaker protection untripped:All parts of <strong>the</strong> m<strong>in</strong>imum pre-arc<strong>in</strong>g fuse curve must be located to <strong>the</strong> right of <strong>the</strong>CB curve by a factor of 1.35 or more (e.g. where, at time T, <strong>the</strong> LV CB curve passesthrough a po<strong>in</strong>t correspond<strong>in</strong>g to 100 A, <strong>the</strong> MV CB curve at <strong>the</strong> same time T mustpass through a po<strong>in</strong>t correspond<strong>in</strong>g to 135 A, or more, and so on...) and, all parts of<strong>the</strong> MV CB curve must be above <strong>the</strong> LV CB curve (time of LV CB curve must be lessor equal than MV CB curves m<strong>in</strong>us 0.3 s)The factors 1.35 and 0.3 s are based on standard maximum manufactur<strong>in</strong>gtolerances for MV current transformers, MV protection relay and LV circuit-breakers.In order to compare <strong>the</strong> two curves, <strong>the</strong> MV currents must be converted to <strong>the</strong>equivalent LV currents, or vice-versa.B19Choice of protective device on <strong>the</strong> primary side of <strong>the</strong>transformerAs expla<strong>in</strong>ed before, for low reference current, <strong>the</strong> protection may be by fuses or bycircuit-breaker.When <strong>the</strong> reference current is high, <strong>the</strong> protection will be achieved by circuit-breaker.Protection by circuit-breaker provides a more sensitive transformer protectioncompared with fuses. The implementation of additional protections (earth faultprotection, <strong>the</strong>rmal overload protection) is easier with circuit-breakers.3.3 Interlocks and conditioned operationsMechanical and electrical <strong>in</strong>terlocks are <strong>in</strong>cluded on mechanisms and <strong>in</strong> <strong>the</strong> controlcircuits of apparatus <strong>in</strong>stalled <strong>in</strong> substations, as a measure of protection aga<strong>in</strong>st an<strong>in</strong>correct sequence of manœuvres by operat<strong>in</strong>g personnel.Mechanical protection between functions located on separate equipment(e.g. switchboard and transformer) is provided by key-transfer <strong>in</strong>terlock<strong>in</strong>g.An <strong>in</strong>terlock<strong>in</strong>g scheme is <strong>in</strong>tended to prevent any abnormal operational manœuvre.Some of such operations would expose operat<strong>in</strong>g personnel to danger, some o<strong>the</strong>rswould only lead to an electrical <strong>in</strong>cident.Basic <strong>in</strong>terlock<strong>in</strong>gBasic <strong>in</strong>terlock<strong>in</strong>g functions can be <strong>in</strong>troduced <strong>in</strong> one given functionnal unit; someof <strong>the</strong>se functions are made mandatory by <strong>the</strong> IEC 62271‐200, for metal-enclosedMV switchgear, but some o<strong>the</strong>rs are <strong>the</strong> result of a choice from <strong>the</strong> user.Consider<strong>in</strong>g access to a MV panel, it requires a certa<strong>in</strong> number of operationswhich shall be carried out <strong>in</strong> a pre-determ<strong>in</strong>ed order. It is necessary to carry outoperations <strong>in</strong> <strong>the</strong> reverse order to restore <strong>the</strong> system to its former condition. Ei<strong>the</strong>rproper procedures, or dedicated <strong>in</strong>terlocks, can ensure that <strong>the</strong> required operationsare performed <strong>in</strong> <strong>the</strong> right sequence. Then such accessible compartment will beclassified as “accessible and <strong>in</strong>terlocked” or “accessible by procedure”. Even forusers with proper rigorous procedures, use of <strong>in</strong>terlocks can provide a fur<strong>the</strong>r helpfor safety of <strong>the</strong> operators.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network3 Protection aspectB20Key <strong>in</strong>terlock<strong>in</strong>gBeyond <strong>the</strong> <strong>in</strong>terlocks available with<strong>in</strong> a given functionnal unit (see also 4.2), <strong>the</strong>most widely-used form of lock<strong>in</strong>g/<strong>in</strong>terlock<strong>in</strong>g depends on <strong>the</strong> pr<strong>in</strong>ciple of key transfer.The pr<strong>in</strong>ciple is based on <strong>the</strong> possibility of free<strong>in</strong>g or trapp<strong>in</strong>g one or several keys,accord<strong>in</strong>g to whe<strong>the</strong>r or not <strong>the</strong> required conditions are satisfied.These conditions can be comb<strong>in</strong>ed <strong>in</strong> unique and obligatory sequences, <strong>the</strong>rebyguarantee<strong>in</strong>g <strong>the</strong> safety of personnel and <strong>in</strong>stallation by <strong>the</strong> avoidance of an <strong>in</strong>correctoperational procedure.Non-observance of <strong>the</strong> correct sequence of operations <strong>in</strong> ei<strong>the</strong>r case may haveextremely serious consequences for <strong>the</strong> operat<strong>in</strong>g personnel, as well as for <strong>the</strong>equipment concerned.Note: It is important to provide for a scheme of <strong>in</strong>terlock<strong>in</strong>g <strong>in</strong> <strong>the</strong> basic design stageof plann<strong>in</strong>g a MV/LV substation. In this way, <strong>the</strong> apparatuses concerned will beequipped dur<strong>in</strong>g manufacture <strong>in</strong> a coherent manner, with assured compatibility ofkeys and lock<strong>in</strong>g devices.Service cont<strong>in</strong>uityFor a given MV switchboard, <strong>the</strong> def<strong>in</strong>ition of <strong>the</strong> accessible compartments as wellas <strong>the</strong>ir access conditions provide <strong>the</strong> basis of <strong>the</strong> “Loss of Service Cont<strong>in</strong>uity”classification def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> standard IEC 62271‐200. Use of <strong>in</strong>terlocks or only properprocedure does not have any <strong>in</strong>fluence on <strong>the</strong> service cont<strong>in</strong>uity. Only <strong>the</strong> request foraccess<strong>in</strong>g a given part of <strong>the</strong> switchboard, under normal operation conditions, results<strong>in</strong> limit<strong>in</strong>g conditions which can be more or less severe regard<strong>in</strong>g <strong>the</strong> cont<strong>in</strong>uity of <strong>the</strong>electrical distribution process.Interlocks <strong>in</strong> substationsIn a MV/LV distribution substation which <strong>in</strong>cludes:b A s<strong>in</strong>gle <strong>in</strong>com<strong>in</strong>g MV panel or two <strong>in</strong>com<strong>in</strong>g panels (from parallel feeders) or two<strong>in</strong>com<strong>in</strong>g/outgo<strong>in</strong>g r<strong>in</strong>g-ma<strong>in</strong> panelsb A transformer switchgear-and-protection panel, which can <strong>in</strong>clude a load-break/disconnect<strong>in</strong>g switch with MV fuses and an earth<strong>in</strong>g switch, or a circuit-breaker andl<strong>in</strong>e disconnect<strong>in</strong>g switch toge<strong>the</strong>r with an earth<strong>in</strong>g switchb A transformer compartmentInterlocks allow manœuvres and access to different panels <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g conditions:Basic <strong>in</strong>terlocks, embedded <strong>in</strong> s<strong>in</strong>gle functionnal unitsb Operation of <strong>the</strong> load-break/isolat<strong>in</strong>g switchv If <strong>the</strong> panel door is closed and <strong>the</strong> associated earth<strong>in</strong>g switch is openb Operation of <strong>the</strong> l<strong>in</strong>e-disconnect<strong>in</strong>g switch of <strong>the</strong> transformer switchgear - and- protection panelv If <strong>the</strong> door of <strong>the</strong> panel is closed, andv If <strong>the</strong> circuit-breaker is open, and <strong>the</strong> earth<strong>in</strong>g switch(es) is (are) openb Closure of an earth<strong>in</strong>g switchv If <strong>the</strong> associated isolat<strong>in</strong>g switch(es) is (are) open (1)b Access to an accessible compartment of each panel, if <strong>in</strong>terlocks have beenspecifiedv If <strong>the</strong> isolat<strong>in</strong>g switch for <strong>the</strong> compartment is open and <strong>the</strong> earth<strong>in</strong>g switch(es) for<strong>the</strong> compartment is (are) closedb Closure of <strong>the</strong> door of each accessible compartment, if <strong>in</strong>terlocks have beenspecifiedv If <strong>the</strong> earth<strong>in</strong>g switch(es) for <strong>the</strong> compartment is (are) closedFunctional <strong>in</strong>terlocks <strong>in</strong>volv<strong>in</strong>g several functional units or separate equipmentb Access to <strong>the</strong> term<strong>in</strong>als of a MV/LV transformerv If <strong>the</strong> tee-off functional unit has its switch open and its earth<strong>in</strong>g switch closed.Accord<strong>in</strong>g to <strong>the</strong> possibility of back-feed from <strong>the</strong> LV side, a condition on <strong>the</strong> LV ma<strong>in</strong>breaker can be necessary.© Schneider Electric - all rights reserved(1) If <strong>the</strong> earth<strong>in</strong>g switch is on an <strong>in</strong>com<strong>in</strong>g circuit, <strong>the</strong>associated isolat<strong>in</strong>g switches are those at both ends of <strong>the</strong>circuit, and <strong>the</strong>se should be suitably <strong>in</strong>terlocked. In suchsituation, <strong>the</strong> <strong>in</strong>terlock<strong>in</strong>g function becomes a multi-units key<strong>in</strong>terlock.Practical exampleIn a consumer-type substation with LV meter<strong>in</strong>g, <strong>the</strong> <strong>in</strong>terlock<strong>in</strong>g scheme mostcommonly used is MV/LV/TR (high voltage/ low voltage/transformer).The aim of <strong>the</strong> <strong>in</strong>terlock<strong>in</strong>g is:b To prevent access to <strong>the</strong> transformer compartment if <strong>the</strong> earth<strong>in</strong>g switch has notbeen previously closedb To prevent <strong>the</strong> closure of <strong>the</strong> earth<strong>in</strong>g switch <strong>in</strong> a transformer switchgear-andprotectionpanel, if <strong>the</strong> LV circuit-breaker of <strong>the</strong> transformer has not been previouslylocked “open” or “withdrawn”Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network3 Protection aspectSMV switch and LV CB closedOSMV fuses accessibleSFig. B20 : Example of MV/LV/TR <strong>in</strong>terlock<strong>in</strong>gOOTransformer MV term<strong>in</strong>als accessibleLegendKey absentKey freeKey trappedPanel or doorSSSOAccess to <strong>the</strong> MV or LV term<strong>in</strong>als of a transformer, (protected upstream by aMV switchgear-and-protection panel, conta<strong>in</strong><strong>in</strong>g a MV load-break / isolat<strong>in</strong>gswitch, MV fuses, and a MV earth<strong>in</strong>g switch) must comply with <strong>the</strong> strict proceduredescribed below, and is illustrated by <strong>the</strong> diagrams of Figure B20.Note: The transformer <strong>in</strong> this example is provided with plug-<strong>in</strong> type MV term<strong>in</strong>alconnectors which can only be removed by unlock<strong>in</strong>g a reta<strong>in</strong><strong>in</strong>g device common toall three phase connectors (1) .The MV load-break / disconnect<strong>in</strong>g switch is mechanically l<strong>in</strong>ked with <strong>the</strong>MV earth<strong>in</strong>g switch such that only one of <strong>the</strong> switches can be closed, i.e. closureof one switch automatically locks <strong>the</strong> closure of <strong>the</strong> o<strong>the</strong>r.Procedure for <strong>the</strong> isolation and earth<strong>in</strong>g of <strong>the</strong> power transformer, and removalof <strong>the</strong> MV plug-type shrouded term<strong>in</strong>al connections (or protective cover)Initial conditionsb MV load-break/disconnection switch and LV circuit-breaker are closedb MV earth<strong>in</strong>g switch locked <strong>in</strong> <strong>the</strong> open position by key “O”b Key “O” is trapped <strong>in</strong> <strong>the</strong> LV circuit-breaker as long as that circuit-breaker is closedStep 1b Open LV CB and lock it open with key “O”b Key “O” is <strong>the</strong>n releasedStep 2b Open <strong>the</strong> MV switchb Check that <strong>the</strong> “voltage presence” <strong>in</strong>dicators ext<strong>in</strong>guish when <strong>the</strong> MV switch isopenedStep 3b Unlock <strong>the</strong> MV earth<strong>in</strong>g switch with key “O” and close <strong>the</strong> earth<strong>in</strong>g switchb Key “O” is now trappedStep 4The access panel to <strong>the</strong> MV fuses can now be removed (i.e. is released by closure of<strong>the</strong> MV earth<strong>in</strong>g switch). Key “S” is located <strong>in</strong> this panel, and is trapped when <strong>the</strong> MVswitch is closedb Turn key “S” to lock <strong>the</strong> MV switch <strong>in</strong> <strong>the</strong> open positionb Key “S” is now releasedStep 5Key “S” allows removal of <strong>the</strong> common lock<strong>in</strong>g device of <strong>the</strong> plug-type MV term<strong>in</strong>alconnectors on <strong>the</strong> transformer or of <strong>the</strong> common protective cover over <strong>the</strong> term<strong>in</strong>als,as <strong>the</strong> case may be.In ei<strong>the</strong>r case, exposure of one or more term<strong>in</strong>als will trap key “S” <strong>in</strong> <strong>the</strong> <strong>in</strong>terlock.The result of <strong>the</strong> forego<strong>in</strong>g procedure is that:b The MV switch is locked <strong>in</strong> <strong>the</strong> open position by key “S”.Key “S” is trapped at <strong>the</strong> transformer term<strong>in</strong>als <strong>in</strong>terlock as long as <strong>the</strong> term<strong>in</strong>als areexposed.b The MV earth<strong>in</strong>g switch is <strong>in</strong> <strong>the</strong> closed position but not locked, i.e. may be openedor closed. When carry<strong>in</strong>g out ma<strong>in</strong>tenance work, a padlock is generally used to lock<strong>the</strong> earth<strong>in</strong>g switch <strong>in</strong> <strong>the</strong> closed position, <strong>the</strong> key of <strong>the</strong> padlock be<strong>in</strong>g held by <strong>the</strong>eng<strong>in</strong>eer superviz<strong>in</strong>g <strong>the</strong> work.b The LV CB is locked open by key “O”, which is trapped by <strong>the</strong> closed MV earth<strong>in</strong>gswitch. The transformer is <strong>the</strong>refore safely isolated and ear<strong>the</strong>d.It may be noted that <strong>the</strong> upstream term<strong>in</strong>al of <strong>the</strong> load-break disconnect<strong>in</strong>g switchmay rema<strong>in</strong> live <strong>in</strong> <strong>the</strong> procedure described as <strong>the</strong> term<strong>in</strong>als <strong>in</strong> question are located<strong>in</strong> a separate non accessible compartment <strong>in</strong> <strong>the</strong> particular switchgear underdiscussion. Any o<strong>the</strong>r technical solution with exposed term<strong>in</strong>als <strong>in</strong> <strong>the</strong> accessedcompartment would need fur<strong>the</strong>r de-energisation and <strong>in</strong>terlocks.B21(1) Or may be provided with a common protective cover over<strong>the</strong> three term<strong>in</strong>als.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>© Schneider Electric - all rights reserved


B - Connection to <strong>the</strong> MV publicdistribution network4 The consumer substationwith LV meter<strong>in</strong>gB224.1 GeneralA consumer substation with LV meter<strong>in</strong>g is an electrical <strong>in</strong>stallation connected to autility supply system at a nom<strong>in</strong>al voltage of 1 kV - 35 kV, and <strong>in</strong>cludes a s<strong>in</strong>gleMV/LV transformer generally not exceed<strong>in</strong>g 1,250 kVA.FunctionsThe substationAll component parts of <strong>the</strong> substation are located <strong>in</strong> one room, ei<strong>the</strong>r <strong>in</strong> an exist<strong>in</strong>gbuild<strong>in</strong>g, or <strong>in</strong> <strong>the</strong> form of a prefabricated hous<strong>in</strong>g exterior to <strong>the</strong> build<strong>in</strong>g.Connection to <strong>the</strong> MV networkConnection at MV can be:b Ei<strong>the</strong>r by a s<strong>in</strong>gle service cable or overhead l<strong>in</strong>e, orb Via two mechanically <strong>in</strong>terlocked load-break switches with two service cables fromduplicate supply feeders, orb Via two load-break switches of a r<strong>in</strong>g-ma<strong>in</strong> unitThe transformerS<strong>in</strong>ce <strong>the</strong> use of PCB (1) -filled transformers is prohibited <strong>in</strong> most countries,<strong>the</strong> preferred available technologies are:b Oil-immersed transformers for substations located outside premisesb Dry-type, vacuum-cast-res<strong>in</strong> transformers for locations <strong>in</strong>side premises, e.g.multistoreyed build<strong>in</strong>gs, build<strong>in</strong>gs receiv<strong>in</strong>g <strong>the</strong> public, and so on...Meter<strong>in</strong>gMeter<strong>in</strong>g at low voltage allows <strong>the</strong> use of small meter<strong>in</strong>g transformers at modest cost.Most tariff structures take account of MV/LV transformer losses.LV <strong>in</strong>stallation circuitsA low-voltage circuit-breaker, suitable for isolation duty and lock<strong>in</strong>g off facilities, to:b Supply a distribution boardb Protect <strong>the</strong> transformer aga<strong>in</strong>st overload<strong>in</strong>g and <strong>the</strong> downstream circuits aga<strong>in</strong>stshort-circuit faults.One-l<strong>in</strong>e diagramsThe diagrams on <strong>the</strong> follow<strong>in</strong>g page (see Fig. B21) represent <strong>the</strong> different methodsof MV service connection, which may be one of four types:b S<strong>in</strong>gle-l<strong>in</strong>e serviceb S<strong>in</strong>gle-l<strong>in</strong>e service (equipped for extension to form a r<strong>in</strong>g ma<strong>in</strong>)b Duplicate supply serviceb R<strong>in</strong>g ma<strong>in</strong> service© Schneider Electric - all rights reserved(1) Polychlor<strong>in</strong>ated biphenyl4.2 Choice of MV switchgearStandards and specificationsThe switchgear and equipment described below are rated for 1 kV - 24 kV systemsand comply with <strong>the</strong> follow<strong>in</strong>g <strong>in</strong>ternational standards:IEC 62271-1, 62271-200, 60265-1, 62271-102, 62271-100, 62271-105Local regulations can also require compliance with national standards as:b France:UTEb United K<strong>in</strong>gdom: BSb Germany:VDEb United States of America: ANSIType of equipmentIn addition of R<strong>in</strong>g Ma<strong>in</strong> Units discussed <strong>in</strong> section 1.2, all k<strong>in</strong>ds of switchgeararrangements are possible when us<strong>in</strong>g modular switchgear, and provisions for laterextensions are easily realized.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network4 The consumer substationwith LV meter<strong>in</strong>gB23Power supplysystemServiceconnectionMV protection andMV/LV transformationLV meter<strong>in</strong>gand isolationLV distributionand protectionSupplier/consumer<strong>in</strong>terfaceTransformerLV term<strong>in</strong>alsDownstream term<strong>in</strong>alsof LV isolatorS<strong>in</strong>gle-l<strong>in</strong>e serviceProtectionProtectionS<strong>in</strong>gle-l<strong>in</strong>e service(equipped for extensionto form a r<strong>in</strong>g ma<strong>in</strong>)Permitted if only onetransformer and rated powerlow enough to accomodate<strong>the</strong> limitations of fuses andcomb<strong>in</strong>ationsProtectionDuplicatesupplyservicePermitted if only onetransformer and rated powerlow enough to accomodate<strong>the</strong> limitations of fuses andcomb<strong>in</strong>ationsProtection+Auto-changeoverswitchR<strong>in</strong>g ma<strong>in</strong>serviceProtectionAutomaticLV standbysourceAlways permittedFig. B21 : Consumer substation with LV meter<strong>in</strong>g© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network4 The consumer substationwith LV meter<strong>in</strong>gB24Operational safety of metal enclosed switchgearDescriptionThe follow<strong>in</strong>g notes describe a “state-of-<strong>the</strong> art” load-break / disconnect<strong>in</strong>g-switchpanel (see Fig. B22) <strong>in</strong>corporat<strong>in</strong>g <strong>the</strong> most modern developments for ensur<strong>in</strong>g:b Operational safetyb M<strong>in</strong>imum space requirementsb Extendibility and flexibilityb M<strong>in</strong>imum ma<strong>in</strong>tenance requirementsEach panel <strong>in</strong>cludes 3 compartments:b Switchgear: <strong>the</strong> load-break disconnect<strong>in</strong>g switch is <strong>in</strong>corporated <strong>in</strong> an hermeticallysealed (for life) molded epoxy-res<strong>in</strong> unitb Connections: by cable at term<strong>in</strong>als located on <strong>the</strong> molded switch unitb Busbars: modular, such that any number of panels may be assembled side-by-sideto form a cont<strong>in</strong>uous switchboard, and for control and <strong>in</strong>dication a low voltage cab<strong>in</strong>etwhich can accommodate automatic control and relay<strong>in</strong>g equipment. An additionalcab<strong>in</strong>et may be mounted above <strong>the</strong> exist<strong>in</strong>g one if fur<strong>the</strong>r space is required.Cable connections are provided <strong>in</strong>side a cable-term<strong>in</strong>at<strong>in</strong>g compartment at <strong>the</strong>front of <strong>the</strong> unit, to which access is ga<strong>in</strong>ed by removal of <strong>the</strong> front panel of <strong>the</strong>compartment.The units are connected electrically by means of prefabricated sections of busbars.Site erection is effected by follow<strong>in</strong>g <strong>the</strong> assembly <strong>in</strong>structions.Operation of <strong>the</strong> switchgear is simplified by <strong>the</strong> group<strong>in</strong>g of all controls and<strong>in</strong>dications on a control panel at <strong>the</strong> front of each unit.The technology of <strong>the</strong>se switchgear units is essentially based on operational safety,ease of <strong>in</strong>stallation and low ma<strong>in</strong>tenance requirements.Switchgear <strong>in</strong>ternal safety measuresb The load-break/disconnect<strong>in</strong>g switch fully satisfies <strong>the</strong> requirement of “reliableposition <strong>in</strong>dicat<strong>in</strong>g device” as def<strong>in</strong>ed <strong>in</strong> IEC 62271-102 (disconnectors and earth<strong>in</strong>gswitches)b The functionnal unit <strong>in</strong>corporates <strong>the</strong> basic <strong>in</strong>terlocks specified by <strong>the</strong>IEC 62271‐200 (prefabricated metal enclosed switchgear and controlgear):v Closure of <strong>the</strong> switch is not possible unless <strong>the</strong> earth switch is openv Closure of <strong>the</strong> earth<strong>in</strong>g switch is only possible if <strong>the</strong> load break/isolat<strong>in</strong>g switch isopenb Access to <strong>the</strong> cable compartment, which is <strong>the</strong> only user-accessible compartmentdur<strong>in</strong>g operation, is secured by fur<strong>the</strong>r <strong>in</strong>terlocks:v Open<strong>in</strong>g of <strong>the</strong> access panel to <strong>the</strong> cable term<strong>in</strong>ations compartment (1) is onlypossible if <strong>the</strong> earth<strong>in</strong>g switch is closedv The load-break/disconnect<strong>in</strong>g switch is locked <strong>in</strong> <strong>the</strong> open position when <strong>the</strong>above-mentioned access panel is open. Open<strong>in</strong>g of <strong>the</strong> earth<strong>in</strong>g switch is <strong>the</strong>npossible, for <strong>in</strong>stance to allow a dielectric test on <strong>the</strong> cables.With such features, <strong>the</strong> switchboard can be operated with live busbars and cables,except for <strong>the</strong> unit where <strong>the</strong> access to cables is made. It complies <strong>the</strong>n with <strong>the</strong>Loss of Service Cont<strong>in</strong>uity class LSB2A, as def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> IEC 62271‐200.Apart from <strong>the</strong> <strong>in</strong>terlocks noted above, each switchgear panel <strong>in</strong>cludes:b Built-<strong>in</strong> padlock<strong>in</strong>g facilities on <strong>the</strong> operation leversb 5 predrilled sets of fix<strong>in</strong>g holes for possible future <strong>in</strong>terlock<strong>in</strong>g locks© Schneider Electric - all rights reservedFig. B22 : Metal enclosed MV load break disconnect<strong>in</strong>g switch(1) Where MV fuses are used <strong>the</strong>y are located <strong>in</strong> thiscompartment.Operationsb Operat<strong>in</strong>g handles, levers, etc. required for switch<strong>in</strong>g operations are groupedtoge<strong>the</strong>r on a clearly illustrated panelb All clos<strong>in</strong>g-operation levers are identical on all units (except those conta<strong>in</strong><strong>in</strong>g acircuit-breaker)b Operation of a clos<strong>in</strong>g lever requires very little effortb Open<strong>in</strong>g or clos<strong>in</strong>g of a load-break/disconnect<strong>in</strong>g switch can be by lever or bypush-button for automatic switchesb Conditions of switches (Open, Closed, Spr<strong>in</strong>g-charged), are clearly <strong>in</strong>dicatedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network4 The consumer substationwith LV meter<strong>in</strong>g4.3 Choice of MV switchgear panel for a transformercircuitB25Three types of MV switchgear panel are generally available:b Load-break switch and separate MV fuses <strong>in</strong> <strong>the</strong> panelb Load-break switch/MV fuses comb<strong>in</strong>ationb Circuit-breakerSeven parameters <strong>in</strong>fluence <strong>the</strong> optimum choice:b The primary current of <strong>the</strong> transformerb The <strong>in</strong>sulat<strong>in</strong>g medium of <strong>the</strong> transformerb The position of <strong>the</strong> substation with respect to <strong>the</strong> load centreb The kVA rat<strong>in</strong>g of <strong>the</strong> transformerb The distance from switchgear to <strong>the</strong> transformerb The use of separate protection relays (as opposed to direct-act<strong>in</strong>g trip coils).Note: The fuses used <strong>in</strong> <strong>the</strong> load-break/switch fuses comb<strong>in</strong>ation have striker-p<strong>in</strong>swhich ensure tripp<strong>in</strong>g of <strong>the</strong> 3-pole switch on <strong>the</strong> operation of one (or more) fuse(s).4.4 Choice of MV/LV transformerCharacteristic parameters of a transformerA transformer is characterized <strong>in</strong> part by its electrical parameters, but also by itstechnology and its conditions of use.<strong>Electrical</strong> characteristicsb Rated power (Pn): <strong>the</strong> conventional apparent-power <strong>in</strong> kVA on which o<strong>the</strong>r designparametervalues and <strong>the</strong> construction of <strong>the</strong> transformer are based. Manufactur<strong>in</strong>gtests and guarantees are referred to this rat<strong>in</strong>gb Frequency: for power distribution systems of <strong>the</strong> k<strong>in</strong>d discussed <strong>in</strong> this guide, <strong>the</strong>frequency will be 50 Hz or 60 Hzb Rated primary and secondary voltages: For a primary w<strong>in</strong>d<strong>in</strong>g capable of operat<strong>in</strong>g atmore than one voltage level, a kVA rat<strong>in</strong>g correspond<strong>in</strong>g to each level must be given.The secondary rated voltage is its open circuit valueb Rated <strong>in</strong>sulation levels are given by overvoltage-withstand test values at powerfrequency, and by high voltage impulse tests values which simulate lightn<strong>in</strong>gdischarges. At <strong>the</strong> voltage levels discussed <strong>in</strong> this guide, overvoltages caused byMV switch<strong>in</strong>g operations are generally less severe than those due to lightn<strong>in</strong>g, sothat no separate tests for switch<strong>in</strong>g-surge withstand capability are madeb Off-circuit tap-selector switch generally allows a choice of up to ± 2.5% and ± 5%level about <strong>the</strong> rated voltage of <strong>the</strong> highest voltage w<strong>in</strong>d<strong>in</strong>g. The transformer must bede-energized before this switch is operatedb W<strong>in</strong>d<strong>in</strong>g configurations are <strong>in</strong>dicated <strong>in</strong> diagrammatic form by standard symbols forstar, delta and <strong>in</strong>ter-connected-star w<strong>in</strong>d<strong>in</strong>gs; (and comb<strong>in</strong>ations of <strong>the</strong>se for specialduty, e.g. six-or twelve-phase rectifier transformers, etc.) and <strong>in</strong> an IEC-recommendedalphanumeric code. This code is read from left-to-right, <strong>the</strong> first letter refers to <strong>the</strong>highest voltage w<strong>in</strong>d<strong>in</strong>g, <strong>the</strong> second letter to <strong>the</strong> next highest, and so on:v Capital letters refer to <strong>the</strong> highest voltage w<strong>in</strong>d<strong>in</strong>gD = deltaY = starZ = <strong>in</strong>terconnected-star (or zigzag)N = neutral connection brought out to a term<strong>in</strong>alv Lower-case letters are used for tertiary and secondary w<strong>in</strong>d<strong>in</strong>gsd = deltay = starz = <strong>in</strong>terconnected-star (or zigzag)n = neutral connection brought out to a term<strong>in</strong>alv A number from 0 to 11, correspond<strong>in</strong>g to those, on a clock dial (“0” is used <strong>in</strong>steadof “12”) follows any pair of letters to <strong>in</strong>dicate <strong>the</strong> phase change (if any) which occursdur<strong>in</strong>g <strong>the</strong> transformation.A very common w<strong>in</strong>d<strong>in</strong>g configuration used for distribution transformers is thatof a Dyn 11 transformer, which has a delta MV w<strong>in</strong>d<strong>in</strong>g with a star-connectedsecondary w<strong>in</strong>d<strong>in</strong>g <strong>the</strong> neutral po<strong>in</strong>t of which is brought out to a term<strong>in</strong>al. The phasechange through <strong>the</strong> transformer is +30 degrees, i.e. phase 1 secondary voltage isat “11 o’clock” when phase 1 of <strong>the</strong> primary voltage is at “12 o’clock”, as shown <strong>in</strong>Figure B31 page B34. All comb<strong>in</strong>ations of delta, star and zigzag w<strong>in</strong>d<strong>in</strong>gs produce aphase change which (if not zero) is ei<strong>the</strong>r 30 degrees or a multiple of 30 degrees.IEC 60076-4 describes <strong>the</strong> “clock code” <strong>in</strong> detail.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network4 The consumer substationwith LV meter<strong>in</strong>gB26Characteristics related to <strong>the</strong> technology and utilization of <strong>the</strong> transformerThis list is not exhaustive:b Choice of technologyThe <strong>in</strong>sulat<strong>in</strong>g medium is:v Liquid (m<strong>in</strong>eral oil) orv Solid (epoxy res<strong>in</strong> and air)b For <strong>in</strong>door or outdoor <strong>in</strong>stallationb Altitude (


B - Connection to <strong>the</strong> MV publicdistribution network4 The consumer substationwith LV meter<strong>in</strong>gThere are two ways <strong>in</strong> which this pressure limitation is commonly achieved:b Hermetically-sealed totally-filled tank (up to 10 MVA at <strong>the</strong> present time)Developed by a lead<strong>in</strong>g French manufacturer <strong>in</strong> 1963, this method was adopted by <strong>the</strong>national utility <strong>in</strong> 1972, and is now <strong>in</strong> world-wide service (see Fig. B24).Expansion of <strong>the</strong> liquid is compensated by <strong>the</strong> elastic deformation of <strong>the</strong> oil-cool<strong>in</strong>gpassages attached to <strong>the</strong> tank.The “total-fill” technique has many important advantages over o<strong>the</strong>r methods:v Oxydation of <strong>the</strong> dielectric liquid (with atmospheric oxygen) is entirely precludedv No need for an air-dry<strong>in</strong>g device, and so no consequent ma<strong>in</strong>tenance (<strong>in</strong>spectionand chang<strong>in</strong>g of saturated dessicant)v No need for dielectric-strength test of <strong>the</strong> liquid for at least 10 yearsv Simplified protection aga<strong>in</strong>st <strong>in</strong>ternal faults by means of a DGPT device is possiblev Simplicity of <strong>in</strong>stallation: lighter and lower profile (than tanks with a conservator)and access to <strong>the</strong> MV and LV term<strong>in</strong>als is unobstructedv Immediate detection of (even small) oil leaks; water cannot enter <strong>the</strong> tankb Air-breath<strong>in</strong>g conservator-type tank at atmospheric pressureExpansion of <strong>the</strong> <strong>in</strong>sulat<strong>in</strong>g liquid is taken up by a change <strong>in</strong> <strong>the</strong> level of liquid <strong>in</strong>an expansion (conservator) tank, mounted above <strong>the</strong> transformer ma<strong>in</strong> tank, asshown <strong>in</strong> Figure B25. The space above <strong>the</strong> liquid <strong>in</strong> <strong>the</strong> conservator may be filledwith air which is drawn <strong>in</strong> when <strong>the</strong> level of liquid falls, and is partially expelledwhen <strong>the</strong> level rises. When <strong>the</strong> air is drawn <strong>in</strong> from <strong>the</strong> surround<strong>in</strong>g atmosphere it isadmitted through an oil seal, before pass<strong>in</strong>g through a dessicat<strong>in</strong>g device (generallyconta<strong>in</strong><strong>in</strong>g silica-gel crystals) before enter<strong>in</strong>g <strong>the</strong> conservator. In some designs oflarger transformers <strong>the</strong> space above <strong>the</strong> oil is occupied by an impermeable air bagso that <strong>the</strong> <strong>in</strong>sulation liquid is never <strong>in</strong> contact with <strong>the</strong> atmosphere. The air entersand exits from <strong>the</strong> deformable bag through an oil seal and dessicator, as previouslydescribed. A conservator expansion tank is obligatory for transformers rated above10 MVA (which is presently <strong>the</strong> upper limit for “total-fill” type transformers).B27Fig. B24 : Hermetically-sealed totally-filled tankChoice of technologyAs discussed above, <strong>the</strong> choice of transformer is between liquid-filled or dry type.For rat<strong>in</strong>gs up to 10 MVA, totally-filled units are available as an alternative toconservator-type transformers.A choice depends on a number of considerations, <strong>in</strong>clud<strong>in</strong>g:b Safety of persons <strong>in</strong> proximity to <strong>the</strong> transformer. Local regulations and officialrecommendations may have to be respectedb Economic considerations, tak<strong>in</strong>g account of <strong>the</strong> relative advantages of each techniqueThe regulations affect<strong>in</strong>g <strong>the</strong> choice are:b Dry-type transformer:v In some countries a dry-type transformer is obligatory <strong>in</strong> high apartment blocksv Dry-type transformers impose no constra<strong>in</strong>ts <strong>in</strong> o<strong>the</strong>r situationsb Transformers with liquid <strong>in</strong>sulation:v This type of transformer is generally forbidden <strong>in</strong> high apartment blocksv For different k<strong>in</strong>ds of <strong>in</strong>sulation liquids, <strong>in</strong>stallation restrictions, or m<strong>in</strong>imumprotection aga<strong>in</strong>st fire risk, vary accord<strong>in</strong>g to <strong>the</strong> class of <strong>in</strong>sulation usedv Some countries <strong>in</strong> which <strong>the</strong> use of liquid dielectrics is highly developed, classify<strong>the</strong> several categories of liquid accord<strong>in</strong>g to <strong>the</strong>ir fire performance. This latter isassessed accord<strong>in</strong>g to two criteria: <strong>the</strong> flash-po<strong>in</strong>t temperature, and <strong>the</strong> m<strong>in</strong>imumcalorific power. The pr<strong>in</strong>cipal categories are shown <strong>in</strong> Figure B26 <strong>in</strong> which aclassification code is used for convenience.As an example, French standard def<strong>in</strong>es <strong>the</strong> conditions for <strong>the</strong> <strong>in</strong>stallation of liquidfilledtransformers. No equivalent IEC standard has yet been established.The French standard is aimed at ensur<strong>in</strong>g <strong>the</strong> safety of persons and property andrecommends, notably, <strong>the</strong> m<strong>in</strong>imum measures to be taken aga<strong>in</strong>st <strong>the</strong> risk of fire.Fig. B25 : Air-breath<strong>in</strong>g conservator-type tank at atmospherepressureCode Dielectric fluid Flash-po<strong>in</strong>t M<strong>in</strong>imum calorific power(°C)(MJ/kg)O1 M<strong>in</strong>eral oil < 300 -K1 High-density hydrocarbons > 300 48K2 Esters > 300 34 - 37K3 Silicones > 300 27 - 28L3 Insulat<strong>in</strong>g halogen liquids - 12Fig. B26 : Categories of dielectric fluids© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network4 The consumer substationwith LV meter<strong>in</strong>gB28The ma<strong>in</strong> precautions to observe are <strong>in</strong>dicated <strong>in</strong> Figure B27.b For liquid dielectrics of class L3 <strong>the</strong>re are no special measures to be takenb For dielectrics of classes O1 and K1 <strong>the</strong> measures <strong>in</strong>dicated are applicable only if<strong>the</strong>re are more than 25 litres of dielectric liquid <strong>in</strong> <strong>the</strong> transformerb For dielectrics of classes K2 and K3 <strong>the</strong> measures <strong>in</strong>dicated are applicable only if<strong>the</strong>re are more than 50 litres of dielectric liquid <strong>in</strong> <strong>the</strong> transformer.Class No. of Locationsof litres above Chamber or enclosed area reserved to qualified Reserved to tra<strong>in</strong>ed personnel O<strong>the</strong>r chambersdielectric which and authorized personnel, and separated from any and isolated from work areas or locations (2)fluid measures o<strong>the</strong>r build<strong>in</strong>g by a distance D by fire-proof walls (2 hours rat<strong>in</strong>g)must be D > 8 m 4 m < D < 8 m D < 4 m (1) <strong>in</strong> <strong>the</strong> direc- No open<strong>in</strong>gs With open<strong>in</strong>g(s)takention of occupied areasO1 25 No special Interposition of Fire-proof wall Measures Measures Measuresmeasures a fire-proof (2 hour rat<strong>in</strong>g) (1 + 2) (1 + 2 + 5) (1A + 2 + 4) (3)K1 screen aga<strong>in</strong>st adjo<strong>in</strong><strong>in</strong>g or 3 or 3 or 3(1 hour rat<strong>in</strong>g) build<strong>in</strong>g or 4 or (4 + 5)K2 50 No special measures Interposition of a No special Measures 1A Measures 1K3 fire-proof screen measures or 3 or 3(1 hour rat<strong>in</strong>g) or 4 or 4L3No special measuresMeasure 1: Arrangements such that if <strong>the</strong> dielectric escapes from <strong>the</strong> transformer, it will be completely conta<strong>in</strong>ed (<strong>in</strong> a sump, by sills around <strong>the</strong>transformer, and by block<strong>in</strong>g of cable trenches, ducts and so on, dur<strong>in</strong>g construction).Measure 1A: In addition to measure 1, arrange that, <strong>in</strong> <strong>the</strong> event of liquid ignition <strong>the</strong>re is no possibility of <strong>the</strong> fire spread<strong>in</strong>g (any combustiblematerial must be moved to a distance of at least 4 metres from <strong>the</strong> transformer, or at least 2 metres from it if a fire-proof screen [of 1 hour rat<strong>in</strong>g] is<strong>in</strong>terposed).Measure 2: Arrange that burn<strong>in</strong>g liquid will ext<strong>in</strong>guish rapidly and naturally (by provid<strong>in</strong>g a pebble bed <strong>in</strong> <strong>the</strong> conta<strong>in</strong>ment sump).Measure 3: An automatic device (gas, pressure & <strong>the</strong>rmal relay, or Buchholz) for cutt<strong>in</strong>g off <strong>the</strong> primary power supply, and giv<strong>in</strong>g an alarm, if gasappears <strong>in</strong> <strong>the</strong> transformer tank.Measure 4: Automatic fire-detection devices <strong>in</strong> close proximity to <strong>the</strong> transformer, for cutt<strong>in</strong>g off primary power supply, and giv<strong>in</strong>g an alarm.Measure 5: Automatic closure by fire-proof panels (1/2 hour m<strong>in</strong>imum rat<strong>in</strong>g) of all open<strong>in</strong>gs (ventilation louvres, etc.) <strong>in</strong> <strong>the</strong> walls and ceil<strong>in</strong>g of<strong>the</strong> substation chamber.Notes:(1) A fire-proof door (rated at 2 hours) is not considered to be an open<strong>in</strong>g.(2) Transformer chamber adjo<strong>in</strong><strong>in</strong>g a workshop and separated from it by walls, <strong>the</strong> fire-proof characteristics of which are not rated for 2 hours.Areas situated <strong>in</strong> <strong>the</strong> middle of workshops <strong>the</strong> material be<strong>in</strong>g placed (or not) <strong>in</strong> a protective conta<strong>in</strong>er.(3) It is <strong>in</strong>dispensable that <strong>the</strong> equipment be enclosed <strong>in</strong> a chamber, <strong>the</strong> walls of which are solid, <strong>the</strong> only orifices be<strong>in</strong>g those necessary forventilation purposes.Fig. B27 : Safety measures recommended <strong>in</strong> electrical <strong>in</strong>stallations us<strong>in</strong>g dielectric liquids of classes 01, K1, K2 or K3The determ<strong>in</strong>ation of optimal powerOversiz<strong>in</strong>g a transformerIt results <strong>in</strong>:b Excessive <strong>in</strong>vestment and unecessarily high no-load losses, butb Lower on-load lossesUndersiz<strong>in</strong>g a transformerIt causes:b A reduced efficiency when fully loaded, (<strong>the</strong> highest efficiency is atta<strong>in</strong>ed <strong>in</strong> <strong>the</strong>range 50% - 70% full load) so that <strong>the</strong> optimum load<strong>in</strong>g is not achievedb On long-term overload, serious consequences forv The transformer, ow<strong>in</strong>g to <strong>the</strong> premature age<strong>in</strong>g of <strong>the</strong> w<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>sulation, and <strong>in</strong>extreme cases, result<strong>in</strong>g <strong>in</strong> failure of <strong>in</strong>sulation and loss of <strong>the</strong> transformerv The <strong>in</strong>stallation, if overheat<strong>in</strong>g of <strong>the</strong> transformer causes protective relays to trip<strong>the</strong> controll<strong>in</strong>g circuit-breaker.© Schneider Electric - all rights reservedDef<strong>in</strong>ition of optimal powerIn order to select an optimal power (kVA) rat<strong>in</strong>g for a transformer, <strong>the</strong> follow<strong>in</strong>gfactors must be taken <strong>in</strong>to account:b List <strong>the</strong> power of <strong>in</strong>stalled power-consum<strong>in</strong>g equipment as described <strong>in</strong> Chapter Ab Decide <strong>the</strong> utilization (or demand) factor for each <strong>in</strong>dividual item of loadb Determ<strong>in</strong>e <strong>the</strong> load cycle of <strong>the</strong> <strong>in</strong>stallation, not<strong>in</strong>g <strong>the</strong> duration of loads and overloadsb Arrange for power-factor correction, if justified, <strong>in</strong> order to:v Reduce cost penalties <strong>in</strong> tariffs based, <strong>in</strong> part, on maximum kVA demandv Reduce <strong>the</strong> value of declared load (P(kVA) = P (kW)/cos ϕ)b Select, among <strong>the</strong> range of standard transformer rat<strong>in</strong>gs available, tak<strong>in</strong>g <strong>in</strong>toaccount all possible future extensions to <strong>the</strong> <strong>in</strong>stallation.It is important to ensure that cool<strong>in</strong>g arrangements for <strong>the</strong> transformer are adequate.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network4 The consumer substationwith LV meter<strong>in</strong>g4.5 Instructions for use of MV equipmentB29The purpose of this chapter is to provide general guidel<strong>in</strong>es on how to avoidor greatly reduce MV equipment degradation on sites exposed to humidity andpollution.Fig. B28 : SM6 metal enclosed <strong>in</strong>door MV eqpuipmentNormal service conditions for <strong>in</strong>door MV equipmentAll MV equipments comply with specific standards and with <strong>the</strong> IEC 62271-1standard “Common specifications for high-voltage switchgear and controlgear”,which def<strong>in</strong>es <strong>the</strong> normal conditions for <strong>the</strong> <strong>in</strong>stallation and use of such equipment.For <strong>in</strong>stance, regard<strong>in</strong>g humidity, <strong>the</strong> standard mentions:The conditions of humidity are as follows:b The average value of <strong>the</strong> relative humidity, measured over a period of 24 h doesnot exceed 90%;b The average value of <strong>the</strong> water vapour pressure, over a period of 24 h does notexceed 2.2 kPa;b The average value of <strong>the</strong> relative humidity, over a period of one month does notexceed 90%;b The average value of water vapour pressure, over a period of one month does notexceed 1.8 kPa;Under <strong>the</strong>se conditions, condensation may occasionally occur.NOTE 1: Condensation can be expected where sudden temperature changes occur<strong>in</strong> period of high humidity.NOTE 2: To withstand <strong>the</strong> effects of high humidity and condensation, such as abreakdown of <strong>in</strong>sulation or corrosion of metallic parts, switchgear designed for suchconditions and tested accord<strong>in</strong>gly shoul be used.NOTE 3: Condensation may be prevented by special design of <strong>the</strong> build<strong>in</strong>g orhous<strong>in</strong>g, by suitable ventilation and heat<strong>in</strong>g of <strong>the</strong> station or by use of dehumify<strong>in</strong>gequipment.As <strong>in</strong>dicated <strong>in</strong> <strong>the</strong> standard, condensation may occasionally occur even undernormal conditions. The standard goes on to <strong>in</strong>dicate special measures concern<strong>in</strong>g<strong>the</strong> substation premises that can be implemented to prevent condensation.Use under severe conditionsUnder certa<strong>in</strong> severe conditions concern<strong>in</strong>g humidity and pollution, largely beyond<strong>the</strong> normal conditions of use mentioned above, correctly designed electricalequipment can be subject to damage by rapid corrosion of metal parts and surfacedegradation of <strong>in</strong>sulat<strong>in</strong>g parts.Remedial measures for condensation problemsb Carefully design or adapt substation ventilation.b Avoid temperature variations.b Elim<strong>in</strong>ate sources of humidity <strong>in</strong> <strong>the</strong> substation environment.b Install an air condition<strong>in</strong>g system.b Make sure cabl<strong>in</strong>g is <strong>in</strong> accordance with applicable rules.Remedial measures for pollution problemsb Equip substation ventilation open<strong>in</strong>gs with chevron-type baffles to reduce entryof dust and pollution.b Keep substation ventilation to <strong>the</strong> m<strong>in</strong>imum required for evacuation of transformerheat to reduce entry of pollution and dust.b Use MV cubicles with a sufficiently high degree of protection (IP).b Use air condition<strong>in</strong>g systems with filters to restrict entry of pollution and dust.b Regularly clean all traces of pollution from metal and <strong>in</strong>sulat<strong>in</strong>g parts.VentilationSubstation ventilation is generally required to dissipate <strong>the</strong> heat produced bytransformers and to allow dry<strong>in</strong>g after particularly wet or humid periods.However, a number of studies have shown that excessive ventilation can drastically<strong>in</strong>crease condensation.Ventilation should <strong>the</strong>refore be kept to <strong>the</strong> m<strong>in</strong>imum level required.Fur<strong>the</strong>rmore, ventilation should never generate sudden temperature variations thatcan cause <strong>the</strong> dew po<strong>in</strong>t to be reached.For this reason:Natural ventilation should be used whenever possible. If forced ventilation isnecessary, <strong>the</strong> fans should operate cont<strong>in</strong>uously to avoid temperature fluctuations.<strong>Guide</strong>l<strong>in</strong>es for siz<strong>in</strong>g <strong>the</strong> air entry and exit open<strong>in</strong>gs of substations are presentedhereafter.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network4 The consumer substationwith LV meter<strong>in</strong>gB30Calculation methodsA number of calculation methods are available to estimate <strong>the</strong> required size ofsubstation ventilation open<strong>in</strong>gs, ei<strong>the</strong>r for <strong>the</strong> design of new substations or <strong>the</strong>adaptation of exist<strong>in</strong>g substations for which condensation problems have occurred.The basic method is based on transformer dissipation.The required ventilation open<strong>in</strong>g surface areas S and S’ can be estimated us<strong>in</strong>g <strong>the</strong>follow<strong>in</strong>g formulas:S 1.8 x 10-4 PHand S' 1.10 x S200 mmm<strong>in</strong>iS'where:S = Lower (air entry) ventilation open<strong>in</strong>g area [m²] (grid surface deducted)S’= Upper (air exit) ventilation open<strong>in</strong>g area [m²] (grid surface deducted)P = Total dissipated power [W]P is <strong>the</strong> sum of <strong>the</strong> power dissipated by:b The transformer (dissipation at no load and due to load)b The LV switchgearb The MV switchgearH = Height between ventilation open<strong>in</strong>g mid-po<strong>in</strong>ts [m]See Fig. B29Note:This formula is valid for a yearly average temperature of 20 °C and a maximumaltitude of 1,000 m.Fig. B29 : Natural ventilationSHIt must be noted that <strong>the</strong>se formulae are able to determ<strong>in</strong>e only one order ofmagnitude of <strong>the</strong> sections S and S', which are qualified as <strong>the</strong>rmal section, i.e. fullyopen and just necessary to evacuate <strong>the</strong> <strong>the</strong>rmal <strong>energy</strong> generated <strong>in</strong>side <strong>the</strong> MV/LVsubstation.The pratical sections are of course larger accord<strong>in</strong>g ot <strong>the</strong> adopted technologicalsolution.Indeed, <strong>the</strong> real air flow is strongly dependant:b on <strong>the</strong> open<strong>in</strong>gs shape and solutions adopted to ensure <strong>the</strong> cubicle protection<strong>in</strong>dex (IP): metal grid, stamped holes, chevron louvers,...b on <strong>in</strong>ternal components size and <strong>the</strong>ir position compared to <strong>the</strong> open<strong>in</strong>gs:transformer and/or retention oil box position and dimensions, flow channel between<strong>the</strong> components, ...b and on some physical and environmental parameters: outside ambienttemperature, altitude, magnitude of <strong>the</strong> result<strong>in</strong>g temperature rise.The understand<strong>in</strong>g and <strong>the</strong> optimization of <strong>the</strong> attached physical phenomena aresubject to precise flow studies, based on <strong>the</strong> fluid dynamics laws, and realized withspecific analytic software.Example:Transformer dissipation = 7,970 WLV switchgear dissipation = 750 WMV switchgear dissipation = 300 WThe height between ventilation open<strong>in</strong>g mid-po<strong>in</strong>ts is 1.5 m.Calculation:Dissipated Power P = 7,970 + 750 + 300 = 9,020 WS 1.8 x 10-4 P1.5 1.32 m 2 and S' 1.1 x 1.32 1.46 m 2Fig. B30 : Ventilation open<strong>in</strong>g locationsVentilation open<strong>in</strong>g locationsTo favour evacuation of <strong>the</strong> heat produced by <strong>the</strong> transformer via natural convection,ventilation open<strong>in</strong>gs should be located at <strong>the</strong> top and bottom of <strong>the</strong> wall near <strong>the</strong>transformer. The heat dissipated by <strong>the</strong> MV switchboard is negligible.To avoid condensation problems, <strong>the</strong> substation ventilation open<strong>in</strong>gs should belocated as far as possible from <strong>the</strong> switchboard (see Fig. B 30).© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network4 The consumer substationwith LV meter<strong>in</strong>gType of ventilation open<strong>in</strong>gsTo reduce <strong>the</strong> entry of dust, pollution, mist, etc., <strong>the</strong> substation ventilation open<strong>in</strong>gsshould be equipped with chevron-blade baffles.Always make sure <strong>the</strong> baffles are oriented <strong>in</strong> <strong>the</strong> right direction (see Fig. B31).B31Fig. B31 : Chevron-blade bafflesTemperature variations <strong>in</strong>side cubiclesTo reduce temperature variations, always <strong>in</strong>stall anti-condensation heaters <strong>in</strong>sideMV cubicles if <strong>the</strong> average relative humidity can rema<strong>in</strong> high over a long period oftime. The heaters must operate cont<strong>in</strong>uously, 24 hours a day all year long.Never connect <strong>the</strong>m to a temperature control or regulation system as this could leadto temperature variations and condensation as well as a shorter service life for <strong>the</strong>heat<strong>in</strong>g elements. Make sure <strong>the</strong> heaters offer an adequate service life (standardversions are generally sufficient).Temperature variations <strong>in</strong>side <strong>the</strong> substationThe follow<strong>in</strong>g measures can be taken to reduce temperature variations <strong>in</strong>side <strong>the</strong>substation:b Improve <strong>the</strong> <strong>the</strong>rmal <strong>in</strong>sulation of <strong>the</strong> substation to reduce <strong>the</strong> effects of outdoortemperature variations on <strong>the</strong> temperature <strong>in</strong>side <strong>the</strong> substation.b Avoid substation heat<strong>in</strong>g if possible. If heat<strong>in</strong>g is required, make sure <strong>the</strong> regulationsystem and/or <strong>the</strong>rmostat are sufficiently accurate and designed to avoid excessivetemperature sw<strong>in</strong>gs (e.g. no greater than 1 °C).If a sufficiently accurate temperature regulation system is not available, leave <strong>the</strong>heat<strong>in</strong>g on cont<strong>in</strong>uously, 24 hours a day all year long.b Elim<strong>in</strong>ate cold air drafts from cable trenches under cubicles or from open<strong>in</strong>gs <strong>in</strong> <strong>the</strong>substation (under doors, roof jo<strong>in</strong>ts, etc.).Substation environment and humidityVarious factors outside <strong>the</strong> substation can affect <strong>the</strong> humidity <strong>in</strong>side.b PlantsAvoid excessive plant growth around <strong>the</strong> substation.b Substation waterproof<strong>in</strong>gThe substation roof must not leak. Avoid flat roofs for whichwaterproof<strong>in</strong>g is difficult to implement and ma<strong>in</strong>ta<strong>in</strong>.b Humidity from cable trenchesMake sure cable trenches are dry under all conditions.A partial solution is to add sand to <strong>the</strong> bottom of <strong>the</strong> cable trench.Pollution protection and clean<strong>in</strong>gExcessive pollution favours leakage current, track<strong>in</strong>g and flashover on <strong>in</strong>sulators.To prevent MV equipment degradation by pollution, it is possible to ei<strong>the</strong>r protect <strong>the</strong>equipment aga<strong>in</strong>st pollution or regularly clean <strong>the</strong> result<strong>in</strong>g contam<strong>in</strong>ation.ProtectionIndoor MV switchgear can be protected by enclosures provid<strong>in</strong>g a sufficiently highdegree of protection (IP).Clean<strong>in</strong>gIf not fully protected, MV equipment must be cleaned regularly to preventdegradation by contam<strong>in</strong>ation from pollution.Clean<strong>in</strong>g is a critical process. The use of unsuitable products can irreversiblydamage <strong>the</strong> equipment.For clean<strong>in</strong>g procedures, please contact your Schneider Electric correspondent.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network5 The consumer substationwith MV meter<strong>in</strong>gB32A consumer substation with MV meter<strong>in</strong>gis an electrical <strong>in</strong>stallation connected to autility supply system at a nom<strong>in</strong>al voltage of1 kV - 35 kV and generally <strong>in</strong>cludes a s<strong>in</strong>gleMV/LV transformer which exceeds 1,250 kVA,or several smaller transformers.The rated current of <strong>the</strong> MV switchgear doesnot normally exceed 400 A.5.1 GeneralFunctionsThe substationAccord<strong>in</strong>g to <strong>the</strong> complexity of <strong>the</strong> <strong>in</strong>stallation and <strong>the</strong> manner <strong>in</strong> which <strong>the</strong> load isdivided, <strong>the</strong> substation:b Might <strong>in</strong>clude one room conta<strong>in</strong><strong>in</strong>g <strong>the</strong> MV switchboard and meter<strong>in</strong>g panel(s),toge<strong>the</strong>r with <strong>the</strong> transformer(s) and low-voltage ma<strong>in</strong> distribution board(s),b Or might supply one or more transformer rooms, which <strong>in</strong>clude local LV distributionboards, supplied at MV from switchgear <strong>in</strong> a ma<strong>in</strong> substation, similar to thatdescribed above.These substations may be <strong>in</strong>stalled, ei<strong>the</strong>r:b Inside a build<strong>in</strong>g, orb Outdoors <strong>in</strong> prefabricated hous<strong>in</strong>gs.Connection to <strong>the</strong> MV networkConnection at MV can be:b Ei<strong>the</strong>r by a s<strong>in</strong>gle service cable or overhead l<strong>in</strong>e, orb Via two mechanically <strong>in</strong>terlocked load-break switches with two service cables fromduplicate supply feeders, orb Via two load-break switches of a r<strong>in</strong>g-ma<strong>in</strong> unit.Meter<strong>in</strong>gBefore <strong>the</strong> <strong>in</strong>stallation project beg<strong>in</strong>s, <strong>the</strong> agreement of <strong>the</strong> power-supply utilityregard<strong>in</strong>g meter<strong>in</strong>g arrangements must be obta<strong>in</strong>ed.A meter<strong>in</strong>g panel will be <strong>in</strong>corporated <strong>in</strong> <strong>the</strong> MV switchboard. Voltage transformersand current transformers, hav<strong>in</strong>g <strong>the</strong> necessary meter<strong>in</strong>g accuracy, may be <strong>in</strong>cluded<strong>in</strong> <strong>the</strong> ma<strong>in</strong> <strong>in</strong>com<strong>in</strong>g circuit-breaker panel or (<strong>in</strong> <strong>the</strong> case of <strong>the</strong> voltage transformer)may be <strong>in</strong>stalled separately <strong>in</strong> <strong>the</strong> meter<strong>in</strong>g panel.Transformer roomsIf <strong>the</strong> <strong>in</strong>stallation <strong>in</strong>cludes a number of transformer rooms, MV supplies from <strong>the</strong> ma<strong>in</strong>substation may be by simple radial feeders connected directly to <strong>the</strong> transformers, orby duplicate feeders to each room, or aga<strong>in</strong>, by a r<strong>in</strong>g-ma<strong>in</strong>, accord<strong>in</strong>g to <strong>the</strong> degreeof supply availability desired.In <strong>the</strong> two latter cases, 3-panel r<strong>in</strong>g-ma<strong>in</strong> units will be required at each transformerroom.Local emergency generatorsEmergency standby generators are <strong>in</strong>tended to ma<strong>in</strong>ta<strong>in</strong> a power supply to essentialloads, <strong>in</strong> <strong>the</strong> event of failure of <strong>the</strong> power supply system.CapacitorsCapacitors will be <strong>in</strong>stalled, accord<strong>in</strong>g to requirements:b In stepped MV banks at <strong>the</strong> ma<strong>in</strong> substation, orb At LV <strong>in</strong> transformer rooms.TransformersFor additional supply-security reasons, transformers may be arranged for automaticchangeover operation, or for parallel operation.© Schneider Electric - all rights reservedOne-l<strong>in</strong>e diagramsThe diagrams shown <strong>in</strong> Figure B32 next page represent:b The different methods of MV service connection, which may be one of four types:v S<strong>in</strong>gle-l<strong>in</strong>e servicev S<strong>in</strong>gle-l<strong>in</strong>e service (equipped for extension to form a r<strong>in</strong>g ma<strong>in</strong>)v Duplicate supply servicev R<strong>in</strong>g ma<strong>in</strong> serviceb General protection at MV, and MV meter<strong>in</strong>g functionsb Protection of outgo<strong>in</strong>g MV circuitsb Protection of LV distribution circuitsSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network5 The consumer substationwith MV meter<strong>in</strong>gB33Power supplysystemService connectionSupplier/consumer<strong>in</strong>terfaceMV protectionand meter<strong>in</strong>gMV distribution and protectionof outgo<strong>in</strong>g circuitsDownstream term<strong>in</strong>als ofMV isolator for <strong>the</strong> <strong>in</strong>stallationLV distributionand protectionLV term<strong>in</strong>als oftransformerS<strong>in</strong>gle-l<strong>in</strong>e serviceProtectionLVS<strong>in</strong>gle-l<strong>in</strong>e service(equipped forextension to forma r<strong>in</strong>g ma<strong>in</strong>)A s<strong>in</strong>gle transformerDuplicatesupplyserviceAutomatic LV/MVstandby sourceProtection+ automaticchangeoverfeatureProtectionR<strong>in</strong>g-ma<strong>in</strong>serviceAutomatic LVstandby sourceFig. B32 : Consumer substation with MV meter<strong>in</strong>g© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network5 The consumer substationwith MV meter<strong>in</strong>gB345.2 Choice of panelsA substation with MV meter<strong>in</strong>g <strong>in</strong>cludes, <strong>in</strong> addition to <strong>the</strong> panels described <strong>in</strong> 4.2,panels specifically designed for meter<strong>in</strong>g and, if required, for automatic or manualchangeover from one source to ano<strong>the</strong>r.Meter<strong>in</strong>g and general protectionThese two functions are achieved by <strong>the</strong> association of two panels:b One panel conta<strong>in</strong><strong>in</strong>g <strong>the</strong> VTb The ma<strong>in</strong> MV circuit-breaker panel conta<strong>in</strong><strong>in</strong>g <strong>the</strong> CTs for measurement andprotectionThe general protection is usually aga<strong>in</strong>st overcurrent (overload and short-circuit) andearth faults. Both schemes use protective relays which are sealed by <strong>the</strong> powersupplyutility.© Schneider Electric - all rights reservedMV distributionpanels forwhich standbysupply isrequiredAutomaticchangeoverpanelBusbartransitionpanelFrom standby generatorP y 20,000 kVATo rema<strong>in</strong>derof <strong>the</strong> MVswitchboardFig. B33 : Section of MV switchboard <strong>in</strong>clud<strong>in</strong>g standby supplypanelSubstation <strong>in</strong>clud<strong>in</strong>g generatorsGenerator <strong>in</strong> stand alone operationIf <strong>the</strong> <strong>in</strong>stallation needs great power supply availability, a MV standby generator setcan be used. In such a case, <strong>the</strong> <strong>in</strong>stallation must <strong>in</strong>clude an automatic changeover.In order to avoid any posssibility of parallel operation of <strong>the</strong> generator with <strong>the</strong> powersupply network, a specific panel with automatic changeover is needed (see Fig. B33).b ProtectionSpecific protective devices are <strong>in</strong>tended to protect <strong>the</strong> generator itself. It must benoted that, due to <strong>the</strong> very low short-circuit power of <strong>the</strong> generator compar<strong>in</strong>g with<strong>the</strong> power supply network, a great attention must be paid to protection discrim<strong>in</strong>ation.b ControlA voltage regulator controll<strong>in</strong>g an alternator is generally arranged to respond to areduction of voltage at its term<strong>in</strong>als by automatically <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> excitation currentof <strong>the</strong> alternator, until <strong>the</strong> voltage is restored to normal. When it is <strong>in</strong>tended that<strong>the</strong> alternator should operate <strong>in</strong> parallel with o<strong>the</strong>rs, <strong>the</strong> AVR (Automatic VoltageRegulator) is switched to “parallel operation” <strong>in</strong> which <strong>the</strong> AVR control circuit isslightly modified (compounded) to ensure satisfactory shar<strong>in</strong>g of kvars with <strong>the</strong> o<strong>the</strong>rparallel mach<strong>in</strong>es.When a number of alternators are operat<strong>in</strong>g <strong>in</strong> parallel under AVR control, an<strong>in</strong>crease <strong>in</strong> <strong>the</strong> excitation current of one of <strong>the</strong>m (for example, carried out manuallyafter switch<strong>in</strong>g its AVR to Manual control) will have practically no effect on <strong>the</strong> voltagelevel. In fact, <strong>the</strong> alternator <strong>in</strong> question will simply operate at a lower power factor(more kVA, and <strong>the</strong>refore more current) than before.The power factor of all <strong>the</strong> o<strong>the</strong>r mach<strong>in</strong>es will automatically improve, such that <strong>the</strong>load power factor requirements are satisfied, as before.Generator operat<strong>in</strong>g <strong>in</strong> parallel with <strong>the</strong> utility supply networkTo connect a generator set on <strong>the</strong> network, <strong>the</strong> agreement of <strong>the</strong> power supply utilityis usually required. Generally <strong>the</strong> equipement (panels, protection relays) must beapproved by <strong>the</strong> utility.The follow<strong>in</strong>g notes <strong>in</strong>dicate some basic consideration to be taken <strong>in</strong>to account forprotection and control.b ProtectionTo study <strong>the</strong> connection of generator set, <strong>the</strong> power supply utility needs some dataas follows :v Power <strong>in</strong>jected on <strong>the</strong> networkv Connection modev Short-circuit current of <strong>the</strong> generator setv Voltage unbalance of <strong>the</strong> generatorv etc.Depend<strong>in</strong>g on <strong>the</strong> connection mode, dedicated uncoupl<strong>in</strong>g protection functions arerequired :v Under-voltage and over-voltage protectionv Under-frequency and over-frequency protectionv Zero sequence overvoltage protectionv Maximum time of coupl<strong>in</strong>g (for momentary coupl<strong>in</strong>g)v Reverse real powerFor safety reasons, <strong>the</strong> switchgear used for uncoupl<strong>in</strong>g must also be providedwith <strong>the</strong> characteristics of a disconnector (i.e total isolation of all active conductorsbetween <strong>the</strong> generator set and <strong>the</strong> power supply network).Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network5 The consumer substationwith MV meter<strong>in</strong>gb ControlWhen generators at a consumer’s substation operate <strong>in</strong> parallel with all <strong>the</strong>generation of <strong>the</strong> utility power supply system, suppos<strong>in</strong>g <strong>the</strong> power system voltage isreduced for operational reasons (it is common to operate MV systems with<strong>in</strong> a rangeof ± 5% of nom<strong>in</strong>al voltage, or even more, where load-flow patterns require it), anAVR set to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> voltage with<strong>in</strong> ± 3% (for example) will immediately attempt toraise <strong>the</strong> voltage by <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> excitation current of <strong>the</strong> alternator.Instead of rais<strong>in</strong>g <strong>the</strong> voltage, <strong>the</strong> alternator will simply operate at a lower powerfactor than before, <strong>the</strong>reby <strong>in</strong>creas<strong>in</strong>g its current output, and will cont<strong>in</strong>ue to do so,until it is eventually tripped out by its overcurrent protective relays. This is a wellknownproblem and is usually overcome by <strong>the</strong> provision of a “constant powerfactor”control switch on <strong>the</strong> AVR unit.By mak<strong>in</strong>g this selection, <strong>the</strong> AVR will automatically adjust <strong>the</strong> excitation currentto match whatever voltage exists on <strong>the</strong> power system, while at <strong>the</strong> same timema<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>the</strong> power factor of <strong>the</strong> alternator constant at <strong>the</strong> pre-set value (selectedon <strong>the</strong> AVR control unit).In <strong>the</strong> event that <strong>the</strong> alternator becomes decoupled from <strong>the</strong> power system, <strong>the</strong> AVRmust be automatically (rapidly) switched back to “constant-voltage” control.B355.3 Parallel operation of transformersThe need for operation of two or more transformers <strong>in</strong> parallel often arises due to:b Load growth, which exceeds <strong>the</strong> capactiy of an exist<strong>in</strong>g transformerb Lack of space (height) for one large transformerb A measure of security (<strong>the</strong> probability of two transformers fail<strong>in</strong>g at <strong>the</strong> same timeis very small)b The adoption of a standard size of transformer throughout an <strong>in</strong>stallationTotal power (kVA)The total power (kVA) available when two or more transformers of <strong>the</strong> samekVA rat<strong>in</strong>g are connected <strong>in</strong> parallel, is equal to <strong>the</strong> sum of <strong>the</strong> <strong>in</strong>dividual rat<strong>in</strong>gs,provid<strong>in</strong>g that <strong>the</strong> percentage impedances are all equal and <strong>the</strong> voltage ratios areidentical.Transformers of unequal kVA rat<strong>in</strong>gs will share a load practically (but not exactly)<strong>in</strong> proportion to <strong>the</strong>ir rat<strong>in</strong>gs, provid<strong>in</strong>g that <strong>the</strong> voltage ratios are identical and <strong>the</strong>percentage impedances (at <strong>the</strong>ir own kVA rat<strong>in</strong>g) are identical, or very nearly so.In <strong>the</strong>se cases, a total of more than 90% of <strong>the</strong> sum of <strong>the</strong> two rat<strong>in</strong>gs is normallyavailable.It is recommended that transformers, <strong>the</strong> kVA rat<strong>in</strong>gs of which differ by morethan 2:1, should not be operated permanently <strong>in</strong> parallel.Conditions necessary for parallel operationAll paralleled units must be supplied from <strong>the</strong> same network.The <strong>in</strong>evitable circulat<strong>in</strong>g currents exchanged between <strong>the</strong> secondary circuits ofparalleled transformers will be negligibly small provid<strong>in</strong>g that:b Secondary cabl<strong>in</strong>g from <strong>the</strong> transformers to <strong>the</strong> po<strong>in</strong>t of parallel<strong>in</strong>g haveapproximately equal lengths and characteristicsb The transformer manufacturer is fully <strong>in</strong>formed of <strong>the</strong> duty <strong>in</strong>tended for <strong>the</strong>transformers, so that:v The w<strong>in</strong>d<strong>in</strong>g configurations (star, delta, zigzag star) of <strong>the</strong> several transformershave <strong>the</strong> same phase change between primary and secondary voltagesv The short-circuit impedances are equal, or differ by less than 10%v Voltage differences between correspond<strong>in</strong>g phases must not exceed 0.4%v All possible <strong>in</strong>formation on <strong>the</strong> conditions of use, expected load cycles, etc. shouldbe given to <strong>the</strong> manufacturer with a view to optimiz<strong>in</strong>g load and no-load losses© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network5 The consumer substationwith MV meter<strong>in</strong>gB36Common w<strong>in</strong>d<strong>in</strong>g arrangementsAs described <strong>in</strong> 4.4 “<strong>Electrical</strong> characteristics-w<strong>in</strong>d<strong>in</strong>g configurations” <strong>the</strong>relationships between primary, secondary, and tertiary w<strong>in</strong>d<strong>in</strong>gs depend on:b Type of w<strong>in</strong>d<strong>in</strong>gs (delta, star, zigzag)b Connection of <strong>the</strong> phase w<strong>in</strong>d<strong>in</strong>gsDepend<strong>in</strong>g on which ends of <strong>the</strong> w<strong>in</strong>d<strong>in</strong>gs form <strong>the</strong> star po<strong>in</strong>t (for example), astar w<strong>in</strong>d<strong>in</strong>g will produce voltages which are 180° displaced with respect to thoseproduced if <strong>the</strong> opposite ends had been jo<strong>in</strong>ed to form <strong>the</strong> star po<strong>in</strong>t. Similar 180°changes occur <strong>in</strong> <strong>the</strong> two possible ways of connect<strong>in</strong>g phase-to-phase coils to formdelta w<strong>in</strong>d<strong>in</strong>gs, while four different comb<strong>in</strong>ations of zigzag connections are possible.b The phase displacement of <strong>the</strong> secondary phase voltages with respect to <strong>the</strong>correspond<strong>in</strong>g primary phase voltages.As previously noted, this displacement (if not zero) will always be a multiple of30° and will depend on <strong>the</strong> two factors mentioned above, viz type of w<strong>in</strong>d<strong>in</strong>gs andconnection (i.e. polarity) of <strong>the</strong> phase w<strong>in</strong>d<strong>in</strong>gs.By far <strong>the</strong> most common type of distribution transformer w<strong>in</strong>d<strong>in</strong>g configuration is <strong>the</strong>Dyn 11 connection (see Fig. B34).Voltage vectors1V 121N232311N2W<strong>in</strong>d<strong>in</strong>gscorrespondence233V 12 on <strong>the</strong> primary w<strong>in</strong>d<strong>in</strong>g produces V 1N <strong>in</strong> <strong>the</strong>secondary w<strong>in</strong>d<strong>in</strong>g and so on ...Fig. B34 : Phase change through a Dyn 11 transformer© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network6 Constitution ofMV/LV distribution substationsMV/LV substations are constructed accord<strong>in</strong>g to <strong>the</strong> magnitude of <strong>the</strong> load and <strong>the</strong>k<strong>in</strong>d of power system <strong>in</strong> question.Substations may be built <strong>in</strong> public places, such as parks, residential districts, etc. oron private premises, <strong>in</strong> which case <strong>the</strong> power supply authority must have unrestrictedaccess. This is normally assured by locat<strong>in</strong>g <strong>the</strong> substation, such that one of itswalls, which <strong>in</strong>cludes an access door, co<strong>in</strong>cides with <strong>the</strong> boundary of <strong>the</strong> consumerspremises and <strong>the</strong> public way.B376.1 Different types of substationSubstations may be classified accord<strong>in</strong>g to meter<strong>in</strong>g arrangements (MV or LV) andtype of supply (overhead l<strong>in</strong>e or underground cable).The substations may be <strong>in</strong>stalled:b Ei<strong>the</strong>r <strong>in</strong>doors <strong>in</strong> room specially built for <strong>the</strong> purpose, with<strong>in</strong> a build<strong>in</strong>g, orb An outdoor <strong>in</strong>stallation which could be :v Installed <strong>in</strong> a dedicated enclosure prefabricated or not, with <strong>in</strong>door equipment(switchgear and transformer)v Ground mounted with outdoor equipment (switchgear and transformers)v Pole mounted with dedicated outdoor equipment (swithgear and transformers)Prefabricated substations provide a particularly simple, rapid and competitive choice.6.2 Indoor substationConceptionFigure B35 shows a typical equipment layout recommended for a LV meter<strong>in</strong>gsubstation.Remark: <strong>the</strong> use of a cast-res<strong>in</strong> dry-type transformer does not need a fireprotectionoil sump. However, periodic clean<strong>in</strong>g is needed.MV connections to transformer(<strong>in</strong>cluded <strong>in</strong> a panel or free-stand<strong>in</strong>g)LV connectionsfromtransformerLV switchgear2 <strong>in</strong>com<strong>in</strong>gMV panelsMVswitch<strong>in</strong>gandprotectionpanelCurrenttransformersprovided bypower-supplyauthorityConnection to <strong>the</strong> powersupplynetwork by s<strong>in</strong>gle-coreor three-core cables,with or without a cable trenchTransformerFig. B35 : Typical arrangment of switchgear panels for LV meter<strong>in</strong>gOil sumpLV cabletrench© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network6 Constitution ofMV/LV distribution substationsB38Service connections and equipment <strong>in</strong>terconnectionsAt high voltageb Connections to <strong>the</strong> MV system are made by, and are <strong>the</strong> responsibility of <strong>the</strong> utilityb Connections between <strong>the</strong> MV switchgear and <strong>the</strong> transformers may be:v By short copper bars where <strong>the</strong> transformer is housed <strong>in</strong> a panel form<strong>in</strong>g part of<strong>the</strong> MV switchboardv By s<strong>in</strong>gle-core screened cables with syn<strong>the</strong>tic <strong>in</strong>sulation, with possible use of plug<strong>in</strong>type term<strong>in</strong>als at <strong>the</strong> transformerAt low voltageb Connections between <strong>the</strong> LV term<strong>in</strong>als of <strong>the</strong> transformer and <strong>the</strong> LV switchgearmay be:v S<strong>in</strong>gle-core cablesv Solid copper bars (circular or rectangular section) with heat-shr<strong>in</strong>kable <strong>in</strong>sulationMeter<strong>in</strong>g (see Fig. B36)b Meter<strong>in</strong>g current transformers are generally <strong>in</strong>stalled <strong>in</strong> <strong>the</strong> protective cover of <strong>the</strong>power transformer LV term<strong>in</strong>als, <strong>the</strong> cover be<strong>in</strong>g sealed by <strong>the</strong> supply utilityb Alternatively, <strong>the</strong> current transformers are <strong>in</strong>stalled <strong>in</strong> a sealed compartment with<strong>in</strong><strong>the</strong> ma<strong>in</strong> LV distribution cab<strong>in</strong>etb The meters are mounted on a panel which is completely free from vibrationsb Placed as close to <strong>the</strong> current transformers as possible, andb Are accessible only to <strong>the</strong> utility100MV supplyLV distributionCommon earth busbarfor <strong>the</strong> substationSafety accessories800 m<strong>in</strong>iMetersFig. B36 : Plan view of typical substation with LV meter<strong>in</strong>gEarth<strong>in</strong>g circuitsThe substation must <strong>in</strong>clude:b An earth electrode for all exposed conductive parts of electrical equipment <strong>in</strong> <strong>the</strong>substation and exposed extraneous metal <strong>in</strong>clud<strong>in</strong>g:v Protective metal screensv Re<strong>in</strong>forc<strong>in</strong>g rods <strong>in</strong> <strong>the</strong> concrete base of <strong>the</strong> substation© Schneider Electric - all rights reservedSubstation light<strong>in</strong>gSupply to <strong>the</strong> light<strong>in</strong>g circuits can be taken from a po<strong>in</strong>t upstream or downstreamof <strong>the</strong> ma<strong>in</strong> <strong>in</strong>com<strong>in</strong>g LV circuit-breaker. In ei<strong>the</strong>r case, appropriate overcurrentprotection must be provided. A separate automatic circuit (or circuits) is (are)recommended for emergency light<strong>in</strong>g purposes.Operat<strong>in</strong>g switches, pushbuttons, etc. are normally located immediately adjacent toentrances.Light<strong>in</strong>g fitt<strong>in</strong>gs are arranged such that:b Switchgear operat<strong>in</strong>g handles and position <strong>in</strong>dication mark<strong>in</strong>gs are adequatelyillum<strong>in</strong>atedb All meter<strong>in</strong>g dials and <strong>in</strong>struction plaques and so on, can be easily readSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network6 Constitution ofMV/LV distribution substationsMaterials for operation and safetyAccord<strong>in</strong>g to local safety rules, generally, <strong>the</strong> substation is provided with:b Materials for assur<strong>in</strong>g safe exploitation of <strong>the</strong> equipment <strong>in</strong>clud<strong>in</strong>g:v Insulat<strong>in</strong>g stool and/or an <strong>in</strong>sulat<strong>in</strong>g mat (rubber or syn<strong>the</strong>tic)v A pair of <strong>in</strong>sulated gloves stored <strong>in</strong> an envelope provided for <strong>the</strong> purposev A voltage-detect<strong>in</strong>g device for use on <strong>the</strong> MV equipmentv Earth<strong>in</strong>g attachments (accord<strong>in</strong>g to type of switchgear)b Fire-ext<strong>in</strong>guish<strong>in</strong>g devices of <strong>the</strong> powder or CO2 typeb Warn<strong>in</strong>g signs, notices and safety alarms:v On <strong>the</strong> external face of all access doors, a DANGER warn<strong>in</strong>g plaque andprohibition of entry notice, toge<strong>the</strong>r with <strong>in</strong>structions for first-aid care for victims ofelectrical accidents.B396.3 Outdoor substationsOutdoor substation with prefabricated enclosuresA prefabricated MV/LV substation comply<strong>in</strong>g with IEC 62271-202 standard <strong>in</strong>cludes :b equipement <strong>in</strong> accordance with IEC standardsb a type tested enclosure, which means dur<strong>in</strong>g its design, it has undergone a batteryof tests (see Fig. B37):v Degree of protectionv Functional testsv Temperature classv Non-flammable materialsv Mechanical resistance of <strong>the</strong> enclosurev Sound levelv Insulation levelv Internal arc withstandv Earth<strong>in</strong>g circuit testv Oil retention,…Use of equipment conformto IEC standards:b Degree of protectionb Electromagneticcompatibilityb Functional testsb Temperature classb Non-flammablematerialsLVEarth<strong>in</strong>g circuit testMVOil retentionMechanical resistanceof <strong>the</strong> enclosure:b Sound levelb Insulation levelb Internal arc<strong>in</strong>gwithstandFig. B37 : Type tested substation accord<strong>in</strong>g to IEC 62271-202 standardWalk-<strong>in</strong> Non walk-<strong>in</strong> Half burieda - b -UndergroundFig. B38 : The four designs accord<strong>in</strong>g to IEC 62271-202standard and two pictures [a] walk-<strong>in</strong> type MV/LV substation;[b] half buried type MV/LV substationMa<strong>in</strong> benefits are :b Safety:v For public and operators thanks to a high reproducible quality levelb Cost effective:v Manufactured, equipped and tested <strong>in</strong> <strong>the</strong> factoryb Delivery timev Delivered ready to be connected.IEC 62271-202 standard <strong>in</strong>cludes four ma<strong>in</strong> designs (see Fig. B38)b Walk-<strong>in</strong> type substation :v Operation protected from bad wea<strong>the</strong>r conditionsb Non walk-<strong>in</strong> substationv Ground space sav<strong>in</strong>gs, and outdoors operationsb Half buried substationv Limited visual impactb Underground substationv Blends completely <strong>in</strong>to <strong>the</strong> environment.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


B - Connection to <strong>the</strong> MV publicdistribution network6 Constitution ofMV/LV distribution substationsB40Outdoor substations without enclosures (see Fig. B39)These k<strong>in</strong>ds of outdoor substation are common <strong>in</strong> some countries, based onwea<strong>the</strong>rproof equipment exposed to <strong>the</strong> elements.These substations comprise a fenced area <strong>in</strong> which three or more concrete pl<strong>in</strong>thsare <strong>in</strong>stalled for:b A r<strong>in</strong>g-ma<strong>in</strong> unit, or one or more switch-fuse or circuit-breaker unit(s)b One or more transformer(s), andb One or more LV distribution panel(s).Pole mounted substationsField of applicationThese substations are ma<strong>in</strong>ly used to supply isolated rural consumers from MVoverhead l<strong>in</strong>e distribution systems.ConstitutionIn this type of substation, most often, <strong>the</strong> MV transformer protection is provided byfuses.Lightn<strong>in</strong>g arresters are provided, however, to protect <strong>the</strong> transformer and consumersas shown <strong>in</strong> Figure B40.General arrangement of equipmentAs previously noted <strong>the</strong> location of <strong>the</strong> substation must allow easy access, not onlyfor personnel but for equipment handl<strong>in</strong>g (rais<strong>in</strong>g <strong>the</strong> transformer, for example) and<strong>the</strong> manœuvr<strong>in</strong>g of heavy vehicles.Lightn<strong>in</strong>garrestersLV circuit breaker D1Earth<strong>in</strong>g conductor 25 mm 2 copperProtective conductor coverSafety earth mat© Schneider Electric - all rights reservedFig. B39 : Outdoor substations without enclosuresFig. B40 : Pole-mounted transformer substationSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Chapter CConnection to <strong>the</strong> LV utilitydistribution network12ContentsLow-voltage utility distribution networks1.1 Low-voltage consumers C21.2 Low-voltage distribution networks C101.3 The consumer service connection C111.4 Quality of supply voltage C15Tariffs and meter<strong>in</strong>gC2C16C© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


C - Connecion to <strong>the</strong> LV publicdistribution network1 Low-voltage utility distributionnetworksCThe most-common LV supplies are with<strong>in</strong> <strong>the</strong>range 120 V s<strong>in</strong>gle phase to 240/415 V3-phase 4-wires.Loads up to 250 kVA can be supplied at LV, butpower-supply organizations generally proposea MV service at load levels for which <strong>the</strong>irLV networks are marg<strong>in</strong>ally adequate.An <strong>in</strong>ternational voltage standard for 3-phase4-wire LV systems is recommended by <strong>the</strong>IEC 60038 to be 230/400 V1.1 Low-voltage consumersIn Europe, <strong>the</strong> transition period on <strong>the</strong> voltage tolerance to “230V/400V + 10% / - 10%”has been extended for ano<strong>the</strong>r 5 years up to <strong>the</strong> year 2008.Low-voltage consumers are, by def<strong>in</strong>ition, those consumers whose loads can besatisfactorily supplied from <strong>the</strong> low-voltage system <strong>in</strong> <strong>the</strong>ir locality.The voltage of <strong>the</strong> local LV network may be 120/208 V or 240/415 V, i.e. <strong>the</strong> loweror upper extremes of <strong>the</strong> most common 3-phase levels <strong>in</strong> general use, or at some<strong>in</strong>termediate level, as shown <strong>in</strong> Figure C1.An <strong>in</strong>ternational voltage standard for 3-phase 4-wire LV systems is recommendedby <strong>the</strong> IEC 60038 to be 230/400 V.Loads up to 250 kVA can be supplied at LV, but power-supply organizationsgenerally propose a MV service at load levels for which <strong>the</strong>ir LV networks aremarg<strong>in</strong>ally adequate.© Schneider Electric - all rights reservedCountry Frequency & tolerance Domestic (V) Commercial (V) Industrial (V)(Hz & %)Afghanistan 50 380/220 (a) 380/220 (a) 380/220 (a)220 (k)Algeria 50 ± 1.5 220/127 (e) 380/220 (a) 10,000220 (k) 220/127 (a) 5,5006,600380/220 (a)Angola 50 380/220 (a) 380/220 (a) 380/220 (a)220 (k)Antigua and Barbuda 60 240 (k) 400/230 (a) 400/230 (a)120 (k) 120/208 (a) 120/208 (a)Argent<strong>in</strong>a 50 ± 2 380/220 (a) 380/220 (a)220 (k) 220 (k)Armenia 50 ± 5 380/220 (a) 380/220 (a) 380/220 (a)220 (k) 220 (k)Australia 50 ± 0.1 415/240 (a) 415/240 (a) 22,000240 (k) 440/250 (a) 11,000440 (m) 6,600415/240440/250Austria 50 ± 0.1 230 (k) 380/230 (a) (b) 5,000230 (k) 380/220 (a)Azerbaijan 50 ± 0.1 208/120 (a) 208/120 (a)240/120 (k) 240/120 (k)Bahra<strong>in</strong> 50 ± 0.1 415/240 (a) 415/240 (a) 11,000240 (k) 240 (k) 415/240 (a)240 (k)Bangladesh 50 ± 2 410/220 (a) 410/220 (a) 11,000220 (k) 410/220 (a)Barbados 50 ± 6 230/115 (j) 230/115 (j) 230/400 (g)115 (k) 200/115 (a) 230/155 (j)220/115 (a)Belarus 50 380/220 (a) 380/220 (a) 380/220 (a)220 (k) 220 (k)220/127 (a)127 (k)Belgium 50 ± 5 230 (k) 230 (k) 6,600230 (a) 230 (a) 10,0003N, 400 3N, 400 11,00015,000Bolivia 50 ± 0.5 230 (k) 400/230 (a) 400/230 (a)230 (k)Botswana 50 ± 3 220 (k) 380/220 (a) 380/220 (a)Brazil 60 220 (k) 220/380 (a) 13,800127 (k) 127/220 (a) 11,200220/380 (a)127/220 (a)Brunei 50 ± 2 230 230 11,00068,000Bulgaria 50 ± 0.1 220 220/240 1,000690380Fig. C1 : Voltage of local LV network and <strong>the</strong>ir associated circuit diagrams (cont<strong>in</strong>ued on next page)Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


C - Connecion to <strong>the</strong> LV publicdistribution network1 Low-voltage utility distributionnetworksCountry Frequency & tolerance Domestic (V) Commercial (V) Industrial (V)(Hz & %)Cambodia 50 ± 1 220 (k) 220/300 220/380Cameroon 50 ± 1 220/260 (k) 220/260 (k) 220/380 (a)Canada 60 ± 0.02 120/240 (j) 347/600 (a) 7,200/12,500480 (f) 347/600 (a)240 (f) 120/208120/240 (j) 600 (f)120/208 (a) 480 (f)240 (f)Cape Verde 220 220 380/400Chad 50 ± 1 220 (k) 220 (k) 380/220 (a)Chile 50 ± 1 220 (k) 380/220 (a) 380/220 (a)Ch<strong>in</strong>a 50 ± 0.5 220 (k) 380/220 (a) 380/220 (a)220 (k) 220 (k)Colombia 60 ± 1 120/240 (g) 120/240 (g) 13,200120 (k) 120 (k) 120/240 (g)Congo 50 220 (k) 240/120 (j) 380/220 (a)120 (k)Croatia 50 400/230 (a) 400/230 (a) 400/230 (a)230 (k) 230 (k)Cyprus 50 ± 0.1 240 (k) 415/240 11,000415/240Czech Republic 50 ± 1 230 500 400,000230/400 220,000110,00035,00022,00010,0006,0003,000Denmark 50 ± 1 400/230 (a) 400/230 (a) 400/230 (a)Djibouti 50 400/230 (a) 400/230 (a)Dom<strong>in</strong>ica 50 230 (k) 400/230 (a) 400/230 (a)Egypt 50 ± 0.5 380/220 (a) 380/220 (a) 66,000220 (k) 220 (k) 33,00020,00011,0006,600380/220 (a)Estonia 50 ± 1 380/220 (a) 380/220 (a) 380/220 (a)220 (k) 220 (k)Ethiopia 50 ± 2.5 220 (k) 380/231 (a) 15 000380/231 (a)Falkland Islands 50 ± 3 230 (k) 415/230 (a) 415/230 (a)Fidji Islands 50 ± 2 415/240 (a) 415/240 (a) 11,000240 (k) 240 (k) 415/240 (a)F<strong>in</strong>land 50 ± 0.1 230 (k) 400/230 (a) 690/400 (a)400/230 (a)France 50 ± 1 400/230 (a) 400/230 20,000230 (a) 690/400 10,000590/100 230/400Gambia 50 220 (k) 220/380 380Georgia 50 ± 0.5 380/220 (a) 380/220 (a) 380/220 (a)220 (k) 220 (k)Germany 50 ± 0.3 400/230 (a) 400/230 (a) 20,000230 (k) 230 (k) 10,0006,000690/400400/230Ghana 50 ± 5 220/240 220/240 415/240 (a)Gibraltar 50 ± 1 415/240 (a) 415/240 (a) 415/240 (a)Greece 50 220 (k) 6,000 22,000230 380/220 (a) 20,00015,0006,600Granada 50 230 (k) 400/230 (a) 400/230 (a)Hong Kong 50 ± 2 220 (k) 380/220 (a) 11,000220 (k) 386/220 (a)Hungary 50 ± 5 220 220 220/380Iceland 50 ± 0.1 230 230/400 230/400Fig. C1 : Voltage of local LV network and <strong>the</strong>ir associated circuit diagrams (cont<strong>in</strong>ued on next page)C© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


C - Connecion to <strong>the</strong> LV publicdistribution network1 Low-voltage utility distributionnetworks© Schneider Electric - all rights reservedCCountry Frequency & tolerance Domestic (V) Commercial (V) Industrial (V)(Hz & %)India 50 ± 1.5 440/250 (a) 440/250 (a) 11,000230 (k) 230 (k) 400/230 (a)440/250 (a)Indonesia 50 ± 2 220 (k) 380/220 (a) 150,00020,000380/220 (a)Iran 50 ± 5 220 (k) 380/220 (a) 20,00011,000400/231 (a)380/220 (a)Iraq 50 220 (k) 380/220 (a) 11,0006,6003,000380/220 (a)Ireland 50 ± 2 230 (k) 400/230 (a) 20,00010,000400/230 (a)Israel 50 ± 0.2 400/230 (a) 400/230 (a) 22,000230 (k) 230 (k) 12,6006,300400/230 (a)Italy 50 ± 0.4 400/230 (a) 400/230 (a) 20,000230 (k) 15,00010,000400/230 (a)Jamaica 50 ± 1 220/110 (g) (j) 220/110 (g) (j) 4,0002,300220/110 (g)Japan (east) + 0.1 200/100 (h) 200/100 (h) 140,000- 0.3 (up to 50 kW) 60,00020,0006,000200/100 (h)Jordan 50 380/220 (a) 380/220 (a) 400 (a)400/230 (k)Kazakhstan 50 380/220 (a) 380/220 (a) 380/220 (a)220 (k) 220 (k)220/127 (a)127 (k)Kenya 50 240 (k) 415/240 (a) 415/240 (a)Kirghizia 50 380/220 (a) 380/220 (a) 380/220 (a)220 (k) 220 (k)220/127 (a)127 (k)Korea (North) 60 +0, -5 220 (k) 220/380 (a) 13,6006,800Korea (South) 60 100 (k) 100/200 (j)Kuwait 50 ± 3 240 (k) 415/240 (a) 415/240 (a)Laos 50 ± 8 380/220 (a) 380/220 (a) 380/220 (a)Lesotho 220 (k) 380/220 (a) 380/220 (a)Latvia 50 ± 0.4 380/220 (a) 380/220 (a) 380/220 (a)220 (k) 220 (k)Lebanon 50 220 (k) 380/220 (a) 380/220 (a)Libya 50 230 (k) 400/230 (a) 400/230 (a)127 (k) 220/127 (a) 220/127 (a)230 (k)127 (k)Lithuania 50 ± 0.5 380/220 (a) 380/220 (a) 380/220 (a)220 (k) 220 (k)Luxembourg 50 ± 0.5 380/220 (a) 380/220 (a) 20,00015,0005,000Macedonia 50 380/220 (a) 380/220 (a) 10,000220 (k) 220 (k) 6,600380/220 (a)Madagascar 50 220/110 (k) 380/220 (a) 35,0005,000380/220Fig. C1 : Voltage of local LV network and <strong>the</strong>ir associated circuit diagrams (cont<strong>in</strong>ued on next page)Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


C - Connecion to <strong>the</strong> LV publicdistribution network1 Low-voltage utility distributionnetworksCountry Frequency & tolerance Domestic (V) Commercial (V) Industrial (V)(Hz & %)Malaysia 50 ± 1 240 (k) 415/240 (a) 415/240 (a)415 (a)Malawi 50 ± 2.5 230 (k) 400 (a) 400 (a)230 (k)Mali 50 220 (k) 380/220 (a) 380/220 (a)127 (k) 220/127 (a) 220/127 (a)220 (k)127 (k)Malta 50 ± 2 240 (k) 415/240 (a) 415/240 (a)Mart<strong>in</strong>ique 50 127 (k) 220/127 (a) 220/127 (a)127 (k)Mauritania 50 ± 1 230 (k) 400/230 (a) 400/230 (a)Mexico 60 ± 0.2 127/220 (a) 127/220 (a) 13,800220 (k) 220 (k) 13,200120 (l) 120 (l) 277/480 (a)127/220 (b)Moldavia 50 380/220 (a) 380/220 (a) 380/220 (a)220 (k) 220 (k)220/127 (a)127 (k)Morocco 50 ± 5 380/220 (a) 380/220 (a) 225,000220/110 (a) 150,00060,00022,00020,000Mozambique 50 380/220 (a) 380/220 (a) 6,00010,000Nepal 50 ± 1 220 (k) 440/220 (a) 11,000220 (k) 440/220 (a)Ne<strong>the</strong>rlands 50 ± 0.4 230/400 (a) 230/400 (a) 25,000230 (k) 20,00012,00010,000230/400New Zealand 50 ± 1.5 400/230 (e) (a) 400/230 (e) (a) 11,000230 (k) 230 (k) 400/230 (a)460/230 (e)Niger 50 ± 1 230 (k) 380/220 (a) 15,000380/220 (a)Nigeria 50 ± 1 230 (k) 400/230 (a) 15,000220 (k) 380/220 (a) 11,000400/230 (a)380/220 (a)Norway 50 ± 2 230/400 230/400 230/400690Oman 50 240 (k) 415/240 (a) 415/240 (a)240 (k)Pakistan 50 230 (k) 400/230 (a) 400/230 (a)230 (k)Papua New Gu<strong>in</strong>ea 50 ± 2 240 (k) 415/240 (a) 22,000240 (k) 11,000415/240 (a)Paraguay 50 ± 0.5 220 (k) 380/220 (a) 22,000220 (k) 380/220 (a)Philipp<strong>in</strong>es (Rep of <strong>the</strong>) 60 ± 0.16 110/220 (j) 13,800 13,8004,160 4,1602,400 2,400110/220 (h) 440 (b)110/220 (h)Poland 50 ± 0.1 230 (k) 400/230 (a) 1,000690/400400/230 (a)Portugal 50 ± 1 380/220 (a) 15,000 15,000220 (k) 5,000 5,000380/220 (a) 380/220 (a)220 (k)Qatar 50 ± 0.1 415/240 (k) 415/240 (a) 11,000415/240 (a)Fig. C1 : Voltage of local LV network and <strong>the</strong>ir associated circuit diagrams (cont<strong>in</strong>ued on next page)C© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


C - Connecion to <strong>the</strong> LV publicdistribution network1 Low-voltage utility distributionnetworks© Schneider Electric - all rights reservedCCountry Frequency & tolerance Domestic (V) Commercial (V) Industrial (V)(Hz & %)Romania 50 ± 0.5 220 (k) 220/380 (a) 20,000220/380 (a) 10,0006,000220/380 (a)Russia 50 ± 0.2 380/220 (a) 380/220 (a) 380/220 (a)220 (k) 220 (k)Rwanda 50 ± 1 220 (k) 380/220 (a) 15,0006,600380/220 (a)Sa<strong>in</strong>t Lucia 50 ± 3 240 (k) 415/240 (a) 11,000415/240 (a)Samoa 400/230San Mar<strong>in</strong>o 50 ± 1 230/220 380 15,000380Saudi Arabia 60 220/127 (a) 220/127 (a) 11,000380/220 (a) 7,200380/220 (a)The Solomon Islands 50 ± 2 240 415/240 415/240Senegal 50 ± 5 220 (a) 380/220 (a) 90,000127 (k) 220/127 (k) 30,0006,600Serbia and Montenegro 50 380/220 (a) 380/220 (a) 10,000220 (k) 220 (k) 6,600380/220 (a)Seychelles 50 ± 1 400/230 (a) 400/230 (a) 11,000400/230 (a)Sierra Leone 50 ± 5 230 (k) 400/230 (a) 11,000230 (k) 400S<strong>in</strong>gapore 50 400/230 (a) 400/230 (a) 22,000230 (k) 6,600400/230 (a)Slovakia 50 ± 0.5 230 230 230/400Slovenia 50 ± 0.1 220 (k) 380/220 (a) 10,0006,600380/220 (a)Somalia 50 230 (k) 440/220 (j) 440/220 (g)220 (k) 220/110 (j) 220/110 (g)110 (k) 230 (k)South Africa 50 ± 2.5 433/250 (a) 11,000 11,000400/230 (a) 6,600 6,600380/220 (a) 3,300 3,300220 (k) 433/250 (a) 500 (b)400/230 (a) 380/220 (a)380/220 (a)Spa<strong>in</strong> 50 ± 3 380/220 (a) (e) 380/220 (a) 15,000220 (k) 220/127 (a) (e) 11,000220/127 (a) 380/220 (a)127 (k)Sri Lanka 50 ± 2 230 (k) 400/230 (a) 11,000230 (k) 400/230 (a)Sudan 50 240 (k) 415/240 (a) 415/240 (a)240 (k)Swaziland 50 ± 2.5 230 (k) 400/230 (a) 11,000230 (k) 400/230 (a)Sweden 50 ± 0.5 400/230 (a) 400/230 (a) 6,000230 (k) 230 (k) 400/230 (a)Switzerland 50 ± 2 400/230 (a) 400/230 (a) 20,00010,0003,0001,000690/500Syria 50 220 (k) 380/220 (a) 380/220 (a)115 (k) 220 (k)200/115 (a)Tadzhikistan 50 380/220 (a) 380/220 (a) 380/220 (a)220 (k) 220 (k)220/127 (a)127 (k)Fig. C1 : Voltage of local LV network and <strong>the</strong>ir associated circuit diagrams (cont<strong>in</strong>ued on next page)Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


C - Connecion to <strong>the</strong> LV publicdistribution network1 Low-voltage utility distributionnetworksCountry Frequency & tolerance Domestic (V) Commercial (V) Industrial (V)(Hz & %)Tanzania 50 400/230 (a) 400/230 (a) 11,000400/230 (a)Thailand 50 220 (k) 380/220 (a) 380/220 (a)220 (k)Togo 50 220 (k) 380/220 (a) 20,0005,500380/220 (a)Tunisia 50 ± 2 380/220 (a) 380/220 (a) 30,000220 (k) 220 (k) 15,00010,000380/220 (a)Turkmenistan 50 380/220 (a) 380/220 (a) 380/220 (a)220 (k) 220 (k)220/127 (a)127 (k)Turkey 50 ± 1 380/220 (a) 380/220 (a) 15,0006,300380/220 (a)Uganda + 0.1 240 (k) 415/240 (a) 11,000415/240 (a)Ukra<strong>in</strong>e + 0.2 / - 1.5 380/220 (a) 380/220 (a) 380/220 (a)220 (k) 220 (k) 220 (k)United Arab Emirates 50 ± 1 220 (k) 415/240 (a) 6,600380/220 (a) 415/210 (a)220 (k) 380/220 (a)United K<strong>in</strong>gdom 50 ± 1 230 (k) 400/230 (a) 22,000(except Nor<strong>the</strong>rn 11,000Ireland) 6,6003,300400/230 (a)United K<strong>in</strong>gdom 50 ± 0.4 230 (k) 400/230 (a) 400/230 (a)(Includ<strong>in</strong>g Nor<strong>the</strong>rn 220 (k) 380/220 (a) 380/220 (a)Ireland)United States of 60 ± 0.06 120/240 (j) 265/460 (a) 14,400America 120/208 (a) 120/240 (j) 7,200Charlotte 120/208 (a) 2,400(North Carol<strong>in</strong>a)575 (f)460 (f)240 (f)265/460 (a)120/240 (j)120/208 (a)United States of 60 ± 0.2 120/240 (j) 480 (f) 13,200America 120/208 (a) 120/240 (h) 4,800Detroit (Michigan) 120/208 (a) 4,160480 (f)120/240 (h)120/208 (a)United States of 60 ± 0.2 120/240 (j) 4,800 4,800America 120/240 (g) 120/240 (g)Los Angeles (California)United States of 60 ± 0.3 120/240 (j) 120/240 (j) 13,200America 120/208 (a) 120/240 (h) 2,400Miami (Florida) 120/208 (a) 480/277 (a)120/240 (h)United States of 60 120/240 (j) 120/240 (j) 12,470America New York 120/208 (a) 120/208 (a) 4,160(New York) 240 (f) 277/480 (a)480 (f)United States of 60 ± 0.03 120/240 (j) 265/460 (a) 13,200America 120/240 (j) 11,500Pittsburg 120/208 (a) 2,400(Pennsylvania) 460 (f) 265/460 (a)230 (f) 120/208 (a)460 (f)230 (f)Fig. C1 : Voltage of local LV network and <strong>the</strong>ir associated circuit diagrams (cont<strong>in</strong>ued on next page)C© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


C - Connecion to <strong>the</strong> LV publicdistribution network1 Low-voltage utility distributionnetworksCCountry Frequency & tolerance Domestic (V) Commercial (V) Industrial (V)(Hz & %)United States of 60 120/240 (j) 227/480 (a) 19,900America 120/240 (j) 12,000Portland (Oregon) 120/208 (a) 7,200480 (f) 2,400240 (f) 277/480 (a)120/208 (a)480 (f)240 (f)United States of 60 ± 0.08 120/240 (j) 277/480 (a) 20,800America 120/240 (j) 12,000San Francisco 4,160(California)277/480 (a)120/240 (g)United States of 60 ± 0.08 120/240 (j) 277/480 (c) 12,470America 120/208 (a) 120/240(h) 7,200Toledo (Ohio) 120/208 (j) 4,8004,160480 (f)277/480 (a)120/208 (a)Uruguay 50 ± 1 220 (b) (k) 220 (b) (k) 15,0006,000220 (b)Vietnam 50 ± 0.1 220 (k) 380/220 (a) 35,00015,00010,0006,000Yemen 50 250 (k) 440/250 (a) 440/250 (a)Zambia 50 ± 2.5 220 (k) 380/220 (a) 380 (a)Zimbabwe 50 225 (k) 390/225 (a) 11,000390/225 (a)Circuit diagrams(a) Three-phase star;Four-wire:Ear<strong>the</strong>d neutral(b) Three-phase star:Three-wire(c) Three-phase star;Three-wire:Ear<strong>the</strong>d neutral(d) Three-phase star;Four-wire:Non-ear<strong>the</strong>d neutral(e) Two-phase star;Three-wireEar<strong>the</strong>d neutral(f) Three-phase delta:Three-wire(g) Three-phase delta;Four-wire:Ear<strong>the</strong>d mid po<strong>in</strong>t ofone phase(h) Three-phase open delta;Four-wire:Ear<strong>the</strong>d mid po<strong>in</strong>t of onephase(i) Three-phaseopen delta:Ear<strong>the</strong>d junctionof phasesVVk© Schneider Electric - all rights reserved(j) S<strong>in</strong>gle-phase;Three-wire:Ear<strong>the</strong>d mid po<strong>in</strong>t(k) S<strong>in</strong>gle-phase;Two-wire:Ear<strong>the</strong>d end of phase(l) S<strong>in</strong>gle-phase;Two-wireUnear<strong>the</strong>dFig. C1 : Voltage of local LV network and <strong>the</strong>ir associated circuit diagrams (concluded)(m) S<strong>in</strong>gle-wire:Ear<strong>the</strong>d return (swer)(n) DC:Three-wire:Unear<strong>the</strong>dSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


C - Connecion to <strong>the</strong> LV publicdistribution network1 Low-voltage utility distributionnetworksResidential and commercial consumersThe function of a LV “ma<strong>in</strong>s” distributor is to provide service connections(underground cable or overhead l<strong>in</strong>e) to a number of consumers along its route.The current-rat<strong>in</strong>g requirements of distributors are estimated from <strong>the</strong> number ofconsumers to be connected and an average demand per consumer.The two pr<strong>in</strong>cipal limit<strong>in</strong>g parameters of a distributor are:b The maximum current which it is capable of carry<strong>in</strong>g <strong>in</strong>def<strong>in</strong>itely, andb The maximum length of cable which, when carry<strong>in</strong>g its maximum current, will notexceed <strong>the</strong> statutory voltage-drop limitThese constra<strong>in</strong>ts mean that <strong>the</strong> magnitude of loads which utilities are will<strong>in</strong>g toconnect to <strong>the</strong>ir LV distribution ma<strong>in</strong>s, is necessarily restricted.For <strong>the</strong> range of LV systems mentioned <strong>in</strong> <strong>the</strong> second paragraph of this sub-clause(1.1) viz: 120 V s<strong>in</strong>gle phase to 240/415 V 3-phase, typical maximum permitted loadsconnected to a LV distributor might (1) be (see Fig. C2):CSystem Assumed max. permitted current kVAper consumer service120 V 1-phase 2-wire 60 A 7.2120/240 V 1-phase 3-wire 60 A 14.4120/208 V 3-phase 4-wire 60 A 22220/380 V 3-phase 4-wire 120 A 80230/400 V 3-phase 4-wire 120 A 83240/415 V 3-phase 4-wire 120 A 86Fig. C2 : Typical maximum permitted loads connected to a LV distributorPractices vary considerably from one power supply organization to ano<strong>the</strong>r, and no“standardized” values can be given.Factors to be considered <strong>in</strong>clude:b The size of an exist<strong>in</strong>g distribution network to which <strong>the</strong> new load is to be connectedb The total load already connected to <strong>the</strong> distribution networkb The location along <strong>the</strong> distribution network of <strong>the</strong> proposed new load, i.e. close to<strong>the</strong> substation, or near <strong>the</strong> remote end of <strong>the</strong> distribution network, etcIn short, each case must be exam<strong>in</strong>ed <strong>in</strong>dividually.The load levels listed above are adequate for all normal residential consumers, andwill be sufficient for <strong>the</strong> <strong>in</strong>stallations of many adm<strong>in</strong>istrative, commercial and similarbuild<strong>in</strong>gs.(1) The Figure C2 values shown are <strong>in</strong>dicative only, be<strong>in</strong>g(arbitrarily) based on 60 A maximum service currents for <strong>the</strong>first three systems, s<strong>in</strong>ce smaller voltage drops are allowed at<strong>the</strong>se lower voltages, for a given percentage statutory limit.The second group of systems is (aga<strong>in</strong>, arbitrarily) based on amaximum permitted service current of 120 A.Medium-size and small <strong>in</strong>dustrial consumers (with dedicatedLV l<strong>in</strong>es direct from a utility supply MV/LV substation)Medium and small <strong>in</strong>dustrial consumers can also be satisfactorily supplied at lowvoltage.For loads which exceed <strong>the</strong> maximum permitted limit for a service from a distributor,a dedicated cable can usually be provided from <strong>the</strong> LV distribution fuse- (or switch-)board, <strong>in</strong> <strong>the</strong> power utility substation.Generaly, <strong>the</strong> upper load limit which can be supplied by this means is restricted onlyby <strong>the</strong> available spare transformer capacity <strong>in</strong> <strong>the</strong> substation.In practice, however:b Large loads (e.g. > 300 kVA) require correspond<strong>in</strong>gly large cables, so that,unless <strong>the</strong> load centre is close to <strong>the</strong> substation, this method can be economicallyunfavourableb Many utilities prefer to supply loads exceed<strong>in</strong>g 200 kVA (this figure varies withdifferent suppliers) at medium voltageFor <strong>the</strong>se reasons, dedicated supply l<strong>in</strong>es at LV are generally applied (at 220/380 Vto 240/415 V) to a load range of 80 kVA to 250 kVA.Consumers normally supplied at low voltage <strong>in</strong>clude:b Residential dwell<strong>in</strong>gsb Shops and commercial build<strong>in</strong>gsb Small factories, workshops and fill<strong>in</strong>g stationsb Restaurantsb Farms, etcSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>© Schneider Electric - all rights reserved


C - Connecion to <strong>the</strong> LV publicdistribution network1 Low-voltage utility distributionnetworksC10In cities and large towns, standardizedLV distribution cables form a network throughl<strong>in</strong>k boxes. Some l<strong>in</strong>ks are removed, so thateach (fused) distributor leav<strong>in</strong>g a substationforms a branched open-ended radial system,as shown <strong>in</strong> Figure C31.2 LV distribution networksIn European countries <strong>the</strong> standard 3-phase 4-wire distribution voltage level is230/400 V. Many countries are currently convert<strong>in</strong>g <strong>the</strong>ir LV systems to <strong>the</strong> latest IECstandard of 230/400 V nom<strong>in</strong>al (IEC 60038). Mediumto large-sized towns and cities have underground cable distribution systems.MV/LV distribution substations, mutually spaced at approximately 500-600 metres,are typically equipped with:b A 3-or 4-way MV switchboard, often made up of <strong>in</strong>com<strong>in</strong>g and outgo<strong>in</strong>g loadbreakswitches form<strong>in</strong>g part of a r<strong>in</strong>g ma<strong>in</strong>, and one or two MV circuit-breakers orcomb<strong>in</strong>ed fuse/ load-break switches for <strong>the</strong> transformer circuitsb One or two 1,000 kVA MV/LV transformersb One or two (coupled) 6-or 8-way LV 3-phase 4-wire distribution fuse boards, ormoulded-case circuit-breaker boards, control and protect outgo<strong>in</strong>g 4-core distributioncables, generally referred to as “distributors”The output from a transformer is connected to <strong>the</strong> LV busbars via a load-breakswitch, or simply through isolat<strong>in</strong>g l<strong>in</strong>ks.In densely-loaded areas, a standard size of distributor is laid to form a network,with (generally) one cable along each pavement and 4-way l<strong>in</strong>k boxes located <strong>in</strong>manholes at street corners, where two cables cross.Recent trends are towards wea<strong>the</strong>r-proof cab<strong>in</strong>ets above ground level, ei<strong>the</strong>r aga<strong>in</strong>sta wall, or where possible, flush-mounted <strong>in</strong> <strong>the</strong> wall.L<strong>in</strong>ks are <strong>in</strong>serted <strong>in</strong> such a way that distributors form radial circuits from <strong>the</strong>substation with open-ended branches (see Fig. C3). Where a l<strong>in</strong>k box unites adistributor from one substation with that from a neighbour<strong>in</strong>g substation, <strong>the</strong> phasel<strong>in</strong>ks are omitted or replaced by fuses, but <strong>the</strong> neutral l<strong>in</strong>k rema<strong>in</strong>s <strong>in</strong> place.4-wayl<strong>in</strong>k boxHV/LVsubstationServicecablePhase l<strong>in</strong>ksremoved© Schneider Electric - all rights reservedFig. C3 : Show<strong>in</strong>g one of several ways <strong>in</strong> which a LV distribution network may be arranged forradial branched-distributor operation, by remov<strong>in</strong>g (phase) l<strong>in</strong>ksSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


C - Connecion to <strong>the</strong> LV publicdistribution network1 Low-voltage utility distributionnetworksIn less-densely loaded urban areas a moreeconomicsystem of tapered radial distributionis commonly used, <strong>in</strong> which conductors ofreduced size are <strong>in</strong>stalled as <strong>the</strong> distance froma substation <strong>in</strong>creasesImproved methods us<strong>in</strong>g <strong>in</strong>sulated twistedconductors to form a pole mounted aerial cableare now standard practice <strong>in</strong> many countriesIn Europe, each utility-supply distributionsubstation is able to supply at LV an areacorrespond<strong>in</strong>g to a radius of approximately300 metres from <strong>the</strong> substation.North and Central American systems ofdistribution consist of a MV network from whichnumerous (small) MV/LV transformers eachsupply one or several consumers, by directservice cable (or l<strong>in</strong>e) from <strong>the</strong> transformerlocationThis arrangement provides a very flexible system <strong>in</strong> which a complete substation canbe taken out of service, while <strong>the</strong> area normally supplied from it is fed from l<strong>in</strong>k boxesof <strong>the</strong> surround<strong>in</strong>g substations.Moreover, short lengths of distributor (between two l<strong>in</strong>k boxes) can be isolated forfault-location and repair.Where <strong>the</strong> load density requires it, <strong>the</strong> substations are more closely spaced, andtransformers up to 1,500 kVA are sometimes necessary.O<strong>the</strong>r forms of urban LV network, based on free-stand<strong>in</strong>g LV distribution pillars,placed above ground at strategic po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> network, are widely used <strong>in</strong> areas oflower load density. This scheme exploits <strong>the</strong> pr<strong>in</strong>ciple of tapered radial distributors <strong>in</strong>which <strong>the</strong> distribution cable conductor size is reduced as <strong>the</strong> number of consumersdownstream dim<strong>in</strong>ish with distance from <strong>the</strong> substation.In this scheme a number of large-sectioned LV radial feeders from <strong>the</strong> distributionboard <strong>in</strong> <strong>the</strong> substation supply <strong>the</strong> busbars of a distribution pillar, from which smallerdistributors supply consumers immediately surround<strong>in</strong>g <strong>the</strong> pillar.Distribution <strong>in</strong> market towns, villages and rural areas generally has, for many years,been based on bare copper conductors supported on wooden, concrete or steelpoles, and supplied from pole-mounted or ground-mounted transformers.In recent years, LV <strong>in</strong>sulated conductors, twisted to form a two-core or 4-core selfsupport<strong>in</strong>g cable for overhead use, have been developed, and are considered to besafer and visually more acceptable than bare copper l<strong>in</strong>es.This is particularly so when <strong>the</strong> conductors are fixed to walls (e.g. under-eaveswir<strong>in</strong>g) where <strong>the</strong>y are hardly noticeable.As a matter of <strong>in</strong>terest, similar pr<strong>in</strong>ciples have been applied at higher voltages, andself support<strong>in</strong>g “bundled” <strong>in</strong>sulated conductors for MV overhead <strong>in</strong>stallations are nowavailable for operation at 24 kV.Where more than one substation supplies a village, arrangements are made at poleson which <strong>the</strong> LV l<strong>in</strong>es from different substations meet, to <strong>in</strong>terconnect correspond<strong>in</strong>gphases.North and Central American practice differs fundamentally from that <strong>in</strong> Europe, <strong>in</strong>that LV networks are practically nonexistent, and 3-phase supplies to premises <strong>in</strong>residential areas are rare.The distribution is effectively carried out at medium voltage <strong>in</strong> a way, which aga<strong>in</strong>differs from standard European practices. The MV system is, <strong>in</strong> fact, a 3-phase4-wire system from which s<strong>in</strong>gle-phase distribution networks (phase and neutralconductors) supply numerous s<strong>in</strong>gle-phase transformers, <strong>the</strong> secondary w<strong>in</strong>d<strong>in</strong>gsof which are centre-tapped to produce 120/240 V s<strong>in</strong>gle-phase 3-wire supplies.The central conductors provide <strong>the</strong> LV neutrals, which, toge<strong>the</strong>r with <strong>the</strong> MV neutralconductors, are solidly ear<strong>the</strong>d at <strong>in</strong>tervals along <strong>the</strong>ir lengths.Each MV/LV transformer normally supplies one or several premises directly from <strong>the</strong>transformer position by radial service cable(s) or by overhead l<strong>in</strong>e(s).Many o<strong>the</strong>r systems exist <strong>in</strong> <strong>the</strong>se countries, but <strong>the</strong> one described appears to be<strong>the</strong> most common.Figure C4 (next page) shows <strong>the</strong> ma<strong>in</strong> features of <strong>the</strong> two systems.C11Service components and meter<strong>in</strong>g equipmentwere formerly <strong>in</strong>stalled <strong>in</strong>side a consumer’sbuild<strong>in</strong>g. The modern tendency is to locate<strong>the</strong>se items outside <strong>in</strong> a wea<strong>the</strong>rproof cab<strong>in</strong>et1.3 The consumer-service connectionIn <strong>the</strong> past, an underground cable service or <strong>the</strong> wall-mounted <strong>in</strong>sulated conductorsfrom an overhead l<strong>in</strong>e service, <strong>in</strong>variably term<strong>in</strong>ated <strong>in</strong>side <strong>the</strong> consumer’s premises,where <strong>the</strong> cable-end seal<strong>in</strong>g box, <strong>the</strong> utility fuses (<strong>in</strong>accessible to <strong>the</strong> consumer) andmeters were <strong>in</strong>stalled.A more recent trend is (as far as possible) to locate <strong>the</strong>se service components <strong>in</strong> awea<strong>the</strong>rproof hous<strong>in</strong>g outside <strong>the</strong> build<strong>in</strong>g.The utility/consumer <strong>in</strong>terface is often at <strong>the</strong> outgo<strong>in</strong>g term<strong>in</strong>als of <strong>the</strong> meter(s) or,<strong>in</strong> some cases, at <strong>the</strong> outgo<strong>in</strong>g term<strong>in</strong>als of <strong>the</strong> <strong>in</strong>stallation ma<strong>in</strong> circuit-breaker(depend<strong>in</strong>g on local practices) to which connection is made by utility staff, follow<strong>in</strong>g asatisfactory test and <strong>in</strong>spection of <strong>the</strong> <strong>in</strong>stallation.A typical arrangement is shown <strong>in</strong> Figure C5 (next page).© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


C - Connecion to <strong>the</strong> LV publicdistribution network1 Low-voltage utility distributionnetworksC121 2 313.8 kV / 2.4-4.16 kVNEach MV/LV transformer shownrepresents many similar units2.4 kV / 120-240 V1 ph - 3 wiredistributiontransformer23NHV (1)For primary voltages > 72.5 kV(see note) primaryw<strong>in</strong>d<strong>in</strong>g may be:- Delta- Ear<strong>the</strong>d star- Ear<strong>the</strong>d zigzagDepend<strong>in</strong>g on <strong>the</strong> country concernedTertiary delta normally(not always) used if <strong>the</strong>primary w<strong>in</strong>d<strong>in</strong>g is not delta1 ph MV / 230 Vservice transformerto isolated consumer(s)(rural supplies)}1N1NMV (2)Resistor replacedby a Petersencoil on O/H l<strong>in</strong>esystems <strong>in</strong> somecountriesPhN2N2N3 phMV / 230/400 V4-wire distributiontransformerN1 2 3 NN 1 2 3Ma<strong>in</strong> 3 ph and neutralLV distribution networkMV distributor(1) 132 kV for example(2) 11 kV for exampleNote: At primary voltages greater than 72.5 kV <strong>in</strong> bulk-supply substations, it is common practice <strong>in</strong> some European countriesto use an ear<strong>the</strong>d-star primary w<strong>in</strong>d<strong>in</strong>g and a delta secondary w<strong>in</strong>d<strong>in</strong>g. The neutral po<strong>in</strong>t on <strong>the</strong> secondary side is <strong>the</strong>nprovided by a zigzag earth<strong>in</strong>g reactor, <strong>the</strong> star po<strong>in</strong>t of which is connected to earth through a resistor.Frequently, <strong>the</strong> earth<strong>in</strong>g reactor has a secondary w<strong>in</strong>d<strong>in</strong>g to provide LV 3-phase supplies for <strong>the</strong> substation. It is <strong>the</strong>n referredto as an “earth<strong>in</strong>g transformer”.Fig. C4 : Widely-used American and European-type systemsCB© Schneider Electric - all rights reservedM FAFig. C5 : Typical service arrangement for TT-ear<strong>the</strong>d systemsSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


C - Connecion to <strong>the</strong> LV publicdistribution network1 Low-voltage utility distributionnetworksLV consumers are normally supplied accord<strong>in</strong>gto <strong>the</strong> TN or TT system, as described <strong>in</strong>chapters F and G. The <strong>in</strong>stallation ma<strong>in</strong> circuitbreakerfor a TT supply must <strong>in</strong>clude a residualcurrent earth-leakage protective device. For aTN service, overcurrent protection by circuitbreakeror switch-fuse is requiredA MCCB -moulded case circuit-breaker- which <strong>in</strong>corporates a sensitive residualcurrentearth-fault protective feature is mandatory at <strong>the</strong> orig<strong>in</strong> of any LV <strong>in</strong>stallationform<strong>in</strong>g part of a TT earth<strong>in</strong>g system. The reason for this feature and relatedleakage-current tripp<strong>in</strong>g levels are discussed <strong>in</strong> Clause 3 of Chapter G.A fur<strong>the</strong>r reason for this MCCB is that <strong>the</strong> consumer cannot exceed his (contractual)declared maximum load, s<strong>in</strong>ce <strong>the</strong> overload trip sett<strong>in</strong>g, which is sealed by <strong>the</strong>supply authority, will cut off supply above <strong>the</strong> declared value. Clos<strong>in</strong>g and tripp<strong>in</strong>g of<strong>the</strong> MCCB is freely available to <strong>the</strong> consumer, so that if <strong>the</strong> MCCB is <strong>in</strong>advertentlytripped on overload, or due to an appliance fault, supplies can be quickly restoredfollow<strong>in</strong>g correction of <strong>the</strong> anomaly.In view of <strong>the</strong> <strong>in</strong>convenience to both <strong>the</strong> meter reader and consumer, <strong>the</strong> location ofmeters is nowadays generally outside <strong>the</strong> premises, ei<strong>the</strong>r:b In a free-stand<strong>in</strong>g pillar-type hous<strong>in</strong>g as shown <strong>in</strong> Figures C6 and C7b In a space <strong>in</strong>side a build<strong>in</strong>g, but with cable term<strong>in</strong>ation and supply authority’s fuseslocated <strong>in</strong> a flush-mounted wea<strong>the</strong>rproof cab<strong>in</strong>et accessible from <strong>the</strong> public way, asshown <strong>in</strong> Figure C8 next pageb For private residential consumers, <strong>the</strong> equipment shown <strong>in</strong> <strong>the</strong> cab<strong>in</strong>et <strong>in</strong>Figure C5 is <strong>in</strong>stalled <strong>in</strong> a wea<strong>the</strong>rproof cab<strong>in</strong>et mounted vertically on a metalframe <strong>in</strong> <strong>the</strong> front garden, or flush-mounted <strong>in</strong> <strong>the</strong> boundary wall, and accessible toauthorized personnel from <strong>the</strong> pavement. Figure C9 (next page) shows <strong>the</strong> generalarrangement, <strong>in</strong> which removable fuse l<strong>in</strong>ks provide <strong>the</strong> means of isolationC13MFCBAIn this k<strong>in</strong>d of <strong>in</strong>stallation it is often necessary to place <strong>the</strong> ma<strong>in</strong> <strong>in</strong>stallation circuitbreakersome distance from <strong>the</strong> po<strong>in</strong>t of utilization, e.g. saw-mills, pump<strong>in</strong>g stations,etc.Fig. C6 : Typical rural-type <strong>in</strong>stallationCBMFThe ma<strong>in</strong> <strong>in</strong>stallation CB is located <strong>in</strong> <strong>the</strong> consumer’s premises <strong>in</strong> cases where it isset to trip if <strong>the</strong> declared kVA load demand is exceeded.Fig. C7 : Semi-urban <strong>in</strong>stallations (shopp<strong>in</strong>g prec<strong>in</strong>cts, etc.)A© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


C - Connecion to <strong>the</strong> LV publicdistribution network1 Low-voltage utility distributionnetworksC14CBMFAThe service cable term<strong>in</strong>ates <strong>in</strong> a flushmounted wall cab<strong>in</strong>et which conta<strong>in</strong>s <strong>the</strong>isolat<strong>in</strong>g fuse l<strong>in</strong>ks, accessible from <strong>the</strong> public way. This method is preferred fores<strong>the</strong>tic reasons, when <strong>the</strong> consumer can provide a suitable meter<strong>in</strong>g and ma<strong>in</strong>switchlocation.Fig. C8 : Town centre <strong>in</strong>stallationsInterfaceService cableUtilityConsumer<strong>Installation</strong>Isolation byfuse l<strong>in</strong>ksMeter cab<strong>in</strong>etMeterMa<strong>in</strong>circuitbreakerFig. C9 : Typical LV service arrangement for residential consumers© Schneider Electric - all rights reservedIn <strong>the</strong> field of electronic meter<strong>in</strong>g, techniques have developed which make <strong>the</strong>iruse attractive by utilities ei<strong>the</strong>r for electricity meter<strong>in</strong>g and for bill<strong>in</strong>g purposes, <strong>the</strong>liberalisation of <strong>the</strong> electricity market hav<strong>in</strong>g <strong>in</strong>creased <strong>the</strong> needs for more datacollection to be returned from <strong>the</strong> meters. For example electronic meter<strong>in</strong>g can alsohelp utilities to understand <strong>the</strong>ir customers’ consumption profiles. In <strong>the</strong> same way,<strong>the</strong>y will be useful for more and more power l<strong>in</strong>e communication and radio-frequencyapplications as well.In this area, prepayment systems are also more and more employed wheneconomically justified. They are based on <strong>the</strong> fact that for <strong>in</strong>stance consumers hav<strong>in</strong>gmade <strong>the</strong>ir payment at vend<strong>in</strong>g stations, generate tokens to pass <strong>the</strong> <strong>in</strong>formationconcern<strong>in</strong>g this payment on to <strong>the</strong> meters. For <strong>the</strong>se systems <strong>the</strong> key issues aresecurity and <strong>in</strong>ter-operability which seem to have been addressed successfullynow. The attractiveness of <strong>the</strong>se systems is due to <strong>the</strong> fact <strong>the</strong>y not only replace <strong>the</strong>meters but also <strong>the</strong> bill<strong>in</strong>g systems, <strong>the</strong> read<strong>in</strong>g of meters and <strong>the</strong> adm<strong>in</strong>istration of<strong>the</strong> revenue collection.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


C - Connecion to <strong>the</strong> LV publicdistribution network1 Low-voltage utility distributionnetworksAn adequate level of voltage at <strong>the</strong> consumerssupply-service term<strong>in</strong>als is essential forsatisfactory operation of equipment andappliances. Practical values of current, andresult<strong>in</strong>g voltage drops <strong>in</strong> a typical LV system,show <strong>the</strong> importance of ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a highPower Factor as a means of reduc<strong>in</strong>g voltagedrop.1.4 Quality of supply voltageThe quality of <strong>the</strong> LV network supply voltage <strong>in</strong> its widest sense implies:b Compliance with statutory limits of magnitude and frequencyb Freedom from cont<strong>in</strong>ual fluctuation with<strong>in</strong> those limitsb Un<strong>in</strong>terrupted power supply, except for scheduled ma<strong>in</strong>tenance shutdowns, or as aresult of system faults or o<strong>the</strong>r emergenciesb Preservation of a near-s<strong>in</strong>usoidal wave formIn this Sub-clause <strong>the</strong> ma<strong>in</strong>tenance of voltage magnitude only will be discussed.In most countries, power-supply authorities have a statutory obligation to ma<strong>in</strong>ta<strong>in</strong><strong>the</strong> level of voltage at <strong>the</strong> service position of consumers with<strong>in</strong> <strong>the</strong> limits of ± 5% (or<strong>in</strong> some cases ± 6% or more-see table C1) of <strong>the</strong> declared nom<strong>in</strong>al value.Aga<strong>in</strong>, IEC and most national standards recommend that LV appliances be designedand tested to perform satisfactorily with<strong>in</strong> <strong>the</strong> limits of ± 10% of nom<strong>in</strong>al voltage. Thisleaves a marg<strong>in</strong>, under <strong>the</strong> worst conditions (of m<strong>in</strong>us 5% at <strong>the</strong> service position, forexample) of 5% allowable voltage drop <strong>in</strong> <strong>the</strong> <strong>in</strong>stallation wir<strong>in</strong>g.The voltage drops <strong>in</strong> a typical distribution system occur as follows: <strong>the</strong> voltage at<strong>the</strong> MV term<strong>in</strong>als of a MV/LV transformer is normally ma<strong>in</strong>ta<strong>in</strong>ed with<strong>in</strong> a ± 2% bandby <strong>the</strong> action of automatic onload tapchangers of <strong>the</strong> transformers at bulk-supplysubstations, which feed <strong>the</strong> MV network from a higher-voltage subtransmissionsystem.If <strong>the</strong> MV/LV transformer is <strong>in</strong> a location close to a bulk-supply substation, <strong>the</strong> ± 2%voltage band may be centered on a voltage level which is higher than <strong>the</strong> nom<strong>in</strong>alMV value. For example, <strong>the</strong> voltage could be 20.5 kV ± 2% on a 20 kV system. In thiscase, <strong>the</strong> MV/LV distribution transformer should have its MV off-circuit tapp<strong>in</strong>g switchselected to <strong>the</strong> + 2.5% tap position.Conversely, at locations remote from bulk supply substations a value of 19.5 kV ±2% is possible, <strong>in</strong> which case <strong>the</strong> off-circuit tapp<strong>in</strong>g switch should be selected to <strong>the</strong>- 5% position.The different levels of voltage <strong>in</strong> a system are normal, and depend on <strong>the</strong> systempowerflow pattern. Moreover, <strong>the</strong>se voltage differences are <strong>the</strong> reason for <strong>the</strong> term“nom<strong>in</strong>al” when referr<strong>in</strong>g to <strong>the</strong> system voltage.C15Practical application(1) Transformers designed for <strong>the</strong> 230/400 V IEC standardwill have a no-load output of 420 V, i.e. 105% of <strong>the</strong> nom<strong>in</strong>alvoltageWith <strong>the</strong> MV/LV transformer correctly selected at its off-circuit tapp<strong>in</strong>g switch, anunloaded transformer output voltage will be held with<strong>in</strong> a band of ± 2% of its no-loadvoltage output.To ensure that <strong>the</strong> transformer can ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> necessary voltage level when fullyloaded, <strong>the</strong> output voltage at no-load must be as high as possible without exceed<strong>in</strong>g<strong>the</strong> upper + 5% limit (adopted for this example). In present-day practice, <strong>the</strong> w<strong>in</strong>d<strong>in</strong>gratios generally give an output voltage of about 104% at no-load (1) , when nom<strong>in</strong>alvoltage is applied at MV, or is corrected by <strong>the</strong> tapp<strong>in</strong>g switch, as described above.This would result <strong>in</strong> a voltage band of 102% to 106% <strong>in</strong> <strong>the</strong> present case.A typical LV distribution transformer has a short-circuit reactance voltage of 5%. If itis assumed that its resistance voltage is one tenth of this value, <strong>the</strong>n <strong>the</strong> voltage dropwith<strong>in</strong> <strong>the</strong> transformer when supply<strong>in</strong>g full load at 0.8 power factor lagg<strong>in</strong>g, will be:V% drop = R% cos ϕ + X% s<strong>in</strong> ϕ= 0.5 x 0.8 + 5 x 0.6= 0.4 + 3 = 3.4%The voltage band at <strong>the</strong> output term<strong>in</strong>als of <strong>the</strong> fully-loaded transformer will <strong>the</strong>reforebe (102 - 3.4) = 98.6% to (106 - 3.4) = 102.6%.The maximum allowable voltage drop along a distributor is <strong>the</strong>refore 98.6 - 95 = 3.6%.This means, <strong>in</strong> practical terms, that a medium-sized 230/400 V 3-phase 4-wiredistribution cable of 240 mm 2 copper conductors would be able to supply a total loadof 292 kVA at 0.8 PF lagg<strong>in</strong>g, distributed evenly over 306 metres of <strong>the</strong> distributor.Alternatively, <strong>the</strong> same load at <strong>the</strong> premises of a s<strong>in</strong>gle consumer could be suppliedat a distance of 153 metres from <strong>the</strong> transformer, for <strong>the</strong> same volt-drop, and so on...As a matter of <strong>in</strong>terest, <strong>the</strong> maximum rat<strong>in</strong>g of <strong>the</strong> cable, based on calculationsderived from IEC 60287 (1982) is 290 kVA, and so <strong>the</strong> 3.6% voltage marg<strong>in</strong> is notunduly restrictive, i.e. <strong>the</strong> cable can be fully loaded for distances normally required <strong>in</strong>LV distribution systems.Fur<strong>the</strong>rmore, 0.8 PF lagg<strong>in</strong>g is appropriate to <strong>in</strong>dustrial loads. In mixed semi<strong>in</strong>dustrialareas 0.85 is a more common value, while 0.9 is generally used forcalculations concern<strong>in</strong>g residential areas, so that <strong>the</strong> volt-drop noted above may beconsidered as a “worst case” example.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>© Schneider Electric - all rights reserved


C - Connecion to <strong>the</strong> LV publicdistribution network2 Tariffs and meter<strong>in</strong>gC16No attempt will be made <strong>in</strong> this guide to discuss particular tariffs, s<strong>in</strong>ce <strong>the</strong>re appearsto be as many different tariff structures around <strong>the</strong> world as <strong>the</strong>re are utilities.Some tariffs are very complicated <strong>in</strong> detail but certa<strong>in</strong> elements are basic to all of<strong>the</strong>m and are aimed at encourag<strong>in</strong>g consumers to manage <strong>the</strong>ir power consumption<strong>in</strong> a way which reduces <strong>the</strong> cost of generation, transmission and distribution.The two predom<strong>in</strong>ant ways <strong>in</strong> which <strong>the</strong> cost of supply<strong>in</strong>g power to consumers canbe reduced, are:b Reduction of power losses <strong>in</strong> <strong>the</strong> generation, transmission and distribution ofelectrical <strong>energy</strong>. In pr<strong>in</strong>ciple <strong>the</strong> lowest losses <strong>in</strong> a power system are atta<strong>in</strong>ed whenall parts of <strong>the</strong> system operate at unity power factorb Reduction of <strong>the</strong> peak power demand, while <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> demand at low-loadperiods, <strong>the</strong>reby exploit<strong>in</strong>g <strong>the</strong> generat<strong>in</strong>g plant more fully, and m<strong>in</strong>imiz<strong>in</strong>g plantredundancyReduction of lossesAlthough <strong>the</strong> ideal condition noted <strong>in</strong> <strong>the</strong> first possibility mentioned above cannotbe realized <strong>in</strong> practice, many tariff structures are based partly on kVA demand, aswell as on kWh consumed. S<strong>in</strong>ce, for a given kW load<strong>in</strong>g, <strong>the</strong> m<strong>in</strong>imum value of kVAoccurs at unity power factor, <strong>the</strong> consumer can m<strong>in</strong>imize bill<strong>in</strong>g costs by tak<strong>in</strong>g stepsto improve <strong>the</strong> power factor of <strong>the</strong> load (as discussed <strong>in</strong> Chapter L). The kVA demandgenerally used for tariff purposes is <strong>the</strong> maximum average kVA demand occurr<strong>in</strong>gdur<strong>in</strong>g each bill<strong>in</strong>g period, and is based on average kVA demands, over fixed periods(generally 10, 30 or 60 m<strong>in</strong>ute periods) and select<strong>in</strong>g <strong>the</strong> highest of <strong>the</strong>se values.The pr<strong>in</strong>ciple is described below <strong>in</strong> “pr<strong>in</strong>ciple of kVA maximum-demand meter<strong>in</strong>g”.Reduction of peak power demandThe second aim, i.e. that of reduc<strong>in</strong>g peak power demands, while <strong>in</strong>creas<strong>in</strong>g demandat low-load periods, has resulted <strong>in</strong> tariffs which offer substantial reduction <strong>in</strong> <strong>the</strong> costof <strong>energy</strong> at:b Certa<strong>in</strong> hours dur<strong>in</strong>g <strong>the</strong> 24-hour dayb Certa<strong>in</strong> periods of <strong>the</strong> yearThe simplest example is that of a residential consumer with a storage-type waterheater (or storage-type space heater, etc.). The meter has two digital registers, oneof which operates dur<strong>in</strong>g <strong>the</strong> day and <strong>the</strong> o<strong>the</strong>r (switched over by a tim<strong>in</strong>g device)operates dur<strong>in</strong>g <strong>the</strong> night. A contactor, operated by <strong>the</strong> same tim<strong>in</strong>g device, closes<strong>the</strong> circuit of <strong>the</strong> water heater, <strong>the</strong> consumption of which is <strong>the</strong>n <strong>in</strong>dicated on <strong>the</strong>register to which <strong>the</strong> cheaper rate applies. The heater can be switched on and off atany time dur<strong>in</strong>g <strong>the</strong> day if required, but will <strong>the</strong>n be metered at <strong>the</strong> normal rate. Large<strong>in</strong>dustrial consumers may have 3 or 4 rates which apply at different periods dur<strong>in</strong>ga 24-hour <strong>in</strong>terval, and a similar number for different periods of <strong>the</strong> year. In suchschemes <strong>the</strong> ratio of cost per kWh dur<strong>in</strong>g a period of peak demand for <strong>the</strong> year, andthat for <strong>the</strong> lowest-load period of <strong>the</strong> year, may be as much as 10: 1.MetersIt will be appreciated that high-quality <strong>in</strong>struments and devices are necessary toimplement this k<strong>in</strong>d of meter<strong>in</strong>g, when us<strong>in</strong>g classical electro-mechanical equipment.Recent developments <strong>in</strong> electronic meter<strong>in</strong>g and micro-processors, toge<strong>the</strong>r withremote ripple-control (1) from an utility control centre (to change peak-period tim<strong>in</strong>gthroughout <strong>the</strong> year, etc.) are now operational, and facilitate considerably <strong>the</strong>application of <strong>the</strong> pr<strong>in</strong>ciples discussed.In most countries, some tariffs, as noted above, are partly based on kVA demand,<strong>in</strong> addition to <strong>the</strong> kWh consumption, dur<strong>in</strong>g <strong>the</strong> bill<strong>in</strong>g periods (often 3-monthly<strong>in</strong>tervals). The maximum demand registered by <strong>the</strong> meter to be described, is, <strong>in</strong> fact,a maximum (i.e. <strong>the</strong> highest) average kVA demand registered for succeed<strong>in</strong>g periodsdur<strong>in</strong>g <strong>the</strong> bill<strong>in</strong>g <strong>in</strong>terval.© Schneider Electric - all rights reserved(1) Ripple control is a system of signall<strong>in</strong>g <strong>in</strong> which a voicefrequency current (commonly at 175 Hz) is <strong>in</strong>jected <strong>in</strong>to <strong>the</strong>LV ma<strong>in</strong>s at appropriate substations. The signal is <strong>in</strong>jectedas coded impulses, and relays which are tuned to <strong>the</strong> signalfrequency and which recognize <strong>the</strong> particular code will operateto <strong>in</strong>itiate a required function. In this way, up to 960 discretecontrol signals are available.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


C - Connecion to <strong>the</strong> LV publicdistribution network2 Tariffs and meter<strong>in</strong>gFigure C10 shows a typical kVA demand curve over a period of two hours divided<strong>in</strong>to succeed<strong>in</strong>g periods of 10 m<strong>in</strong>utes. The meter measures <strong>the</strong> average value ofkVA dur<strong>in</strong>g each of <strong>the</strong>se 10 m<strong>in</strong>ute periods.C17kVAMaximum average valuedur<strong>in</strong>g <strong>the</strong> 2 hour <strong>in</strong>tervalAverage valuesfor 10 m<strong>in</strong>uteperiods0 1 2 hrstFig. C10 : Maximum average value of kVA over an <strong>in</strong>terval of 2 hoursPr<strong>in</strong>ciple of kVA maximum demand meter<strong>in</strong>gA kVAh meter is similar <strong>in</strong> all essentials to a kWh meter but <strong>the</strong> current and voltagephase relationship has been modified so that it effectively measures kVAh (kilovolt-ampere-hours).Fur<strong>the</strong>rmore, <strong>in</strong>stead of hav<strong>in</strong>g a set of decade counter dials,as <strong>in</strong> <strong>the</strong> case of a conventional kWh meter, this <strong>in</strong>strument has a rotat<strong>in</strong>g po<strong>in</strong>ter.When <strong>the</strong> po<strong>in</strong>ter turns it is measur<strong>in</strong>g kVAh and push<strong>in</strong>g a red <strong>in</strong>dicator before it.At <strong>the</strong> end of 10 m<strong>in</strong>utes <strong>the</strong> po<strong>in</strong>ter will have moved part way round <strong>the</strong> dial (it isdesigned so that it can never complete one revolution <strong>in</strong> 10 m<strong>in</strong>utes) and is <strong>the</strong>nelectrically reset to <strong>the</strong> zero position, to start ano<strong>the</strong>r 10 m<strong>in</strong>ute period. The red<strong>in</strong>dicator rema<strong>in</strong>s at <strong>the</strong> position reached by <strong>the</strong> measur<strong>in</strong>g po<strong>in</strong>ter, and that position,corresponds to <strong>the</strong> number of kVAh (kilo-volt-ampere-hours) taken by <strong>the</strong> load <strong>in</strong>10 m<strong>in</strong>utes. Instead of <strong>the</strong> dial be<strong>in</strong>g marked <strong>in</strong> kVAh at that po<strong>in</strong>t however it can bemarked <strong>in</strong> units of average kVA. The follow<strong>in</strong>g figures will clarify <strong>the</strong> matter.Suppos<strong>in</strong>g <strong>the</strong> po<strong>in</strong>t at which <strong>the</strong> red <strong>in</strong>dicator reached corresponds to 5 kVAh.It is known that a vary<strong>in</strong>g amount of kVA of apparent power has been flow<strong>in</strong>g for10 m<strong>in</strong>utes, i.e. 1/6 hour.If now, <strong>the</strong> 5 kVAh is divided by <strong>the</strong> number of hours, <strong>the</strong>n <strong>the</strong> average kVA for <strong>the</strong>period is obta<strong>in</strong>ed.In this case <strong>the</strong> average kVA for <strong>the</strong> period will be:5 x 1 = 5 x 6 = 30 kVA16Every po<strong>in</strong>t around <strong>the</strong> dial will be similarly marked i.e. <strong>the</strong> figure for average kVA willbe 6 times greater than <strong>the</strong> kVAh value at any given po<strong>in</strong>t. Similar reason<strong>in</strong>g can beapplied to any o<strong>the</strong>r reset-time <strong>in</strong>terval.At <strong>the</strong> end of <strong>the</strong> bill<strong>in</strong>g period, <strong>the</strong> red <strong>in</strong>dicator will be at <strong>the</strong> maximum of all <strong>the</strong>average values occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> bill<strong>in</strong>g period.The red <strong>in</strong>dicator will be reset to zero at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of each bill<strong>in</strong>g period. Electromechanicalmeters of <strong>the</strong> k<strong>in</strong>d described are rapidly be<strong>in</strong>g replaced by electronic<strong>in</strong>struments. The basic measur<strong>in</strong>g pr<strong>in</strong>ciples on which <strong>the</strong>se electronic metersdepend however, are <strong>the</strong> same as those described above.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Chapter DMV & LV architecture selectionguide12345678ContentsStakes for <strong>the</strong> userSimplified architecture design process2.1 The architecture design D42.2 The whole process D5<strong>Electrical</strong> <strong>in</strong>stallation characteristicsD73.1 Activity D73.2 Site topology D73.3 Layout latitude D73.4 Service reliability D83.5 Ma<strong>in</strong>ta<strong>in</strong>ability D83.6 <strong>Installation</strong> flexibility D83.7 Power demand D83.8 Load distribution D93.9 Power <strong>in</strong>terruption sensitivity D93.10 Disturbance sensitivity D93.11 Disturbance capability of circuits D103.12 O<strong>the</strong>r considerations or constra<strong>in</strong>ts D10Technological characteristicsD3D4D114.1 Environment, atmosphere D114.2 Service Index D114.3 O<strong>the</strong>r considerations D12Architecture assessment criteriaD135.1 On-site work time D135.2 Environmental impact D135.3 Preventive ma<strong>in</strong>tenance level D135.4 Availability of electrical power supply D14Choice of architecture fundamentalsD156.1 Connection to <strong>the</strong> upstream network D156.2 MV circuit configuration D166.3 Number and distribution of MV/LV transformation substations D176.4 Number of MV/LV transformers D186.5 MV back-up generator D18Choice of architecture detailsD197.1 Layout D197.2 Centralized or distributed layout D207.3 Presence of an Un<strong>in</strong>terruptible Power Supply (UPS) D227.4 Configuration of LV circuits D22Choice of equimentD24D© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guideD9101112Recommendations for architecture optimizationD269.1 On-site work time D269.2 Environmental impact D269.3 Preventive ma<strong>in</strong>tenance volume D289.4 <strong>Electrical</strong> power availability D28GlossaryD29ID-Spec softwareExample: electrical <strong>in</strong>stallation <strong>in</strong> a pr<strong>in</strong>tworksD30D3112.1 Brief description D3112.2 <strong>Installation</strong> characteristics D3112.3 Technological characteristics D3112.4 Architecture assessment criteria D3212.5 Choice of technogical solutions D34© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide1 Stakes for <strong>the</strong> userChoice of distribution architectureThe choice of distribution architecture has a decisive impact on <strong>in</strong>stallationperformance throughout its lifecycle:b right from <strong>the</strong> construction phase, choices can greatly <strong>in</strong>fluence <strong>the</strong> <strong>in</strong>stallationtime, possibilities of work rate, required competencies of <strong>in</strong>stallation teams, etc.b <strong>the</strong>re will also be an impact on performance dur<strong>in</strong>g <strong>the</strong> operation phase <strong>in</strong> termsof quality and cont<strong>in</strong>uity of power supply to sensitive loads, power losses <strong>in</strong> powersupply circuits,b and lastly, <strong>the</strong>re will be an impact on <strong>the</strong> proportion of <strong>the</strong> <strong>in</strong>stallation that can berecycled <strong>in</strong> <strong>the</strong> end-of-life phase.The <strong>Electrical</strong> Distribution architecture of an <strong>in</strong>stallation <strong>in</strong>volves <strong>the</strong> spatialconfiguration, <strong>the</strong> choice of power sources, <strong>the</strong> def<strong>in</strong>ition of different distributionlevels, <strong>the</strong> s<strong>in</strong>gle-l<strong>in</strong>e diagram and <strong>the</strong> choice of equipment.The choice of <strong>the</strong> best architecture is often expressed <strong>in</strong> terms of seek<strong>in</strong>g acompromise between <strong>the</strong> various performance criteria that <strong>in</strong>terest <strong>the</strong> customer whowill use <strong>the</strong> <strong>in</strong>stallation at different phases <strong>in</strong> its lifecycle. The earlier we search forsolutions, <strong>the</strong> more optimization possibilities exist (see Fig. D1).DPotential foroptimizationEcodialPrelim<strong>in</strong>arydesignID-SpecDetailleddesign<strong>Installation</strong>ExploitationFig. D1 : Optimization potentialA successful search for an optimal solution is also strongly l<strong>in</strong>ked to <strong>the</strong> ability forexchange between <strong>the</strong> various players <strong>in</strong>volved <strong>in</strong> design<strong>in</strong>g <strong>the</strong> various sections ofa project:b <strong>the</strong> architect who def<strong>in</strong>es <strong>the</strong> organization of <strong>the</strong> build<strong>in</strong>g accord<strong>in</strong>g to userrequirements,b <strong>the</strong> designers of different technical sections (light<strong>in</strong>g, heat<strong>in</strong>g, air condition<strong>in</strong>g,fluids, etc.),b <strong>the</strong> user’s representatives e.g. def<strong>in</strong><strong>in</strong>g <strong>the</strong> process.The follow<strong>in</strong>g paragraphs present <strong>the</strong> selection criteria as well as <strong>the</strong> architecturedesign process to meet <strong>the</strong> project performance criteria <strong>in</strong> <strong>the</strong> context of <strong>in</strong>dustrialand tertiary build<strong>in</strong>gs (exclud<strong>in</strong>g large sites).© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide2 Simplified architecture designprocess2.1 The architecture designThe architecture design considered <strong>in</strong> this document is positioned at <strong>the</strong> DraftDesign stage. It generally covers <strong>the</strong> levels of MV/LV ma<strong>in</strong> distribution, LV powerdistribution, and exceptionally <strong>the</strong> term<strong>in</strong>al distribution level. (see Fig. D2).DMV/LV ma<strong>in</strong>distributionLV powerdistributionLV term<strong>in</strong>aldistributionM M M MFig. D2 : Example of s<strong>in</strong>gle-l<strong>in</strong>e diagramThe design of an electrical distribution architecture can be described by a 3-stageprocess, with iterative possibilities. This process is based on tak<strong>in</strong>g account of <strong>the</strong><strong>in</strong>stallation characteristics and criteria to be satisfied.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide2 Simplified architecture designprocess2.2 The whole processThe whole process is described briefly <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g paragraphs and illustrated onFigure D3.The process described <strong>in</strong> this document is not <strong>in</strong>tended as <strong>the</strong> only solution. Thisdocument is a guide <strong>in</strong>tended for <strong>the</strong> use of electrical <strong>in</strong>stallation designers.DDataStepSee § 3<strong>Installation</strong>characteristicsDeliverableSee § 6Step 1Choice offundamentalsSchematicdiagramSee § 7Step 2Choice ofarchitecturedetailsDetaileddiagramSee § 4TechnologicalcharacteristicsSee § 8Step 3Choice ofequipmentTechno.SolutionSee § 5AssessmentcriteriaASSESSMENTSee § 9OptimisationrecommendationsDef<strong>in</strong>itivesolutionFig. D3 : Flow diagram for choos<strong>in</strong>g <strong>the</strong> electrical distribution architectureStep 1: Choice of distribution architecture fundamentalsThis <strong>in</strong>volves def<strong>in</strong><strong>in</strong>g <strong>the</strong> general features of <strong>the</strong> electrical <strong>in</strong>stallation. It is basedon tak<strong>in</strong>g account of macroscopic characteristics concern<strong>in</strong>g <strong>the</strong> <strong>in</strong>stallation and itsusage.These characteristics have an impact on <strong>the</strong> connection to <strong>the</strong> upstream network,MV circuits, <strong>the</strong> number of transformer substations, etc.At <strong>the</strong> end of this step, we have several distribution schematic diagram solutions,which are used as a start<strong>in</strong>g po<strong>in</strong>t for <strong>the</strong> s<strong>in</strong>gle-l<strong>in</strong>e diagram. The def<strong>in</strong>itive choice isconfirmed at <strong>the</strong> end of <strong>the</strong> step 2.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide2 Simplified architecture designprocessDStep 2: choice of architecture detailsThis <strong>in</strong>volves def<strong>in</strong><strong>in</strong>g <strong>the</strong> electrical <strong>in</strong>stallation <strong>in</strong> more detail. It is based on <strong>the</strong>results of <strong>the</strong> previous step, as well as on satisfy<strong>in</strong>g criteria relative to implementationand operation of <strong>the</strong> <strong>in</strong>stallation.The process loops back <strong>in</strong>to step1 if <strong>the</strong> criteria are not satisfied. An iterative processallows several assessment criteria comb<strong>in</strong>ations to be analyzed.At <strong>the</strong> end of this step, we have a detailed s<strong>in</strong>gle-l<strong>in</strong>e diagram.Step 3: choice of equipmentThe choice of equipment to be implemented is carried out <strong>in</strong> this stage, and resultsfrom <strong>the</strong> choice of architecture. The choices are made from <strong>the</strong> manufacturercatalogues, <strong>in</strong> order to satisfy certa<strong>in</strong> criteria.This stage is looped back <strong>in</strong>to step 2 if <strong>the</strong> characteristics are not satisfied.AssessmentThis assessment step allows <strong>the</strong> Eng<strong>in</strong>eer<strong>in</strong>g Office to have figures as a basis fordiscussions with <strong>the</strong> customer and o<strong>the</strong>r players.Accord<strong>in</strong>g to <strong>the</strong> result of <strong>the</strong>se discussions, it may be possible to loop back <strong>in</strong>to step 1.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide3 <strong>Electrical</strong> <strong>in</strong>stallationcharacteristicsThese are <strong>the</strong> ma<strong>in</strong> <strong>in</strong>stallation characteristics enabl<strong>in</strong>g <strong>the</strong> def<strong>in</strong><strong>in</strong>g of <strong>the</strong>fundamentals and details of <strong>the</strong> electrical distribution architecture. For each of <strong>the</strong>secharacteristics, we supply a def<strong>in</strong>ition and <strong>the</strong> different categories or possible values.3.1 ActivityDef<strong>in</strong>ition:Ma<strong>in</strong> economic activity carried out on <strong>the</strong> site.DIndicative list of sectors considered for <strong>in</strong>dustrial build<strong>in</strong>gs:b Manufactur<strong>in</strong>gb Food & Beverageb LogisticsIndicative list of sectors considered for tertiary build<strong>in</strong>gs:b Offices build<strong>in</strong>gsb Hypermarketsb Shopp<strong>in</strong>g malls3.2 Site topologyDef<strong>in</strong>ition:Architectural characteristic of <strong>the</strong> build<strong>in</strong>g(s), tak<strong>in</strong>g account of <strong>the</strong> number ofbuild<strong>in</strong>gs, number of floors, and of <strong>the</strong> surface area of each floor.Different categories:b S<strong>in</strong>gle storey build<strong>in</strong>g,b Multi-storey build<strong>in</strong>g,b Multi-build<strong>in</strong>g site,b High-rise build<strong>in</strong>g.3.3 Layout latitudeDef<strong>in</strong>ition:Characteristic tak<strong>in</strong>g account of constra<strong>in</strong>ts <strong>in</strong> terms of <strong>the</strong> layout of <strong>the</strong> electricalequipment <strong>in</strong> <strong>the</strong> build<strong>in</strong>g:b aes<strong>the</strong>tics,b accessibility,b presence of dedicated locations,b use of technical corridors (per floor),b use of technical ducts (vertical).Different categories:b Low: <strong>the</strong> position of <strong>the</strong> electrical equipment is virtually imposedb Medium: <strong>the</strong> position of <strong>the</strong> electrical equipment is partially imposed, to <strong>the</strong>detriment of <strong>the</strong> criteria to be satisfiedb High: no constra<strong>in</strong>ts. The position of <strong>the</strong> electrical equipment can be def<strong>in</strong>ed tobest satisfy <strong>the</strong> criteria.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide3 <strong>Electrical</strong> <strong>in</strong>stallationcharacteristics3.4 Service reliabilityDef<strong>in</strong>ition:The ability of a power system to meet its supply function under stated conditions fora specified period of time.DDifferent categories:b M<strong>in</strong>imum: this level of service reliability implies risk of <strong>in</strong>terruptions related toconstra<strong>in</strong>ts that are geographical (separate network, area distant from powerproduction centers), technical (overhead l<strong>in</strong>e, poorly meshed system), or economic(<strong>in</strong>sufficient ma<strong>in</strong>tenance, under-dimensioned generation).b Standardb Enhanced: this level of service reliability can be obta<strong>in</strong>ed by special measurestaken to reduce <strong>the</strong> probability of <strong>in</strong>terruption (underground network, strong mesh<strong>in</strong>g,etc.)3.5 Ma<strong>in</strong>ta<strong>in</strong>abilityDef<strong>in</strong>ition:Features <strong>in</strong>put dur<strong>in</strong>g design to limit <strong>the</strong> impact of ma<strong>in</strong>tenance actions on <strong>the</strong>operation of <strong>the</strong> whole or part of <strong>the</strong> <strong>in</strong>stallation.Different categories:b M<strong>in</strong>imum: <strong>the</strong> <strong>in</strong>stallation must be stopped to carry out ma<strong>in</strong>tenance operations.b Standard: ma<strong>in</strong>tenance operations can be carried out dur<strong>in</strong>g <strong>in</strong>stallationoperations, but with deteriorated performance. These operations must be preferablyscheduled dur<strong>in</strong>g periods of low activity. Example: several transformers with partialredundancy and load shedd<strong>in</strong>g.b Enhanced: special measures are taken to allow ma<strong>in</strong>tenance operations withoutdisturb<strong>in</strong>g <strong>the</strong> <strong>in</strong>stallation operations. Example: double-ended configuration.3.6 <strong>Installation</strong> flexibilityDef<strong>in</strong>ition:Possibility of easily mov<strong>in</strong>g electricity delivery po<strong>in</strong>ts with<strong>in</strong> <strong>the</strong> <strong>in</strong>stallation, or toeasily <strong>in</strong>crease <strong>the</strong> power supplied at certa<strong>in</strong> po<strong>in</strong>ts. Flexibility is a criterion whichalso appears due to <strong>the</strong> uncerta<strong>in</strong>ty of <strong>the</strong> build<strong>in</strong>g dur<strong>in</strong>g <strong>the</strong> pre-project summarystage.Different categories:b No flexibility: <strong>the</strong> position of loads is fixed throughout <strong>the</strong> lifecycle, due to <strong>the</strong> highconstra<strong>in</strong>ts related to <strong>the</strong> build<strong>in</strong>g construction or <strong>the</strong> high weight of <strong>the</strong> suppliedprocess. E.g.: smelt<strong>in</strong>g works.b Flexibility of design: <strong>the</strong> number of delivery po<strong>in</strong>ts, <strong>the</strong> power of loads or <strong>the</strong>irlocation are not precisely known.b Implementation flexibility: <strong>the</strong> loads can be <strong>in</strong>stalled after <strong>the</strong> <strong>in</strong>stallation iscommissioned.b Operat<strong>in</strong>g flexibility: <strong>the</strong> position of loads will fluctuate, accord<strong>in</strong>g to process reorganization.Examples:v <strong>in</strong>dustrial build<strong>in</strong>g: extension, splitt<strong>in</strong>g and chang<strong>in</strong>g usagev office build<strong>in</strong>g: splitt<strong>in</strong>g© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide3 <strong>Electrical</strong> <strong>in</strong>stallationcharacteristics3.7 Power demandDef<strong>in</strong>ition:The sum of <strong>the</strong> apparent load power (<strong>in</strong> kVA), to which is applied a usage coefficient.This represents <strong>the</strong> maximum power which can be consumed at a given time for <strong>the</strong><strong>in</strong>stallation, with <strong>the</strong> possibility of limited overloads that are of short duration.Significant power ranges correspond to <strong>the</strong> transformer power limits most commonlyused:b < 630kVAb from 630 to 1250kVAb from 1250 to 2500kVAb > 2500kVAD3.8 Load distributionDef<strong>in</strong>ition:A characteristic related to <strong>the</strong> uniformity of load distribution (<strong>in</strong> kVA / m²) over an areaor throughout <strong>the</strong> build<strong>in</strong>g.Different categories:b Uniform distribution: <strong>the</strong> loads are generally of an average or low unit power andspread throughout <strong>the</strong> surface area or over a large area of <strong>the</strong> build<strong>in</strong>g (uniformdensity).E.g.: light<strong>in</strong>g, <strong>in</strong>dividual workstationsb <strong>in</strong>termediate distribution: <strong>the</strong> loads are generally of medium power, placed <strong>in</strong>groups over <strong>the</strong> whole build<strong>in</strong>g surface areaE.g.: mach<strong>in</strong>es for assembly, convey<strong>in</strong>g, workstations, modular logistics “sites”b localized loads: <strong>the</strong> loads are generally high power and localized <strong>in</strong> several areasof <strong>the</strong> build<strong>in</strong>g (non-uniform density).E.g.: HVAC3.9 Power Interruption SensitivityDef<strong>in</strong>ition:The aptitude of a circuit to accept a power <strong>in</strong>terruption.* <strong>in</strong>dicative value, supplied by standard EN50160:“Characteristics of <strong>the</strong> voltage supplied by public distributionnetworks”.Different categories:b “Sheddable” circuit: possible to shut down at any time for an <strong>in</strong>def<strong>in</strong>ite durationb Long <strong>in</strong>terruption acceptable: <strong>in</strong>terruption time > 3 m<strong>in</strong>utes *b Short <strong>in</strong>terruption acceptable: <strong>in</strong>terruption time < 3 m<strong>in</strong>utes *b No <strong>in</strong>terruption acceptable.We can dist<strong>in</strong>guish various levels of severity of an electrical power <strong>in</strong>terruption,accord<strong>in</strong>g to <strong>the</strong> possible consequences:b No notable consequence,b Loss of production,b Deterioration of <strong>the</strong> production facilities or loss of sensitive data,b Caus<strong>in</strong>g mortal danger.This is expressed <strong>in</strong> terms of <strong>the</strong> criticality of supply<strong>in</strong>g of loads or circuits.b Non-critical:The load or <strong>the</strong> circuit can be “shed” at any time. E.g.: sanitary water heat<strong>in</strong>g circuit.b Low criticality:A power <strong>in</strong>terruption causes temporary discomfort for <strong>the</strong> occupants of a build<strong>in</strong>g,without any f<strong>in</strong>ancial consequences. Prolong<strong>in</strong>g of <strong>the</strong> <strong>in</strong>terruption beyond <strong>the</strong> criticaltime can cause a loss of production or lower productivity. E.g.: heat<strong>in</strong>g, ventilationand air condition<strong>in</strong>g circuits (HVAC).b Medium criticalityA power <strong>in</strong>terruption causes a short break <strong>in</strong> process or service. Prolong<strong>in</strong>g of<strong>the</strong> <strong>in</strong>terruption beyond a critical time can cause a deterioration of <strong>the</strong> productionfacilities or a cost of start<strong>in</strong>g for start<strong>in</strong>g back up.E.g.: refrigerated units, lifts.b High criticalityAny power <strong>in</strong>terruption causes mortal danger or unacceptable f<strong>in</strong>ancial losses.E.g.: operat<strong>in</strong>g <strong>the</strong>atre, IT department, security department.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide3 <strong>Electrical</strong> <strong>in</strong>stallationcharacteristics3.10 Disturbance sensitivityD10Def<strong>in</strong>itionThe ability of a circuit to work correctly <strong>in</strong> presence of an electrical powerdisturbance.A disturbance can lead to vary<strong>in</strong>g degrees of malfunction<strong>in</strong>g. E.g.: stopp<strong>in</strong>g work<strong>in</strong>g,<strong>in</strong>correct work<strong>in</strong>g, accelerated age<strong>in</strong>g, <strong>in</strong>crease of losses, etcTypes of disturbances with an impact on circuit operations:b brown-outs,b overvoltagesb voltage distortion,b voltage fluctuation,b voltage imbalance.Different categories:b low sensitivity: disturbances <strong>in</strong> supply voltages have very little effect on operations.E.g.: heat<strong>in</strong>g device.b medium sensitivity: voltage disturbances cause a notable deterioration <strong>in</strong>operations.E.g.: motors, light<strong>in</strong>g.b high sensitivity: voltage disturbances can cause operation stoppages or even <strong>the</strong>deterioration of <strong>the</strong> supplied equipment.E.g.: IT equipment.The sensitivity of circuits to disturbances determ<strong>in</strong>es <strong>the</strong> design of shared ordedicated power circuits. Indeed it is better to separate “sensitive” loads from“disturb<strong>in</strong>g” loads. E.g.: separat<strong>in</strong>g light<strong>in</strong>g circuits from motor supply circuits.This choice also depends on operat<strong>in</strong>g features. E.g.: separate power supply oflight<strong>in</strong>g circuits to enable measurement of power consumption.3.11 Disturbance capability of circuitsDef<strong>in</strong>itionThe ability of a circuit to disturb <strong>the</strong> operation of surround<strong>in</strong>g circuits due tophenomena such as: harmonics, <strong>in</strong>-rush current, imbalance, High Frequencycurrents, electromagnetic radiation, etc.Different categoriesb Non disturb<strong>in</strong>g: no specific precaution to takeb moderate or occasional disturbance: separate power supply may be necessary <strong>in</strong><strong>the</strong> presence of medium or high sensitivity circuits. E.g.: light<strong>in</strong>g circuit generat<strong>in</strong>gharmonic currents.b Very disturb<strong>in</strong>g: a dedicated power circuit or ways of attenuat<strong>in</strong>g disturbances areessential for <strong>the</strong> correct function<strong>in</strong>g of <strong>the</strong> <strong>in</strong>stallation. E.g.: electrical motor with astrong start-up current, weld<strong>in</strong>g equipment with fluctuat<strong>in</strong>g current.3.12 O<strong>the</strong>r considerations or constra<strong>in</strong>ts© Schneider Electric - all rights reservedb EnvironmentE.g.: lightn<strong>in</strong>g classification, sun exposureb Specific rulesE.g.: hospitals, high rise build<strong>in</strong>gs, etc.b Rule of <strong>the</strong> Energy DistributorExample: limits of connection power for LV, access to MV substation, etcb Attachment loadsLoads attached to 2 <strong>in</strong>dependent circuits for reasons of redundancy.b Designer experienceConsistency with previous designs or partial usage of previous designs,standardization of sub-assemblies, existence of an <strong>in</strong>stalled equipment base.b Load power supply constra<strong>in</strong>tsVoltage level (230V, 400V, 690V), voltage system (s<strong>in</strong>gle-phase, three-phase with orwithout neutral, etc)Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide4 Technological characteristicsThe technological solutions considered concern <strong>the</strong> various types of MV and LVequipment, as well as Busbar Trunk<strong>in</strong>g Systems .The choice of technological solutions is made follow<strong>in</strong>g <strong>the</strong> choice of s<strong>in</strong>gle-l<strong>in</strong>ediagram and accord<strong>in</strong>g to characteristics given below.4.1 Environment, atmosphereA notion tak<strong>in</strong>g account of all of <strong>the</strong> environmental constra<strong>in</strong>ts (average ambienttemperature, altitude, humidity, corrosion, dust, impact, etc.) and br<strong>in</strong>g<strong>in</strong>g toge<strong>the</strong>rprotection <strong>in</strong>dexes IP and IK.Different categories:b Standard: no particular environmental constra<strong>in</strong>tsb Enhanced: severe environment, several environmental parameters generateimportant constra<strong>in</strong>ts for <strong>the</strong> <strong>in</strong>stalled equipmentb Specific: atypical environment, requir<strong>in</strong>g special enhancementsD114.2 Service IndexThe service <strong>in</strong>dex (IS) is a value that allows us to characterize an LV switchboardaccord<strong>in</strong>g to user requirements <strong>in</strong> terms of operation, ma<strong>in</strong>tenance, and scalability.The different <strong>in</strong>dex values are <strong>in</strong>dicated <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g table (Fig D4):Operation Ma<strong>in</strong>tenance UpgradeLevel 1IS = 1 • •Operation may lead to completestoppage of <strong>the</strong> switchboardIS = • 1 •Operation may lead to completestoppage of <strong>the</strong> switchboardIS = • • 1Operation may lead to completestoppage of <strong>the</strong> switchboardLevel 2IS = 2 • •Operation may lead to stoppage ofonly <strong>the</strong> functional unitIS = • 2 •Operation may lead to stoppage ofonly <strong>the</strong> functional unit, with work onconnectionsIS = • • 2Operation may lead to stoppageof only <strong>the</strong> functional unit, withfunctional units provided for back-upLevel 3IS = 3 • •Operation may lead to stoppage of<strong>the</strong> power of <strong>the</strong> functional unit onlyIS = • 3 •Operation may lead to stoppage ofonly <strong>the</strong> functional unit, without workon connectionsIS = • • 3Operation may lead to stoppage ofonly <strong>the</strong> functional unit, with totalfreedom <strong>in</strong> terms of upgradeFig. D4 : Different <strong>in</strong>dex valuesb Examples of an operation event: turn<strong>in</strong>g off a circuit-breaker, switch<strong>in</strong>g operation toenergize/de-energize a mach<strong>in</strong>eb Example of a ma<strong>in</strong>tenance operation: tighten<strong>in</strong>g connectionsb Example of an upgrade operation: connect<strong>in</strong>g an additional feederThere are a limited number of relevant service <strong>in</strong>dices (see Fig. D5)IS Operation Ma<strong>in</strong>tenance Upgrade1 1 1 Switch<strong>in</strong>g off <strong>the</strong> whole switchboard Work<strong>in</strong>g time > 1h, with total nonavailability2 1 12 2 3 Work<strong>in</strong>g time between 1/4h and 1h,with work on connectionsIndividually switch<strong>in</strong>g off <strong>the</strong> functional2 3 2 unit and re-commission<strong>in</strong>g < 1hExtension not plannedPossible add<strong>in</strong>g of functional unitswithout stopp<strong>in</strong>g <strong>the</strong> switchboardPossible add<strong>in</strong>g of functional units withstopp<strong>in</strong>g <strong>the</strong> switchboard2 3 3 Possible add<strong>in</strong>g of functional unitsWork<strong>in</strong>g time between 1/4h and 1h, without stopp<strong>in</strong>g <strong>the</strong> switchboardwithout work on connections3 3 2Possible add<strong>in</strong>g of functional units withIndividually switch<strong>in</strong>g off <strong>the</strong> functionalstopp<strong>in</strong>g <strong>the</strong> switchboard3 3 3unit and re-commission<strong>in</strong>g < 1/4hPossible add<strong>in</strong>g of functional unitswithout stopp<strong>in</strong>g <strong>the</strong> switchboardFig. D5 : Relevant service <strong>in</strong>dices (IS)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide4 Technological characteristicsD12The types of electrical connections of functional units can be denoted by a threelettercode:b The first letter denotes <strong>the</strong> type of electrical connection of <strong>the</strong> ma<strong>in</strong> <strong>in</strong>com<strong>in</strong>gcircuit,b The second letter denotes <strong>the</strong> type of electrical connection of <strong>the</strong> ma<strong>in</strong> outgo<strong>in</strong>gcircuit,b The third letter denotes <strong>the</strong> type of electrical connection of <strong>the</strong> auxiliary circuits.The follow<strong>in</strong>g letters are used:b F for fixed connections,b D for disconnectable connections,b W for withdrawable connections.Service rat<strong>in</strong>gs are related to o<strong>the</strong>r mechanical parameters, such as <strong>the</strong> ProtectionIndex (IP), form of <strong>in</strong>ternal separations, <strong>the</strong> type of connection of functional units orswitchgear (Fig. D6):Service rat<strong>in</strong>gProtection <strong>in</strong>dexIPForm1 1 1 2 X X 1 F F F2 1 1 2 X B 1 F F F2 2 3 2 X B 3b W F D2 3 2 2 X B 3b W F W2 3 3 2 X B 3b W W W3 3 2 2 X B 3b W W W3 3 3 2 X B 3b W W WFunctional UnitWithdrawabilityFig. D6 : Correspondence between service <strong>in</strong>dex and o<strong>the</strong>r mechanical parametersTechnological examples are given <strong>in</strong> chapter E2.b Def<strong>in</strong>ition of <strong>the</strong> protection <strong>in</strong>dex: see IEC 60529: “Degree of protection given byenclosures (IP code)”,b Def<strong>in</strong>itions of <strong>the</strong> form and withdrawability: see IEC 60439-1: “Low-voltageswitchgear and controlgear assemblies; part 1: type-tested and partially type-testedassemblies”.4.3 O<strong>the</strong>r considerationsO<strong>the</strong>r considerations have an impact on <strong>the</strong> choice of technological solutions:b Designer experience,b Consistency with past designs or <strong>the</strong> partial use of past designs,b Standardization of sub-assemblies,b The existence of an <strong>in</strong>stalled equipment base,b Utilities requirements,b Technical criteria: target power factor, backed-up load power, presence of harmonicgenerators…These considerations should be taken <strong>in</strong>to account dur<strong>in</strong>g <strong>the</strong> detailed electricaldef<strong>in</strong>ition phase follow<strong>in</strong>g <strong>the</strong> draft design stage.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide5 Architecture assessment criteriaCerta<strong>in</strong> decisive criteria are assessed at <strong>the</strong> end of <strong>the</strong> 3 stages <strong>in</strong> def<strong>in</strong><strong>in</strong>garchitecture, <strong>in</strong> order to validate <strong>the</strong> architecture choice. These criteria are listedbelow with <strong>the</strong> different allocated levels of priority.5.1 On-site work timeTime for implement<strong>in</strong>g <strong>the</strong> electrical equipment on <strong>the</strong> site.D13Different levels of priority:b Secondary: <strong>the</strong> on-site work time can be extended, if this gives a reduction <strong>in</strong>overall <strong>in</strong>stallation costs,b Special: <strong>the</strong> on-site work time must be m<strong>in</strong>imized, without generat<strong>in</strong>g anysignificant excess cost,b Critical: <strong>the</strong> on-site work time must be reduced as far as possible, imperatively,even if this generates a higher total <strong>in</strong>stallation cost,5.2 Environmental impactTak<strong>in</strong>g <strong>in</strong>to consideration environmental constra<strong>in</strong>ts <strong>in</strong> <strong>the</strong> <strong>in</strong>stallation design. Thistakes account of: consumption of natural resources, Joule losses (related to CO 2emission), “recyclability” potential, throughout <strong>the</strong> <strong>in</strong>stallation’s lifecycle.Different levels of priority:b Non significant: environmental constra<strong>in</strong>ts are not given any special consideration,b M<strong>in</strong>imal: <strong>the</strong> <strong>in</strong>stallation is designed with m<strong>in</strong>imum regulatory requirements,b Proactive: <strong>the</strong> <strong>in</strong>stallation is designed with a specific concern for protect<strong>in</strong>g<strong>the</strong> environment. Excess cost is allowed <strong>in</strong> this situation. E.g.: us<strong>in</strong>g low-losstransformers.The environmental impact of an <strong>in</strong>stallation will be determ<strong>in</strong>ed accord<strong>in</strong>g to <strong>the</strong>method carry<strong>in</strong>g out an <strong>in</strong>stallation lifecycle analysis, <strong>in</strong> which we dist<strong>in</strong>guishbetween <strong>the</strong> follow<strong>in</strong>g 3 phases:b manufacture,b operation,b end of life (dismantl<strong>in</strong>g, recycl<strong>in</strong>g).In terms of environmental impact, 3 <strong>in</strong>dicators (at least) can be taken <strong>in</strong>to accountand <strong>in</strong>fluenced by <strong>the</strong> design of an electrical <strong>in</strong>stallation. Although each lifecyclephase contributes to <strong>the</strong> three <strong>in</strong>dicators, each of <strong>the</strong>se <strong>in</strong>dicators is ma<strong>in</strong>ly related toone phase <strong>in</strong> particular:b consumption of natural resources ma<strong>in</strong>ly has an impact on <strong>the</strong> manufactur<strong>in</strong>gphase,b consumption of <strong>energy</strong> has an impact on <strong>the</strong> operation phase,b “recycleability” potential has an impact on <strong>the</strong> end of life.The follow<strong>in</strong>g table details <strong>the</strong> contribut<strong>in</strong>g factors to <strong>the</strong> 3 environmental <strong>in</strong>dicators(Fig D7).IndicatorsNatural resources consumptionPower consumption«Recyclability» potentialContributorsMass and type of materials usedJoule losses at full load and no loadMass and type of material usedFig D7 : Contribut<strong>in</strong>g factors to <strong>the</strong> 3 environmental <strong>in</strong>dicators© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide5 Architecture assessment criteria5.3 Preventive ma<strong>in</strong>tenance levelD14Def<strong>in</strong>ition:Number of hours and sophistication of ma<strong>in</strong>tenance carried out dur<strong>in</strong>g operations <strong>in</strong>conformity with manufacturer recommendations to ensure dependable operation of<strong>the</strong> <strong>in</strong>stallation and <strong>the</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g of performance levels (avoid<strong>in</strong>g failure: tripp<strong>in</strong>g,down time, etc).Different categories:b Standard: accord<strong>in</strong>g to manufacturer recommendations.b Enhanced: accord<strong>in</strong>g to manufacturer recommendations, with a severeenvironment,b Specific: specific ma<strong>in</strong>tenance plan, meet<strong>in</strong>g high requirements for cont<strong>in</strong>uity ofservice, and requir<strong>in</strong>g a high level of ma<strong>in</strong>tenance staff competency.5.4 Availability of electrical power supplyDef<strong>in</strong>ition:This is <strong>the</strong> probability that an electrical <strong>in</strong>stallation be capable of supply<strong>in</strong>g qualitypower <strong>in</strong> conformity with <strong>the</strong> specifications of <strong>the</strong> equipment it is supply<strong>in</strong>g. This isexpressed by an availability level:Availability (%) = (1 - MTTR/ MTBF) x 100MTTR (Mean Time To Repair): <strong>the</strong> average time to make <strong>the</strong> electrical system onceaga<strong>in</strong> operational follow<strong>in</strong>g a failure (this <strong>in</strong>cludes detection of <strong>the</strong> reason for failure,its repair and re-commission<strong>in</strong>g),MTBF (Mean Time Between Failure): measurement of <strong>the</strong> average time for which<strong>the</strong> electrical system is operational and <strong>the</strong>refore enables correct operation of <strong>the</strong>application.The different availability categories can only be def<strong>in</strong>ed for a given type of<strong>in</strong>stallation. E.g.: hospitals, data centers.Example of classification used <strong>in</strong> data centers:Tier 1: <strong>the</strong> power supply and air condition<strong>in</strong>g are provided by one s<strong>in</strong>gle channel,without redundancy, which allows availability of 99.671%,Tier 2: <strong>the</strong> power supply and air condition<strong>in</strong>g are provided by one s<strong>in</strong>gle channel,with redundancy, which allows availability of 99.741%,Tier 3: <strong>the</strong> power supply and air condition<strong>in</strong>g are provided by several channels, withone s<strong>in</strong>gle redundant channel, which allows availability of 99.982%,Tier 4: <strong>the</strong> power supply and air condition<strong>in</strong>g are provided by several channels, withredundancy, which allows availability of 99.995%.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide6 Choice of architecturefundamentalsThe s<strong>in</strong>gle-l<strong>in</strong>e diagram can be broken down <strong>in</strong>to different key parts, which aredeterm<strong>in</strong>ed throughout a process <strong>in</strong> 2 successive stages. Dur<strong>in</strong>g <strong>the</strong> first stage wemake <strong>the</strong> follow<strong>in</strong>g choices:b connection to <strong>the</strong> utilities network,b configuration of MV circuits,b number of power transformers,b number and distribution of transformation substations,b MV back-up generatorD156.1 Connection to <strong>the</strong> upstream networkThe ma<strong>in</strong> configurations for possible connection are as follows (see Fig. D8 for MVservice):b LV service,b MV s<strong>in</strong>gle-l<strong>in</strong>e service,b MV r<strong>in</strong>g-ma<strong>in</strong> service,b MV duplicate supply service,b MV duplicate supply service with double busbar.Meter<strong>in</strong>g, protection, disconnection devices, located <strong>in</strong> <strong>the</strong> delivery substations arenot represented on <strong>the</strong> follow<strong>in</strong>g diagrams. They are often specific to each utilitiescompany and do not have an <strong>in</strong>fluence on <strong>the</strong> choice of <strong>in</strong>stallation architecture.For each connection, one s<strong>in</strong>gle transformer is shown for simplification purposes, but<strong>in</strong> <strong>the</strong> practice, several transformers can be connected.(MLVS: Ma<strong>in</strong> Low Voltage Switchboard)a) S<strong>in</strong>gle-l<strong>in</strong>e: b) R<strong>in</strong>g-ma<strong>in</strong>:MVLVMVLVMLVSMLVSc) Duplicate supply: d) Double busbar with duplicate supply:MVMVMVLVMLVSFig. D8 : MV connection to <strong>the</strong> utilities networkLVMLVS1LVMLVS2© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide6 Choice of architecturefundamentalsFor <strong>the</strong> different possible configurations, <strong>the</strong> most probable and usual set ofcharacteristics is given <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g table:ConfigurationD16Characteristic toconsiderLVMVSimple-l<strong>in</strong>e R<strong>in</strong>g-ma<strong>in</strong> Duplicate supply Duplicate supplywith doublebusbarsActivity Any Any Any Hi-tech, sensitiveoffice, health-careSite topology S<strong>in</strong>gle build<strong>in</strong>g S<strong>in</strong>gle build<strong>in</strong>g S<strong>in</strong>gle build<strong>in</strong>g S<strong>in</strong>gle build<strong>in</strong>g Several build<strong>in</strong>gsService reliability M<strong>in</strong>imal M<strong>in</strong>imal Standard Enhanced EnhancedPower demand < 630kVA ≤ 1250kVA ≤ 2500kVA > 2500kVA > 2500kVAO<strong>the</strong>r connectionconstra<strong>in</strong>tsAny Isolated site Low density urbanareaHigh densityurban areaAnyUrban area withutility constra<strong>in</strong>t6.2 MV circuit configurationThe ma<strong>in</strong> possible connection configurations are as follows (Fig. D9):b s<strong>in</strong>gle feeder, one or several transformersb open r<strong>in</strong>g, one MV <strong>in</strong>comerb open r<strong>in</strong>g, 2 MV <strong>in</strong>comersThe basic configuration is a radial s<strong>in</strong>gle-feeder architecture, with one s<strong>in</strong>gletransformer.In <strong>the</strong> case of us<strong>in</strong>g several transformers, no r<strong>in</strong>g is realised unless all of <strong>the</strong>transformers are located <strong>in</strong> a same substation.Closed-r<strong>in</strong>g configuration is not taken <strong>in</strong>to account.a) S<strong>in</strong>gle feeder: b) Open r<strong>in</strong>g, 1 MV substation:c) Open r<strong>in</strong>g, 2 MV substations:MV MV MV MV MVMVMVMVLVLVLVLVLVLVLVLVMLVS 1MLVS nMLVS 1MLVS 2MLVS nMLVS 1MLVS 2MLVS nFig. D9 : MV circuit configuration© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide6 Choice of architecturefundamentalsFor <strong>the</strong> different possible configurations, <strong>the</strong> most probable and usual set ofcharacteristics is given <strong>in</strong> <strong>the</strong> table on Fig D10.MV circuit configurationCharacteristic toconsiderSite topologyS<strong>in</strong>gle feederAny< 25000m²Open r<strong>in</strong>g1 MV substationBuild<strong>in</strong>g with onelevel or severalbuild<strong>in</strong>gs≤ 25000m²Open r<strong>in</strong>g2 MV substationsSeveral build<strong>in</strong>gs≥ 25000m²Ma<strong>in</strong>ta<strong>in</strong>ability M<strong>in</strong>imal or standard Enhanced EnhancedPower demand Any > 1250kVA > 2500kVADisturbance sensitivityLong <strong>in</strong>terruptionacceptableFig. D10 : Typical values of <strong>the</strong> <strong>in</strong>stallation characteristicsShort <strong>in</strong>terruptionacceptableShort <strong>in</strong>terruptionacceptableD17Ano<strong>the</strong>r exceptional configuration: power supply by 2 MV substations and connectionof <strong>the</strong> transformers to each of <strong>the</strong>se 2 substations (MV “double ended” connection).6.3 Number and distribution of MV/LVtransformation substationsMa<strong>in</strong> characteristics to consider to determ<strong>in</strong>e <strong>the</strong> transformation substations:b Surface area of build<strong>in</strong>g or siteb Power demand, (to be compared with standardized transformer power),b Load distributionThe preferred basic configuration comprises one s<strong>in</strong>gle substation. Certa<strong>in</strong> factorscontribute to <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> number of substations (> 1):b A large surface area (> 25000m²),b The site configuration: several build<strong>in</strong>gs,b Total power > 2500kVA,b Sensitivity to <strong>in</strong>terruption: need for redundancy <strong>in</strong> <strong>the</strong> case of a fire.Characteristic toconsiderConfiguration1 substation withN transformersN substationsN transformers(identical substations)Build<strong>in</strong>g configuration < 25000m² ≥ 25000m²1 build<strong>in</strong>g with severalfloorsN substationsM transformers(different powers)≥ 25000m²several build<strong>in</strong>gsPower demand < 2500kVA ≥ 2500kVA ≥ 2500kVALoad distribution Localized loads Uniform distribution Medium densityFig. D11 : Typical characteristics of <strong>the</strong> different configurations© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide6 Choice of architecturefundamentals6.4 Number of MV/LV transformersD18Ma<strong>in</strong> characteristics to consider to determ<strong>in</strong>e <strong>the</strong> number of transformers:b Surface of build<strong>in</strong>g or siteb Total power of <strong>the</strong> <strong>in</strong>stalled loadsb Sensitivity of circuits to power <strong>in</strong>terruptionsb Sensitivity of circuits to disturbancesb <strong>Installation</strong> scalabilityThe basic preferred configuration comprises a s<strong>in</strong>gle transformer supply<strong>in</strong>g <strong>the</strong> totalpower of <strong>the</strong> <strong>in</strong>stalled loads. Certa<strong>in</strong> factors contribute to <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> number oftransformers (> 1), preferably of equal power:b A high total <strong>in</strong>stalled power (> 1250kVA): practical limit of unit power(standardization, ease of replacement, space requirement, etc),b A large surface area (> 5000m²): <strong>the</strong> sett<strong>in</strong>g up of several transformers as close aspossible to <strong>the</strong> distributed loads allows <strong>the</strong> length of LV trunk<strong>in</strong>g to be reducedb A need for partial redundancy (down-graded operation possible <strong>in</strong> <strong>the</strong> case of atransformer failure) or total redundancy (normal operation ensured <strong>in</strong> <strong>the</strong> case atransformer failure)b Separat<strong>in</strong>g of sensitive and disturb<strong>in</strong>g loads (e.g.: IT, motors)6.5 MV back-up generatorMa<strong>in</strong> characteristics to consider for <strong>the</strong> implementation of an MV back-up generator:b Site activityb Total power of <strong>the</strong> <strong>in</strong>stalled loadsb Sensitivity of circuits to power <strong>in</strong>terruptionsb Availability of <strong>the</strong> public distribution networkThe preferred basic configuration does not <strong>in</strong>clude an MV generator. Certa<strong>in</strong> factorscontribute to <strong>in</strong>stall<strong>in</strong>g an MV generator:b Site activity: process with co-generation, optimiz<strong>in</strong>g <strong>the</strong> <strong>energy</strong> bill,b Low availability of <strong>the</strong> public distribution network.<strong>Installation</strong> of a back-up generator can also be carried out at LV level.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide7 Choice of architecture detailsThis is <strong>the</strong> second stage <strong>in</strong> design<strong>in</strong>g of <strong>the</strong> electrical <strong>in</strong>stallation. Dur<strong>in</strong>g this stagewe carry out <strong>the</strong> follow<strong>in</strong>g choices are carried out:b Layout,b Centralized or decentralized distribution,b Presence of back-up generators,b Presence of un<strong>in</strong>terruptible power supplies,b Configuration of LV circuits,b Architecture comb<strong>in</strong>ations.D197.1 LayoutPosition of <strong>the</strong> ma<strong>in</strong> MV and LV equipment on <strong>the</strong> site or <strong>in</strong> <strong>the</strong> build<strong>in</strong>g.This layout choice is applied to <strong>the</strong> results of stage 1.Selection guide:b Place power sources as close as possible to <strong>the</strong> barycenter of power consumers,b Reduce atmospheric constra<strong>in</strong>ts: build<strong>in</strong>g dedicated premises if <strong>the</strong> layout <strong>in</strong> <strong>the</strong>workshop is too restrictive (temperature, vibrations, dust, etc.),b Plac<strong>in</strong>g heavy equipment (transformers, generators, etc) close to walls or ma<strong>in</strong>exists for ease of ma<strong>in</strong>tenance,A layout example is given <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g diagram (Fig. D12):F<strong>in</strong>ish<strong>in</strong>gGlobal currentconsumerBarycenterPanelshopOfficePa<strong>in</strong>t<strong>in</strong>gFig. D12 : The position of <strong>the</strong> <strong>global</strong> current consumer barycenter guides <strong>the</strong> position<strong>in</strong>g of power sources© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide7 Choice of architecture details7.2 Centralized or distributed layoutIn centralized layout, current consumers are connected to <strong>the</strong> power sourcesby a star-connection. Cables are suitable for centralized layout, with po<strong>in</strong>t to po<strong>in</strong>tl<strong>in</strong>ks between <strong>the</strong> MLVS and current consumers or sub-distribution boards (radialdistribution, star- distribution) (Fig. D13):D20Fig. D13: Example of centralized layout with po<strong>in</strong>t to po<strong>in</strong>t l<strong>in</strong>ksIn decentralized layout, current consumers are connected to sources via a busway.Busbar trunk<strong>in</strong>g systems are well suited to decentralized layout, to supply manyloads that are spread out, mak<strong>in</strong>g it easy to change, move or add connections(Fig D14):Fig. D14 : Example of decentralized layout, with busbar trunk<strong>in</strong>g l<strong>in</strong>ks© Schneider Electric - all rights reservedFactors <strong>in</strong> favour of centralized layout (see summary table <strong>in</strong> Fig. D15):b <strong>Installation</strong> flexibility: no,b Load distribution: localized loads (high unit power loads).Factors <strong>in</strong> favor of decentralized layout:b <strong>Installation</strong> flexibility: "Implementation" flexibility (mov<strong>in</strong>g of workstations, etc…),b Load distribution: uniform distribution of low unit power loadsSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide7 Choice of architecture detailsLoad distributionFlexibility Localized loads IntermediatedistributionUniform distributedNo flexibilityDesign flexibilityCentralizedImplementationflexibility Centralized DecentralizedOperation flexibilityDecentralizedD21Fig. D15 : Recommendations for centralized or decentralized layoutPower supply by cables gives greater <strong>in</strong>dependence of circuits (light<strong>in</strong>g, powersockets, HVAC, motors, auxiliaries, security, etc), reduc<strong>in</strong>g <strong>the</strong> consequences of afault from <strong>the</strong> po<strong>in</strong>t of view of power availability.The use of busbar trunk<strong>in</strong>g systems allows load power circuits to be comb<strong>in</strong>ed andsaves on conductors by tak<strong>in</strong>g advantage of a cluster<strong>in</strong>g coefficient. The choicebetween cable and busbar trunk<strong>in</strong>g, accord<strong>in</strong>g to <strong>the</strong> cluster<strong>in</strong>g coefficient, allows usto f<strong>in</strong>d an economic optimum between <strong>in</strong>vestment costs, implementation costs andoperat<strong>in</strong>g costs.These two distribution modes are often comb<strong>in</strong>ed.Presence of back-up generators (Fig. D16)Here we only consider LV back-up generators.The electrical power supply supplied by a back-up generator is produced by analternator, driven by a <strong>the</strong>rmal eng<strong>in</strong>e.No power can be produced until <strong>the</strong> generator has reached its rated speed. This typeof device is <strong>the</strong>refore not suitable for an un<strong>in</strong>terrupted power supply.Accord<strong>in</strong>g to <strong>the</strong> generator’s capacity to supply power to all or only part of <strong>the</strong><strong>in</strong>stallation, <strong>the</strong>re is ei<strong>the</strong>r total or partial redundancy.A back-up generator functions generally disconnected from <strong>the</strong> network. A sourceswitch<strong>in</strong>g system is <strong>the</strong>refore necessary.The generator can function permanently or <strong>in</strong>termittently. Its back-up time dependson <strong>the</strong> quantity of available fuel.GLV switchboardFig. D16 : Connection of a back-up generatorThe ma<strong>in</strong> characteristics to consider for implement<strong>in</strong>g LV back-up generator:b Sensitivity of loads to power <strong>in</strong>terruption,b Availability of <strong>the</strong> public distribution network,b O<strong>the</strong>r constra<strong>in</strong>ts (e.g.: generators compulsory <strong>in</strong> hospitals or high-vise build<strong>in</strong>gs)The presence of generators can be decided to reduce <strong>the</strong> <strong>energy</strong> bill or due to <strong>the</strong>opportunity for co-generation. These two aspects are not taken <strong>in</strong>to account <strong>in</strong> thisguide.The presence of a back-up generator is essential if <strong>the</strong> loads cannot be shed foran <strong>in</strong>def<strong>in</strong>ite duration (long <strong>in</strong>terruption only acceptable) or if <strong>the</strong> utility networkavailability is low.Determ<strong>in</strong><strong>in</strong>g <strong>the</strong> number of back-up generator units is <strong>in</strong> l<strong>in</strong>e with <strong>the</strong> same criteriaas determ<strong>in</strong><strong>in</strong>g <strong>the</strong> number of transformers, as well as tak<strong>in</strong>g account of economicand availability considerations (redundancy, start-up reliability, ma<strong>in</strong>tenance facility).© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide7 Choice of architecture details7.3 Presence of an Un<strong>in</strong>terruptible Power Supply (UPS)D22The electrical power from a UPS is supplied from a storage unit: batteries or <strong>in</strong>ertiawheel. This system allows us to avoid any power failure. The back-up time of <strong>the</strong>system is limited: from several m<strong>in</strong>utes to several hours.The simultaneous presence of a back-up generator and a UPS unit is used forpermanently supply loads for which no failure is acceptable (Fig. D17). The back-uptime of <strong>the</strong> battery or <strong>the</strong> <strong>in</strong>ertia wheel must be compatible with <strong>the</strong> maximum timefor <strong>the</strong> generator to start up and be brought on-l<strong>in</strong>e.A UPS unit is also used for supply power to loads that are sensitive to disturbances(generat<strong>in</strong>g a “clean” voltage that is <strong>in</strong>dependent of <strong>the</strong> network).Ma<strong>in</strong> characteristics to be considered for implement<strong>in</strong>g a UPS:b Sensitivity of loads to power <strong>in</strong>terruptions,b Sensitivity of loads to disturbances.The presence of a UPS unit is essential if and only if no failure is acceptable.GLV SwitchboardNormalBy-passNon-criticalcircuitMLVSASIFig. D18 : Radial s<strong>in</strong>gle feeder configurationCriticalcircuitFig. D17 : Example of connection for a UPS7.4 Configuration of LV circuits© Schneider Electric - all rights reservedMLVSFig. D19 : Two-pole configurationMLVSNOFig. D20 : Two-pole configuration with two ½ MLVS and NO l<strong>in</strong>kMa<strong>in</strong> possible configurations (see figures D18 to D25):b Radial s<strong>in</strong>gle feeder configuration: This is <strong>the</strong> reference configuration and<strong>the</strong> most simple. A load is connected to only one s<strong>in</strong>gle source. This configurationprovides a m<strong>in</strong>imum level of availability, s<strong>in</strong>ce <strong>the</strong>re is no redundancy <strong>in</strong> case ofpower source failure.b Two-pole configuration: The power supply is provided by 2 transformers,connected to <strong>the</strong> same MV l<strong>in</strong>e. When <strong>the</strong> transformers are close, <strong>the</strong>y are generallyconnected <strong>in</strong> parallel to <strong>the</strong> same MLVS.b Variant: two-pole with two ½ MLVS: In order to <strong>in</strong>crease <strong>the</strong> availability <strong>in</strong> caseof failure of <strong>the</strong> busbars or authorize ma<strong>in</strong>tenance on one of <strong>the</strong> transformers,it is possible to split <strong>the</strong> MLVS <strong>in</strong>to 2 parts, with a normally open l<strong>in</strong>k (NO). Thisconfiguration generally requires an Automatic Transfer Switch, (ATS).b Shedable switchboard (simple disconnectable attachment): A series ofshedable circuits can be connected to a dedicated switchboard. The connection to<strong>the</strong> MLVS is <strong>in</strong>terrupted when needed (overload, generator operation, etc)b Interconnected switchboards: If transformers are physically distant from oneano<strong>the</strong>r, <strong>the</strong>y may be connected by a busbar trunk<strong>in</strong>g. A critical load can be suppliedby one or o<strong>the</strong>r of <strong>the</strong> transformers. The availability of power is <strong>the</strong>refore improved,s<strong>in</strong>ce <strong>the</strong> load can always be supplied <strong>in</strong> <strong>the</strong> case of failure of one of <strong>the</strong> sources.The redundancy can be:v Total: each transformer be<strong>in</strong>g capable of supply<strong>in</strong>g all of <strong>the</strong> <strong>in</strong>stallation,v Partial: each transformer only be<strong>in</strong>g able to supply part of <strong>the</strong> <strong>in</strong>stallation. In thiscase, part of <strong>the</strong> loads must be disconnected (load-shedd<strong>in</strong>g) <strong>in</strong> <strong>the</strong> case of one of<strong>the</strong> transformers fail<strong>in</strong>g.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide7 Choice of architecture detailsLV swichboardFig. D21 : Shedable switchboardMLVSMLVSMLVSb R<strong>in</strong>g configuration: This configuration can be considered as an extension of <strong>the</strong>configuration with <strong>in</strong>terconnection between switchboards. Typically, 4 transformersconnected to <strong>the</strong> same MV l<strong>in</strong>e, supply a r<strong>in</strong>g us<strong>in</strong>g busbar trunk<strong>in</strong>g. A given loadis <strong>the</strong>n supplied power by several clustered transformers. This configuration is wellsuited to extended <strong>in</strong>stallations, with a high load density (<strong>in</strong> kVA/m²). If all of <strong>the</strong> loadscan be supplied by 3 transformers, <strong>the</strong>re is total redundancy <strong>in</strong> <strong>the</strong> case of failureof one of <strong>the</strong> transformers. In fact, each busbar can be fed power by one or o<strong>the</strong>rof its ends. O<strong>the</strong>rwise, downgraded operation must be considered (with partial loadshedd<strong>in</strong>g). This configuration requires special design of <strong>the</strong> protection plan <strong>in</strong> orderto ensure discrim<strong>in</strong>ation <strong>in</strong> all of <strong>the</strong> fault circumstances.b Double-ended power supply: This configuration is implemented <strong>in</strong> cases wheremaximum availability is required. The pr<strong>in</strong>ciple <strong>in</strong>volves hav<strong>in</strong>g 2 <strong>in</strong>dependent powersources, e.g.:v 2 transformers supplied by different MV l<strong>in</strong>es,v 1 transformer and 1 generator,v 1 transformer and 1 UPS.An automatic transfer switch (ATS) is used to avoid <strong>the</strong> sources be<strong>in</strong>g parallelconnected. This configuration allows preventive and curative ma<strong>in</strong>tenance to becarried out on all of <strong>the</strong> electrical distribution system upstream without <strong>in</strong>terrupt<strong>in</strong>g<strong>the</strong> power supply.b Configuration comb<strong>in</strong>ations: An <strong>in</strong>stallation can be made up of several subasssemblieswith different configurations, accord<strong>in</strong>g to requirements for <strong>the</strong>availability of <strong>the</strong> different types of load. E.g.: generator unit and UPS, choice bysectors (some sectors supplied by cables and o<strong>the</strong>rs by busbar trunk<strong>in</strong>g).D23BusbarorGorUPSFig. D22 : Interconnected switchboardsMLVSBusbarMLVSFig. D24 : Double-ended configuration with automatic transfer switch12 3BusbarBusbarGBusbarMLVSMLVSMLVSMLVSBusbarFig. D23 : R<strong>in</strong>g configurationFig. D25 : Example of a configuration comb<strong>in</strong>ation1: S<strong>in</strong>gle feeder, 2: Switchboard <strong>in</strong>terconnection, 3: Double-ended© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide7 Choice of architecture detailsFor <strong>the</strong> different possible configurations, <strong>the</strong> most probable and usual set ofcharacteristics is given <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g table:D24Characteristic to beconsideredConfigurationRadial Two-pole Sheddable load InterconnectedswitchboardsSite topology Any Any Any 1 level5 to 25000m²R<strong>in</strong>g1 level5 to 25000m²Location latitude Any Any Any Medium of high Medium or high AnyDouble-endedMa<strong>in</strong>ta<strong>in</strong>ability M<strong>in</strong>imal Standard M<strong>in</strong>imal Standard Standard EnhancedAnyPower demand < 2500kVA Any Any ≥ 1250kVA > 2500kVA AnyLoad distribution Localized loads Localized loads Localized load Intermediate oruniforme distributionUniform distributionLocalized loadsInterruptions sensitivityLong<strong>in</strong>terruptionacceptableLong<strong>in</strong>terruptionacceptableSheddableLong<strong>in</strong>terruptionacceptableLong<strong>in</strong>terruptionacceptableShort or no<strong>in</strong>terruptionDisturbances sensitivity Low sensitivity High sensitivity Low sensitivity High sensitivity High sensitivity High sensitivityO<strong>the</strong>r constra<strong>in</strong>ts / / / / / Double-endedloads© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide8 Choice of equipmentThe choice of equipment is step 3 <strong>in</strong> <strong>the</strong> design of an electrical <strong>in</strong>stallation. The aimof this step is to select equipment from <strong>the</strong> manufacturers’ catalogues. The choice oftechnological solutions results from <strong>the</strong> choice of architecture.List of equipment to consider:b MV/LV substation,b MV switchboards,b Transformers,b LV switchboards,b Busbar trunk<strong>in</strong>g,b UPS units,b Power factor correction and filter<strong>in</strong>g equipment.D25Criteria to consider:b Atmosphere, environment,b Service <strong>in</strong>dex,b Offer availability per country,b Utilities requirements,b Previous architecture choices.The choice of equipment is basically l<strong>in</strong>ked to <strong>the</strong> offer availability <strong>in</strong> <strong>the</strong> country. Thiscriterion takes <strong>in</strong>to account <strong>the</strong> availability of certa<strong>in</strong> ranges of equipment or localtechnical support.The detailed selection of equipment is out of <strong>the</strong> scope of this document.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide9 Recommendations forarchitecture optimizationThese recommendations are <strong>in</strong>tended to guide <strong>the</strong> designer towards architectureupgrades which allow him to improve assessment criteria.9.1 On-site workD26To be compatible with <strong>the</strong> “special” or “critical” work-site time, it is recommended tolimit uncerta<strong>in</strong>ties by apply<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g recommendations:b Use of proven solutions and equipment that has been validated and tested bymanufacturers (“functional” switchboard or “manufacturer” switchboard accord<strong>in</strong>g to<strong>the</strong> application criticality),b Prefer <strong>the</strong> implementation of equipment for which <strong>the</strong>re is a reliable distributionnetwork and for which it is possible to have local support (supplier well established),b Prefer <strong>the</strong> use of factory-built equipment (MV/LV substation, busbar trunk<strong>in</strong>g),allow<strong>in</strong>g <strong>the</strong> volume of operations on site to be limited,b Limit <strong>the</strong> variety of equipment implemented (e.g. <strong>the</strong> power of transformers),b Avoid mix<strong>in</strong>g equipment from different manufacturers.9.2 Environmental impactThe optimization of <strong>the</strong> environmental assessment of an <strong>in</strong>stallation will <strong>in</strong>volvereduc<strong>in</strong>g:b Power losses at full load and no load dur<strong>in</strong>g <strong>in</strong>stallation operation,b Overall, <strong>the</strong> mass of materials used to produce <strong>the</strong> <strong>in</strong>stallation.Taken separately and when look<strong>in</strong>g at only one piece of equipment, <strong>the</strong>se 2objectives may seem contradictory. However, when applied to whole <strong>in</strong>stallation, itis possible to design <strong>the</strong> architecture to contribute to both objectives. The optimal<strong>in</strong>stallation will <strong>the</strong>refore not be <strong>the</strong> sum of <strong>the</strong> optimal equipment taken separately,but <strong>the</strong> result of an optimization of <strong>the</strong> overall <strong>in</strong>stallation.Figure D26 gives an example of <strong>the</strong> contribution per equipment category to <strong>the</strong>weight and <strong>energy</strong> dissipation for a 3500 kVA <strong>in</strong>stallation spread over 10000m².LV switchboardand switchgearLV switchboardand switchgear5 %LV cablesand trunk<strong>in</strong>g10 %LV cablesand trunk<strong>in</strong>g75 %Transformers46 %Transformers20 %44 %Total loss for equipment considered: 414 MWh Total mass of equipment considered: 18,900 kgFig. D26 : Example of <strong>the</strong> spread of losses and <strong>the</strong> weight of material for each equipment category© Schneider Electric - all rights reservedGenerally speak<strong>in</strong>g, LV cables and trunk<strong>in</strong>g as well as <strong>the</strong> MV/LV transformers are<strong>the</strong> ma<strong>in</strong> contributors to operat<strong>in</strong>g losses and <strong>the</strong> weight of equipment used.Environmental optimization of <strong>the</strong> <strong>in</strong>stallation by <strong>the</strong> architecture will <strong>the</strong>refore<strong>in</strong>volve:b reduc<strong>in</strong>g <strong>the</strong> length of LV circuits <strong>in</strong> <strong>the</strong> <strong>in</strong>stallation,b cluster<strong>in</strong>g LV circuits wherever possible to take advantage of <strong>the</strong> factor ofsimultaneity ks (see chapter A: General rules of electrical <strong>in</strong>stallation design, Chapter– Power load<strong>in</strong>g of an <strong>in</strong>stallation, 4.3 “Estimation of actual maximum kVA demand”)Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide9 Recommendations forarchitecture optimizationObjectivesReduc<strong>in</strong>g <strong>the</strong> length of LVcircuitsResourcesPlac<strong>in</strong>g MV/LV substations as close as possible to <strong>the</strong> barycenterof all of <strong>the</strong> LV loads to be suppliedCluster<strong>in</strong>g LV circuitsWhen <strong>the</strong> simultaneity factor of a group of loads to be suppliedis less than 0.7, <strong>the</strong> cluster<strong>in</strong>g of circuits allows us to limit <strong>the</strong>volume of conductors supply<strong>in</strong>g power to <strong>the</strong>se loads.In real terms this <strong>in</strong>volves:b sett<strong>in</strong>g up sub-distribution switchboards as close as possible to<strong>the</strong> barycenter of <strong>the</strong> groups of loads if <strong>the</strong>y are localized,b sett<strong>in</strong>g up busbar trunk<strong>in</strong>g systems as close as possible to <strong>the</strong>barycenter of <strong>the</strong> groups of loads if <strong>the</strong>y are distributed.The search for an optimal solution may lead to consider severalcluster<strong>in</strong>g scenarios.In all cases, reduc<strong>in</strong>g <strong>the</strong> distance between <strong>the</strong> barycenter ofa group of loads and <strong>the</strong> equipment that supplies <strong>the</strong>m powerallows to reduce environmental impact.D27Fig. D27 : Environmental optimization : Objectives and Ressources.As an example figure D28 shows <strong>the</strong> impact of cluster<strong>in</strong>g circuits on reduc<strong>in</strong>g<strong>the</strong> distance between <strong>the</strong> barycenter of <strong>the</strong> loads of an <strong>in</strong>stallation and that of <strong>the</strong>sources considered (MLVS whose position is imposed). This example concerns am<strong>in</strong>eral water bottl<strong>in</strong>g plant for which:b <strong>the</strong> position of electrical equipment (MLVS) is imposed <strong>in</strong> <strong>the</strong> premises outside of<strong>the</strong> process area for reasons of accessibility and atmosphere constra<strong>in</strong>ts,b <strong>the</strong> <strong>in</strong>stalled power is around 4 MVA.In solution No.1, <strong>the</strong> circuits are distributed for each workshop.In solution No. 2, <strong>the</strong> circuits are distributed by process functions (production l<strong>in</strong>es).SolutionBarycenter positionWorkshop 1 Workshop 2 Workshop 3 StorageN°1MLVS areaWorkshop 1BarycenterWorkshop 2BarycenterWorkshop 3BarycenterN°2 Workshop 1 Workshop 2 Workshop 3 StorageMLVS areaFig. D28 : Example of barycenter position<strong>in</strong>gBarycenterl<strong>in</strong>e 1Barycenterl<strong>in</strong>e 2Barycenterl<strong>in</strong>e 3Barycenterl<strong>in</strong>e 3© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide9 Recommendations forarchitecture optimizationD28Without chang<strong>in</strong>g <strong>the</strong> layout of electrical equipment, <strong>the</strong> second solution allows usto achieve ga<strong>in</strong>s of around 15% on <strong>the</strong> weight of LV cables to be <strong>in</strong>stalled (ga<strong>in</strong> onlengths) and a better uniformity of transformer power.To supplement <strong>the</strong> optimizations carried out <strong>in</strong> terms of architecture, <strong>the</strong> follow<strong>in</strong>gpo<strong>in</strong>ts also contribute to <strong>the</strong> optimization:b <strong>the</strong> sett<strong>in</strong>g up of LV power factor correction to limit losses <strong>in</strong> <strong>the</strong> transformers andLV circuits if this compensation is distributed,b <strong>the</strong> use of low loss transformers,b <strong>the</strong> use of alum<strong>in</strong>um LV busbar trunk<strong>in</strong>g when possible, s<strong>in</strong>ce natural resources ofthis metal are greater.9.3 Preventive ma<strong>in</strong>tenance volumeRecommendations for reduc<strong>in</strong>g <strong>the</strong> volume of preventive ma<strong>in</strong>tenance:b Use <strong>the</strong> same recommendations as for reduc<strong>in</strong>g <strong>the</strong> work site time,b Focus ma<strong>in</strong>tenance work on critical circuits,b Standardize <strong>the</strong> choice of equipment,b Use equipment designed for severe atmospheres (requires less ma<strong>in</strong>tenance).9.4 <strong>Electrical</strong> power availabilityRecommendations for improv<strong>in</strong>g <strong>the</strong> electrical power availability:b Reduce <strong>the</strong> number of feeders per switchboard, <strong>in</strong> order to limit <strong>the</strong> effects of apossible failure of a switchboard,b Distribut<strong>in</strong>g circuits accord<strong>in</strong>g to availability requirements,b Us<strong>in</strong>g equipment that is <strong>in</strong> l<strong>in</strong>e with requirements (see Service Index, 4.2),b Follow <strong>the</strong> selection guides proposed for steps 1 & 2 (see Fig. D3 page D5).Recommendations to <strong>in</strong>crease <strong>the</strong> level of availability:b Change from a radial s<strong>in</strong>gle feeder configuration to a two-pole configuration,b Change from a two-pole configuration to a double-ended configuration,b Change from a double-ended configuration to a un<strong>in</strong>terruptible configuration with aUPS unit and a Static Transfer Switchb Increase <strong>the</strong> level of ma<strong>in</strong>tenance (reduc<strong>in</strong>g <strong>the</strong> MTTR, <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> MTBF)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide10 GlossaryArchitecture: choice of a s<strong>in</strong>gle-l<strong>in</strong>e diagram and technological solutions, fromconnection to <strong>the</strong> utility network through to load power supply circuits.Ma<strong>in</strong> MV/LV distribution: Level upstream of <strong>the</strong> architecture, from connectionto <strong>the</strong> network utility through to LV distribution equipment on <strong>the</strong> site (MLVS – orequivalent).MLVS – Ma<strong>in</strong> Low Voltage Switchboard: Ma<strong>in</strong> switchboard downstream of <strong>the</strong>MV/LV transformer, start<strong>in</strong>g po<strong>in</strong>t of power distribution circuits <strong>in</strong> <strong>the</strong> <strong>in</strong>stallationLV power distribution: <strong>in</strong>termediate level <strong>in</strong> <strong>the</strong> architecture, downstream of <strong>the</strong>ma<strong>in</strong> level through to <strong>the</strong> sub-distribution switchboards (spatial and functionaldistribution of electrical power <strong>in</strong> <strong>the</strong> circuits).LV term<strong>in</strong>al distribution: Downstream level of <strong>the</strong> architecture, downstream of <strong>the</strong>sub-distribution switchboards through to <strong>the</strong> loads. This level of distribution is notdealt with <strong>in</strong> this guide.S<strong>in</strong>gle-l<strong>in</strong>e diagram: general electrical schematic diagram to represent <strong>the</strong> ma<strong>in</strong>electrical equipment and <strong>the</strong>ir <strong>in</strong>terconnection.MV substation, transformation substation: Enclosures group<strong>in</strong>g toge<strong>the</strong>r MVequipment and/or MV/LV transformers. These enclosures can be shared or separate,accord<strong>in</strong>g to <strong>the</strong> site layout, or <strong>the</strong> equipment technology. In certa<strong>in</strong> countries, <strong>the</strong>MV substation is assimilated with <strong>the</strong> delivery substation.Technological solution: Result<strong>in</strong>g from <strong>the</strong> choice of technology for an <strong>in</strong>stallationsub-assembly, from among <strong>the</strong> different products and equipment proposed by <strong>the</strong>manufacturer.Characteristics: Technical or environmental data relative to <strong>the</strong> <strong>in</strong>stallation, enabl<strong>in</strong>g<strong>the</strong> best-suited architecture to be selected.Criteria: Parameters for assess<strong>in</strong>g <strong>the</strong> <strong>in</strong>stallation, enabl<strong>in</strong>g selection of <strong>the</strong>architecture that is <strong>the</strong> best-suited to <strong>the</strong> needs of <strong>the</strong> customer.D29© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide11 ID-Spec softwareID-Spec is a new software which aims at help<strong>in</strong>g <strong>the</strong> designer to be more productive<strong>in</strong> draft design phase and argue easily his design decisions.It supports <strong>the</strong> designer <strong>in</strong> select<strong>in</strong>g <strong>the</strong> relevant s<strong>in</strong>gle l<strong>in</strong>e diagram patterns for ma<strong>in</strong>distribution and sub distribution and <strong>in</strong> adapt<strong>in</strong>g <strong>the</strong>se patterns to his project. It alsosupports <strong>the</strong> designer <strong>in</strong> equipment technology and rat<strong>in</strong>g selection. Its generatesautomatically <strong>the</strong> correspond<strong>in</strong>g design specification documentation <strong>in</strong>clud<strong>in</strong>g s<strong>in</strong>glel<strong>in</strong>e diagram and its argument, list and specification of <strong>the</strong> correspond<strong>in</strong>g equipment.D30© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide12 Example: electrical <strong>in</strong>stallation<strong>in</strong> a pr<strong>in</strong>tworks12.1 Brief descriptionPr<strong>in</strong>t<strong>in</strong>g of personalized mailshots <strong>in</strong>tended for mail order sales.12.2 <strong>Installation</strong> characteristicsCharacteristicActivitySite topologyLayout latitudeService reliabilityCategoryMechanicals<strong>in</strong>gle storey build<strong>in</strong>g,10000m² (8000m² dedicated to <strong>the</strong> process, 2000m² forancillary areas)HighStandardD31Ma<strong>in</strong>ta<strong>in</strong>ability<strong>Installation</strong> flexibilityPower demandLoad distributionPower <strong>in</strong>terruptions sensitivityDisturbance sensitivityDisturbance capabilityO<strong>the</strong>r constra<strong>in</strong>tsStandardb No flexibility planned:v HVACv Process utilitiesv Office power supplyb Possible flexibility:v f<strong>in</strong>ish<strong>in</strong>g, putt<strong>in</strong>g <strong>in</strong> envelopesv special mach<strong>in</strong>es, <strong>in</strong>stalled at a later datev rotary mach<strong>in</strong>es (uncerta<strong>in</strong>ty at <strong>the</strong> draft design stage)3500kVAIntermediate distributionb Sheddable circuits:v offices (apart from PC power sockets)v air condition<strong>in</strong>g, office heat<strong>in</strong>gv social premisesv ma<strong>in</strong>tenance premisesb long <strong>in</strong>terruptions acceptable:v pr<strong>in</strong>t<strong>in</strong>g mach<strong>in</strong>esv workshop HVAC (hygrometric control)v F<strong>in</strong>ish<strong>in</strong>g, envelope fill<strong>in</strong>gv Process utilities (compressor, recycl<strong>in</strong>g of cooled water)b No <strong>in</strong>terruptions acceptable:v servers, office PCsb Average sensitivity:v motors, light<strong>in</strong>gb High sensitivity:v ITNo special precaution to be taken due to <strong>the</strong> connection to<strong>the</strong> EdF network (low level of disturbance)Non disturb<strong>in</strong>gb Build<strong>in</strong>g with lightn<strong>in</strong>g classification: lightn<strong>in</strong>g surgearresters <strong>in</strong>stalledb Power supply by overhead s<strong>in</strong>gle feeder l<strong>in</strong>e12.3 Technological characteristicsCriteriaAtmosphere, environmentService <strong>in</strong>dex 211Offer availability by countryO<strong>the</strong>r criteriaCategoryb IP: standard (no dust, no water protection)b IK: standard (use of technical pits, dedicated premises)b °C: standard (temperature regulation)No problem (project carried out <strong>in</strong> France)Noth<strong>in</strong>g particular© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide12 Example: electrical <strong>in</strong>stallation<strong>in</strong> a pr<strong>in</strong>tworks12.4 Architecture assessment criteriaD32CriteriaOn-site work timeEnvironmental impactPreventive ma<strong>in</strong>tenance costsPower supply availabilityCategorySecondaryM<strong>in</strong>imal: compliance with European standard regulationsStandardLevel IStep 1: Architecture fundamentalsChoice Ma<strong>in</strong> criteria SolutionConnection to upstreamnetworkIsolated sites<strong>in</strong>gle branch circuitMV Circuits Layout + criticality s<strong>in</strong>gle feederNumber of transformers Power > 2500kVA 2 x 2000kVANumber and distribution ofsubstationsSurface area and powerdistributionMV Generator Site activity No2 possible solutions: 1substation or 2 substationsb if 1 substations: NO l<strong>in</strong>kbetween MLVSb if 2 substations:<strong>in</strong>terconnected switchboardsMVMVMVMVLVLVLVLVMLVS 1 MLVS 2 MLVS 1 MLVS 2Trunk<strong>in</strong>gFig. D29 : Two possible s<strong>in</strong>gle-l<strong>in</strong>e diagrams© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide12 Example: electrical <strong>in</strong>stallation<strong>in</strong> a pr<strong>in</strong>tworksStep 2: Architecture details“1 substation” solutionChoice Ma<strong>in</strong> criteria SolutionLayout Atmospheric constra<strong>in</strong>t Dedicated premisesCentralized or decentralizedlayoutPresence of back-upgeneratorUniform loads, distributedpower, scalability possibilitiesNon-uniform loads, direct l<strong>in</strong>kfrom MLVSCriticality ≤ lowNetwork availability: standardb Decentralized with busbartrunk<strong>in</strong>g:v f<strong>in</strong>ish<strong>in</strong>g sector, envelopefill<strong>in</strong>gb Centralized with cables:v special mach<strong>in</strong>es,rotary mach<strong>in</strong>es, HVAC,process utilities, offices(2 switchboards), office aircondition<strong>in</strong>g, social premises,ma<strong>in</strong>tenanceNo back-up generatorPresence of UPS Criticality UPS unit for servers and officePCsLV circuit configuration2 transformers, possiblepartial redundancyb Two-pole, variant 2 ½ MLVS+ NO l<strong>in</strong>k (reduction of <strong>the</strong> Iscby MLVS, no redundancyb process (≤ weak)b sheddable circuit for noncriticalloadsD33MVLVMVLVMLVS 1 MLVS 2ASIHVACTrunk<strong>in</strong>gSheddableOfficesMach<strong>in</strong>esFig. D30 : Detailed s<strong>in</strong>gle-l<strong>in</strong>e diagram (1 substation)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


D - MV & LV architecture selection guide12 Example: electrical <strong>in</strong>stallation<strong>in</strong> a pr<strong>in</strong>tworks12.5 Choice of technological solutions:Choice Ma<strong>in</strong> criteria SolutionMV/LV substation Atmosphere, environment <strong>in</strong>door (dedicated premises)D34MV switchboard Offer availability by country SM6 (<strong>in</strong>stallation produced <strong>in</strong>France)Transformers Atmosphere, environment cast res<strong>in</strong> transfo (avoidsconstra<strong>in</strong>ts related to oil)LV switchboard Atmosphere, IS MLVS: Prisma + PSub-distribution: Prisma +Busbar trunk<strong>in</strong>g Installed power to besuppliedUPS unitsPower factor correctionInstalled power to besupplied, back-up timeInstalled power, presence ofharmonicsCanalis KSGalaxy PWLV, standard, automatic(Average Q, ease of<strong>in</strong>stallation)“2 substation” solutionDitto apart from:LV circuit: 2 remote MLVS connected via busbar trunk<strong>in</strong>gMVLVMVLVMLVS 1 MLVS 2Trunk<strong>in</strong>gTrunk<strong>in</strong>gSheddableASIHVACMach<strong>in</strong>esOfficesFig. D31 : Detailed s<strong>in</strong>gle-l<strong>in</strong>e diagram (2 substations)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Chapter ELV Distribution123ContentsEarth<strong>in</strong>g schemes1.1 Earth<strong>in</strong>g connections E21.2 Def<strong>in</strong>ition of standardised earth<strong>in</strong>g schemes E31.3 Characteristics of TT, TN and IT systems E61.4 Selection criteria for <strong>the</strong> TT, TN and IT systems E81.5 Choice of earth<strong>in</strong>g method - implementation E101.6 <strong>Installation</strong> and measurements of earth electrodes E11The <strong>in</strong>stallation systemE2E152.1 Distribution boards E152.2 Cables and busways E18External <strong>in</strong>fluences (IEC 60364-5-51)E253.1 Def<strong>in</strong>ition and reference standards E253.2 Classification E253.3 List of external <strong>in</strong>fluences E253.4 Protection provided for enclosed equipment: codes IP and IK E28E© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations1 Earth<strong>in</strong>g schemesEIn a build<strong>in</strong>g, <strong>the</strong> connection of all metal partsof <strong>the</strong> build<strong>in</strong>g and all exposed conductive partsof electrical equipment to an earth electrodeprevents <strong>the</strong> appearance of dangerously highvoltages between any two simultaneouslyaccessible metal parts4Extraneousconductiveparts4Heat<strong>in</strong>gWaterBranchedprotectiveconductorsto <strong>in</strong>dividualconsumersGas 5155Fig. E1 : An example of a block of flats <strong>in</strong> which <strong>the</strong> ma<strong>in</strong>earth<strong>in</strong>g term<strong>in</strong>al (6) provides <strong>the</strong> ma<strong>in</strong> equipotential connection;<strong>the</strong> removable l<strong>in</strong>k (7) allows an earth-electrode-resistancecheck273336Ma<strong>in</strong>protectiveconductor1.1 Earth<strong>in</strong>g connectionsDef<strong>in</strong>itionsNational and <strong>in</strong>ternational standards (IEC 60364) clearly def<strong>in</strong>e <strong>the</strong> various elementsof earth<strong>in</strong>g connections. The follow<strong>in</strong>g terms are commonly used <strong>in</strong> <strong>in</strong>dustry and <strong>in</strong><strong>the</strong> literature. Bracketed numbers refer to Figure E1 :b Earth electrode (1): A conductor or group of conductors <strong>in</strong> <strong>in</strong>timate contact with,and provid<strong>in</strong>g an electrical connection with Earth (cf details <strong>in</strong> section 1.6 of Chapter E.)b Earth: The conductive mass of <strong>the</strong> Earth, whose electric potential at any po<strong>in</strong>t isconventionally taken as zerob <strong>Electrical</strong>ly <strong>in</strong>dependent earth electrodes: Earth electrodes located at such adistance from one ano<strong>the</strong>r that <strong>the</strong> maximum current likely to flow through one of<strong>the</strong>m does not significantly affect <strong>the</strong> potential of <strong>the</strong> o<strong>the</strong>r(s)b Earth electrode resistance: The contact resistance of an earth electrode with <strong>the</strong>Earthb Earth<strong>in</strong>g conductor (2): A protective conductor connect<strong>in</strong>g <strong>the</strong> ma<strong>in</strong> earth<strong>in</strong>gterm<strong>in</strong>al (6) of an <strong>in</strong>stallation to an earth electrode (1) or to o<strong>the</strong>r means of earth<strong>in</strong>g(e.g. TN systems);b Exposed-conductive-part: A conductive part of equipment which can be touchedand which is not a live part, but which may become live under fault conditionsb Protective conductor (3): A conductor used for some measures of protection aga<strong>in</strong>stelectric shock and <strong>in</strong>tended for connect<strong>in</strong>g toge<strong>the</strong>r any of <strong>the</strong> follow<strong>in</strong>g parts:v Exposed-conductive-partsv Extraneous-conductive-partsv The ma<strong>in</strong> earth<strong>in</strong>g term<strong>in</strong>alv Earth electrode(s)v The ear<strong>the</strong>d po<strong>in</strong>t of <strong>the</strong> source or an artificial neutralb Extraneous-conductive-part: A conductive part liable to <strong>in</strong>troduce a potential,generally earth potential, and not form<strong>in</strong>g part of <strong>the</strong> electrical <strong>in</strong>stallation (4).For example:v Non-<strong>in</strong>sulated floors or walls, metal framework of build<strong>in</strong>gsv Metal conduits and pipework (not part of <strong>the</strong> electrical <strong>in</strong>stallation) for water, gas,heat<strong>in</strong>g, compressed-air, etc. and metal materials associated with <strong>the</strong>mb Bond<strong>in</strong>g conductor (5): A protective conductor provid<strong>in</strong>g equipotential bond<strong>in</strong>gb Ma<strong>in</strong> earth<strong>in</strong>g term<strong>in</strong>al (6): The term<strong>in</strong>al or bar provided for <strong>the</strong> connection ofprotective conductors, <strong>in</strong>clud<strong>in</strong>g equipotential bond<strong>in</strong>g conductors, and conductorsfor functional earth<strong>in</strong>g, if any, to <strong>the</strong> means of earth<strong>in</strong>g.ConnectionsThe ma<strong>in</strong> equipotential bond<strong>in</strong>g systemThe bond<strong>in</strong>g is carried out by protective conductors and <strong>the</strong> aim is to ensure that,<strong>in</strong> <strong>the</strong> event of an <strong>in</strong>com<strong>in</strong>g extraneous conductor (such as a gas pipe, etc.) be<strong>in</strong>graised to some potential due to a fault external to <strong>the</strong> build<strong>in</strong>g, no difference ofpotential can occur between extraneous-conductive-parts with<strong>in</strong> <strong>the</strong> <strong>in</strong>stallation.The bond<strong>in</strong>g must be effected as close as possible to <strong>the</strong> po<strong>in</strong>t(s) of entry <strong>in</strong>to <strong>the</strong>build<strong>in</strong>g, and be connected to <strong>the</strong> ma<strong>in</strong> earth<strong>in</strong>g term<strong>in</strong>al (6).However, connections to earth of metallic sheaths of communications cables require<strong>the</strong> authorisation of <strong>the</strong> owners of <strong>the</strong> cables.Supplementary equipotential connectionsThese connections are <strong>in</strong>tended to connect all exposed-conductive-parts and allextraneous-conductive-parts simultaneously accessible, when correct conditionsfor protection have not been met, i.e. <strong>the</strong> orig<strong>in</strong>al bond<strong>in</strong>g conductors present anunacceptably high resistance.Connection of exposed-conductive-parts to <strong>the</strong> earth electrode(s)The connection is made by protective conductors with <strong>the</strong> object of provid<strong>in</strong>g a lowresistancepath for fault currents flow<strong>in</strong>g to earth.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations1 Earth<strong>in</strong>g schemesComponents (see Fig. E2)Effective connection of all accessible metal fixtures and all exposed-conductive-partsof electrical appliances and equipment, is essential for effective protection aga<strong>in</strong>stelectric shocks.Component parts to consider:as exposed-conductive-partsCablewaysb Conduitsb Impregnated-paper-<strong>in</strong>sulated lead-coveredcable, armoured or unarmouredb M<strong>in</strong>eral <strong>in</strong>sulated metal-shea<strong>the</strong>d cable(pyrotenax, etc.)Switchgearb cradle of withdrawable switchgearAppliancesb Exposed metal parts of class 1 <strong>in</strong>sulatedappliancesNon-electrical elementsb metallic fitt<strong>in</strong>gs associated with cableways(cable trays, cable ladders, etc.)b Metal objects:v Close to aerial conductors or to busbarsv In contact with electrical equipment.as extraneous-conductive-partsElements used <strong>in</strong> build<strong>in</strong>g constructionb Metal or re<strong>in</strong>forced concrete (RC):v Steel-framed structurev Re<strong>in</strong>forcement rodsv Prefabricated RC panelsb Surface f<strong>in</strong>ishes:v Floors and walls <strong>in</strong> re<strong>in</strong>forced concretewithout fur<strong>the</strong>r surface treatmentvTiled surfacebMetallic cover<strong>in</strong>g:vMetallic wall cover<strong>in</strong>gBuild<strong>in</strong>g services elements o<strong>the</strong>r than electricalb Metal pipes, conduits, trunk<strong>in</strong>g, etc. for gas,water and heat<strong>in</strong>g systems, etc.b Related metal components (furnaces, tanks,reservoirs, radiators)b Metallic fitt<strong>in</strong>gs <strong>in</strong> wash rooms, bathrooms,toilets, etc.b Metallised papersEComponent parts not to be considered:as exposed-conductive-partsDiverse service channels, ducts, etc.b Conduits made of <strong>in</strong>sulat<strong>in</strong>g materialb Mould<strong>in</strong>gs <strong>in</strong> wood or o<strong>the</strong>r <strong>in</strong>sulat<strong>in</strong>gmaterialb Conductors and cables without metallic sheathsSwitchgearb Enclosures made of <strong>in</strong>sulat<strong>in</strong>g materialAppliancesb All appliances hav<strong>in</strong>g class II <strong>in</strong>sulationregardless of <strong>the</strong> type of exterior envelopeas extraneous-conductive-partsb Wooden-block floorsb Rubber-covered or l<strong>in</strong>oleum-covered floorsb Dry plaster-block partitionb Brick wallsb Carpets and wall-to-wall carpet<strong>in</strong>gFig. E2 : List of exposed-conductive-parts and extraneous-conductive-partsThe different earth<strong>in</strong>g schemes (often referredto as <strong>the</strong> type of power system or systemearth<strong>in</strong>g arrangements) described characterise<strong>the</strong> method of earth<strong>in</strong>g <strong>the</strong> <strong>in</strong>stallationdownstream of <strong>the</strong> secondary w<strong>in</strong>d<strong>in</strong>g of aMV/LV transformer and <strong>the</strong> means used forearth<strong>in</strong>g <strong>the</strong> exposed conductive-parts of <strong>the</strong>LV <strong>in</strong>stallation supplied from it1.2 Def<strong>in</strong>ition of standardised earth<strong>in</strong>g schemesThe choice of <strong>the</strong>se methods governs <strong>the</strong> measures necessary for protection aga<strong>in</strong>st<strong>in</strong>direct-contact hazards.The earth<strong>in</strong>g system qualifies three orig<strong>in</strong>ally <strong>in</strong>dependent choices made by <strong>the</strong>designer of an electrical distribution system or <strong>in</strong>stallation:b The type of connection of <strong>the</strong> electrical system (that is generally of <strong>the</strong> neutralconductor) and of <strong>the</strong> exposed parts to earth electrode(s)b A separate protective conductor or protective conductor and neutral conductorbe<strong>in</strong>g a s<strong>in</strong>gle conductorb The use of earth fault protection of overcurrent protective switchgear which clearonly relatively high fault currents or <strong>the</strong> use of additional relays able to detect andclear small <strong>in</strong>sulation fault currents to earthIn practice, <strong>the</strong>se choices have been grouped and standardised as expla<strong>in</strong>ed below.Each of <strong>the</strong>se choices provides standardised earth<strong>in</strong>g systems with threeadvantages and drawbacks:b Connection of <strong>the</strong> exposed conductive parts of <strong>the</strong> equipment and of <strong>the</strong> neutralconductor to <strong>the</strong> PE conductor results <strong>in</strong> equipotentiality and lower overvoltages but<strong>in</strong>creases earth fault currentsb A separate protective conductor is costly even if it has a small cross-sectional areabut it is much more unlikely to be polluted by voltage drops and harmonics, etc. than aneutral conductor is. Leakage currents are also avoided <strong>in</strong> extraneous conductive partsb <strong>Installation</strong> of residual current protective relays or <strong>in</strong>sulation monitor<strong>in</strong>g devices aremuch more sensitive and permits <strong>in</strong> many circumstances to clear faults before heavydamage occurs (motors, fires, electrocution). The protection offered is <strong>in</strong> addition<strong>in</strong>dependent with respect to changes <strong>in</strong> an exist<strong>in</strong>g <strong>in</strong>stallation© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations1 Earth<strong>in</strong>g schemesNeutralEarthExposed conductive partsEarthL1L2L3NPETT system (ear<strong>the</strong>d neutral) (see Fig. E3)One po<strong>in</strong>t at <strong>the</strong> supply source is connected directly to earth. All exposed- andextraneous-conductive-parts are connected to a separate earth electrode at <strong>the</strong><strong>in</strong>stallation. This electrode may or may not be electrically <strong>in</strong>dependent of <strong>the</strong> sourceelectrode. The two zones of <strong>in</strong>fluence may overlap without affect<strong>in</strong>g <strong>the</strong> operation ofprotective devices.TN systems (exposed conductive parts connected to <strong>the</strong>neutral)ERnFig. E3 : TT SystemNeutralEarthRnFig. E4 : TN-C systemExposed conductive partsNeutralL1L2L3PENL1L2L3NPEThe source is ear<strong>the</strong>d as for <strong>the</strong> TT system (above). In <strong>the</strong> <strong>in</strong>stallation, all exposedandextraneous-conductive-parts are connected to <strong>the</strong> neutral conductor. The severalversions of TN systems are shown below.TN-C system (see Fig. E4)The neutral conductor is also used as a protective conductor and is referred to asa PEN (Protective Earth and Neutral) conductor. This system is not permitted forconductors of less than 10 mm 2 or for portable equipment.The TN-C system requires an effective equipotential environment with<strong>in</strong> <strong>the</strong><strong>in</strong>stallation with dispersed earth electrodes spaced as regularly as possible s<strong>in</strong>ce<strong>the</strong> PEN conductor is both <strong>the</strong> neutral conductor and at <strong>the</strong> same time carries phaseunbalance currents as well as 3 rd order harmonic currents (and <strong>the</strong>ir multiples).The PEN conductor must <strong>the</strong>refore be connected to a number of earth electrodes <strong>in</strong><strong>the</strong> <strong>in</strong>stallation.Caution: In <strong>the</strong> TN-C system, <strong>the</strong> “protective conductor” function has priority over<strong>the</strong> “neutral function”. In particular, a PEN conductor must always be connected to<strong>the</strong> earth<strong>in</strong>g term<strong>in</strong>al of a load and a jumper is used to connect this term<strong>in</strong>al to <strong>the</strong>neutral term<strong>in</strong>al.TN-S system (see Fig. E5)The TN-S system (5 wires) is obligatory for circuits with cross-sectional areas lessthan 10 mm 2 for portable equipment.The protective conductor and <strong>the</strong> neutral conductor are separate. On undergroundcable systems where lead-shea<strong>the</strong>d cables exist, <strong>the</strong> protective conductor isgenerally <strong>the</strong> lead sheath. The use of separate PE and N conductors (5 wires)is obligatory for circuits with cross-sectional areas less than 10 mm 2 for portableequipment.TN-C-S system (see Fig. E6 below and Fig. E7 next page)RnFig. E5 : TN-S systemThe TN-C and TN-S systems can be used <strong>in</strong> <strong>the</strong> same <strong>in</strong>stallation. In <strong>the</strong> TN-C-Ssystem, <strong>the</strong> TN-C (4 wires) system must never be used downstream of <strong>the</strong> TN-S(5 wires) system, s<strong>in</strong>ce any accidental <strong>in</strong>terruption <strong>in</strong> <strong>the</strong> neutral on <strong>the</strong> upstreampart would lead to an <strong>in</strong>terruption <strong>in</strong> <strong>the</strong> protective conductor <strong>in</strong> <strong>the</strong> downstream partand <strong>the</strong>refore a danger.PENPE5 x 50 mm 2L1L2L3NPE16 mm2 6 mm2 16 mm2 16 mm2PENBadBadTN-C scheme not permitteddownstream of TN-S scheme© Schneider Electric - all rights reservedFig. E6 : TN-C-S systemSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations1 Earth<strong>in</strong>g schemes4 x 95 mm 2L1L2L3PENN16 mm 2 10 mm 2 6 mm 2 6 mm 2PENPENCorrect Incorrect Correct IncorrectPEN connected to <strong>the</strong> neutralterm<strong>in</strong>al is prohibitedS < 10 mm 2TNC prohibitedENeutralExposed conductive partsFig. E7 : Connection of <strong>the</strong> PEN conductor <strong>in</strong> <strong>the</strong> TN-C systemIsolated orimpedance-ear<strong>the</strong>dFig. E8 : IT system (isolated neutral)MV/LVEarthL1L2L3NPEIT system (isolated or impedance-ear<strong>the</strong>d neutral)IT system (isolated neutral)No <strong>in</strong>tentional connection is made between <strong>the</strong> neutral po<strong>in</strong>t of <strong>the</strong> supply sourceand earth (see Fig. E8).Exposed- and extraneous-conductive-parts of <strong>the</strong> <strong>in</strong>stallation are connected to anearth electrode.In practice all circuits have a leakage impedance to earth, s<strong>in</strong>ce no <strong>in</strong>sulationis perfect. In parallel with this (distributed) resistive leakage path, <strong>the</strong>re is <strong>the</strong>distributed capacitive current path, <strong>the</strong> two paths toge<strong>the</strong>r constitut<strong>in</strong>g <strong>the</strong> normalleakage impedance to earth (see Fig. E9).Example (see Fig. E10)In a LV 3-phase 3-wire system, 1 km of cable will have a leakage impedance due toC1, C2, C3 and R1, R2 and R3 equivalent to a neutral earth impedance Zct of 3,000to 4,000 Ω, without count<strong>in</strong>g <strong>the</strong> filter<strong>in</strong>g capacitances of electronic devices.C1C2C3R1R2R3IT system (impedance-ear<strong>the</strong>d neutral)An impedance Zs (<strong>in</strong> <strong>the</strong> order of 1,000 to 2,000 Ω) is connected permanentlybetween <strong>the</strong> neutral po<strong>in</strong>t of <strong>the</strong> transformer LV w<strong>in</strong>d<strong>in</strong>g and earth (see Fig. E11).All exposed- and extraneous-conductive-parts are connected to an earth electrode.The reasons for this form of power-source earth<strong>in</strong>g are to fix <strong>the</strong> potential of a smallnetwork with respect to earth (Zs is small compared to <strong>the</strong> leakage impedance) and toreduce <strong>the</strong> level of overvoltages, such as transmitted surges from <strong>the</strong> MV w<strong>in</strong>d<strong>in</strong>gs,static charges, etc. with respect to earth. It has, however, <strong>the</strong> effect of slightly<strong>in</strong>creas<strong>in</strong>g <strong>the</strong> first-fault current level.Fig. E9 : IT system (isolated neutral)MV/LVMV/LVZctZsFig. E10 : Impedance equivalent to leakage impedances <strong>in</strong> anIT systemFig. E11 : IT system (impedance-ear<strong>the</strong>d neutral)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations1 Earth<strong>in</strong>g schemes1.3 Characteristics of TT, TN and IT systemsThe TT system:b Technique for <strong>the</strong> protection of persons: <strong>the</strong>exposed conductive parts are ear<strong>the</strong>d andresidual current devices (RCDs) are usedb Operat<strong>in</strong>g technique: <strong>in</strong>terruption for <strong>the</strong> first<strong>in</strong>sulation faultTT system (see Fig. E12)EFig. E12 : TT systemNote: If <strong>the</strong> exposed conductive parts are ear<strong>the</strong>d at a number of po<strong>in</strong>ts, an RCDmust be <strong>in</strong>stalled for each set of circuits connected to a given earth electrode.The TN system:b Technique for <strong>the</strong> protection of persons:v Interconnection and earth<strong>in</strong>g of exposedconductive parts and <strong>the</strong> neutral are mandatoryv Interruption for <strong>the</strong> first fault us<strong>in</strong>g overcurrentprotection (circuit-breakers or fuses)b Operat<strong>in</strong>g technique: <strong>in</strong>terruption for <strong>the</strong> first<strong>in</strong>sulation faultMa<strong>in</strong> characteristicsb Simplest solution to design and <strong>in</strong>stall. Used <strong>in</strong> <strong>in</strong>stallations supplied directly by <strong>the</strong>public LV distribution network.b Does not require cont<strong>in</strong>uous monitor<strong>in</strong>g dur<strong>in</strong>g operation (a periodic check on <strong>the</strong>RCDs may be necessary).b Protection is ensured by special devices, <strong>the</strong> residual current devices (RCD), whichalso prevent <strong>the</strong> risk of fire when <strong>the</strong>y are set to y 500 mA.b Each <strong>in</strong>sulation fault results <strong>in</strong> an <strong>in</strong>terruption <strong>in</strong> <strong>the</strong> supply of power, however <strong>the</strong>outage is limited to <strong>the</strong> faulty circuit by <strong>in</strong>stall<strong>in</strong>g <strong>the</strong> RCDs <strong>in</strong> series (selective RCDs)or <strong>in</strong> parallel (circuit selection).b Loads or parts of <strong>the</strong> <strong>in</strong>stallation which, dur<strong>in</strong>g normal operation, cause high leakagecurrents, require special measures to avoid nuisance tripp<strong>in</strong>g, i.e. supply <strong>the</strong> loadswith a separation transformer or use specific RCDs (see section 5.1 <strong>in</strong> chapter F).TN system (see Fig. E13 and Fig. E14 )PENFig. E13 : TN-C system© Schneider Electric - all rights reservedFig. E14 : TN-S systemNPESchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations1 Earth<strong>in</strong>g schemesMa<strong>in</strong> characteristicsb Generally speak<strong>in</strong>g, <strong>the</strong> TN system:v requires <strong>the</strong> <strong>in</strong>stallation of earth electrodes at regular <strong>in</strong>tervals throughout <strong>the</strong><strong>in</strong>stallationv Requires that <strong>the</strong> <strong>in</strong>itial check on effective tripp<strong>in</strong>g for <strong>the</strong> first <strong>in</strong>sulation faultbe carried out by calculations dur<strong>in</strong>g <strong>the</strong> design stage, followed by mandatorymeasurements to confirm tripp<strong>in</strong>g dur<strong>in</strong>g commission<strong>in</strong>gv Requires that any modification or extension be designed and carried out by aqualified electricianv May result, <strong>in</strong> <strong>the</strong> case of <strong>in</strong>sulation faults, <strong>in</strong> greater damage to <strong>the</strong> w<strong>in</strong>d<strong>in</strong>gs ofrotat<strong>in</strong>g mach<strong>in</strong>esv May, on premises with a risk of fire, represent a greater danger due to <strong>the</strong> higherfault currentsb In addition, <strong>the</strong> TN-C system:v At first glance, would appear to be less expensive (elim<strong>in</strong>ation of a device pole andof a conductor)v Requires <strong>the</strong> use of fixed and rigid conductorsv Is forbidden <strong>in</strong> certa<strong>in</strong> cases:- Premises with a risk of fire- For computer equipment (presence of harmonic currents <strong>in</strong> <strong>the</strong> neutral)b In addition, <strong>the</strong> TN-S system:v May be used even with flexible conductors and small conduitsv Due to <strong>the</strong> separation of <strong>the</strong> neutral and <strong>the</strong> protection conductor, provides a cleanPE (computer systems and premises with special risks)EIT system:b Protection technique:v Interconnection and earth<strong>in</strong>g of exposedconductive partsv Indication of <strong>the</strong> first fault by an <strong>in</strong>sulationmonitor<strong>in</strong>g device (IMD)v Interruption for <strong>the</strong> second fault us<strong>in</strong>govercurrent protection (circuit-breakers or fuses)b Operat<strong>in</strong>g technique:v Monitor<strong>in</strong>g of <strong>the</strong> first <strong>in</strong>sulation faultv Mandatory location and clear<strong>in</strong>g of <strong>the</strong> faultv Interruption for two simultaneous <strong>in</strong>sulationfaultsIT system (see Fig. E15)CardewIMDFig. E15 : IT systemMa<strong>in</strong> characteristicsb Solution offer<strong>in</strong>g <strong>the</strong> best cont<strong>in</strong>uity of service dur<strong>in</strong>g operationb Indication of <strong>the</strong> first <strong>in</strong>sulation fault, followed by mandatory location and clear<strong>in</strong>g,ensures systematic prevention of supply outagesb Generally used <strong>in</strong> <strong>in</strong>stallations supplied by a private MV/LV or LV/LV transformerb Requires ma<strong>in</strong>tenance personnel for monitor<strong>in</strong>g and operationb Requires a high level of <strong>in</strong>sulation <strong>in</strong> <strong>the</strong> network (implies break<strong>in</strong>g up <strong>the</strong> networkif it is very large and <strong>the</strong> use of circuit-separation transformers to supply loads withhigh leakage currents)b The check on effective tripp<strong>in</strong>g for two simultaneous faults must be carried out bycalculations dur<strong>in</strong>g <strong>the</strong> design stage, followed by mandatory measurements dur<strong>in</strong>gcommission<strong>in</strong>g on each group of <strong>in</strong>terconnected exposed conductive partsb Protection of <strong>the</strong> neutral conductor must be ensured as <strong>in</strong>dicated <strong>in</strong> section 7.2 ofChapter G© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations1 Earth<strong>in</strong>g schemesESelection does not depend on safety criteria.The three systems are equivalent <strong>in</strong> termsof protection of persons if all <strong>in</strong>stallation andoperat<strong>in</strong>g rules are correctly followed.The selection criteria for <strong>the</strong> best system(s)depend on <strong>the</strong> regulatory requirements,<strong>the</strong> required cont<strong>in</strong>uity of service, operat<strong>in</strong>gconditions and <strong>the</strong> types of network and loads.1.4 Selection criteria for <strong>the</strong> TT, TN and IT systemsIn terms of <strong>the</strong> protection of persons, <strong>the</strong> three system earth<strong>in</strong>g arrangements(SEA) are equivalent if all <strong>in</strong>stallation and operat<strong>in</strong>g rules are correctly followed.Consequently, selection does not depend on safety criteria.It is by comb<strong>in</strong><strong>in</strong>g all requirements <strong>in</strong> terms of regulations, cont<strong>in</strong>uity of service,operat<strong>in</strong>g conditions and <strong>the</strong> types of network and loads that it is possible todeterm<strong>in</strong>e <strong>the</strong> best system(s) (see Fig. E16).Selection is determ<strong>in</strong>ed by <strong>the</strong> follow<strong>in</strong>g factors:b Above all, <strong>the</strong> applicable regulations which <strong>in</strong> some cases impose certa<strong>in</strong> types ofSEAb Secondly, <strong>the</strong> decision of <strong>the</strong> owner if supply is via a private MV/LV transformer(MV subscription) or <strong>the</strong> owner has a private <strong>energy</strong> source (or a separate-w<strong>in</strong>d<strong>in</strong>gtransformer)If <strong>the</strong> owner effectively has a choice, <strong>the</strong> decision on <strong>the</strong> SEA is taken follow<strong>in</strong>gdiscussions with <strong>the</strong> network designer (design office, contractor)The discussions must cover:b First of all, <strong>the</strong> operat<strong>in</strong>g requirements (<strong>the</strong> required level of cont<strong>in</strong>uity of service)and <strong>the</strong> operat<strong>in</strong>g conditions (ma<strong>in</strong>tenance ensured by electrical personnel or not,<strong>in</strong>-house personnel or outsourced, etc.)b Secondly, <strong>the</strong> particular characteristics of <strong>the</strong> network and <strong>the</strong> loads(see Fig. E17 next page)© Schneider Electric - all rights reservedTT TN-S TN-C IT1 IT2 Comments<strong>Electrical</strong> characteristicsFault current - - - - - + - - Only <strong>the</strong> IT system offers virtually negligible first-fault currentsFault voltage - - - + - In <strong>the</strong> IT system, <strong>the</strong> touch voltage is very low for <strong>the</strong> first fault,but is considerable for <strong>the</strong> secondTouch voltage +/- - - - + - In <strong>the</strong> TT system, <strong>the</strong> touch voltage is very low if system isequipotential, o<strong>the</strong>rwise it is highProtectionProtection of persons aga<strong>in</strong>st <strong>in</strong>direct contact + + + + + All SEAs (system earth<strong>in</strong>g arrangement) are equivalent,if <strong>the</strong> rules are followedProtection of persons with emergency + - - + - Systems where protection is ensured by RCDs are not sensitivegenerat<strong>in</strong>g setsto a change <strong>in</strong> <strong>the</strong> <strong>in</strong>ternal impedance of <strong>the</strong> sourceProtection aga<strong>in</strong>st fire (with an RCD) + + Not + + All SEAs <strong>in</strong> which RCDs can be used are equivalent.allowedThe TN-C system is forbidden on premises where <strong>the</strong>re is a risk of fireOvervoltagesCont<strong>in</strong>uous overvoltage + + + - + A phase-to-earth overvoltage is cont<strong>in</strong>uous <strong>in</strong> <strong>the</strong> IT systemif <strong>the</strong>re is a first <strong>in</strong>sulation faultTransient overvoltage + - - + - Systems with high fault currents may cause transient overvoltagesOvervoltage if transformer breakdown - + + + + In <strong>the</strong> TT system, <strong>the</strong>re is a voltage imbalance between(primary/secondary)<strong>the</strong> different earth electrodes. The o<strong>the</strong>r systems are <strong>in</strong>terconnectedto a s<strong>in</strong>gle earth electrodeElectromagnetic compatibilityImmunity to nearby lightn<strong>in</strong>g strikes - + + + + In <strong>the</strong> TT system, <strong>the</strong>re may be voltage imbalances between<strong>the</strong> earth electrodes. In <strong>the</strong> TT system, <strong>the</strong>re is a significant currentloop between <strong>the</strong> two separate earth electrodesImmunity to lightn<strong>in</strong>g strikes on MV l<strong>in</strong>es - - - - - All SEAs are equivalent when a MV l<strong>in</strong>e takes a direct lightn<strong>in</strong>g strikeCont<strong>in</strong>uous emission of an + + - + + Connection of <strong>the</strong> PEN to <strong>the</strong> metal structures of <strong>the</strong> build<strong>in</strong>g iselectromagnetic fieldconducive to <strong>the</strong> cont<strong>in</strong>uous generation of electromagnetic fieldsTransient non-equipotentiality of <strong>the</strong> PE + - - + - The PE is no longer equipotential if <strong>the</strong>re is a high fault currentCont<strong>in</strong>uity of serviceInterruption for first fault - - - + + Only <strong>the</strong> IT system avoids tripp<strong>in</strong>g for <strong>the</strong> first <strong>in</strong>sulation faultVoltage dip dur<strong>in</strong>g <strong>in</strong>sulation fault + - - + - The TN-S, TNC and IT (2 nd fault) systems generate high faultcurrents which may cause phase voltage dips<strong>Installation</strong>Special devices - + + - - The TT system requires <strong>the</strong> use of RCDs. The IT system requires<strong>the</strong> use of IMDsNumber of earth electrodes - + + -/+ -/+ The TT system requires two dist<strong>in</strong>ct earth electrodes. The IT systemoffers a choice between one or two earth electrodesNumber of cables - - + - - Only <strong>the</strong> TN-C system offers, <strong>in</strong> certa<strong>in</strong> cases, a reduction <strong>in</strong><strong>the</strong> number of cablesMa<strong>in</strong>tenanceCost of repairs - - - - - - - - The cost of repairs depends on <strong>the</strong> damage caused by<strong>the</strong> amplitude of <strong>the</strong> fault currents<strong>Installation</strong> damage + - - ++ - Systems caus<strong>in</strong>g high fault currents require a check on<strong>the</strong> <strong>in</strong>stallation after clear<strong>in</strong>g <strong>the</strong> faultFig. E16 : Comparison of system earth<strong>in</strong>g arrangementsSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations1 Earth<strong>in</strong>g schemesType of network Advised Possible Not advisedVery large network with high-quality earth electrodes TT, TN, IT (1)for exposed conductive parts (10 Ω max.)or mixedVery large network with low-quality earth electrodes TN TN-S IT (1)for exposed conductive parts (> 30 Ω)TN-CDisturbed area (storms) TN TT IT (2)(e.g. television or radio transmitter)Network with high leakage currents (> 500 mA) TN (4) IT (4)TT(3) (4)Network with outdoor overhead l<strong>in</strong>es TT (5) TN (5) (6) IT (6)Emergency standby generator set IT TT TN (7)Type of loadsLoads sensitive to high fault currents (motors, etc.) IT TT TN (8)ELoads with a low <strong>in</strong>sulation level (electric furnaces, TN (9) TT (9) ITweld<strong>in</strong>g mach<strong>in</strong>es, heat<strong>in</strong>g elements, immersion heaters,equipment <strong>in</strong> large kitchens)Numerous phase-neutral s<strong>in</strong>gle-phase loads TT (10) IT (10)(mobile, semi-fixed, portable) TN-S TN-C (10)Loads with sizeable risks (hoists, conveyers, etc.) TN (11) TT (11) IT (11)Numerous auxiliaries (mach<strong>in</strong>e tools) TN-S TN-C TT (12)IT(12 bis)MiscellaneousSupply via star-star connected power transformer (13) TT IT IT (13)without neutral with neutralPremises with risk of fire IT (15) TN-S (15) TN-C (14)Increase <strong>in</strong> power level of LV utility subscription, TT (16)LVrequir<strong>in</strong>g a private substationMV/LV<strong>Installation</strong> with frequent modifications TT (17) TN (18)IT (18)<strong>Installation</strong> where <strong>the</strong> cont<strong>in</strong>uity of earth circuits is uncerta<strong>in</strong> TT (19) TN-S TN-C(work sites, old <strong>in</strong>stallations) IT (19)Electronic equipment (computers, PLCs) TN-S TT TN-CMach<strong>in</strong>e control-monitor<strong>in</strong>g network, PLC sensors and actuators IT (20) TN-S, TTTT (15)(1) When <strong>the</strong> SEA is not imposed by regulations, it is selected accord<strong>in</strong>g to <strong>the</strong> level of operat<strong>in</strong>g characteristics (cont<strong>in</strong>uity of service that ismandatory for safety reasons or desired to enhance productivity, etc.)Whatever <strong>the</strong> SEA, <strong>the</strong> probability of an <strong>in</strong>sulation failure <strong>in</strong>creases with <strong>the</strong> length of <strong>the</strong> network. It may be a good idea to break up <strong>the</strong>network, which facilitates fault location and makes it possible to implement <strong>the</strong> system advised above for each type of application.(2) The risk of flashover on <strong>the</strong> surge limiter turns <strong>the</strong> isolated neutral <strong>in</strong>to an ear<strong>the</strong>d neutral. These risks are high for regions with frequentthunder storms or <strong>in</strong>stallations supplied by overhead l<strong>in</strong>es. If <strong>the</strong> IT system is selected to ensure a higher level of cont<strong>in</strong>uity of service, <strong>the</strong>system designer must precisely calculate <strong>the</strong> tripp<strong>in</strong>g conditions for a second fault.(3) Risk of RCD nuisance tripp<strong>in</strong>g.(4) Whatever <strong>the</strong> SEA, <strong>the</strong> ideal solution is to isolate <strong>the</strong> disturb<strong>in</strong>g section if it can be easily identified.(5) Risks of phase-to-earth faults affect<strong>in</strong>g equipotentiality.(6) Insulation is uncerta<strong>in</strong> due to humidity and conduct<strong>in</strong>g dust.(7) The TN system is not advised due to <strong>the</strong> risk of damage to <strong>the</strong> generator <strong>in</strong> <strong>the</strong> case of an <strong>in</strong>ternal fault. What is more, when generator setssupply safety equipment, <strong>the</strong> system must not trip for <strong>the</strong> first fault.(8) The phase-to-earth current may be several times higher than In, with <strong>the</strong> risk of damag<strong>in</strong>g or accelerat<strong>in</strong>g <strong>the</strong> age<strong>in</strong>g of motor w<strong>in</strong>d<strong>in</strong>gs, or ofdestroy<strong>in</strong>g magnetic circuits.(9) To comb<strong>in</strong>e cont<strong>in</strong>uity of service and safety, it is necessary and highly advised, whatever <strong>the</strong> SEA, to separate <strong>the</strong>se loads from <strong>the</strong> rest of<strong>the</strong> <strong>in</strong>stallation (transformers with local neutral connection).(10) When load equipment quality is not a design priority, <strong>the</strong>re is a risk that <strong>the</strong> <strong>in</strong>sulation resistance will fall rapidly. The TT system with RCDsis <strong>the</strong> best means to avoid problems.(11) The mobility of this type of load causes frequent faults (slid<strong>in</strong>g contact for bond<strong>in</strong>g of exposed conductive parts) that must be countered.Whatever <strong>the</strong> SEA, it is advised to supply <strong>the</strong>se circuits us<strong>in</strong>g transformers with a local neutral connection.(12) Requires <strong>the</strong> use of transformers with a local TN system to avoid operat<strong>in</strong>g risks and nuisance tripp<strong>in</strong>g at <strong>the</strong> first fault (TT) or a double fault (IT).(12 bis) With a double break <strong>in</strong> <strong>the</strong> control circuit.(13) Excessive limitation of <strong>the</strong> phase-to-neutral current due to <strong>the</strong> high value of <strong>the</strong> zero-phase impedance (at least 4 to 5 times <strong>the</strong> directimpedance). This system must be replaced by a star-delta arrangement.(14) The high fault currents make <strong>the</strong> TN system dangerous. The TN-C system is forbidden.(15) Whatever <strong>the</strong> system, <strong>the</strong> RCD must be set to Δn y 500 mA.(16) An <strong>in</strong>stallation supplied with LV <strong>energy</strong> must use <strong>the</strong> TT system. Ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g this SEA means <strong>the</strong> least amount of modifications on <strong>the</strong>exist<strong>in</strong>g network (no cables to be run, no protection devices to be modified).(17) Possible without highly competent ma<strong>in</strong>tenance personnel.(18) This type of <strong>in</strong>stallation requires particular attention <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g safety. The absence of preventive measures <strong>in</strong> <strong>the</strong> TN system meanshighly qualified personnel are required to ensure safety over time.(19) The risks of breaks <strong>in</strong> conductors (supply, protection) may cause <strong>the</strong> loss of equipotentiality for exposed conductive parts. A TT system or aTN-S system with 30 mA RCDs is advised and is often mandatory. The IT system may be used <strong>in</strong> very specific cases.(20) This solution avoids nuisance tripp<strong>in</strong>g for unexpected earth leakage.Fig. E17 : Influence of networks and loads on <strong>the</strong> selection of system earth<strong>in</strong>g arrangements© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations1 Earth<strong>in</strong>g schemes1.5 Choice of earth<strong>in</strong>g method - implementationAfter consult<strong>in</strong>g applicable regulations, Figures E16 and E17 can be used as an aid<strong>in</strong> decid<strong>in</strong>g on divisions and possible galvanic isolation of appropriate sections of aproposed <strong>in</strong>stallation.E10Division of sourceThis technique concerns <strong>the</strong> use of several transformers <strong>in</strong>stead of employ<strong>in</strong>g onehigh-rated unit. In this way, a load that is a source of network disturbances (largemotors, furnaces, etc.) can be supplied by its own transformer.The quality and cont<strong>in</strong>uity of supply to <strong>the</strong> whole <strong>in</strong>stallation are <strong>the</strong>reby improved.The cost of switchgear is reduced (short-circuit current level is lower).The cost-effectiveness of separate transformers must be determ<strong>in</strong>ed on a case bycase basis.Network islandsThe creation of galvanically-separated “islands” by means of LV/LV transformersmakes it possible to optimise <strong>the</strong> choice of earth<strong>in</strong>g methods to meet specificrequirements (see Fig. E18 and Fig. E19 ).MV/LVIT systemIMDLV/LVTN-S systemFig. E18 : TN-S island with<strong>in</strong> an IT systemMV/LVTN-STN-S systemLV/LVITIMDLV/LVITIMDHospitalOperat<strong>in</strong>g roomFig. E19 : IT islands with<strong>in</strong> a TN-S system© Schneider Electric - all rights reservedConclusionThe optimisation of <strong>the</strong> performance of <strong>the</strong> whole <strong>in</strong>stallation governs <strong>the</strong> choice ofearth<strong>in</strong>g system.Includ<strong>in</strong>g:b Initial <strong>in</strong>vestments, andb Future operational expenditures, hard to assess, that can arise from <strong>in</strong>sufficientreliability, quality of equipment, safety, cont<strong>in</strong>uity of service, etc.An ideal structure would comprise normal power supply sources, local reservepower supply sources (see section 1.4 of Chapter E) and <strong>the</strong> appropriate earth<strong>in</strong>garrangements.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations1 Earth<strong>in</strong>g schemesA very effective method of obta<strong>in</strong><strong>in</strong>g a lowresistanceearth connection is to bury aconductor <strong>in</strong> <strong>the</strong> form of a closed loop <strong>in</strong> <strong>the</strong>soil at <strong>the</strong> bottom of <strong>the</strong> excavation for build<strong>in</strong>gfoundations.The resistance R of such an electrode (<strong>in</strong>homogeneous soil) is given (approximately) <strong>in</strong>ohms by: R = 2 whereLL L = length of <strong>the</strong> buried conductor <strong>in</strong> metres <strong>in</strong> metresρ = soil resistivity <strong>in</strong> ohm-metresFor n rods: R = 1 n Lwhere1.6 <strong>Installation</strong> and measurements of ear<strong>the</strong>lectrodesThe quality of an earth electrode (resistance as low as possible) depends essentiallyon two factors:b <strong>Installation</strong> methodb Type of soil<strong>Installation</strong> methodsThree common types of <strong>in</strong>stallation will be discussed:Buried r<strong>in</strong>g (see Fig. E20)This solution is strongly recommended, particularly <strong>in</strong> <strong>the</strong> case of a new build<strong>in</strong>g.The electrode should be buried around <strong>the</strong> perimeter of <strong>the</strong> excavation made for<strong>the</strong> foundations. It is important that <strong>the</strong> bare conductor be <strong>in</strong> <strong>in</strong>timate contact with<strong>the</strong> soil (and not placed <strong>in</strong> <strong>the</strong> gravel or aggregate hard-core, often form<strong>in</strong>g a basefor concrete). At least four (widely-spaced) vertically arranged conductors from <strong>the</strong>electrode should be provided for <strong>the</strong> <strong>in</strong>stallation connections and, where possible,any re<strong>in</strong>forc<strong>in</strong>g rods <strong>in</strong> concrete work should be connected to <strong>the</strong> electrode.The conductor form<strong>in</strong>g <strong>the</strong> earth electrode, particularly when it is laid <strong>in</strong> anexcavation for foundations, must be <strong>in</strong> <strong>the</strong> earth, at least 50 cm below <strong>the</strong> hard-coreor aggregate base for <strong>the</strong> concrete foundation. Nei<strong>the</strong>r <strong>the</strong> electrode nor <strong>the</strong> verticalris<strong>in</strong>g conductors to <strong>the</strong> ground floor, should ever be <strong>in</strong> contact with <strong>the</strong> foundationconcrete.For exist<strong>in</strong>g build<strong>in</strong>gs, <strong>the</strong> electrode conductor should be buried around <strong>the</strong> outsidewall of <strong>the</strong> premises to a depth of at least 1 metre. As a general rule, all verticalconnections from an electrode to above-ground level should be <strong>in</strong>sulated for <strong>the</strong>nom<strong>in</strong>al LV voltage (600-1,000 V).The conductors may be:b Copper: Bare cable (u 25 mm 2 ) or multiple-strip (u 25 mm 2 and u 2 mm thick)b Alum<strong>in</strong>ium with lead jacket: Cable (u 35 mm 2 )b Galvanised-steel cable: Bare cable (u 95 mm 2 ) or multiple-strip (u 100 mm 2and u 3 mm thick)The approximate resistance R of <strong>the</strong> electrode <strong>in</strong> ohms:R = 2 whereLL = length where of <strong>the</strong> buried conductor <strong>in</strong> metresL = length of conductor <strong>in</strong> metresρ = resistivity of <strong>the</strong> soil <strong>in</strong> ohm-metres (see “Influence of <strong>the</strong> type of soil” next page)Earth<strong>in</strong>g rods (see Fig. E21)Vertically driven earth<strong>in</strong>g rods are often used for exist<strong>in</strong>g build<strong>in</strong>gs, and for improv<strong>in</strong>g(i.e. reduc<strong>in</strong>g <strong>the</strong> resistance of) exist<strong>in</strong>g earth electrodes.The rods may be:b Copper or (more commonly) copper-clad steel. The latter are generally 1 or2 metres long and provided with screwed ends and sockets <strong>in</strong> order to reachconsiderable depths, if necessary (for <strong>in</strong>stance, <strong>the</strong> water-table level <strong>in</strong> areas of highsoil resistivity)b Galvanised (see note (1) next page) steel pipe u 25 mm diameter orrod u 15 mm diameter, u 2 metres long <strong>in</strong> each case.E11L u 3 mFig. E20 : Conductor buried below <strong>the</strong> level of <strong>the</strong> foundations,i.e. not <strong>in</strong> <strong>the</strong> concreteFig. E21 : Earth<strong>in</strong>g rodsRods connected <strong>in</strong> parallel© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations1 Earth<strong>in</strong>g schemesE12For a vertical plate electrode: R = 0.8 LMeasurements on earth electrodes <strong>in</strong> similarsoils are useful to determ<strong>in</strong>e <strong>the</strong> resistivityvalue to be applied for <strong>the</strong> design of an ear<strong>the</strong>lectrodesystemIt is often necessary to use more than one rod, <strong>in</strong> which case <strong>the</strong> spac<strong>in</strong>g between<strong>the</strong>m should exceed <strong>the</strong> depth to which <strong>the</strong>y are driven, by a factor of 2 to 3.The total resistance (<strong>in</strong> homogeneous soil) is <strong>the</strong>n equal to <strong>the</strong> resistance of one rod,divided by <strong>the</strong> number of rods <strong>in</strong> question. The approximate resistance R obta<strong>in</strong>ed is:R = 1 if <strong>the</strong> distance separat<strong>in</strong>g <strong>the</strong> rods > 4Ln LwherewhereL = <strong>the</strong> length of <strong>the</strong> rod <strong>in</strong> metresρ = resistivity of <strong>the</strong> soil <strong>in</strong> ohm-metres (see “Influence of <strong>the</strong> type of soil” below)n = <strong>the</strong> number of rodsVertical plates (see Fig. E22)Rectangular plates, each side of which must be u 0.5 metres, are commonly used asearth electrodes, be<strong>in</strong>g buried <strong>in</strong> a vertical plane such that <strong>the</strong> centre of <strong>the</strong> plate isat least 1 metre below <strong>the</strong> surface of <strong>the</strong> soil.The plates may be:b Copper of 2 mm thicknessb Galvanised (1) steel of 3 mm thicknessThe resistance R <strong>in</strong> ohms is given (approximately), by:R = 0.8 LL = <strong>the</strong> perimeter of <strong>the</strong> plate <strong>in</strong> metresρ = resistivity of <strong>the</strong> soil <strong>in</strong> ohm-metres (see “Influence of <strong>the</strong> type of soil” below)Influence of <strong>the</strong> type of soilType of soilMean value of resistivity<strong>in</strong> ΩmSwampy soil, bogs 1 - 30Silt alluvium 20 - 100Humus, leaf mould 10 - 150Peat, turf 5 - 100Soft clay 50Marl and compacted clay 100 - 200Jurassic marl 30 - 40Clayey sand 50 - 500Siliceous sand 200 - 300Stoney ground 1,500 - 3,000Grass-covered-stoney sub-soil 300 - 500Chalky soil 100 - 300Limestone 1,000 - 5,000Fissured limestone 500 - 1,000Schist, shale 50 - 300Mica schist 800Granite and sandstone 1,500 - 10,000Modified granite and sandstone 100 - 600Fig. E23 : Resistivity (Ωm) for different types of soil2 mm thickness (Cu)Type of soilAverage value of resistivity<strong>in</strong> ΩmFertile soil, compacted damp fill 50Arid soil, gravel, uncompacted non-uniform fill 500Stoney soil, bare, dry sand, fissured rocks 3,000© Schneider Electric - all rights reservedFig. E22 : Vertical plate(1) Where galvanised conduct<strong>in</strong>g materials are used for ear<strong>the</strong>lectrodes, sacrificial cathodic protection anodes may benecessary to avoid rapid corrosion of <strong>the</strong> electrodes where<strong>the</strong> soil is aggressive. Specially prepared magnesium anodes(<strong>in</strong> a porous sack filled with a suitable “soil”) are available fordirect connection to <strong>the</strong> electrodes. In such circumstances, a<strong>specialist</strong> should be consultedFig. E24 : Average resistivity (Ωm) values for approximate earth-electSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations1 Earth<strong>in</strong>g schemesMeasurement and constancy of <strong>the</strong> resistance between anearth electrode and <strong>the</strong> earthThe resistance of <strong>the</strong> electrode/earth <strong>in</strong>terface rarely rema<strong>in</strong>s constantAmong <strong>the</strong> pr<strong>in</strong>cipal factors affect<strong>in</strong>g this resistance are <strong>the</strong> follow<strong>in</strong>g:b Humidity of <strong>the</strong> soilThe seasonal changes <strong>in</strong> <strong>the</strong> moisture content of <strong>the</strong> soil can be significant at depthsof up to 2 meters.At a depth of 1 metre <strong>the</strong> resistivity and <strong>the</strong>refore <strong>the</strong> resistance can vary by a ratioof 1 to 3 between a wet w<strong>in</strong>ter and a dry summer <strong>in</strong> temperate regionsb FrostFrozen earth can <strong>in</strong>crease <strong>the</strong> resistivity of <strong>the</strong> soil by several orders of magnitude.This is one reason for recommend<strong>in</strong>g <strong>the</strong> <strong>in</strong>stallation of deep electrodes, <strong>in</strong> particular<strong>in</strong> cold climatesb Age<strong>in</strong>gThe materials used for electrodes will generally deteriorate to some extent forvarious reasons, for example:v Chemical reactions (<strong>in</strong> acidic or alkal<strong>in</strong>e soils)v Galvanic: due to stray DC currents <strong>in</strong> <strong>the</strong> earth, for example from electric railways,etc. or due to dissimilar metals form<strong>in</strong>g primary cells. Different soils act<strong>in</strong>g onsections of <strong>the</strong> same conductor can also form cathodic and anodic areas withconsequent loss of surface metal from <strong>the</strong> latter areas. Unfortunately, <strong>the</strong> mostfavourable conditions for low earth-electrode resistance (i.e. low soil resistivity) arealso those <strong>in</strong> which galvanic currents can most easily flow.b OxidationBrazed and welded jo<strong>in</strong>ts and connections are <strong>the</strong> po<strong>in</strong>ts most sensitive to oxidation.Thorough clean<strong>in</strong>g of a newly made jo<strong>in</strong>t or connection and wrapp<strong>in</strong>g with a suitablegreased-tape b<strong>in</strong>d<strong>in</strong>g is a commonly used preventive measure.Measurement of <strong>the</strong> earth-electrode resistanceThere must always be one or more removable l<strong>in</strong>ks to isolate an earth electrode sothat it can be tested.There must always be removable l<strong>in</strong>ks which allow <strong>the</strong> earth electrode to be isolatedfrom <strong>the</strong> <strong>in</strong>stallation, so that periodic tests of <strong>the</strong> earth<strong>in</strong>g resistance can be carriedout. To make such tests, two auxiliary electrodes are required, each consist<strong>in</strong>g of avertically driven rod.b Ammeter method (see Fig. E25)E13AUt1Tt2Fig. E25 : Measurement of <strong>the</strong> resistance to earth of <strong>the</strong> earth electrode of an <strong>in</strong>stallation bymeans of an ammeterUA = RT+ Rt= Tt11i1UB = Rt+ R t tt = 1 21 2i2UC = Rt+ R t TT = 22i3When <strong>the</strong> source voltage U is constant (adjusted to be <strong>the</strong> same value for each test)<strong>the</strong>n:URT = 1i + 1 i 12 i1 3 2 © Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations1 Earth<strong>in</strong>g schemesE14In order to avoid errors due to stray earth currents (galvanic -DC- or leakage currentsfrom power and communication networks and so on) <strong>the</strong> test current should beAC, but at a different frequency to that of <strong>the</strong> power system or any of its harmonics.Instruments us<strong>in</strong>g hand-driven generators to make <strong>the</strong>se measurements usuallyproduce an AC voltage at a frequency of between 85 Hz and 135 Hz.The distances between <strong>the</strong> electrodes are not critical and may be <strong>in</strong> differentdirections from <strong>the</strong> electrode be<strong>in</strong>g tested, accord<strong>in</strong>g to site conditions. A number oftests at different spac<strong>in</strong>gs and directions are generally made to cross-check <strong>the</strong> testresults.b Use of a direct-read<strong>in</strong>g earth<strong>in</strong>g-resistance ohmmeterThese <strong>in</strong>struments use a hand-driven or electronic-type AC generator, toge<strong>the</strong>rwith two auxiliary electrodes, <strong>the</strong> spac<strong>in</strong>g of which must be such that <strong>the</strong> zone of<strong>in</strong>fluence of <strong>the</strong> electrode be<strong>in</strong>g tested should not overlap that of <strong>the</strong> test electrode (C).The test electrode (C) fur<strong>the</strong>st from <strong>the</strong> electrode (X) under test, passes a currentthrough <strong>the</strong> earth and <strong>the</strong> electrode under test, while <strong>the</strong> second test electrode (P)picks up a voltage. This voltage, measured between (X) and (P), is due to <strong>the</strong> testcurrent and is a measure of <strong>the</strong> contact resistance (of <strong>the</strong> electrode under test) wi<strong>the</strong>arth. It is clear that <strong>the</strong> distance (X) to (P) must be carefully chosen to give accurateresults. If <strong>the</strong> distance (X) to (C) is <strong>in</strong>creased, however, <strong>the</strong> zones of resistance ofelectrodes (X) and (C) become more remote, one from <strong>the</strong> o<strong>the</strong>r, and <strong>the</strong> curve ofpotential (voltage) becomes more nearly horizontal about <strong>the</strong> po<strong>in</strong>t (O).In practical tests, <strong>the</strong>refore, <strong>the</strong> distance (X) to (C) is <strong>in</strong>creased until read<strong>in</strong>gs takenwith electrode (P) at three different po<strong>in</strong>ts, i.e. at (P) and at approximately 5 metreson ei<strong>the</strong>r side of (P), give similar values. The distance (X) to (P) is generally about0.68 of <strong>the</strong> distance (X) to (C).VGXVGPICvoltage-drop dueto <strong>the</strong> resistanceof electrode (X)OVGvoltage-drop dueto <strong>the</strong> resistanceof electrode (C)a) <strong>the</strong> pr<strong>in</strong>ciple of measurement is based on assumed homogeneous soil conditions. Where <strong>the</strong>zones of <strong>in</strong>fluence of electrodes C and X overlap, <strong>the</strong> location of test electrode P is difficult todeterm<strong>in</strong>e for satisfactory results.XPCO© Schneider Electric - all rights reservedb) show<strong>in</strong>g <strong>the</strong> effect on <strong>the</strong> potential gradient when (X) and (C) are widely spaced. The locationof test electrode P is not critical and can be easily determ<strong>in</strong>ed.Fig. E26 : Measurement of <strong>the</strong> resistance to <strong>the</strong> mass of earth of electrode (X) us<strong>in</strong>g an ear<strong>the</strong>lectrode-test<strong>in</strong>gohmmeter.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations2 The <strong>in</strong>stallation systemDistribution switchboards, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> ma<strong>in</strong>LV switchboard (MLVS), are critical to <strong>the</strong>dependability of an electrical <strong>in</strong>stallation.They must comply with well-def<strong>in</strong>ed standardsgovern<strong>in</strong>g <strong>the</strong> design and construction ofLV switchgear assembliesThe load requirements dictate <strong>the</strong> type ofdistribution switchboard to be <strong>in</strong>stalled2.1 Distribution switchboardsA distribution switchboard is <strong>the</strong> po<strong>in</strong>t at which an <strong>in</strong>com<strong>in</strong>g-power supply divides<strong>in</strong>to separate circuits, each of which is controlled and protected by <strong>the</strong> fuses orswitchgear of <strong>the</strong> switchboard. A distribution switchboard is divided <strong>in</strong>to a numberof functional units, each compris<strong>in</strong>g all <strong>the</strong> electrical and mechanical elementsthat contribute to <strong>the</strong> fulfilment of a given function. It represents a key l<strong>in</strong>k <strong>in</strong> <strong>the</strong>dependability cha<strong>in</strong>.Consequently, <strong>the</strong> type of distribution switchboard must be perfectly adapted to itsapplication. Its design and construction must comply with applicable standards andwork<strong>in</strong>g practises.The distribution switchboard enclosure provides dual protection:b Protection of switchgear, <strong>in</strong>dicat<strong>in</strong>g <strong>in</strong>struments, relays, fusegear, etc. aga<strong>in</strong>stmechanical impacts, vibrations and o<strong>the</strong>r external <strong>in</strong>fluences likely to <strong>in</strong>terfere withoperational <strong>in</strong>tegrity (EMI, dust, moisture, verm<strong>in</strong>, etc.)b The protection of human life aga<strong>in</strong>st <strong>the</strong> possibility of direct and <strong>in</strong>direct electricshock (see degree of protection IP and <strong>the</strong> IK <strong>in</strong>dex <strong>in</strong> section 3.3 of Chapter E).Types of distribution switchboardsDistribution switchboards may differ accord<strong>in</strong>g to <strong>the</strong> k<strong>in</strong>d of application and <strong>the</strong>design pr<strong>in</strong>ciple adopted (notably <strong>in</strong> <strong>the</strong> arrangement of <strong>the</strong> busbars).Distribution switchboards accord<strong>in</strong>g to specific applicationsThe pr<strong>in</strong>cipal types of distribution switchboards are:b The ma<strong>in</strong> LV switchboard - MLVS - (see Fig. E27a)b Motor control centres - MCC - (see Fig. E27b)b Sub-distribution switchboards (see Fig. E28)b F<strong>in</strong>al distribution switchboards (see Fig. E29)Distribution switchboards for specific applications (e.g. heat<strong>in</strong>g, lifts, <strong>in</strong>dustrialprocesses) can be located:b Adjacent to <strong>the</strong> ma<strong>in</strong> LV switchboard, orb Near <strong>the</strong> application concernedSub-distribution and f<strong>in</strong>al distribution switchboards are generally distributedthroughout <strong>the</strong> site.E15abFig. E27 : [a] A ma<strong>in</strong> LV switchboard - MLVS - (Prisma Plus P) with <strong>in</strong>com<strong>in</strong>g circuits <strong>in</strong> <strong>the</strong> formof busways - [b] A LV motor control centre - MCC - (Okken)a b cFig. E28 : A sub-distribution switchboard (Prisma Plus G)Fig. E29 : F<strong>in</strong>al distribution switchboards [a] Prisma Plus G Pack; [b] Kaedra; [c] m<strong>in</strong>i-Pragma© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations2 The <strong>in</strong>stallation systemE16A dist<strong>in</strong>ction is made between:b Traditional distribution switchboards <strong>in</strong> whichswitchgear and fusegear, etc. are fixed to achassis at <strong>the</strong> rear of an enclosureb Functional distribution switchboards forspecific applications, based on modular andstandardised design.Fig. E30 : Assembly of a f<strong>in</strong>al distribution switchboard withfixed functional units (Prisma Plus G)Fig. E31 : Distribution switchboard with disconnectablefunctional unitsTwo technologies of distribution switchboardsTraditional distribution switchboardsSwitchgear and fusegear, etc. are normally located on a chassis at <strong>the</strong> rear of <strong>the</strong>enclosure. Indications and control devices (meters, lamps, pushbuttons, etc.) aremounted on <strong>the</strong> front face of <strong>the</strong> switchboard.The placement of <strong>the</strong> components with<strong>in</strong> <strong>the</strong> enclosure requires very careful study,tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> dimensions of each item, <strong>the</strong> connections to be made to it,and <strong>the</strong> clearances necessary to ensure safe and trouble-free operation. .Functional distribution switchboardsGenerally dedicated to specific applications, <strong>the</strong>se distribution switchboards aremade up of functional modules that <strong>in</strong>clude switchgear devices toge<strong>the</strong>r withstandardised accessories for mount<strong>in</strong>g and connections, ensur<strong>in</strong>g a high level ofreliability and a great capacity for last-m<strong>in</strong>ute and future changes.b Many advantagesThe use of functional distribution switchboards has spread to all levels of LVelectrical distribution, from <strong>the</strong> ma<strong>in</strong> LV switchboard (MLVS) to f<strong>in</strong>al distributionswitchboards, due to <strong>the</strong>ir many advantages:v System modularity that makes it possible to <strong>in</strong>tegrate numerous functions <strong>in</strong> as<strong>in</strong>gle distribution switchboard, <strong>in</strong>clud<strong>in</strong>g protection, control, technical managementand monitor<strong>in</strong>g of electrical <strong>in</strong>stallations. Modular design also enhances distributionswitchboard ma<strong>in</strong>tenance, operation and upgradesv Distribution switchboard design is fast because it simply <strong>in</strong>volves add<strong>in</strong>g functionalmodulesv Prefabricated components can be mounted fasterv F<strong>in</strong>ally, <strong>the</strong>se distribution switchboards are subjected to type tests that ensure ahigh degree of dependability.The new Prisma Plus G and P ranges of functional distribution switchboards fromSchneider Electric cover needs up to 3200 A and offer:v Flexibility and ease <strong>in</strong> build<strong>in</strong>g distribution switchboardsv Certification of a distribution switchboard comply<strong>in</strong>g with standard IEC 60439 and<strong>the</strong> assurance of servic<strong>in</strong>g under safe conditionsv Time sav<strong>in</strong>gs at all stages, from design to <strong>in</strong>stallation, operation and modificationsor upgradesv Easy adaptation, for example to meet <strong>the</strong> specific work habits and standards <strong>in</strong>different countriesFigures E27a, E28 and E29 show examples of functional distribution switchboardsrang<strong>in</strong>g for all power rat<strong>in</strong>gs and figure E27b shows a high-power <strong>in</strong>dustrial functionaldistribution switchboard.b Ma<strong>in</strong> types of functional unitsThree basic technologies are used <strong>in</strong> functional distribution switchboards.v Fixed functional units (see Fig. E30)These units cannot be isolated from <strong>the</strong> supply so that any <strong>in</strong>tervention forma<strong>in</strong>tenance, modifications and so on, requires <strong>the</strong> shutdown of <strong>the</strong> entiredistribution switchboard. Plug-<strong>in</strong> or withdrawable devices can however be used tom<strong>in</strong>imise shutdown times and improve <strong>the</strong> availability of <strong>the</strong> rest of <strong>the</strong> <strong>in</strong>stallation.v Disconnectable functional units (see Fig. E31)Each functional unit is mounted on a removable mount<strong>in</strong>g plate and provided with ameans of isolation on <strong>the</strong> upstream side (busbars) and disconnect<strong>in</strong>g facilities on <strong>the</strong>downstream (outgo<strong>in</strong>g circuit) side. The complete unit can <strong>the</strong>refore be removed forservic<strong>in</strong>g, without requir<strong>in</strong>g a general shutdown.v Drawer-type withdrawable functional units (see Fig. E32)The switchgear and associated accessories for a complete function are mounted ona drawer-type horizontally withdrawable chassis. The function is generally complexand often concerns motor control.Isolation is possible on both <strong>the</strong> upstream and downstream sides by <strong>the</strong> completewithdrawal of <strong>the</strong> drawer, allow<strong>in</strong>g fast replacement of a faulty unit without deenergis<strong>in</strong>g<strong>the</strong> rest of <strong>the</strong> distribution switchboard.© Schneider Electric - all rights reservedFig. E32 : Distribution switchboard with withdrawable functionalunits <strong>in</strong> drawersSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations2 The <strong>in</strong>stallation systemCompliance with applicable standards isessential <strong>in</strong> order to ensure an adequatedegree of dependabilityThree elements of standard IEC 60439-1contribute significantly to dependability:b Clear def<strong>in</strong>ition of functional unitsb Forms of separation between adjacentfunctional units <strong>in</strong> accordance with userrequirementsb Clearly def<strong>in</strong>ed rout<strong>in</strong>e tests and type testsStandardsDifferent standardsCerta<strong>in</strong> types of distribution switchboards (<strong>in</strong> particular, functional distributionswitchboards) must comply with specific standards accord<strong>in</strong>g to <strong>the</strong> application orenvironment <strong>in</strong>volved.The reference <strong>in</strong>ternational standard is IEC 60439-1 type-tested and partially typetestedassembliesStandard IEC 60439-1b Categories of assembliesStandard IEC 60439-1 dist<strong>in</strong>guishes between two categories of assemblies:v Type-tested LV switchgear and controlgear assemblies (TTA), which do not divergesignificantly from an established type or system for which conformity is ensured by<strong>the</strong> type tests provided <strong>in</strong> <strong>the</strong> standardv Partially type-tested LV switchgear and controlgear assemblies (PTTA), which mayconta<strong>in</strong> non-type-tested arrangements provided that <strong>the</strong> latter are derived from typetestedarrangementsWhen implemented <strong>in</strong> compliance with professional work standards andmanufacturer <strong>in</strong>structions by qualified personnel, <strong>the</strong>y offer <strong>the</strong> same level of safetyand quality.b Functional unitsThe same standard def<strong>in</strong>es functional units:v Part of an assembly compris<strong>in</strong>g all <strong>the</strong> electrical and mechanical elements thatcontribute to <strong>the</strong> fulfilment of <strong>the</strong> same functionv The distribution switchboard <strong>in</strong>cludes an <strong>in</strong>com<strong>in</strong>g functional unit and one or morefunctional units for outgo<strong>in</strong>g circuits, depend<strong>in</strong>g on <strong>the</strong> operat<strong>in</strong>g requirements of <strong>the</strong><strong>in</strong>stallationWhat is more, distribution switchboard technologies use functional units that may befixed, disconnectable or withdrawable (see section 3.1 of Chapter E).b Forms (see Fig. E33)Separation of functional units with<strong>in</strong> <strong>the</strong> assembly is provided by forms that arespecified for different types of operation.The various forms are numbered from 1 to 4 with variations labelled “a” or “b”. Eachstep up (from 1 to 4) is cumulative, i.e. a form with a higher number <strong>in</strong>cludes <strong>the</strong>characteristics of forms with lower numbers. The standard dist<strong>in</strong>guishes:v Form 1: No separationv Form 2: Separation of busbars from <strong>the</strong> functional unitsv Form 3: Separation of busbars from <strong>the</strong> functional units and separation of allfunctional units, one from ano<strong>the</strong>r, except at <strong>the</strong>ir output term<strong>in</strong>alsv Form 4: As for Form 3, but <strong>in</strong>clud<strong>in</strong>g separation of <strong>the</strong> outgo<strong>in</strong>g term<strong>in</strong>als of allfunctional units, one from ano<strong>the</strong>rThe decision on which form to implement results from an agreement between <strong>the</strong>manufacturer and <strong>the</strong> user.The Prima Plus functional range offers solutions for forms 1, 2b, 3b, 4a, 4b.E17Form 1 Form 2a Form 2b Form 3aForm 3b Form 4a Form 4bFig. E33 : Representation of different forms of LV functional distribution switchboardsBusbarSeparation© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations2 The <strong>in</strong>stallation systemE18Total accessibility of electrical <strong>in</strong>formation and<strong>in</strong>telligent distribution switchboards are now arealityb Type tests and rout<strong>in</strong>e testsThey ensure compliance of each distribution switchboard with <strong>the</strong> standard. Theavailability of test documents certified by <strong>in</strong>dependent organisations is a guaranteefor users.Remote monitor<strong>in</strong>g and control of <strong>the</strong> electrical <strong>in</strong>stallationRemote monitor<strong>in</strong>g and control are no longer limited to large <strong>in</strong>stallations.These functions are <strong>in</strong>creas<strong>in</strong>gly used and provide considerable cost sav<strong>in</strong>gs.The ma<strong>in</strong> potential advantages are:b Reductions <strong>in</strong> <strong>energy</strong> billsb Reductions <strong>in</strong> structural costs to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> <strong>in</strong>stallation <strong>in</strong> runn<strong>in</strong>g orderb Better use of <strong>the</strong> <strong>in</strong>vestment, notably concern<strong>in</strong>g optimisation of <strong>the</strong> <strong>in</strong>stallation lifecycleb Greater satisfaction for <strong>energy</strong> users (<strong>in</strong> a build<strong>in</strong>g or <strong>in</strong> process <strong>in</strong>dustries) due toimproved power availability and/or qualityThe above possibilities are all <strong>the</strong> more an option given <strong>the</strong> current deregulation of<strong>the</strong> electrical-<strong>energy</strong> sector.Modbus is <strong>in</strong>creas<strong>in</strong>gly used as <strong>the</strong> open standard for communication with<strong>in</strong> <strong>the</strong>distribution switchboard and between <strong>the</strong> distribution switchboard and customerpower monitor<strong>in</strong>g and control applications. Modbus exists <strong>in</strong> two forms, twisted pair(RS 485) and E<strong>the</strong>rnet-TCP/IP (IEEE 802.3).The www.modbus.org site presents all bus specifications and constantly updates <strong>the</strong>list of products and companies us<strong>in</strong>g <strong>the</strong> open <strong>in</strong>dustrial standard.The use of web technologies has largely contributed to wider use by drasticallyreduc<strong>in</strong>g <strong>the</strong> cost of access<strong>in</strong>g <strong>the</strong>se functions through <strong>the</strong> use of an <strong>in</strong>terface that isnow universal (web pages) and a degree of openness and upgradeability that simplydid not exist just a few years ago.Two types of distribution are possible:b By <strong>in</strong>sulated wires and cablesb By busbar trunk<strong>in</strong>g (busways)2.2 Cables and busway trunk<strong>in</strong>gDistribution by <strong>in</strong>sulated conductors and cablesDef<strong>in</strong>itionsb ConductorA conductor comprises a s<strong>in</strong>gle metallic core with or without an <strong>in</strong>sulat<strong>in</strong>g envelope.b CableA cable is made up of a number of conductors, electrically separated, but jo<strong>in</strong>edmechanically, generally enclosed <strong>in</strong> a protective flexible sheath.b CablewayThe term cableway refers to conductors and/or cables toge<strong>the</strong>r with <strong>the</strong> means ofsupport and protection, etc. for example : cable trays, ladders, ducts, trenches, andso on… are all “cableways”.© Schneider Electric - all rights reservedConductor mark<strong>in</strong>gConductor identification must always respect <strong>the</strong> follow<strong>in</strong>g three rules:b Rule 1The double colour green and yellow is strictly reserved for <strong>the</strong> PE and PENprotection conductors.b Rule 2v When a circuit comprises a neutral conductor, it must be light blue or marked “1” forcables with more than five conductorsv When a circuit does not have a neutral conductor, <strong>the</strong> light blue conductor may beused as a phase conductor if it is part of a cable with more than one conductorb Rule 3Phase conductors may be any colour except:v Green and yellowv Greenv Yellowv Light blue (see rule 2)Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations2 The <strong>in</strong>stallation systemConductors <strong>in</strong> a cable are identified ei<strong>the</strong>r by <strong>the</strong>ir colour or by numbers (see Fig. E34).Number of Circuit Fixed cablewaysconductors Insulated conductors Rigid and flexible multi<strong>in</strong>circuitconductor cablesPh Ph Pn N PE Ph Ph Ph N PE1 Protection or earth G/Y2 S<strong>in</strong>gle-phase between phases b b BL LBS<strong>in</strong>gle-phase between phase and neutral b LB BL LBS<strong>in</strong>gle-phase between phase and neutral b G/Y BL G/Y+ protection conductor3 Three-phase without neutral b b b BL B LB2 phases + neutral b b LB BL B LB2 phases + protection conductor b b G/Y BL LB G/YS<strong>in</strong>gle-phase between phase and neutral b LB G/Y BL LB G/Y+ protection conductor4 Three-phase with neutral b b b LB BL B BL LBThree-phase with neutral + protection conductor b b b G/Y BL B LB G/Y2 phases + neutral + protection conductor b b LB G/Y BL B LB G/YThree-phase with PEN conductor b b b G/Y BL B LB G/Y5 Three-phase + neutral + protection conductor b b b LB G/Y BL B BL LB G/Y> 5 Protection conductor: G/Y - O<strong>the</strong>r conductors: BL: with number<strong>in</strong>gThe number “1” is reserved for <strong>the</strong> neutral conductor if it existsG/Y: Green and yellow BL: Black b : As <strong>in</strong>dicated <strong>in</strong> rule 3 LB: Light blue B: BrownE19Fig. E34 : Conductor identification accord<strong>in</strong>g to <strong>the</strong> type of circuitNote: If <strong>the</strong> circuit <strong>in</strong>cludes a protection conductor and if <strong>the</strong> available cable does nothave a green and yellow conductor, <strong>the</strong> protection conductor may be:b A separate green and yellow conductorb The blue conductor if <strong>the</strong> circuit does not have a neutral conductorb A black conductor if <strong>the</strong> circuit has a neutral conductorIn <strong>the</strong> last two cases, <strong>the</strong> conductor used must be marked by green and yellowbands or mark<strong>in</strong>gs at <strong>the</strong> ends and on all visible lengths of <strong>the</strong> conductor.Equipment power cords are marked similar to multi-conductor cables (see Fig. E35).Distribution and <strong>in</strong>stallation methods (see Fig. E36)Distribution takes place via cableways that carry s<strong>in</strong>gle <strong>in</strong>sulated conductors orcables and <strong>in</strong>clude a fix<strong>in</strong>g system and mechanical protection.Floor subdistributionswichboardF<strong>in</strong>aldistributionswichboardNBlack conductorLight blue conductorFig. E35 : Conductor identification on a circuit-breaker with aphase and a neutralMa<strong>in</strong> LV switchboard(MLVS)Fig. E36 : Radial distribution us<strong>in</strong>g cables <strong>in</strong> a hotelHeat<strong>in</strong>g, etc.Build<strong>in</strong>g utilities sub-distribution swichboard© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations2 The <strong>in</strong>stallation systemE20Busways, also referred to as busbar trunk<strong>in</strong>gsystems, stand out for <strong>the</strong>ir ease of <strong>in</strong>stallation,flexibility and number of possible connectionpo<strong>in</strong>tsBusbar trunk<strong>in</strong>g (busways)Busbar trunk<strong>in</strong>g is <strong>in</strong>tended to distribute power (from 20 A to 5000 A) and light<strong>in</strong>g(<strong>in</strong> this application, <strong>the</strong> busbar trunk<strong>in</strong>g may play a dual role of supply<strong>in</strong>g electricalpower and physically hold<strong>in</strong>g <strong>the</strong> lights).Busbar trunk<strong>in</strong>g system componentsA busbar trunk<strong>in</strong>g system comprises a set of conductors protected by an enclosure(see Fig. E37). Used for <strong>the</strong> transmission and distribution of electrical power, busbartrunk<strong>in</strong>g systems have all <strong>the</strong> necessary features for fitt<strong>in</strong>g: connectors, straights,angles, fix<strong>in</strong>gs, etc. The tap-off po<strong>in</strong>ts placed at regular <strong>in</strong>tervals make poweravailable at every po<strong>in</strong>t <strong>in</strong> <strong>the</strong> <strong>in</strong>stallation.Straight trunk<strong>in</strong>gTap-off po<strong>in</strong>ts todistribute currentFix<strong>in</strong>g system for ceil<strong>in</strong>gs, walls orraised floor, etc.End piecePower UnitRange of clip-on tap-off units toconnect a load (e.g.: a mach<strong>in</strong>e) to<strong>the</strong> busbar trunk<strong>in</strong>gAngleFig. E37 : Busbar trunk<strong>in</strong>g system design for distribution of currents from 25 to 4000 A.The various types of busbar trunk<strong>in</strong>g:Busbar trunk<strong>in</strong>g systems are present at every level <strong>in</strong> electrical distribution: from<strong>the</strong> l<strong>in</strong>k between <strong>the</strong> transformer and <strong>the</strong> low voltage switch switchboard (MLVS)to <strong>the</strong> distribution of power sockets and light<strong>in</strong>g to offices, or power distribution toworkshops.© Schneider Electric - all rights reservedFig. E38 : Radial distribution us<strong>in</strong>g buswaysWe talk about a distributed network architecture.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations2 The <strong>in</strong>stallation systemThere are essentially three categories of busways.b Transformer to MLVS busbar trunk<strong>in</strong>g<strong>Installation</strong> of <strong>the</strong> busway may be considered as permanent and will most likely neverbe modified. There are no tap-off po<strong>in</strong>ts.Frequently used for short runs, it is almost always used for rat<strong>in</strong>gs above 1,600 /2,000 A, i.e. when <strong>the</strong> use of parallel cables makes <strong>in</strong>stallation impossible. Buswaysare also used between <strong>the</strong> MLVS and downstream distribution switchboards.The characteristics of ma<strong>in</strong>-distribution busways authorize operational currents from1,000 to 5,000 A and short-circuit withstands up to 150 kA.b Sub-distribution busbar trunk<strong>in</strong>g with low or high tap-off densitiesDownstream of ma<strong>in</strong>-distribution busbar trunk<strong>in</strong>g , two types of applications must besupplied:v Mid-sized premises (<strong>in</strong>dustrial workshops with <strong>in</strong>jection presses and metalworkmach<strong>in</strong>es or large supermarkets with heavy loads). The short-circuit and currentlevels can be fairly high (respectively 20 to 70 kA and 100 to 1,000 A)v Small sites (workshops with mach<strong>in</strong>e-tools, textile factories with small mach<strong>in</strong>es,supermarkets with small loads). The short-circuit and current levels are lower(respectively 10 to 40 kA and 40 to 400 A)Sub-distribution us<strong>in</strong>g busbar trunk<strong>in</strong>g meets user needs <strong>in</strong> terms of:v Modifications and upgrades given <strong>the</strong> high number of tap-off po<strong>in</strong>tsv Dependability and cont<strong>in</strong>uity of service because tap-off units can be connectedunder energized conditions <strong>in</strong> complete safetyThe sub-distribution concept is also valid for vertical distribution <strong>in</strong> <strong>the</strong> form of 100 to5,000 A risers <strong>in</strong> tall build<strong>in</strong>gs.b Light<strong>in</strong>g distribution busbar trunk<strong>in</strong>gLight<strong>in</strong>g circuits can be distributed us<strong>in</strong>g two types of busbar trunk<strong>in</strong>g accord<strong>in</strong>g towhe<strong>the</strong>r <strong>the</strong> light<strong>in</strong>g fixtures are suspended from <strong>the</strong> busbar trunk<strong>in</strong>g or not.v busbar trunk<strong>in</strong>g designed for <strong>the</strong> suspension of light<strong>in</strong>g fixturesThese busways supply and support light fixtures (<strong>in</strong>dustrial reflectors, dischargelamps, etc.). They are used <strong>in</strong> <strong>in</strong>dustrial build<strong>in</strong>gs, supermarkets, department storesand warehouses. The busbar trunk<strong>in</strong>gs are very rigid and are designed for one ortwo 25 A or 40 A circuits. They have tap-off outlets every 0.5 to 1 m.v busbar trunk<strong>in</strong>g not designed for <strong>the</strong> suspension of light<strong>in</strong>g fixturesSimilar to prefabricated cable systems, <strong>the</strong>se busways are used to supply all typesof light<strong>in</strong>g fixtures secured to <strong>the</strong> build<strong>in</strong>g structure. They are used <strong>in</strong> commercialbuild<strong>in</strong>gs (offices, shops, restaurants, hotels, etc.), especially <strong>in</strong> false ceil<strong>in</strong>gs. Thebusbar trunk<strong>in</strong>g is flexible and designed for one 20 A circuit. It has tap-off outletsevery 1.2 m to 3 m.Busbar trunk<strong>in</strong>g systems are suited to <strong>the</strong> requirements of a large number ofbuild<strong>in</strong>gs.b Industrial build<strong>in</strong>gs: garages, workshops, farm build<strong>in</strong>gs, logistic centers, etc.b Commercial areas: stores, shopp<strong>in</strong>g malls, supermarkets, hotels, etc.b Tertiary build<strong>in</strong>gs: offices, schools, hospitals, sports rooms, cruise l<strong>in</strong>ers, etc.StandardsBusbar trunk<strong>in</strong>g systems must meet all rules stated <strong>in</strong> IEC 439-2.This def<strong>in</strong>es <strong>the</strong> manufactur<strong>in</strong>g arrangements to be complied with <strong>in</strong> <strong>the</strong> designof busbar trunk<strong>in</strong>g systems (e.g.: temperature rise characteristics, short-circuitwithstand, mechanical strength, etc.) as well as test methods to check <strong>the</strong>m.Standard IEC 439-2 def<strong>in</strong>es 13 compulsory type-tests on configurations or systemcomponents..By assembl<strong>in</strong>g <strong>the</strong> system components on <strong>the</strong> site accord<strong>in</strong>g to <strong>the</strong> assembly<strong>in</strong>structions, <strong>the</strong> contractor benefits from conformity with <strong>the</strong> standard.The advantages of busbar trunk<strong>in</strong>g systemsE21Flexibilityb Easy to change configuration (on-site modification to change production l<strong>in</strong>econfiguration or extend production areas).b Reus<strong>in</strong>g components (components are kept <strong>in</strong>tact): when an <strong>in</strong>stallation is subjectto major modifications, <strong>the</strong> busbar trunk<strong>in</strong>g is easy to dismantle and reuse.b Power availability throughout <strong>the</strong> <strong>in</strong>stallation (possibility of hav<strong>in</strong>g a tap-off po<strong>in</strong>tevery meter).b Wide choice of tap-off units.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations2 The <strong>in</strong>stallation systemE22Simplicityb Design can be carried out <strong>in</strong>dependently from <strong>the</strong> distribution and layout of currentconsumers.b Performances are <strong>in</strong>dependent of implementation: <strong>the</strong> use of cables requires a lotof derat<strong>in</strong>g coefficients.b Clear distribution layoutb Reduction of fitt<strong>in</strong>g time: <strong>the</strong> trunk<strong>in</strong>g system allows fitt<strong>in</strong>g times to be reduced byup to 50% compared with a traditional cable <strong>in</strong>stallation.b Manufacturer’s guarantee.b Controlled execution times: <strong>the</strong> trunk<strong>in</strong>g system concept guarantees that <strong>the</strong>re areno unexpected surprises when fitt<strong>in</strong>g. The fitt<strong>in</strong>g time is clearly known <strong>in</strong> advanceand a quick solution can be provided to any problems on site with this adaptable andscalable equipment.b Easy to implement: modular components that are easy to handle, simple and quickto connect.Dependabilityb Reliability guaranteed by be<strong>in</strong>g factory-builtb Fool-proof unitsb Sequential assembly of straight components and tap-off units mak<strong>in</strong>g it impossibleto make any mistakesCont<strong>in</strong>uity of serviceb The large number of tap-off po<strong>in</strong>ts makes it easy to supply power to any newcurrent consumer. Connect<strong>in</strong>g and disconnect<strong>in</strong>g is quick and can be carried out <strong>in</strong>complete safety even when energized. These two operations (add<strong>in</strong>g or modify<strong>in</strong>g)take place without hav<strong>in</strong>g to stop operations.b Quick and easy fault location s<strong>in</strong>ce current consumers are near to <strong>the</strong> l<strong>in</strong>eb Ma<strong>in</strong>tenance is non existent or greatly reducedMajor contribution to susta<strong>in</strong>able developmentb Busbar trunk<strong>in</strong>g systems allow circuits to be comb<strong>in</strong>ed. Compared with atraditional cable distribution system, consumption of copper raw materials and<strong>in</strong>sulators is divided by 3 due to <strong>the</strong> busbar trunk<strong>in</strong>g distributed network concept(see Fig. E39).Distribution typeBranchedExample:30 m of Canalis KS 250A equipped with 10 25 A, four-pole feedersConductorsInsulators ConsumptionΣI x k sI 1I 2I 3I 4I 5I 6I 7R R R R R R Rks: cluster<strong>in</strong>g coefficient= 0.6CentralizedAlu: 128 mm²Copper equivalent: 86 mm²4 kg1 000 JoulesΣI x k sI 1I 2I 3I 4I 5I 6I 7 Copper: 250 mm²R R R R R R Rks: cluster<strong>in</strong>g coefficient= 0.6Fig. E39 : Example: 30 m of Canalis KS 250A equipped with 10 25 A, four-pole feeders12 kg1 600 Joulesb Reusable device and all of its components are fully recyclable.b Does not conta<strong>in</strong> PVC and does not generate toxic gases or waste.b Reduction of risks due to exposure to electromagnetic fields.© Schneider Electric - all rights reservedNew functional features for CanalisBusbar trunk<strong>in</strong>g systems are gett<strong>in</strong>g even better. Among <strong>the</strong> new features we canmention:b Increased performance with a IP55 protection <strong>in</strong>dex and new rat<strong>in</strong>gs of 160 Athrough to 1000 A (Ks).b New light<strong>in</strong>g offers with pre-cabled lights and new light ducts.b New fix<strong>in</strong>g accessories. Quick fix<strong>in</strong>g system, cable ducts, shared support with“VDI” (voice, data, images) circuits.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations2 The <strong>in</strong>stallation systemBusbar trunk<strong>in</strong>g systems are perfectly <strong>in</strong>tegrated with <strong>the</strong> environment:b white color to enhance <strong>the</strong> work<strong>in</strong>g environment, naturally <strong>in</strong>tegrated <strong>in</strong> a range ofelectrical distribution products.b conformity with European regulations on reduc<strong>in</strong>g hazardous materials (RoHS).Examples of Canalis busbar trunk<strong>in</strong>g systemsE23Fig. E40 : Flexible busbar trunk<strong>in</strong>g not capable of support<strong>in</strong>g light fitt<strong>in</strong>gs : Canalis KDP (20 A)Fig. E41 : Rigid busbar trunk<strong>in</strong>g able to support light fitt<strong>in</strong>gs : Canalis KBA or KBB (25 and 40 A)Fig. E42 : Light<strong>in</strong>g duct : Canalis KBX (25 A)Fig. E43 : A busway for medium power distribution : Canalis KN (40 up to 160 A)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations2 The <strong>in</strong>stallation systemE24Fig. E44 : A busway for medium power distribution : Canalis KS (100 up to 1000 A)Fig. E45 : A busway for high power distribution : Canalis KT (800 up to 1000 A)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations3 External <strong>in</strong>fluences(IEC 60364-5-51)External <strong>in</strong>fluences shall be taken <strong>in</strong>to accountwhen choos<strong>in</strong>g:b The appropriate measures to ensure <strong>the</strong>safety of persons (<strong>in</strong> particular <strong>in</strong> speciallocations or electrical <strong>in</strong>stallations)b The characteristics of electrical equipment,such as degree of protection (IP), mechanicalwithstand (IK), etc.3.1 Def<strong>in</strong>ition and reference standardsEvery electrical <strong>in</strong>stallation occupies an environment that presents a variable degreeof risk:b For peopleb For <strong>the</strong> equipment constitut<strong>in</strong>g <strong>the</strong> <strong>in</strong>stallationConsequently, environmental conditions <strong>in</strong>fluence <strong>the</strong> def<strong>in</strong>ition and choice ofappropriate <strong>in</strong>stallation equipment and <strong>the</strong> choice of protective measures for <strong>the</strong>safety of persons.The environmental conditions are referred to collectively as “external <strong>in</strong>fluences”.Many national standards concerned with external <strong>in</strong>fluences <strong>in</strong>clude a classificationscheme which is based on, or which closely resembles, that of <strong>in</strong>ternational standardIEC 60364-5-51.E25If several external <strong>in</strong>fluences appear at <strong>the</strong>same time, <strong>the</strong>y can have <strong>in</strong>dependent ormutual effects and <strong>the</strong> degree of protection mustbe chosen accord<strong>in</strong>gly3.2 ClassificationEach condition of external <strong>in</strong>fluence is designated by a code compris<strong>in</strong>g a group oftwo capital letters and a number as follows:First letter (A, B or C)The first letter relates to <strong>the</strong> general category of external <strong>in</strong>fluence :b A = environmentb B = utilisationb C = construction of build<strong>in</strong>gsSecond letterThe second letter relates to <strong>the</strong> nature of <strong>the</strong> external <strong>in</strong>fluence.NumberThe number relates to <strong>the</strong> class with<strong>in</strong> each external <strong>in</strong>fluence.Additional letter (optional)Used only if <strong>the</strong> effective protection of persons is greater than that <strong>in</strong>dicated by <strong>the</strong>first IP digit.When only <strong>the</strong> protection of persons is to be specified, <strong>the</strong> two digits of <strong>the</strong> IP codeare replaced by <strong>the</strong> X’s.Example: IP XXB.ExampleFor example <strong>the</strong> code AC2 signifies:A = environmentAC = environment-altitudeAC2 = environment-altitude > 2,000 m3.3 List of external <strong>in</strong>fluencesFigure E46 below is from IEC 60364-5-51, which should be referred to if fur<strong>the</strong>rdetails are required.Code External <strong>in</strong>fluences Characteristics required for equipmentA - EnvironmentAA Ambient temperature (°C)Low High Specially designed equipment or appropriate arrangementsAA1 - 60 °C + 5 °CAA2 - 40 °C + 5 °CAA3 - 25 °C + 5 °CAA4 - 5° C + 40 °C Normal (special precautions <strong>in</strong> certa<strong>in</strong> cases)AA5 + 5 °C + 40 °C NormalAA6 + 5 °C + 60 °C Specially designed equipment or appropriate arrangementsAA7 - 25 °C + 55 °CAA8 - 50 °C + 40 °CFig. E46 : List of external <strong>in</strong>fluences (taken from Appendix A of IEC 60364-5-51) (cont<strong>in</strong>ued on next page)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations3 External <strong>in</strong>fluences(IEC 60364-5-51)E26© Schneider Electric - all rights reservedCode External <strong>in</strong>fluences Characteristics required for equipmentA - EnvironmentAB Atmospheric humidityAir temperature °C Relative humidity % Absolute humidity g/m 3Low High Low High Low HighAB1 - 60 °C + 5 °C 3 100 0.003 7 Appropriate arrangements shall be madeAB2 - 40 °C + 5 °C 10 100 0.1 7AB3 - 25 °C + 5 °C 10 100 0.5 7AB4 - 5° C + 40 °C 5 95 1 29 NormalAB5 + 5 °C + 40 °C 5 85 1 25 NormalAB6 + 5 °C + 60 °C 10 100 1 35 Appropriate arrangements shall be madeAB7 - 25 °C + 55 °C 10 100 0.5 29AB8 - 50 °C + 40 °C 15 100 0.04 36AC AltitudeAC1 y 2000 m NormalAC2 > 2000 m May necessitate precaution (derat<strong>in</strong>g factors)AD Presence of waterAD1 Negligible Outdoor or non-wea<strong>the</strong>r protected locations IPX0AD2 Free-fall<strong>in</strong>g drops IPX1 or IPX2AD3 Sprays IPX3AD4 Splashes IPX4AD5 Jets Locations where hose water is used regularly IPX5AD6 Waves Seashore locations (piers, beaches, quays…) IPX6AD7 Immersion Water 150 mm above <strong>the</strong> highest po<strong>in</strong>t and IPX7equipment not more than 1m below <strong>the</strong> surfaceAD8 Submersion Equipment is permanently and totally covered IPX8AE Presence of foreign solid bodiesSmallest dimension ExampleAE1 Negligible IP0XAE2 Small objects 2.5 mm Tools IP3XAE3 Very small objects 1 mm Wire IP4XAE4 Light dust IP5X if dust penetration is not harmful to function<strong>in</strong>gAE5 Moderate dust IP6X if dust should not penetrateAE6 Heavy dust IP6XAF Presence of corrosive or pollut<strong>in</strong>g substancesAF1 Negligible NormalAF2 Atmospheric Accord<strong>in</strong>g to <strong>the</strong> nature of <strong>the</strong> substanceAF3 Intermittent, accidental Protection aga<strong>in</strong>st corrosionAF4 Cont<strong>in</strong>uous Equipment specially designedAG Mechanical stress impactAG1 Low severity NormalAG2 Medium severity Standard where applicable or re<strong>in</strong>forced materialAG3 High severity Re<strong>in</strong>forced protectionAH VibrationsAH1 Low severity Household or similar NormalAH2 Medium severity Usual <strong>in</strong>dustrial conditions Specially designed equipment or special arrangementsAH3 High severity Severe <strong>in</strong>dustrial conditionsAJ O<strong>the</strong>r mechanical stressesAK Presence of flora and/or mould growthAH1 No hazard NormalAH2 HazardAL Presence of faunaAH1 No hazard NormalAH2 HazardAM Electromagnetic, electrostatic or ionis<strong>in</strong>g <strong>in</strong>fluences / Low frequency electromagnetic phenomena / HarmonicsAM1 Harmonics, <strong>in</strong>terharmonics Refer to applicable IEC standardsAM2 Signall<strong>in</strong>g voltageAM3 Voltage amplitude variationsAM4 Voltage unbalanceAM5 Power frequency variationsAM6 Induced low-frequency voltagesAM7 Direct current <strong>in</strong> a.c. networksAM8 Radiated magnetic fieldsAM9 Electric fieldAM21 Induced oscillatory voltages or currentsFig. E46 : List of external <strong>in</strong>fluences (taken from Appendix A of IEC 60364-5-51) (cont<strong>in</strong>ued on next page)Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations3 External <strong>in</strong>fluences(IEC 60364-5-51)Code External <strong>in</strong>fluences Characteristics required for equipmentA - EnvironmentAM22 Conducted unidirectional transients of <strong>the</strong> nanosecond time scale Refer to applicable IEC standardsAM23 Conducted unidirectional transients of <strong>the</strong> microsecond to <strong>the</strong> millisecondtime scaleAM24 Conducted oscillatory transientsAM25 Radiated high frequency phenomenaAM31 Electrostatic dischargesAM41 IonisationAN Solar radiationAN1 Low NormalAN2 MediumAN3 HighAP Seismic effectAP1 Negligible NormalAP2 Low severityAP3 Medium severityAP4 High severityAQ Lightn<strong>in</strong>gAQ1 Negligible NormalAQ2 Indirect exposureAQ3 Direct exposureAR Movement of airAQ1 Low NormalAQ2 MediumAQ3 HighAS W<strong>in</strong>dAQ1 Low NormalAQ2 MediumAQ3 HighB - UtilizationBA Capability of personsBA1 Ord<strong>in</strong>ary NormalBA2 ChildrenBA3 HandicappedBA4 InstructedBA5 SkilledBB <strong>Electrical</strong> resistance of human bodyBC Contact of persons with earth potentialBC1 None Class of equipment accord<strong>in</strong>g to IEC61140BC2 LowBC3 FrequentBC4 Cont<strong>in</strong>uousBD Condition of evacuation <strong>in</strong> case of emergencyBD1 Low density / easy exit NormalBD2 Low density / difficult exitBD3 High density / easy exitBD4 High density / difficult exitBE Nature of processed or stored materialsBE1 No significant risks NormalBE2 Fire risksBE3 Explosion risksBE4 Contam<strong>in</strong>ation risksC - Construction of build<strong>in</strong>gCA Construction materialsCA1 Non combustible NormalCA2 CombustibleCB Build<strong>in</strong>g designCB1 Negligible risks NormalCB2 Propagation of fireCB3 MovementCB4 lexible or unstableFig. E46 : List of external <strong>in</strong>fluences (taken from Appendix A of IEC 60364-5-51) (concluded)E27© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations3 External <strong>in</strong>fluences(IEC 60364-5-51)3.4 Protection provided for enclosed equipment:codes IP and IKE28IP code def<strong>in</strong>ition (see Fig. E47)The degree of protection provided by an enclosure is <strong>in</strong>dicated <strong>in</strong> <strong>the</strong> IP code,recommended <strong>in</strong> IEC 60529.Protection is afforded aga<strong>in</strong>st <strong>the</strong> follow<strong>in</strong>g external <strong>in</strong>fluences:b Penetration by solid bodiesb Protection of persons aga<strong>in</strong>st access to live partsb Protection aga<strong>in</strong>st <strong>the</strong> <strong>in</strong>gress of dustb Protection aga<strong>in</strong>st <strong>the</strong> <strong>in</strong>gress of liquidsNote: <strong>the</strong> IP code applies to electrical equipment for voltages up to and <strong>in</strong>clud<strong>in</strong>g72.5 kV.Elements of <strong>the</strong> IP Code and <strong>the</strong>ir mean<strong>in</strong>gsA brief description of <strong>the</strong> IP Code elements is given <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g chart(see Fig. E48).ElementNumeralsor lettersMean<strong>in</strong>g for <strong>the</strong> protectionof equipmentMean<strong>in</strong>g for <strong>the</strong>protection of personsCode lettersIPFirstcharacteristicnumeral0123456Aga<strong>in</strong>st <strong>in</strong>gress of solid foreignobjects(non-protected)u 50 mm diameteru 12.5 mm diameteru 2.5 mm diameteru 1.0 mm diameterDust-protectedDust-tightAga<strong>in</strong>st access tohazardous parts with(non-protected)Back of handF<strong>in</strong>gerToolWireWireWireCode letters(International Protection)IP 2 3 C HSecondcharacteristicnumeral012345678Aga<strong>in</strong>st <strong>in</strong>gress of water withharmful effects(non-protected)Vertically dripp<strong>in</strong>gDripp<strong>in</strong>g (15° tilted)Spray<strong>in</strong>gSplash<strong>in</strong>gJett<strong>in</strong>gPowerful jett<strong>in</strong>gTemporary immersionCont<strong>in</strong>uous immersionFirst characteristic numeral(numerals 0 to 6, or letter X)Second characteristic numeral(numerals 0 to 6, or letter X)Additional letter (optional)(letters A, B, C, D)Additionalletter(optional)ABCDAga<strong>in</strong>st access tohazardous parts withback of handF<strong>in</strong>gerToolWire© Schneider Electric - all rights reservedSupplementary letter (optional)(letters H, M, S, W)Where a characteristic numeral is not required to be specified,it shall be replaced by <strong>the</strong> letter "X" ("XX" if both numeralsare omitted). Additional letters and/or supplementary lettersmay be omitted without replacement.Fig. E47 : IP Code arrangementSupplementaryletter(optional)HMSWFig. E48 : Elements of <strong>the</strong> IP CodeSupplementary <strong>in</strong>formation specific to:High-voltage apparatusMotion dur<strong>in</strong>g water testStationary dur<strong>in</strong>g water testWea<strong>the</strong>r conditionsSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


E - Distribution <strong>in</strong> low-voltage <strong>in</strong>stallations3 External <strong>in</strong>fluences(IEC 60364-5-51)IK Code def<strong>in</strong>itionStandard IEC 62262 def<strong>in</strong>es an IK code that characterises <strong>the</strong> aptitude of equipmentto resist mechanical impacts on all sides (see Fig. E49).IK code Impact <strong>energy</strong> AG code(<strong>in</strong> Joules)00 001 y 0.1402 y 0.20 AG103 y 0.3504 y 0.5005 y 0.7006 y 107 y 2 AG208 y 5 AG309 y 1010 y 20 AG4E29Fig. E49 : Elements of <strong>the</strong> IK CodeIP and IK code specifications for distribution switchboardsThe degrees of protection IP and IK of an enclosure must be specified as a functionof <strong>the</strong> different external <strong>in</strong>fluences def<strong>in</strong>ed by standard IEC 60364-5-51, <strong>in</strong> particular:b Presence of solid bodies (code AE)b Presence of water (code AD)b Mechanical stresses (no code)b Capability of persons (code BA)b …Prisma Plus switchboards are designed for <strong>in</strong>door <strong>in</strong>stallation.Unless <strong>the</strong> rules, standards and regulations of a specific country stipulate o<strong>the</strong>rwise,Schneider Electric recommends <strong>the</strong> follow<strong>in</strong>g IP and IK values (see Fig. E50 andFig. E51 )IP recommendationsIP codes accord<strong>in</strong>g to conditionsNormal without risk of vertically fall<strong>in</strong>g water Technical rooms 30Normal with risk of vertically fall<strong>in</strong>g water Hallways 31Very severe with risk of splash<strong>in</strong>g water Workshops 54/55from all directionsFig. E50 : IP recommendationsIK recommendationsIK codes accord<strong>in</strong>g to conditionsNo risk of major impact Technical rooms 07Significant risk of major impact that could Hallways 08 (enclosuredamage deviceswith door)Maximum risk of impact that could damage Workshops 10<strong>the</strong> enclosureFig. E51 : IK recommendations© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Chapter FProtection aga<strong>in</strong>st electric shocks12345678ContentsGeneral1.1 Electric shock F21.2 Protection aga<strong>in</strong>st electric shock F31.3 Direct and <strong>in</strong>direct contact F3Protection aga<strong>in</strong>st direct contact2.1 Measures of protection aga<strong>in</strong>st direct contact F42.2 Additional measure of protection aga<strong>in</strong>st direct contact F6Protection aga<strong>in</strong>st <strong>in</strong>direct contact3.1 Measures of protection: two levels F63.2 Automatic disconnection for TT system F73.3 Automatic disconnection for TN systems F83.4 Automatic disconnection on a second fault <strong>in</strong> an IT system F103.5 Measures of protection aga<strong>in</strong>st direct or <strong>in</strong>direct contactwithout automatic disconnection of supplyProtection of goods <strong>in</strong> case of <strong>in</strong>sulation faultF2F4F6F13F174.1 Measures of protection aga<strong>in</strong>st fire risk with RCDs F174.2 Ground Fault Protection (GFP) F17Implementation of <strong>the</strong> TT systemF195.1 Protective measures F195.2 Coord<strong>in</strong>ation of residual current protective devices F20Implementation of <strong>the</strong> TN systemF236.1 Prelim<strong>in</strong>ary conditions F236.2 Protection aga<strong>in</strong>st <strong>in</strong>direct contact F236.3 High-sensitivity RCDs F276.4 Protection <strong>in</strong> high fire-risk locations F286.5 When <strong>the</strong> fault current-loop impedance is particularly high F28Implementation of <strong>the</strong> IT systemF297.1 Prelim<strong>in</strong>ary conditions F297.2 Protection aga<strong>in</strong>st <strong>in</strong>direct contact F307.3 High-sensitivity RCDs F347.4 Protection <strong>in</strong> high fire-risk locations F357.5 When <strong>the</strong> fault current-loop impedance is particularly high F35Residual current differential devices (RCDs)F368.1 Types of RCDs F368.2 Description F368.3 Sensitivity of RDCs to disturbances F39F© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock1 GeneralFWhen a current exceed<strong>in</strong>g 30 mA passesthrough a part of a human body, <strong>the</strong> personconcerned is <strong>in</strong> serious danger if <strong>the</strong> current isnot <strong>in</strong>terrupted <strong>in</strong> a very short time.The protection of persons aga<strong>in</strong>st electricshock <strong>in</strong> LV <strong>in</strong>stallations must be provided <strong>in</strong>conformity with appropriate national standardsstatutory regulations, codes of practice, officialguides and circulars etc.Relevant IEC standards <strong>in</strong>clude: IEC 60364,IEC 60479 series, IEC 61008, IEC 61009 andIEC 60947-2.1.1 Electric shockAn electric shock is <strong>the</strong> pathophysiological effect of an electric current through <strong>the</strong>human body.Its passage affects essentially <strong>the</strong> muscular, circulatory and respiratory functions andsometimes results <strong>in</strong> serious burns. The degree of danger for <strong>the</strong> victim is a functionof <strong>the</strong> magnitude of <strong>the</strong> current, <strong>the</strong> parts of <strong>the</strong> body through which <strong>the</strong> currentpasses, and <strong>the</strong> duration of current flow.IEC publication 60479-1 updated <strong>in</strong> 2005 def<strong>in</strong>es four zones of current-magnitude/time-duration, <strong>in</strong> each of which <strong>the</strong> pathophysiological effects are described (see FigF1). Any person com<strong>in</strong>g <strong>in</strong>to contact with live metal risks an electric shock.Curve C1 shows that when a current greater than 30 mA passes through a humanbe<strong>in</strong>g from one hand to feet, <strong>the</strong> person concerned is likely to be killed, unless <strong>the</strong>current is <strong>in</strong>terrupted <strong>in</strong> a relatively short time.The po<strong>in</strong>t 500 ms/100 mA close to <strong>the</strong> curve C1 corresponds to a probability of heartfibrillation of <strong>the</strong> order of 0.14%.The protection of persons aga<strong>in</strong>st electric shock <strong>in</strong> LV <strong>in</strong>stallations must be provided<strong>in</strong> conformity with appropriate national standards and statutory regulations, codes ofpractice, official guides and circulars, etc. Relevant IEC standards <strong>in</strong>clude: IEC 60364series, IEC 60479 series, IEC 60755, IEC 61008 series, IEC 61009 series and IEC60947-2.Duration of currentflow I (ms)10,000ABC 1 C 2 C 35,0002,0001,000500AC-4.1AC-4.2AC-4.320010050AC-1AC-2 AC-3 AC-420100.1 0.2 0.5 1 2 5 10 20 50 100 200 500 2,000 10,0001,000 5,000Body currentI s (mA)AC-1 zone: ImperceptibleAC-2 zone: PerceptibleAC-3 zone : Reversible effects: muscular contractionAC-4 zone: Possibility of irreversible effectsAC-4-1 zone: Up to 5%probability of heart fibrillationAC-4-2 zone: Up to 50% probability of heart fibrillationAC-4-3 zone: More than 50% probability of heart fibrillationA curve: Threshold of perception of currentB curve: Threshold of muscular reactionsC 1 curve: Threshold of 0% probability of ventricularfibrillationC 2 curve: Threshold of 5% probability of ventricularfibrillationC 3 curve: Threshold of 50% probability of ventricularfibrillationFig. F1 : Zones time/current of effects of AC current on human body when pass<strong>in</strong>g from left hand to feet© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock1 General1.2 Protection aga<strong>in</strong>st electric shockThe fundamental rule of protection aga<strong>in</strong>st electric shock is provided by <strong>the</strong>document IEC 61140 which covers both electrical <strong>in</strong>stallations and electricalequipment.Hazardous-live-parts shall not be accessible and accessible conductive parts shallnot be hazardous.This requirement needs to apply under:b Normal conditions, andb Under a s<strong>in</strong>gle fault conditionVarious measures are adopted to protect aga<strong>in</strong>st this hazard, and <strong>in</strong>clude:b Automatic disconnection of <strong>the</strong> power supply to <strong>the</strong> connected electrical equipmentb Special arrangements such as:v The use of class II <strong>in</strong>sulation materials, or an equivalent level of <strong>in</strong>sulationv Non-conduct<strong>in</strong>g location, out of arm’s reach or <strong>in</strong>terposition of barriersv Equipotential bond<strong>in</strong>gv <strong>Electrical</strong> separation by means of isolat<strong>in</strong>g transformersF1.3 Direct and <strong>in</strong>direct contactTwo measures of protection aga<strong>in</strong>st directcontact hazards are often required, s<strong>in</strong>ce, <strong>in</strong>practice, <strong>the</strong> first measure may not be <strong>in</strong>fallibleStandards and regulations dist<strong>in</strong>guish two k<strong>in</strong>dsof dangerous contact,b Direct contactb Indirect contactand correspond<strong>in</strong>g protective measuresDirect contactA direct contact refers to a person com<strong>in</strong>g <strong>in</strong>to contact with a conductor which is live<strong>in</strong> normal circumstances (see Fig. F2).IEC 61140 standard has renamed “protection aga<strong>in</strong>st direct contact” with <strong>the</strong> term“basic protection”. The former name is at least kept for <strong>in</strong>formation.Indirect contactAn <strong>in</strong>direct contact refers to a person com<strong>in</strong>g <strong>in</strong>to contact with an exposedconductive-partwhich is not normally alive, but has become alive accidentally (dueto <strong>in</strong>sulation failure or some o<strong>the</strong>r cause).The fault current raise <strong>the</strong> exposed-conductive-part to a voltage liable to behazardous which could be at <strong>the</strong> orig<strong>in</strong> of a touch current through a person com<strong>in</strong>g<strong>in</strong>to contact with this exposed-conductive-part (see Fig. F3).IEC 61140 standard has renamed “protection aga<strong>in</strong>st <strong>in</strong>direct contact” with <strong>the</strong> term“fault protection”. The former name is at least kept for <strong>in</strong>formation.1 2 3 PE1 2 3 NIdBusbarsInsulationfailureIsIsIs: Touch currentId: Insulation fault currentFig. F2 : Direct contactFig F3 : Indirect contact© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock2 Protection aga<strong>in</strong>st direct contactTwo complementary measures are commonly used as protection aga<strong>in</strong>st <strong>the</strong>dangers of direct contact:b The physical prevention of contact with live parts by barriers, <strong>in</strong>sulation,<strong>in</strong>accessibility, etc.b Additional protection <strong>in</strong> <strong>the</strong> event that a direct contact occurs, despite or due tofailure of <strong>the</strong> above measures. This protection is based on residual-current operat<strong>in</strong>gdevice with a high sensitivity (IΔn y 30 mA) and a low operat<strong>in</strong>g time. These devicesare highly effective <strong>in</strong> <strong>the</strong> majority of case of direct contact.FIEC and national standards frequentlydist<strong>in</strong>guish two protections:b Complete (<strong>in</strong>sulation, enclosures)b Partial or particular2.1 Measures of protection aga<strong>in</strong>st direct contactProtection by <strong>the</strong> <strong>in</strong>sulation of live partsThis protection consists of an <strong>in</strong>sulation which complies with <strong>the</strong> relevant standards(see Fig. F4). Pa<strong>in</strong>ts, lacquers and varnishes do not provide an adequate protection.Fig. F4 : Inherent protection aga<strong>in</strong>st direct contact by <strong>in</strong>sulation of a 3-phase cable with outersheathFig. F5 : Example of isolation by envelopeProtection by means of barriers or enclosuresThis measure is <strong>in</strong> widespread use, s<strong>in</strong>ce many components and materials are<strong>in</strong>stalled <strong>in</strong> cab<strong>in</strong>ets, assemblies, control panels and distribution boards (see Fig. F5).To be considered as provid<strong>in</strong>g effective protection aga<strong>in</strong>st direct contact hazards,<strong>the</strong>se equipment must possess a degree of protection equal to at least IP 2X orIP XXB (see chapter E sub-clause 3.4).Moreover, an open<strong>in</strong>g <strong>in</strong> an enclosure (door, front panel, drawer, etc.) must only beremovable, open or withdrawn:b By means of a key or tool provided for this purpose, orb After complete isolation of <strong>the</strong> live parts <strong>in</strong> <strong>the</strong> enclosure, orb With <strong>the</strong> automatic <strong>in</strong>terposition of ano<strong>the</strong>r screen removable only with a key ora tool. The metal enclosure and all metal removable screen must be bonded to <strong>the</strong>protective earth<strong>in</strong>g conductor of <strong>the</strong> <strong>in</strong>stallation.Partial measures of protectionb Protection by means of obstacles, or by plac<strong>in</strong>g out of arm’s reachThis protection is reserved only to locations to which skilled or <strong>in</strong>structedpersons only have access. The erection of this protective measure is detailed <strong>in</strong>IEC 60364-4-41.Particular measures of protectionb Protection by use of extra-low voltage SELV (Safety Extra-Low Voltage) or bylimitation of <strong>the</strong> <strong>energy</strong> of discharge.These measures are used only <strong>in</strong> low-power circuits, and <strong>in</strong> particular circumstances,as described <strong>in</strong> section 3.5.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock2 Protection aga<strong>in</strong>st direct contactAn additional measure of protection aga<strong>in</strong>st<strong>the</strong> hazards of direct contact is provided by <strong>the</strong>use of residual current operat<strong>in</strong>g device, whichoperate at 30 mA or less, and are referred to asRCDs of high sensitivityFig. F6 : High sensitivity RCD2.2 Additional measure of protection aga<strong>in</strong>st directcontactAll <strong>the</strong> preced<strong>in</strong>g protective measures are preventive, but experience has shownthat for various reasons <strong>the</strong>y cannot be regarded as be<strong>in</strong>g <strong>in</strong>fallible. Among <strong>the</strong>sereasons may be cited:b Lack of proper ma<strong>in</strong>tenanceb Imprudence, carelessnessb Normal (or abnormal) wear and tear of <strong>in</strong>sulation; for <strong>in</strong>stance flexure and abrasionof connect<strong>in</strong>g leadsb Accidental contactb Immersion <strong>in</strong> water, etc. A situation <strong>in</strong> which <strong>in</strong>sulation is no longer effectiveIn order to protect users <strong>in</strong> such circumstances, highly sensitive fast tripp<strong>in</strong>gdevices, based on <strong>the</strong> detection of residual currents to earth (which may or maynot be through a human be<strong>in</strong>g or animal) are used to disconnect <strong>the</strong> powersupply automatically, and with sufficient rapidity to prevent <strong>in</strong>jury to, or death byelectrocution, of a normally healthy human be<strong>in</strong>g (see Fig. F6).These devices operate on <strong>the</strong> pr<strong>in</strong>ciple of differential current measurement, <strong>in</strong> whichany difference between <strong>the</strong> current enter<strong>in</strong>g a circuit and that leav<strong>in</strong>g it (on a systemsupplied from an ear<strong>the</strong>d source) be flow<strong>in</strong>g to earth, ei<strong>the</strong>r through faulty <strong>in</strong>sulationor through contact of an ear<strong>the</strong>d part, such as a person, with a live conductor.Standardised residual-current devices, referred to as RCDs, sufficiently sensitive forprotection aga<strong>in</strong>st direct contact are rated at 30 mA of differential current.Accord<strong>in</strong>g to IEC 60364-4-41, additional protection by means of high sensitivityRCDs (I∆n y 30 mA) must be provided for circuits supply<strong>in</strong>g socket-outlets with arated current y 20 A <strong>in</strong> all locations, and for circuits supply<strong>in</strong>g mobile equipment witha rated current y 32 A for use outdoors.This additional protection is required <strong>in</strong> certa<strong>in</strong> countries for circuits supply<strong>in</strong>g socketoutletsrated up to 32 A, and even higher if <strong>the</strong> location is wet and/or temporary(such as work sites for <strong>in</strong>stance).It is also recommended to limit <strong>the</strong> number of socket-outlets protected by a RCD(e.g. 10 socket-outlets for one RCD).Chapter P section 3 itemises various common locations <strong>in</strong> which RCDs ofhigh sensitivity are obligatory (<strong>in</strong> some countries), but <strong>in</strong> any case, are highlyrecommended as an effective protection aga<strong>in</strong>st both direct and <strong>in</strong>direct contacthazards.F© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock3 Protection aga<strong>in</strong>st <strong>in</strong>directcontactExposed-conductive-parts used <strong>in</strong> <strong>the</strong> manufactur<strong>in</strong>g process of an electricalequipment is separated from <strong>the</strong> live parts of <strong>the</strong> equipment by <strong>the</strong> “basic <strong>in</strong>sulation”.Failure of <strong>the</strong> basic <strong>in</strong>sulation will result <strong>in</strong> <strong>the</strong> exposed-conductive-parts be<strong>in</strong>g alive.Touch<strong>in</strong>g a normally dead part of an electrical equipment which has become live dueto <strong>the</strong> failure of its <strong>in</strong>sulation, is referred to as an <strong>in</strong>direct contact.FProtection aga<strong>in</strong>st <strong>in</strong>direct contact hazardscan be achieved by automatic disconnection of<strong>the</strong> supply if <strong>the</strong> exposed-conductive-parts ofequipment are properly ear<strong>the</strong>d3.1 Measures of protection: two levelsTwo levels of protective measures exist:b 1 st level: The earth<strong>in</strong>g of all exposed-conductive-parts of electrical equipment <strong>in</strong> <strong>the</strong><strong>in</strong>stallation and <strong>the</strong> constitution of an equipotential bond<strong>in</strong>g network (see chapter Gsection 6).b 2 sd level: Automatic disconnection of <strong>the</strong> supply of <strong>the</strong> section of <strong>the</strong> <strong>in</strong>stallationconcerned, <strong>in</strong> such a way that <strong>the</strong> touch-voltage/time safety requirements arerespected for any level of touch voltage Uc (1) (see Fig. F7).EarthconnectionUcFig. F7 : Illustration of <strong>the</strong> dangerous touch voltage UcThe greater <strong>the</strong> value of Uc, <strong>the</strong> greater <strong>the</strong> rapidity of supply disconnection requiredto provide protection (see Fig. F8). The highest value of Uc that can be tolerated<strong>in</strong>def<strong>in</strong>itely without danger to human be<strong>in</strong>gs is 50 V a.c.Rem<strong>in</strong>der of <strong>the</strong> <strong>the</strong>oretical disconnect<strong>in</strong>g-time limitsUo (V) 50 < Uo y 120 120 < Uo y 230 230 < Uo y 400 Uo > 400System TN or IT 0.8 0.4 0.2 0.1TT 0.3 0.2 0.07 0.04Fig. F8 : Maximum safe duration of <strong>the</strong> assumed values of AC touch voltage (<strong>in</strong> seconds)© Schneider Electric - all rights reserved(1) Touch voltage Uc is <strong>the</strong> voltage exist<strong>in</strong>g (as <strong>the</strong> result of<strong>in</strong>sulation failure) between an exposed-conductive-part andany conductive element with<strong>in</strong> reach which is at a different(generally earth) potential.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock3 Protection aga<strong>in</strong>st <strong>in</strong>directcontactAutomatic disconnection for TT system isachieved by RCD hav<strong>in</strong>g a sensitivity ofI i 50 n where R RA is <strong>the</strong> resistance of <strong>the</strong>A<strong>in</strong>stallation earth electrode3.2 Automatic disconnection for TT systemPr<strong>in</strong>cipleIn this system all exposed-conductive-parts and extraneous-conductive-parts of<strong>the</strong> <strong>in</strong>stallation must be connected to a common earth electrode. The neutral po<strong>in</strong>tof <strong>the</strong> supply system is normally ear<strong>the</strong>d at a p<strong>in</strong>t outside <strong>the</strong> <strong>in</strong>fluence area of <strong>the</strong><strong>in</strong>stallation earth electrode, but need not be so. The impedance of <strong>the</strong> earth-fault loop<strong>the</strong>refore consists ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> two earth electrodes (i.e. <strong>the</strong> source and <strong>in</strong>stallationelectrodes) <strong>in</strong> series, so that <strong>the</strong> magnitude of <strong>the</strong> earth fault current is generallytoo small to operate overcurrent relay or fuses, and <strong>the</strong> use of a residual currentoperated device is essential.This pr<strong>in</strong>ciple of protection is also valid if one common earth electrode only is used,notably <strong>in</strong> <strong>the</strong> case of a consumer-type substation with<strong>in</strong> <strong>the</strong> <strong>in</strong>stallation area, wherespace limitation may impose <strong>the</strong> adoption of a TN system earth<strong>in</strong>g, but where allo<strong>the</strong>r conditions required by <strong>the</strong> TN system cannot be fulfilled.Protection by automatic disconnection of <strong>the</strong> supply used <strong>in</strong> TT system is by RCD ofwhere Rsensitivity: I i 50 nRAwhere<strong>in</strong>stallation earth electrodeR A is <strong>the</strong> resistance of <strong>the</strong> earth electrode for <strong>the</strong> <strong>in</strong>stallationI Δn is <strong>the</strong> rated residual operat<strong>in</strong>g current of <strong>the</strong> RCDFor temporary supplies (to work sites, …) and agricultural and horticultural premises,<strong>the</strong> value of 50 V is replaced by 25 V.Example (see Fig. F9)b The resistance of <strong>the</strong> earth electrode of substation neutral R n is 10 Ω.b The resistance of <strong>the</strong> earth electrode of <strong>the</strong> <strong>in</strong>stallation R A is 20 Ω.b The earth-fault loop current I d = 7.7 A.b The fault voltage U f = I d x R A = 154 V and <strong>the</strong>refore dangerous, butI Δn = 50/20 = 2.5 A so that a standard 300 mA RCD will operate <strong>in</strong> about 30 mswithout <strong>in</strong>tentional time delay and will clear <strong>the</strong> fault where a fault voltage exceed<strong>in</strong>gappears on an exposed-conductive-part.FUo (1) (V)T (s)50 < Uo y 120 0.3120 < Uo y 230 0.2230 < Uo y 400 0.07Uo > 400 0.04(1) Uo is <strong>the</strong> nom<strong>in</strong>al phase to earth voltageFig. F10 : Maximum disconnect<strong>in</strong>g time for AC f<strong>in</strong>al circuits not exceed<strong>in</strong>g 32 AR n = 10 ΩSubstationear<strong>the</strong>lectrodeR A = 20 Ω<strong>Installation</strong>ear<strong>the</strong>lectrodeU f123NPEFig. F9 : Automatic disconnection of supply for TT systemSpecified maximum disconnection timeThe tripp<strong>in</strong>g times of RCDs are generally lower than those required <strong>in</strong> <strong>the</strong> majorityof national standards; this feature facilitates <strong>the</strong>ir use and allows <strong>the</strong> adoption of aneffective discrim<strong>in</strong>ative protection.The IEC 60364-4-41 specifies <strong>the</strong> maximum operat<strong>in</strong>g time of protective devicesused <strong>in</strong> TT system for <strong>the</strong> protection aga<strong>in</strong>st <strong>in</strong>direct contact:b For all f<strong>in</strong>al circuits with a rated current not exceed<strong>in</strong>g 32 A, <strong>the</strong> maximumdisconnect<strong>in</strong>g time will not exceed <strong>the</strong> values <strong>in</strong>dicated <strong>in</strong> Figure F10b For all o<strong>the</strong>r circuits, <strong>the</strong> maximum disconnect<strong>in</strong>g time is fixed to 1s. This limitenables discrim<strong>in</strong>ation between RCDs when <strong>in</strong>stalled on distribution circuits.RCD is a general term for all devices operat<strong>in</strong>g on <strong>the</strong> residual-current pr<strong>in</strong>ciple.RCCB (Residual Current Circuit-Breaker) as def<strong>in</strong>ed <strong>in</strong> IEC 61008 series is a specificclass of RCD.Type G (general) and type S (Selective) of IEC 61008 have a tripp<strong>in</strong>g time/currentcharacteristics as shown <strong>in</strong> Figure F11 next page. These characteristics allow a certa<strong>in</strong>degree of selective tripp<strong>in</strong>g between <strong>the</strong> several comb<strong>in</strong>ation of rat<strong>in</strong>gs and types, asshown later <strong>in</strong> sub-clause 4.3. Industrial type RCD accord<strong>in</strong>g to IEC 60947-2 providemore possibilities of discrim<strong>in</strong>ation due to <strong>the</strong>ir flexibility of time-delay<strong>in</strong>g.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock3 Protection aga<strong>in</strong>st <strong>in</strong>directcontactx I Δn 2 5 > 5Domestic Instantaneous 0.3 0.15 0.04 0.04Type S 0.5 0.2 0.15 0.15Industrial Instantaneous 0.3 0.15 0.04 0.04Time-delay (0.06) 0.5 0.2 0.15 0.15Time-delay (o<strong>the</strong>r) Accord<strong>in</strong>g to manufacturer© Schneider Electric - all rights reservedF230Id== (64.3 x10 -3 3,576 A (≈ 22 In based on a NSX160 circuit-breaker).50 m35 mm 2 The “<strong>in</strong>stantaneous” magnetic trip unit adjustment of <strong>the</strong> circuit-breaker is many timeDCless than this short-circuit value, so that positive operation <strong>in</strong> <strong>the</strong> shortest possibleFig. F11 : Maximum operat<strong>in</strong>g time of RCD’s (<strong>in</strong> seconds)3.3 Automatic disconnection for TN systemsThe automatic disconnection for TN system isachieved by overcurrent protective devices orRCD’sPr<strong>in</strong>cipleIn this system all exposed and extraneous-conductive-parts of <strong>the</strong> <strong>in</strong>stallation areconnected directly to <strong>the</strong> ear<strong>the</strong>d po<strong>in</strong>t of <strong>the</strong> power supply by protective conductors.ABAs noted <strong>in</strong> Chapter E Sub-clause 1.2, <strong>the</strong> way <strong>in</strong> which this direct connection iscarried out depends on whe<strong>the</strong>r <strong>the</strong> TN-C, TN-S, or TN-C-S method of implement<strong>in</strong>g<strong>the</strong> TN pr<strong>in</strong>ciple is used. In figure F12 <strong>the</strong> method TN-C is shown, <strong>in</strong> which <strong>the</strong>neutral conductor acts as both <strong>the</strong> Protective-Earth and Neutral (PEN) conductor. Inall TN systems, any <strong>in</strong>sulation fault to earth results <strong>in</strong> a phase to neutral short-circuit.High fault current levels allow to use overcurrent protection but can give rise to touchvoltages exceed<strong>in</strong>g 50% of <strong>the</strong> phase to neutral voltage at <strong>the</strong> fault position dur<strong>in</strong>g<strong>the</strong> short disconnection time.In practice for utility distribution network, earth electrodes are normally <strong>in</strong>stalled atregular <strong>in</strong>tervals along <strong>the</strong> protective conductor (PE or PEN) of <strong>the</strong> network, while<strong>the</strong> consumer is often required to <strong>in</strong>stall an earth electrode at <strong>the</strong> service entrance.On large <strong>in</strong>stallations additional earth electrodes dispersed around <strong>the</strong> premises areoften provided, <strong>in</strong> order to reduce <strong>the</strong> touch voltage as much as possible. In high-riseapartment blocks, all extraneous conductive parts are connected to <strong>the</strong> protectiveconductor at each level. In order to ensure adequate protection, <strong>the</strong> earth-faultcurrentId = Uo or 0.8 Uo u must I be higher or equal to Ia, where:Zs Zcb Uo = nom<strong>in</strong>al phase to neutral voltageb Id = <strong>the</strong> fault currentb Ia = current equal to <strong>the</strong> value required to operate <strong>the</strong> protective device <strong>in</strong> <strong>the</strong> timespecifiedb Zs = earth-fault current loop impedance, equal to <strong>the</strong> sum of <strong>the</strong> impedances of <strong>the</strong>source, <strong>the</strong> live phase conductors to <strong>the</strong> fault position, <strong>the</strong> protective conductors from<strong>the</strong> fault position back to <strong>the</strong> sourceb Zc = <strong>the</strong> faulty-circuit loop impedance (see “conventional method” Sub-clause 6.2)Note: The path through earth electrodes back to <strong>the</strong> source will have (generally)much higher impedance values than those listed above, and need not be considered.Example (see Fig. F12)230The fault voltage Uf = = 115 V and and is is hazardous;122The fault loop impedance Zs=Zab + Zbc + Zde + Zen + Zna.N3FIf Zbc and Zde are predom<strong>in</strong>ant, <strong>the</strong>n:PENENSX160L“conventional Zs = 2= 64method” . 3 m , , so and so that <strong>in</strong> this example will give an estimated fault current of35 mm 2 Stime is assured.Fig. F12 : Automatic disconnection <strong>in</strong> TN systemU fNote: Some authorities base such calculations on <strong>the</strong> assumption that a voltagedrop of 20% occurs <strong>in</strong> <strong>the</strong> part of <strong>the</strong> impedance loop BANE.This method, which is recommended, is expla<strong>in</strong>ed <strong>in</strong> chapter F sub-clause 6.2“conventional“conventionalmethod”method”andand<strong>in</strong><strong>in</strong>thisthisexampleexamplewillwillgivegiveananestimatedestimatedfaultfaultcurrentcurrentofof3230 x 0.8 x 10= 2,816 A ((≈ 18 In).64.3Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock3 Protection aga<strong>in</strong>st <strong>in</strong>directcontactSpecified maximum disconnection timeThe IEC 60364-4-41 specifies <strong>the</strong> maximum operat<strong>in</strong>g time of protective devicesused <strong>in</strong> TN system for <strong>the</strong> protection aga<strong>in</strong>st <strong>in</strong>direct contact:b For all f<strong>in</strong>al circuits with a rated current not exceed<strong>in</strong>g 32 A, <strong>the</strong> maximumdisconnect<strong>in</strong>g time will not exceed <strong>the</strong> values <strong>in</strong>dicated <strong>in</strong> Figure F13b For all o<strong>the</strong>r circuits, <strong>the</strong> maximum disconnect<strong>in</strong>g time is fixed to 5s. This limitenables discrim<strong>in</strong>ation between protective devices <strong>in</strong>stalled on distribution circuitsNote: The use of RCDs may be necessary on TN-ear<strong>the</strong>d systems. Use of RCDs onTN-C-S systems means that <strong>the</strong> protective conductor and <strong>the</strong> neutral conductor must(evidently) be separated upstream of <strong>the</strong> RCD. This separation is commonly made at<strong>the</strong> service entrance.Uo (1) (V)T (s)50 < Uo y 120 0.8120 < Uo y 230 0.4230 < Uo y 400 0.2Uo > 400 0.1(1) Uo is <strong>the</strong> nom<strong>in</strong>al phase to earth voltageFFig. F13 : Maximum disconnect<strong>in</strong>g time for AC f<strong>in</strong>al circuits not exceed<strong>in</strong>g 32 AIf <strong>the</strong> protection is to be provided by a circuitbreaker,it is sufficient to verify that <strong>the</strong> faultcurrent will always exceed <strong>the</strong> current-sett<strong>in</strong>glevel of <strong>the</strong> <strong>in</strong>stantaneous or short-time delaytripp<strong>in</strong>g unit (Im)Protection by means of circuit-breaker (see Fig. F14)The <strong>in</strong>stantaneous trip unit of a circuit-breaker will elim<strong>in</strong>ate a short-circuit to earth <strong>in</strong>less than 0.1 second.In consequence, automatic disconnection with<strong>in</strong> <strong>the</strong> maximum allowable time willalways be assured, s<strong>in</strong>ce all types of trip unit, magnetic or electronic, <strong>in</strong>stantaneousor slightly retarded, are suitable: Ia = Im. The maximum tolerance authorisedby <strong>the</strong> relevant standard, however, must always be taken <strong>in</strong>to consideration. It issufficient <strong>the</strong>refore that <strong>the</strong> fault current Uo Uoor 0.8 determ<strong>in</strong>ed by by calculation (or estimatedZs Zc(or estimated on site) on site) be greater be greater than than <strong>the</strong> <strong>in</strong>stantaneous <strong>the</strong> <strong>in</strong>stantaneous trip-sett<strong>in</strong>g trip-sett<strong>in</strong>g current, current, or than or than <strong>the</strong> very short-<strong>the</strong> very short-time tripp<strong>in</strong>g threshold level, to be sure of tripp<strong>in</strong>g with<strong>in</strong> <strong>the</strong> permittedtime limit.Ia can be determ<strong>in</strong>ed from <strong>the</strong> fuseProtection by means of fuses (see Fig. F15)performance curve. In any case, protection The value of current which assures <strong>the</strong> correct operation of a fuse can becannot be achieved if <strong>the</strong> loop impedance Zs ascerta<strong>in</strong>ed from a current/time performance graph for <strong>the</strong> fuse concerned.or Zc exceeds a certa<strong>in</strong> value<strong>the</strong>refore that The <strong>the</strong> fault current Uo Uoor 0.8 as determ<strong>in</strong>ed by calculation above, must (or largely estimated exceed thatZs Zcon site) be greater necessary than <strong>the</strong> to ensure <strong>in</strong>stantaneous positive operation trip-sett<strong>in</strong>g of current, <strong>the</strong> fuse. or The than condition <strong>the</strong> very short-to observe<strong>the</strong>refore is that Ia < Uo Uoor 0.8 as as <strong>in</strong>dicated Figure <strong>in</strong> Figure F15. F15.Zs Zct1: Short-time delayed trip2: Instantaneous tript12Im Uo/ZsFig. F14 : Disconnection by circuit-breaker for a TN systemItc = 0.4 sFig. F15 : Disconnection by fuses for a TN systemIaUo/ZsI© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock3 Protection aga<strong>in</strong>st <strong>in</strong>directcontactExample: The nom<strong>in</strong>al phase to neutral voltage of <strong>the</strong> network is 230 V and<strong>the</strong> maximum disconnection time given by <strong>the</strong> graph <strong>in</strong> Figure F15 is 0.4 s.The correspond<strong>in</strong>g value of Ia can be read from <strong>the</strong> graph. Us<strong>in</strong>g <strong>the</strong> voltage (230 V)and <strong>the</strong> current Ia,Ia,<strong>the</strong><strong>the</strong>completecompletelooploopimpedanceimpedanceoror<strong>the</strong><strong>the</strong>circuitcircuitlooploopimpedanceimpedancecancan230be calculated from Zs = or Zc = 0.8 230 . This impedance value must never beIaIaexceeded and should preferably be substantially less to ensure satisfactory fuseoperation.F10Protection by means of Residual Current Devices forTN-S circuitsResidual Current Devices must be used where:b The loop impedance cannot be determ<strong>in</strong>ed precisely (lengths difficult to estimate,presence of metallic material close to <strong>the</strong> wir<strong>in</strong>g)b The fault current is so low that <strong>the</strong> disconnect<strong>in</strong>g time cannot be met by us<strong>in</strong>govercurrent protective devicesThe rated tripp<strong>in</strong>g current of RCDs be<strong>in</strong>g <strong>in</strong> <strong>the</strong> order of a few amps, it is well below<strong>the</strong> fault current level. RCDs are consequently well adapted to this situation.In practice, <strong>the</strong>y are often <strong>in</strong>stalled <strong>in</strong> <strong>the</strong> LV sub distribution and <strong>in</strong> many countries,<strong>the</strong> automatic disconnection of f<strong>in</strong>al circuits shall be achieved by Residual CurrentDevices.3.4 Automatic disconnection on a second fault <strong>in</strong> anIT systemIn this type of system:b The <strong>in</strong>stallation is isolated from earth, or <strong>the</strong> neutral po<strong>in</strong>t of its power-supplysource is connected to earth through a high impedanceb All exposed and extraneous-conductive-parts are ear<strong>the</strong>d via an <strong>in</strong>stallation ear<strong>the</strong>lectrode.© Schneider Electric - all rights reservedIn IT system <strong>the</strong> first fault to earth should notcause any disconnectionFig. F16 : Phases to earth <strong>in</strong>sulation monitor<strong>in</strong>g deviceobligatory <strong>in</strong> IT system(1) Resistive leakage current to earth through <strong>the</strong> <strong>in</strong>sulation isassumed to be negligibly small <strong>in</strong> <strong>the</strong> example.First fault situationOn <strong>the</strong> occurrence of a true fault to earth, referred to as a “first fault”, <strong>the</strong> fault currentis very low, such that <strong>the</strong> rule Id x R A y 50 V (see F3.2) is fulfilled and no dangerousfault voltages can occur.In practice <strong>the</strong> current Id is low, a condition that is nei<strong>the</strong>r dangerous to personnel,nor harmful to <strong>the</strong> <strong>in</strong>stallation.However, <strong>in</strong> this system:b A permanent monitor<strong>in</strong>g of <strong>the</strong> <strong>in</strong>sulation to earth must be provided, coupled withan alarm signal (audio and/or flash<strong>in</strong>g lights, etc.) operat<strong>in</strong>g <strong>in</strong> <strong>the</strong> event of a firstearth fault (see Fig. F16)b The rapid location and repair of a first fault is imperative if <strong>the</strong> full benefits of <strong>the</strong>IT system are to be realised. Cont<strong>in</strong>uity of service is <strong>the</strong> great advantage afforded by<strong>the</strong> system.For a network formed from 1 km of new conductors, <strong>the</strong> leakage (capacitive)impedance to earth Zf is of <strong>the</strong> order of 3,500 Ω per phase. In normal operation, <strong>the</strong>capacitive current (1) to earth is <strong>the</strong>refore:UoZf = 2303,500 = 66 mA per phase.Dur<strong>in</strong>g a phase to earth fault, as <strong>in</strong>dicated <strong>in</strong> Figure F17 opposite page, <strong>the</strong> currentpass<strong>in</strong>g through <strong>the</strong> electrode resistance RnA is <strong>the</strong> vector sum of <strong>the</strong> capacitivecurrents <strong>in</strong> <strong>the</strong> two healthy phases. The voltages of <strong>the</strong> healthy phases have(because of <strong>the</strong> fault) <strong>in</strong>creased to 3 <strong>the</strong> normal phase voltage, so that <strong>the</strong> capacitivecurrents <strong>in</strong>crease by <strong>the</strong> same amount. These currents are displaced, one from <strong>the</strong>o<strong>the</strong>r by 60°, so that when added vectorially, this amounts to 3 x 66 mA = 198 mA, <strong>in</strong><strong>the</strong> present example.The fault voltage Uf is <strong>the</strong>refore equal to 198 x 5 x 10 -3 = 0.99 V, which is obviouslyharmless.The current through <strong>the</strong> short-circuit to earth is given by <strong>the</strong> vector sum of <strong>the</strong>neutral-resistor current Id1 (=153 mA) and <strong>the</strong> capacitive current Id2 (198 mA).S<strong>in</strong>ce <strong>the</strong> exposed-conductive-parts of <strong>the</strong> <strong>in</strong>stallation are connected directly toearth, <strong>the</strong> neutral impedance Zct plays practically no part <strong>in</strong> <strong>the</strong> production of touchvoltages to earth.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock3 Protection aga<strong>in</strong>st <strong>in</strong>directcontactId1BId1 + Id2123NPEZ ct = 1,500 ΩΩZfR nA = 5 ΩId2U fF11Fig. F17 : Fault current path for a first fault <strong>in</strong> IT systemThe simultaneous existence of two earth faults(if not both on <strong>the</strong> same phase) is dangerous,and rapid clearance by fuses or automaticcircuit-breaker tripp<strong>in</strong>g depends on <strong>the</strong> type ofearth-bond<strong>in</strong>g scheme, and whe<strong>the</strong>r separateearth<strong>in</strong>g electrodes are used or not, <strong>in</strong> <strong>the</strong><strong>in</strong>stallation concernedSecond fault situationOn <strong>the</strong> appearance of a second fault, on a different phase, or on a neutral conductor,a rapid disconnection becomes imperative. Fault clearance is carried out differently <strong>in</strong>each of <strong>the</strong> follow<strong>in</strong>g cases:1 st caseIt concerns an <strong>in</strong>stallation <strong>in</strong> which all exposed conductive parts are bonded to acommon PE conductor, as shown <strong>in</strong> Figure F18.In this case no earth electrodes are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> fault current path, so that a highlevel of fault current is assured, and conventional overcurrent protective devices areused, i.e. circuit-breakers and fuses.The first fault could occur at <strong>the</strong> end of a circuit <strong>in</strong> a remote part of <strong>the</strong> <strong>in</strong>stallation,while <strong>the</strong> second fault could feasibly be located at <strong>the</strong> opposite end of <strong>the</strong> <strong>in</strong>stallation.For this reason, it is conventional to double <strong>the</strong> loop impedance of a circuit, whencalculat<strong>in</strong>g <strong>the</strong> anticipated fault sett<strong>in</strong>g level for its overcurrent protective device(s).Where <strong>the</strong> system <strong>in</strong>cludes a neutral conductor <strong>in</strong> addition to <strong>the</strong> 3 phaseconductors, <strong>the</strong> lowest short-circuit fault currents will occur if one of <strong>the</strong> (two) faults isfrom <strong>the</strong> neutral conductor to earth (all four conductors are <strong>in</strong>sulated from earth <strong>in</strong> anIT scheme). In four-wire IT <strong>in</strong>stallations, <strong>the</strong>refore, <strong>the</strong> phase-to-neutral voltage mustbe used to calculate short-circuit protective levels i.e. 0.8 Uo u I a(1)where2 ZcUo = phase to neutral voltageZc = impedance of <strong>the</strong> circuit fault-current loop (see F3.3)Ia = current level for trip sett<strong>in</strong>g(1) Based on <strong>the</strong> “conventional method” noted <strong>in</strong> <strong>the</strong> firstexample of Sub-clause 3.3.If no neutral conductor is distributed, <strong>the</strong>n <strong>the</strong> voltage to use for <strong>the</strong> fault-currentcalculation is <strong>the</strong> phase-to-phase value, i.e. 0.83 Uo(1)u I a2 Zcb Maximum tripp<strong>in</strong>g timesDisconnect<strong>in</strong>g times for IT system depends on how <strong>the</strong> different <strong>in</strong>stallation andsubstation earth electrodes are <strong>in</strong>terconnected.For f<strong>in</strong>al circuits supply<strong>in</strong>g electrical equipment with a rated current not exceed<strong>in</strong>g32 A and hav<strong>in</strong>g <strong>the</strong>ir exposed-conductive-parts bonded with <strong>the</strong> substation ear<strong>the</strong>lectrode, <strong>the</strong> maximum tripp<strong>in</strong>g time is given <strong>in</strong> table F8. For <strong>the</strong> o<strong>the</strong>r circuitswith<strong>in</strong> <strong>the</strong> same group of <strong>in</strong>terconnected exposed-conductive-parts, <strong>the</strong> maximumdisconnect<strong>in</strong>g time is 5 s. This is due to <strong>the</strong> fact that any double fault situation with<strong>in</strong>this group will result <strong>in</strong> a short-circuit current as <strong>in</strong> TN system.For f<strong>in</strong>al circuits supply<strong>in</strong>g electrical equipment with a rated current not exceed<strong>in</strong>g32 A and hav<strong>in</strong>g <strong>the</strong>ir exposed-conductive-parts connected to an <strong>in</strong>dependent ear<strong>the</strong>lectrode electrically separated from <strong>the</strong> substation earth electrode, <strong>the</strong> maximumtripp<strong>in</strong>g time is given <strong>in</strong> Figure F13. For <strong>the</strong> o<strong>the</strong>r circuits with<strong>in</strong> <strong>the</strong> same group ofnon <strong>in</strong>terconnected exposed-conductive-parts, <strong>the</strong> maximum disconnect<strong>in</strong>g time is1s. This is due to <strong>the</strong> fact that any double fault situation result<strong>in</strong>g from one <strong>in</strong>sulationfault with<strong>in</strong> this group and ano<strong>the</strong>r <strong>in</strong>sulation fault from ano<strong>the</strong>r group will generate afault current limited by <strong>the</strong> different earth electrode resistances as <strong>in</strong> TT system.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>© Schneider Electric - all rights reserved


F - Protection aga<strong>in</strong>st electric shock3 Protection aga<strong>in</strong>st <strong>in</strong>directcontactKAIdFJ123NPENSX160160 A50 m50 m35 mm 2 35 mm 2G HD CEBR AF12Fig. F18 : Circuit-breaker tripp<strong>in</strong>g on double fault situation when exposed-conductive-parts areconnected to a common protective conductorb Protection by circuit-breakerIn <strong>the</strong> case shown <strong>in</strong> Figure F18, <strong>the</strong> adjustments of <strong>in</strong>stantaneous and short-timedelay overcurrent trip unit must be decided. The times recommended here above canbe readily complied with. The short-circuit protection provided by <strong>the</strong> NSX160 circuitbreakeris suitable to clear a phase to phase short-circuit occurr<strong>in</strong>g at <strong>the</strong> load endsof <strong>the</strong> circuits concerned.Rem<strong>in</strong>der: In an IT system, <strong>the</strong> two circuits <strong>in</strong>volved <strong>in</strong> a phase to phase short-circuitare assumed to be of equal length, with <strong>the</strong> same cross sectional area conductors,<strong>the</strong> PE conductors be<strong>in</strong>g <strong>the</strong> same cross sectional area as <strong>the</strong> phase conductors. Insuch a case, <strong>the</strong> impedance of <strong>the</strong> circuit loop when us<strong>in</strong>g <strong>the</strong> “conventional method”(sub clause 6.2) will be twice that calculated for one of <strong>the</strong> circuits <strong>in</strong> <strong>the</strong> TN case,shown <strong>in</strong> Chapter F sub clause 3.3.LSo that The <strong>the</strong> resistance of of circuit 1 loop FGHJ = 22RJH= 2 <strong>in</strong> m where:aρ = resistance of copper rod 1 meter long of cross sectional area 1 mm 2 , <strong>in</strong> mΩL = length of <strong>the</strong> circuit <strong>in</strong> metersa = cross sectional area of <strong>the</strong> conductor <strong>in</strong> mm 2FGHJ = 2 x 22.5 x 50/35 = 64.3 mΩand <strong>the</strong> loop resistance B, C, D, E, F, G, H, J will be 2 x 64.3 = 129 mΩ.The fault current will <strong>the</strong>refore be 0.8 x 3 x 230 x 10 3 /129 = 2,470 A.b Protection by fusesThe current I a for which fuse operation must be assured <strong>in</strong> a time specified accord<strong>in</strong>gto here above can be found from fuse operat<strong>in</strong>g curves, as described <strong>in</strong> figure F15.The current <strong>in</strong>dicated should be significantly lower than <strong>the</strong> fault currents calculatedfor <strong>the</strong> circuit concerned.b Protection by Residual current circuit-breakers (RCCBs)For low values of short-circuit current, RCCBs are necessary. Protection aga<strong>in</strong>st<strong>in</strong>direct contact hazards can be achieved <strong>the</strong>n by us<strong>in</strong>g one RCCB for each circuit.2 nd caseb It concerns exposed conductive parts which are ear<strong>the</strong>d ei<strong>the</strong>r <strong>in</strong>dividually (each parthav<strong>in</strong>g its own earth electrode) or <strong>in</strong> separate groups (one electrode for each group).If all exposed conductive parts are not bonded to a common electrode system, <strong>the</strong>nit is possible for <strong>the</strong> second earth fault to occur <strong>in</strong> a different group or <strong>in</strong> a separatelyear<strong>the</strong>d <strong>in</strong>dividual apparatus. Additional protection to that described above forcase 1, is required, and consists of a RCD placed at <strong>the</strong> circuit-breaker controll<strong>in</strong>geach group and each <strong>in</strong>dividually-ear<strong>the</strong>d apparatus.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock3 Protection aga<strong>in</strong>st <strong>in</strong>directcontactThe reason for this requirement is that <strong>the</strong> separate-group electrodes are “bonded”through <strong>the</strong> earth so that <strong>the</strong> phase to phase short-circuit current will generally belimited when pass<strong>in</strong>g through <strong>the</strong> earth bond by <strong>the</strong> electrode contact resistanceswith <strong>the</strong> earth, <strong>the</strong>reby mak<strong>in</strong>g protection by overcurrent devices unreliable. Themore sensitive RCDs are <strong>the</strong>refore necessary, but <strong>the</strong> operat<strong>in</strong>g current of <strong>the</strong> RCDsmust evidently exceed that which occurs for a first fault (see Fig. F19).Leakage capacitance First fault current(µF)(A)1 0.075 0.3630 2.17Note: 1 µF is <strong>the</strong> 1 km typical leakage capacitance for4-conductor cable.Fig. F19 : Correspondence between <strong>the</strong> earth leakage capacitance and <strong>the</strong> first fault currentF13For a second fault occurr<strong>in</strong>g with<strong>in</strong> a group hav<strong>in</strong>g a common earth-electrodesystem, <strong>the</strong> overcurrent protection operates, as described above for case 1.Note 1: See also Chapter G Sub-clause 7.2, protection of <strong>the</strong> neutral conductor.Note 2: In 3-phase 4-wire <strong>in</strong>stallations, protection aga<strong>in</strong>st overcurrent <strong>in</strong> <strong>the</strong> neutralconductor is sometimes more conveniently achieved by us<strong>in</strong>g a r<strong>in</strong>g-type currenttransformer over <strong>the</strong> s<strong>in</strong>gle-core neutral conductor (see Fig. F20).Case 1Case 2NRCDRCDNRCDRCDRnΩPIMRAGroupearthRnΩPIMGroupearth 1RA1RA2Groupearth 2Fig. F20 : Application of RCDs when exposed-conductive-parts are ear<strong>the</strong>d <strong>in</strong>dividually or by group on IT systemExtra-low voltage is used where <strong>the</strong> risksare great: swimm<strong>in</strong>g pools, wander<strong>in</strong>g-leadhand lamps, and o<strong>the</strong>r portable appliances foroutdoor use, etc.3.5 Measures of protection aga<strong>in</strong>st direct or <strong>in</strong>directcontact without automatic disconnection of supplyThe use of SELV (Safety Extra-Low Voltage)Safety by extra low voltage SELV is used <strong>in</strong> situations where <strong>the</strong> operation of electricalequipment presents a serious hazard (swimm<strong>in</strong>g pools, amusement parks, etc.).This measure depends on supply<strong>in</strong>g power at extra-low voltage from <strong>the</strong> secondaryw<strong>in</strong>d<strong>in</strong>gs of isolat<strong>in</strong>g transformers especially designed accord<strong>in</strong>g to national or to<strong>in</strong>ternational (IEC 60742) standard. The impulse withstand level of <strong>in</strong>sulation between<strong>the</strong> primary and secondary w<strong>in</strong>d<strong>in</strong>gs is very high, and/or an ear<strong>the</strong>d metal screenis sometimes <strong>in</strong>corporated between <strong>the</strong> w<strong>in</strong>d<strong>in</strong>gs. The secondary voltage neverexceeds 50 V rms.Three conditions of exploitation must be respected <strong>in</strong> order to provide satisfactoryprotection aga<strong>in</strong>st <strong>in</strong>direct contact:b No live conductor at SELV must be connected to earthb Exposed-conductive-parts of SELV supplied equipment must not be connected toearth, to o<strong>the</strong>r exposed conductive parts, or to extraneous-conductive-partsb All live parts of SELV circuits and of o<strong>the</strong>r circuits of higher voltage must beseparated by a distance at least equal to that between <strong>the</strong> primary and secondaryw<strong>in</strong>d<strong>in</strong>gs of a safety isolat<strong>in</strong>g transformer.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock3 Protection aga<strong>in</strong>st <strong>in</strong>directcontactThese measures require that:b SELV circuits must use conduits exclusively provided for <strong>the</strong>m, unless cables whichare <strong>in</strong>sulated for <strong>the</strong> highest voltage of <strong>the</strong> o<strong>the</strong>r circuits are used for <strong>the</strong> SELV circuitsb Socket outlets for <strong>the</strong> SELV system must not have an earth-p<strong>in</strong> contact. TheSELV circuit plugs and sockets must be special, so that <strong>in</strong>advertent connection to adifferent voltage level is not possible.Note: In normal conditions, when <strong>the</strong> SELV voltage is less than 25 V, <strong>the</strong>re is noneed to provide protection aga<strong>in</strong>st direct contact hazards. Particular requirementsare <strong>in</strong>dicated <strong>in</strong> Chapter P, Clause 3: “special locations”.F14The use of PELV (Protection by Extra Low Voltage) (see Fig. F21)This system is for general use where low voltage is required, or preferred for safetyreasons, o<strong>the</strong>r than <strong>in</strong> <strong>the</strong> high-risk locations noted above. The conception is similarto that of <strong>the</strong> SELV system, but <strong>the</strong> secondary circuit is ear<strong>the</strong>d at one po<strong>in</strong>t.IEC 60364-4-41 def<strong>in</strong>es precisely <strong>the</strong> significance of <strong>the</strong> reference PELV. Protectionaga<strong>in</strong>st direct contact hazards is generally necessary, except when <strong>the</strong> equipmentis <strong>in</strong> <strong>the</strong> zone of equipotential bond<strong>in</strong>g, and <strong>the</strong> nom<strong>in</strong>al voltage does not exceed25 V rms, and <strong>the</strong> equipment is used <strong>in</strong> normally dry locations only, and large-areacontact with <strong>the</strong> human body is not expected. In all o<strong>the</strong>r cases, 6 V rms is <strong>the</strong>maximum permitted voltage, where no direct contact protection is provided.230 V / 24 VFig. F21 : Low-voltage supplies from a safety isolat<strong>in</strong>g transformerFELV system (Functional Extra-Low Voltage)Where, for functional reasons, a voltage of 50 V or less is used, but not all of <strong>the</strong>requirements relat<strong>in</strong>g to SELV or PELV are fulfilled, appropriate measures described<strong>in</strong> IEC 60364-4-41 must be taken to ensure protection aga<strong>in</strong>st both direct and<strong>in</strong>direct contact hazards, accord<strong>in</strong>g to <strong>the</strong> location and use of <strong>the</strong>se circuits.Note: Such conditions may, for example, be encountered when <strong>the</strong> circuit conta<strong>in</strong>sequipment (such as transformers, relays, remote-control switches, contactors)<strong>in</strong>sufficiently <strong>in</strong>sulated with respect to circuits at higher voltages.© Schneider Electric - all rights reservedThe electrical separation of circuits is suitablefor relatively short cable lengths and high levelsof <strong>in</strong>sulation resistance. It is preferably used foran <strong>in</strong>dividual appliance230 V/230 VFig. F22 : Safety supply from a class II separation transformerThe electrical separation of circuits (see Fig. F22)The pr<strong>in</strong>ciple of <strong>the</strong> electrical separation of circuits (generally s<strong>in</strong>gle-phase circuits)for safety purposes is based on <strong>the</strong> follow<strong>in</strong>g rationale.The two conductors from <strong>the</strong> unear<strong>the</strong>d s<strong>in</strong>gle-phase secondary w<strong>in</strong>d<strong>in</strong>g of aseparation transformer are <strong>in</strong>sulated from earth.If a direct contact is made with one conductor, a very small current only will flow <strong>in</strong>to<strong>the</strong> person mak<strong>in</strong>g contact, through <strong>the</strong> earth and back to <strong>the</strong> o<strong>the</strong>r conductor, via<strong>the</strong> <strong>in</strong>herent capacitance of that conductor with respect to earth. S<strong>in</strong>ce <strong>the</strong> conductorcapacitance to earth is very small, <strong>the</strong> current is generally below <strong>the</strong> level of perception.As <strong>the</strong> length of circuit cable <strong>in</strong>creases, <strong>the</strong> direct contact current will progressively<strong>in</strong>crease to a po<strong>in</strong>t where a dangerous electric shock will be experienced.Even if a short length of cable precludes any danger from capacitive current, a lowvalue of <strong>in</strong>sulation resistance with respect to earth can result <strong>in</strong> danger, s<strong>in</strong>ce <strong>the</strong>current path is <strong>the</strong>n via <strong>the</strong> person mak<strong>in</strong>g contact, through <strong>the</strong> earth and back to <strong>the</strong>o<strong>the</strong>r conductor through <strong>the</strong> low conductor-to-earth <strong>in</strong>sulation resistance.For <strong>the</strong>se reasons, relatively short lengths of well <strong>in</strong>sulated cables are essential <strong>in</strong>separation systems.Transformers are specially designed for this duty, with a high degree of <strong>in</strong>sulationbetween primary and secondary w<strong>in</strong>d<strong>in</strong>gs, or with equivalent protection, such as anear<strong>the</strong>d metal screen between <strong>the</strong> w<strong>in</strong>d<strong>in</strong>gs. Construction of <strong>the</strong> transformer is toclass II <strong>in</strong>sulation standards.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock3 Protection aga<strong>in</strong>st <strong>in</strong>directcontactAs <strong>in</strong>dicated before, successful exploitation of <strong>the</strong> pr<strong>in</strong>ciple requires that:b No conductor or exposed conductive part of <strong>the</strong> secondary circuit must beconnected to earth,b The length of secondary cabl<strong>in</strong>g must be limited to avoid large capacitance values (1) ,b A high <strong>in</strong>sulation-resistance value must be ma<strong>in</strong>ta<strong>in</strong>ed for <strong>the</strong> cabl<strong>in</strong>g and appliances.These conditions generally limit <strong>the</strong> application of this safety measure to an<strong>in</strong>dividual appliance.In <strong>the</strong> case where several appliances are supplied from a separation transformer, it isnecessary to observe <strong>the</strong> follow<strong>in</strong>g requirements:b The exposed conductive parts of all appliances must be connected toge<strong>the</strong>r by an<strong>in</strong>sulated protective conductor, but not connected to earth,b The socket outlets must be provided with an earth-p<strong>in</strong> connection. The earth-p<strong>in</strong>connection is used <strong>in</strong> this case only to ensure <strong>the</strong> <strong>in</strong>terconnection (bond<strong>in</strong>g) of allexposed conductive parts.In <strong>the</strong> case of a second fault, overcurrent protection must provide automaticdisconnection <strong>in</strong> <strong>the</strong> same conditions as those required for an IT system of powersystem earth<strong>in</strong>g.F15Class II equipment symbol:Class II equipmentThese appliances are also referred to as hav<strong>in</strong>g “double <strong>in</strong>sulation” s<strong>in</strong>ce <strong>in</strong> classII appliances a supplementary <strong>in</strong>sulation is added to <strong>the</strong> basic <strong>in</strong>sulation (seeFig. F23).No conductive parts of a class II appliance must be connected to a protective conductor:b Most portable or semi-fixed equipment, certa<strong>in</strong> lamps, and some types oftransformer are designed to have double <strong>in</strong>sulation. It is important to take particularcare <strong>in</strong> <strong>the</strong> exploitation of class II equipment and to verify regularly and often that <strong>the</strong>class II standard is ma<strong>in</strong>ta<strong>in</strong>ed (no broken outer envelope, etc.). Electronic devices,radio and television sets have safety levels equivalent to class II, but are not formallyclass II appliancesb Supplementary <strong>in</strong>sulation <strong>in</strong> an electrical <strong>in</strong>stallation: IEC 60364-4-41(Sub-clause413-2) and some national standards such as NF C 15-100 (France) describe <strong>in</strong>more detail <strong>the</strong> necessary measures to achieve <strong>the</strong> supplementary <strong>in</strong>sulation dur<strong>in</strong>g<strong>in</strong>stallation work.Active partBasic <strong>in</strong>sulationSupplementary <strong>in</strong>sulationFig. F23 : Pr<strong>in</strong>ciple of class II <strong>in</strong>sulation levelA simple example is that of draw<strong>in</strong>g a cable <strong>in</strong>to a PVC conduit. Methods are alsodescribed for distribution switchboards.b For distribution switchboards and similar equipment, IEC 60439-1 describes a setof requirements, for what is referred to as “total <strong>in</strong>sulation”, equivalent to class IIb Some cables are recognised as be<strong>in</strong>g equivalent to class II by many national standardsIn pr<strong>in</strong>ciple, safety by plac<strong>in</strong>g simultaneouslyaccessibleconductive parts out-of-reach, or by<strong>in</strong>terpos<strong>in</strong>g obstacles, requires also a nonconduct<strong>in</strong>gfloor, and so is not an easily appliedpr<strong>in</strong>ciple(1) It is recommended <strong>in</strong> IEC 364-4-41 that <strong>the</strong> product of <strong>the</strong>nom<strong>in</strong>al voltage of <strong>the</strong> circuit <strong>in</strong> volts and length <strong>in</strong> metres of<strong>the</strong> wir<strong>in</strong>g system should not exceed 100,000, and that <strong>the</strong>length of <strong>the</strong> wir<strong>in</strong>g system should not exceed 500 m.Out-of-arm’s reach or <strong>in</strong>terposition of obstaclesBy <strong>the</strong>se means, <strong>the</strong> probability of touch<strong>in</strong>g a live exposed-conductive-part, while at<strong>the</strong> same time touch<strong>in</strong>g an extraneous-conductive-part at earth potential, is extremelylow (see Fig. F24 next page). In practice, this measure can only be applied <strong>in</strong> a drylocation, and is implemented accord<strong>in</strong>g to <strong>the</strong> follow<strong>in</strong>g conditions:b The floor and <strong>the</strong> wall of <strong>the</strong> chamber must be non-conduct<strong>in</strong>g, i.e. <strong>the</strong> resistanceto earth at any po<strong>in</strong>t must be:v > 50 kΩ (<strong>in</strong>stallation voltage y 500 V)v > 100 kΩ (500 V < <strong>in</strong>stallation voltage y 1000 V)Resistance is measured by means of “MEGGER” type <strong>in</strong>struments (hand-operatedgenerator or battery-operated electronic model) between an electrode placed on <strong>the</strong>floor or aga<strong>in</strong>st <strong>the</strong> wall, and earth (i.e. <strong>the</strong> nearest protective earth conductor). Theelectrode contact area pressure must be evidently be <strong>the</strong> same for all tests.Different <strong>in</strong>struments suppliers provide electrodes specific to <strong>the</strong>ir own product, sothat care should be taken to ensure that <strong>the</strong> electrodes used are those supplied with<strong>the</strong> <strong>in</strong>strument.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>© Schneider Electric - all rights reserved


F - Protection aga<strong>in</strong>st electric shock3 Protection aga<strong>in</strong>st <strong>in</strong>directcontactb The plac<strong>in</strong>g of equipment and obstacles must be such that simultaneous contactwith two exposed-conductive-parts or with an exposed conductive-part and anextraneous-conductive-part by an <strong>in</strong>dividual person is not possible.b No exposed protective conductor must be <strong>in</strong>troduced <strong>in</strong>to <strong>the</strong> chamber concerned.b Entrances to <strong>the</strong> chamber must be arranged so that persons enter<strong>in</strong>g are not atrisk, e.g. a person stand<strong>in</strong>g on a conduct<strong>in</strong>g floor outside <strong>the</strong> chamber must not beable to reach through <strong>the</strong> doorway to touch an exposed-conductive-part, such as alight<strong>in</strong>g switch mounted <strong>in</strong> an <strong>in</strong>dustrial-type cast-iron conduit box, for example.InsulatedwallsF16Insulatedobstacles2.5 m<strong>Electrical</strong>apparatusInsulated floor<strong>Electrical</strong>apparatus<strong>Electrical</strong>apparatus> 2 m< 2 mFig. F24 : Protection by out-of arm’s reach arrangements and <strong>the</strong> <strong>in</strong>terposition of non-conduct<strong>in</strong>g obstaclesEarth-free equipotential chambers areassociated with particular <strong>in</strong>stallations(laboratories, etc.) and give rise to a number ofpractical <strong>in</strong>stallation difficultiesEarth-free equipotential chambersIn this scheme, all exposed-conductive-parts, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> floor (1) are bonded bysuitably large conductors, such that no significant difference of potential can existbetween any two po<strong>in</strong>ts. A failure of <strong>in</strong>sulation between a live conductor and <strong>the</strong>metal envelope of an appliance will result <strong>in</strong> <strong>the</strong> whole “cage” be<strong>in</strong>g raised to phaseto-earthvoltage, but no fault current will flow. In such conditions, a person enter<strong>in</strong>g<strong>the</strong> chamber would be at risk (s<strong>in</strong>ce he/she would be stepp<strong>in</strong>g on to a live floor).Suitable precautions must be taken to protect personnel from this danger (e.g. nonconduct<strong>in</strong>gfloor at entrances, etc.). Special protective devices are also necessary todetect <strong>in</strong>sulation failure, <strong>in</strong> <strong>the</strong> absence of significant fault current.MConductivefloor© Schneider Electric - all rights reserved(1) Extraneous conductive parts enter<strong>in</strong>g (or leav<strong>in</strong>g) <strong>the</strong>equipotential space (such as water pipes, etc.) must beencased <strong>in</strong> suitable <strong>in</strong>sulat<strong>in</strong>g material and excluded from <strong>the</strong>equipotential network, s<strong>in</strong>ce such parts are likely to be bondedto protective (ear<strong>the</strong>d) conductors elsewhere <strong>in</strong> <strong>the</strong> <strong>in</strong>stallation.Fig. F25 : Equipotential bond<strong>in</strong>g of all exposed-conductive-parts simultaneously accessibleSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>Insulat<strong>in</strong>g material


F - Protection aga<strong>in</strong>st electric shock4 Protection of goods<strong>in</strong> case of <strong>in</strong>sulation faultThe standards consider <strong>the</strong> damage (ma<strong>in</strong>ly fire) of goods due to <strong>in</strong>sulation faultsto be high. Therefore, for location with high risk of fire, 300 mA Residual CurrentDevices must be used. For <strong>the</strong> o<strong>the</strong>r locations, some standards relies on techniquecalled « Ground Fault Protection » (GFP).RCDs are very effective devices to provideprotection aga<strong>in</strong>st fire risk due to <strong>in</strong>sulationfault because <strong>the</strong>y can detect leakage current(ex : 300 mA) wich are too low for <strong>the</strong> o<strong>the</strong>rprotections, but sufficient to cause a fire4.1 Measures of protection aga<strong>in</strong>st fire risk withRCDsRCDs are very effective devices to provide protection aga<strong>in</strong>st fire risk due to<strong>in</strong>sulation fault. This type of fault current is actually too low to be detected by <strong>the</strong>o<strong>the</strong>r protection (overcurrent, reverse time).For TT, IT TN-S systems <strong>in</strong> which leakage current can appear, <strong>the</strong> use of 300 mAsensitivity RCDs provides a good protection aga<strong>in</strong>st fire risk due to this type of fault.An <strong>in</strong>vestigation has shown that <strong>the</strong> cost of <strong>the</strong> fires <strong>in</strong> <strong>in</strong>dustrial and tertiarybuild<strong>in</strong>gs can be very great.The analysis of <strong>the</strong> phenomena shows that fire risk due to electicity is l<strong>in</strong>ked tooverheat<strong>in</strong>g due to a bad coord<strong>in</strong>ation between <strong>the</strong> maximum rated current of <strong>the</strong>cable (or isolated conductor) and <strong>the</strong> overcurrent protection sett<strong>in</strong>g.Overheat<strong>in</strong>g can also be due to <strong>the</strong> modification of <strong>the</strong> <strong>in</strong>itial method of <strong>in</strong>stallation(addition of cables on <strong>the</strong> same support).This overheat<strong>in</strong>g can be <strong>the</strong> orig<strong>in</strong> of electrical arc <strong>in</strong> humid environment. Theseelectrical arcs evolve when <strong>the</strong> fault current-loop impedance is greater than 0.6 Ωand exist only when an <strong>in</strong>sulation fault occurs. Some tests have shown that a300 mA fault current can <strong>in</strong>duce a real risk of fire (see Fig. F26).F17Beg<strong>in</strong>n<strong>in</strong>g of fireFig. F26 : Orig<strong>in</strong> of fires <strong>in</strong> build<strong>in</strong>gsId


F - Protection aga<strong>in</strong>st electric shock4 Protection of goods<strong>in</strong> case of <strong>in</strong>sulation faultPosition<strong>in</strong>g GFP devices <strong>in</strong> <strong>the</strong> <strong>in</strong>stallationType / <strong>in</strong>stallation level Ma<strong>in</strong>-distribution Sub-distribution CommentsSource Ground Return v Used(SGR)Residual Sens<strong>in</strong>g (RS) v b Often used(SGR)Zero Sequence v b Rarely used(SGR)v Possibleb Recommended or requiredF18© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock5 Implementation of <strong>the</strong> TT system5.1 Protective measuresProtection aga<strong>in</strong>st <strong>in</strong>direct contactGeneral caseProtection aga<strong>in</strong>st <strong>in</strong>direct contact is assured by RCDs, <strong>the</strong> sensitivity IΔn of which50 Vcomplies with <strong>the</strong> condition I n i(1) (1)RAThe choice of sensitivity of <strong>the</strong> residual current device is a function of <strong>the</strong> resistanceR A of <strong>the</strong> earth electrode for <strong>the</strong> <strong>in</strong>stallation, and is given <strong>in</strong> Figure F28.IΔnMaximum resistance of <strong>the</strong> earth electrode(50 V) (25 V)3 A 16 Ω 8 Ω1 A 50 Ω 25 Ω500 mA 100 Ω 50 Ω300 mA 166 Ω 83 Ω30 mA 1666 Ω 833 ΩF19Fig. F28 : The upper limit of resistance for an <strong>in</strong>stallation earth<strong>in</strong>g electrode which must not beexceeded, for given sensitivity levels of RCDs at U L voltage limits of 50 V and 25 VCase of distribution circuits (see Fig. F29)IEC 60364-4-41 and a number of national standards recognize a maximum tripp<strong>in</strong>gtime of 1 second <strong>in</strong> <strong>in</strong>stallation distribution circuits (as opposed to f<strong>in</strong>al circuits). Thisallows a degree of selective discrim<strong>in</strong>ation to be achieved:b At level A: RCD time-delayed, e.g. “S” typeb At level B: RCD <strong>in</strong>stantaneousARCDCase where <strong>the</strong> exposed conductive parts of an appliance, or group ofappliances, are connected to a separate earth electrode (see Fig. F30)Protection aga<strong>in</strong>st <strong>in</strong>direct contact by a RCD at <strong>the</strong> circuit-breaker level protect<strong>in</strong>geach group or separately-ear<strong>the</strong>d <strong>in</strong>dividual appliance.In each case, <strong>the</strong> sensitivity must be compatible with <strong>the</strong> resistance of <strong>the</strong> ear<strong>the</strong>lectrode concerned.RCDFig. F29 : Distribution circuitsBRCDHigh-sensitivity RCDs (see Fig. F31)Accord<strong>in</strong>g to IEC 60364-4-41, high sensitivity RCDs (y 30 mA) must be used forprotection of socket outlets with rated current y 20 A <strong>in</strong> all locations. The use of suchRCDs is also recommended <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g cases:b Socket-outlet circuits <strong>in</strong> wet locations at all current rat<strong>in</strong>gsb Socket-outlet circuits <strong>in</strong> temporary <strong>in</strong>stallationsb Circuits supply<strong>in</strong>g laundry rooms and swimm<strong>in</strong>g poolsb Supply circuits to work-sites, caravans, pleasure boats, and travell<strong>in</strong>g fairsSee 2.2 and chapter P, section 3RA1RA2Distant locationFig. F30 : Separate earth electrodeFig. F31 : Circuit supply<strong>in</strong>g socket-outlets(1) 25 V for work-site <strong>in</strong>stallations, agricultural establishments, etc.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>© Schneider Electric - all rights reserved


F - Protection aga<strong>in</strong>st electric shock5 Implementation of <strong>the</strong> TT systemIn high fire risk locations (see Fig. F32)RCD protection at <strong>the</strong> circuit-breaker controll<strong>in</strong>g all supplies to <strong>the</strong> area at risk isnecessary <strong>in</strong> some locations, and mandatory <strong>in</strong> many countries.The sensitivity of <strong>the</strong> RCD must be y 500 mA, but a 300 mA sensitivity isrecommended.Protection when exposed conductive parts are not connectedto earth (see Fig. F33)(In <strong>the</strong> case of an exist<strong>in</strong>g <strong>in</strong>stallation where <strong>the</strong> location is dry and provision ofan earth<strong>in</strong>g connection is not possible, or <strong>in</strong> <strong>the</strong> event that a protective earth wirebecomes broken).RCDs of high sensitivity (y 30 mA) will afford both protection aga<strong>in</strong>st <strong>in</strong>direct-contacthazards, and <strong>the</strong> additional protection aga<strong>in</strong>st <strong>the</strong> dangers of direct-contact.F20Fire-risklocationFig. F32 : Fire-risk locationFig. F33 : Unear<strong>the</strong>d exposed conductive parts (A)5.2 Coord<strong>in</strong>ation of residual current protectivedevicesDiscrim<strong>in</strong>ative-tripp<strong>in</strong>g coord<strong>in</strong>ation is achieved ei<strong>the</strong>r by time-delay or by subdivisionof circuits, which are <strong>the</strong>n protected <strong>in</strong>dividually or by groups, or by a comb<strong>in</strong>ation ofboth methods.Such discrim<strong>in</strong>ation avoids <strong>the</strong> tripp<strong>in</strong>g of any RCD, o<strong>the</strong>r than that immediatelyupstream of a fault position:b With equipment currently available, discrim<strong>in</strong>ation is possible at three or fourdifferent levels of distribution :v At <strong>the</strong> ma<strong>in</strong> general distribution boardv At local general distribution boardsv At sub-distribution boardsv At socket outlets for <strong>in</strong>dividual appliance protectionb In general, at distribution boards (and sub-distribution boards, if exist<strong>in</strong>g) and on<strong>in</strong>dividual-appliance protection, devices for automatic disconnection <strong>in</strong> <strong>the</strong> event ofan <strong>in</strong>direct-contact hazard occurr<strong>in</strong>g are <strong>in</strong>stalled toge<strong>the</strong>r with additional protectionaga<strong>in</strong>st direct-contact hazards.© Schneider Electric - all rights reservedDiscrim<strong>in</strong>ation between RCDsThe general specification for achiev<strong>in</strong>g total discrim<strong>in</strong>ation between two RCDs is asfollow:b The ratio between <strong>the</strong> rated residual operat<strong>in</strong>g currents must be > 2b Time delay<strong>in</strong>g <strong>the</strong> upstream RCDDiscrim<strong>in</strong>ation is achieved by exploit<strong>in</strong>g <strong>the</strong> several levels of standardized sensitivity:30 mA, 100 mA, 300 mA and 1 A and <strong>the</strong> correspond<strong>in</strong>g tripp<strong>in</strong>g times, as shownopposite page <strong>in</strong> Figure F34.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock5 Implementation of <strong>the</strong> TT systemt (ms)10,0001,0005003002502001501301006040IIIselective RCDsdomestic Sand <strong>in</strong>dustrial(sett<strong>in</strong>gs I and II)RCD 30 mAgeneral domesticand <strong>in</strong>dustrial sett<strong>in</strong>g 0F211015 30 60Current(mA)1001503005006001,0001 1.5 10 100 500 1,000 (A)Fig. F34 : Total discrim<strong>in</strong>ation at 2 levelsFig. F35 : Total discrim<strong>in</strong>ation at 2 levelsAARCD 300 mAtype SRelay with separatetoroidal CT 3 Adelay time 500 msRCD30 mAFig. F36 : Total discrim<strong>in</strong>ation at 3 or 4 levelsBRCCB 1 Adelay time 250 msCBRCCB 300 Adelay time 50 msor type SDRCCB30 mADiscrim<strong>in</strong>ation at 2 levels (see Fig. F35)Protectionb Level A: RCD time-delayed sett<strong>in</strong>g I (for <strong>in</strong>dustrial device) or type S (for domesticdevice) for protection aga<strong>in</strong>st <strong>in</strong>direct contactsb Level B: RCD <strong>in</strong>stantaneous, with high sensitivity on circuits supply<strong>in</strong>g socketoutletsor appliances at high risk (wash<strong>in</strong>g mach<strong>in</strong>es, etc.) See also Chapter PClause 3Schneider Electric solutionsb Level A: Compact or Multi 9 circuit-breaker with adaptable RCD module(Vigi NSX160 or Vigi NC100), sett<strong>in</strong>g I or S typeb Level B: Circuit-breaker with <strong>in</strong>tegrated RCD module (DPN Vigi) or adaptableRCD module (e.g. Vigi C60 or Vigi NC100) or VigicompactNote: The sett<strong>in</strong>g of upstream RCCB must comply with selectivity rules and take <strong>in</strong>toaccount all <strong>the</strong> downstream earth leakage currents.Discrim<strong>in</strong>ation at 3 or 4 levels (see Fig. F36)Protectionb Level A: RCD time-delayed (sett<strong>in</strong>g III)b Level B: RCD time-delayed (sett<strong>in</strong>g II)b Level C: RCD time-delayed (sett<strong>in</strong>g I) or type Sb Level D: RCD <strong>in</strong>stantaneousSchneider Electric solutionsb Level A: Circuit-breaker associated with RCD and separate toroidal transformer(Vigirex RH328AP)b Level B: Vigicompact or Vigirexb Level C: Vigirex, Vigicompact or Vigi NC100 or Vigi C60b Level D:v Vigicompact orv Vigirex orv Multi 9 with <strong>in</strong>tegrated or adaptable RCD module : Vigi C60 or DPN VigiNote: The sett<strong>in</strong>g of upstream RCCB must comply with selectivity rules and take <strong>in</strong>toaccount all <strong>the</strong> downstream earth leakage currents© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock5 Implementation of <strong>the</strong> TT systemDiscrim<strong>in</strong>ative protection at three levels (see Fig. F37)Withdrawable Masterpactor VisucompactMV/LVF22NSX400NSX100 MADiscont.VigicompactNSX100Sett<strong>in</strong>g 1300 mANC100L MA<strong>in</strong>stantaneous300 mANC100diff.300 mAselectiveSLeakage currentof <strong>the</strong> filter: 20 mATerm<strong>in</strong>alboard© Schneider Electric - all rights reservedLeakage current equal to 3.5 mA persocket outlet (Information technologyequipement): max 4 sockets outlets.Fig. F37 : Typical 3-level <strong>in</strong>stallation, show<strong>in</strong>g <strong>the</strong> protection of distribution circuits <strong>in</strong> a TT-ear<strong>the</strong>d system. One motor is provided with specific protectionSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock6 Implementation of <strong>the</strong> TN system6.1 Prelim<strong>in</strong>ary conditionsAt <strong>the</strong> design stage, <strong>the</strong> maximum permitted lengths of cable downstream of aprotective circuit-breaker (or set of fuses) must be calculated, while dur<strong>in</strong>g <strong>the</strong><strong>in</strong>stallation work certa<strong>in</strong> rules must be fully respected.Certa<strong>in</strong> conditions must be observed, as listed below and illustrated <strong>in</strong> Figure F38.1. PE conductor must be regularly connected to earth as much as possible.2. The PE conductor must not pass through ferro-magnetic conduit, ducts, etc. orbe mounted on steel work, s<strong>in</strong>ce <strong>in</strong>ductive and/or proximity effects can <strong>in</strong>crease <strong>the</strong>effective impedance of <strong>the</strong> conductor.3. In <strong>the</strong> case of a PEN conductor (a neutral conductor which is also used as aprotective conductor), connection must be made directly to <strong>the</strong> earth term<strong>in</strong>al of anappliance (see 3 <strong>in</strong> Figure F38) before be<strong>in</strong>g looped to <strong>the</strong> neutral term<strong>in</strong>al of <strong>the</strong>same appliance.4. Where <strong>the</strong> conductor y 6 mm 2 for copper or 10 mm 2 for alum<strong>in</strong>ium, or where acable is movable, <strong>the</strong> neutral and protective conductors should be separated (i.e. aTN-S system should be adopted with<strong>in</strong> <strong>the</strong> <strong>in</strong>stallation).5. Earth faults may be cleared by overcurrent-protection devices, i.e. by fuses andcircuit-breakers.The forego<strong>in</strong>g list <strong>in</strong>dicates <strong>the</strong> conditions to be respected <strong>in</strong> <strong>the</strong> implementation of aTN scheme for <strong>the</strong> protection aga<strong>in</strong>st <strong>in</strong>direct contacts.F23152 25PEN3PE N45TN-C systemTN-C-S systemRpnANotes:b The TN scheme requires that <strong>the</strong> LV neutral of <strong>the</strong> MV/LV transformer, <strong>the</strong> exposedconductive parts of <strong>the</strong> substation and of <strong>the</strong> <strong>in</strong>stallation, and <strong>the</strong> extraneous conductiveparts <strong>in</strong> <strong>the</strong> substation and <strong>in</strong>stallation, all be ear<strong>the</strong>d to a common earth<strong>in</strong>g system.b For a substation <strong>in</strong> which <strong>the</strong> meter<strong>in</strong>g is at low-voltage, a means of isolation is required at<strong>the</strong> orig<strong>in</strong> of <strong>the</strong> LV <strong>in</strong>stallation, and <strong>the</strong> isolation must be clearly visible.b A PEN conductor must never be <strong>in</strong>terrupted under any circumstances. Control andprotective switchgear for <strong>the</strong> several TN arrangements will be:v 3-pole when <strong>the</strong> circuit <strong>in</strong>cludes a PEN conductor,v Preferably 4-pole (3 phases + neutral) when <strong>the</strong> circuit <strong>in</strong>cludes a neutral with a separatePE conductor.Fig. F38 : Implementation of <strong>the</strong> TN system of earth<strong>in</strong>gThree methods of calculation are commonlyused:b The method of impedances, based on <strong>the</strong>trigonometric addition of <strong>the</strong> system resistancesand <strong>in</strong>ductive reactancesb The method of compositionb The conventional method, based on anassumed voltage drop and <strong>the</strong> use of preparedtables6.2 Protection aga<strong>in</strong>st <strong>in</strong>direct contactMethods of determ<strong>in</strong><strong>in</strong>g levels of short-circuit currentIn TN-ear<strong>the</strong>d systems, a short-circuit to earth will, <strong>in</strong> pr<strong>in</strong>ciple, always providesufficient current to operate an overcurrent device.The source and supply ma<strong>in</strong>s impedances are much lower than those of <strong>the</strong><strong>in</strong>stallation circuits, so that any restriction <strong>in</strong> <strong>the</strong> magnitude of earth-fault currentswill be ma<strong>in</strong>ly caused by <strong>the</strong> <strong>in</strong>stallation conductors (long flexible leads to appliancesgreatly <strong>in</strong>crease <strong>the</strong> “fault-loop” impedance, with a correspond<strong>in</strong>g reduction of shortcircuitcurrent).The most recent IEC recommendations for <strong>in</strong>direct-contact protection on TN earth<strong>in</strong>gsystems only relates maximum allowable tripp<strong>in</strong>g times to <strong>the</strong> nom<strong>in</strong>al systemvoltage (see Figure F12 <strong>in</strong> Sub-clause 3.3).© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock6 Implementation of <strong>the</strong> TN systemF24For calculations, modern practice is to usesoftware agreed by National Authorities, andbased on <strong>the</strong> method of impedances, such asEcodial 3. National Authorities generally alsopublish <strong>Guide</strong>s, which <strong>in</strong>clude typical values,conductor lengths, etc.The reason<strong>in</strong>g beh<strong>in</strong>d <strong>the</strong>se recommendations is that, for TN systems, <strong>the</strong> currentwhich must flow <strong>in</strong> order to raise <strong>the</strong> potential of an exposed conductive part to 50 Vor more is so high that one of two possibilities will occur:b Ei<strong>the</strong>r <strong>the</strong> fault path will blow itself clear, practically <strong>in</strong>stantaneously, orb The conductor will weld itself <strong>in</strong>to a solid fault and provide adequate current tooperate overcurrent devicesTo ensure correct operation of overcurrent devices <strong>in</strong> <strong>the</strong> latter case, a reasonablyaccurate assessment of short-circuit earth-fault current levels must be determ<strong>in</strong>ed at<strong>the</strong> design stage of a project.A rigorous analysis requires <strong>the</strong> use of phase-sequence-component techniquesapplied to every circuit <strong>in</strong> turn. The pr<strong>in</strong>ciple is straightforward, but <strong>the</strong> amount ofcomputation is not considered justifiable, especially s<strong>in</strong>ce <strong>the</strong> zero-phase-sequenceimpedances are extremely difficult to determ<strong>in</strong>e with any reasonable degree ofaccuracy <strong>in</strong> an average LV <strong>in</strong>stallation.O<strong>the</strong>r simpler methods of adequate accuracy are preferred. Three practical methodsare:b The “method of impedances”, based on <strong>the</strong> summation of all <strong>the</strong> impedances(positive-phase-sequence only) around <strong>the</strong> fault loop, for each circuitb The “method of composition”, which is an estimation of short-circuit current at<strong>the</strong> remote end of a loop, when <strong>the</strong> short-circuit current level at <strong>the</strong> near end of <strong>the</strong>loop is knownb The “conventional method” of calculat<strong>in</strong>g <strong>the</strong> m<strong>in</strong>imum levels of earth-faultcurrents, toge<strong>the</strong>r with <strong>the</strong> use of tables of values for obta<strong>in</strong><strong>in</strong>g rapid resultsThese methods are only reliable for <strong>the</strong> case <strong>in</strong> which <strong>the</strong> cables that make up <strong>the</strong>earth-fault-current loop are <strong>in</strong> close proximity (to each o<strong>the</strong>r) and not separated byferro-magnetic materials.Method of impedancesThis method summates <strong>the</strong> positive-sequence impedances of each item (cable, PEconductor, transformer, etc.) <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> earth-fault loop circuit from which <strong>the</strong>short-circuit earth-fault current is calculated, us<strong>in</strong>g <strong>the</strong> formula:UI =( R) + ( X)2 2where(ΣR) 2 = (<strong>the</strong> sum of all resistances <strong>in</strong> <strong>the</strong> loop) 2 at <strong>the</strong> design stage of a project.and (ΣX) 2 = (<strong>the</strong> sum of all <strong>in</strong>ductive reactances <strong>in</strong> <strong>the</strong> loop) 2and U = nom<strong>in</strong>al system phase-to-neutral voltage.The application of <strong>the</strong> method is not always easy, because it supposes a knowledgeof all parameter values and characteristics of <strong>the</strong> elements <strong>in</strong> <strong>the</strong> loop. In manycases, a national guide can supply typical values for estimation purposes.Method of compositionThis method permits <strong>the</strong> determ<strong>in</strong>ation of <strong>the</strong> short-circuit current at <strong>the</strong> end ofa loop from <strong>the</strong> known value of short-circuit at <strong>the</strong> send<strong>in</strong>g end, by means of <strong>the</strong>approximate formula:UI = IscU+ Zs.IscwhereIsc where = upstream short-circuit currentI = end-of-loop short-circuit currentU = nom<strong>in</strong>al system phase voltageZs = impedance of loopNote: <strong>in</strong> this method <strong>the</strong> <strong>in</strong>dividual impedances are added arithmetically (1) asopposed to <strong>the</strong> previous “method of impedances” procedure.© Schneider Electric - all rights reserved(1) This results <strong>in</strong> a calculated current value which is less thanthat it would actually flow. If <strong>the</strong> overcurrent sett<strong>in</strong>gs are basedon this calculated value, <strong>the</strong>n operation of <strong>the</strong> relay, or fuse, isassured.Conventional methodThis method is generally considered to be sufficiently accurate to fix <strong>the</strong> upper limitof cable lengths.Pr<strong>in</strong>cipleThe pr<strong>in</strong>ciple bases <strong>the</strong> short-circuit current calculation on <strong>the</strong> assumption that <strong>the</strong>voltage at <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> circuit concerned (i.e. at <strong>the</strong> po<strong>in</strong>t at which <strong>the</strong> circuitprotective device is located) rema<strong>in</strong>s at 80% or more of <strong>the</strong> nom<strong>in</strong>al phase to neutralvoltage. The 80% value is used, toge<strong>the</strong>r with <strong>the</strong> circuit loop impedance, to compute<strong>the</strong> short-circuit current.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock6 Implementation of <strong>the</strong> TN systemThe maximum length of any circuit of aTN-ear<strong>the</strong>d <strong>in</strong>stallation is: 0.8 Uo Sphmax = 1+m Ia( )This coefficient takes account of all voltage drops upstream of <strong>the</strong> po<strong>in</strong>t considered.In LV cables, when all conductors of a 3-phase 4-wire circuit are <strong>in</strong> close proximity(which is <strong>the</strong> normal case), <strong>the</strong> <strong>in</strong>ductive reactance <strong>in</strong>ternal to and betweenconductors is negligibly small compared to <strong>the</strong> cable resistance.This approximation is considered to be valid for cable sizes up to 120 mm 2 .Above that size, <strong>the</strong> resistance value R is <strong>in</strong>creased as follows:Core size (mm 2 )S = 150 mm 2S = 185 mm 2S = 240 mm 2Value of resistanceR+15%R+20%R+25%The maximum length of a circuit <strong>in</strong> a TN-ear<strong>the</strong>d <strong>in</strong>stallation is given by <strong>the</strong> formula:0.8 Uo SphLmax= 1+m Ia( )where:Lmax = maximum length <strong>in</strong> metresUo = phase volts = 230 V for a 230/400 V systemρ = resistivity at normal work<strong>in</strong>g temperature <strong>in</strong> ohm-mm 2 /metre(= 22.5 10 -3 for copper; = 36 10 -3 for alum<strong>in</strong>ium)Ia = trip current sett<strong>in</strong>g for <strong>the</strong> <strong>in</strong>stantaneous operation of a circuit-breaker, orIa = <strong>the</strong> current which assures operation of <strong>the</strong> protective fuse concerned, <strong>in</strong> <strong>the</strong>specified time.m =SphSPEF25The follow<strong>in</strong>g tables give <strong>the</strong> length of circuitwhich must not be exceeded, <strong>in</strong> order thatpersons be protected aga<strong>in</strong>st <strong>in</strong>direct contacthazards by protective devicesIdABImagnLPESph = cross-sectional area of <strong>the</strong> phase conductors of <strong>the</strong> circuit concerned <strong>in</strong> mm 2SPE = cross-sectional area of <strong>the</strong> protective conductor concerned <strong>in</strong> mm 2 .(see Fig. F39)TablesThe follow<strong>in</strong>g tables, applicable to TN systems, have been established accord<strong>in</strong>g to<strong>the</strong> “conventional method” described above.The tables give maximum circuit lengths, beyond which <strong>the</strong> ohmic resistance of <strong>the</strong>conductors will limit <strong>the</strong> magnitude of <strong>the</strong> short-circuit current to a level below thatrequired to trip <strong>the</strong> circuit-breaker (or to blow <strong>the</strong> fuse) protect<strong>in</strong>g <strong>the</strong> circuit, withsufficient rapidity to ensure safety aga<strong>in</strong>st <strong>in</strong>direct contact.Correction factor mFigure F40 <strong>in</strong>dicates <strong>the</strong> correction factor to apply to <strong>the</strong> values given <strong>in</strong> Figures F41to F44 next pages, accord<strong>in</strong>g to <strong>the</strong> ratio Sph/SPE, <strong>the</strong> type of circuit, and <strong>the</strong>conductor materials.The tables take <strong>in</strong>to account:b The type of protection: circuit-breakers or fusesb Operat<strong>in</strong>g-current sett<strong>in</strong>gsb Cross-sectional area of phase conductors and protective conductorsb Type of system earth<strong>in</strong>g (see Fig. F45 page F27)b Type of circuit-breaker (i.e. B, C or D) (1)The tables may be used for 230/400 V systems.Equivalent tables for protection by Compact and Multi 9 circuit-breakers (Merl<strong>in</strong>Ger<strong>in</strong>) are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> relevant catalogues.SPESphCFig. F39 : Calculation of L max. for a TN-ear<strong>the</strong>d system, us<strong>in</strong>g<strong>the</strong> conventional method(1) For <strong>the</strong> def<strong>in</strong>ition of type B, C, D circuit-breakers, refer tochapter H, clause 4.2Circuit Conductor m = Sph/SPE (or PEN)material m = 1 m = 2 m = 3 m = 43P + N or P + N Copper 1 0.67 0.50 0.40Alum<strong>in</strong>ium 0.62 0.42 0.31 0.25Fig. F40 : Correction factor to apply to <strong>the</strong> lengths given <strong>in</strong> tables F40 to F43 forTN systemsSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>© Schneider Electric - all rights reserved


F - Protection aga<strong>in</strong>st electric shock6 Implementation of <strong>the</strong> TN systemCircuits protected by general purpose circuit-breakers (Fig. F41)F26Nom<strong>in</strong>al Instantaneous or short-time-delayed tripp<strong>in</strong>g current Im (amperes)crosssectionalareaofconductorsmm 2 50 63 80 100 125 160 200 250 320 400 500 560 630 700 800 875 1000 1120 1250 1600 2000 2500 3200 4000 5000 6300 8000 10000 125001.5 100 79 63 50 40 31 25 20 16 13 10 9 8 7 6 6 5 4 42.5 167 133 104 83 67 52 42 33 26 21 17 15 13 12 10 10 8 7 7 5 44 267 212 167 133 107 83 67 53 42 33 27 24 21 19 17 15 13 12 11 8 7 5 46 400 317 250 200 160 125 100 80 63 50 40 36 32 29 25 23 20 18 16 13 10 8 6 5 410 417 333 267 208 167 133 104 83 67 60 53 48 42 38 33 30 27 21 17 13 10 8 7 5 416 427 333 267 213 167 133 107 95 85 76 67 61 53 48 43 33 27 21 17 13 11 8 7 5 425 417 333 260 208 167 149 132 119 104 95 83 74 67 52 42 33 26 21 17 13 10 8 735 467 365 292 233 208 185 167 146 133 117 104 93 73 58 47 36 29 23 19 15 12 950 495 396 317 283 251 226 198 181 158 141 127 99 79 63 49 40 32 25 20 16 1370 417 370 333 292 267 233 208 187 146 117 93 73 58 47 37 29 23 1995 452 396 362 317 283 263 198 158 127 99 79 63 50 40 32 25120 457 400 357 320 250 200 160 125 100 80 63 50 40 32150 435 388 348 272 217 174 136 109 87 69 54 43 35185 459 411 321 257 206 161 128 103 82 64 51 41240 400 320 256 200 160 128 102 80 64 51Fig. F41 : Maximum circuit lengths (<strong>in</strong> metres) for different sizes of copper conductor and <strong>in</strong>stantaneous-tripp<strong>in</strong>g-current sett<strong>in</strong>gs for general-purpose circuit-breakers<strong>in</strong> 230/240 V TN system with m = 1Circuits protected by Compact or Multi 9 circuit-breakers for <strong>in</strong>dustrial ordomestic use (Fig. F42 to Fig. F44)Sph Rated current (A)mm 2 1 2 3 4 6 10 16 20 25 32 40 50 63 80 100 1251.5 1200 600 400 300 200 120 75 60 48 37 30 24 19 15 12 102.5 1000 666 500 333 200 125 100 80 62 50 40 32 25 20 164 1066 800 533 320 200 160 128 100 80 64 51 40 32 266 1200 800 480 300 240 192 150 120 96 76 60 48 3810 800 500 400 320 250 200 160 127 100 80 6416 800 640 512 400 320 256 203 160 128 10225 800 625 500 400 317 250 200 16035 875 700 560 444 350 280 22450 760 603 475 380 304Fig. F42 : Maximum circuit lengths (<strong>in</strong> meters) for different sizes of copper conductor and rated currents for type B (1) circuit-breakers <strong>in</strong> a 230/240 V s<strong>in</strong>gle-phase orthree-phase TN system with m = 1© Schneider Electric - all rights reservedSph Rated current (A)mm 2 1 2 3 4 6 10 16 20 25 32 40 50 63 80 100 1251.5 600 300 200 150 100 60 37 30 24 18 15 12 9 7 6 52.5 500 333 250 167 100 62 50 40 31 25 20 16 12 10 84 533 400 267 160 100 80 64 50 40 32 25 20 16 136 600 400 240 150 120 96 75 60 48 38 30 24 1910 667 400 250 200 160 125 100 80 63 50 40 3216 640 400 320 256 200 160 128 101 80 64 5125 625 500 400 312 250 200 159 125 100 8035 875 700 560 437 350 280 222 175 140 11250 760 594 475 380 301 237 190 152Fig. F43 : Maximum circuit lengths (<strong>in</strong> metres) for different sizes of copper conductor and rated currents for type C (1) circuit-breakers <strong>in</strong> a 230/240 V s<strong>in</strong>gle-phase orthree-phase TN system with m = 1(1) For <strong>the</strong> def<strong>in</strong>ition of type B and C circuit-breakers refer tochapter H clause 4.2.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock6 Implementation of <strong>the</strong> TN systemSph Rated current (A)mm 2 1 2 3 4 6 10 16 20 25 32 40 50 63 80 100 1251.5 429 214 143 107 71 43 27 21 17 13 11 9 7 5 4 32.5 714 357 238 179 119 71 45 36 29 22 18 14 11 9 7 64 571 381 286 190 114 71 80 46 36 29 23 18 14 11 96 857 571 429 286 171 107 120 69 54 43 34 27 21 17 1410 952 714 476 286 179 200 114 89 71 57 45 36 29 2316 762 457 286 320 183 143 114 91 73 57 46 3725 714 446 500 286 223 179 143 113 89 71 5735 625 700 400 313 250 200 159 125 80 10050 848 543 424 339 271 215 170 136 109Fig. F44 : Maximum circuit lengths (<strong>in</strong> metres) for different sizes of copper conductor and rated currents for type D (1) circuit-breakers <strong>in</strong> a 230/240 V s<strong>in</strong>gle-phase orthree-phase TN system with m = 1RA1Fig. F45 : Separate earth electrodeRA2Distant locationExampleA 3-phase 4-wire (230/400 V) <strong>in</strong>stallation is TN-C ear<strong>the</strong>d. A circuit is protected by atype B circuit-breaker rated at 63 A, and consists of an alum<strong>in</strong>ium cored cable with50 mm 2 phase conductors and a neutral conductor (PEN) of 25 mm 2 .What is <strong>the</strong> maximum length of circuit, below which protection of persons aga<strong>in</strong>st<strong>in</strong>direct-contact hazards is assured by <strong>the</strong> <strong>in</strong>stantaneous magnetic tripp<strong>in</strong>g relay of<strong>the</strong> circuit-breaker?Figure F42 gives, for 50 mm 2 and a 63 A type B circuit-breaker, 603 metres, to whichmust be applied a factor of 0.42 (Figure F40 for m = Sph = 2)..SPEThe maximum length of circuit is <strong>the</strong>refore:603 x 0.42 = 253 metres.Particular case where one or more exposed conductive part(s)is (are) ear<strong>the</strong>d to a separate earth electrodeProtection must be provided aga<strong>in</strong>st <strong>in</strong>direct contact by a RCD at <strong>the</strong> orig<strong>in</strong> of anycircuit supply<strong>in</strong>g an appliance or group of appliances, <strong>the</strong> exposed conductive partsof which are connected to an <strong>in</strong>dependent earth electrode.The sensitivity of <strong>the</strong> RCD must be adapted to <strong>the</strong> earth electrode resistance (RA2 <strong>in</strong>Figure F45). See specifications applicable to TT system.F276.3 High-sensitivity RCDs (see Fig. F31)Fig. F46 : Circuit supply<strong>in</strong>g socket-outletsAccord<strong>in</strong>g to IEC 60364-4-41, high sensitivity RCDs (y 30 mA) must be used forprotection of socket outlets with rated current y 20 A <strong>in</strong> all locations. The use of suchRCDs is also recommended <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g cases:b Socket-outlet circuits <strong>in</strong> wet locations at all current rat<strong>in</strong>gsb Socket-outlet circuits <strong>in</strong> temporary <strong>in</strong>stallationsb Circuits supply<strong>in</strong>g laundry rooms and swimm<strong>in</strong>g poolsb Supply circuits to work-sites, caravans, pleasure boats, and travell<strong>in</strong>g fairsSee 2.2 and chapter P, al section 3.(1) For <strong>the</strong> def<strong>in</strong>ition of type D circuit-breaker refer to chapter HSub-clause 4.2.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>© Schneider Electric - all rights reserved


F - Protection aga<strong>in</strong>st electric shock6 Implementation of <strong>the</strong> TN system6.4 Protection <strong>in</strong> high fire-risk locationAccord<strong>in</strong>g to IEC 60364-422-3.10, circuits <strong>in</strong> high fire-risk locations must beprotected by RCDs of sensitivity y 500 mA. This excludes <strong>the</strong> TN-C arrangement andTN-S must be adopted.A preferred sensitivity of 300 mA is mandatory <strong>in</strong> some countries (see Fig. F47).6.5 When <strong>the</strong> fault current-loop impedance isparticularly highWhen <strong>the</strong> earth-fault current is limited due to an <strong>in</strong>evitably high fault-loop impedance,so that <strong>the</strong> overcurrent protection cannot be relied upon to trip <strong>the</strong> circuit with<strong>in</strong> <strong>the</strong>prescribed time, <strong>the</strong> follow<strong>in</strong>g possibilities should be considered:F28Fig. F47 : Fire-risk location2 y Irm y 4InGreat length of cableFire-risklocationPE or PENFig. F48 : Circuit-breaker with low-set <strong>in</strong>stantaneous magnetictripp<strong>in</strong>gSuggestion 1 (see Fig. F48)b Install a circuit-breaker which has a lower <strong>in</strong>stantaneous magnetic tripp<strong>in</strong>g level, forexample:2In y Irm y 4InThis affords protection for persons on circuits which are abnormally long. It mustbe checked, however, that high transient currents such as <strong>the</strong> start<strong>in</strong>g currents ofmotors will not cause nuisance trip-outs.b Schneider Electric solutionsv Type G Compact (2Im y Irm y 4Im)v Type B Multi 9 circuit-breakerSuggestion 2 (see Fig. F49)b Install a RCD on <strong>the</strong> circuit. The device does not need to be highly-sensitive(HS) (several amps to a few tens of amps). Where socket-outlets are <strong>in</strong>volved, <strong>the</strong>particular circuits must, <strong>in</strong> any case, be protected by HS (y 30 mA) RCDs; generallyone RCD for a number of socket outlets on a common circuit.b Schneider Electric solutionsv RCD Multi 9 NG125 : IΔn = 1 or 3 Av Vigicompact REH or REM: IΔn = 3 to 30 Av Type B Multi 9 circuit-breakerSuggestion 3Increase <strong>the</strong> size of <strong>the</strong> PE or PEN conductors and/or <strong>the</strong> phase conductors, toreduce <strong>the</strong> loop impedance.Suggestion 4Add supplementary equipotential conductors. This will have a similar effect to thatof suggestion 3, i.e. a reduction <strong>in</strong> <strong>the</strong> earth-fault-loop resistance, while at <strong>the</strong> sametime improv<strong>in</strong>g <strong>the</strong> exist<strong>in</strong>g touch-voltage protection measures. The effectivenessof this improvement may be checked by a resistance test between each exposedconductive part and <strong>the</strong> local ma<strong>in</strong> protective conductor.For TN-C <strong>in</strong>stallations, bond<strong>in</strong>g as shown <strong>in</strong> Figure F50 is not allowed, andsuggestion 3 should be adopted.PhasesNeutralPE© Schneider Electric - all rights reservedFig. F49 : RCD protection on TN systems with high earth-faultloopimpedanceFig. F50 : Improved equipotential bond<strong>in</strong>gSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock7 Implementation of <strong>the</strong> IT systemThe basic feature of <strong>the</strong> IT earth<strong>in</strong>g system is that, <strong>in</strong> <strong>the</strong> event of a short-circuit toearth fault, <strong>the</strong> system can cont<strong>in</strong>ue to operate without <strong>in</strong>terruption. Such a fault isreferred to as a “first fault”.In this system, all exposed conductive parts of an <strong>in</strong>stallation are connected viaPE conductors to an earth electrode at <strong>the</strong> <strong>in</strong>stallation, while <strong>the</strong> neutral po<strong>in</strong>t of <strong>the</strong>supply transformer is:b Ei<strong>the</strong>r isolated from earthb Or connected to earth through a high resistance (commonly 1,000 ohms or more)This means that <strong>the</strong> current through an earth fault will be measured <strong>in</strong> milli-amps,which will not cause serious damage at <strong>the</strong> fault position, or give rise to dangeroustouch voltages, or present a fire hazard. The system may <strong>the</strong>refore be allowed tooperate normally until it is convenient to isolate <strong>the</strong> faulty section for repair work. Thisenhances cont<strong>in</strong>uity of service.In practice, <strong>the</strong> system earth<strong>in</strong>g requires certa<strong>in</strong> specific measures for its satisfactoryexploitation:b Permanent monitor<strong>in</strong>g of <strong>the</strong> <strong>in</strong>sulation with respect to earth, which must signal(audibly or visually) <strong>the</strong> occurrence of <strong>the</strong> first faultb A device for limit<strong>in</strong>g <strong>the</strong> voltage which <strong>the</strong> neutral po<strong>in</strong>t of <strong>the</strong> supply transformercan reach with respect to earthb A “first-fault” location rout<strong>in</strong>e by an efficient ma<strong>in</strong>tenance staff. Fault location isgreatly facilitated by automatic devices which are currently availableb Automatic high-speed tripp<strong>in</strong>g of appropriate circuit-breakers must take place <strong>in</strong><strong>the</strong> event of a “second fault” occurr<strong>in</strong>g before <strong>the</strong> first fault is repaired. The secondfault (by def<strong>in</strong>ition) is an earth fault affect<strong>in</strong>g a different live conductor than that of <strong>the</strong>first fault (can be a phase or neutral conductor) (1) .The second fault results <strong>in</strong> a short-circuit through <strong>the</strong> earth and/or throughPE bond<strong>in</strong>g conductors.F297.1 Prelim<strong>in</strong>ary conditions (see Fig. F51 and Fig. F52)M<strong>in</strong>imum functions required Components and devices ExamplesProtection aga<strong>in</strong>st overvoltages (1) Voltage limiter Cardew Cat power frequencyNeutral earth<strong>in</strong>g resistor (2) Resistor Impedance Zx(for impedance earth<strong>in</strong>g variation)Overall earth-fault monitor (3) Permanent <strong>in</strong>sulation Vigilohm TR22Awith alarm for first fault condition monitor PIM with alarm feature or XM 200Automatic fault clearance (4) Four-pole circuit-breakers Compact circuit-breakeron second fault and (if <strong>the</strong> neutral is distributed) or RCD-MSprotection of <strong>the</strong> neutralall 4 poles tripconductor aga<strong>in</strong>st overcurrentLocation of first fault (5) With device for fault-location Vigilohm systemon live system, or by successiveopen<strong>in</strong>g of circuitsFig. F51 : Essential functions <strong>in</strong> IT schemes and examples with Merl<strong>in</strong> Ger<strong>in</strong> productsHV/LV4L1L2L3N44(1) On systems where <strong>the</strong> neutral is distributed, as shown <strong>in</strong>Figure F56.2 1 3Fig. F52 : Positions of essential functions <strong>in</strong> 3-phase 3-wire IT-ear<strong>the</strong>d systemSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>5© Schneider Electric - all rights reserved


F - Protection aga<strong>in</strong>st electric shock7 Implementation of <strong>the</strong> IT systemF30Modern monitor<strong>in</strong>g systems greatly facilitatefirst-fault location and repairFault-location systems comply withIEC 61157-9 standard7.2 Protection aga<strong>in</strong>st <strong>in</strong>direct contactFirst-fault conditionThe earth-fault current which flows under a first-fault condition is measured <strong>in</strong> milliamps.The fault voltage with respect to earth is <strong>the</strong> product of this current and <strong>the</strong>resistance of <strong>the</strong> <strong>in</strong>stallation earth electrode and PE conductor (from <strong>the</strong> faultedcomponent to <strong>the</strong> electrode). This value of voltage is clearly harmless and couldamount to several volts only <strong>in</strong> <strong>the</strong> worst case (1,000 Ω earth<strong>in</strong>g resistor will pass230 mA (1) and a poor <strong>in</strong>stallation earth-electrode of 50 ohms, would give 11.5 V, forexample).An alarm is given by <strong>the</strong> permanent <strong>in</strong>sulation monitor<strong>in</strong>g device.Pr<strong>in</strong>ciple of earth-fault monitor<strong>in</strong>gA generator of very low frequency a.c. current, or of d.c. current, (to reduce <strong>the</strong>effects of cable capacitance to negligible levels) applies a voltage between <strong>the</strong>neutral po<strong>in</strong>t of <strong>the</strong> supply transformer and earth. This voltage causes a small currentto flow accord<strong>in</strong>g to <strong>the</strong> <strong>in</strong>sulation resistance to earth of <strong>the</strong> whole <strong>in</strong>stallation, plusthat of any connected appliance.Low-frequency <strong>in</strong>struments can be used on a.c. systems which generate transientd.c. components under fault conditions. Certa<strong>in</strong> versions can dist<strong>in</strong>guish betweenresistive and capacitive components of <strong>the</strong> leakage current.Modern equipment allow <strong>the</strong> measurement of leakage-current evolution, so thatprevention of a first fault can be achieved.Examples of equipmentb Manual fault-location (see Fig. F53)The generator may be fixed (example: XM100) or portable (example: GR10Xpermitt<strong>in</strong>g <strong>the</strong> check<strong>in</strong>g of dead circuits) and <strong>the</strong> receiver, toge<strong>the</strong>r with <strong>the</strong> magneticclamp-type pick-up sensor, are portable.MERLIN GERINXM100XM100ON/OFFP12 P50P100GR10XRM10NFig. F53 : Non-automatic (manual) fault location© Schneider Electric - all rights reserved(1) On a 230/400 V 3-phase system.b Fixed automatic fault location (see Fig. F54 next page)The monitor<strong>in</strong>g relay XM100, toge<strong>the</strong>r with <strong>the</strong> fixed detectors XD1 or XD12 (eachconnected to a toroidal CT embrac<strong>in</strong>g <strong>the</strong> conductors of <strong>the</strong> circuit concerned)provide a system of automatic fault location on a live <strong>in</strong>stallation.Moreover, <strong>the</strong> level of <strong>in</strong>sulation is <strong>in</strong>dicated for each monitored circuit, and twolevels are checked: <strong>the</strong> first level warns of unusually low <strong>in</strong>sulation resistance so thatpreventive measures may be taken, while <strong>the</strong> second level <strong>in</strong>dicates a fault conditionand gives an alarm.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock7 Implementation of <strong>the</strong> IT systemMERLIN GERINXM100Toroidal CTsXM1001 to 12 circuitsXD1F31XD1 XD1 XD12Fig. F54 : Fixed automatic fault locationb Automatic monitor<strong>in</strong>g, logg<strong>in</strong>g, and fault location (see Fig. F55)The Vigilohm System also allows access to a pr<strong>in</strong>ter and/or a PC which providesa <strong>global</strong> review of <strong>the</strong> <strong>in</strong>sulation level of an entire <strong>in</strong>stallation, and records <strong>the</strong>chronological evolution of <strong>the</strong> <strong>in</strong>sulation level of each circuit.The central monitor XM100, toge<strong>the</strong>r with <strong>the</strong> localization detectors XD08 and XD16,associated with toroidal CTs from several circuits, as shown below <strong>in</strong> Figure F55,provide <strong>the</strong> means for this automatic exploitation.MERLIN GERINXM100XM100MERLIN GERINXL08MERLIN GERINXL16897678XD08XD16Fig. F55 : Automatic fault location and <strong>in</strong>sulation-resistance data logg<strong>in</strong>g© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock7 Implementation of <strong>the</strong> IT systemF32Implementation of permanent <strong>in</strong>sulation-monitor<strong>in</strong>g (PIM) devicesb ConnectionThe PIM device is normally connected between <strong>the</strong> neutral (or articificial neutral)po<strong>in</strong>t of <strong>the</strong> power-supply transformer and its earth electrode.b SupplyPower supply to <strong>the</strong> PIM device should be taken from a highly reliable source. Inpractice, this is generally directly from <strong>the</strong> <strong>in</strong>stallation be<strong>in</strong>g monitored, throughovercurrent protective devices of suitable short-circuit current rat<strong>in</strong>g.b Level sett<strong>in</strong>gsCerta<strong>in</strong> national standards recommend a first sett<strong>in</strong>g at 20% below <strong>the</strong> <strong>in</strong>sulationlevel of <strong>the</strong> new <strong>in</strong>stallation. This value allows <strong>the</strong> detection of a reduction of <strong>the</strong><strong>in</strong>sulation quality, necessitat<strong>in</strong>g preventive ma<strong>in</strong>tenance measures <strong>in</strong> a situation of<strong>in</strong>cipient failure.The detection level for earth-fault alarm will be set at a much lower level.By way of an example, <strong>the</strong> two levels might be:v New <strong>in</strong>stallation <strong>in</strong>sulation level: 100 kΩv Leakage current without danger: 500 mA (fire risk at > 500 mA)v Indication levels set by <strong>the</strong> consumer:- Threshold for preventive ma<strong>in</strong>tenance: 0.8 x 100 = 80 kΩ- Threshold for short-circuit alarm: 500 ΩNotes:v Follow<strong>in</strong>g a long period of shutdown, dur<strong>in</strong>g which <strong>the</strong> whole, or part of <strong>the</strong> <strong>in</strong>stallationrema<strong>in</strong>s de-energized, humidity can reduce <strong>the</strong> general level of <strong>in</strong>sulation resistance.This situation, which is ma<strong>in</strong>ly due to leakage current over <strong>the</strong> damp surface ofhealthy <strong>in</strong>sulation, does not constitute a fault condition, and will improve rapidly as <strong>the</strong>normal temperature rise of current-carry<strong>in</strong>g conductors reduces <strong>the</strong> surface humidity.v The PIM device (XM) can measure separately <strong>the</strong> resistive and <strong>the</strong> capacitivecurrent components of <strong>the</strong> leakage current to earth, <strong>the</strong>reby deriv<strong>in</strong>g <strong>the</strong> true<strong>in</strong>sulation resistance from <strong>the</strong> total permanent leakage current.© Schneider Electric - all rights reservedThree methods of calculation are commonlyused:b The method of impedances, based on <strong>the</strong>trigonometric addition of <strong>the</strong> system resistancesand <strong>in</strong>ductive reactancesb The method of compositionb The conventional method, based on anassumed voltage drop and <strong>the</strong> use of preparedtablesThe case of a second faultA second earth fault on an IT system (unless occurr<strong>in</strong>g on <strong>the</strong> same conductoras <strong>the</strong> first fault) constitutes a phase-phase or phase-to-neutral fault, and whe<strong>the</strong>roccurr<strong>in</strong>g on <strong>the</strong> same circuit as <strong>the</strong> first fault, or on a different circuit, overcurrentprotective devices (fuses or circuit-breakers) would normally operate an automaticfault clearance.The sett<strong>in</strong>gs of overcurrent tripp<strong>in</strong>g relays and <strong>the</strong> rat<strong>in</strong>gs of fuses are <strong>the</strong> basicparameters that decide <strong>the</strong> maximum practical length of circuit that can besatisfactorily protected, as discussed <strong>in</strong> Sub-clause 6.2.Note: In normal circumstances, <strong>the</strong> fault current path is through commonPE conductors, bond<strong>in</strong>g all exposed conductive parts of an <strong>in</strong>stallation, and so <strong>the</strong>fault loop impedance is sufficiently low to ensure an adequate level of fault current.Where circuit lengths are unavoidably long, and especially if <strong>the</strong> appliances of acircuit are ear<strong>the</strong>d separately (so that <strong>the</strong> fault current passes through two ear<strong>the</strong>lectrodes), reliable tripp<strong>in</strong>g on overcurrent may not be possible.In this case, an RCD is recommended on each circuit of <strong>the</strong> <strong>in</strong>stallation.Where an IT system is resistance ear<strong>the</strong>d, however, care must be taken to ensurethat <strong>the</strong> RCD is not too sensitive, or a first fault may cause an unwanted trip-out.Tripp<strong>in</strong>g of residual current devices which satisfy IEC standards may occur at valuesof 0.5 ΙΔn to ΙΔn, where ΙΔn is <strong>the</strong> nom<strong>in</strong>al residual-current sett<strong>in</strong>g level.Methods of determ<strong>in</strong><strong>in</strong>g levels of short-circuit currentA reasonably accurate assessment of short-circuit current levels must be carried outat <strong>the</strong> design stage of a project.A rigorous analysis is not necessary, s<strong>in</strong>ce current magnitudes only are important for<strong>the</strong> protective devices concerned (i.e. phase angles need not be determ<strong>in</strong>ed) so thatsimplified conservatively approximate methods are normally used. Three practicalmethods are:b The method of impedances, based on <strong>the</strong> vectorial summation of all <strong>the</strong> (positivephase-sequence)impedances around a fault-current loopb The method of composition, which is an approximate estimation of short-circuitcurrent at <strong>the</strong> remote end of a loop, when <strong>the</strong> level of short-circuit current at <strong>the</strong> nearend of <strong>the</strong> loop is known. Complex impedances are comb<strong>in</strong>ed arithmetically <strong>in</strong> thismethodb The conventional method, <strong>in</strong> which <strong>the</strong> m<strong>in</strong>imum value of voltage at <strong>the</strong> orig<strong>in</strong> ofa faulty circuit is assumed to be 80% of <strong>the</strong> nom<strong>in</strong>al circuit voltage, and tables areused based on this assumption, to give direct read<strong>in</strong>gs of circuit lengths.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock7 Implementation of <strong>the</strong> IT systemThe software Ecodial is based on <strong>the</strong> “methodof impedance”The maximum length of an IT ear<strong>the</strong>d circuit is:b For a 3-phase 3-wire scheme0.8 Uo 3 SphLmax=2 Ia1+m( )b For a 3-phase 4-wire scheme0.8 Uo S1Lmax=2 Ia1+m( )These methods are reliable only for <strong>the</strong> cases <strong>in</strong> which wir<strong>in</strong>g and cables whichmake up <strong>the</strong> fault-current loop are <strong>in</strong> close proximity (to each o<strong>the</strong>r) and are notseparated by ferro-magnetic materials.Methods of impedancesThis method as described <strong>in</strong> Sub-clause 6.2, is identical for both <strong>the</strong> IT andTN systems of earth<strong>in</strong>g.Methods of compositionThis method as described <strong>in</strong> Sub-clause 6.2, is identical for both <strong>the</strong> IT andTN systems of earth<strong>in</strong>g.Conventional method (see Fig. F56)The pr<strong>in</strong>ciple is <strong>the</strong> same for an IT system as that described <strong>in</strong> Sub-clause 6.2 for aTN system : <strong>the</strong> calculation of maximum circuit lengths which should not be exceededdownstream of a circuit-breaker or fuses, to ensure protection by overcurrent devices.It is clearly impossible to check circuit lengths for every feasible comb<strong>in</strong>ation of twoconcurrent faults.All cases are covered, however, if <strong>the</strong> overcurrent trip sett<strong>in</strong>g is based on <strong>the</strong>assumption that a first fault occurs at <strong>the</strong> remote end of <strong>the</strong> circuit concerned,while <strong>the</strong> second fault occurs at <strong>the</strong> remote end of an identical circuit, as alreadymentioned <strong>in</strong> Sub-clause 3.4. This may result, <strong>in</strong> general, <strong>in</strong> one trip-out onlyoccurr<strong>in</strong>g (on <strong>the</strong> circuit with <strong>the</strong> lower trip-sett<strong>in</strong>g level), <strong>the</strong>reby leav<strong>in</strong>g <strong>the</strong> system<strong>in</strong> a first-fault situation, but with one faulty circuit switched out of service.b For <strong>the</strong> case of a 3-phase 3-wire <strong>in</strong>stallation <strong>the</strong> second fault can only cause aphase/phase short-circuit, so that <strong>the</strong> voltage to use <strong>in</strong> <strong>the</strong> formula for maximumcircuit length is 3 Uo.The maximum circuit length is given by:F330.8 Uo 3 SphLmax=metres2 Ia1+m( )b For <strong>the</strong> case of a 3-phase 4-wire <strong>in</strong>stallation <strong>the</strong> lowest value of fault current willoccur if one of <strong>the</strong> faults is on a neutral conductor. In this case, Uo is <strong>the</strong> value to usefor comput<strong>in</strong>g <strong>the</strong> maximum cable length, and0.8 Uo S1Lmax=2 Ia1+m( )metresi.e. 50% only of <strong>the</strong> length permitted for a TN scheme (1)NNPECDABPEIdIdIdIdNon distributed neutralFig. F56 : Calculation of Lmax. for an IT-ear<strong>the</strong>d system, show<strong>in</strong>g fault-current path for a double-fault condition(1) Rem<strong>in</strong>der: There is no length limit for earth-fault protectionon a TT scheme, s<strong>in</strong>ce protection is provided by RCDs of highsensitivity.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>Distributed neutral© Schneider Electric - all rights reserved


F - Protection aga<strong>in</strong>st electric shock7 Implementation of <strong>the</strong> IT systemF34The follow<strong>in</strong>g tables (1) give <strong>the</strong> length of circuitwhich must not be exceeded, <strong>in</strong> order thatpersons be protected aga<strong>in</strong>st <strong>in</strong>direct contacthazards by protective devicesIn <strong>the</strong> preced<strong>in</strong>g formulae:Lmax = longest circuit <strong>in</strong> metresUo = phase-to-neutral voltage (230 V on a 230/400 V system)ρ = resistivity at normal operat<strong>in</strong>g temperature (22.5 x 10 -3 ohms-mm 2 /m for copper,36 x 10 -3 ohms-mm 2 /m for alum<strong>in</strong>ium)Ia = overcurrent trip-sett<strong>in</strong>g level <strong>in</strong> amps, or Ia = current <strong>in</strong> amps required to clear<strong>the</strong> fuse <strong>in</strong> <strong>the</strong> specified timem =SphSPESPE = cross-sectional area of PE conductor <strong>in</strong> mm 2S1 = S neutral if <strong>the</strong> circuit <strong>in</strong>cludes a neutral conductorS1 = Sph if <strong>the</strong> circuit does not <strong>in</strong>clude a neutral conductorTablesThe follow<strong>in</strong>g tables have been established accord<strong>in</strong>g to <strong>the</strong> “conventional method”described above.The tables give maximum circuit lengths, beyond which <strong>the</strong> ohmic resistance of<strong>the</strong> conductors will limit <strong>the</strong> magnitude of <strong>the</strong> short-circuit current to a level belowthat required to trip <strong>the</strong> circuit-breaker (or to blow <strong>the</strong> fuse) protect<strong>in</strong>g <strong>the</strong> circuit,with sufficient rapidity to ensure safety aga<strong>in</strong>st <strong>in</strong>direct contact. The tables take <strong>in</strong>toaccount:b The type of protection: circuit-breakers or fuses, operat<strong>in</strong>g-current sett<strong>in</strong>gsb Cross-sectional area of phase conductors and protective conductorsb Type of earth<strong>in</strong>g schemeb Correction factor: Figure F57 <strong>in</strong>dicates <strong>the</strong> correction factor to apply to <strong>the</strong> lengthsgiven <strong>in</strong> tables F40 to F43, when consider<strong>in</strong>g an IT systemCircuit Conductor m = Sph/SPE (or PEN)material m = 1 m = 2 m = 3 m = 43 phases Copper 0.86 0.57 0.43 0.34Alum<strong>in</strong>ium 0.54 0.36 0.27 0.213ph + N or 1ph + N Copper 0.50 0.33 0.25 0.20Alum<strong>in</strong>ium 0.31 0.21 0.16 0.12Fig. F57 : Correction factor to apply to <strong>the</strong> lengths given <strong>in</strong> tables F41 to F44 for TN systemsExampleA 3-phase 3-wire 230/400 V <strong>in</strong>stallation is IT-ear<strong>the</strong>d.One of its circuits is protected by a circuit-breaker rated at 63 A, and consists of analum<strong>in</strong>ium-cored cable with 50 mm 2 phase conductors. The 25 mm 2 PE conductoris also alum<strong>in</strong>um. What is <strong>the</strong> maximum length of circuit, below which protection ofpersons aga<strong>in</strong>st <strong>in</strong>direct-contact hazards is assured by <strong>the</strong> <strong>in</strong>stantaneous magnetictripp<strong>in</strong>g relay of <strong>the</strong> circuit-breaker?Figure F42 <strong>in</strong>dicates 603 metres, to which must be applied a correction factor of 0.36(m = 2 for alum<strong>in</strong>ium cable).The maximum length is <strong>the</strong>refore 217 metres.7.3 High-sensitivity RCDs© Schneider Electric - all rights reservedFig. F62 : Circuit supply<strong>in</strong>g socket-outlets(1) The tables are those shown <strong>in</strong> Sub-clause 6.2 (FiguresF41 to F44). However, <strong>the</strong> table of correction factors (FigureF57) which takes <strong>in</strong>to account <strong>the</strong> ratio Sph/SPE, and of <strong>the</strong>type of circuit (3-ph 3-wire; 3-ph 4-wire; 1-ph 2-wire) as wellas conductor material, is specific to <strong>the</strong> IT system, and differsfrom that for TN.Accord<strong>in</strong>g to IEC 60364-4-41, high sensitivity RCDs (y 30 mA) must be used forprotection of socket outlets with rated current y 20 A <strong>in</strong> all locations. The use of suchRCDs is also recommended <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g cases:b Socket-outlet circuits <strong>in</strong> wet locations at all current rat<strong>in</strong>gsb Socket-outlet circuits <strong>in</strong> temporary <strong>in</strong>stallationsb Circuits supply<strong>in</strong>g laundry rooms and swimm<strong>in</strong>g poolsb Supply circuits to work-sites, caravans, pleasure boats, and travell<strong>in</strong>g fairsSee 2.2 and chapter P, al section 3Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock7 Implementation of <strong>the</strong> IT system7.4 Protection <strong>in</strong> high fire-risk locationsProtection by a RCD of sensitivity y 500 mA at <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> circuit supply<strong>in</strong>g <strong>the</strong>fire-risk locations is mandatory <strong>in</strong> some countries (see Fig. F59).A preferred sensitivity of 300 mA may be adopted.7.5 When <strong>the</strong> fault current-loop impedance isparticularly highWhen <strong>the</strong> earth-fault current is restricted due to an <strong>in</strong>evitably high fault-loopimpedance, so that <strong>the</strong> overcurrent protection cannot be relied upon to trip <strong>the</strong> circuitwith<strong>in</strong> <strong>the</strong> prescribed time, <strong>the</strong> follow<strong>in</strong>g possibilities should be considered:Fig. F59 : Fire-risk location2 y I rm y 4I nGreat length of cablePEFig. F60 : A circuit-breaker with low-set <strong>in</strong>stantaneousmagnetic tripFire-risklocationSuggestion 1 (see Fig. F60)b Install a circuit-breaker which has an <strong>in</strong>stantaneous magnetic tripp<strong>in</strong>g element withan operation level which is lower than <strong>the</strong> usual sett<strong>in</strong>g, for example:2In y Irm y 4InThis affords protection for persons on circuits which are abnormally long. It mustbe checked, however, that high transient currents such as <strong>the</strong> start<strong>in</strong>g currents ofmotors will not cause nuisance trip-outs.b Schneider Electric solutionsv Compact NSX with G trip unit or Micrologic trip unit (2Im y Irm y 4Im)v Type B Multi 9 circuit-breakerSuggestion 2 (see Fig. F61)Install a RCD on <strong>the</strong> circuit. The device does not need to be highly-sensitive (HS)(several amps to a few tens of amps). Where socket-outlets are <strong>in</strong>volved, <strong>the</strong>particular circuits must, <strong>in</strong> any case, be protected by HS (y 30 mA) RCDs; generallyone RCD for a number of socket outlets on a common circuit.b Schneider Electric solutionsv RCD Multi 9 NG125 : ΙΔn = 1 or 3 Av Vigicompact MH or ME: ΙΔn = 3 to 30 ASuggestion 3Increase <strong>the</strong> size of <strong>the</strong> PE conductors and/or <strong>the</strong> phase conductors, to reduce <strong>the</strong>loop impedance.Suggestion 4 (see Fig. F62)Add supplementary equipotential conductors. This will have a similar effect to thatof suggestion 3, i.e. a reduction <strong>in</strong> <strong>the</strong> earth-fault-loop resistance, while at <strong>the</strong> sametime improv<strong>in</strong>g <strong>the</strong> exist<strong>in</strong>g touch-voltage protection measures. The effectivenessof this improvement may be checked by a resistance test between each exposedconductive part and <strong>the</strong> local ma<strong>in</strong> protective conductor.F35PhasesNeutralPEFig. F61 : RCD protectionFig. F62 : Improved equipotential bond<strong>in</strong>g© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock8 Residual current devices (RCDs)F36Industrial circuit-breakers with an <strong>in</strong>tegratedRCD are covered <strong>in</strong> IEC 60947-2 and itsappendix B8.1 Types of RCDsResidual current devices (RCD) are commonly <strong>in</strong>corporated <strong>in</strong> or associated with <strong>the</strong>follow<strong>in</strong>g components:b Industrial-type moulded-case circuit-breakers (MCCB) and air circuit-breakers(ACB) conform<strong>in</strong>g to IEC 60947-2 and its appendix B and Mb Industrial type m<strong>in</strong>iature circuit-breakers (MCB) conform<strong>in</strong>g to IEC 60947-2 and itsappendix B and Mb Household and similar m<strong>in</strong>iature circuit-breakers (MCB) comply<strong>in</strong>g with IEC 60898,IEC 61008, IEC 61009b Residual load switch conform<strong>in</strong>g to particular national standardsb Relays with separate toroidal (r<strong>in</strong>g-type) current transformers, conform<strong>in</strong>g toIEC 60947-2 Appendix MRCDs are mandatorily used at <strong>the</strong> orig<strong>in</strong> of TT-ear<strong>the</strong>d <strong>in</strong>stallations, where <strong>the</strong>irability to discrim<strong>in</strong>ate with o<strong>the</strong>r RCDs allows selective tripp<strong>in</strong>g, <strong>the</strong>reby ensur<strong>in</strong>g <strong>the</strong>level of service cont<strong>in</strong>uity required.Industrial type circuit-breakers with <strong>in</strong>tegrated or adaptableRCD module (see Fig. F63)Industrial type circuit-breakerVigi CompactFig. F63 : Industrial-type CB with RCD moduleMulti 9 DIN-rail <strong>in</strong>dustrialCircuit-breaker with adaptable Vigi RCD moduleHousehold or domestic circuit-breakers withan <strong>in</strong>tegrated RCD are covered <strong>in</strong> IEC 60898,IEC 61008 and IEC 61009Adaptable residual current circuit-breakers, <strong>in</strong>clud<strong>in</strong>g DIN-rail mounted units (e.g.Compact or Multi 9), are available, to which may be associated an auxiliary RCDmodule (e.g. Vigi).The ensemble provides a comprehensive range of protective functions (isolation,protection aga<strong>in</strong>st short-circuit, overload, and earth-fault.Household and similar m<strong>in</strong>iature circuit-breakers with RCD(see Fig. F64)© Schneider Electric - all rights reservedThe <strong>in</strong>com<strong>in</strong>g-supply circuitbreakercan also have timedelayedcharacteristics and<strong>in</strong>tegrate a RCD (type S).“Monobloc” Déclic Vigi residual current circuit-breakers<strong>in</strong>tended for protection of term<strong>in</strong>al socket-outlet circuits<strong>in</strong> domestic and tertiary sector applications.Fig. F64 : Domestic residual current circuit-breakers (RCCBs) for earth leakage protectionSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock8 Residual current devices (RCDs)Residual current load break switches arecovered by particular national standards.RCDs with separate toroidal currenttransformers are standardized <strong>in</strong> IEC 60947-2appendix MResidual current circuit-breakers and RCDs with separatetoroidal current transformer (see Fig. F65)RCDs with separate toroidal CTs can be used <strong>in</strong> association with circuit-breakers orcontactors.F37Fig. F65 : RCDs with separate toroidal current transformers (Vigirex)I1I2Fig. F66 : The pr<strong>in</strong>ciple of RCD operationI38.2 DescriptionPr<strong>in</strong>cipleThe essential features are shown schematically <strong>in</strong> Figure F66 below.A magnetic core encompasses all <strong>the</strong> current-carry<strong>in</strong>g conductors of an electriccircuit and <strong>the</strong> magnetic flux generated <strong>in</strong> <strong>the</strong> core will depend at every <strong>in</strong>stant on<strong>the</strong> arithmetical sum of <strong>the</strong> currents; <strong>the</strong> currents pass<strong>in</strong>g <strong>in</strong> one direction be<strong>in</strong>gconsidered as positive (Ι1), while those pass<strong>in</strong>g <strong>in</strong> <strong>the</strong> opposite direction will benegative (Ι2).In a normally healthy circuit Ι1 + Ι2 = 0 and <strong>the</strong>re will be no flux <strong>in</strong> <strong>the</strong> magnetic core,and zero e.m.f. <strong>in</strong> its coil.An earth-fault current Ιd will pass through <strong>the</strong> core to <strong>the</strong> fault, but will return to <strong>the</strong>source via <strong>the</strong> earth, or via protective conductors <strong>in</strong> a TN-ear<strong>the</strong>d system.The current balance <strong>in</strong> <strong>the</strong> conductors pass<strong>in</strong>g through <strong>the</strong> magnetic core <strong>the</strong>reforeno longer exists, and <strong>the</strong> difference gives rise to a magnetic flux <strong>in</strong> <strong>the</strong> core.The difference current is known as <strong>the</strong> “residual” current and <strong>the</strong> pr<strong>in</strong>ciple is referredto as <strong>the</strong> “residual current” pr<strong>in</strong>ciple.The resultant alternat<strong>in</strong>g flux <strong>in</strong> <strong>the</strong> core <strong>in</strong>duces an e.m.f. <strong>in</strong> its coil, so that a currentI3 flows <strong>in</strong> <strong>the</strong> tripp<strong>in</strong>g-device operat<strong>in</strong>g coil. If <strong>the</strong> residual current exceeds <strong>the</strong> valuerequired to operate <strong>the</strong> tripp<strong>in</strong>g device ei<strong>the</strong>r directly or via an electronic relay, <strong>the</strong>n<strong>the</strong> associated circuit-breaker will trip.8.3 Sensitivity of RDCs to disturbancesIn certa<strong>in</strong> cases, aspects of <strong>the</strong> environment can disturb <strong>the</strong> correct operation ofRCDs:b “nuisance” tripp<strong>in</strong>g: Break <strong>in</strong> power supply without <strong>the</strong> situation be<strong>in</strong>g reallyhazardous. This type of tripp<strong>in</strong>g is often repetitive, caus<strong>in</strong>g major <strong>in</strong>convenience anddetrimental to <strong>the</strong> quality of <strong>the</strong> user's electrical power supply.b non-tripp<strong>in</strong>g, <strong>in</strong> <strong>the</strong> event of a hazard. Less perceptible than nuisance tripp<strong>in</strong>g,<strong>the</strong>se malfunctions must still be exam<strong>in</strong>ed carefully s<strong>in</strong>ce <strong>the</strong>y underm<strong>in</strong>e user safety.This is why <strong>in</strong>ternational standards def<strong>in</strong>e 3 categories of RCDs accord<strong>in</strong>g to <strong>the</strong>irimmunity to this type of disturbance (see below).© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock8 Residual current devices (RCDs)F38I100%90%10 s (f = 100 kHz)10%tca.0.5 s60%Fig. F67 : Standardized 0.5 µs/100 kHz current transient waveUUmax0.5Ut1.2 s 50 sFig. F68 : Standardized 1.2/50 µs voltage transient waveI10.9Ma<strong>in</strong> disturbance typesPermanent earth leakage currentsEvery LV <strong>in</strong>stallation has a permanent leakage current to earth, which is ei<strong>the</strong>r dueto:b Unbalance of <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic capacitance between live conductors and earth for threephasecircuits orb Capacitance between live conductors and earth for s<strong>in</strong>gle-phase circuitsThe larger <strong>the</strong> <strong>in</strong>stallation <strong>the</strong> greater its capacitance with consequently <strong>in</strong>creasedleakage current.The capacitive current to earth is sometimes <strong>in</strong>creased significantly by filter<strong>in</strong>gcapacitors associated with electronic equipment (automation, IT and computerbasedsystems, etc.).In <strong>the</strong> absence of more precise data, permanent leakage current <strong>in</strong> a given<strong>in</strong>stallation can be estimated from <strong>the</strong> follow<strong>in</strong>g values, measured at 230 V 50 Hz:S<strong>in</strong>gle-phase or three-phase l<strong>in</strong>e: 1.5 mA /100mb Heat<strong>in</strong>g floor: 1mA / kWb Fax term<strong>in</strong>al, pr<strong>in</strong>ter: 1 mAb Microcomputer, workstation: 2 mAb Copy mach<strong>in</strong>e: 1.5 mAS<strong>in</strong>ce RCDs comply<strong>in</strong>g with IEC and many national standards may operate under,<strong>the</strong> limitation of permanent leakage current to 0.25 IΔn, by sub-division of circuitswill, <strong>in</strong> practice, elim<strong>in</strong>ate any unwanted tripp<strong>in</strong>g.For very particular cases, such as <strong>the</strong> extension, or partial renovation of extendedIT-ear<strong>the</strong>d <strong>in</strong>stallations, <strong>the</strong> manufacturers must be consulted.High frequency components (harmonics, transients, etc.), are generated bycomputer equipment power supplies, converters, motors with speed regulators,fluorescent light<strong>in</strong>g systems and <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of high power switch<strong>in</strong>g devices andreactive <strong>energy</strong> compensation banks.Part of <strong>the</strong>se high frequency currents may flow to earth through parasiticcapacitances. Although not hazardous for <strong>the</strong> user, <strong>the</strong>se currents can still cause <strong>the</strong>tripp<strong>in</strong>g of differential devices.EnergizationThe <strong>in</strong>itial energization of <strong>the</strong> capacitances mentioned above gives rise to highfrequency transient currents of very short duration, similar to that shown <strong>in</strong>Figure F67.The sudden occurrence of a first-fault on an IT-ear<strong>the</strong>d system also causes transientearth-leakage currents at high frequency, due to <strong>the</strong> sudden rise of <strong>the</strong> two healthyphases to phase/phase voltage above earth.Common mode overvoltages<strong>Electrical</strong> networks are subjected to overvoltages due to lightn<strong>in</strong>g strikes or to abruptchanges of system operat<strong>in</strong>g conditions (faults, fuse operation, switch<strong>in</strong>g, etc.).These sudden changes often cause large transient voltages and currents <strong>in</strong> <strong>in</strong>ductiveand capacitive circuits. Records have established that, on LV systems, overvoltagesrema<strong>in</strong> generally below 6 kV, and that <strong>the</strong>y can be adequately represented by <strong>the</strong>conventional 1.2/50 μs impulse wave (see Fig. F68).0.5These overvoltages give rise to transient currents represented by a current impulsewave of <strong>the</strong> conventional 8/20 μs form, hav<strong>in</strong>g a peak value of several tens ofamperes (see Fig. F69).The transient currents flow to earth via <strong>the</strong> capacitances of <strong>the</strong> <strong>in</strong>stallation.Non-s<strong>in</strong>usoidal fault currents© Schneider Electric - all rights reserved0.1Fig. F69 : Standardized current-impulse wave 8/20 µstType AC, A, BStandard IEC 60755 (General requirements for residual current operated protectivedevices) def<strong>in</strong>es three types of RCD depend<strong>in</strong>g on <strong>the</strong> characteristics of <strong>the</strong> faultcurrent:b Type ACRCD for which tripp<strong>in</strong>g is ensured for residual s<strong>in</strong>usoidal alternat<strong>in</strong>g currents.b Type ARCD for which tripp<strong>in</strong>g is ensured:v for residual s<strong>in</strong>usoidal alternat<strong>in</strong>g currents,v for residual pulsat<strong>in</strong>g direct currents,Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock8 Residual current devices (RCDs)b Type BRCD for which tripp<strong>in</strong>g is ensured:v as for type A,v for pure direct residual currents which may result from three-phase rectify<strong>in</strong>gcircuits.Cold: <strong>in</strong> <strong>the</strong> cases of temperatures under - 5 °C, very high sensitivityelectromechanical relays <strong>in</strong> <strong>the</strong> RCD may be “welded” by <strong>the</strong> condensation – freez<strong>in</strong>gaction.Type “Si” devices can operate under temperatures down to - 25 °C.Atmospheres with high concentrations of chemicals or dust: <strong>the</strong> special alloysused to make <strong>the</strong> RCDs can be notably damaged by corrosion. Dust can also block<strong>the</strong> movement of mechanical parts.See <strong>the</strong> measures to be taken accord<strong>in</strong>g to <strong>the</strong> levels of severity def<strong>in</strong>ed bystandards <strong>in</strong> Fig. F70.Regulations def<strong>in</strong>e <strong>the</strong> choice of earth leakage protection and its implementation.The ma<strong>in</strong> reference texts are as follows:b Standard IEC 60364-3:v This gives a classification (AFx) for external <strong>in</strong>fluences <strong>in</strong> <strong>the</strong> presence of corrosiveor pollut<strong>in</strong>g substances.v It def<strong>in</strong>es <strong>the</strong> choice of materials to be used accord<strong>in</strong>g to extreme <strong>in</strong>fluences.F39DisturbednetworkInfluence of<strong>the</strong> electricalnetworkClean networkSuperimmunizedresidual currentprotectionsType A if: kStandardimmunizedresidual currentprotectionsType ACSiE kresidual currentprotectionsSiE kresidual currentprotections+Appropriateadditionalprotection(sealed cab<strong>in</strong>etor unit)AF1 AF2 AF3 AF4SiE kresidual currentprotections+Appropriateadditionalprotection(sealed cab<strong>in</strong>etor unit +overpressure)b External<strong>in</strong>fluences:negligible,b External<strong>in</strong>fluences:presenceof corrosiveor pollut<strong>in</strong>gatmosphericagents,b External<strong>in</strong>fluences:<strong>in</strong>termittentor accidentalaction ofcerta<strong>in</strong>commonchemicals,b External<strong>in</strong>fluences:permanentaction ofcorrosiveor pollut<strong>in</strong>gchemicalsb Equipmentcharacteristics:normal.b Equipmentcharacteristics:e.g. conformitywith salt mistor atmosphericpollution tests.b Equipmentcharacteristics:corrosionprotection.b Equipmentcharacteristics:specificallystudiedaccord<strong>in</strong>g to<strong>the</strong> type ofproducts.Examples of exposed sitesIron and steel works.Mar<strong>in</strong>as, trad<strong>in</strong>g ports, boats, sea edges, navalshipyards.Swimm<strong>in</strong>g pools, hospitals, food & beverage.Petrochemicals.Breed<strong>in</strong>g facilities, tips.External <strong>in</strong>fluencesPresence of sulfur, sulfur vapor, hydrogensulfide.Salt atmospheres, humid outside, lowtemperatures.Chlor<strong>in</strong>ated compounds.Hydrogen, combustion gases, nitrogenoxides.Hydrogen sulfide.Fig. F70 : External <strong>in</strong>fluence classification accord<strong>in</strong>g to IEC 60364-3 standard© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock8 Residual current devices (RCDs)Immunity level for Merl<strong>in</strong> Ger<strong>in</strong> residual current devicesThe Merl<strong>in</strong> Ger<strong>in</strong> range comprises various types of RCDs allow<strong>in</strong>g earth leakageprotection to be adapted to each application. The table below <strong>in</strong>dicates <strong>the</strong> choices tobe made accord<strong>in</strong>g to <strong>the</strong> type of probable disturbances at <strong>the</strong> po<strong>in</strong>t of <strong>in</strong>stallation.Device typeNuisancetripp<strong>in</strong>gsNon-tripp<strong>in</strong>gsHighfrequencyleakagecurrentFault currentRectifiedalternat<strong>in</strong>gPure directLowtemperatures(down to- 25 °C)CorrosionDustACbF40A b b bSI b b b b bSiE b b b b b bB b b b b b bFig. F71 : Immunity level of Merl<strong>in</strong> Ger<strong>in</strong> RCDsImmunity to nuisance tripp<strong>in</strong>gType Si/SiE RCDs have been designed to avoid nuisance tripp<strong>in</strong>g or non-tripp<strong>in</strong>g <strong>in</strong>case of polluted network , lightn<strong>in</strong>g effect, high frequency currents, RF waves, etc.Figure F72 below <strong>in</strong>dicates <strong>the</strong> levels of tests undergone by this type of RCDs.Disturbance type Rated test wave ImmunityCont<strong>in</strong>uous disturbancesMulti9 :ID-RCCB, DPN Vigi, Vigi C60, VigiC120, Vigi NG125SI / SiE typeHarmonics 1 kHz Earth leakage current = 8 x I∆nTransient disturbances© Schneider Electric - all rights reservedLightn<strong>in</strong>g <strong>in</strong>duced overvoltageLightn<strong>in</strong>g <strong>in</strong>duced currentSwitch<strong>in</strong>g transient, <strong>in</strong>directlightn<strong>in</strong>g currentsDownstream surge arresteroperation, capacitance load<strong>in</strong>gElectromagnetic compatibilityInductive load switch<strong>in</strong>gsfluorescent lights, motors, etc.)Fluorescent lights, thyristorcontrolled circuits, etc.RF waves (TV&radio, broadcact,telecommunications,etc.)1.2 / 50 µs pulse(IEC/EN 61000-4-5)8 / 20 µs pulse(IEC/EN 61008)0.5 µs / 100 kHz“ r<strong>in</strong>g wave ”(IEC/EN 61008)4.5 kV between conductors 5.5 kV /earth5 kA peak400 A peak10 ms pulse 500 ARepeated bursts(IEC 61000-4-4)RF conductedwaves(IEC 61000-4-6)RF radiated waves80 MHz to 1 GHz(IEC 61000-4-3)4 kV / 400 kHz66 mA (15 kHz to 150 kHz)30 V (150 kHz to 230 MHz)30 V / mFig. F72 : Immunity to nuisance tripp<strong>in</strong>g tests undergone by Merl<strong>in</strong> Ger<strong>in</strong> RCDsSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock8 Residual current devices (RCDs)Recommendations concern<strong>in</strong>g <strong>the</strong> <strong>in</strong>stallation of RCDs withseparate toroidal current transformersThe detector of residual current is a closed magnetic circuit (usually circular) ofvery high magnetic permeability, on which is wound a coil of wire, <strong>the</strong> ensembleconstitut<strong>in</strong>g a toroidal (or r<strong>in</strong>g-type) current transformer.Because of its high permeability, any small deviation from perfect symmetry of<strong>the</strong> conductors encompassed by <strong>the</strong> core, and <strong>the</strong> proximity of ferrous material(steel enclosure, chassis members, etc.) can affect <strong>the</strong> balance of magnetic forcessufficiently, at times of large load currents (motor-start<strong>in</strong>g current, transformerenergiz<strong>in</strong>g current surge, etc.) to cause unwanted tripp<strong>in</strong>g of <strong>the</strong> RCD.Unless particular measures are taken, <strong>the</strong> ratio of operat<strong>in</strong>g current IΔn to maximumphase current Iph (max.) is generally less than 1/1,000.This limit can be <strong>in</strong>creased substantially (i.e. <strong>the</strong> response can be desensitized) byadopt<strong>in</strong>g <strong>the</strong> measures shown <strong>in</strong> Figure F73, and summarized <strong>in</strong> Figure F74.F41LL = twice <strong>the</strong> diameter of<strong>the</strong> magnetic r<strong>in</strong>g coreFig. F73 : Three measures to reduce <strong>the</strong> ratio IΔn/Iph (max.)Measures Diameter Sensitivity(mm)dim<strong>in</strong>ution factorCareful centraliz<strong>in</strong>g of cables through <strong>the</strong> r<strong>in</strong>g core 3Oversiz<strong>in</strong>g of <strong>the</strong> r<strong>in</strong>g core ø 50 → ø 100 2ø 80 → ø 200 2ø 120 → ø 300 6Use of a steel or soft-iron shield<strong>in</strong>g sleeve ø 50 4b Of wall thickness 0.5 mm ø 80 3b Of length 2 x <strong>in</strong>side diameter of r<strong>in</strong>g core ø 120 3b Completely surround<strong>in</strong>g <strong>the</strong> conductors and ø 200 2overlapp<strong>in</strong>g <strong>the</strong> circular core equally at both endsThese measures can be comb<strong>in</strong>ed. By carefully centraliz<strong>in</strong>g <strong>the</strong> cables <strong>in</strong> a r<strong>in</strong>g coreof 200 mm diameter, where a 50 mm core would be large enough, and us<strong>in</strong>g a sleeve,<strong>the</strong> ratio 1/1,000 could become 1/30,000.Fig. F74 : Means of reduc<strong>in</strong>g <strong>the</strong> ratio IΔn/Iph (max.)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


F - Protection aga<strong>in</strong>st electric shock8 Residual current devices (RCDs)F42abIn1InInIn1 In2 In3 In4Fig. F75 : Residual current circuit-breakers (RCCBs)Choice of characteristics of a residual-current circuit-breaker(RCCB - IEC 61008)Rated currentThe rated current of a RCCB is chosen accord<strong>in</strong>g to <strong>the</strong> maximum susta<strong>in</strong>ed loadcurrent it will carry.b If <strong>the</strong> RCCB is connected <strong>in</strong> series with, and downstream of a circuit-breaker, <strong>the</strong>rated current of both items will be <strong>the</strong> same, i.e. In u In1 (see Fig. F75a)b If <strong>the</strong> RCCB is located upstream of a group of circuits, protected by circuitbreakers,as shown <strong>in</strong> Figure F75b, <strong>the</strong>n <strong>the</strong> RCCB rated current will be given by:In u ku x ks (In1 + In2 + In3 + In4)Electrodynamic withstand requirementsProtection aga<strong>in</strong>st short-circuits must be provided by an upstream SCPD (Short-Circuit Protective Device) but it is considered that where <strong>the</strong> RCCB is located <strong>in</strong> <strong>the</strong>same distribution box (comply<strong>in</strong>g with <strong>the</strong> appropriate standards) as <strong>the</strong> downstreamcircuit-breakers (or fuses), <strong>the</strong> short-circuit protection afforded by <strong>the</strong>se (outgo<strong>in</strong>gcircuit)SCPDs is an adequate alternative. Coord<strong>in</strong>ation between <strong>the</strong> RCCB and <strong>the</strong>SCPDs is necessary, and manufacturers generally provide tables associat<strong>in</strong>g RCCBsand circuit-breakers or fuses (see Fig. F76).Circuit-breaker and RCCB association – maxi Isc (r.m.s) value <strong>in</strong> kAUpstream circuit-breaker DT40 DT40N C60N C60H C60L C120N C120H NG125N NG125HDownstream 2P I 20A 6.5 6.5 6.5 6.5 6.5 3 4.5 4.5 4.5RCCB 230V IN-A 40A 6 10 20 30 30 10 10 15 15IN-A 63A 6 10 20 30 30 10 10 15 15I 100A 15 15 15 154P I 20A 4.5 4.5 4.5 4.5 4.5 2 3 3 3400V IN-A 40A 6 10 10 15 15 7 7 15 15IN-A 63A 6 10 10 15 15 7 7 15 15NG 125NA 10 16 25 50Fuses and RCCB association – maxi Isc (r.m.s) value <strong>in</strong> kAgG upstream fuse 20A 63A 100A 125ADownstream 2P I 20A 8RCCB 230V IN-A 40A 30 20IN-A 63A 30 20I 100A 64P I 20A 8400V IN-A 40A 30 20IN-A 63A 30 20NG 125NA 50Fig. F76 : Typical manufacturers coord<strong>in</strong>ation table for RCCBs, circuit-breakers, and fuses (Merl<strong>in</strong> Ger<strong>in</strong> products)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Chapter GSiz<strong>in</strong>g and protection of conductors12345678ContentsGeneral1.1 Methodology and def<strong>in</strong>ition G21.2 Overcurrent protection pr<strong>in</strong>ciples G41.3 Practical values for a protective scheme G41.4 Location of protective devices G61.5 Conductors <strong>in</strong> parallel G6Practical method for determ<strong>in</strong><strong>in</strong>g <strong>the</strong> smallest allowable G7cross-sectional area of circuit conductors2.1 General G72.2 General method for cables G72.3 Recommended simplified approach for cables G162.4 Busbar trunk<strong>in</strong>g systems G18Determ<strong>in</strong>ation of voltage dropG203.1 Maximum voltage drop limit G203.2 Calculation of voltage drop <strong>in</strong> steady load conditions G21Short-circuit currentG244.1 Short-circuit current at <strong>the</strong> secondary term<strong>in</strong>als of G24a MV/LV distribution transformer4.2 3-phase short-circuit current (Isc) at any po<strong>in</strong>t with<strong>in</strong> G25a LV <strong>in</strong>stallation4.3 Isc at <strong>the</strong> receiv<strong>in</strong>g end of a feeder <strong>in</strong> terms of <strong>the</strong> Isc G28at its send<strong>in</strong>g end4.4 Short-circuit current supplied by an alternator or an <strong>in</strong>verter G29Particular cases of short-circuit currentG305.1 Calculation of m<strong>in</strong>imum levels of short-circuit current G305.2 Verification of <strong>the</strong> withstand capabilities of cables under G35short-circuit conditionsProtective earth<strong>in</strong>g conductorG376.1 Connection and choice G376.2 Conductor siz<strong>in</strong>g G386.3 Protective conductor between MV/LV transformer and G40<strong>the</strong> ma<strong>in</strong> general distribution board (MGDB)6.4 Equipotential conductor G41The neutral conductorG427.1 Siz<strong>in</strong>g <strong>the</strong> neutral conductor G427.2 Protection of <strong>the</strong> neutral conductor G427.3 Break<strong>in</strong>g of <strong>the</strong> neutral conductor G447.4 Isolation of <strong>the</strong> neutral conductor G44Worked example of cable calculationG2G46G© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors1 GeneralGComponent parts of an electric circuit and itsprotection are determ<strong>in</strong>ed such that all normaland abnormal operat<strong>in</strong>g conditions are satisfied1.1 Methodology and def<strong>in</strong>itionMethodology (see Fig. G1 )Follow<strong>in</strong>g a prelim<strong>in</strong>ary analysis of <strong>the</strong> power requirements of <strong>the</strong> <strong>in</strong>stallation, asdescribed <strong>in</strong> Chapter B Clause 4, a study of cabl<strong>in</strong>g (1) and its electrical protection isundertaken, start<strong>in</strong>g at <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> <strong>in</strong>stallation, through <strong>the</strong> <strong>in</strong>termediate stagesto <strong>the</strong> f<strong>in</strong>al circuits.The cabl<strong>in</strong>g and its protection at each level must satisfy several conditions at <strong>the</strong>same time, <strong>in</strong> order to ensure a safe and reliable <strong>in</strong>stallation, e.g. it must:b Carry <strong>the</strong> permanent full load current, and normal short-time overcurrentsb Not cause voltage drops likely to result <strong>in</strong> an <strong>in</strong>ferior performance of certa<strong>in</strong> loads,for example: an excessively long acceleration period when start<strong>in</strong>g a motor, etc.Moreover, <strong>the</strong> protective devices (circuit-breakers or fuses) must:b Protect <strong>the</strong> cabl<strong>in</strong>g and busbars for all levels of overcurrent, up to and <strong>in</strong>clud<strong>in</strong>gshort-circuit currentsb Ensure protection of persons aga<strong>in</strong>st <strong>in</strong>direct contact hazards, particularly <strong>in</strong>TN- and IT- ear<strong>the</strong>d systems, where <strong>the</strong> length of circuits may limit <strong>the</strong> magnitudeof short-circuit currents, <strong>the</strong>reby delay<strong>in</strong>g automatic disconnection (it may beremembered that TT- ear<strong>the</strong>d <strong>in</strong>stallations are necessarily protected at <strong>the</strong> orig<strong>in</strong> bya RCD, generally rated at 300 mA).The cross-sectional areas of conductors are determ<strong>in</strong>ed by <strong>the</strong> general methoddescribed <strong>in</strong> Sub-clause 2 of this Chapter. Apart from this method some nationalstandards may prescribe a m<strong>in</strong>imum cross-sectional area to be observed for reasonsof mechanical endurance. Particular loads (as noted <strong>in</strong> Chapter N) require that <strong>the</strong>cable supply<strong>in</strong>g <strong>the</strong>m be oversized, and that <strong>the</strong> protection of <strong>the</strong> circuit be likewisemodified.Power demand:- kVA to be supplied- Maximum load current I BConductor siz<strong>in</strong>g:- Selection of conductor type and <strong>in</strong>sulation- Selection of method of <strong>in</strong>stallation- Tak<strong>in</strong>g account of correction factors fordifferent environment conditions- Determ<strong>in</strong>ation of cross-sectional areas us<strong>in</strong>gtables giv<strong>in</strong>g <strong>the</strong> current carry<strong>in</strong>g capabilityVerification of <strong>the</strong> maximum voltage drop:- Steady state conditions- Motor start<strong>in</strong>g conditionsCalculation of short-circuit currents:- Upstream short-circuit power- Maximum values- M<strong>in</strong>imum values at conductor end© Schneider Electric - all rights reserved(1) The term “cabl<strong>in</strong>g” <strong>in</strong> this chapter, covers all <strong>in</strong>sulatedconductors, <strong>in</strong>clud<strong>in</strong>g multi-core and s<strong>in</strong>gle-core cables and<strong>in</strong>sulated wires drawn <strong>in</strong>to conduits, etc.Fig. G1 : Flow-chart for <strong>the</strong> selection of cable size and protective device rat<strong>in</strong>g for a given circuitSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>Selection of protective devices:- Rated current- Break<strong>in</strong>g capability- Implementation of cascad<strong>in</strong>g- Check of discrim<strong>in</strong>ation


G - Siz<strong>in</strong>g and protection of conductors1 GeneralDef<strong>in</strong>itionsMaximum load current: IBb At <strong>the</strong> f<strong>in</strong>al circuits level, this current corresponds to <strong>the</strong> rated kVA of <strong>the</strong> load.In <strong>the</strong> case of motor-start<strong>in</strong>g, or o<strong>the</strong>r loads which take a high <strong>in</strong>-rush current,particularly where frequent start<strong>in</strong>g is concerned (e.g. lift motors, resistance-typespot weld<strong>in</strong>g, and so on) <strong>the</strong> cumulative <strong>the</strong>rmal effects of <strong>the</strong> overcurrents must betaken <strong>in</strong>to account. Both cables and <strong>the</strong>rmal type relays are affected.b At all upstream circuit levels this current corresponds to <strong>the</strong> kVA to be supplied,which takes account of <strong>the</strong> factors of simultaneity (diversity) and utilization, ks and kurespectively, as shown <strong>in</strong> Figure G2.Ma<strong>in</strong> distributionboardComb<strong>in</strong>ed factors of simultaneity(or diversity) and utilization:ks x ku = 0.69IB = (80+60+100+50) x 0.69 = 200 AGSub-distributionboard80 A 60 A 100 A50 AMNormal loadmotor current50 AFig. G2 : Calculation of maximum load current IBMaximum permissible current: IzThis is <strong>the</strong> maximum value of current that <strong>the</strong> cabl<strong>in</strong>g for <strong>the</strong> circuit can carry<strong>in</strong>def<strong>in</strong>itely, without reduc<strong>in</strong>g its normal life expectancy.The current depends, for a given cross sectional area of conductors, on severalparameters:b Constitution of <strong>the</strong> cable and cable-way (Cu or Alu conductors; PVC or EPR etc.<strong>in</strong>sulation; number of active conductors)b Ambient temperatureb Method of <strong>in</strong>stallationb Influence of neighbour<strong>in</strong>g circuitsOvercurrentsAn overcurrent occurs each time <strong>the</strong> value of current exceeds <strong>the</strong> maximum loadcurrent IB for <strong>the</strong> load concerned.This current must be cut off with a rapidity that depends upon its magnitude, ifpermanent damage to <strong>the</strong> cabl<strong>in</strong>g (and appliance if <strong>the</strong> overcurrent is due to adefective load component) is to be avoided.Overcurrents of relatively short duration can however, occur <strong>in</strong> normal operation; twotypes of overcurrent are dist<strong>in</strong>guished:b OverloadsThese overcurrents can occur <strong>in</strong> healthy electric circuits, for example, due to anumber of small short-duration loads which occasionally occur co-<strong>in</strong>cidentally: motorstart<strong>in</strong>g loads, and so on. If ei<strong>the</strong>r of <strong>the</strong>se conditions persists however beyond agiven period (depend<strong>in</strong>g on protective-relay sett<strong>in</strong>gs or fuse rat<strong>in</strong>gs) <strong>the</strong> circuit will beautomatically cut off.b Short-circuit currentsThese currents result from <strong>the</strong> failure of <strong>in</strong>sulation between live conductors or/andbetween live conductors and earth (on systems hav<strong>in</strong>g low-impedance-ear<strong>the</strong>dneutrals) <strong>in</strong> any comb<strong>in</strong>ation, viz:v 3 phases short-circuited (and to neutral and/or earth, or not)v 2 phases short-circuited (and to neutral and/or earth, or not)v 1 phase short-circuited to neutral (and/or to earth)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors1 General1.2 Overcurrent protection pr<strong>in</strong>ciplesA protective device is provided at <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> circuit concerned (see Fig. G3 andFig. G4).b Act<strong>in</strong>g to cut-off <strong>the</strong> current <strong>in</strong> a time shorter than that given by <strong>the</strong> I 2 tcharacteristic of <strong>the</strong> circuit cabl<strong>in</strong>gb But allow<strong>in</strong>g <strong>the</strong> maximum load current IB to flow <strong>in</strong>def<strong>in</strong>itelyThe characteristics of <strong>in</strong>sulated conductors when carry<strong>in</strong>g short-circuit currentscan, for periods up to 5 seconds follow<strong>in</strong>g short-circuit <strong>in</strong>itiation, be determ<strong>in</strong>edapproximately by <strong>the</strong> formula:I 2 t = k 2 S 2 which shows that <strong>the</strong> allowable heat generated is proportional to <strong>the</strong>squared cross-sectional-area of <strong>the</strong> condutor.GtMaximumloadcurrentI 2 t cablecharacteristicwheret: Duration of short-circuit current (seconds)S: Cross sectional area of <strong>in</strong>sulated conductor (mm 2 )I: Short-circuit current (A r.m.s.)k: Insulated conductor constant (values of k 2 are given <strong>in</strong> Figure G52 )For a given <strong>in</strong>sulated conductor, <strong>the</strong> maximum permissible current varies accord<strong>in</strong>gto <strong>the</strong> environment. For <strong>in</strong>stance, for a high ambient temperature (θa1 > θa2), Iz1 isless than Iz2 (see Fig. G5). θ means “temperature”.Note:v ISC: 3-phase short-circuit currentv ISCB: rated 3-ph. short-circuit break<strong>in</strong>g current of <strong>the</strong> circuit-breakerv Ir (or Irth) (1) : regulated “nom<strong>in</strong>al” current level; e.g. a 50 A nom<strong>in</strong>al circuit-breakercan be regulated to have a protective range, i.e. a conventional overcurrent tripp<strong>in</strong>glevel (see Fig. G6 opposite page) similar to that of a 30 A circuit-breaker.IB IrIzISCB ICUFig. G3 : Circuit protection by circuit-breakertTemporaryoverloadCircuit-breakertripp<strong>in</strong>g curveI1.3 Practical values for a protective schemeThe follow<strong>in</strong>g methods are based on rules laid down <strong>in</strong> <strong>the</strong> IEC standards, and arerepresentative of <strong>the</strong> practices <strong>in</strong> many countries.General rulesA protective device (circuit-breaker or fuse) functions correctly if:b Its nom<strong>in</strong>al current or its sett<strong>in</strong>g current In is greater than <strong>the</strong> maximum loadcurrent IB but less than <strong>the</strong> maximum permissible current Iz for <strong>the</strong> circuit, i.e.IB y In y Iz correspond<strong>in</strong>g to zone “a” <strong>in</strong> Figure G6b Its tripp<strong>in</strong>g current I2 “conventional” sett<strong>in</strong>g is less than 1.45 Iz which correspondsto zone “b” <strong>in</strong> Figure G6The “conventional” sett<strong>in</strong>g tripp<strong>in</strong>g time may be 1 hour or 2 hours accord<strong>in</strong>g to localstandards and <strong>the</strong> actual value selected for I2. For fuses, I2 is <strong>the</strong> current (denotedIf) which will operate <strong>the</strong> fuse <strong>in</strong> <strong>the</strong> conventional time.I 2 t cablecharacteristict1 2Fuse curveθa1 > θa2© Schneider Electric - all rights reservedTemporaryoverloadIBIr cIz IzFig. G4 : Circuit protection by fuses(1) Both designations are commonly used <strong>in</strong> differentstandards.5 sII 2 t = k 2 S 2IIz1 < Iz2Fig. G5 : I 2 t characteristic of an <strong>in</strong>sulated conductor at two different ambient temperaturesSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors1 GeneralLoadsCircuit cabl<strong>in</strong>gMaximum load current IBMaximum load current Iz1.45 Iz0IBNom<strong>in</strong>al current In orits regulated current IrI n I 2zone aIzzone bConventional overcurrenttrip current I2Protective device1.45 Iz IscISCBzone c3-ph short-circuitfault-current break<strong>in</strong>g rat<strong>in</strong>gIB y In y Iz zone aI2 y 1.45 Iz zone bISCB u ISC zone cGFig. G6 : Current levels for determ<strong>in</strong><strong>in</strong>g circuir breaker or fuse characteristicsb Its 3-phase short-circuit fault-current break<strong>in</strong>g rat<strong>in</strong>g is greater than <strong>the</strong> 3-phaseshort-circuit current exist<strong>in</strong>g at its po<strong>in</strong>t of <strong>in</strong>stallation. This corresponds to zone “c” <strong>in</strong>Figure G6.Criteria for circuit-breakers:IB y In y Iz and ISCB u ISC.Criteria for fuses:IB y In y Iz/k3 and ISCF u ISC.Applicationsb Protection by circuit-breakerBy virtue of its high level of precision <strong>the</strong> current I2 is always less than 1.45 In (or1.45 Ir) so that <strong>the</strong> condition I2 y 1.45 Iz (as noted <strong>in</strong> <strong>the</strong> “general rules” above) willalways be respected.v Particular caseIf <strong>the</strong> circuit-breaker itself does not protect aga<strong>in</strong>st overloads, it is necessary toensure that, at a time of lowest value of short-circuit current, <strong>the</strong> overcurrent deviceprotect<strong>in</strong>g <strong>the</strong> circuit will operate correctly. This particular case is exam<strong>in</strong>ed <strong>in</strong> Subclause5.1.b Protection by fusesThe condition I2 y 1.45 Iz must be taken <strong>in</strong>to account, where I2 is <strong>the</strong> fus<strong>in</strong>g (melt<strong>in</strong>glevel) current, equal to k2 x In (k2 ranges from 1.6 to 1.9) depend<strong>in</strong>g on <strong>the</strong> particularfuse concerned.A fur<strong>the</strong>r factor k3 has been <strong>in</strong>troduced ( k = k 23 ) such that I2 y 1.45 Iz1.45will be valid if In y Iz/k3.For fuses type gG:In < 16 A → k3 = 1.31In u 16 A → k3 = 1.10Moreover, <strong>the</strong> short-circuit current break<strong>in</strong>g capacity of <strong>the</strong> fuse ISCF must exceed<strong>the</strong> level of 3-phase short-circuit current at <strong>the</strong> po<strong>in</strong>t of <strong>in</strong>stallation of <strong>the</strong> fuse(s).b Association of different protective devicesThe use of protective devices which have fault-current rat<strong>in</strong>gs lower than <strong>the</strong> faultlevel exist<strong>in</strong>g at <strong>the</strong>ir po<strong>in</strong>t of <strong>in</strong>stallation are permitted by IEC and many nationalstandards <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g conditions:v There exists upstream, ano<strong>the</strong>r protective device which has <strong>the</strong> necessary shortcircuitrat<strong>in</strong>g, andv The amount of <strong>energy</strong> allowed to pass through <strong>the</strong> upstream device is less thanthat which can be withstood without damage by <strong>the</strong> downstream device and allassociated cabl<strong>in</strong>g and appliances.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors1 GeneralIn pratice this arrangement is generally exploited <strong>in</strong>:v The association of circuit-breakers/fusesv The technique known as “cascad<strong>in</strong>g” or “series rat<strong>in</strong>g” <strong>in</strong> which <strong>the</strong> strongcurrent-limit<strong>in</strong>g performance of certa<strong>in</strong> circuit-breakers effectively reduces <strong>the</strong>severity of downstream short-circuitsPossible comb<strong>in</strong>ations which have been tested <strong>in</strong> laboratories are <strong>in</strong>dicated <strong>in</strong> certa<strong>in</strong>manufacturers catalogues.1.4 Location of protective devicesGA protective device is, <strong>in</strong> general, required at <strong>the</strong>orig<strong>in</strong> of each circuitabBPP 2 P 3 P 450 mm 2 10 mm 2 25 mm 2< 3 mAP 1P 2 BP 3scBsShort-circuitprotectivedeviceOverloadprotectivedeviceGeneral rule (see Fig. G7a)A protective device is necessary at <strong>the</strong> orig<strong>in</strong> of each circuit where a reduction ofpermissible maximum current level occurs.Possible alternative locations <strong>in</strong> certa<strong>in</strong> circumstances(see Fig. G7b)The protective device may be placed part way along <strong>the</strong> circuit:b If AB is not <strong>in</strong> proximity to combustible material, andb If no socket-outlets or branch connections are taken from ABThree cases may be useful <strong>in</strong> practice:b Consider case (1) <strong>in</strong> <strong>the</strong> diagramv AB y 3 metres, andv AB has been <strong>in</strong>stalled to reduce to a practical m<strong>in</strong>imum <strong>the</strong> risk of a short-circuit(wires <strong>in</strong> heavy steel conduit for example)b Consider case (2)v The upstream device P1 protects <strong>the</strong> length AB aga<strong>in</strong>st short-circuits <strong>in</strong>accordance with Sub-clause 5.1b Consider case (3)v The overload device (S) is located adjacent to <strong>the</strong> load. This arrangement isconvenient for motor circuits. The device (S) constitutes <strong>the</strong> control (start/stop) andoverload protection of <strong>the</strong> motor while (SC) is: ei<strong>the</strong>r a circuit-breaker (designed formotor protection) or fuses type aMv The short-circuit protection (SC) located at <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> circuit conforms with<strong>the</strong> pr<strong>in</strong>ciples of Sub-clause 5.1Circuits with no protection (see Fig. G7c)Ei<strong>the</strong>rb The protective device P1 is calibrated to protect <strong>the</strong> cable S2 aga<strong>in</strong>st overloadsand short-circuitsOrb Where <strong>the</strong> break<strong>in</strong>g of a circuit constitutes a risk, e.g.v Excitation circuits of rotat<strong>in</strong>g mach<strong>in</strong>esv circuits of large lift<strong>in</strong>g electromagnetsv <strong>the</strong> secondary circuits of current transformersNo circuit <strong>in</strong>terruption can be tolerated, and <strong>the</strong> protection of <strong>the</strong> cabl<strong>in</strong>g is ofsecondary importance.Case (1) Case (2)Case (3)1.5 Conductors <strong>in</strong> parallel© Schneider Electric - all rights reservedcP 1 : C60 rated 15 A2.5 mm 2Fig. G7 : Location of protective devicesS 2 :1.5 mm2Conductors of <strong>the</strong> same cross-sectional-area, <strong>the</strong> same length, and of <strong>the</strong> samematerial, can be connected <strong>in</strong> parallel.The maximum permissible current is <strong>the</strong> sum of <strong>the</strong> <strong>in</strong>dividual-core maximumcurrents, tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> mutual heat<strong>in</strong>g effects, method of <strong>in</strong>stallation, etc.Protection aga<strong>in</strong>st overload and short-circuits is identical to that for a s<strong>in</strong>gle-cablecircuit.The follow<strong>in</strong>g precautions should be taken to avoid <strong>the</strong> risk of short-circuits on <strong>the</strong>paralleled cables:b Additional protection aga<strong>in</strong>st mechanical damage and aga<strong>in</strong>st humidity, by <strong>the</strong><strong>in</strong>troduction of supplementary protectionb The cable route should be chosen so as to avoid close proximity to combustiblematerialsSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors2 Practical method for determ<strong>in</strong><strong>in</strong>g<strong>the</strong> smallest allowable crosssectionalarea of circuit conductors2.1 GeneralThe reference <strong>in</strong>ternational standard for <strong>the</strong> study of cabl<strong>in</strong>g is IEC 60364-5-52:“<strong>Electrical</strong> <strong>in</strong>stallation of build<strong>in</strong>gs - Part 5-52: Selection and erection of electricalequipment - Wir<strong>in</strong>g system”.A summary of this standard is presented here, with examples of <strong>the</strong> most commonlyused methods of <strong>in</strong>stallation. The current-carry<strong>in</strong>g capacities of conductors <strong>in</strong> alldifferent situations are given <strong>in</strong> annex A of <strong>the</strong> standard. A simplified method for useof <strong>the</strong> tables of annex A is proposed <strong>in</strong> <strong>in</strong>formative annex B of <strong>the</strong> standard.2.2 General method for cablesPossible methods of <strong>in</strong>stallation for different types ofconductors or cablesThe different admissible methods of <strong>in</strong>stallation are listed <strong>in</strong> Figure G8, <strong>in</strong>conjonction with <strong>the</strong> different types of conductors and cables.GConductors and cables Method of <strong>in</strong>stallationWithout Clipped Conduit Cable trunk<strong>in</strong>g Cable Cable ladder On Supportfix<strong>in</strong>gs direct (<strong>in</strong>clud<strong>in</strong>g duct<strong>in</strong>g Cable tray <strong>in</strong>sulators wireskirt<strong>in</strong>g trunk<strong>in</strong>g,Cable bracketsflush floor trunk<strong>in</strong>g)Bare conductors – – – – – – + –Insulated conductors – – + + + – + –Shea<strong>the</strong>d Multi-core + + + + + + 0 +cables(<strong>in</strong>clud<strong>in</strong>garmoured S<strong>in</strong>gle-core 0 + + + + + 0 +andm<strong>in</strong>eral<strong>in</strong>sulated)+ Permitted.– Not permitted.0 Not applicable, or not normally used <strong>in</strong> practice.Fig. G8 : Selection of wir<strong>in</strong>g systems (table 52-1 of IEC 60364-5-52)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors2 Practical method for determ<strong>in</strong><strong>in</strong>g<strong>the</strong> smallest allowable crosssectionalarea of circuit conductorsPossible methods of <strong>in</strong>stallation for different situations:Different methods of <strong>in</strong>stallation can be implemented <strong>in</strong> different situations. Thepossible comb<strong>in</strong>ations are presented <strong>in</strong> Figure G9.The number given <strong>in</strong> this table refer to <strong>the</strong> different wir<strong>in</strong>g systems considered.(see also Fig. G10)GSituationsMethod of <strong>in</strong>stallationWithout With Conduit Cable trunk<strong>in</strong>g Cable Cable ladder On Supportfix<strong>in</strong>gs fix<strong>in</strong>gs (<strong>in</strong>clud<strong>in</strong>g duct<strong>in</strong>g cable tray, <strong>in</strong>sulators wireskirt<strong>in</strong>g trunk<strong>in</strong>g,cable bracketsflush floor trunk<strong>in</strong>g)Build<strong>in</strong>g voids 40, 46, 0 15, 16, – 43 30, 31, 32, – –15, 16 41, 42 33, 34Cable channel 56 56 54, 55 0 44, 45 30, 31, 32, – –33, 34Buried <strong>in</strong> ground 72, 73 0 70, 71 – 70, 71 0 –Embedded <strong>in</strong> structure 57, 58 3 1, 2, 50, 51, 52, 53 44, 45 0 – –59, 60Surface mounted – 20, 21 4, 5 6, 7, 8, 9, 12, 13, 14 6, 7, 30, 31, 32, 36 –22, 23 8, 9 33, 34Overhead – – 0 10, 11 – 30, 31, 32 36 3533, 34Immersed 80 80 0 – 0 0 – –– Not permitted.0 Not applicable, or not normally used <strong>in</strong> practice.Fig. G9 : Erection of wir<strong>in</strong>g systems (table 52-2 of IEC 60364-5-52)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors2 Practical method for determ<strong>in</strong><strong>in</strong>g<strong>the</strong> smallest allowable crosssectionalarea of circuit conductorsExamples of wir<strong>in</strong>g systems and reference methods of<strong>in</strong>stallationsAn illustration of some of <strong>the</strong> many different wir<strong>in</strong>g systems and methods of<strong>in</strong>stallation is provided <strong>in</strong> Figure G10.Several reference methods are def<strong>in</strong>ed (with code letters A to G), group<strong>in</strong>g<strong>in</strong>stallation methods hav<strong>in</strong>g <strong>the</strong> same characteristics relative to <strong>the</strong> current-carry<strong>in</strong>gcapacities of <strong>the</strong> wir<strong>in</strong>g systems.Item No. Methods of <strong>in</strong>stallation Description Reference method of<strong>in</strong>stallation to be used toobta<strong>in</strong> current-carry<strong>in</strong>gcapacity1 Insulated conductors or s<strong>in</strong>gle-core A1cables <strong>in</strong> conduit <strong>in</strong> a <strong>the</strong>rmally<strong>in</strong>sulated wallRoomG2 Multi-core cables <strong>in</strong> conduit <strong>in</strong> a A2<strong>the</strong>rmally <strong>in</strong>sulated wallRoom4 Insulated conductors or s<strong>in</strong>gle-core B1cables <strong>in</strong> conduit on a wooden, ormasonry wall or spaced less than0,3 x conduit diameter from it5 Multi-core cable <strong>in</strong> conduit on a B2wooden, or mansonry wall or spacedless than 0,3 x conduit diameterfrom it20 S<strong>in</strong>gle-core or multi-core cables: C- fixed on, or sapced less than 0.3 x cablediameter from a wooden wall30 On unperforated tray C0.3 D e0.3 D eFig. G10 : Examples of methods of <strong>in</strong>stallation (part of table 52-3 of IEC 60364-5-52) (cont<strong>in</strong>ued on next page)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors2 Practical method for determ<strong>in</strong><strong>in</strong>g<strong>the</strong> smallest allowable crosssectionalarea of circuit conductorsItem No. Methods of <strong>in</strong>stallation Description Reference method of<strong>in</strong>stallation to be used toobta<strong>in</strong> current-carry<strong>in</strong>gcapacity31 0.3 DOn perforated tray E or Fe0.3 D eMaximum operat<strong>in</strong>g temperature:G1036 Bare or <strong>in</strong>sulated conductors on G<strong>in</strong>sulators70 Multi-core cables <strong>in</strong> conduit or <strong>in</strong> cable Dduct<strong>in</strong>g <strong>in</strong> <strong>the</strong> ground71 S<strong>in</strong>gle-core cable <strong>in</strong> conduit or <strong>in</strong> cable Dduct<strong>in</strong>g <strong>in</strong> <strong>the</strong> groundFig. G10 : Examples of methods of <strong>in</strong>stallation (part of table 52-3 of IEC 60364-5-52)The current-carry<strong>in</strong>g capacities given <strong>in</strong> <strong>the</strong> subsequent tables have beendeterm<strong>in</strong>ed so that <strong>the</strong> maximum <strong>in</strong>sulation temperature is not exceeded forsusta<strong>in</strong>ed periods of time.For different type of <strong>in</strong>sulation material, <strong>the</strong> maximum admissible temperature isgiven <strong>in</strong> Figure G11.Type of <strong>in</strong>sulation Temperature limit °CPolyv<strong>in</strong>yl-chloride (PVC)70 at <strong>the</strong> conductorCross-l<strong>in</strong>ked polyethylene (XLPE) and ethylene 90 at <strong>the</strong> conductorpropylene rubber (EPR)M<strong>in</strong>eral (PVC covered or bare exposed to touch) 70 at <strong>the</strong> sheathM<strong>in</strong>eral (bare not exposed to touch and not <strong>in</strong>105 at <strong>the</strong> seathcontact with combustible material)Fig. G11 : Maximum operat<strong>in</strong>g temperatures for types of <strong>in</strong>sulation (table 52-4 of IEC 60364-5-52)© Schneider Electric - all rights reservedCorrection factors:In order to take environnement or special conditions of <strong>in</strong>stallation <strong>in</strong>to account,correction factors have been <strong>in</strong>troduced.The cross sectional area of cables is determ<strong>in</strong>ed us<strong>in</strong>g <strong>the</strong> rated load current I Bdivided by different correction factors, k 1 , k 2 , ...:II' = BBk1⋅k2 ...I’ B is <strong>the</strong> corrected load current, to be compared to <strong>the</strong> current-carry<strong>in</strong>g capacity of<strong>the</strong> considered cable.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors2 Practical method for determ<strong>in</strong><strong>in</strong>g<strong>the</strong> smallest allowable crosssectionalarea of circuit conductorsb Ambient temperatureThe current-carry<strong>in</strong>g capacities of cables <strong>in</strong> <strong>the</strong> air are based on an average airtemperature equal to 30 °C. For o<strong>the</strong>r temperatures, <strong>the</strong> correction factor is given <strong>in</strong>Figure G12 for PVC, EPR and XLPE <strong>in</strong>sulation material.The related correction factor is here noted k 1 .Ambient temperature °C InsulationPVCXLPE and EPR10 1.22 1.1515 1.17 1.1220 1.12 1.0825 1.06 1.0435 0.94 0.9640 0.87 0.9145 0.79 0.8750 0.71 0.8255 0.61 0.7660 0.50 0.7165 - 0.6570 - 0.5875 - 0.5080 - 0.41G11Fig. G12 : Correction factors for ambient air temperatures o<strong>the</strong>r than 30 °C to be applied to <strong>the</strong>current-carry<strong>in</strong>g capacities for cables <strong>in</strong> <strong>the</strong> air (from table A.52-14 of IEC 60364-5-52)The current-carry<strong>in</strong>g capacities of cables <strong>in</strong> <strong>the</strong> ground are based on an averageground temperature equal to 20 °C. For o<strong>the</strong>r temperatures, <strong>the</strong> correction factor isgiven <strong>in</strong> Figure G13 for PVC, EPR and XLPE <strong>in</strong>sulation material.The related correction factor is here noted k 2 .Ground temperature °C InsulationPVCXLPE and EPR10 1.10 1.0715 1.05 1.0425 0.95 0.9630 0.89 0.9335 0.84 0.8940 0.77 0.8545 0.71 0.8050 0.63 0.7655 0.55 0.7160 0.45 0.6565 - 0.6070 - 0.5375 - 0.4680 - 0.38Fig. G13 : Correction factors for ambient ground temperatures o<strong>the</strong>r than 20 °C to be applied to<strong>the</strong> current-carry<strong>in</strong>g capacities for cables <strong>in</strong> ducts <strong>in</strong> <strong>the</strong> ground (from table A.52-15 ofIEC 60364-5-52)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors2 Practical method for determ<strong>in</strong><strong>in</strong>g<strong>the</strong> smallest allowable crosssectionalarea of circuit conductorsb Soil <strong>the</strong>rmal resistivityThe current-carry<strong>in</strong>g capacities of cables <strong>in</strong> <strong>the</strong> ground are based on a groundresistivity equal to 2.5 K.m/W. For o<strong>the</strong>r values, <strong>the</strong> correction factor is given <strong>in</strong>Figure G14.The related correction factor is here noted k3.Thermal resistivity, K.m/W 1 1.5 2 2.5 3Correction factor 1.18 1.1 1.05 1 0.96Fig. G14 : Correction factors for cables <strong>in</strong> buried ducts for soil <strong>the</strong>rmal resistivities o<strong>the</strong>r than 2.5K.m/W to be applied to <strong>the</strong> current-carry<strong>in</strong>g capacities for reference method D (table A52.16 ofIEC 60364-5-52)G12Based on experience, a relationship exist between <strong>the</strong> soil nature and resistivity.Then, empiric values of correction factors k3 are proposed <strong>in</strong> Figure G15, depend<strong>in</strong>gon <strong>the</strong> nature of soil.Nature of soilk3Very wet soil (saturated) 1.21Wet soil 1.13Damp soil 1.05Dry soil 1.00Very dry soil (sunbaked) 0.86Fig. G15 : Correction factor k3 depend<strong>in</strong>g on <strong>the</strong> nature of soilb Group<strong>in</strong>g of conductors or cablesThe current-carry<strong>in</strong>g capacities given <strong>in</strong> <strong>the</strong> subsequent tables relate to s<strong>in</strong>glecircuits consist<strong>in</strong>g of <strong>the</strong> follow<strong>in</strong>g numbers of loaded conductors:v Two <strong>in</strong>sulated conductors or two s<strong>in</strong>gle-core cables, or one tw<strong>in</strong>-core cable(applicable to s<strong>in</strong>gle-phase circuits);v Three <strong>in</strong>sulated conductors or three s<strong>in</strong>gle-core cables, or one three-core cable(applicable to three-phase circuits).Where more <strong>in</strong>sulated conductors or cables are <strong>in</strong>stalled <strong>in</strong> <strong>the</strong> same group, a groupreduction factor (here noted k4) shall be applied.Examples are given <strong>in</strong> Figures G16 to G18 for different configurations (<strong>in</strong>stallationmethods, <strong>in</strong> free air or <strong>in</strong> <strong>the</strong> ground).Figure G16 gives <strong>the</strong> values of correction factor k4 for different configurations ofunburied cables or conductors, group<strong>in</strong>g of more than one circuit or multi-corecables.© Schneider Electric - all rights reservedArrangement Number of circuits or multi-core cables Reference methods(cables touch<strong>in</strong>g) 1 2 3 4 5 6 7 8 9 12 16 20Bunched <strong>in</strong> air, on a 1.00 0.80 0.70 0.65 0.60 0.57 0.54 0.52 0.50 0.45 0.41 0.38 Methods A to Fsurface, embedded orenclosedS<strong>in</strong>gle layer on wall, floor 1.00 0.85 0.79 0.75 0.73 0.72 0.72 0.71 0.70 No fur<strong>the</strong>r reduction Method Cor unperforated trayfactor for more thanS<strong>in</strong>gle layer fixed directly 0.95 0.81 0.72 0.68 0.66 0.64 0.63 0.62 0.61 n<strong>in</strong>e circuits orunder a wooden ceil<strong>in</strong>gmulti-core cablesS<strong>in</strong>gle layer on a 1.00 0.88 0.82 0.77 0.75 0.73 0.73 0.72 0.72 Methods E and Fperforated horizontal orvertical trayS<strong>in</strong>gle layer on ladder 1.00 0.87 0.82 0.80 0.80 0.79 0.79 0.78 0.78support or cleats etc.Fig. G16 : Reduction factors for groups of more than one circuit or of more than one multi-core cable (table A.52-17 of IEC 60364-5-52)Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors2 Practical method for determ<strong>in</strong><strong>in</strong>g<strong>the</strong> smallest allowable crosssectionalarea of circuit conductorsFigure G17 gives <strong>the</strong> values of correction factor k 4 for different configurations ofunburied cables or conductors, for groups of more than one circuit of s<strong>in</strong>gle-corecables <strong>in</strong> free air.Method of <strong>in</strong>stallation Number Number of three-phase Use as aof tray circuits multiplier torat<strong>in</strong>g for 2 3Perforated 31 Touch<strong>in</strong>g 1 0.98 0.91 0.87 Three cables <strong>in</strong>trayshorizontal2 0.96 0.87 0.81 formation20 mm3 0.95 0.85 0.78Vertical 31 Touch<strong>in</strong>g 1 0.96 0.86 Three cables <strong>in</strong>perforatedverticaltrays 2 0.95 0.84 formation225 mmG13Ladder 32 1 1.00 0.97 0.96 Three cables <strong>in</strong>supports,Touch<strong>in</strong>ghorizontalcleats, etc... 33 2 0.98 0.93 0.89 formation34 3 0.97 0.90 0.8620 mmDePerforated 31 1 1.00 0.98 0.96 Three cables <strong>in</strong>2Detraystrefoil formation2 0.97 0.93 0.8920 mm3 0.96 0.92 0.86Vertical 31 De Spaced 1 1.00 0.91 0.89perforatedtrays225 mm2 1.00 0.90 0.862DeLadder 32 2DeDe1 1.00 1.00 1.00supports,cleats, etc... 33 2 0.97 0.95 0.9334 20 mm 3 0.96 0.94 0.90Fig. G17 : Reduction factors for groups of more than one circuit of s<strong>in</strong>gle-core cables to be applied to reference rat<strong>in</strong>g for one circuit of s<strong>in</strong>gle-core cables <strong>in</strong> free air- Method of <strong>in</strong>stallation F. (table A.52.21 of IEC 60364-5-52)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors2 Practical method for determ<strong>in</strong><strong>in</strong>g<strong>the</strong> smallest allowable crosssectionalarea of circuit conductorsFigure G18 gives <strong>the</strong> values of correction factor k4 for different configurations ofcables or conductors laid directly <strong>in</strong> <strong>the</strong> ground.Number Cable to cable clearance (a) aof circuits Nil (cables One cable 0.125 m 0.25 m 0.5 mtouch<strong>in</strong>g) diameter2 0.75 0.80 0.85 0.90 0.903 0.65 0.70 0.75 0.80 0.854 0.60 0.60 0.70 0.75 0.805 0.55 0.55 0.65 0.70 0.806 0.50 0.55 0.60 0.70 0.80aMulti-core cablesaaG14aS<strong>in</strong>gle-core cablesaaFig. G18 : Reduction factors for more than one circuit, s<strong>in</strong>gle-core or multi-core cables laiddirectly <strong>in</strong> <strong>the</strong> ground. <strong>Installation</strong> method D. (table 52-18 of IEC 60364-5-52)b Harmonic currentThe current-carry<strong>in</strong>g capacity of three-phase, 4-core or 5-core cables is based on<strong>the</strong> assumption that only 3 conductors are fully loaded.However, when harmonic currents are circulat<strong>in</strong>g, <strong>the</strong> neutral current can besignificant, and even higher than <strong>the</strong> phase currents. This is due to <strong>the</strong> fact that <strong>the</strong>3 rd harmonic currents of <strong>the</strong> three phases do not cancel each o<strong>the</strong>r, and sum up <strong>in</strong><strong>the</strong> neutral conductor.This of course affects <strong>the</strong> current-carry<strong>in</strong>g capacity of <strong>the</strong> cable, and a correctionfactor noted here k5 shall be applied.In addition, if <strong>the</strong> 3 rd harmonic percentage h 3 is greater than 33%, <strong>the</strong> neutral currentis greater than <strong>the</strong> phase current and <strong>the</strong> cable size selection is based on <strong>the</strong> neutralcurrent. The heat<strong>in</strong>g effect of harmonic currents <strong>in</strong> <strong>the</strong> phase conductors has also tobe taken <strong>in</strong>to account.The values of k5 depend<strong>in</strong>g on <strong>the</strong> 3 rd harmonic content are given <strong>in</strong> Figure G19.Third harmonic content Correction factorof phase current % Size selection is based Size selection is basedon phase currenton neutral current0 - 15 1.015 - 33 0.8633 - 45 0.86> 45 1.0© Schneider Electric - all rights reservedFig. G19 : Correction factors for harmonic currents <strong>in</strong> four-core and five-core cables (table D.52.1of IEC 60364-5-52)Admissible current as a function of nom<strong>in</strong>al cross-sectionalarea of conductorsIEC standard 60364-5-52 proposes extensive <strong>in</strong>formation <strong>in</strong> <strong>the</strong> form of tablesgiv<strong>in</strong>g <strong>the</strong> admissible currents as a function of cross-sectional area of cables. Manyparameters are taken <strong>in</strong>to account, such as <strong>the</strong> method of <strong>in</strong>stallation, type of<strong>in</strong>sulation material, type of conductor material, number of loaded conductors.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors2 Practical method for determ<strong>in</strong><strong>in</strong>g<strong>the</strong> smallest allowable crosssectionalarea of circuit conductorsAs an example, Figure G20 gives <strong>the</strong> current-carry<strong>in</strong>g capacities for differentmethods of <strong>in</strong>stallation of PVC <strong>in</strong>sulation, three loaded copper or alum<strong>in</strong>iumconductors, free air or <strong>in</strong> ground.Nom<strong>in</strong>al<strong>Installation</strong> methodscross-sectional A1 A2 B1 B2 C Darea of conductors(mm 2 )1 2 3 4 5 6 7Copper1.5 13.5 13 15.5 15 17.5 182.5 18 17.5 21 20 24 244 24 23 28 27 32 316 31 29 36 34 41 3910 42 39 50 46 57 5216 56 52 68 62 76 6725 73 68 89 80 96 8635 89 83 110 99 119 10350 108 99 134 118 144 12270 136 125 171 149 184 15195 164 150 207 179 223 179120 188 172 239 206 259 203150 216 196 - - 299 230185 245 223 - - 341 258240 286 261 - - 403 297300 328 298 - - 464 336Alum<strong>in</strong>ium2.5 14 13.5 16.5 15.5 18.5 18.54 18.5 17.5 22 21 25 246 24 23 28 27 32 3010 32 31 39 36 44 4016 43 41 53 48 59 5225 57 53 70 62 73 6635 70 65 86 77 90 8050 84 78 104 92 110 9470 107 98 133 116 140 11795 129 118 161 139 170 138120 149 135 186 160 197 157150 170 155 - - 227 178185 194 176 - - 259 200240 227 207 - - 305 230300 261 237 - - 351 260G15Fig. G20 : Current-carry<strong>in</strong>g capacities <strong>in</strong> amperes for different methods of <strong>in</strong>stallation, PVC <strong>in</strong>sulation, three loaded conductors, copper or alum<strong>in</strong>ium, conductortemperature: 70 °C, ambient temperature: 30 °C <strong>in</strong> air, 20 °C <strong>in</strong> ground (table A.52.4 of IEC 60364-5-52)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors2 Practical method for determ<strong>in</strong><strong>in</strong>g<strong>the</strong> smallest allowable crosssectionalarea of circuit conductors2.3 Recommended simplified approach for cablesIn order to facilitate <strong>the</strong> selection of cables, 2 simplified tables are proposed, forunburied and buried cables.These tables summarize <strong>the</strong> most commonly used configurations and give easieraccess to <strong>the</strong> <strong>in</strong>formation.b Unburied cables:G16Reference Number of loaded conductors and type of <strong>in</strong>sulationmethodsA1 2 PVC 3 PVC 3 XLPE 2 XLPEA2 3 PVC 2 PVC 3 XLPE 2 XLPEB1 3 PVC 2 PVC 3 XLPE 2 XLPEB2 3 PVC 2 PVC 3 XLPE 2 XLPEC 3 PVC 2 PVC 3 XLPE 2 XLPEE 3 PVC 2 PVC 3 XLPE 2 XLPEF 3 PVC 2 PVC 3 XLPE 2 XLPE1 2 3 4 5 6 7 8 9 10 11 12 13Size (mm 2 )Copper1.5 13 13 . 5 14.5 15.5 17 18.5 19.5 22 23 24 26 -2.5 17.5 18 19.5 21 23 25 27 30 31 33 36 -4 23 24 26 28 31 34 36 40 42 45 49 -6 29 31 34 36 40 43 46 51 54 58 63 -10 39 42 46 50 54 60 63 70 75 80 86 -16 52 56 61 68 73 80 85 94 100 107 115 -25 68 73 80 89 95 101 110 119 127 135 149 16135 - - - 110 117 126 137 147 158 169 185 20050 - - - 134 141 153 167 179 192 207 225 24270 - - - 171 179 196 213 229 246 268 289 31095 - - - 207 216 238 258 278 298 328 352 377120 - - - 239 249 276 299 322 346 382 410 437150 - - - - 285 318 344 371 395 441 473 504185 - - - - 324 362 392 424 450 506 542 575240 - - - - 380 424 461 500 538 599 641 679Alum<strong>in</strong>ium2.5 13.5 14 15 16.5 18.5 19.5 21 23 24 26 28 -4 17.5 18.5 20 22 25 26 28 31 32 35 38 -6 23 24 26 28 32 33 36 39 42 45 49 -10 31 32 36 39 44 46 49 54 58 62 67 -16 41 43 48 53 58 61 66 73 77 84 91 -25 53 57 63 70 73 78 83 90 97 101 108 12135 - - - 86 90 96 103 112 120 126 135 15050 - - - 104 110 117 125 136 146 154 164 18470 - - - 133 140 150 160 174 187 198 211 23795 - - - 161 170 183 195 211 227 241 257 289120 - - - 186 197 212 226 245 263 280 300 337150 - - - - 226 245 261 283 304 324 346 389185 - - - - 256 280 298 323 347 371 397 447240 - - - - 300 330 352 382 409 439 470 530Fig. G21a : Current-carry<strong>in</strong>g capacity <strong>in</strong> amperes (table B.52-1 of IEC 60364-5-52)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors2 Practical method for determ<strong>in</strong><strong>in</strong>g<strong>the</strong> smallest allowable crosssectionalarea of circuit conductorsCorrection factors are given <strong>in</strong> Figure G21b for groups of several circuits or multicorecables:ArrangementNumber of circuits or multi-core cables 2 3 4 6 9 12 16 20Embedded or enclosed 1.00 0.80 0.70 0.70 0.55 0.50 0.45 0.40 0.40S<strong>in</strong>gle layer on walls, floors 1.00 0.85 0.80 0.75 0.70 0.70 - - -or on unperforatedtraysS<strong>in</strong>gle layer fixed directly 0.95 0.80 0.70 0.70 0.65 0.60 - - -under a ceil<strong>in</strong>gS<strong>in</strong>gle layer on perforated 1.00 0.90 0.80 0.75 0.75 0.70 - - -horizontal trays or on vertical traysS<strong>in</strong>gle layer on cable 1.00 0.85 0.80 0.80 0.80 0.80 - - -ladder supports or cleats, etc...Fig. G21b : Reduction factors for groups of several circuits or of several multi-core cables(table B.52-3 of IEC 60364-5-52)G17b Buried cables:<strong>Installation</strong> Size Number of loaded conductors and type of <strong>in</strong>sulationmethod mm 2 Two PVC Three PVC Two XLPE Three XLPEDCopper1.5 22 18 26 222.5 29 24 34 294 38 31 44 376 47 39 56 4610 63 52 73 6116 81 67 95 7925 104 86 121 10135 125 103 146 12250 148 122 173 14470 183 151 213 17895 216 179 252 211120 246 203 287 240150 278 230 324 271185 312 258 363 304240 361 297 419 351300 408 336 474 396DAlum<strong>in</strong>ium2.5 22 18.5 26 224 29 24 34 296 36 30 42 3610 48 40 56 4716 62 52 73 6125 80 66 93 7835 96 80 112 9450 113 94 132 11270 140 117 163 13895 166 138 193 164120 189 157 220 186150 213 178 249 210185 240 200 279 236240 277 230 322 272300 313 260 364 308Fig. G22 : Current-carry<strong>in</strong>g capacity <strong>in</strong> amperes (table B.52-1 of IEC 60364-5-52)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors2 Practical method for determ<strong>in</strong><strong>in</strong>g<strong>the</strong> smallest allowable crosssectionalarea of circuit conductors2.4 Busbar trunk<strong>in</strong>g systemsThe selection of busbar trunk<strong>in</strong>g systems is very straightforward, us<strong>in</strong>g <strong>the</strong> dataprovided by <strong>the</strong> manufacturer. Methods of <strong>in</strong>stallation, <strong>in</strong>sulation materials, correctionfactors for group<strong>in</strong>g are not relevant parameters for this technology.The cross section area of any given model has been determ<strong>in</strong>ed by <strong>the</strong> manufacturerbased on:b The rated current,b An ambient air temperature equal to 35 °C,b 3 loaded conductors.Rated currentThe rated current can be calculated tak<strong>in</strong>g account of:b The layout,b The current absorbed by <strong>the</strong> different loads connected along <strong>the</strong> trunk<strong>in</strong>g system.G18Ambient temperatureA correction factor has to be applied for temperature higher than 35 °C. Thecorrection factor applicable to medium and high power range (up to 4,000 A) is given<strong>in</strong> Figure G23a.°C 35 40 45 50 55Correction factor 1 0.97 0.93 0.90 0.86Fig. G23a : Correction factor for air temperature higher than 35 °CNeutral currentWhere 3 rd harmonic currents are circulat<strong>in</strong>g, <strong>the</strong> neutral conductor may be carry<strong>in</strong>g asignificant current and <strong>the</strong> correspond<strong>in</strong>g additional power losses must be taken <strong>in</strong>toaccount.Figure G23b represents <strong>the</strong> maximum admissible phase and neutral currents (perunit) <strong>in</strong> a high power busbar trunk<strong>in</strong>g system as functions of 3 rd harmonic level.1.4Maximum admissible current (p.u)1.210.80.60.40.2Neutral conductorPhase conductor00 10 20 30 4050 60 703 rd harmonic current level (%)80 90© Schneider Electric - all rights reservedFig. G23b : Maximum admissible currents (p.u.) <strong>in</strong> a busbar trunk<strong>in</strong>g system as functions of <strong>the</strong>3 rd harmonic level.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors2 Practical method for determ<strong>in</strong><strong>in</strong>g<strong>the</strong> smallest allowable crosssectionalarea of circuit conductorsThe layout of <strong>the</strong> trunk<strong>in</strong>g system depends on <strong>the</strong> position of <strong>the</strong> current consumers,<strong>the</strong> location of <strong>the</strong> power source and <strong>the</strong> possibilities for fix<strong>in</strong>g <strong>the</strong> system.v One s<strong>in</strong>gle distribution l<strong>in</strong>e serves a 4 to 6 meter areav Protection devices for current consumers are placed <strong>in</strong> tap-off units, connecteddirectly to usage po<strong>in</strong>ts.v One s<strong>in</strong>gle feeder supplies all current consumers of different powers.Once <strong>the</strong> trunk<strong>in</strong>g system layout is established, it is possible to calculate <strong>the</strong>absorbed current I n on <strong>the</strong> distribution l<strong>in</strong>e.I n is equal to <strong>the</strong> sum of absorbed currents by <strong>the</strong> current I n consumers: I n = Σ I B .The current consumers do not all work at <strong>the</strong> same time and are not permanently onfull load, so we have to use a cluster<strong>in</strong>g coefficient k S : I n = Σ (I B . k S ).Application Number of current consumers Ks CoefficientLight<strong>in</strong>g, Heat<strong>in</strong>g 1Distribution (eng<strong>in</strong>eer<strong>in</strong>gworkshop)2...34...56...910...4040 and over0.90.80.70.60.5Note : for <strong>in</strong>dustrial <strong>in</strong>stallations, remember to take account of upgrad<strong>in</strong>g of <strong>the</strong> mach<strong>in</strong>eequipment base. As for a switchboard, a 20 % marg<strong>in</strong> is recommended:I n ≤ I B x k s x 1.2.Fig G24 : Cluster<strong>in</strong>g coefficient accord<strong>in</strong>g to <strong>the</strong> number of current consumersG19© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors3 Determ<strong>in</strong>ation of voltage dropThe impedance of circuit conductors is low but not negligible: when carry<strong>in</strong>gload current <strong>the</strong>re is a voltage drop between <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> circuit and <strong>the</strong> loadterm<strong>in</strong>als. The correct operation of a load (a motor, light<strong>in</strong>g circuit, etc.) dependson <strong>the</strong> voltage at its term<strong>in</strong>als be<strong>in</strong>g ma<strong>in</strong>ta<strong>in</strong>ed at a value close to its rated value.It is necessary <strong>the</strong>refore to determ<strong>in</strong>e <strong>the</strong> circuit conductors such that at full-loadcurrent, <strong>the</strong> load term<strong>in</strong>al voltage is ma<strong>in</strong>ta<strong>in</strong>ed with<strong>in</strong> <strong>the</strong> limits required for correctperformance.This section deals with methods of determ<strong>in</strong><strong>in</strong>g voltage drops, <strong>in</strong> order to check that:b They comply with <strong>the</strong> particular standards and regulations <strong>in</strong> forceb They can be tolerated by <strong>the</strong> loadb They satisfy <strong>the</strong> essential operational requirements3.1 Maximum voltage dropMaximum allowable voltage-drop vary from one country to ano<strong>the</strong>r. Typical values forLV <strong>in</strong>stallations are given below <strong>in</strong> Figure G25.G20Type of <strong>in</strong>stallations Light<strong>in</strong>g O<strong>the</strong>r usescircuits (heat<strong>in</strong>g and power)A low-voltage service connection from 3% 5%a LV public power distribution networkConsumers MV/LV substation supplied 6% 8%from a public distribution MV systemFig. G25 : Maximum voltage-drop between <strong>the</strong> service-connection po<strong>in</strong>t and <strong>the</strong> po<strong>in</strong>t of utilizationThese voltage-drop limits refer to normal steady-state operat<strong>in</strong>g conditions and donot apply at times of motor start<strong>in</strong>g, simultaneous switch<strong>in</strong>g (by chance) of severalloads, etc. as mentioned <strong>in</strong> Chapter A Sub-clause 4.3 (factor of simultaneity, etc.).When voltage drops exceed <strong>the</strong> values shown <strong>in</strong> Figure G25, larger cables (wires)must be used to correct <strong>the</strong> condition.The value of 8%, while permitted, can lead to problems for motor loads; for example:b In general, satisfactory motor performance requires a voltage with<strong>in</strong> ± 5% of itsrated nom<strong>in</strong>al value <strong>in</strong> steady-state operation,b Start<strong>in</strong>g current of a motor can be 5 to 7 times its full-load value (or even higher).If an 8% voltage drop occurs at full-load current, <strong>the</strong>n a drop of 40% or more willoccur dur<strong>in</strong>g start-up. In such conditions <strong>the</strong> motor will ei<strong>the</strong>r:v Stall (i.e. rema<strong>in</strong> stationary due to <strong>in</strong>sufficient torque to overcome <strong>the</strong> load torque)with consequent over-heat<strong>in</strong>g and eventual trip-outv Or accelerate very slowly, so that <strong>the</strong> heavy current load<strong>in</strong>g (with possiblyundesirable low-voltage effects on o<strong>the</strong>r equipment) will cont<strong>in</strong>ue beyond <strong>the</strong> normalstart-up periodb F<strong>in</strong>ally an 8% voltage drop represents a cont<strong>in</strong>uous power loss, which, for cont<strong>in</strong>uousloads will be a significant waste of (metered) <strong>energy</strong>. For <strong>the</strong>se reasons it isrecommended that <strong>the</strong> maximum value of 8% <strong>in</strong> steady operat<strong>in</strong>g conditions should notbe reached on circuits which are sensitive to under-voltage problems (see Fig. G26).MV consumer© Schneider Electric - all rights reservedLV consumer8% (1)5% (1)Load(1) Between <strong>the</strong> LV supply po<strong>in</strong>t and <strong>the</strong> loadFig. G26 : Maximum voltage dropSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors3 Determ<strong>in</strong>ation of voltage drop3.2 Calculation of voltage drop <strong>in</strong> steady loadconditionsUse of formulaeFigure G27 below gives formulae commonly used to calculate voltage drop <strong>in</strong> agiven circuit per kilometre of length.If:b IB: The full load current <strong>in</strong> ampsb L: Length of <strong>the</strong> cable <strong>in</strong> kilometresb R: Resistance of <strong>the</strong> cable conductor <strong>in</strong> Ω/km222.5 Ω mm / kmR =for copper2S c.s.a. <strong>in</strong> mm( )236 Ω mm / kmR =2S c.s.a. <strong>in</strong> mm( )for alum<strong>in</strong>iumNote: R is negligible above a c.s.a. of 500 mm 2b X: <strong>in</strong>ductive reactance of a conductor <strong>in</strong> Ω/kmNote: X is negligible for conductors of c.s.a. less than 50 mm 2 . In <strong>the</strong> absence of anyo<strong>the</strong>r <strong>in</strong>formation, take X as be<strong>in</strong>g equal to 0.08 Ω/km.b ϕ: phase angle between voltage and current <strong>in</strong> <strong>the</strong> circuit considered, generally:v Incandescent light<strong>in</strong>g: cos ϕ = 1v Motor power:- At start-up: cos ϕ = 0.35- In normal service: cos ϕ = 0.8b Un: phase-to-phase voltageb Vn: phase-to-neutral voltageFor prefabricated pre-wired ducts and bustrunk<strong>in</strong>g, resistance and <strong>in</strong>ductivereactance values are given by <strong>the</strong> manufacturer.G21CircuitVoltage drop (ΔU)<strong>in</strong> volts <strong>in</strong> %( )S<strong>in</strong>gle phase: phase/phase ∆U = 2I B R cos ϕ + X s<strong>in</strong> ϕ L100 ∆UUnS<strong>in</strong>gle phase: phase/neutral ∆U = 2I B( R cos ϕ + X s<strong>in</strong> ϕ)L100 ∆ UVnBalanced 3-phase: 3 phases ∆U = 3 I B( R cos ϕ + X s<strong>in</strong> ϕ)L 100 ∆ U(with or without neutral)UnFig. G27 : Voltage-drop formulaeSimplified tableCalculations may be avoided by us<strong>in</strong>g Figure G28 next page, which gives, withan adequate approximation, <strong>the</strong> phase-to-phase voltage drop per km of cable perampere, <strong>in</strong> terms of:b K<strong>in</strong>ds of circuit use: motor circuits with cos ϕ close to 0.8, or light<strong>in</strong>g with a cos ϕclose to 1.b Type of cable; s<strong>in</strong>gle-phase or 3-phaseVoltage drop <strong>in</strong> a cable is <strong>the</strong>n given by:K x IB x LK is given by <strong>the</strong> table,IB is <strong>the</strong> full-load current <strong>in</strong> amps,L is <strong>the</strong> length of cable <strong>in</strong> km.The column motor power “cos ϕ = 0.35” of Figure G28 may be used to compute <strong>the</strong>voltage drop occurr<strong>in</strong>g dur<strong>in</strong>g <strong>the</strong> start-up period of a motor (see example no. 1 after<strong>the</strong> Figure G28).© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors3 Determ<strong>in</strong>ation of voltage dropG22c.s.a. <strong>in</strong> mm 2 S<strong>in</strong>gle-phase circuit Balanced three-phase circuitMotor power Light<strong>in</strong>g Motor power Light<strong>in</strong>gNormal service Start-upNormal service Start-upCu Al cos ϕ = 0.8 cos ϕ = 0.35 cos ϕ = 1 cos ϕ = 0.8 cos ϕ = 0.35 cos ϕ = 11.5 24 10.6 30 20 9.4 252.5 14.4 6.4 18 12 5.7 154 9.1 4.1 11.2 8 3.6 9.56 10 6.1 2.9 7.5 5.3 2.5 6.210 16 3.7 1.7 4.5 3.2 1.5 3.616 25 2.36 1.15 2.8 2.05 1 2.425 35 1.5 0.75 1.8 1.3 0.65 1.535 50 1.15 0.6 1.29 1 0.52 1.150 70 0.86 0.47 0.95 0.75 0.41 0.7770 120 0.64 0.37 0.64 0.56 0.32 0.5595 150 0.48 0.30 0.47 0.42 0.26 0.4120 185 0.39 0.26 0.37 0.34 0.23 0.31150 240 0.33 0.24 0.30 0.29 0.21 0.27185 300 0.29 0.22 0.24 0.25 0.19 0.2240 400 0.24 0.2 0.19 0.21 0.17 0.16300 500 0.21 0.19 0.15 0.18 0.16 0.13Fig. G28 : Phase-to-phase voltage drop ΔU for a circuit, <strong>in</strong> volts per ampere per km© Schneider Electric - all rights reserved1,000 A400 VFig. G29 : Example 150 m / 35 mm 2 CuIB = 100 A(500 A dur<strong>in</strong>g start-up)ExamplesExample 1 (see Fig. G29)A three-phase 35 mm 2 copper cable 50 metres long supplies a 400 V motor tak<strong>in</strong>g:b 100 A at a cos ϕ = 0.8 on normal permanent loadb 500 A (5 In) at a cos ϕ = 0.35 dur<strong>in</strong>g start-upThe voltage drop at <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> motor cable <strong>in</strong> normal circumstances (i.e. with<strong>the</strong> distribution board of Figure G29 distribut<strong>in</strong>g a total of 1,000 A) is 10 V phase-tophase.What is <strong>the</strong> voltage drop at <strong>the</strong> motor term<strong>in</strong>als:b In normal service?b Dur<strong>in</strong>g start-up?Solution:b Voltage drop <strong>in</strong> normal service conditions:∆∆U% = 100 UUnTable G28 shows 1 V/A/km so that:ΔU for <strong>the</strong> cable = 1 x 100 x 0.05 = 5 VΔU total = 10 + 5 = 15 V = i.e.15400 x 100 = 3.75%This value is less than that authorized (8%) and is satisfactory.b Voltage drop dur<strong>in</strong>g motor start-up:ΔUcable = 0.52 x 500 x 0.05 = 13 VOw<strong>in</strong>g to <strong>the</strong> additional current taken by <strong>the</strong> motor when start<strong>in</strong>g, <strong>the</strong> voltage drop at<strong>the</strong> distribution board will exceed 10 Volts.Suppos<strong>in</strong>g that <strong>the</strong> <strong>in</strong>feed to <strong>the</strong> distribution board dur<strong>in</strong>g motor start<strong>in</strong>g is900 + 500 = 1,400 A <strong>the</strong>n <strong>the</strong> voltage drop at <strong>the</strong> distribution board will <strong>in</strong>creaseapproximately pro rata, i.e.10 x 1,400= 14 V1,000ΔU distribution board = 14 VΔU for <strong>the</strong> motor cable = 13 VΔU total = 13 + 14 = 27 V i.e.27400 x 100 = 6.75%a value which is satisfactory dur<strong>in</strong>g motor start<strong>in</strong>g.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors3 Determ<strong>in</strong>ation of voltage dropExample 2 (see Fig. G30)A 3-phase 4-wire copper l<strong>in</strong>e of 70 mm 2 c.s.a. and a length of 50 m passes a currentof 150 A. The l<strong>in</strong>e supplies, among o<strong>the</strong>r loads, 3 s<strong>in</strong>gle-phase light<strong>in</strong>g circuits, eachof 2.5 mm 2 c.s.a. copper 20 m long, and each pass<strong>in</strong>g 20 A.It is assumed that <strong>the</strong> currents <strong>in</strong> <strong>the</strong> 70 mm 2 l<strong>in</strong>e are balanced and that <strong>the</strong> threelight<strong>in</strong>g circuits are all connected to it at <strong>the</strong> same po<strong>in</strong>t.What is <strong>the</strong> voltage drop at <strong>the</strong> end of <strong>the</strong> light<strong>in</strong>g circuits?Solution:b Voltage drop <strong>in</strong> <strong>the</strong> 4-wire l<strong>in</strong>e:∆∆U% = 100 UUnFigure G28 shows 0.55 V/A/kmΔU l<strong>in</strong>e = 0.55 x 150 x 0.05 = 4.125 V phase-to-phasewhich gives: 4 . 125 = 2.38 Vphase to neutral.3b Voltage drop <strong>in</strong> any one of <strong>the</strong> light<strong>in</strong>g s<strong>in</strong>gle-phase circuits:ΔU for a s<strong>in</strong>gle-phase circuit = 18 x 20 x 0.02 = 7.2 VThe total voltage drop is <strong>the</strong>refore7.2 + 2.38 = 9.6 V9.6 Vx 100 = 4.2%230 VThis value is satisfactory, be<strong>in</strong>g less than <strong>the</strong> maximum permitted voltage drop of 6%.G2350 m / 70 mm2 CuIB = 150 A20 m / 2.5 mm2 CuIB = 20 AFig. G30 : Example 2© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors4 Short-circuit currentKnow<strong>in</strong>g <strong>the</strong> levels of 3-phase symmetricalshort-circuit currents (Isc) at different po<strong>in</strong>ts<strong>in</strong> an <strong>in</strong>stallation is an essential feature of itsdesignA knowledge of 3-phase symmetrical short-circuit current values (Isc) at strategicpo<strong>in</strong>ts of an <strong>in</strong>stallation is necessary <strong>in</strong> order to determ<strong>in</strong>e switchgear (fault currentrat<strong>in</strong>g), cables (<strong>the</strong>rmal withstand rat<strong>in</strong>g), protective devices (discrim<strong>in</strong>ative tripsett<strong>in</strong>gs) and so on...In <strong>the</strong> follow<strong>in</strong>g notes a 3-phase short-circuit of zero impedance (<strong>the</strong> so-called boltedshort-circuit) fed through a typical MV/LV distribution transformer will be exam<strong>in</strong>ed.Except <strong>in</strong> very unusual circumstances, this type of fault is <strong>the</strong> most severe, and iscerta<strong>in</strong>ly <strong>the</strong> simplest to calculate.Short-circuit currents occurr<strong>in</strong>g <strong>in</strong> a network supplied from a generator and also <strong>in</strong>DC systems are dealt with <strong>in</strong> Chapter N.The simplified calculations and practical rules which follow give conservative resultsof sufficient accuracy, <strong>in</strong> <strong>the</strong> large majority of cases, for <strong>in</strong>stallation design purposes.G244.1 Short-circuit current at <strong>the</strong> secondary term<strong>in</strong>alsof a MV/LV distribution transformerThe case of one transformerb In a simplified approach, <strong>the</strong> impedance of <strong>the</strong> MV system is assumed to beInnegligibly small, so that: IscInP 3x 100 x 10= where = and:UscU20 3P = kVA rat<strong>in</strong>g of <strong>the</strong> transformerU 20 = phase-to-phase secondary volts on open circuitIn = nom<strong>in</strong>al current <strong>in</strong> ampsIsc = short-circuit fault current <strong>in</strong> ampsUsc = short-circuit impedance voltage of <strong>the</strong> transformer <strong>in</strong> %.Typical values of Usc for distribution transformers are given <strong>in</strong> Figure G31.Transformer rat<strong>in</strong>g Usc <strong>in</strong> %(kVA) Oil-immersed Cast-res<strong>in</strong>dry type50 to 750 4 6800 to 3,200 6 6Fig. G31 : Typical values of Usc for different kVA rat<strong>in</strong>gs of transformers with MV w<strong>in</strong>d<strong>in</strong>gs y 20 kVb Example400 kVA transformer, 420 V at no loadUsc = 4%3400 x 10550x 100In= = 550 A I sc = = 13.7 kA420 x 34© Schneider Electric - all rights reservedIsc 1 Isc 2 Isc 3Isc 1 + Isc 2 + Isc 3Fig. G32 : Case of several transformers <strong>in</strong> parallelThe case of several transformers <strong>in</strong> parallel feed<strong>in</strong>g a busbarThe value of fault current on an outgo<strong>in</strong>g circuit immediately downstream of<strong>the</strong> busbars (see Fig. G32) can be estimated as <strong>the</strong> sum of <strong>the</strong> Isc from eachtransformer calculated separately.It is assumed that all transformers are supplied from <strong>the</strong> same MV network, <strong>in</strong> whichcase <strong>the</strong> values obta<strong>in</strong>ed from Figure G31 when added toge<strong>the</strong>r will give a slightlyhigher fault-level value than would actually occur.O<strong>the</strong>r factors which have not been taken <strong>in</strong>to account are <strong>the</strong> impedance of <strong>the</strong>busbars and of <strong>the</strong> circuit-breakers.The conservative fault-current value obta<strong>in</strong>ed however, is sufficiently accurate forbasic <strong>in</strong>stallation design purposes. The choice of circuit-breakers and <strong>in</strong>corporatedprotective devices aga<strong>in</strong>st short-circuit fault currents is described <strong>in</strong> Chapter H Subclause4.4.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors4 Short-circuit current4.2 3-phase short-circuit current (Isc) at any po<strong>in</strong>twith<strong>in</strong> a LV <strong>in</strong>stallationIn a 3-phase <strong>in</strong>stallation Isc at any po<strong>in</strong>t is given by:UIsc = 20 where3 ZTU 20 = phase-to-phase voltage of <strong>the</strong> open circuited secondary w<strong>in</strong>d<strong>in</strong>gs of <strong>the</strong> powersupply transformer(s).Z T = total impedance per phase of <strong>the</strong> <strong>in</strong>stallation upstream of <strong>the</strong> fault location (<strong>in</strong> Ω)Method of calculat<strong>in</strong>g Z TEach component of an <strong>in</strong>stallation (MV network, transformer, cable, circuit-breaker,busbar, and so on...) is characterized by its impedance Z, compris<strong>in</strong>g an elementof resistance (R) and an <strong>in</strong>ductive reactance (X). It may be noted that capacitivereactances are not important <strong>in</strong> short-circuit current calculations.ZXThe parameters R, X and Z are expressed <strong>in</strong> ohms, and are related by <strong>the</strong> sides of aright angled triangle, as shown <strong>in</strong> <strong>the</strong> impedance diagram of Figure G33.The method consists <strong>in</strong> divid<strong>in</strong>g <strong>the</strong> network <strong>in</strong>to convenient sections, and tocalculate <strong>the</strong> R and X values for each.Where sections are connected <strong>in</strong> series <strong>in</strong> <strong>the</strong> network, all <strong>the</strong> resistive elements <strong>in</strong><strong>the</strong> section are added arithmetically; likewise for <strong>the</strong> reactances, to give R T and X T .The impedance (Z T ) for <strong>the</strong> comb<strong>in</strong>ed sections concerned is <strong>the</strong>n calculated fromG25Fig. G33 : Impedance diagramR2Z = R + X 2T T TAny two sections of <strong>the</strong> network which are connected <strong>in</strong> parallel, can, ifpredom<strong>in</strong>antly both resistive (or both <strong>in</strong>ductive) be comb<strong>in</strong>ed to give a s<strong>in</strong>gleequivalent resistance (or reactance) as follows:Let R1 and R2 be <strong>the</strong> two resistances connected <strong>in</strong> parallel, <strong>the</strong>n <strong>the</strong> equivalentresistance R3 will be given by:R1x R2X1x X2R3= or for reactances X3=R 1 + R2X 1 + X2It should be noted that <strong>the</strong> calculation of X3 concerns only separated circuit withoutmutual <strong>in</strong>ductance. If <strong>the</strong> circuits <strong>in</strong> parallel are close togo<strong>the</strong>r <strong>the</strong> value of X3 will benotably higher.Determ<strong>in</strong>ation of <strong>the</strong> impedance of each componentb Network upstream of <strong>the</strong> MV/LV transformer (see Fig. G34)The 3-phase short-circuit fault level P SC , <strong>in</strong> kA or <strong>in</strong> MVA (1) is given by <strong>the</strong> powersupply authority concerned, from which an equivalent impedance can be deduced.Psc Uo (V) Ra (mΩ) Xa (mΩ)250 MVA 420 0.07 0.7500 MVA 420 0.035 0.351Fig. G34 : The impedance of <strong>the</strong> MV network referred to <strong>the</strong> LV side of <strong>the</strong> MV/LV transformer(1) Short-circuit MVA: 3 E L Isc where:b E L = phase-to-phase nom<strong>in</strong>al system voltage expressed <strong>in</strong>kV (r.m.s.)b Isc = 3-phase short-circuit current expressed <strong>in</strong> kA (r.m.s.)(2) up to 36 kVA formula which makes this deduction and at <strong>the</strong> same time converts <strong>the</strong> impedanceto an equivalent value at LV is given, as follows:UZs = 02PscwhereZs = impedance of <strong>the</strong> MV voltage network, expessed <strong>in</strong> milli-ohmsUo = phase-to-phase no-load LV voltage, expressed <strong>in</strong> voltsPsc = MV 3-phase short-circuit fault level, expressed <strong>in</strong> kVAThe upstream (MV) resistance Ra is generally found to be negligible compared with<strong>the</strong> correspond<strong>in</strong>g Xa, <strong>the</strong> latter <strong>the</strong>n be<strong>in</strong>g taken as <strong>the</strong> ohmic value for Za. If moreaccurate calculations are necessary, Xa may be taken to be equal to 0.995 Za andRa equal to 0.1 Xa.Figure G36 gives values for Ra and Xa correspond<strong>in</strong>g to <strong>the</strong> most common MV (2)short-circuit levels <strong>in</strong> utility power-supply networks, namely, 250 MVA and 500 MVA.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors4 Short-circuit currentb Transformers (see Fig. G35)The impedance Ztr of a transformer, viewed from <strong>the</strong> LV term<strong>in</strong>als, is given by <strong>the</strong>formula:Ztr =UPn 202 x Usc100G26where:U 20 = open-circuit secondary phase-to-phase voltage expressed <strong>in</strong> voltsPn = rat<strong>in</strong>g of <strong>the</strong> transformer (<strong>in</strong> kVA)Usc = <strong>the</strong> short-circuit impedance voltage of <strong>the</strong> transformer expressed <strong>in</strong> %The transformer w<strong>in</strong>d<strong>in</strong>gs resistance Rtr can be derived from <strong>the</strong> total losses asfollows:2Pcu x 10Pcu = 3I3n x Rtr so that Rtr =23In<strong>in</strong> milli-ohmswherePcu = total losses <strong>in</strong> wattsIn = nom<strong>in</strong>al full-load current <strong>in</strong> ampsRtr = resistance of one phase of <strong>the</strong> transformer <strong>in</strong> milli-ohms (<strong>the</strong> LV andcorrespond<strong>in</strong>g MV w<strong>in</strong>d<strong>in</strong>g for one LV phase are <strong>in</strong>cluded <strong>in</strong> this resistance value).2 2Xtr = Ztr −RtrFor an approximate calculation Rtr may be ignored s<strong>in</strong>ce X ≈ Z <strong>in</strong> standarddistribution type transformers.Rated Oil-immersed Cast-res<strong>in</strong>Power Usc (%) Rtr (mΩ) Xtr (mΩ) Ztr (mΩ) Usc (%) Rtr (mΩ) Xtr (mΩ) Ztr (mΩ)(kVA)100 4 37.9 59.5 70.6 6 37.0 99.1 105.8160 4 16.2 41.0 44.1 6 18.6 63.5 66.2200 4 11.9 33.2 35.3 6 14.1 51.0 52.9250 4 9.2 26.7 28.2 6 10.7 41.0 42.3315 4 6.2 21.5 22.4 6 8.0 32.6 33.6400 4 5.1 16.9 17.6 6 6.1 25.8 26.5500 4 3.8 13.6 14.1 6 4.6 20.7 21.2630 4 2.9 10.8 11.2 6 3.5 16.4 16.8800 6 2.9 12.9 13.2 6 2.6 13.0 13.21,000 6 2.3 10.3 10.6 6 1.9 10.4 10.61,250 6 1.8 8.3 8.5 6 1.5 8.3 8.51,600 6 1.4 6.5 6.6 6 1.1 6.5 6.62,000 6 1.1 5.2 5.3 6 0.9 5.2 5.3Fig. G35 : Resistance, reactance and impedance values for typical distribution 400 V transformers with MV w<strong>in</strong>d<strong>in</strong>gs y 20 kV© Schneider Electric - all rights reserved(1) For 50 Hz systems, but 0.18 mΩ/m length at 60 Hzb Circuit-breakersIn LV circuits, <strong>the</strong> impedance of circuit-breakers upstream of <strong>the</strong> fault location mustbe taken <strong>in</strong>to account. The reactance value conventionally assumed is 0.15 mΩ perCB, while <strong>the</strong> resistance is neglected.b BusbarsThe resistance of busbars is generally negligible, so that <strong>the</strong> impedance is practicallyall reactive, and amounts to approximately 0.15 mΩ/metre (1) length for LV busbars(doubl<strong>in</strong>g <strong>the</strong> spac<strong>in</strong>g between <strong>the</strong> bars <strong>in</strong>creases <strong>the</strong> reactance by about 10% only).b Circuit conductorsLThe resistance of a conductor is given by <strong>the</strong> formula: Rc = ρwhereSρ = <strong>the</strong> resistivity constant of <strong>the</strong> conductor material at <strong>the</strong> normal operat<strong>in</strong>gtemperature be<strong>in</strong>g:v 22.5 mΩ.mm 2 /m for copperv 36 mΩ.mm 2 /m for alum<strong>in</strong>iumL = length of <strong>the</strong> conductor <strong>in</strong> mS = c.s.a. of conductor <strong>in</strong> mm 2Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors4 Short-circuit currentCable reactance values can be obta<strong>in</strong>ed from <strong>the</strong> manufacturers. For c.s.a. of lessthan 50 mm 2 reactance may be ignored. In <strong>the</strong> absence of o<strong>the</strong>r <strong>in</strong>formation, a valueof 0.08 mΩ/metre may be used (for 50 Hz systems) or 0.096 mΩ/metre (for 60 Hzsystems). For prefabricated bus-trunk<strong>in</strong>g and similar pre-wired duct<strong>in</strong>g systems, <strong>the</strong>manufacturer should be consulted.b MotorsAt <strong>the</strong> <strong>in</strong>stant of short-circuit, a runn<strong>in</strong>g motor will act (for a brief period) as agenerator, and feed current <strong>in</strong>to <strong>the</strong> fault.In general, this fault-current contribution may be ignored. However, if <strong>the</strong> totalpower of motors runn<strong>in</strong>g simultaneously is higher than 25% of <strong>the</strong> total powerof transformers, <strong>the</strong> <strong>in</strong>fluence of motors must be taken <strong>in</strong>to account. Their totalcontribution can be estimated from <strong>the</strong> formula:Iscm = 3.5 In from each motor i.e. 3.5mIn for m similar motors operat<strong>in</strong>g concurrently.The motors concerned will be <strong>the</strong> 3-phase motors only; s<strong>in</strong>gle-phase-motorcontribution be<strong>in</strong>g <strong>in</strong>significant.b Fault-arc resistanceShort-circuit faults generally form an arc which has <strong>the</strong> properties of a resistance.The resistance is not stable and its average value is low, but at low voltage thisresistance is sufficient to reduce <strong>the</strong> fault-current to some extent. Experience hasshown that a reduction of <strong>the</strong> order of 20% may be expected. This phenomenon willeffectively ease <strong>the</strong> current-break<strong>in</strong>g duty of a CB, but affords no relief for its faultcurrentmak<strong>in</strong>g duty.b Recapitulation table (see Fig. G36)G27Parts of power-supply system R (mΩ) X (mΩ)Supply networkRaFigure G34Xa = 0.1TransformerPcu x 10 3Figure G35Rtr =3In2Xa = 0 995 Za Za =U 20 2. ;Psc2 2Ztr −RtrRtr is often negligible compared to Xtr with Ztr =for transformers > 100 kVAUPn x Usc100Circuit-breaker Negligible XD = 0.15 mΩ/poleMBusbars Negligible for S > 200 mm 2 <strong>in</strong> <strong>the</strong> formula: XB = 0.15 mΩ/mL (1)R = ρSCircuit conductors (2) L (1) Cables: Xc = 0.08 mΩ/mR = ρSMotorsSee Sub-clause 4.2 Motors(often negligible at LV)Three-phase shortUcircuit current <strong>in</strong> kA Isc = 202 23 RT+ XTU 20 : Phase-to-phase no-load secondary voltage of MV/LV transformer (<strong>in</strong> volts).Psc: 3-phase short-circuit power at MV term<strong>in</strong>als of <strong>the</strong> MV/LV transformers (<strong>in</strong> kVA).Pcu: 3-phase total losses of <strong>the</strong> MV/LV transformer (<strong>in</strong> watts).Pn: Rat<strong>in</strong>g of <strong>the</strong> MV/LV transformer (<strong>in</strong> kVA).Usc: Short-circuit impedance voltage of <strong>the</strong> MV/LV transfomer (<strong>in</strong> %).R T : Total resistance. X T : Total reactance(1) ρ = resistivity at normal temperature of conductors <strong>in</strong> serviceb ρ = 22.5 mΩ x mm 2 /m for copperb ρ = 36 mΩ x mm 2 /m for alum<strong>in</strong>ium(2) If <strong>the</strong>re are several conductors <strong>in</strong> parallel per phase, <strong>the</strong>n divide <strong>the</strong> resistance of one conductor by <strong>the</strong> number ofconductors. The reactance rema<strong>in</strong>s practically unchanged.Fig. G36 : Recapitulation table of impedances for different parts of a power-supply system© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors4 Short-circuit currentb Example of short-circuit calculations (see Fig. G37)G28LV <strong>in</strong>stallation R (mΩ) X (mΩ) RT (mΩ) XT (mΩ)MV network 0.035 0.351Psc = 500 MVATransformer 2.24 8.1020 kV/420 VPn = 1000 kVAUsc = 5%Pcu = 13.3 x 10 3 wattsS<strong>in</strong>gle-core cables22.5 55 m copper Rc = x = 0.124 x 240 mm 2 /phase4 240Xc = 0.08 x 5 = 0.40 2.41 8.85 Isc1 = 26 kAMa<strong>in</strong> RD = 0 XD = 0.15circuit-breakerBusbars RB = 0 XB = 1.5 2.41 10.5 Isc2 = 22 kA10 mThree-core cable100 m100Rc = 22.5 x = 23.6895 mm 2 copper95Xc = 100 x 0.08 = 8 26.1 18.5 Isc3 = 7.4 kAThree-core cable20 m Rc = 22.5 x= 45 Xc = 20 x 0.08 = 1.6 71.1 20.1 Isc4 = 3.2 kA10 mm 2 copper10f<strong>in</strong>al circuitsIsc =4202 23 RT+ XTFig. G37 : Example of short-circuit current calculations for a LV <strong>in</strong>stallation supplied at 400 V (nom<strong>in</strong>al) from a 1,000 kVA MV/LV transformer4.3 Isc at <strong>the</strong> receiv<strong>in</strong>g end of a feeder as a functionof <strong>the</strong> Isc at its send<strong>in</strong>g end© Schneider Electric - all rights reserved400 VIB = 55 A47,5 mm 2 , Cu20 mIB = 160 AIsc = 28 kAIsc = ?Fig. G38 : Determ<strong>in</strong>ation of downstream short-circuit currentlevel Isc us<strong>in</strong>g Figure G39The network shown <strong>in</strong> Figure G38 typifies a case for <strong>the</strong> application of Figure G39next page, derived by <strong>the</strong> «method of composition» (mentioned <strong>in</strong> Chapter F Subclause6.2). These tables give a rapid and sufficiently accurate value of short-circuitcurrent at a po<strong>in</strong>t <strong>in</strong> a network, know<strong>in</strong>g:b The value of short-circuit current upstream of <strong>the</strong> po<strong>in</strong>t consideredb The length and composition of <strong>the</strong> circuit between <strong>the</strong> po<strong>in</strong>t at which <strong>the</strong> shortcircuitcurrent level is known, and <strong>the</strong> po<strong>in</strong>t at which <strong>the</strong> level is to be determ<strong>in</strong>edIt is <strong>the</strong>n sufficient to select a circuit-breaker with an appropriate short-circuit faultrat<strong>in</strong>g immediately above that <strong>in</strong>dicated <strong>in</strong> <strong>the</strong> tables.If more precise values are required, it is possible to make a detailled calculation(see Sub-Clause 4.2) or to use a software package, such as Ecodial. In such a case,moreover, <strong>the</strong> possibility of us<strong>in</strong>g <strong>the</strong> cascad<strong>in</strong>g technique should be considered,<strong>in</strong> which <strong>the</strong> use of a current limit<strong>in</strong>g circuit-breaker at <strong>the</strong> upstream position wouldallow all circuit-breakers downstream of <strong>the</strong> limiter to have a short-circuit currentrat<strong>in</strong>g much lower than would o<strong>the</strong>rwise be necessary (See chapter H Sub-Clause 4.5).MethodSelect <strong>the</strong> c.s.a. of <strong>the</strong> conductor <strong>in</strong> <strong>the</strong> column for copper conductors (<strong>in</strong> thisexample <strong>the</strong> c.s.a. is 47.5 mm 2 ).Search along <strong>the</strong> row correspond<strong>in</strong>g to 47.5 mm 2 for <strong>the</strong> length of conductor equalto that of <strong>the</strong> circuit concerned (or <strong>the</strong> nearest possible on <strong>the</strong> low side). Descendvertically <strong>the</strong> column <strong>in</strong> which <strong>the</strong> length is located, and stop at a row <strong>in</strong> <strong>the</strong> middlesection (of <strong>the</strong> 3 sections of <strong>the</strong> Figure) correspond<strong>in</strong>g to <strong>the</strong> known fault-currentlevel (or <strong>the</strong> nearest to it on <strong>the</strong> high side).In this case 30 kA is <strong>the</strong> nearest to 28 kA on <strong>the</strong> high side. The value of short-circuitcurrent at <strong>the</strong> downstream end of <strong>the</strong> 20 metre circuit is given at <strong>the</strong> <strong>in</strong>tersection of<strong>the</strong> vertical column <strong>in</strong> which <strong>the</strong> length is located, and <strong>the</strong> horizontal row correspond<strong>in</strong>gto <strong>the</strong> upstream Isc (or nearest to it on <strong>the</strong> high side).This value <strong>in</strong> <strong>the</strong> example is seen to be 14.7 kA.The procedure for alum<strong>in</strong>ium conductors is similar, but <strong>the</strong> vertical column must beascended <strong>in</strong>to <strong>the</strong> middle section of <strong>the</strong> table.In consequence, a DIN-rail-mounted circuit-breaker rated at 63 A and Isc of 25 kA(such as a NG 125N unit) can be used for <strong>the</strong> 55 A circuit <strong>in</strong> Figure G38.A Compact rated at 160 A with an Isc capacity of 25 kA (such as a NS160 unit) canbe used to protect <strong>the</strong> 160 A circuit.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors4 Short-circuit currentCopper 230 V / 400 Vc.s.a. of phase Length of circuit (<strong>in</strong> metres)conductors (mm 2 )1.5 1.3 1.8 2.6 3.6 5.2 7.3 10.3 14.6 212.5 1.1 1.5 2.1 3.0 4.3 6.1 8.6 12.1 17.2 24 344 1.2 1.7 2.4 3.4 4.9 6.9 9.7 13.7 19.4 27 39 556 1.8 2.6 3.6 5.2 7.3 10.3 14.6 21 29 41 58 8210 2.2 3.0 4.3 6.1 8.6 12.2 17.2 24 34 49 69 97 13716 1.7 2.4 3.4 4.9 6.9 9.7 13.8 19.4 27 39 55 78 110 155 22025 1.3 1.9 2.7 3.8 5.4 7.6 10.8 15.2 21 30 43 61 86 121 172 243 34335 1.9 2.7 3.8 5.3 7.5 10.6 15.1 21 30 43 60 85 120 170 240 340 48047.5 1.8 2.6 3.6 5.1 7.2 10.2 14.4 20 29 41 58 82 115 163 231 326 46170 2.7 3.8 5.3 7.5 10.7 15.1 21 30 43 60 85 120 170 240 34095 2.6 3.6 5.1 7.2 10.2 14.5 20 29 41 58 82 115 163 231 326 461120 1.6 2.3 3.2 4.6 6.5 9.1 12.9 18.3 26 37 52 73 103 146 206 291 412150 1.2 1.8 2.5 3.5 5.0 7.0 9.9 14.0 19.8 28 40 56 79 112 159 224 317 448185 1.5 2.1 2.9 4.2 5.9 8.3 11.7 16.6 23 33 47 66 94 133 187 265 374 529240 1.8 2.6 3.7 5.2 7.3 10.3 14.6 21 29 41 58 83 117 165 233 330 466 659300 2.2 3.1 4.4 6.2 8.8 12.4 17.6 25 35 50 70 99 140 198 280 396 5612x120 2.3 3.2 4.6 6.5 9.1 12.9 18.3 26 37 52 73 103 146 206 292 412 5832x150 2.5 3.5 5.0 7.0 9.9 14.0 20 28 40 56 79 112 159 224 317 448 6342x185 2.9 4.2 5.9 8.3 11.7 16.6 23 33 47 66 94 133 187 265 375 530 749553x120 3.4 4.9 6.9 9.7 13.7 19.4 27 39 55 77 110 155 219 309 438 6193x150 3.7 5.3 7.5 10.5 14.9 21 30 42 60 84 119 168 238 336 476 6723x185 4.4 6.2 8.8 12.5 17.6 25 35 50 70 100 141 199 281 398 562Isc upstream Isc downstream(<strong>in</strong> kA)(<strong>in</strong> kA)100 93 90 87 82 77 70 62 54 45 37 29 22 17.0 12.6 9.3 6.7 4.9 3.5 2.5 1.8 1.3 0.990 84 82 79 75 71 65 58 51 43 35 28 22 16.7 12.5 9.2 6.7 4.8 3.5 2.5 1.8 1.3 0.980 75 74 71 68 64 59 54 47 40 34 27 21 16.3 12.2 9.1 6.6 4.8 3.5 2.5 1.8 1.3 0.970 66 65 63 61 58 54 49 44 38 32 26 20 15.8 12.0 8.9 6.6 4.8 3.4 2.5 1.8 1.3 0.960 57 56 55 53 51 48 44 39 35 29 24 20 15.2 11.6 8.7 6.5 4.7 3.4 2.5 1.8 1.3 0.950 48 47 46 45 43 41 38 35 31 27 22 18.3 14.5 11.2 8.5 6.3 4.6 3.4 2.4 1.7 1.2 0.940 39 38 38 37 36 34 32 30 27 24 20 16.8 13.5 10.6 8.1 6.1 4.5 3.3 2.4 1.7 1.2 0.935 34 34 33 33 32 30 29 27 24 22 18.8 15.8 12.9 10.2 7.9 6.0 4.5 3.3 2.4 1.7 1.2 0.930 29 29 29 28 27 27 25 24 22 20 17.3 14.7 12.2 9.8 7.6 5.8 4.4 3.2 2.4 1.7 1.2 0.925 25 24 24 24 23 23 22 21 19.1 17.4 15.5 13.4 11.2 9.2 7.3 5.6 4.2 3.2 2.3 1.7 1.2 0.920 20 20 19.4 19.2 18.8 18.4 17.8 17.0 16.1 14.9 13.4 11.8 10.1 8.4 6.8 5.3 4.1 3.1 2.3 1.7 1.2 0.915 14.8 14.8 14.7 14.5 14.3 14.1 13.7 13.3 12.7 11.9 11.0 9.9 8.7 7.4 6.1 4.9 3.8 2.9 2.2 1.6 1.2 0.910 9.9 9.9 9.8 9.8 9.7 9.6 9.4 9.2 8.9 8.5 8.0 7.4 6.7 5.9 5.1 4.2 3.4 2.7 2.0 1.5 1.1 0.87 7.0 6.9 6.9 6.9 6.9 6.8 6.7 6.6 6.4 6.2 6.0 5.6 5.2 4.7 4.2 3.6 3.0 2.4 1.9 1.4 1.1 0.85 5.0 5.0 5.0 4.9 4.9 4.9 4.9 4.8 4.7 4.6 4.5 4.3 4.0 3.7 3.4 3.0 2.5 2.1 1.7 1.3 1.0 0.84 4.0 4.0 4.0 4.0 4.0 3.9 3.9 3.9 3.8 3.7 3.6 3.5 3.3 3.1 2.9 2.6 2.2 1.9 1.6 1.2 1.0 0.73 3.0 3.0 3.0 3.0 3.0 3.0 2.9 2.9 2.9 2.9 2.8 2.7 2.6 2.5 2.3 2.1 1.9 1.6 1.4 1.1 0.9 0.72 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.9 1.9 1.9 1.8 1.8 1.7 1.6 1.4 1.3 1.1 1.0 0.8 0.61 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9 0.9 0.8 0.8 0.7 0.6 0.6 0.5Alum<strong>in</strong>ium 230 V / 400 Vc.s.a. of phase Length of circuit (<strong>in</strong> metres)conductors (mm 2 )2.5 1.4 1.9 2.7 3.8 5.4 7.6 10.8 15.3 224 1.1 1.5 2.2 3.1 4.3 6.1 8.6 12.2 17.3 24 356 1.6 2.3 3.2 4.6 6.5 9.2 13.0 18.3 26 37 5210 1.9 2.7 3.8 5.4 7.7 10.8 15.3 22 31 43 61 8616 2.2 3.1 4.3 6.1 8.7 12.2 17.3 24 35 49 69 98 13825 1.7 2.4 3.4 4.8 6.8 9.6 13.5 19.1 27 38 54 76 108 153 21635 1.7 2.4 3.4 4.7 6.7 9.5 13.4 18.9 27 38 54 76 107 151 214 30247.5 1.6 2.3 3.2 4.6 6.4 9.1 12.9 18.2 26 36 51 73 103 145 205 290 41070 2.4 3.4 4.7 6.7 9.5 13.4 19.0 27 38 54 76 107 151 214 303 42895 2.3 3.2 4.6 6.4 9.1 12.9 18.2 26 36 51 73 103 145 205 290 411120 2.9 4.1 5.8 8.1 11.5 16.3 23 32 46 65 92 130 184 259 367150 3.1 4.4 6.3 8.8 12.5 17.7 25 35 50 71 100 141 199 282 399185 2.6 3.7 5.2 7.4 10.4 14.8 21 30 42 59 83 118 167 236 333 471240 1.2 1.6 2.3 3.3 4.6 6.5 9.2 13.0 18.4 26 37 52 73 104 147 208 294 415300 1.4 2.0 2.8 3.9 5.5 7.8 11.1 15.6 22 31 44 62 88 125 177 250 353 4992x120 1.4 2.0 2.9 4.1 5.8 8.1 11.5 16.3 23 33 46 65 92 130 184 260 367 5192x150 1.6 2.2 3.1 4.4 6.3 8.8 12.5 17.7 25 35 50 71 100 141 200 282 3992x185 1.9 2.6 3.7 5.2 7.4 10.5 14.8 21 30 42 59 83 118 167 236 334 4722x240 2.3 3.3 4.6 6.5 9.2 13.0 18.4 26 37 52 74 104 147 208 294 415 5873x120 2.2 3.1 4.3 6.1 8.6 12.2 17.3 24 34 49 69 97 138 195 275 389 5513x150 2.3 3.3 4.7 6.6 9.4 13.3 18.8 27 37 53 75 106 150 212 299 423 5983x185 2.8 3.9 5.5 7.8 11.1 15.7 22 31 44 63 89 125 177 250 354 500 7073x240 3.5 4.9 6.9 9.8 13.8 19.5 28 39 55 78 110 156 220 312 441 623Note: for a 3-phase system hav<strong>in</strong>g 230 V between phases, divide <strong>the</strong> above lengths by 3Fig. G39 : Isc at a po<strong>in</strong>t downstream, as a function of a known upstream fault-current value and <strong>the</strong> length and c.s.a. of <strong>the</strong> <strong>in</strong>terven<strong>in</strong>g conductors,<strong>in</strong> a 230/400 V 3-phase system4.4 Short-circuit current supplied by a generator oran <strong>in</strong>verter: Please refer to Chapter NG29© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors5 Particular cases of short-circuitcurrent5.1 Calculation of m<strong>in</strong>imum levels of short-circuitcurrentIf a protective device <strong>in</strong> a circuit is <strong>in</strong>tendedonly to protect aga<strong>in</strong>st short-circuit faults, it isessential that it will operate with certa<strong>in</strong>ty at <strong>the</strong>lowest possible level of short-circuit current thatcan occur on <strong>the</strong> circuitIn general, on LV circuits, a s<strong>in</strong>gle protective device protects aga<strong>in</strong>st all levels ofcurrent, from <strong>the</strong> overload threshold through <strong>the</strong> maximum rated short-circuit currentbreak<strong>in</strong>gcapability of <strong>the</strong> device.In certa<strong>in</strong> cases, however, overload protective devices and separate short-circuitprotective devices are used.Examples of such arrangementsFigures G40 to G42 show some common arrangements where overload andshort-circuit protections are achieved by separate devices.G30aM fuses(no protectionaga<strong>in</strong>st overload)Load break<strong>in</strong>g contactorwith <strong>the</strong>rmal overload relayCircuit breaker with<strong>in</strong>stantaneous magneticshort-circuit protective relay onlyFig. G40 : Circuit protected by aM fusesLoad break<strong>in</strong>g contactorwith <strong>the</strong>rmal overload relayFig. G41 : Circuit protected by circuit-breaker without <strong>the</strong>rmaloverload relayAs shown <strong>in</strong> Figures G40 and G41, <strong>the</strong> most common circuits us<strong>in</strong>g separatedevices control and protect motors.Figure G42a constitutes a derogation <strong>in</strong> <strong>the</strong> basic protection rules, and is generallyused on circuits of prefabricated bustrunk<strong>in</strong>g, light<strong>in</strong>g rails, etc.Variable speed driveFigure G42b shows <strong>the</strong> functions provided by <strong>the</strong> variable speed drive, and ifnecessary some additional functions provided by devices such as circuit-breaker,<strong>the</strong>rmal relay, RCD.© Schneider Electric - all rights reservedS1Load with<strong>in</strong>corporatedoverloadprotectionCircuit breaker DS2 < S1Fig. G42a : Circuit-breaker D provides protection aga<strong>in</strong>st shortcircuitfaults as far as and <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> loadProtection to be provided Protection generally provided Additional protectionby <strong>the</strong> variable speed driveCable overload Yes = (1) Not necessary if (1)Motor overload Yes = (2) Not necessary if (2)Downstream short-circuit YesVariable speed drive overload YesOvervoltageYesUndervoltageYesLoss of phaseYesUpstream short-circuitCircuit-breaker(short-circuit tripp<strong>in</strong>g)Internal faultCircuit-breaker(short-circuit andoverload tripp<strong>in</strong>g)Downstream earth fault (self protection) RCD u 300 mA(<strong>in</strong>direct contact)Direct contact faultRCD y 30 mAFigure G42b : Protection to be provided for variable speeed drive applicationsSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors5 Particular cases of short-circuitcurrentThe protective device must fulfill:b <strong>in</strong>stantaneous trip sett<strong>in</strong>g Im < Isc m<strong>in</strong> for acircuit-breakerb fusion current Ia < Isc m<strong>in</strong> for a fuseConditions to be fulfilledThe protective device must <strong>the</strong>refore satisfy <strong>the</strong> two follow<strong>in</strong>g conditions:b Its fault-current break<strong>in</strong>g rat<strong>in</strong>g must be greater than Isc, <strong>the</strong> 3-phase short-circuitcurrent at its po<strong>in</strong>t of <strong>in</strong>stallationb Elim<strong>in</strong>ation of <strong>the</strong> m<strong>in</strong>imum short-circuit current possible <strong>in</strong> <strong>the</strong> circuit, <strong>in</strong> a time tccompatible with <strong>the</strong> <strong>the</strong>rmal constra<strong>in</strong>ts of <strong>the</strong> circuit conductors, where:2 2K S (valid for tc < 5 seconds)tc iI2sc m<strong>in</strong>Comparison of <strong>the</strong> tripp<strong>in</strong>g or fus<strong>in</strong>g performance curve of protective devices, with<strong>the</strong> limit curves of <strong>the</strong>rmal constra<strong>in</strong>t for a conductor shows that this condition issatisfied if:b Isc (m<strong>in</strong>) > Im (<strong>in</strong>stantaneous or short timedelay circuit-breaker trip sett<strong>in</strong>g currentlevel), (see Fig. G45)b Isc (m<strong>in</strong>) > Ia for protection by fuses. The value of <strong>the</strong> current Ia corresponds to<strong>the</strong> cross<strong>in</strong>g po<strong>in</strong>t of <strong>the</strong> fuse curve and <strong>the</strong> cable <strong>the</strong>rmal withstand curve(see Fig. G44 and G45)tG31t = k2 S 2I 2ImIFig. G45 : Protection by circuit-breakertt = k2 S 2I 2IaIFig. G46 : Protection by aM-type fusestFig. G47 : Protection by gl-type fusesIat = k2 S 2I 2I© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors5 Particular cases of short-circuitcurrentIn practice this means that <strong>the</strong> length of circuitdownstream of <strong>the</strong> protective device must notexceed a calculated maximum length:0.8 U SphLmax =2ρImPractical method of calculat<strong>in</strong>g LmaxThe limit<strong>in</strong>g effect of <strong>the</strong> impedance of long circuit conductors on <strong>the</strong> value ofshort-circuit currents must be checked and <strong>the</strong> length of a circuit must be restrictedaccord<strong>in</strong>gly.The method of calculat<strong>in</strong>g <strong>the</strong> maximum permitted length has already beendemonstrated <strong>in</strong> TN- and IT- ear<strong>the</strong>d schemes for s<strong>in</strong>gle and double earth faults,respectively (see Chapter F Sub-clauses 6.2 and 7.2). Two cases are consideredbelow:1 - Calculation of L max for a 3-phase 3-wire circuitThe m<strong>in</strong>imum short-circuit current will occur when two phase wires are shortcircuitedat <strong>the</strong> remote end of <strong>the</strong> circuit (see Fig. G46).P0.8 U LLoadG32Fig G46 : Def<strong>in</strong>ition of L for a 3-phase 3-wire circuitUs<strong>in</strong>g <strong>the</strong> “conventional method”, <strong>the</strong> voltage at <strong>the</strong> po<strong>in</strong>t of protection P is assumedto be 80% of <strong>the</strong> nom<strong>in</strong>al voltage dur<strong>in</strong>g a short-circuit fault, so that 0.8 U = Isc Zd,where:Zd = impedance of <strong>the</strong> fault loopIsc = short-circuit current (ph/ph)U = phase-to-phase nom<strong>in</strong>al voltageFor cables y 120 mm 2 , reactance may be neglected, so that2LZd = ρ (1)Sphwhere:ρ = resistivity of conductor material at <strong>the</strong> average temperature dur<strong>in</strong>g a short-circuit,Sph = c.s.a. of a phase conductor <strong>in</strong> mm 2L = length <strong>in</strong> metresThe condition for <strong>the</strong> cable protection is Im y Isc with Im = magnetic trip currentsett<strong>in</strong>g of <strong>the</strong> CB.This leads to Im y 0.8 U which gives L y 0.8 U SphZdLmax =2ρImwith U = 400 Vρ = 1.25 x 0.018 = 0.023 Ω.mm 2 /m (2) (Cu)Lmax = maximum circuit length <strong>in</strong> metresk SphLmax = Im© Schneider Electric - all rights reserved(1) For larger c.s.a.’s, <strong>the</strong> resistance calculated for <strong>the</strong>conductors must be <strong>in</strong>creased to account for <strong>the</strong> non-uniformcurrent density <strong>in</strong> <strong>the</strong> conductor (due to “sk<strong>in</strong>” and “proximity”effects)Suitable values are as follows:150 mm 2 : R + 15%185 mm 2 : R + 20%240 mm 2 : R + 25%300 mm 2 : R + 30%(2) The high value for resistivity is due to <strong>the</strong> elevatedtemperature of <strong>the</strong> conductor when pass<strong>in</strong>g short-circuitcurrent2 - Calculation of Lmax for a 3-phase 4-wire 230/400 V circuitThe m<strong>in</strong>imum Isc will occur when <strong>the</strong> short-circuit is between a phase conductor and<strong>the</strong> neutral.A calculation similar to that of example 1 above is required, but us<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>gformulae (for cable y 120 mm 2 (1) ).b Where Sn for <strong>the</strong> neutral conductor = Sph for <strong>the</strong> phase conductor3,333 SphLmax =Imb If Sn for <strong>the</strong> neutral conductor < Sph, <strong>the</strong>nL 6,666 Sph 1max =where m =SphIm1+mSnFor larger c.s.a.’s than those listed, reactance values must be comb<strong>in</strong>ed with those ofresistance to give an impedance. Reactance may be taken as 0.08 mΩ/m for cables(at 50 Hz). At 60 Hz <strong>the</strong> value is 0.096 mΩ/m.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors5 Particular cases of short-circuitcurrentTabulated values for LmaxFigure G47 below gives maximum circuit lengths (Lmax) <strong>in</strong> metres, for:b 3-phase 4-wire 400 V circuits (i.e. with neutral) andb 1-phase 2-wire 230 V circuitsprotected by general-purpose circuit-breakers.In o<strong>the</strong>r cases, apply correction factors (given <strong>in</strong> Figure G53) to <strong>the</strong> lengths obta<strong>in</strong>ed.The calculations are based on <strong>the</strong> above methods, and a short-circuit trip level with<strong>in</strong>± 20% of <strong>the</strong> adjusted value Im.For <strong>the</strong> 50 mm 2 c.s.a., calculation are based on a 47.5 mm 2 real c.s.a.Operat<strong>in</strong>g current c.s.a. (nom<strong>in</strong>al cross-sectional-area) of conductors (<strong>in</strong> mm 2 )level Im of <strong>the</strong><strong>in</strong>stantaneousmagnetic tripp<strong>in</strong>gelement (<strong>in</strong> A) 1.5 2.5 4 6 10 16 25 35 50 70 95 120 150 185 24050 100 167 267 40063 79 133 212 31780 63 104 167 250 417100 50 83 133 200 333125 40 67 107 160 267 427160 31 52 83 125 208 333200 25 42 67 100 167 267 417250 20 33 53 80 133 213 333 467320 16 26 42 63 104 167 260 365 495400 13 21 33 50 83 133 208 292 396500 10 17 27 40 67 107 167 233 317560 9 15 24 36 60 95 149 208 283 417630 8 13 21 32 63 85 132 185 251 370700 7 12 19 29 48 76 119 167 226 333 452800 6 10 17 25 42 67 104 146 198 292 396875 6 10 15 23 38 61 95 133 181 267 362 4571000 5 8 13 20 33 53 83 117 158 233 317 400 4351120 4 7 12 18 30 48 74 104 141 208 283 357 388 4591250 4 7 11 16 27 43 67 93 127 187 253 320 348 4111600 5 8 13 21 33 52 73 99 146 198 250 272 321 4002000 4 7 10 17 27 42 58 79 117 158 200 217 257 3202500 5 8 13 21 33 47 63 93 127 160 174 206 2563200 4 6 10 17 26 36 49 73 99 125 136 161 2004000 5 8 13 21 29 40 58 79 100 109 128 1605000 4 7 11 17 23 32 47 63 80 87 103 1286300 5 8 13 19 25 37 50 63 69 82 1028000 4 7 10 15 20 29 40 50 54 64 8010000 5 8 12 16 23 32 40 43 51 6412500 4 7 9 13 19 25 32 35 41 51G33Fig. G47 : Maximum circuit lengths <strong>in</strong> metres for copper conductors (for alum<strong>in</strong>ium, <strong>the</strong> lengths must be multiplied by 0.62)Figures G48 to G50 next page give maximum circuit length (Lmax) <strong>in</strong> metres for:b 3-phase 4-wire 400 V circuits (i.e. with neutral) andb 1-phase 2-wire 230 V circuitsprotected <strong>in</strong> both cases by domestic-type circuit-breakers or with circuit-breakershav<strong>in</strong>g similar tripp<strong>in</strong>g/current characteristics.In o<strong>the</strong>r cases, apply correction factors to <strong>the</strong> lengths <strong>in</strong>dicated. These factors aregiven <strong>in</strong> Figure G51 next page.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors5 Particular cases of short-circuitcurrentRated current of c.s.a. (nom<strong>in</strong>al cross-sectional-area) of conductors (<strong>in</strong> mm 2 )circuit-breakers (<strong>in</strong> A) 1.5 2.5 4 6 10 16 25 35 506 200 333 533 80010 120 200 320 480 80016 75 125 200 300 500 80020 60 100 160 240 400 64025 48 80 128 192 320 512 80032 37 62 100 150 250 400 625 87540 30 50 80 120 200 320 500 70050 24 40 64 96 160 256 400 560 76063 19 32 51 76 127 203 317 444 60380 15 25 40 60 100 160 250 350 475100 12 20 32 48 80 128 200 280 380125 10 16 26 38 64 102 160 224 304Fig. G48 : Maximum length of copper-conductor circuits <strong>in</strong> metres protected by B-type circuit-breakersG34Rated current of c.s.a. (nom<strong>in</strong>al cross-sectional-area) of conductors (<strong>in</strong> mm2)circuit-breakers (<strong>in</strong> A) 1.5 2.5 4 6 10 16 25 35 506 100 167 267 400 66710 60 100 160 240 400 64016 37 62 100 150 250 400 625 87520 30 50 80 120 200 320 500 70025 24 40 64 96 160 256 400 560 76032 18.0 31 50 75 125 200 313 438 59440 15.0 25 40 60 100 160 250 350 47550 12.0 20 32 48 80 128 200 280 38063 9.5 16.0 26 38 64 102 159 222 30280 7.5 12.5 20 30 50 80 125 175 238100 6.0 10.0 16.0 24 40 64 100 140 190125 5.0 8.0 13.0 19.0 32 51 80 112 152Fig. G49 : Maximum length of copper-conductor circuits <strong>in</strong> metres protected by C-type circuit-breakersRated current of c.s.a. (nom<strong>in</strong>al cross-sectional-area) of conductors (<strong>in</strong> mm2)circuit-breakers (<strong>in</strong> A) 1.5 2.5 4 6 10 16 25 35 501 429 7142 214 357 571 8573 143 238 381 571 9524 107 179 286 429 7146 71 119 190 286 476 76210 43 71 114 171 286 457 71416 27 45 71 107 179 286 446 625 84820 21 36 57 86 143 229 357 500 67925 17.0 29 46 69 114 183 286 400 54332 13.0 22 36 54 89 143 223 313 42440 11.0 18.0 29 43 71 114 179 250 33950 9.0 14.0 23 34 57 91 143 200 27163 7.0 11.0 18.0 27 45 73 113 159 21580 5.0 9.0 14.0 21 36 57 89 125 170100 4.0 7.0 11.0 17.0 29 46 71 100 136125 3.0 6.0 9.0 14.0 23 37 57 80 109Fig. G50 : Maximum length of copper-conductor circuits <strong>in</strong> metres protected by D-type circuit-breakers© Schneider Electric - all rights reservedCircuit detail3-phase 3-wire 400 V circuit or 1-phase 2-wire 400 V circuit (no neutral) 1.731-phase 2-wire (phase and neutral) 230 V circuit 13-phase 4-wire 230/400 V circuit or 2-phase 3-wire 230/400 V circuit Sph / S neutral = 1 1(i.e with neutral) Sph / S neutral = 2 0.67Fig. G51 : Correction factor to apply to lengths obta<strong>in</strong>ed from Figures G47 to G50Note: IEC 60898 accepts an upper short-circuit-current tripp<strong>in</strong>g range of 10-50 In fortype D circuit-breakers. European standards, and Figure G50 however, are based ona range of 10-20 In, a range which covers <strong>the</strong> vast majority of domestic and similar<strong>in</strong>stallations.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors5 Particular cases of short-circuitcurrentExamplesExample 1In a 1-phase 2-wire <strong>in</strong>stallation <strong>the</strong> protection is provided by a 50 A circuit-breakertype NSX80HMA, <strong>the</strong> <strong>in</strong>stantaneous short-circuit current trip, is set at 500 A(accuracy of ± 20%), i.e. <strong>in</strong> <strong>the</strong> worst case would require 500 x 1,2 = 600 A to trip.The cable c.s.a. = 10 mm 2 and <strong>the</strong> conductor material is copper.In Figure G47, <strong>the</strong> row Im = 500 A crosses <strong>the</strong> column c.s.a. = 10 mm 2 at <strong>the</strong> valuefor Lmax of 67 m. The circuit-breaker protects <strong>the</strong> cable aga<strong>in</strong>st short-circuit faults,<strong>the</strong>refore, provided that its length does not exceed 67 metres.Example 2In a 3-phase 3-wire 400 V circuit (without neutral), <strong>the</strong> protection is provided by a220 A circuit-breaker type NSX250N with an <strong>in</strong>stantaneous short-circuit current tripunit type MA set at 2,000 A (± 20%), i.e. a worst case of 2,400 A to be certa<strong>in</strong> oftripp<strong>in</strong>g. The cable c.s.a. = 120 mm 2 and <strong>the</strong> conductor material is copper.In Figure G47 <strong>the</strong> row Im = 2,000 A crosses <strong>the</strong> column c.s.a. = 120 mm 2 at <strong>the</strong>value for Lmax of 200 m. Be<strong>in</strong>g a 3-phase 3-wire 400 V circuit (without neutral), acorrection factor from Figure G51 must be applied. This factor is seen to be 1.73.The circuit-breaker will <strong>the</strong>refore protect <strong>the</strong> cable aga<strong>in</strong>st short-circuit current,provided that its length does not exceed 200 x 1.73= 346 metres.G355.2 Verification of <strong>the</strong> withstand capabilities ofcables under short-circuit conditionsIn general, verification of <strong>the</strong> <strong>the</strong>rmal-withstandcapability of a cable is not necessary, except <strong>in</strong>cases where cables of small c.s.a. are <strong>in</strong>stalledclose to, or feed<strong>in</strong>g directly from, <strong>the</strong> ma<strong>in</strong>general distribution boardThermal constra<strong>in</strong>tsWhen <strong>the</strong> duration of short-circuit current is brief (several tenths of a secondup to five seconds maximum) all of <strong>the</strong> heat produced is assumed to rema<strong>in</strong> <strong>in</strong><strong>the</strong> conductor, caus<strong>in</strong>g its temperature to rise. The heat<strong>in</strong>g process is said to beadiabatic, an assumption that simplifies <strong>the</strong> calculation and gives a pessimistic result,i.e. a higher conductor temperature than that which would actually occur, s<strong>in</strong>ce <strong>in</strong>practice, some heat would leave <strong>the</strong> conductor and pass <strong>in</strong>to <strong>the</strong> <strong>in</strong>sulation.For a period of 5 seconds or less, <strong>the</strong> relationship I 2 t = k 2 S 2 characterizes <strong>the</strong>time <strong>in</strong> seconds dur<strong>in</strong>g which a conductor of c.s.a. S (<strong>in</strong> mm 2 ) can be allowed tocarry a current I, before its temperature reaches a level which would damage <strong>the</strong>surround<strong>in</strong>g <strong>in</strong>sulation.The factor k 2 is given <strong>in</strong> Figure G52 below.Insulation Conductor copper (Cu) Conductor alum<strong>in</strong>ium (Al)PVC 13,225 5,776XLPE 20,449 8,836Fig. G52 : Value of <strong>the</strong> constant k 2The method of verification consists <strong>in</strong> check<strong>in</strong>g that <strong>the</strong> <strong>the</strong>rmal <strong>energy</strong> I 2 t perohm of conductor material, allowed to pass by <strong>the</strong> protect<strong>in</strong>g circuit-breaker (frommanufacturers catalogues) is less than that permitted for <strong>the</strong> particular conductor (asgiven <strong>in</strong> Figure G53 below).S (mm 2 ) PVC XLPECopper Alum<strong>in</strong>ium Copper Alum<strong>in</strong>ium1.5 0.0297 0.0130 0.0460 0.01992.5 0.0826 0.0361 0.1278 0.05524 0.2116 0.0924 0.3272 0.14146 0.4761 0.2079 0.7362 0.318110 1.3225 0.5776 2.0450 0.883616 3.3856 1.4786 5.2350 2.262025 8.2656 3.6100 12.7806 5.522535 16.2006 7.0756 25.0500 10.824150 29.839 13.032 46.133 19.936Fig. G53 : Maximum allowable <strong>the</strong>rmal stress for cables I 2 t (expressed <strong>in</strong> ampere 2 x second x 10 6 )© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors5 Particular cases of short-circuitcurrentExampleIs a copper-cored XLPE cable of 4 mm 2 c.s.a. adequately protected by aC60N circuit-breaker?Figure G53 shows that <strong>the</strong> I 2 t value for <strong>the</strong> cable is 0.3272 x 10 6 , while <strong>the</strong> maximum“let-through” value by <strong>the</strong> circuit-breaker, as given <strong>in</strong> <strong>the</strong> manufacturer’s catalogue, isconsiderably less (< 0.1.10 6 A 2 s).The cable is <strong>the</strong>refore adequately protected by <strong>the</strong> circuit-breaker up to its full ratedbreak<strong>in</strong>g capability.G36Electrodynamic constra<strong>in</strong>tsFor all type of circuit (conductors or bus-trunk<strong>in</strong>g), it is necessary to takeelectrodynamic effects <strong>in</strong>to account.To withstand <strong>the</strong> electrodynamic constra<strong>in</strong>ts, <strong>the</strong> conductors must be solidly fixedand <strong>the</strong> connection must be strongly tightened.For bus-trunk<strong>in</strong>g, rails, etc. it is also necessary to verify that <strong>the</strong> electrodynamicwithstand performance is satisfactory when carry<strong>in</strong>g short-circuit currents. The peakvalue of current, limited by <strong>the</strong> circuit-breaker or fuse, must be less than <strong>the</strong> busbarsystem rat<strong>in</strong>g. Tables of coord<strong>in</strong>ation ensur<strong>in</strong>g adequate protection of <strong>the</strong>ir productsare generally published by <strong>the</strong> manufacturers and provide a major advantage of suchsystems.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors6 Protective earth<strong>in</strong>g conductor(PE)PEPECorrectIncorrectFig. G54 : A poor connection <strong>in</strong> a series arrangement will leaveall downstream appliances unprotectedPEN6.1 Connection and choiceProtective (PE) conductors provide <strong>the</strong> bond<strong>in</strong>g connection between all exposedand extraneous conductive parts of an <strong>in</strong>stallation, to create <strong>the</strong> ma<strong>in</strong> equipotentialbond<strong>in</strong>g system. These conductors conduct fault current due to <strong>in</strong>sulation failure(between a phase conductor and an exposed conductive part) to <strong>the</strong> ear<strong>the</strong>d neutralof <strong>the</strong> source. PE conductors are connected to <strong>the</strong> ma<strong>in</strong> earth<strong>in</strong>g term<strong>in</strong>al of <strong>the</strong><strong>in</strong>stallation.The ma<strong>in</strong> earth<strong>in</strong>g term<strong>in</strong>al is connected to <strong>the</strong> earth<strong>in</strong>g electrode (see Chapter E)by <strong>the</strong> earth<strong>in</strong>g conductor (ground<strong>in</strong>g electrode conductor <strong>in</strong> <strong>the</strong> USA).PE conductors must be:b Insulated and coloured yellow and green (stripes)b Protected aga<strong>in</strong>st mechanical and chemical damageIn IT and TN-ear<strong>the</strong>d schemes it is strongly recommended that PE conductorsshould be <strong>in</strong>stalled <strong>in</strong> close proximity (i.e. <strong>in</strong> <strong>the</strong> same conduits, on <strong>the</strong> same cabletray, etc.) as <strong>the</strong> live cables of <strong>the</strong> related circuit. This arrangement ensures <strong>the</strong>m<strong>in</strong>imum possible <strong>in</strong>ductive reactance <strong>in</strong> <strong>the</strong> earth-fault current carry<strong>in</strong>g circuits.It should be noted that this arrangement is orig<strong>in</strong>ally provided by bus-trunk<strong>in</strong>g.ConnectionPE conductors must:b Not <strong>in</strong>clude any means of break<strong>in</strong>g <strong>the</strong> cont<strong>in</strong>uity of <strong>the</strong> circuit (such as a switch,removable l<strong>in</strong>ks, etc.)b Connect exposed conductive parts <strong>in</strong>dividually to <strong>the</strong> ma<strong>in</strong> PE conductor, i.e. <strong>in</strong>parallel, not <strong>in</strong> series, as shown <strong>in</strong> Figure G54b Have an <strong>in</strong>dividual term<strong>in</strong>al on common earth<strong>in</strong>g bars <strong>in</strong> distribution boards.TT schemeThe PE conductor need not necessarily be <strong>in</strong>stalled <strong>in</strong> close proximity to <strong>the</strong> liveconductors of <strong>the</strong> correspond<strong>in</strong>g circuit, s<strong>in</strong>ce high values of earth-fault current arenot needed to operate <strong>the</strong> RCD-type of protection used <strong>in</strong> TT <strong>in</strong>stallations.IT and TN schemesThe PE or PEN conductor, as previously noted, must be <strong>in</strong>stalled as close aspossible to <strong>the</strong> correspond<strong>in</strong>g live conductors of <strong>the</strong> circuit and no ferro-magneticmaterial must be <strong>in</strong>terposed between <strong>the</strong>m. A PEN conductor must always beconnected directly to <strong>the</strong> earth term<strong>in</strong>al of an appliance, with a looped connectionfrom <strong>the</strong> earth term<strong>in</strong>al to <strong>the</strong> neutral term<strong>in</strong>al of <strong>the</strong> appliance (see Fig. G55).b TN-C scheme (<strong>the</strong> neutral and PE conductor are one and <strong>the</strong> same, referred to asa PEN conductor)The protective function of a PEN conductor has priority, so that all rules govern<strong>in</strong>gPE conductors apply strictly to PEN conductorsb TN-C to TN-S transitionThe PE conductor for <strong>the</strong> <strong>in</strong>stallation is connected to <strong>the</strong> PEN term<strong>in</strong>al or bar (seeFig. G56) generally at <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> <strong>in</strong>stallation. Downstream of <strong>the</strong> po<strong>in</strong>t ofseparation, no PE conductor can be connected to <strong>the</strong> neutral conductor.G37PENPENFig. G55 : Direct connection of <strong>the</strong> PEN conductor to <strong>the</strong> earthterm<strong>in</strong>al of an applianceFig. G56 : The TN-C-S scheme© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors6 Protective earth<strong>in</strong>g conductor(PE)Types of materialsMaterials of <strong>the</strong> k<strong>in</strong>ds mentioned below <strong>in</strong> Figure G57 can be used for PE conductors,provided that <strong>the</strong> conditions mentioned <strong>in</strong> <strong>the</strong> last column are satisfied.G38Type of protective earth<strong>in</strong>g conductor (PE) IT scheme TN scheme TT scheme Conditions to be respectedSupplementary In <strong>the</strong> same cable Strongly Strongly recommended Correct The PE conductor mustconductor as <strong>the</strong> phases, or <strong>in</strong> recommended be <strong>in</strong>sulated to <strong>the</strong> same<strong>the</strong> same cable runlevel as <strong>the</strong> phasesIndependent of <strong>the</strong> Possible (1) Possible (1) (2) Correct b The PE conductor mayphase conductors be bare or <strong>in</strong>sulated (2)Metallic hous<strong>in</strong>g of bus-trunk<strong>in</strong>g or of o<strong>the</strong>r Possible (3) PE possible (3) Correct b The electrical cont<strong>in</strong>uityprefabricated prewired duct<strong>in</strong>g (5) PEN possible (8) must be assured by protectionExternal sheath of extruded, m<strong>in</strong>eral- <strong>in</strong>sulated Possible (3) PE possible (3) Possible aga<strong>in</strong>st deterioration byconductors (e.g. «pyrotenax» type systems) PEN not recommended(2)(3) mechanical, chemical andCerta<strong>in</strong> extraneous conductive elements (6) Possible (4) PE possible (4) Possibleelectrochemical hazardssuch as: PEN forbidden b Their conductanceb Steel build<strong>in</strong>g structuresmust be adequateb Mach<strong>in</strong>e framesb Water pipes (7)Metallic cable ways, such as, conduits (9) , Possible (4) PE possible (4) Possibleducts, trunk<strong>in</strong>g, trays, ladders, and so on… PEN not recommended (2)(4)Forbidden for use as PE conductors, are: metal conduits (9) , gas pipes, hot-water pipes, cable-armour<strong>in</strong>g tapes (9) or wires (9)(1) In TN and IT schemes, fault clearance is generally achieved by overcurrent devices (fuses or circuit-breakers) so that <strong>the</strong> impedanceof <strong>the</strong> fault-current loop must be sufficiently low to assure positive protective device operation. The surest means of achiev<strong>in</strong>g a low loopimpedance is to use a supplementary core <strong>in</strong> <strong>the</strong> same cable as <strong>the</strong> circuit conductors (or tak<strong>in</strong>g <strong>the</strong> same route as <strong>the</strong> circuit conductors).This solution m<strong>in</strong>imizes <strong>the</strong> <strong>in</strong>ductive reactance and <strong>the</strong>refore <strong>the</strong> impedance of <strong>the</strong> loop.(2) The PEN conductor is a neutral conductor that is also used as a protective earth conductor. This means that a current may be flow<strong>in</strong>gthrough it at any time (<strong>in</strong> <strong>the</strong> absence of an earth fault). For this reason an <strong>in</strong>sulated conductor is recommended for PEN operation.(3) The manufacturer provides <strong>the</strong> necessary values of R and X components of <strong>the</strong> impedances (phase/PE, phase/PEN) to <strong>in</strong>clude <strong>in</strong> <strong>the</strong>calculation of <strong>the</strong> earth-fault loop impedance.(4) Possible, but not recomended, s<strong>in</strong>ce <strong>the</strong> impedance of <strong>the</strong> earth-fault loop cannot be known at <strong>the</strong> design stage. Measurements on <strong>the</strong>completed <strong>in</strong>stallation are <strong>the</strong> only practical means of assur<strong>in</strong>g adequate protection for persons.(5) It must allow <strong>the</strong> connection of o<strong>the</strong>r PE conductors. Note: <strong>the</strong>se elements must carry an <strong>in</strong>divual green/yellow striped visual <strong>in</strong>dication,15 to 100 mm long (or <strong>the</strong> letters PE at less than 15 cm from each extremity).(6) These elements must be demountable only if o<strong>the</strong>r means have been provided to ensure un<strong>in</strong>terrupted cont<strong>in</strong>uity of protection.(7) With <strong>the</strong> agreement of <strong>the</strong> appropriate water authorities.(8) In <strong>the</strong> prefabricated pre-wired trunk<strong>in</strong>g and similar elements, <strong>the</strong> metallic hous<strong>in</strong>g may be used as a PEN conductor, <strong>in</strong> parallel with <strong>the</strong>correspond<strong>in</strong>g bar, or o<strong>the</strong>r PE conductor <strong>in</strong> <strong>the</strong> hous<strong>in</strong>g.(9) Forbidden <strong>in</strong> some countries only. Universally allowed to be used for supplementary equipotential conductors.Fig. G57 : Choice of protective conductors (PE)6.2 Conductor siz<strong>in</strong>gFigure G58 below is based on IEC 60364-5-54. This table provides two methods ofdeterm<strong>in</strong><strong>in</strong>g <strong>the</strong> appropriate c.s.a. for both PE or PEN conductors.© Schneider Electric - all rights reservedc.s.a. of phase M<strong>in</strong>imum c.s.a. of M<strong>in</strong>imum c.s.a. ofconductors Sph (mm 2 ) PE conductor (mm 2 ) PEN conductor (mm 2 )Cu AlSimplified S ph y 16 S(2) ph S(3) ph S(3) phmethod (1) 16 < S ph y 25 16 1625 < S ph y 35 2535 < S ph y 50 S ph /2 S ph /2S ph > 50 S S ph /2Adiabatic methodAny size(1) Data valid if <strong>the</strong> prospective conductor is of <strong>the</strong> same material as <strong>the</strong> l<strong>in</strong>e conductor. O<strong>the</strong>rwise, a correction factor must be applied.(2) When <strong>the</strong> PE conductor is separated from <strong>the</strong> circuit phase conductors, <strong>the</strong> follow<strong>in</strong>g m<strong>in</strong>imum values must be respected:b 2.5 mm 2 if <strong>the</strong> PE is mechanically protectedb 4 mm 2 if <strong>the</strong> PE is not mechanically protected(3) For mechanical reasons, a PEN conductor, shall have a cross-sectional area not less than 10 mm 2 <strong>in</strong> copper or 16 mm 2 <strong>in</strong> alum<strong>in</strong>ium.(4) Refer to table G53 for <strong>the</strong> application of this formula.Fig. G58 : M<strong>in</strong>imum cross section area of protective conductorsSPE/PEN =(3) (3)(4)(4)I 2⋅tkSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors6 Protective earth<strong>in</strong>g conductor(PE)The two methods are:b Adiabatic (which corresponds with that described <strong>in</strong> IEC 60724)This method, while be<strong>in</strong>g economical and assur<strong>in</strong>g protection of <strong>the</strong> conductoraga<strong>in</strong>st overheat<strong>in</strong>g, leads to small c.s.a.’s compared to those of <strong>the</strong> correspond<strong>in</strong>gcircuit phase conductors. The result is sometimes <strong>in</strong>compatible with <strong>the</strong> necessity<strong>in</strong> IT and TN schemes to m<strong>in</strong>imize <strong>the</strong> impedance of <strong>the</strong> circuit earth-fault loop, toensure positive operation by <strong>in</strong>stantaneous overcurrent tripp<strong>in</strong>g devices. This methodis used <strong>in</strong> practice, <strong>the</strong>refore, for TT <strong>in</strong>stallations, and for dimension<strong>in</strong>g an earth<strong>in</strong>gconductor (1) .b SimplifiedThis method is based on PE conductor sizes be<strong>in</strong>g related to those of <strong>the</strong>correspond<strong>in</strong>g circuit phase conductors, assum<strong>in</strong>g that <strong>the</strong> same conductor materialis used <strong>in</strong> each case.Thus, <strong>in</strong> Figure G58 for:Sph y 16 mm 2 SPE = Sph16 < Sph y 35 mm 2 SPE = 16 mm 2Sph > 35 mm Sph2 SPE = 2: when, <strong>in</strong> TT scheme, <strong>the</strong> <strong>in</strong>stallation earth electrode is beyond <strong>the</strong> zone ofNote: when, <strong>in</strong> a TT scheme, <strong>the</strong> <strong>in</strong>stallation earth electrode is beyond <strong>the</strong> zone of<strong>in</strong>fluence of <strong>the</strong> source earth<strong>in</strong>g electrode, <strong>the</strong> c.s.a. of <strong>the</strong> PE conductor can belimited to 25 mm 2 (for copper) or 35 mm 2 (for alum<strong>in</strong>ium).The neutral cannot be used as a PEN conductor unless its c.s.a. is equal to or largerthan 10 mm 2 (copper) or 16 mm 2 (alum<strong>in</strong>ium).Moreover, a PEN conductor is not allowed <strong>in</strong> a flexible cable. S<strong>in</strong>ce a PEN conductorfunctions also as a neutral conductor, its c.s.a. cannot, <strong>in</strong> any case, be less than thatnecessary for <strong>the</strong> neutral, as discussed <strong>in</strong> Subclause 7.1 of this Chapter.This c.s.a. cannot be less than that of <strong>the</strong> phase conductors unless:b The kVA rat<strong>in</strong>g of s<strong>in</strong>gle-phase loads is less than 10% of <strong>the</strong> total kVA load, andb Imax likely to pass through <strong>the</strong> neutral <strong>in</strong> normal circumstances, is less than <strong>the</strong>current permitted for <strong>the</strong> selected cable size.Fur<strong>the</strong>rmore, protection of <strong>the</strong> neutral conductor must be assured by <strong>the</strong> protectivedevices provided for phase-conductor protection (described <strong>in</strong> Sub-clause 7.2 of thisChapter).Values of factor k to be used <strong>in</strong> <strong>the</strong> formulaeThese values are identical <strong>in</strong> several national standards, and <strong>the</strong> temperature riseranges, toge<strong>the</strong>r with factor k values and <strong>the</strong> upper temperature limits for <strong>the</strong> differentclasses of <strong>in</strong>sulation, correspond with those published <strong>in</strong> IEC 60724 (1984).The data presented <strong>in</strong> Figure G59 are those most commonly needed for LV <strong>in</strong>stallationdesign.G39k valuesNature of <strong>in</strong>sulationPolyv<strong>in</strong>ylchloride (PVC)F<strong>in</strong>al temperature (°C) 160 250Initial temperature (°C) 30 30Insulated conductors Copper 143 176not <strong>in</strong>coporated <strong>in</strong> Alum<strong>in</strong>ium 95 116cables or bareconductors <strong>in</strong> contactSteel 52 64with cable jacketsConductors of a Copper 115 143multi-core-cable Alum<strong>in</strong>ium 76 94Cross-l<strong>in</strong>ked-polyethylene(XLPE)Ethylene-propylene-rubber(EPR)(1) Ground<strong>in</strong>g electrode conductorFig. G59 : k factor values for LV PE conductors, commonly used <strong>in</strong> national standards andcomply<strong>in</strong>g with IEC 60724Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>© Schneider Electric - all rights reserved


G - Siz<strong>in</strong>g and protection of conductors6 Protective earth<strong>in</strong>g conductor(PE)6.3 Protective conductor between MV/LV transformerand <strong>the</strong> ma<strong>in</strong> general distribution board (MGDB)These conductors must be sized accord<strong>in</strong>g tonational practicesAll phase and neutral conductors upstream of <strong>the</strong> ma<strong>in</strong> <strong>in</strong>com<strong>in</strong>g circuit-breakercontroll<strong>in</strong>g and protect<strong>in</strong>g <strong>the</strong> MGDB are protected by devices at <strong>the</strong> MV side of <strong>the</strong>transformer. The conductors <strong>in</strong> question, toge<strong>the</strong>r with <strong>the</strong> PE conductor, must bedimensioned accord<strong>in</strong>gly. Dimension<strong>in</strong>g of <strong>the</strong> phase and neutral conductors from<strong>the</strong> transformer is exemplified <strong>in</strong> Sub-clause 7.5 of this chapter (for circuit C1 of <strong>the</strong>system illustrated <strong>in</strong> Fig. G65).Recommended conductor sizes for bare and <strong>in</strong>sulated PE conductors from <strong>the</strong>transformer neutral po<strong>in</strong>t, shown <strong>in</strong> Figure G60, are <strong>in</strong>dicated below <strong>in</strong> Figure G61.The kVA rat<strong>in</strong>g to consider is <strong>the</strong> sum of all (if more than one) transformersconnected to <strong>the</strong> MGDB.G40PEMa<strong>in</strong> earth barfor <strong>the</strong> LV <strong>in</strong>stallationMGDBFig. G60 : PE conductor to <strong>the</strong> ma<strong>in</strong> earth bar <strong>in</strong> <strong>the</strong> MGDBThe table <strong>in</strong>dicates <strong>the</strong> c.s.a. of <strong>the</strong> conductors <strong>in</strong> mm 2 accord<strong>in</strong>g to:b The nom<strong>in</strong>al rat<strong>in</strong>g of <strong>the</strong> MV/LV transformer(s) <strong>in</strong> kVAb The fault-current clearance time by <strong>the</strong> MV protective devices, <strong>in</strong> secondsb The k<strong>in</strong>ds of <strong>in</strong>sulation and conductor materialsIf <strong>the</strong> MV protection is by fuses, <strong>the</strong>n use <strong>the</strong> 0.2 seconds columns.In IT schemes, if an overvoltage protection device is <strong>in</strong>stalled (between <strong>the</strong>transformer neutral po<strong>in</strong>t and earth) <strong>the</strong> conductors for connection of <strong>the</strong> deviceshould also be dimensioned <strong>in</strong> <strong>the</strong> same way as that described above forPE conductors.Transformer Conductor Bare PVC-<strong>in</strong>sulated XLPE-<strong>in</strong>sulatedrat<strong>in</strong>g <strong>in</strong> kVA material conductors conductors conductors(230/400 V Copper t(s) 0.2 0.5 - 0.2 0.5 - 0.2 0.5 -output) Alum<strong>in</strong>ium t(s) - 0.2 0.5 - 0.2 0.5 - 0.2 0.5y100 c.s.a. of PE 25 25 25 25 25 25 25 25 25160 conductors 25 25 35 25 25 50 25 25 35200 SPE (mm 2 ) 25 35 50 25 35 50 25 25 50250 25 35 70 35 50 70 25 35 50315 35 50 70 35 50 95 35 50 70400 50 70 95 50 70 95 35 50 95500 50 70 120 70 95 120 50 70 95630 70 95 150 70 95 150 70 95 120800 70 120 150 95 120 185 70 95 1501,000 95 120 185 95 120 185 70 120 1501,250 95 150 185 120 150 240 95 120 185© Schneider Electric - all rights reservedFig. G61 : Recommended c.s.a. of PE conductor between <strong>the</strong> MV/LV transformer and <strong>the</strong> MGDB,as a function of transformer rat<strong>in</strong>gs and fault-clearance times.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors6 Protective earth<strong>in</strong>g conductor(PE)6.4 Equipotential conductorThe ma<strong>in</strong> equipotential conductorThis conductor must, <strong>in</strong> general, have a c.s.a. at least equal to half of that of <strong>the</strong>largest PE conductor, but <strong>in</strong> no case need exceed 25 mm 2 (copper) or 35 mm 2(alum<strong>in</strong>ium) while its m<strong>in</strong>imum c.s.a. is 6 mm 2 (copper) or 10 mm 2 (alum<strong>in</strong>ium).Supplementary equipotential conductorThis conductor allows an exposed conductive part which is remote from <strong>the</strong> nearestma<strong>in</strong> equipotential conductor (PE conductor) to be connected to a local protectiveconductor. Its c.s.a. must be at least half of that of <strong>the</strong> protective conductor to whichit is connected.If it connects two exposed conductive parts (M1 and M2 <strong>in</strong> Figure G62) its c.s.a.must be at least equal to that of <strong>the</strong> smaller of <strong>the</strong> two PE conductors (for M1 andM2). Equipotential conductors which are not <strong>in</strong>corporated <strong>in</strong> a cable, should beprotected mechanically by conduits, duct<strong>in</strong>g, etc. wherever possible.O<strong>the</strong>r important uses for supplementary equipotential conductors concern <strong>the</strong>reduction of <strong>the</strong> earth-fault loop impedance, particulary for <strong>in</strong>direct-contact protectionschemes <strong>in</strong> TN- or IT-ear<strong>the</strong>d <strong>in</strong>stallations, and <strong>in</strong> special locations with <strong>in</strong>creasedelectrical risk (refer to IEC 60364-4-41).G41Between two exposed conductive partsif SPE1 y SPE2<strong>the</strong>n SLS = SPE1SPE1SPE2Between an exposed conductive partand a metallic structureSLS =SPE2SPE1SLSSLSMetal structures(conduits, girders…)M 1 M 2M 1Fig. G62 : Supplementary equipotential conductors© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors7 The neutral conductorThe c.s.a. and <strong>the</strong> protection of <strong>the</strong> neutral conductor, apart from its current-carry<strong>in</strong>grequirement, depend on several factors, namely:b The type of earth<strong>in</strong>g system, TT, TN, etc.b The harmonic currentsb The method of protection aga<strong>in</strong>st <strong>in</strong>direct contact hazards accord<strong>in</strong>g to <strong>the</strong>methods described belowThe color of <strong>the</strong> neutral conductor is statutorily blue. PEN conductor, when <strong>in</strong>sulated,shall be marked by one of <strong>the</strong> follow<strong>in</strong>g methods :b Green-and-yellow throughout its length with, <strong>in</strong> addition, light blue mark<strong>in</strong>gs at <strong>the</strong>term<strong>in</strong>ations, orb Light blue throughout its length with, <strong>in</strong> addition, green-and-yellow mark<strong>in</strong>gs at <strong>the</strong>term<strong>in</strong>ationsG427.1 Siz<strong>in</strong>g <strong>the</strong> neutral conductorInfluence of <strong>the</strong> type of earth<strong>in</strong>g systemTT and TN-S schemesb S<strong>in</strong>gle-phase circuits or those of c.s.a. y 16 mm 2 (copper) 25 mm 2 (alum<strong>in</strong>ium): <strong>the</strong>c.s.a. of <strong>the</strong> neutral conductor must be equal to that of <strong>the</strong> phasesb Three-phase circuits of c.s.a. > 16 mm 2 copper or 25 mm 2 alum<strong>in</strong>ium: <strong>the</strong> c.s.a. of<strong>the</strong> neutral may be chosen to be:v Equal to that of <strong>the</strong> phase conductors, orv Smaller, on condition that:- The current likely to flow through <strong>the</strong> neutral <strong>in</strong> normal conditions is less than <strong>the</strong>permitted value Iz. The <strong>in</strong>fluence of triplen (1) harmonics must be given particularconsideration or- The neutral conductor is protected aga<strong>in</strong>st short-circuit, <strong>in</strong> accordance with <strong>the</strong>follow<strong>in</strong>g Sub-clause G-7.2- The size of <strong>the</strong> neutral conductor is at least equal to 16 mm 2 <strong>in</strong> copper or 25 mm 2 <strong>in</strong>alum<strong>in</strong>iumTN-C schemeThe same conditions apply <strong>in</strong> <strong>the</strong>ory as those mentioned above, but <strong>in</strong> practice,<strong>the</strong> neutral conductor must not be open-circuited under any circumstances s<strong>in</strong>ceit constitutes a PE as well as a neutral conductor (see Figure G58 “c.s.a. of PENconductor” column).IT schemeIn general, it is not recommended to distribute <strong>the</strong> neutral conductor, i.e. a 3-phase3-wire scheme is preferred. When a 3-phase 4-wire <strong>in</strong>stallation is necessary,however, <strong>the</strong> conditions described above for TT and TN-S schemes are applicable.(1) Harmonics of order 3 and multiple of 3Influence of harmonic currentsEffects of triplen harmonicsHarmonics are generated by <strong>the</strong> non-l<strong>in</strong>ear loads of <strong>the</strong> <strong>in</strong>stallation (computers,fluorescent light<strong>in</strong>g, rectifiers, power electronic choppers) and can produce highcurrents <strong>in</strong> <strong>the</strong> Neutral. In particular triplen harmonics of <strong>the</strong> three Phases have atendency to cumulate <strong>in</strong> <strong>the</strong> Neutral as:b Fundamental currents are out-of-phase by 2π/3 so that <strong>the</strong>ir sum is zerob On <strong>the</strong> o<strong>the</strong>r hand, triplen harmonics of <strong>the</strong> three Phases are always positioned <strong>in</strong><strong>the</strong> same manner with respect to <strong>the</strong>ir own fundamental, and are <strong>in</strong> phase with eacho<strong>the</strong>r (see Fig. G63a).I 1 H1+I 1 H3© Schneider Electric - all rights reservedI 2 H1 + I 2 H3I 3 H1+ I 3 H333I N = I k H1 + I k H3110 + 3 I H3Fig. G63a : Triplen harmonics are <strong>in</strong> phase and cumulate <strong>in</strong> <strong>the</strong> NeutralSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors7 The neutral conductorFigure G63b shows <strong>the</strong> load factor of <strong>the</strong> neutral conductor as a function of <strong>the</strong>percentage of 3 rd harmonic.In practice, this maximum load factor cannot exceed 3.I NeutralPhase2.01.81.61.41.21.00.80.60.40.20Ii 3 (%)0 20 40 60 80 100G43Fig. G63b : Load factor of <strong>the</strong> neutral conductor vs <strong>the</strong> percentage of 3 rd harmonicCompact NSX100 circuit breakerReduction factors for harmonic currents <strong>in</strong> four-core and five-core cables withfour cores carry<strong>in</strong>g currentThe basic calculation of a cable concerns only cables with three loaded conductorsi.e <strong>the</strong>re is no current <strong>in</strong> <strong>the</strong> neutral conductor. Because of <strong>the</strong> third harmonic current,<strong>the</strong>re is a current <strong>in</strong> <strong>the</strong> neutral. As a result, this neutral current creates an hotenvironment for <strong>the</strong> 3 phase conductors and for this reason, a reduction factor forphase conductors is necessary (see Fig. G63).Reduction factors, applied to <strong>the</strong> current-carry<strong>in</strong>g capacity of a cable with threeloaded conductors, give <strong>the</strong> current-carry<strong>in</strong>g capacity of a cable with four loadedconductors, where <strong>the</strong> current <strong>in</strong> <strong>the</strong> fourth conductor is due to harmonics. Thereduction factors also take <strong>the</strong> heat<strong>in</strong>g effect of <strong>the</strong> harmonic current <strong>in</strong> <strong>the</strong> phaseconductors <strong>in</strong>to account.b Where <strong>the</strong> neutral current is expected to be higher than <strong>the</strong> phase current, <strong>the</strong>n <strong>the</strong>cable size should be selected on <strong>the</strong> basis of <strong>the</strong> neutral currentb Where <strong>the</strong> cable size selection is based on a neutral current which is notsignificantly higher than <strong>the</strong> phase current, it is necessary to reduce <strong>the</strong> tabulatedcurrent carry<strong>in</strong>g capacity for three loaded conductorsb If <strong>the</strong> neutral current is more than 135% of <strong>the</strong> phase current and <strong>the</strong> cable size isselected on <strong>the</strong> basis of <strong>the</strong> neutral current <strong>the</strong>n <strong>the</strong> three phase conductors will notbe fully loaded. The reduction <strong>in</strong> heat generated by <strong>the</strong> phase conductors offsets <strong>the</strong>heat generated by <strong>the</strong> neutral conductor to <strong>the</strong> extent that it is not necessary to applyany reduction factor to <strong>the</strong> current carry<strong>in</strong>g capacity for three loaded conductors.b In order to protect cables, <strong>the</strong> fuse or circuit-breaker has to be sized tak<strong>in</strong>g <strong>in</strong>toaccount <strong>the</strong> greatest of <strong>the</strong> values of <strong>the</strong> l<strong>in</strong>e currents (phase or neutral). However,<strong>the</strong>re are special devices (for example <strong>the</strong> Compact NSX circuit breaker equippedwith <strong>the</strong> OSN tripp<strong>in</strong>g unit), that allow <strong>the</strong> use of a c.s.a. of <strong>the</strong> phase conductorssmaller than <strong>the</strong> c.s.a. of <strong>the</strong> neutral conductor. A big economic ga<strong>in</strong> can thus bemade.Third harmonic content Reduction factorof phase current Size selection is based on Size selection is based on(%) phase current neutral current0 - 15 1.0 -15 - 33 0.86 -33 - 45 - 0.86> 45 - 1.0Fig. G63 : Reduction factors for harmonic currents <strong>in</strong> four-core and five-core cables(accord<strong>in</strong>g to IEC 60364-5-52)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors7 The neutral conductorG44ExamplesConsider a three-phase circuit with a design load of 37 A to be <strong>in</strong>stalled us<strong>in</strong>g fourcorePVC <strong>in</strong>sulated cable clipped to a wall, <strong>in</strong>stallation method C. From Figure G24,a 6 mm 2 cable with copper conductors has a current-carry<strong>in</strong>g capacity of 40 A andhence is suitable if harmonics are not present <strong>in</strong> <strong>the</strong> circuit.b If 20 % third harmonic is present, <strong>the</strong>n a reduction factor of 0,86 is applied and <strong>the</strong>design load becomes: 37/0.86 = 43 A.For this load a 10 mm 2 cable is necessary.In this case, <strong>the</strong> use of a special protective device (Compact NSX equipped with <strong>the</strong>OSN trip unit for <strong>in</strong>stance) would allow <strong>the</strong> use of a 6 mm 2 cable for <strong>the</strong> phases andof 10 mm 2 for <strong>the</strong> neutral.b If 40 % third harmonic is present, <strong>the</strong> cable size selection is based on <strong>the</strong> neutralcurrent which is: 37 x 0,4 x 3 = 44,4 A and a reduction factor of 0,86 is applied,lead<strong>in</strong>g to a design load of: 44.4/0.86 = 51.6 A.For this load a 10 mm 2 cable is suitable.b If 50 % third harmonic is present, <strong>the</strong> cable size is aga<strong>in</strong> selected on <strong>the</strong> basis of<strong>the</strong> neutral current, which is: 37 x 0,5 x 3 = 55,5 A .In this case <strong>the</strong> rat<strong>in</strong>g factor is1 and a 16 mm 2 cable is required.In this case, <strong>the</strong> use of a special protective device (Compact NSX equipped with <strong>the</strong>OSN trip for <strong>in</strong>stance) would allow <strong>the</strong> use of a 6 mm 2 cable for <strong>the</strong> phases and of10 mm 2 for <strong>the</strong> neutral.7.2 Protection of <strong>the</strong> neutral conductor(see Fig. G64 next page)Protection aga<strong>in</strong>st overloadIf <strong>the</strong> neutral conductor is correctly sized (<strong>in</strong>clud<strong>in</strong>g harmonics), no specificprotection of <strong>the</strong> neutral conductor is required because it is protected by <strong>the</strong> phaseprotection.However, <strong>in</strong> practice, if <strong>the</strong> c.s.a. of <strong>the</strong> neutral conductor is lower than <strong>the</strong> phasec.s.a, a neutral overload protection must be <strong>in</strong>stalled.Protection aga<strong>in</strong>st short-circuitIf <strong>the</strong> c.s.a. of <strong>the</strong> neutral conductor is lower than <strong>the</strong> c.s.a. of <strong>the</strong> phase conductor,<strong>the</strong> neutral conductor must be protected aga<strong>in</strong>st short-circuit.If <strong>the</strong> c.s.a. of <strong>the</strong> neutral conductor is equal or greater than <strong>the</strong> c.s.a. of <strong>the</strong> phaseconductor, no specific protection of <strong>the</strong> neutral conductor is required because it isprotected by <strong>the</strong> phase protection.7.3 Break<strong>in</strong>g of <strong>the</strong> neutral conductor(see Fig. G64 next page)© Schneider Electric - all rights reservedThe need to break or not <strong>the</strong> neutral conductor is related to <strong>the</strong> protection aga<strong>in</strong>st<strong>in</strong>direct contact.In TN-C schemeThe neutral conductor must not be open-circuited under any circumstances s<strong>in</strong>ce itconstitutes a PE as well as a neutral conductor.In TT, TN-S and IT schemesIn <strong>the</strong> event of a fault, <strong>the</strong> circuit-breaker will open all poles, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> neutralpole, i.e. <strong>the</strong> circuit-breaker is omnipolar.The action can only be achieved with fuses <strong>in</strong> an <strong>in</strong>direct way, <strong>in</strong> which <strong>the</strong> operationof one or more fuses triggers a mechanical trip-out of all poles of an associatedseries-connected load-break switch.7.4 Isolation of <strong>the</strong> neutral conductor(see Fig. G64 next page)It is considered to be <strong>the</strong> good practice that every circuit be provided with <strong>the</strong> meansfor its isolation.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors7 The neutral conductorS<strong>in</strong>gle-phase(Phase-Neutral)TT TN-C TN-S ITN N N Noror(B)NNS<strong>in</strong>gle-phase(Phase-Phase)or(A)or(A)Three-phasefour wiresSn u SphG45NNNorN(B)NThree-phasefour wiresSn < SphN N Nor(B)N(A) Authorized for TT or TN-S systems if a RCD is <strong>in</strong>stalled at <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> circuit or upstream of it, and if no artificialneutral is distributed downstream of its location(B) The neutral overcurrent protection is not necessary:b If <strong>the</strong> neutral conductor is protected aga<strong>in</strong>st short-circuits by a device placed upstream, or,b If <strong>the</strong> circuit is protected by a RCD which sensitivity is less than 15% of <strong>the</strong> neutral admissible current.Fig. G64 : The various situations <strong>in</strong> which <strong>the</strong> neutral conductor may appear© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors8 Worked example of cablecalculationWorked example of cable calculation (see Fig. G65)The <strong>in</strong>stallation is supplied through a 1,000 kVA transformer. The process requiresa high degree of supply cont<strong>in</strong>uity and this is provided by <strong>the</strong> <strong>in</strong>stallation of a 500 kVA400 V standby generator and <strong>the</strong> adoption of a 3-phase 3-wire IT system at <strong>the</strong> ma<strong>in</strong>general distribution board. The rema<strong>in</strong>der of <strong>the</strong> <strong>in</strong>stallation is isolated by a 400 kVA400/400 V transformer. The downstream network is a TT-ear<strong>the</strong>d 3-phase 4-wiresystem. Follow<strong>in</strong>g <strong>the</strong> s<strong>in</strong>gle-l<strong>in</strong>e diagram shown <strong>in</strong> Figure G65 below, a reproductionof <strong>the</strong> results of a computer study for <strong>the</strong> circuit C1, <strong>the</strong> circuit-breaker Q1, <strong>the</strong> circuitC6 and <strong>the</strong> circuit-breaker Q6. These studies were carried out with ECODIAL 3.3software (a Merl<strong>in</strong> Ger<strong>in</strong> product).This is followed by <strong>the</strong> same calculations carried out by <strong>the</strong> method described <strong>in</strong> thisguide.T11000 kVA 400 V 50 HzG46C1Circuit 1G5GP = 500 kVAU = 400 VQ1Q6B2Q3Switchboard 2Ks = 1.00ib = 826.8 AC5Q5Circuit 5C6Circuit 6B4Q12Switchboard 4Ks = 1.00ib = 250.0 AT6P = 400 kVAU = 400 VC12Circuit 12Q7C7Circuit 7L12x1ku = 1.0ib = 250.00 AP = 147.22 kWQ9B8Q10Q11Switchboard 8Ks = 1.00ib = 490.0 AC9Circuit 9C10Circuit 10C11Circuit 11© Schneider Electric - all rights reservedL9x1Fig. G65 : Example of s<strong>in</strong>gle-l<strong>in</strong>e diagramku = 1.0ib = 250.00 AP = 147.22 kWL10x1ku = 1.0ib = 160.00 AP = 94.22 kWL11x1ku = 1.0ib = 80.00 AP = 47.11 kWSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors8 Worked example of cablecalculationCalculation us<strong>in</strong>g software Ecodial 3.3General network characteristicsEarth<strong>in</strong>g systemITNeutral distributedNoVoltage (V) 400Frequency (Hz) 50Transformer T1Number of transformers 1Upstream fault level (MVA) 500Rat<strong>in</strong>g (kVA) 1,000Short-circuit impedance voltage (%) 6Resistance of MV network (mΩ) 0.0351Reactance of MV network (mΩ) 0.351Transformer resistance RT (mΩ) 2.293Transformer reactance XT (mΩ) 10.3333-phase short-circuit current Ik3 (kA) 23.3Cable C1Maximum load current (A) 1,374Type of <strong>in</strong>sulationPVCConductor materialCopperAmbient temperature (°C) 30S<strong>in</strong>gle-core or multi-core cableS<strong>in</strong>gle<strong>Installation</strong> methodFNumber of circuits <strong>in</strong> close proximity (table G21b) 1O<strong>the</strong>r coefficient 1Selected cross-sectional area (mm 2 ) 6 x 95Protective conductor 1 x 120Length (m) 5Voltage drop ΔU (%) .122Voltage drop ΔU total (%) .1223-phase short-circuit current Ik3 (kA) 231-phase-to-earth fault current Id (kA) 17Circuit-breaker Q13-ph short-circuit current Ik3 upstreamof <strong>the</strong> circuit-breaker (kA) 23Maximum load current (A) 1,374Number of poles and protected poles3P3DCircuit-breaker NT 16TypeH 1 – 42 kATripp<strong>in</strong>g unit typeMicrologic 5 ARated current (A) 1,600Busbars B2Maximum load current (A) 1,374TypeStandard onedgeAmbient temperature (°C) 30Dimensions (m and mm)1 m2x5 mm x 63 mmMaterialCopper3-ph short-circuit current Ik3 (kA) 233-ph peak value of short-circuit current Ik (kA) 48Resistance of busbar R (mΩ) 2.52Reactance of busbar X (mΩ) 10.8Circuit-breaker Q63-ph short-circuit current upstreamof <strong>the</strong> circuit-breaker Ik3 (kA) 23Maximum load current (A) 560Number of poles and protected poles3P3DCircuit-breakerNS800TypeN – 50 kATripp<strong>in</strong>g unit type Micrologic 2.0Rated current (A) 800Limit of discrim<strong>in</strong>ation (kA)TotalCable C6Maximum load current (A) 560Type of <strong>in</strong>sulationPVCConductor materialCopperAmbient temperature (°C) 30S<strong>in</strong>gle-core or multi-core cableS<strong>in</strong>gle<strong>Installation</strong> methodFNumber of circuits <strong>in</strong> close proximity (table G20) 1O<strong>the</strong>r coefficient 1Selected cross-sectional area (mm 2 ) 1 x 300Protective conductor 1 x 150Length (m) 15Voltage drop ΔU (%) .38Voltage drop ΔU total (%) .543-phase short-circuit current Ik3 (kA) 201-phase-to-earth fault current Id (kA) 13.7Specific siz<strong>in</strong>g constra<strong>in</strong>tOverloadsG47Fig. G66 : Partial results of calculation carried out with Ecodial software (Merl<strong>in</strong> Ger<strong>in</strong>)The same calculation us<strong>in</strong>g <strong>the</strong> simplified methodrecommended <strong>in</strong> this guideDimension<strong>in</strong>g circuit C1The MV/LV 1,000 kVA transformer has a rated no-load voltage of 420 V. Circuit C1must be suitable for a current of31,000 x 10IB = = 1,374 A per phase3 x 420Six s<strong>in</strong>gle-core PVC-<strong>in</strong>sulated copper cables <strong>in</strong> parallel will be used for each phase.These cables will be laid on cable trays accord<strong>in</strong>g to method F. The “k” correctionfactors are as follows:k 1 = 1 (see table G12, temperature = 30 °C)k 4 = 0.87 (see table G17, touch<strong>in</strong>g cables, 1 tray, u 3 circuits)O<strong>the</strong>r correction factors are not relevant <strong>in</strong> this example.The corrected load current is:IB1,374I' B = = = 1,579 Ak1⋅k4 0.87Each conductor will <strong>the</strong>refore carry 263 A. Figure G21a G23 <strong>in</strong>dicates that <strong>the</strong> <strong>the</strong> c.s.a. is is95 mm 2 .© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors8 Worked example of cablecalculationG48The resistances and <strong>the</strong> <strong>in</strong>ductive reactances for <strong>the</strong> six conductors <strong>in</strong> parallel are,for a length of 5 metres:for a length of 5 metres:22.5 x 5R = =95 x 60.20 mΩ (cable resistance: 22.5 22.5 m mΩ.mm 2 /m)ΩX = 0.08 x 5 = 0.40 mΩ (cable reactance: 0.08 mΩ/m)Dimension<strong>in</strong>g circuit C6Circuit C6 supplies a 400 kVA 3-phase 400/400 V isolat<strong>in</strong>g transformer3400.10Primary current = = 550 A420. 3A s<strong>in</strong>gle-core cable laid laid on on a a cable cable tray tray (without (without any any o<strong>the</strong>r o<strong>the</strong>r cable) cable) <strong>in</strong> an <strong>in</strong> ambient an ambient air airtemperature of 30 °C is proposed. The circuit-breaker is set at 560 AThe method of <strong>in</strong>stallation is characterized by <strong>the</strong> reference letter F, and <strong>the</strong> “k”correct<strong>in</strong>g factors are all equal to 1.A c.s.a. of 240 mm 2 is appropriate.The resistance and <strong>in</strong>ductive reactance are respectively:22.5 x 15R = = 1.4 mΩ240X = 0.08 x 15 = 1.2 mΩCalculation of short-circuit currents for <strong>the</strong> selection of circuit-breakersQ 1 and Q 6 (see Fig. G67)Circuits components R (mΩ) X (mΩ) Z (mΩ) Ikmax (kA)parts500 MVA at 0.04 0.36<strong>the</strong> MV source network1 MVA transformer 2.2 9.8 10.0 23Cable C1 0.20 0.4Sub-total for Q1 2.44 10.6 10.9 23Busbar B2 3.6 7.2Cable C6 1.4 1.2Sub-total for Q6 4.0 8.4 9.3 20Fig. G67 : Example of short-circuit current evaluationThe protective conductorThermal requirements: Figures G58 and G59 show that, when us<strong>in</strong>g <strong>the</strong> adiabaticmethod <strong>the</strong> c.s.a. for for <strong>the</strong> <strong>the</strong> protective earth earth (PE) (PE) conductor conductor for circuit for C1 circuit will be: C1 will be:34,800 x 0.21432= 108 mmA s<strong>in</strong>gle 120 mm 2 conductor dimensioned for o<strong>the</strong>r reasons mentioned later is<strong>the</strong>refore largely sufficient, provided that it also satisfies <strong>the</strong> requirements for <strong>in</strong>directcontactprotection (i.e. that its impedance is sufficiently low).For <strong>the</strong> circuit C6, <strong>the</strong> c.s.a. of its PE conductor should be:29,300 x 0.22= 92 mm143In this case a 95 mm 2 conductor may be adequate if <strong>the</strong> <strong>in</strong>direct-contact protectionconditions are also satisfied.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


G - Siz<strong>in</strong>g and protection of conductors8 Worked example of cablecalculationProtection aga<strong>in</strong>st <strong>in</strong>direct-contact hazardsFor circuit C6 of Figure G65, Figures F45 and F61, or <strong>the</strong> formula given page F27may be used for a 3-phase 3-wire circuit.The maximum permitted length of <strong>the</strong> circuit is given by :0.8 x 240 x 230 3 x 1,000Lmax =2 x 22.5 1+ 240= 70 m⎛ ⎞x 630 x 11⎝ 95 ⎠(The value <strong>in</strong> <strong>the</strong> denom<strong>in</strong>ator 630 x 11 I= Im i.e. <strong>the</strong> current level at which <strong>the</strong><strong>in</strong>stantaneous short-circuit magnetic trip of <strong>the</strong> 630 A circuit-breaker operates).The length of 15 metres is <strong>the</strong>refore fully protected by “<strong>in</strong>stantaneous” overcurrentdevices.Voltage dropFrom Figure G28 it can be seen that:b For <strong>the</strong> cable C1 (6 x 95mm 2 per phase)-1 -1∆U = 0.42 (V A km ) x 1,374 (A) x 0.008 = 1.54 V3∆U% = 100 1.54 = 0.38%400 xb For <strong>the</strong> circuit C6∆U 0.21 (V A -1 km -1= ) x 433 (A) x 0.015 = 1.36 V3∆U% = 100 1.36 = 0.34%400 xAt <strong>the</strong> circuit term<strong>in</strong>als of <strong>the</strong> LV/LV transformer <strong>the</strong> percentage volt-dropΔU% = 0.72%G49© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Chapter HLV switchgear: functions &selection1234ContentsThe basic functions of LV switchgear1.1 <strong>Electrical</strong> protection H21.2 Isolation H31.3 Switchgear control H4The switchgear2.1 Elementary switch<strong>in</strong>g devices H52.2 Comb<strong>in</strong>ed switchgear elements H9Choice of switchgearH2H5H103.1 Tabulated functional capabilities H103.2 Switchgear selection H10Circuit-breakerH114.1 Standards and description H114.2 Fundamental characteristics of a circuit-breaker H134.3 O<strong>the</strong>r characteristics of a circuit-breaker H154.4 Selection of a circuit-breaker H184.5 Coord<strong>in</strong>ation between circuit-breakers H224.6 Discrim<strong>in</strong>ation MV/LV <strong>in</strong> a consumer’s substation H28H© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection1 The basic functions ofLV switchgearThe role of switchgear is:b <strong>Electrical</strong> protectionb Safe isolation from live partsb Local or remote switch<strong>in</strong>gNational and <strong>in</strong>ternational standards def<strong>in</strong>e <strong>the</strong> manner <strong>in</strong> which electric circuits ofLV <strong>in</strong>stallations must be realized, and <strong>the</strong> capabilities and limitations of <strong>the</strong> variousswitch<strong>in</strong>g devices which are collectively referred to as switchgear.The ma<strong>in</strong> functions of switchgear are:b <strong>Electrical</strong> protectionb <strong>Electrical</strong> isolation of sections of an <strong>in</strong>stallationb Local or remote switch<strong>in</strong>gThese functions are summarized below <strong>in</strong> Figure H1.<strong>Electrical</strong> protection at low voltage is (apart from fuses) normally <strong>in</strong>corporated <strong>in</strong>circuit-breakers, <strong>in</strong> <strong>the</strong> form of <strong>the</strong>rmal-magnetic devices and/or residual-currentoperatedtripp<strong>in</strong>g devices (less-commonly, residual voltage- operated devices- acceptable to, but not recommended by IEC).In addition to those functions shown <strong>in</strong> Figure H1, o<strong>the</strong>r functions, namely:b Over-voltage protectionb Under-voltage protectionare provided by specific devices (lightn<strong>in</strong>g and various o<strong>the</strong>r types of voltage-surgearrester, relays associated with contactors, remotely controlled circuit-breakers, andwith comb<strong>in</strong>ed circuit-breaker/isolators… and so on)H<strong>Electrical</strong> protection Isolation Controlaga<strong>in</strong>stb Overload currents b Isolation clearly <strong>in</strong>dicated b Functional switch<strong>in</strong>gb Short-circuit currents by an authorized fail-proof b Emergency switch<strong>in</strong>gb Insulation failure mechanical <strong>in</strong>dicator b Emergency stopp<strong>in</strong>gb A gap or <strong>in</strong>terposed <strong>in</strong>sulat<strong>in</strong>g b Switch<strong>in</strong>g off forbarrier between <strong>the</strong> open mechanical ma<strong>in</strong>tenancecontacts, clearly visibleFig. H1 : Basic functions of LV switchgear© Schneider Electric - all rights reserved<strong>Electrical</strong> protection assures:b Protection of circuit elements aga<strong>in</strong>st <strong>the</strong><strong>the</strong>rmal and mechanical stresses of short-circuitcurrentsb Protection of persons <strong>in</strong> <strong>the</strong> event of<strong>in</strong>sulation failureb Protection of appliances and apparatus be<strong>in</strong>gsupplied (e.g. motors, etc.)1.1 <strong>Electrical</strong> protectionThe aim is to avoid or to limit <strong>the</strong> destructive or dangerous consequences ofexcessive (short-circuit) currents, or those due to overload<strong>in</strong>g and <strong>in</strong>sulation failure,and to separate <strong>the</strong> defective circuit from <strong>the</strong> rest of <strong>the</strong> <strong>in</strong>stallation.A dist<strong>in</strong>ction is made between <strong>the</strong> protection of:b The elements of <strong>the</strong> <strong>in</strong>stallation (cables, wires, switchgear…)b Persons and animalsb Equipment and appliances supplied from <strong>the</strong> <strong>in</strong>stallationThe protection of circuitsv Aga<strong>in</strong>st overload; a condition of excessive current be<strong>in</strong>g drawn from a healthy(unfaulted) <strong>in</strong>stallationv Aga<strong>in</strong>st short-circuit currents due to complete failure of <strong>in</strong>sulation betweenconductors of different phases or (<strong>in</strong> TN systems) between a phase and neutral (orPE) conductorProtection <strong>in</strong> <strong>the</strong>se cases is provided ei<strong>the</strong>r by fuses or circuit-breaker, <strong>in</strong> <strong>the</strong>distribution board at <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> f<strong>in</strong>al circuit (i.e. <strong>the</strong> circuit to which <strong>the</strong> loadis connected). Certa<strong>in</strong> derogations to this rule are authorized <strong>in</strong> some nationalstandards, as noted <strong>in</strong> chapter H1 sub-clause 1.4.The protection of personsv Aga<strong>in</strong>st <strong>in</strong>sulation failures. Accord<strong>in</strong>g to <strong>the</strong> system of earth<strong>in</strong>g for <strong>the</strong> <strong>in</strong>stallation(TN, TT or IT) <strong>the</strong> protection will be provided by fuses or circuit-breakers, residualcurrent devices, and/or permanent monitor<strong>in</strong>g of <strong>the</strong> <strong>in</strong>sulation resistance of <strong>the</strong><strong>in</strong>stallation to earthThe protection of electric motorsv Aga<strong>in</strong>st overheat<strong>in</strong>g, due, for example, to long term overload<strong>in</strong>g, stalled rotor,s<strong>in</strong>gle-phas<strong>in</strong>g, etc. Thermal relays, specially designed to match <strong>the</strong> particularcharacteristics of motors are used.Such relays may, if required, also protect <strong>the</strong> motor-circuit cable aga<strong>in</strong>st overload.Short-circuit protection is provided ei<strong>the</strong>r by type aM fuses or by a circuit-breakerfrom which <strong>the</strong> <strong>the</strong>rmal (overload) protective element has been removed, oro<strong>the</strong>rwise made <strong>in</strong>operative.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection1 The basic functions ofLV switchgearA state of isolation clearly <strong>in</strong>dicated by anapproved “fail-proof” <strong>in</strong>dicator, or <strong>the</strong> visibleseparation of contacts, are both deemed tosatisfy <strong>the</strong> national standards of many countries1.2 IsolationThe aim of isolation is to separate a circuit or apparatus (such as a motor, etc.) from<strong>the</strong> rema<strong>in</strong>der of a system which is energized, <strong>in</strong> order that personnel may carry outwork on <strong>the</strong> isolated part <strong>in</strong> perfect safety.In pr<strong>in</strong>ciple, all circuits of an LV <strong>in</strong>stallation shall have means to be isolated.In practice, <strong>in</strong> order to ma<strong>in</strong>ta<strong>in</strong> an optimum cont<strong>in</strong>uity of service, it is preferred toprovide a means of isolation at <strong>the</strong> orig<strong>in</strong> of each circuit.An isolat<strong>in</strong>g device must fulfil <strong>the</strong> follow<strong>in</strong>g requirements:b All poles of a circuit, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> neutral (except where <strong>the</strong> neutral is a PENconductor) must open (1)b It must be provided with a lock<strong>in</strong>g system <strong>in</strong> open position with a key (e.g. bymeans of a padlock) <strong>in</strong> order to avoid an unauthorized reclosure by <strong>in</strong>advertenceb It must comply with a recognized national or <strong>in</strong>ternational standard(e.g. IEC 60947-3) concern<strong>in</strong>g clearance between contacts, creepage distances,overvoltage withstand capability, etc.:O<strong>the</strong>r requirements apply:v Verification that <strong>the</strong> contacts of <strong>the</strong> isolat<strong>in</strong>g device are, <strong>in</strong> fact, open.The verification may be:- Ei<strong>the</strong>r visual, where <strong>the</strong> device is suitably designed to allow <strong>the</strong> contacts to be seen(some national standards impose this condition for an isolat<strong>in</strong>g device located at <strong>the</strong>orig<strong>in</strong> of a LV <strong>in</strong>stallation supplied directly from a MV/LV transformer)- Or mechanical, by means of an <strong>in</strong>dicator solidly welded to <strong>the</strong> operat<strong>in</strong>g shaftof <strong>the</strong> device. In this case <strong>the</strong> construction of <strong>the</strong> device must be such that, <strong>in</strong> <strong>the</strong>eventuality that <strong>the</strong> contacts become welded toge<strong>the</strong>r <strong>in</strong> <strong>the</strong> closed position, <strong>the</strong><strong>in</strong>dicator cannot possibly <strong>in</strong>dicate that it is <strong>in</strong> <strong>the</strong> open positionv Leakage currents. With <strong>the</strong> isolat<strong>in</strong>g device open, leakage currents between <strong>the</strong>open contacts of each phase must not exceed:- 0.5 mA for a new device- 6.0 mA at <strong>the</strong> end of its useful lifev Voltage-surge withstand capability, across open contacts. The isolat<strong>in</strong>g device,when open must withstand a 1.2/50 μs impulse, hav<strong>in</strong>g a peak value of 6, 8 or 12 kVaccord<strong>in</strong>g to its service voltage, as shown <strong>in</strong> Figure H2. The device must satisfy<strong>the</strong>se conditions for altitudes up to 2,000 metres. Correction factors are given <strong>in</strong>IEC 60664-1 for altitudes greater than 2,000 metres.Consequently, if tests are carried out at sea level, <strong>the</strong> test values must be <strong>in</strong>creasedby 23% to take <strong>in</strong>to account <strong>the</strong> effect of altitude. See standard IEC 60947.HService (nom<strong>in</strong>alvoltage(V)Impulse withstandpeak voltage category(for 2,000 metres)(kV)IIIIV230/400 4 6400/690 6 8690/1,000 8 12Fig. H2 : Peak value of impulse voltage accord<strong>in</strong>g to normal service voltage of test specimen.The degrees III and IV are degrees of pollution def<strong>in</strong>ed <strong>in</strong> IEC 60664-1(1) <strong>the</strong> concurrent open<strong>in</strong>g of all live conductors, while notalways obligatory, is however, strongly recommended (forreasons of greater safety and facility of operation). The neutralcontact opens after <strong>the</strong> phase contacts, and closes before<strong>the</strong>m (IEC 60947-1).© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection1 The basic functions ofLV switchgearHSwitchgear-control functions allow systemoperat<strong>in</strong>g personnel to modify a loaded systemat any moment, accord<strong>in</strong>g to requirements,and <strong>in</strong>clude:b Functional control (rout<strong>in</strong>e switch<strong>in</strong>g, etc.)b Emergency switch<strong>in</strong>gb Ma<strong>in</strong>tenance operations on <strong>the</strong> power system1.3 Switchgear controlIn broad terms “control” signifies any facility for safely modify<strong>in</strong>g a load-carry<strong>in</strong>gpower system at all levels of an <strong>in</strong>stallation. The operation of switchgear is animportant part of power-system control.Functional controlThis control relates to all switch<strong>in</strong>g operations <strong>in</strong> normal service conditions forenergiz<strong>in</strong>g or de-energiz<strong>in</strong>g a part of a system or <strong>in</strong>stallation, or an <strong>in</strong>dividual pieceof equipment, item of plant, etc.Switchgear <strong>in</strong>tended for such duty must be <strong>in</strong>stalled at least:b At <strong>the</strong> orig<strong>in</strong> of any <strong>in</strong>stallationb At <strong>the</strong> f<strong>in</strong>al load circuit or circuits (one switch may control several loads)Mark<strong>in</strong>g (of <strong>the</strong> circuits be<strong>in</strong>g controlled) must be clear and unambiguous.In order to provide <strong>the</strong> maximum flexibility and cont<strong>in</strong>uity of operation, particularlywhere <strong>the</strong> switch<strong>in</strong>g device also constitutes <strong>the</strong> protection (e.g. a circuit-breaker orswitch-fuse) it is preferable to <strong>in</strong>clude a switch at each level of distribution, i.e. oneach outgo<strong>in</strong>g way of all distribution and subdistribution boards.The manœuvre may be:b Ei<strong>the</strong>r manual (by means of an operat<strong>in</strong>g lever on <strong>the</strong> switch) orb Electric, by push-button on <strong>the</strong> switch or at a remote location (load-shedd<strong>in</strong>g andreconnection, for example)These switches operate <strong>in</strong>stantaneously (i.e. with no deliberate delay), and thosethat provide protection are <strong>in</strong>variably omni-polar (1) .The ma<strong>in</strong> circuit-breaker for <strong>the</strong> entire <strong>in</strong>stallation, as well as any circuit-breakersused for change-over (from one source to ano<strong>the</strong>r) must be omni-polar units.Emergency switch<strong>in</strong>g - emergency stopAn emergency switch<strong>in</strong>g is <strong>in</strong>tended to de-energize a live circuit which is, or couldbecome, dangerous (electric shock or fire).An emergency stop is <strong>in</strong>tended to halt a movement which has become dangerous.In <strong>the</strong> two cases:b The emergency control device or its means of operation (local or at remotelocation(s)) such as a large red mushroom-headed emergency-stop pushbutton mustbe recognizable and readily accessible, <strong>in</strong> proximity to any position at which dangercould arise or be seenb A s<strong>in</strong>gle action must result <strong>in</strong> a complete switch<strong>in</strong>g-off of all live conductors(2) (3)b A “break glass” emergency switch<strong>in</strong>g <strong>in</strong>itiation device is authorized, but <strong>in</strong>unmanned <strong>in</strong>stallations <strong>the</strong> re-energiz<strong>in</strong>g of <strong>the</strong> circuit can only be achieved bymeans of a key held by an authorized personIt should be noted that <strong>in</strong> certa<strong>in</strong> cases, an emergency system of brak<strong>in</strong>g, mayrequire that <strong>the</strong> auxiliary supply to <strong>the</strong> brak<strong>in</strong>g-system circuits be ma<strong>in</strong>ta<strong>in</strong>ed untilf<strong>in</strong>al stoppage of <strong>the</strong> mach<strong>in</strong>ery.Switch<strong>in</strong>g-off for mechanical ma<strong>in</strong>tenance workThis operation assures <strong>the</strong> stopp<strong>in</strong>g of a mach<strong>in</strong>e and its impossibility to be<strong>in</strong>advertently restarted while mechanical ma<strong>in</strong>tenance work is be<strong>in</strong>g carried outon <strong>the</strong> driven mach<strong>in</strong>ery. The shutdown is generally carried out at <strong>the</strong> functionalswitch<strong>in</strong>g device, with <strong>the</strong> use of a suitable safety lock and warn<strong>in</strong>g notice at <strong>the</strong>switch mechanism.© Schneider Electric - all rights reserved(1) One break <strong>in</strong> each phase and (where appropriate) onebreak <strong>in</strong> <strong>the</strong> neutral.(2) Tak<strong>in</strong>g <strong>in</strong>to account stalled motors.(3) In a TN schema <strong>the</strong> PEN conductor must never beopened, s<strong>in</strong>ce it functions as a protective earth<strong>in</strong>g wire as wellas <strong>the</strong> system neutral conductor.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection2 The switchgearFig. H5 : Symbol for a disconnector (or isolator)Fig. H6 : Symbol for a load-break switch2.1 Elementary switch<strong>in</strong>g devicesDisconnector (or isolator) (see Fig. H5)This switch is a manually-operated, lockable, two-position device (open/closed)which provides safe isolation of a circuit when locked <strong>in</strong> <strong>the</strong> open position. Itscharacteristics are def<strong>in</strong>ed <strong>in</strong> IEC 60947-3. A disconnector is not designed to makeor to break current (1) and no rated values for <strong>the</strong>se functions are given <strong>in</strong> standards.It must, however, be capable of withstand<strong>in</strong>g <strong>the</strong> passage of short-circuit currentsand is assigned a rated short-time withstand capability, generally for 1 second,unless o<strong>the</strong>rwise agreed between user and manufacturer. This capability is normallymore than adequate for longer periods of (lower-valued) operational overcurrents,such as those of motor-start<strong>in</strong>g. Standardized mechanical-endurance, overvoltage,and leakage-current tests, must also be satisfied.Load-break<strong>in</strong>g switch (see Fig. H6)This control switch is generally operated manually (but is sometimes provided wi<strong>the</strong>lectrical tripp<strong>in</strong>g for operator convenience) and is a non-automatic two-positiondevice (open/closed).It is used to close and open loaded circuits under normal unfaulted circuit conditions.It does not consequently, provide any protection for <strong>the</strong> circuit it controls.IEC standard 60947-3 def<strong>in</strong>es:b The frequency of switch operation (600 close/open cycles per hour maximum)b Mechanical and electrical endurance (generally less than that of a contactor)b Current mak<strong>in</strong>g and break<strong>in</strong>g rat<strong>in</strong>gs for normal and <strong>in</strong>frequent situationsWhen clos<strong>in</strong>g a switch to energize a circuit <strong>the</strong>re is always <strong>the</strong> possibility thatan unsuspected short-circuit exists on <strong>the</strong> circuit. For this reason, load-breakswitches are assigned a fault-current mak<strong>in</strong>g rat<strong>in</strong>g, i.e. successful closure aga<strong>in</strong>st<strong>the</strong> electrodynamic forces of short-circuit current is assured. Such switches arecommonly referred to as “fault-make load-break” switches. Upstream protectivedevices are relied upon to clear <strong>the</strong> short-circuit faultCategory AC-23 <strong>in</strong>cludes occasional switch<strong>in</strong>g of <strong>in</strong>dividual motors. The switch<strong>in</strong>gof capacitors or of tungsten filament lamps shall be subject to agreement betweenmanufacturer and user.The utilization categories referred to <strong>in</strong> Figure H7 do not apply to an equipmentnormally used to start, accelerate and/or stop <strong>in</strong>dividual motors.ExampleA 100 A load-break switch of category AC-23 (<strong>in</strong>ductive load) must be able:b To make a current of 10 In (= 1,000 A) at a power factor of 0.35 lagg<strong>in</strong>gb To break a current of 8 In (= 800 A) at a power factor of 0.45 lagg<strong>in</strong>gb To withstand short duration short-circuit currents when closedHUtilization category Typical applications Cos ϕ Mak<strong>in</strong>g Break<strong>in</strong>gFrequent Infrequent current x In current x Inoperations operationsAC-20A AC-20B Connect<strong>in</strong>g and disconnect<strong>in</strong>g - - -under no-load conditionsAC-21A AC-21B Switch<strong>in</strong>g of resistive loads 0.95 1.5 1.5<strong>in</strong>clud<strong>in</strong>g moderate overloadsAC-22A AC-22B Switch<strong>in</strong>g of mixed resistive 0.65 3 3and <strong>in</strong>ductive loads, <strong>in</strong>clud<strong>in</strong>gmoderate overloadsAC-23A AC-23B Switch<strong>in</strong>g of motor loads or 0.45 for I y 100 A 10 8o<strong>the</strong>r highly <strong>in</strong>ductive loads 0.35 for I > 100 AFig. H7 : Utilization categories of LV AC switches accord<strong>in</strong>g to IEC 60947-3(1) i.e. a LV disconnector is essentially a dead systemswitch<strong>in</strong>g device to be operated with no voltage on ei<strong>the</strong>r sideof it, particularly when clos<strong>in</strong>g, because of <strong>the</strong> possibility of anunsuspected short-circuit on <strong>the</strong> downstream side. Interlock<strong>in</strong>gwith an upstream switch or circuit-breaker is frequently used.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>© Schneider Electric - all rights reserved


H - LV switchgear: functions & selection2 The switchgearHFig. H8 : Symbol for a bistable remote control switchControlcircuitFig. H9 : Symbol for a contactorPowercircuitRemote control switch (see Fig. H8)This device is extensively used <strong>in</strong> <strong>the</strong> control of light<strong>in</strong>g circuits where <strong>the</strong> depressionof a pushbutton (at a remote control position) will open an already-closed switch orclose an opened switch <strong>in</strong> a bistable sequence.Typical applications are:b Two-way switch<strong>in</strong>g on stairways of large build<strong>in</strong>gsb Stage-light<strong>in</strong>g schemesb Factory illum<strong>in</strong>ation, etc.Auxiliary devices are available to provide:b Remote <strong>in</strong>dication of its state at any <strong>in</strong>stantb Time-delay functionsb Ma<strong>in</strong>ta<strong>in</strong>ed-contact featuresContactor (see Fig. H9)The contactor is a solenoid-operated switch<strong>in</strong>g device which is generally heldclosed by (a reduced) current through <strong>the</strong> clos<strong>in</strong>g solenoid (although variousmechanically-latched types exist for specific duties). Contactors are designed tocarry out numerous close/open cycles and are commonly controlled remotely byon-off pushbuttons. The large number of repetitive operat<strong>in</strong>g cycles is standardized <strong>in</strong>table VIII of IEC 60947-4-1 by:b The operat<strong>in</strong>g duration: 8 hours; un<strong>in</strong>terrupted; <strong>in</strong>termittent; temporary of 3, 10, 30,60 and 90 m<strong>in</strong>utesb Utilization category: for example, a contactor of category AC3 can be used for <strong>the</strong>start<strong>in</strong>g and stopp<strong>in</strong>g of a cage motorb The start-stop cycles (1 to 1,200 cyles per hour)b Mechanical endurance (number of off-load manœuvres)b <strong>Electrical</strong> endurance (number of on-load manœuvres)b A rated current mak<strong>in</strong>g and break<strong>in</strong>g performance accord<strong>in</strong>g to <strong>the</strong> category ofutilization concernedExample:A 150 A contactor of category AC3 must have a m<strong>in</strong>imum current-break<strong>in</strong>g capabilityof 8 In (= 1,200 A) and a m<strong>in</strong>imum current-mak<strong>in</strong>g rat<strong>in</strong>g of 10 In (= 1,500 A) at apower factor (lagg<strong>in</strong>g) of 0.35.Discontactor (1)A contactor equipped with a <strong>the</strong>rmal-type relay for protection aga<strong>in</strong>st overload<strong>in</strong>gdef<strong>in</strong>es a “discontactor”. Discontactors are used extensively for remote push-buttoncontrol of light<strong>in</strong>g circuits, etc., and may also be considered as an essential element<strong>in</strong> a motor controller, as noted <strong>in</strong> sub-clause 2.2. “comb<strong>in</strong>ed switchgear elements”.The discontactor is not <strong>the</strong> equivalent of a circuit-breaker, s<strong>in</strong>ce its short-circuitcurrent break<strong>in</strong>g capability is limited to 8 or 10 In. For short-circuit protection<strong>the</strong>refore, it is necessary to <strong>in</strong>clude ei<strong>the</strong>r fuses or a circuit-breaker <strong>in</strong> series with,and upstream of, <strong>the</strong> discontactor contacts.© Schneider Electric - all rights reservedTwo classes of LV cartridge fuse are verywidely used:b For domestic and similar <strong>in</strong>stallations type gGb For <strong>in</strong>dustrial <strong>in</strong>stallations type gG, gM or aMFig. H10 : Symbol for fuses(1) This term is not def<strong>in</strong>ed <strong>in</strong> IEC publications but is commonlyused <strong>in</strong> some countries.Fuses (see Fig. H10)The first letter <strong>in</strong>dicates <strong>the</strong> break<strong>in</strong>g range:b “g” fuse-l<strong>in</strong>ks (full-range break<strong>in</strong>g-capacity fuse-l<strong>in</strong>k)b “a” fuse-l<strong>in</strong>ks (partial-range break<strong>in</strong>g-capacity fuse-l<strong>in</strong>k)The second letter <strong>in</strong>dicates <strong>the</strong> utilization category; this letter def<strong>in</strong>es with accuracy<strong>the</strong> time-current characteristics, conventional times and currents, gates.For exampleb “gG” <strong>in</strong>dicates fuse-l<strong>in</strong>ks with a full-range break<strong>in</strong>g capacity for general applicationb “gM” <strong>in</strong>dicates fuse-l<strong>in</strong>ks with a full-range break<strong>in</strong>g capacity for <strong>the</strong> protection ofmotor circuitsb “aM” <strong>in</strong>dicates fuse-l<strong>in</strong>ks with a partial range break<strong>in</strong>g capacity for <strong>the</strong> protection ofmotor circuitsFuses exist with and without “fuse-blown” mechanical <strong>in</strong>dicators. Fuses break acircuit by controlled melt<strong>in</strong>g of <strong>the</strong> fuse element when a current exceeds a givenvalue for a correspond<strong>in</strong>g period of time; <strong>the</strong> current/time relationship be<strong>in</strong>gpresented <strong>in</strong> <strong>the</strong> form of a performance curve for each type of fuse. Standards def<strong>in</strong>etwo classes of fuse:b Those <strong>in</strong>tended for domestic <strong>in</strong>stallations, manufactured <strong>in</strong> <strong>the</strong> form of a cartridgefor rated currents up to 100 A and designated type gG <strong>in</strong> IEC 60269-1 and 3b Those for <strong>in</strong>dustrial use, with cartridge types designated gG (general use); and gMand aM (for motor-circuits) <strong>in</strong> IEC 60269-1 and 2Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection2 The switchgeargM fuses require a separate overload relay, asdescribed <strong>in</strong> <strong>the</strong> note at <strong>the</strong> end of sub-clause 2.1.The ma<strong>in</strong> differences between domestic and <strong>in</strong>dustrial fuses are <strong>the</strong> nom<strong>in</strong>alvoltage and current levels (which require much larger physical dimensions) and<strong>the</strong>ir fault-current break<strong>in</strong>g capabilities. Type gG fuse-l<strong>in</strong>ks are often used for <strong>the</strong>protection of motor circuits, which is possible when <strong>the</strong>ir characteristics are capableof withstand<strong>in</strong>g <strong>the</strong> motor-start<strong>in</strong>g current without deterioration.A more recent development has been <strong>the</strong> adoption by <strong>the</strong> IEC of a fuse-type gM formotor protection, designed to cover start<strong>in</strong>g, and short-circuit conditions. This type offuse is more popular <strong>in</strong> some countries than <strong>in</strong> o<strong>the</strong>rs, but at <strong>the</strong> present time <strong>the</strong>aM fuse <strong>in</strong> comb<strong>in</strong>ation with a <strong>the</strong>rmal overload relay is more-widely used.A gM fuse-l<strong>in</strong>k, which has a dual rat<strong>in</strong>g is characterized by two current values. Thefirst value In denotes both <strong>the</strong> rated current of <strong>the</strong> fuse-l<strong>in</strong>k and <strong>the</strong> rated current of<strong>the</strong> fuseholder; <strong>the</strong> second value Ich denotes <strong>the</strong> time-current characteristic of <strong>the</strong>fuse-l<strong>in</strong>k as def<strong>in</strong>ed by <strong>the</strong> gates <strong>in</strong> Tables II, III and VI of IEC 60269-1.These two rat<strong>in</strong>gs are separated by a letter which def<strong>in</strong>es <strong>the</strong> applications.For example: In M Ich denotes a fuse <strong>in</strong>tended to be used for protection ofmotor circuits and hav<strong>in</strong>g <strong>the</strong> characteristic G. The first value In corresponds to<strong>the</strong> maximum cont<strong>in</strong>uous current for <strong>the</strong> whole fuse and <strong>the</strong> second value Ichcorresponds to <strong>the</strong> G characteristic of <strong>the</strong> fuse l<strong>in</strong>k. For fur<strong>the</strong>r details see note at <strong>the</strong>end of sub-clause 2.1.An aM fuse-l<strong>in</strong>k is characterized by one current value In and time-currentcharacteristic as shown <strong>in</strong> Figure H14 next page.Important: Some national standards use a gI (<strong>in</strong>dustrial) type fuse, similar <strong>in</strong> all ma<strong>in</strong>essentails to type gG fuses.Type gI fuses should never be used, however, <strong>in</strong> domestic and similar <strong>in</strong>stallations.Fus<strong>in</strong>g zones - conventional currentsThe conditions of fus<strong>in</strong>g (melt<strong>in</strong>g) of a fuse are def<strong>in</strong>ed by standards, accord<strong>in</strong>g to<strong>the</strong>ir class.Class gG fusesThese fuses provide protection aga<strong>in</strong>st overloads and short-circuits.Conventional non-fus<strong>in</strong>g and fus<strong>in</strong>g currents are standardized, as shown <strong>in</strong>Figure H12 and <strong>in</strong> Figure H13.b The conventional non-fus<strong>in</strong>g current Inf is <strong>the</strong> value of current that <strong>the</strong> fusibleelement can carry for a specified time without melt<strong>in</strong>g.Example: A 32 A fuse carry<strong>in</strong>g a current of 1.25 In (i.e. 40 A) must not melt <strong>in</strong> lessthan one hour (table H13)b The conventional fus<strong>in</strong>g current If (= I2 <strong>in</strong> Fig. H12) is <strong>the</strong> value of current whichwill cause melt<strong>in</strong>g of <strong>the</strong> fusible element before <strong>the</strong> expiration of <strong>the</strong> specified time.Example: A 32 A fuse carry<strong>in</strong>g a current of 1.6 In (i.e. 52.1 A) must melt <strong>in</strong> one houror lessIEC 60269-1 standardized tests require that a fuse-operat<strong>in</strong>g characteristic liesbetween <strong>the</strong> two limit<strong>in</strong>g curves (shown <strong>in</strong> Figure H12) for <strong>the</strong> particular fuse undertest. This means that two fuses which satisfy <strong>the</strong> test can have significantly differentoperat<strong>in</strong>g times at low levels of overload<strong>in</strong>g.Ht1 hourInf I2M<strong>in</strong>imumpre-arc<strong>in</strong>gtime curveFuse-blowcurveIRated current (1) Conventional non- Conventional ConventionalIn (A) fus<strong>in</strong>g current fus<strong>in</strong>g current time (h)InfI2In y 4 A 1.5 In 2.1 In 14 < In < 16 A 1.5 In 1.9 In 116 < In y 63 A 1.25 In 1.6 In 163 < In y 160 A 1.25 In 1.6 In 2160 < In y 400 A 1.25 In 1.6 In 3400 < In 1.25 In 1.6 In 4Fig. H12 : Zones of fus<strong>in</strong>g and non-fus<strong>in</strong>g for gG and gM fuses(1) Ich for gM fusesFig. H13 : Zones of fus<strong>in</strong>g and non-fus<strong>in</strong>g for LV types gG and gM class fuses (IEC 60269-1and 60269-2-1)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection2 The switchgearClass aM fuses protect aga<strong>in</strong>st short-circuitcurrents only, and must always be associatedwith ano<strong>the</strong>r device which protects aga<strong>in</strong>stoverloadb The two examples given above for a 32 A fuse, toge<strong>the</strong>r with <strong>the</strong> forego<strong>in</strong>g noteson standard test requirements, expla<strong>in</strong> why <strong>the</strong>se fuses have a poor performance <strong>in</strong><strong>the</strong> low overload rangeb It is <strong>the</strong>refore necessary to <strong>in</strong>stall a cable larger <strong>in</strong> ampacity than that normallyrequired for a circuit, <strong>in</strong> order to avoid <strong>the</strong> consequences of possible long termoverload<strong>in</strong>g (60% overload for up to one hour <strong>in</strong> <strong>the</strong> worst case)By way of comparison, a circuit-breaker of similar current rat<strong>in</strong>g:b Which passes 1.05 In must not trip <strong>in</strong> less than one hour; andb When pass<strong>in</strong>g 1.25 In it must trip <strong>in</strong> one hour, or less (25% overload for up to onehour <strong>in</strong> <strong>the</strong> worst case)Class aM (motor) fusesThese fuses afford protection aga<strong>in</strong>st short-circuit currents only and must necessarilybe associated with o<strong>the</strong>r switchgear (such as discontactors or circuit-breakers) <strong>in</strong>order to ensure overload protection < 4 In. They are not <strong>the</strong>refore autonomous. S<strong>in</strong>ceaM fuses are not <strong>in</strong>tended to protect aga<strong>in</strong>st low values of overload current, no levelsof conventional non-fus<strong>in</strong>g and fus<strong>in</strong>g currents are fixed. The characteristic curves fortest<strong>in</strong>g <strong>the</strong>se fuses are given for values of fault current exceed<strong>in</strong>g approximately 4 In(see Fig. H14), and fuses tested to IEC 60269 must give operat<strong>in</strong>g curves which fallwith<strong>in</strong> <strong>the</strong> shaded area.Note: <strong>the</strong> small “arrowheads” <strong>in</strong> <strong>the</strong> diagram <strong>in</strong>dicate <strong>the</strong> current/time “gate” valuesfor <strong>the</strong> different fuses to be tested (IEC 60269).© Schneider Electric - all rights reservedH4 I nx I nFig. H14 : Standardized zones of fus<strong>in</strong>g for type aM fuses (allcurrent rat<strong>in</strong>gs)ItTf TaTtc0.005 s0.02 s0.01 sTf: Fuse pre-arc fus<strong>in</strong>g timeTa: Arc<strong>in</strong>g timeTtc: Total fault-clearance timeFig. H15 : Current limitation by a fuseM<strong>in</strong>i m umpre-arc<strong>in</strong>gtime cu r v eFuse- b l o wncu r v eProspectivefault-current peakrms value of <strong>the</strong> ACcomponent of <strong>the</strong>prospective fault curentCurrent peaklimited by <strong>the</strong> fuse(1) For currents exceed<strong>in</strong>g a certa<strong>in</strong> level, depend<strong>in</strong>g on <strong>the</strong>fuse nom<strong>in</strong>al current rat<strong>in</strong>g, as shown below <strong>in</strong> Figure H16.tRated short-circuit break<strong>in</strong>g currentsA characteristic of modern cartridge fuses is that, ow<strong>in</strong>g to <strong>the</strong> rapidity of fusion<strong>in</strong> <strong>the</strong> case of high short-circuit current levels (1) , a current cut-off beg<strong>in</strong>s before<strong>the</strong> occurrence of <strong>the</strong> first major peak, so that <strong>the</strong> fault current never reaches itsprospective peak value (see Fig. H15).This limitation of current reduces significantly <strong>the</strong> <strong>the</strong>rmal and dynamic stresseswhich would o<strong>the</strong>rwise occur, <strong>the</strong>reby m<strong>in</strong>imiz<strong>in</strong>g danger and damage at <strong>the</strong> faultposition. The rated short-circuit break<strong>in</strong>g current of <strong>the</strong> fuse is <strong>the</strong>refore based on <strong>the</strong>rms value of <strong>the</strong> AC component of <strong>the</strong> prospective fault current.No short-circuit current-mak<strong>in</strong>g rat<strong>in</strong>g is assigned to fuses.Rem<strong>in</strong>derShort-circuit currents <strong>in</strong>itially conta<strong>in</strong> DC components, <strong>the</strong> magnitude and duration ofwhich depend on <strong>the</strong> XL/R ratio of <strong>the</strong> fault current loop.Close to <strong>the</strong> source (MV/LV transformer) <strong>the</strong> relationship Ipeak / Irms (ofAC component) immediately follow<strong>in</strong>g <strong>the</strong> <strong>in</strong>stant of fault, can be as high as 2.5(standardized by IEC, and shown <strong>in</strong> Figure H16 next page).At lower levels of distribution <strong>in</strong> an <strong>in</strong>stallation, as previously noted, XL is smallcompared with R and so for f<strong>in</strong>al circuits Ipeak / Irms ~ 1.41, a condition whichcorresponds with Figure H15.The peak-current-limitation effect occurs only when <strong>the</strong> prospective rmsAC component of fault current atta<strong>in</strong>s a certa<strong>in</strong> level. For example, <strong>in</strong> <strong>the</strong> Figure H16graph, <strong>the</strong> 100 A fuse will beg<strong>in</strong> to cut off <strong>the</strong> peak at a prospective fault current(rms) of 2 kA (a). The same fuse for a condition of 20 kA rms prospective currentwill limit <strong>the</strong> peak current to 10 kA (b). Without a current-limit<strong>in</strong>g fuse <strong>the</strong> peakcurrent could atta<strong>in</strong> 50 kA (c) <strong>in</strong> this particular case. As already mentioned, at lowerdistribution levels <strong>in</strong> an <strong>in</strong>stallation, R greatly predom<strong>in</strong>ates XL, and fault levels aregenerally low. This means that <strong>the</strong> level of fault current may not atta<strong>in</strong> values highenough to cause peak current limitation. On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> DC transients (<strong>in</strong> thiscase) have an <strong>in</strong>significant effect on <strong>the</strong> magnitude of <strong>the</strong> current peak, as previouslymentioned.Note: On gM fuse rat<strong>in</strong>gsA gM type fuse is essentially a gG fuse, <strong>the</strong> fusible element of which corresponds to<strong>the</strong> current value Ich (ch = characteristic) which may be, for example, 63 A. This is<strong>the</strong> IEC test<strong>in</strong>g value, so that its time/ current characteristic is identical to that of a63 A gG fuse.This value (63 A) is selected to withstand <strong>the</strong> high start<strong>in</strong>g currents of a motor, <strong>the</strong>steady state operat<strong>in</strong>g current (In) of which may be <strong>in</strong> <strong>the</strong> 10-20 A range.This means that a physically smaller fuse barrel and metallic parts can be used,s<strong>in</strong>ce <strong>the</strong> heat dissipation required <strong>in</strong> normal service is related to <strong>the</strong> lower figures(10-20 A). A standard gM fuse, suitable for this situation would be designated 32M63(i.e. In M Ich).The first current rat<strong>in</strong>g In concerns <strong>the</strong> steady-load <strong>the</strong>rmal performance of <strong>the</strong>fusel<strong>in</strong>k, while <strong>the</strong> second current rat<strong>in</strong>g (Ich) relates to its (short-time) start<strong>in</strong>gcurrentperformance. It is evident that, although suitable for short-circuit protection,Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection2 The switchgearProspective faultcurrent (kA) peak10050201052(a)Maximum possible currentpeak characteristici.e. 2.5 Irms (IEC)(c)(b)160A100A50A11 2 5 10 20 50 100AC component of prospectivefault current (kA) rmsNom<strong>in</strong>alfuserat<strong>in</strong>gsPeak currentcut-offcharacteristiccurvesFig. H16 : Limited peak current versus prospective rms valuesof <strong>the</strong> AC component of fault current for LV fusesoverload protection for <strong>the</strong> motor is not provided by <strong>the</strong> fuse, and so a separate<strong>the</strong>rmal-type relay is always necessary when us<strong>in</strong>g gM fuses. The only advantageoffered by gM fuses, <strong>the</strong>refore, when compared with aM fuses, are reduced physicaldimensions and slightly lower cost.2.2 Comb<strong>in</strong>ed switchgear elementsS<strong>in</strong>gle units of switchgear do not, <strong>in</strong> general, fulfil all <strong>the</strong> requirements of <strong>the</strong> threebasic functions, viz: Protection, control and isolation.Where <strong>the</strong> <strong>in</strong>stallation of a circuit-breaker is not appropriate (notably where <strong>the</strong>switch<strong>in</strong>g rate is high, over extended periods) comb<strong>in</strong>ations of units specificallydesigned for such a performance are employed. The most commonly-usedcomb<strong>in</strong>ations are described below.Switch and fuse comb<strong>in</strong>ationsTwo cases are dist<strong>in</strong>guished:b The type <strong>in</strong> which <strong>the</strong> operation of one (or more) fuse(s) causes <strong>the</strong> switch to open.This is achieved by <strong>the</strong> use of fuses fitted with striker p<strong>in</strong>s, and a system of switchtripp<strong>in</strong>g spr<strong>in</strong>gs and toggle mechanisms (see Fig. H17)b The type <strong>in</strong> which a non-automatic switch is associated with a set of fuses <strong>in</strong> acommon enclosure.In some countries, and <strong>in</strong> IEC 60947-3, <strong>the</strong> terms “switch-fuse” and “fuse-switch”have specific mean<strong>in</strong>gs, viz:v A switch-fuse comprises a switch (generally 2 breaks per pole) on <strong>the</strong> upstreamside of three fixed fuse-bases, <strong>in</strong>to which <strong>the</strong> fuse carriers are <strong>in</strong>serted (see Fig. H18)v A fuse-switch consists of three switch blades each constitut<strong>in</strong>g a double-break perphase.These blades are not cont<strong>in</strong>uous throughout <strong>the</strong>ir length, but each has a gap <strong>in</strong> <strong>the</strong>centre which is bridged by <strong>the</strong> fuse cartridge. Some designs have only a s<strong>in</strong>gle breakper phase, as shown <strong>in</strong> Figure H19.HFig. H17 : Symbol for an automatic tripp<strong>in</strong>g switch-fuseFig. H18 : Symbol for a non-automatic fuse-switchFig. H19 : Symbol for a non-automatic switch-fuseFig. H20 : Symbol for a fuse disconnector + discontactorFig. H21 : Symbol for a fuse-switch disconnector + discontactorThe current range for <strong>the</strong>se devices is limited to 100 A maximum at 400 V 3-phase,while <strong>the</strong>ir pr<strong>in</strong>cipal use is <strong>in</strong> domestic and similar <strong>in</strong>stallations. To avoid confusionbetween <strong>the</strong> first group (i.e. automatic tripp<strong>in</strong>g) and <strong>the</strong> second group, <strong>the</strong> term“switch-fuse” should be qualified by <strong>the</strong> adjectives “automatic” or “non-automatic”.Fuse – disconnector + discontactorFuse - switch-disconnector + discontactorAs previously mentioned, a discontactor does not provide protection aga<strong>in</strong>st shortcircuitfaults. It is necessary, <strong>the</strong>refore, to add fuses (generally of type aM) to performthis function. The comb<strong>in</strong>ation is used ma<strong>in</strong>ly for motor control circuits, where <strong>the</strong>disconnector or switch-disconnector allows safe operations such as:b The chang<strong>in</strong>g of fuse l<strong>in</strong>ks (with <strong>the</strong> circuit isolated)b Work on <strong>the</strong> circuit downstream of <strong>the</strong> discontactor (risk of remote closure of <strong>the</strong>discontactor)The fuse-disconnector must be <strong>in</strong>terlocked with <strong>the</strong> discontactor such that no open<strong>in</strong>gor clos<strong>in</strong>g manœuvre of <strong>the</strong> fuse disconnector is possible unless <strong>the</strong> discontactor isopen ( Figure H20), s<strong>in</strong>ce <strong>the</strong> fuse disconnector has no load-switch<strong>in</strong>g capability.A fuse-switch-disconnector (evidently) requires no <strong>in</strong>terlock<strong>in</strong>g (Figure H21).The switch must be of class AC22 or AC23 if <strong>the</strong> circuit supplies a motor.Circuit-breaker + contactorCircuit-breaker + discontactorThese comb<strong>in</strong>ations are used <strong>in</strong> remotely controlled distribution systems <strong>in</strong> which <strong>the</strong>rate of switch<strong>in</strong>g is high, or for control and protection of a circuit supply<strong>in</strong>g motors.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection3 Choice of switchgear3.1 Tabulated functional capabilitiesAfter hav<strong>in</strong>g studied <strong>the</strong> basic functions of LV switchgear (clause 1, Figure H1) and<strong>the</strong> different components of switchgear (clause 2), Figure H22 summarizes <strong>the</strong>capabilities of <strong>the</strong> various components to perform <strong>the</strong> basic functions.H10Isolation Control <strong>Electrical</strong> protectionSwitchgear Functional Emergency Emergency Switch<strong>in</strong>g for Overload Short-circuit Electricitem switch<strong>in</strong>g stop mechanical shock(mechanical) ma<strong>in</strong>tenanceIsolator (or bdisconnector) (4)Switch (5) b b b (1) b (1) (2) bResidual b b b (1) b (1) (2) b bdevice(RCCB) (5)Switch- b b b (1) b (1) (2) bdisconnectorContactor b b (1) b (1) (2) b b (3)Remote control b b (1) bswitchFuse b b bCircuit b b (1) b (1) (2) b b bbreakerCircuit-breaker b b b (1) b (1) (2) b b bdisconnector (5)Residual b b b (1) b (1) (2) b b b band overcurrentcircuit-breaker(RCBO) (5)Po<strong>in</strong>t of Orig<strong>in</strong> of each All po<strong>in</strong>ts where, In general at <strong>the</strong> At <strong>the</strong> supply At <strong>the</strong> supply Orig<strong>in</strong> of each Orig<strong>in</strong> of each Orig<strong>in</strong> of circuits<strong>in</strong>stallation circuit for operational <strong>in</strong>com<strong>in</strong>g circuit po<strong>in</strong>t to each po<strong>in</strong>t to each circuit circuit where <strong>the</strong>(general reasons it may to every mach<strong>in</strong>e mach<strong>in</strong>e earth<strong>in</strong>g systempr<strong>in</strong>ciple) be necessary distribution and/or on <strong>the</strong> is appropriateto stop <strong>the</strong> board mach<strong>in</strong>e TN-S, IT, TTprocessconcerned(1) Where cut-off of all active conductors is provided(2) It may be necessary to ma<strong>in</strong>ta<strong>in</strong> supply to a brak<strong>in</strong>g system(3) If it is associated with a <strong>the</strong>rmal relay (<strong>the</strong> comb<strong>in</strong>ation is commonly referred to as a “discontactor”)(4) In certa<strong>in</strong> countries a disconnector with visible contacts is mandatory at <strong>the</strong> orig<strong>in</strong> of a LV <strong>in</strong>stallation supplied directly from a MV/LV transformer(5) Certa<strong>in</strong> items of switchgear are suitable for isolation duties (e.g. RCCBs accord<strong>in</strong>g to IEC 61008) without be<strong>in</strong>g explicitly marked as suchFig. H22 : Functions fulfilled by different items of switchgear3.2 Switchgear selection© Schneider Electric - all rights reservedSoftware is be<strong>in</strong>g used more and more <strong>in</strong> <strong>the</strong> field of optimal selection of switchgear.Each circuit is considered one at a time, and a list is drawn up of <strong>the</strong> requiredprotection functions and exploitation of <strong>the</strong> <strong>in</strong>stallation, among those mentioned <strong>in</strong>Figure H22 and summarized <strong>in</strong> Figure H1.A number of switchgear comb<strong>in</strong>ations are studied and compared with each o<strong>the</strong>raga<strong>in</strong>st relevant criteria, with <strong>the</strong> aim of achiev<strong>in</strong>g:b Satisfactory performanceb Compatibility among <strong>the</strong> <strong>in</strong>dividual items; from <strong>the</strong> rated current In to <strong>the</strong> fault-levelrat<strong>in</strong>g Icub Compatibility with upstream switchgear or tak<strong>in</strong>g <strong>in</strong>to account its contributionb Conformity with all regulations and specifications concern<strong>in</strong>g safe and reliablecircuit performanceIn order to determ<strong>in</strong>e <strong>the</strong> number of poles for an item of switchgear, reference ismade to chapter G, clause 7 Fig. G64. Multifunction switchgear, <strong>in</strong>itially more costly,reduces <strong>in</strong>stallation costs and problems of <strong>in</strong>stallation or exploitation. It is often foundthat such switchgear provides <strong>the</strong> best solution.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection4 Circuit-breakerThe circuit-breaker/disconnector fulfills all of <strong>the</strong>basic switchgear functions, while, by means ofaccessories, numerous o<strong>the</strong>r possibilities existAs shown <strong>in</strong> Figure H23 <strong>the</strong> circuit-breaker/ disconnector is <strong>the</strong> only item ofswitchgear capable of simultaneously satisfy<strong>in</strong>g all <strong>the</strong> basic functions necessary <strong>in</strong>an electrical <strong>in</strong>stallation.Moreover, it can, by means of auxiliary units, provide a wide range of o<strong>the</strong>r functions,for example: <strong>in</strong>dication (on-off - tripped on fault); undervoltage tripp<strong>in</strong>g; remotecontrol… etc. These features make a circuit-breaker/ disconnector <strong>the</strong> basic unit ofswitchgear for any electrical <strong>in</strong>stallation.FunctionsPossible conditionsIsolationbControl Functional bEmergency switch<strong>in</strong>g b (With <strong>the</strong> possibility of a tripp<strong>in</strong>gcoil for remote control)Switch<strong>in</strong>g-off for mechanical bma<strong>in</strong>tenanceProtection Overload bShort-circuitbInsulation faultb (With differential-current relay)Undervoltageb (With undervoltage-trip coil)Remote controlb Added or <strong>in</strong>corporatedIndication and measurementb (Generally optional with anelectronic tripp<strong>in</strong>g device)Fig. H23 : Functions performed by a circuit-breaker/disconnectorH11Industrial circuit-breakers must comply withIEC 60947-1 and 60947-2 or o<strong>the</strong>r equivalentstandards.Domestic-type circuit-breakers must comply withIEC standard 60898, or an equivalent nationalstandardPower circuit term<strong>in</strong>als4.1 Standards and descriptionStandardsFor <strong>in</strong>dustrial LV <strong>in</strong>stallations <strong>the</strong> relevant IEC standards are, or are due to be:b 60947-1: general rulesb 60947-2: part 2: circuit-breakersb 60947-3: part 3: switches, disconnectors, switch-disconnectors and fusecomb<strong>in</strong>ation unitsb 60947-4: part 4: contactors and motor startersb 60947-5: part 5: control-circuit devices and switch<strong>in</strong>g elementsb 60947-6: part 6: multiple function switch<strong>in</strong>g devicesb 60947-7: part 7: ancillary equipmentFor domestic and similar LV <strong>in</strong>stallations, <strong>the</strong> appropriate standard is IEC 60898, oran equivalent national standard.Fig. H24 : Ma<strong>in</strong> parts of a circuit-breakerContacts and arc-div<strong>in</strong>gchamberFool-proof mechanical<strong>in</strong>dicatorLatch<strong>in</strong>g mechanismTrip mechanism andprotective devicesDescriptionFigure H24 shows schematically <strong>the</strong> ma<strong>in</strong> parts of a LV circuit-breaker and its fouressential functions:b The circuit-break<strong>in</strong>g components, compris<strong>in</strong>g <strong>the</strong> fixed and mov<strong>in</strong>g contacts and<strong>the</strong> arc-divid<strong>in</strong>g chamberb The latch<strong>in</strong>g mechanism which becomes unlatched by <strong>the</strong> tripp<strong>in</strong>g device ondetection of abnormal current conditionsThis mechanism is also l<strong>in</strong>ked to <strong>the</strong> operation handle of <strong>the</strong> breaker.b A trip-mechanism actuat<strong>in</strong>g device:v Ei<strong>the</strong>r: a <strong>the</strong>rmal-magnetic device, <strong>in</strong> which a <strong>the</strong>rmally-operated bi-metal stripdetects an overload condition, while an electromagnetic striker p<strong>in</strong> operates atcurrent levels reached <strong>in</strong> short-circuit conditions, orv An electronic relay operated from current transformers, one of which is <strong>in</strong>stalled oneach phaseb A space allocated to <strong>the</strong> several types of term<strong>in</strong>al currently used for <strong>the</strong> ma<strong>in</strong>power circuit conductorsDomestic circuit-breakers (see Fig. H25 next page) comply<strong>in</strong>g with IEC 60898 andsimilar national standards perform <strong>the</strong> basic functions of:b Isolationb Protection aga<strong>in</strong>st overcurrent© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection4 Circuit-breakerSome models can be adapted to provide sensitive detection (30 mA) of earthleakagecurrent with CB tripp<strong>in</strong>g, by <strong>the</strong> addition of a modular block, while o<strong>the</strong>rmodels (RCBOs, comply<strong>in</strong>g with IEC 61009 and CBRs comply<strong>in</strong>g with IEC 60947-2Annex B) have this residual current feature <strong>in</strong>corporated as shown <strong>in</strong> Figure H26.Apart from <strong>the</strong> above-mentioned functions fur<strong>the</strong>r features can be associated with<strong>the</strong> basic circuit-breaker by means of additional modules, as shown <strong>in</strong> Figure H27;notably remote control and <strong>in</strong>dication (on-off-fault).15432Fig. H25 : Domestic-type circuit-breaker provid<strong>in</strong>g overcurrentprotection and circuit isolation featuresO-OFFO-OFF O-OFFH12Fig. H27 : “Multi 9” system of LV modular switchgear componentsFig. H26 : Domestic-type circuit-breaker as above (Fig. H25)with <strong>in</strong>corparated protection aga<strong>in</strong>st electric shocksMoulded-case circuit-breakers comply<strong>in</strong>g with IEC 60947-2 are available from 100to 630 A and provide a similar range of auxiliary functions to those described above(see Figure H28).Air circuit-breakers of large current rat<strong>in</strong>gs, comply<strong>in</strong>g with IEC 60947-2, aregenerally used <strong>in</strong> <strong>the</strong> ma<strong>in</strong> switch board and provide protector for currents from630 A to 6300 A, typically.(see Figure H29).In addition to <strong>the</strong> protection functions, <strong>the</strong> Micrologic unit provides optimizedfunctions such as measurement (<strong>in</strong>clud<strong>in</strong>g power quality functions), diagnosis,communication, control and monitor<strong>in</strong>g.© Schneider Electric - all rights reservedFig. H28 : Example of a Compact NSX <strong>in</strong>dustrial type of circuitbreakercapable of numerous auxiliary functionsFig. H29 : Example of air circuit-breakers. Masterpact provides many control features <strong>in</strong> its“Micrologic” tripp<strong>in</strong>g unitSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection4 Circuit-breaker4.2 Fundamental characteristics of a circuit-breakerThe fundamental characteristics of a circuit-breaker are:b Its rated voltage Ueb Its rated current Inb Its tripp<strong>in</strong>g-current-level adjustment ranges for overload protection (Ir (1) or Irth (1) )and for short-circuit protection (Im) (1)b Its short-circuit current break<strong>in</strong>g rat<strong>in</strong>g (Icu for <strong>in</strong>dustrial CBs; Icn for domestictypeCBs).Rated operational voltage (Ue)This is <strong>the</strong> voltage at which <strong>the</strong> circuit-breaker has been designed to operate, <strong>in</strong>normal (undisturbed) conditions.O<strong>the</strong>r values of voltage are also assigned to <strong>the</strong> circuit-breaker, correspond<strong>in</strong>g todisturbed conditions, as noted <strong>in</strong> sub-clause 4.3.Rated current (In)This is <strong>the</strong> maximum value of current that a circuit-breaker, fitted with a specifiedovercurrent tripp<strong>in</strong>g relay, can carry <strong>in</strong>def<strong>in</strong>itely at an ambient temperature stated by<strong>the</strong> manufacturer, without exceed<strong>in</strong>g <strong>the</strong> specified temperature limits of <strong>the</strong> currentcarry<strong>in</strong>g parts.ExampleA circuit-breaker rated at In = 125 A for an ambient temperature of 40 °C will beequipped with a suitably calibrated overcurrent tripp<strong>in</strong>g relay (set at 125 A). Thesame circuit-breaker can be used at higher values of ambient temperature however,if suitably “derated”. Thus, <strong>the</strong> circuit-breaker <strong>in</strong> an ambient temperature of 50 °Ccould carry only 117 A <strong>in</strong>def<strong>in</strong>itely, or aga<strong>in</strong>, only 109 A at 60 °C, while comply<strong>in</strong>gwith <strong>the</strong> specified temperature limit.Derat<strong>in</strong>g a circuit-breaker is achieved <strong>the</strong>refore, by reduc<strong>in</strong>g <strong>the</strong> trip-current sett<strong>in</strong>gof its overload relay, and mark<strong>in</strong>g <strong>the</strong> CB accord<strong>in</strong>gly. The use of an electronic-typeof tripp<strong>in</strong>g unit, designed to withstand high temperatures, allows circuit-breakers(derated as described) to operate at 60 °C (or even at 70 °C) ambient.Note: In for circuit-breakers (<strong>in</strong> IEC 60947-2) is equal to Iu for switchgear generally,Iu be<strong>in</strong>g <strong>the</strong> rated un<strong>in</strong>terrupted current.H13Frame-size rat<strong>in</strong>gA circuit-breaker which can be fitted with overcurrent tripp<strong>in</strong>g units of different currentlevel-sett<strong>in</strong>g ranges, is assigned a rat<strong>in</strong>g which corresponds to <strong>the</strong> highest currentlevel-sett<strong>in</strong>gtripp<strong>in</strong>g unit that can be fitted.ExampleA Compact NSX630N circuit-breaker can be equipped with 11 electronic trip unitsfrom 150 A to 630 A. The size of <strong>the</strong> circuit-breaker is 630 A.0.4 InRated current of<strong>the</strong> tripp<strong>in</strong>g unitInAdjustmentrangeOverload tripcurrent sett<strong>in</strong>gIrCircuit breakerframe-size rat<strong>in</strong>g160 A 360 A 400 A 630 AFig. H30 : Example of a NSX630N circuit-breaker equipped witha Micrologic 6.3E trip unit adjusted to 0.9, to give Ir = 360 A(1) Current-level sett<strong>in</strong>g values which refer to <strong>the</strong> currentoperated<strong>the</strong>rmal and “<strong>in</strong>stantaneous” magnetic tripp<strong>in</strong>gdevices for over-load and short-circuit protection.Overload relay trip-current sett<strong>in</strong>g (Irth or Ir)Apart from small circuit-breakers which are very easily replaced, <strong>in</strong>dustrial circuitbreakersare equipped with removable, i.e. exchangeable, overcurrent-trip relays.Moreover, <strong>in</strong> order to adapt a circuit-breaker to <strong>the</strong> requirements of <strong>the</strong> circuitit controls, and to avoid <strong>the</strong> need to <strong>in</strong>stall over-sized cables, <strong>the</strong> trip relays aregenerally adjustable. The trip-current sett<strong>in</strong>g Ir or Irth (both designations are<strong>in</strong> common use) is <strong>the</strong> current above which <strong>the</strong> circuit-breaker will trip. It alsorepresents <strong>the</strong> maximum current that <strong>the</strong> circuit-breaker can carry without tripp<strong>in</strong>g.That value must be greater than <strong>the</strong> maximum load current IB, but less than <strong>the</strong>maximum current permitted <strong>in</strong> <strong>the</strong> circuit Iz (see chapter G, sub-clause 1.3).The <strong>the</strong>rmal-trip relays are generally adjustable from 0.7 to 1.0 times In, but whenelectronic devices are used for this duty, <strong>the</strong> adjustment range is greater; typically 0.4to 1 times In.Example (see Fig. H30)A NSX630N circuit-breaker equipped with a 400 A Micrologic 6.3E overcurrent triprelay, set at 0.9, will have a trip-current sett<strong>in</strong>g:Ir = 400 x 0.9 = 360 ANote: For circuit-breakers equipped with non-adjustable overcurrent-trip relays,Ir = In. Example: for C60N 20 A circuit-breaker, Ir = In = 20 A.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>© Schneider Electric - all rights reserved


H - LV switchgear: functions & selection4 Circuit-breakerShort-circuit relay trip-current sett<strong>in</strong>g (Im)Short-circuit tripp<strong>in</strong>g relays (<strong>in</strong>stantaneous or slightly time-delayed) are <strong>in</strong>tended totrip <strong>the</strong> circuit-breaker rapidly on <strong>the</strong> occurrence of high values of fault current. Theirtripp<strong>in</strong>g threshold Im is:b Ei<strong>the</strong>r fixed by standards for domestic type CBs, e.g. IEC 60898, or,b Indicated by <strong>the</strong> manufacturer for <strong>in</strong>dustrial type CBs accord<strong>in</strong>g to relatedstandards, notably IEC 60947-2.For <strong>the</strong> latter circuit-breakers <strong>the</strong>re exists a wide variety of tripp<strong>in</strong>g devices whichallow a user to adapt <strong>the</strong> protective performance of <strong>the</strong> circuit-breaker to <strong>the</strong>particular requirements of a load (see Fig. H31, Fig. H32 and Fig. H33).H14Type of Overload Short-circuit protectionprotective protectionrelayDomestic Thermal- Ir = In Low sett<strong>in</strong>g Standard sett<strong>in</strong>g High sett<strong>in</strong>g circuitbreakers magnetic type B type C type DIEC 60898 3 In y Im y 5 In 5 In y Im y 10 In 10 In y Im y 20 In (1)Modular Thermal- Ir = In Low sett<strong>in</strong>g Standard sett<strong>in</strong>g High sett<strong>in</strong>g<strong>in</strong>dustrial (2) magnetic fixed type B or Z type C type D or Kcircuit-breakers 3.2 In y fixed y 4.8 In 7 In y fixed y 10 In 10 In y fixed y 14 InIndustrial (2) Thermal- Ir = In fixed Fixed: Im = 7 to 10 Incircuit-breakers magnetic Adjustable: Adjustable:IEC 60947-2 0.7 In y Ir y In - Low sett<strong>in</strong>g : 2 to 5 In- Standard sett<strong>in</strong>g: 5 to 10 InElectronic Long delay Short-delay, adjustable0.4 In y Ir y In 1.5 Ir y Im y 10 IrInstantaneous (I) fixedI = 12 to 15 In(1) 50 In <strong>in</strong> IEC 60898, which is considered to be unrealistically high by most European manufacturers (Merl<strong>in</strong> Ger<strong>in</strong> = 10 to 14 In).(2) For <strong>in</strong>dustrial use, IEC standards do not specify values. The above values are given only as be<strong>in</strong>g those <strong>in</strong> common use.Fig. H31 : Tripp<strong>in</strong>g-current ranges of overload and short-circuit protective devices for LV circuit-breakerst (s )t (s )IrImIiIcuI(A© Schneider Electric - all rights reservedIrImIcuI(AFig. H32 : Performance curve of a circuit-breaker <strong>the</strong>rmalmagneticprotective schemeIr: Overload (<strong>the</strong>rmal or long-delay) relay trip-currentsett<strong>in</strong>gIm: Short-circuit (magnetic or short-delay) relay tripcurrentsett<strong>in</strong>gIi: Short-circuit <strong>in</strong>stantaneous relay trip-current sett<strong>in</strong>g.Icu: Break<strong>in</strong>g capacityFig. H33 : Performance curve of a circuit-breaker electronic protective schemeSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection4 Circuit-breakerThe short-circuit current-break<strong>in</strong>g performanceof a LV circuit-breaker is related (approximately)to <strong>the</strong> cos ϕ of <strong>the</strong> fault-current loop. Standardvalues for this relationship have beenestablished <strong>in</strong> some standardsIsolat<strong>in</strong>g featureA circuit-breaker is suitable for isolat<strong>in</strong>g a circuit if it fulfills all <strong>the</strong> conditionsprescribed for a disconnector (at its rated voltage) <strong>in</strong> <strong>the</strong> relevant standard (seesub-clause 1.2). In such a case it is referred to as a circuit-breaker-disconnector andmarked on its front face with <strong>the</strong> symbolAll Multi 9, Compact NSX and Masterpact LV switchgear of Schneider Electricranges are <strong>in</strong> this category.Rated short-circuit break<strong>in</strong>g capacity (Icu or Icn)The short-circuit current-break<strong>in</strong>g rat<strong>in</strong>g of a CB is <strong>the</strong> highest (prospective) valueof current that <strong>the</strong> CB is capable of break<strong>in</strong>g without be<strong>in</strong>g damaged. The valueof current quoted <strong>in</strong> <strong>the</strong> standards is <strong>the</strong> rms value of <strong>the</strong> AC component of <strong>the</strong>fault current, i.e. <strong>the</strong> DC transient component (which is always present <strong>in</strong> <strong>the</strong> worstpossible case of short-circuit) is assumed to be zero for calculat<strong>in</strong>g <strong>the</strong> standardizedvalue. This rated value (Icu) for <strong>in</strong>dustrial CBs and (Icn) for domestic-type CBs isnormally given <strong>in</strong> kA rms.Icu (rated ultimate s.c. break<strong>in</strong>g capacity) and Ics (rated service s.c. break<strong>in</strong>gcapacity) are def<strong>in</strong>ed <strong>in</strong> IEC 60947-2 toge<strong>the</strong>r with a table relat<strong>in</strong>g Ics with Icu fordifferent categories of utilization A (<strong>in</strong>stantaneous tripp<strong>in</strong>g) and B (time-delayedtripp<strong>in</strong>g) as discussed <strong>in</strong> subclause 4.3.Tests for prov<strong>in</strong>g <strong>the</strong> rated s.c. break<strong>in</strong>g capacities of CBs are governed bystandards, and <strong>in</strong>clude:b Operat<strong>in</strong>g sequences, compris<strong>in</strong>g a succession of operations, i.e. clos<strong>in</strong>g andopen<strong>in</strong>g on short-circuitb Current and voltage phase displacement. When <strong>the</strong> current is <strong>in</strong> phase with <strong>the</strong>supply voltage (cos ϕ for <strong>the</strong> circuit = 1), <strong>in</strong>terruption of <strong>the</strong> current is easier thanthat at any o<strong>the</strong>r power factor. Break<strong>in</strong>g a current at low lagg<strong>in</strong>g values of cos ϕ isconsiderably more difficult to achieve; a zero power-factor circuit be<strong>in</strong>g (<strong>the</strong>oretically)<strong>the</strong> most onerous case.In practice, all power-system short-circuit fault currents are (more or less) at lagg<strong>in</strong>gpower factors, and standards are based on values commonly considered to berepresentative of <strong>the</strong> majority of power systems. In general, <strong>the</strong> greater <strong>the</strong> level offault current (at a given voltage), <strong>the</strong> lower <strong>the</strong> power factor of <strong>the</strong> fault-current loop,for example, close to generators or large transformers.Figure H34 below extracted from IEC 60947-2 relates standardized values of cos ϕto <strong>in</strong>dustrial circuit-breakers accord<strong>in</strong>g to <strong>the</strong>ir rated Icu.b Follow<strong>in</strong>g an open - time delay - close/open sequence to test <strong>the</strong> Icu capacity of aCB, fur<strong>the</strong>r tests are made to ensure that:v The dielectric withstand capabilityv The disconnection (isolation) performance andv The correct operation of <strong>the</strong> overload protectionhave not been impaired by <strong>the</strong> test.H15Icucos ϕ6 kA < Icu y 10 kA 0.510 kA < Icu y 20 kA 0.320 kA < Icu y 50 kA 0.2550 kA < Icu 0.2Fig. H34 : Icu related to power factor (cos ϕ) of fault-current circuit (IEC 60947-2)Familiarity with <strong>the</strong> follow<strong>in</strong>g characteristics ofLV circuit-breakers is often necessary whenmak<strong>in</strong>g a f<strong>in</strong>al choice.4.3 O<strong>the</strong>r characteristics of a circuit-breakerRated <strong>in</strong>sulation voltage (Ui)This is <strong>the</strong> value of voltage to which <strong>the</strong> dielectric tests voltage (generally greaterthan 2 Ui) and creepage distances are referred to.The maximum value of rated operational voltage must never exceed that of <strong>the</strong> rated<strong>in</strong>sulation voltage, i.e. Ue y Ui.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection4 Circuit-breakerRated impulse-withstand voltage (Uimp)This characteristic expresses, <strong>in</strong> kV peak (of a prescribed form and polarity) <strong>the</strong> valueof voltage which <strong>the</strong> equipment is capable of withstand<strong>in</strong>g without failure, under testconditions.t (s)Generally, for <strong>in</strong>dustrial circuit-breakers, Uimp = 8 kV and for domestic types,Uimp = 6 kV.Category (A or B) and rated short-time withstand current (Icw)H16ImFig. H35 : Category A circuit-breakert (s )I(A)As already briefly mentioned (sub-clause 4.2) <strong>the</strong>re are two categories ofLV <strong>in</strong>dustrial switchgear, A and B, accord<strong>in</strong>g to IEC 60947-2:b Those of category A, for which <strong>the</strong>re is no deliberate delay <strong>in</strong> <strong>the</strong> operation of <strong>the</strong>“<strong>in</strong>stantaneous” short-circuit magnetic tripp<strong>in</strong>g device (see Fig. H35), are generallymoulded-case type circuit-breakers, andb Those of category B for which, <strong>in</strong> order to discrim<strong>in</strong>ate with o<strong>the</strong>r circuit-breakerson a time basis, it is possible to delay <strong>the</strong> tripp<strong>in</strong>g of <strong>the</strong> CB, where <strong>the</strong> fault-currentlevel is lower than that of <strong>the</strong> short-time withstand current rat<strong>in</strong>g (Icw) of <strong>the</strong> CB(see Fig. H36). This is generally applied to large open-type circuit-breakers andto certa<strong>in</strong> heavy-duty moulded-case types. Icw is <strong>the</strong> maximum current that <strong>the</strong> Bcategory CB can withstand, <strong>the</strong>rmally and electrodynamically, without susta<strong>in</strong><strong>in</strong>gdamage, for a period of time given by <strong>the</strong> manufacturer.Rated mak<strong>in</strong>g capacity (Icm)Icm is <strong>the</strong> highest <strong>in</strong>stantaneous value of current that <strong>the</strong> circuit-breaker canestablish at rated voltage <strong>in</strong> specified conditions. In AC systems this <strong>in</strong>stantaneouspeak value is related to Icu (i.e. to <strong>the</strong> rated break<strong>in</strong>g current) by <strong>the</strong> factor k, whichdepends on <strong>the</strong> power factor (cos ϕ) of <strong>the</strong> short-circuit current loop (as shown <strong>in</strong>Figure H37 ).Icu cos ϕ Icm = kIcu6 kA < Icu y 10 kA 0.5 1.7 x Icu10 kA < Icu y 20 kA 0.3 2 x Icu20 kA < Icu y 50 kA 0.25 2.1 x Icu50 kA y Icu 0.2 2.2 x IcuFig. H37 : Relation between rated break<strong>in</strong>g capacity Icu and rated mak<strong>in</strong>g capacity Icm atdifferent power-factor values of short-circuit current, as standardized <strong>in</strong> IEC 60947-2ImFig. H36 : Category B circuit-breakerIIcwIcuI(A )Example: A Masterpact NW08H2 circuit-breaker has a rated break<strong>in</strong>g capacityIcu of 100 kA. The peak value of its rated mak<strong>in</strong>g capacity Icm will be100 x 2.2 = 220 kA.© Schneider Electric - all rights reservedIn a correctly designed <strong>in</strong>stallation, a circuitbreakeris never required to operate at itsmaximum break<strong>in</strong>g current Icu. For this reasona new characteristic Ics has been <strong>in</strong>troduced.It is expressed <strong>in</strong> IEC 60947-2 as a percentageof Icu (25, 50, 75, 100%)(1) O represents an open<strong>in</strong>g operation.CO represents a clos<strong>in</strong>g operation followed by an open<strong>in</strong>goperation.Rated service short-circuit break<strong>in</strong>g capacity (Ics)The rated break<strong>in</strong>g capacity (Icu) or (Icn) is <strong>the</strong> maximum fault-current a circuitbreakercan successfully <strong>in</strong>terrupt without be<strong>in</strong>g damaged. The probability of sucha current occurr<strong>in</strong>g is extremely low, and <strong>in</strong> normal circumstances <strong>the</strong> fault-currentsare considerably less than <strong>the</strong> rated break<strong>in</strong>g capacity (Icu) of <strong>the</strong> CB. On <strong>the</strong> o<strong>the</strong>rhand it is important that high currents (of low probability) be <strong>in</strong>terrupted under goodconditions, so that <strong>the</strong> CB is immediately available for reclosure, after <strong>the</strong> faultycircuit has been repaired. It is for <strong>the</strong>se reasons that a new characteristic (Ics) hasbeen created, expressed as a percentage of Icu, viz: 25, 50, 75, 100% for <strong>in</strong>dustrialcircuit-breakers. The standard test sequence is as follows:b O - CO - CO (1) (at Ics)b Tests carried out follow<strong>in</strong>g this sequence are <strong>in</strong>tended to verify that <strong>the</strong> CB is <strong>in</strong> agood state and available for normal serviceFor domestic CBs, Ics = k Icn. The factor k values are given <strong>in</strong> IEC 60898 table XIV.In Europe it is <strong>the</strong> <strong>in</strong>dustrial practice to use a k factor of 100% so that Ics = Icu.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection4 Circuit-breakerMany designs of LV circuit-breakers featurea short-circuit current limitation capability,whereby <strong>the</strong> current is reduced and preventedfrom reach<strong>in</strong>g its (o<strong>the</strong>rwise) maximum peakvalue (see Fig. H38). The current-limitationperformance of <strong>the</strong>se CBs is presented <strong>in</strong><strong>the</strong> form of graphs, typified by that shown <strong>in</strong>Figure H39, diagram (a)Fault-current limitationThe fault-current limitation capacity of a CB concerns its ability, more or lesseffective, <strong>in</strong> prevent<strong>in</strong>g <strong>the</strong> passage of <strong>the</strong> maximum prospective fault-current,permitt<strong>in</strong>g only a limited amount of current to flow, as shown <strong>in</strong> Figure H38.The current-limitation performance is given by <strong>the</strong> CB manufacturer <strong>in</strong> <strong>the</strong> form ofcurves (see Fig. H39).b Diagram (a) shows <strong>the</strong> limited peak value of current plotted aga<strong>in</strong>st <strong>the</strong> rmsvalue of <strong>the</strong> AC component of <strong>the</strong> prospective fault current (“prospective” faultcurrentrefers to <strong>the</strong> fault-current which would flow if <strong>the</strong> CB had no current-limit<strong>in</strong>gcapability)b Limitation of <strong>the</strong> current greatly reduces <strong>the</strong> <strong>the</strong>rmal stresses (proportional I 2 t) andthis is shown by <strong>the</strong> curve of diagram (b) of Figure H39, aga<strong>in</strong>, versus <strong>the</strong> rms valueof <strong>the</strong> AC component of <strong>the</strong> prospective fault current.LV circuit-breakers for domestic and similar <strong>in</strong>stallations are classified <strong>in</strong> certa<strong>in</strong>standards (notably European Standard EN 60 898). CBs belong<strong>in</strong>g to one class (ofcurrent limiters) have standardized limit<strong>in</strong>g I 2 t let-through characteristics def<strong>in</strong>ed bythat class.In <strong>the</strong>se cases, manufacturers do not normally provide characteristic performancecurves.a)Limitedcurrentpeak(kA)22Non-limited currentcharacteristicsb)4,5.105Limitedcurrent peak(A2 x s)H172.105Prospective ACcomponent (rms)150 kAProspective ACcomponent (rms)150 kAFig. H39 : Performance curves of a typical LV current-limit<strong>in</strong>g circuit-breakerCurrent limitation reduces both <strong>the</strong>rmal andelectrodynamic stresses on all circuit elementsthrough which <strong>the</strong> current passes, <strong>the</strong>rebyprolong<strong>in</strong>g <strong>the</strong> useful life of <strong>the</strong>se elements.Fur<strong>the</strong>rmore, <strong>the</strong> limitation feature allows“cascad<strong>in</strong>g” techniques to be used (see 4.5)<strong>the</strong>reby significantly reduc<strong>in</strong>g design and<strong>in</strong>stallation costsIccProspecticefault-current peakLimitedcurrent peakLimitedcurrenttcFig. H38 : Prospective and actual currentsProspecticefault-currenttThe advantages of current limitationThe use of current-limit<strong>in</strong>g CBs affords numerous advantages:b Better conservation of <strong>in</strong>stallation networks: current-limit<strong>in</strong>g CBs strongly attenuateall harmful effects associated with short-circuit currentsb Reduction of <strong>the</strong>rmal effects: Conductors (and <strong>the</strong>refore <strong>in</strong>sulation) heat<strong>in</strong>g issignificantly reduced, so that <strong>the</strong> life of cables is correspond<strong>in</strong>gly <strong>in</strong>creasedb Reduction of mechanical effects: forces due to electromagnetic repulsion are lower,with less risk of deformation and possible rupture, excessive burn<strong>in</strong>g of contacts, etc.b Reduction of electromagnetic-<strong>in</strong>terference effects:v Less <strong>in</strong>fluence on measur<strong>in</strong>g <strong>in</strong>struments and associated circuits,telecommunication systems, etc.These circuit-breakers <strong>the</strong>refore contribute towards an improved exploitation of:b Cables and wir<strong>in</strong>gb Prefabricated cable-trunk<strong>in</strong>g systemsb Switchgear, <strong>the</strong>reby reduc<strong>in</strong>g <strong>the</strong> age<strong>in</strong>g of <strong>the</strong> <strong>in</strong>stallationExampleOn a system hav<strong>in</strong>g a prospective shortcircuit current of 150 kA rms, a Compact Lcircuit-breaker limits <strong>the</strong> peak current to less than 10% of <strong>the</strong> calculated prospectivepeak value, and <strong>the</strong> <strong>the</strong>rmal effects to less than 1% of those calculated.Cascad<strong>in</strong>g of <strong>the</strong> several levels of distribution <strong>in</strong> an <strong>in</strong>stallation, downstream of alimit<strong>in</strong>g CB, will also result <strong>in</strong> important sav<strong>in</strong>gs.The technique of cascad<strong>in</strong>g, described <strong>in</strong> sub-clause 4.5 allows, <strong>in</strong> fact, substantialsav<strong>in</strong>gs on switchgear (lower performance permissible downstream of <strong>the</strong> limit<strong>in</strong>gCB(s)) enclosures, and design studies, of up to 20% (overall).Discrim<strong>in</strong>ative protection schemes and cascad<strong>in</strong>g are compatible, <strong>in</strong> <strong>the</strong> CompactNSX range, up to <strong>the</strong> full short-circuit break<strong>in</strong>g capacity of <strong>the</strong> switchgear.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection4 Circuit-breakerH18The choice of a range of circuit-breakers isdeterm<strong>in</strong>ed by: <strong>the</strong> electrical characteristics of<strong>the</strong> <strong>in</strong>stallation, <strong>the</strong> environment, <strong>the</strong> loads anda need for remote control, toge<strong>the</strong>r with <strong>the</strong> typeof telecommunications system envisagedAmbienttemperatureS<strong>in</strong>gle CB<strong>in</strong> free airFig. H40 : Ambient temperatureTemperature of airsurroud<strong>in</strong>g <strong>the</strong>circuit breakersCircuit breakers <strong>in</strong>stalled<strong>in</strong> an enclosureAmbienttemperature4.4 Selection of a circuit-breakerChoice of a circuit-breakerThe choice of a CB is made <strong>in</strong> terms of:b <strong>Electrical</strong> characteristics of <strong>the</strong> <strong>in</strong>stallation for which <strong>the</strong> CB is <strong>in</strong>tendedb Its eventual environment: ambient temperature, <strong>in</strong> a kiosk or switchboardenclosure, climatic conditions, etc.b Short-circuit current break<strong>in</strong>g and mak<strong>in</strong>g requirementsb Operational specifications: discrim<strong>in</strong>ative tripp<strong>in</strong>g, requirements (or not) forremote control and <strong>in</strong>dication and related auxiliary contacts, auxiliary tripp<strong>in</strong>g coils,connectionb <strong>Installation</strong> regulations; <strong>in</strong> particular: protection of personsb Load characteristics, such as motors, fluorescent light<strong>in</strong>g, LV/LV transformersThe follow<strong>in</strong>g notes relate to <strong>the</strong> choice LV circuit-breaker for use <strong>in</strong> distributionsystems.Choice of rated current <strong>in</strong> terms of ambient temperatureThe rated current of a circuit-breaker is def<strong>in</strong>ed for operation at a given ambienttemperature, <strong>in</strong> general:b 30 °C for domestic-type CBsb 40 °C for <strong>in</strong>dustrial-type CBsPerformance of <strong>the</strong>se CBs <strong>in</strong> a different ambient temperature depends ma<strong>in</strong>ly on <strong>the</strong>technology of <strong>the</strong>ir tripp<strong>in</strong>g units (see Fig. H40).Circuit-breakers with uncompensated <strong>the</strong>rmaltripp<strong>in</strong>g units have a trip current level thatdepends on <strong>the</strong> surround<strong>in</strong>g temperatureUncompensated <strong>the</strong>rmal magnetic tripp<strong>in</strong>g unitsCircuit-breakers with uncompensated <strong>the</strong>rmal tripp<strong>in</strong>g elements have a tripp<strong>in</strong>gcurrentlevel that depends on <strong>the</strong> surround<strong>in</strong>g temperature. If <strong>the</strong> CB is <strong>in</strong>stalled<strong>in</strong> an enclosure, or <strong>in</strong> a hot location (boiler room, etc.), <strong>the</strong> current required to trip<strong>the</strong> CB on overload will be sensibly reduced. When <strong>the</strong> temperature <strong>in</strong> which <strong>the</strong>CB is located exceeds its reference temperature, it will <strong>the</strong>refore be “derated”. Forthis reason, CB manufacturers provide tables which <strong>in</strong>dicate factors to apply attemperatures different to <strong>the</strong> CB reference temperature. It may be noted from typicalexamples of such tables (see Fig. H41) that a lower temperature than <strong>the</strong> referencevalue produces an up-rat<strong>in</strong>g of <strong>the</strong> CB. Moreover, small modular-type CBs mounted<strong>in</strong> juxtaposition, as shown typically <strong>in</strong> Figure H27, are usually mounted <strong>in</strong> a smallclosed metal case. In this situation, mutual heat<strong>in</strong>g, when pass<strong>in</strong>g normal loadcurrents, generally requires <strong>the</strong>m to be derated by a factor of 0.8.ExampleWhat rat<strong>in</strong>g (In) should be selected for a C60 N?b Protect<strong>in</strong>g a circuit, <strong>the</strong> maximum load current of which is estimated to be 34 Ab Installed side-by-side with o<strong>the</strong>r CBs <strong>in</strong> a closed distribution boxb In an ambient temperature of 50 °CA C60N circuit-breaker rated at 40 A would be derated to 35.6 A <strong>in</strong> ambient air at50 °C (see Fig. H41). To allow for mutual heat<strong>in</strong>g <strong>in</strong> <strong>the</strong> enclosed space, however, <strong>the</strong>0.8 factor noted above must be employed, so that, 35.6 x 0.8 = 28.5 A, which is notsuitable for <strong>the</strong> 34 A load.A 50 A circuit-breaker would <strong>the</strong>refore be selected, giv<strong>in</strong>g a (derated) current rat<strong>in</strong>gof 44 x 0.8 = 35.2 A.© Schneider Electric - all rights reservedCompensated <strong>the</strong>rmal-magnetic tripp<strong>in</strong>g unitsThese tripp<strong>in</strong>g units <strong>in</strong>clude a bi-metal compensat<strong>in</strong>g strip which allows <strong>the</strong> overloadtrip-current sett<strong>in</strong>g (Ir or Irth) to be adjusted, with<strong>in</strong> a specified range, irrespective of<strong>the</strong> ambient temperature.For example:b In certa<strong>in</strong> countries, <strong>the</strong> TT system is standard on LV distribution systems, anddomestic (and similar) <strong>in</strong>stallations are protected at <strong>the</strong> service position by a circuitbreakerprovided by <strong>the</strong> supply authority. This CB, besides afford<strong>in</strong>g protectionaga<strong>in</strong>st <strong>in</strong>direct-contact hazard, will trip on overload; <strong>in</strong> this case, if <strong>the</strong> consumerexceeds <strong>the</strong> current level stated <strong>in</strong> his supply contract with <strong>the</strong> power authority. Thecircuit-breaker (y 60 A) is compensated for a temperature range of - 5 °C to + 40 °C.b LV circuit-breakers at rat<strong>in</strong>gs y 630 A are commonly equipped with compensatedtripp<strong>in</strong>g units for this range (- 5 °C to + 40 °C)Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection4 Circuit-breakerC60a, C60H: curve C. C60N: curves B and C (reference temperature: 30 °C)Rat<strong>in</strong>g (A) 20 °C 25 °C 30 °C 35 °C 40 °C 45 °C 50 °C 55 °C 60 °C1 1.05 1.02 1.00 0.98 0.95 0.93 0.90 0.88 0.852 2.08 2.04 2.00 1.96 1.92 1.88 1.84 1.80 1.743 3.18 3.09 3.00 2.91 2.82 2.70 2.61 2.49 2.374 4.24 4.12 4.00 3.88 3.76 3.64 3.52 3.36 3.246 6.24 6.12 6.00 5.88 5.76 5.64 5.52 5.40 5.3010 10.6 10.3 10.0 9.70 9.30 9.00 8.60 8.20 7.8016 16.8 16.5 16.0 15.5 15.2 14.7 14.2 13.8 13.520 21.0 20.6 20.0 19.4 19.0 18.4 17.8 17.4 16.825 26.2 25.7 25.0 24.2 23.7 23.0 22.2 21.5 20.732 33.5 32.9 32.0 31.4 30.4 29.8 28.4 28.2 27.540 42.0 41.2 40.0 38.8 38.0 36.8 35.6 34.4 33.250 52.5 51.5 50.0 48.5 47.4 45.5 44.0 42.5 40.563 66.2 64.9 63.0 61.1 58.0 56.7 54.2 51.7 49.2Compact NSX100-250 N/H/L equippment with TM-D or TM-G trip unitsRat<strong>in</strong>g Temperature (°C)(A) 10 15 20 25 30 35 40 45 50 55 60 65 7016 18.4 18.7 18 18 17 16.6 16 15.6 15.2 14.8 14.5 14 13.825 28.8 28 27.5 25 26.3 25.6 25 24.5 24 23.5 23 22 2132 36.8 36 35.2 34.4 33.6 32.8 32 31.3 30.5 30 29.5 29 28.540 46 45 44 43 42 41 40 39 38 37 36 35 3450 57.5 56 55 54 52.5 51 50 49 48 47 46 45 4463 72 71 69 68 66 65 63 61.5 60 58 57 55 5480 92 90 88 86 84 82 80 78 76 74 72 70 68100 115 113 110 108 105 103 100 97.5 95 92.5 90 87.5 85125 144 141 138 134 131 128 125 122 119 116 113 109 106160 184 180 176 172 168 164 160 156 152 148 144 140 136200 230 225 220 215 210 205 200 195 190 185 180 175 170250 288 281 277 269 263 256 250 244 238 231 225 219 213H19Fig. H41 : Examples of tables for <strong>the</strong> determ<strong>in</strong>ation of derat<strong>in</strong>g/uprat<strong>in</strong>g factors to apply to CBswith uncompensated <strong>the</strong>rmal tripp<strong>in</strong>g units, accord<strong>in</strong>g to temperatureElectronic tripp<strong>in</strong>g units are highly stable <strong>in</strong>chang<strong>in</strong>g temperature levelsElectronic trip unitsAn important advantage with electronic tripp<strong>in</strong>g units is <strong>the</strong>ir stable performance<strong>in</strong> chang<strong>in</strong>g temperature conditions. However, <strong>the</strong> switchgear itself often imposesoperational limits <strong>in</strong> elevated temperatures, so that manufacturers generally providean operat<strong>in</strong>g chart relat<strong>in</strong>g <strong>the</strong> maximum values of permissible trip-current levels to<strong>the</strong> ambient temperature (see Fig. H42).Moreover, electronic trip units can provide <strong>in</strong>formation that can be used for a bettermanagement of <strong>the</strong> electrical distribution, <strong>in</strong>clud<strong>in</strong>g <strong>energy</strong> efficiency and powerquality.Masterpact NW20 version 40°C 45°C 50°C 55°C 60°CH1/H2/H3 Withdrawable with In (A) 2,000 2,000 2,000 1,980 1,890horizontal plugs Maximum 1 1 1 0.99 0.95adjustment IrL1 Withdrawable with In (A) 2,000 200 1,900 1,850 1,800on-edge plugs Maximum 1 1 0.95 0.93 0.90adjustment IrCoeff.In (A)1 2,0000.95 1,8900.90 1,800NW20 withdrawable withhorizontal plugsNW20 L1 withdrawablewith on edge plugs20 25 30 35 40 45 50 55 60Fig. H42 : Derat<strong>in</strong>g of Masterpact NW20 circuit-breaker, accord<strong>in</strong>g to <strong>the</strong> temperatureθ°C© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection4 Circuit-breakerSelection of an <strong>in</strong>stantaneous, or short-time-delay, tripp<strong>in</strong>gthresholdFigure H43 below summarizes <strong>the</strong> ma<strong>in</strong> characteristics of <strong>the</strong> <strong>in</strong>stantaneous orshort-time delay trip units.Type Tripp<strong>in</strong>g unit ApplicationsLow sett<strong>in</strong>g b Sources produc<strong>in</strong>g low short-circuitttype Bcurrent levels(standby generators)b Long lengths of l<strong>in</strong>e or cabletIStandard sett<strong>in</strong>gtype Cb Protection of circuits: general casetIHigh sett<strong>in</strong>gtype D or Kb Protection of circuits hav<strong>in</strong>g high <strong>in</strong>itialtransient current levels(e.g. motors, transformers, resistive loads)H20It12 In b Protection of motors <strong>in</strong> association withtype MAdiscontactors(contactors with overload protection)IFig. H43 : Different tripp<strong>in</strong>g units, <strong>in</strong>stantaneous or short-time-delayedThe <strong>in</strong>stallation of a LV circuit-breaker requiresthat its short-circuit break<strong>in</strong>g capacity (or that of<strong>the</strong> CB toge<strong>the</strong>r with an associated device) beequal to or exceeds <strong>the</strong> calculated prospectiveshort-circuit current at its po<strong>in</strong>t of <strong>in</strong>stallationSelection of a circuit-breaker accord<strong>in</strong>g to <strong>the</strong> short-circuitbreak<strong>in</strong>g capacity requirementsThe <strong>in</strong>stallation of a circuit-breaker <strong>in</strong> a LV <strong>in</strong>stallation must fulfil one of <strong>the</strong> twofollow<strong>in</strong>g conditions:b Ei<strong>the</strong>r have a rated short-circuit break<strong>in</strong>g capacity Icu (or Icn) which is equal to orexceeds <strong>the</strong> prospective short-circuit current calculated for its po<strong>in</strong>t of <strong>in</strong>stallation, orb If this is not <strong>the</strong> case, be associated with ano<strong>the</strong>r device which is locatedupstream, and which has <strong>the</strong> required short-circuit break<strong>in</strong>g capacityIn <strong>the</strong> second case, <strong>the</strong> characteristics of <strong>the</strong> two devices must be co-ord<strong>in</strong>atedsuch that <strong>the</strong> <strong>energy</strong> permitted to pass through <strong>the</strong> upstream device must notexceed that which <strong>the</strong> downstream device and all associated cables, wires and o<strong>the</strong>rcomponents can withstand, without be<strong>in</strong>g damaged <strong>in</strong> any way. This technique isprofitably employed <strong>in</strong>:b Associations of fuses and circuit-breakersb Associations of current-limit<strong>in</strong>g circuit-breakers and standard circuit-breakers.The technique is known as “cascad<strong>in</strong>g” (see sub-clause 4.5 of this chapter)© Schneider Electric - all rights reservedThe circuit-breaker at <strong>the</strong> output of <strong>the</strong> smallesttransformer must have a short-circuit capacityadequate for a fault current which is higherthan that through any of <strong>the</strong> o<strong>the</strong>r transformerLV circuit-breakersThe selection of ma<strong>in</strong> and pr<strong>in</strong>cipal circuit-breakersA s<strong>in</strong>gle transformerIf <strong>the</strong> transformer is located <strong>in</strong> a consumer’s substation, certa<strong>in</strong> national standardsrequire a LV circuit-breaker <strong>in</strong> which <strong>the</strong> open contacts are clearly visible such asCompact NSX withdrawable circuit-breaker.Example (see Fig. H44 opposite page)What type of circuit-breaker is suitable for <strong>the</strong> ma<strong>in</strong> circuit-breaker of an <strong>in</strong>stallationsupplied through a 250 kVA MV/LV (400 V) 3-phase transformer <strong>in</strong> a consumer’ssubstation?In transformer = 360 AIsc (3-phase) = 8.9 kAA Compact NSX400N with an adjustable tripp<strong>in</strong>g-unit range of 160 A - 400 A and ashort-circuit break<strong>in</strong>g capacity (Icu) of 50 kA would be a suitable choice for this duty.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection4 Circuit-breaker250 kVA20 kV/400 VCompactNSX400NFig. H44 : Example of a transformer <strong>in</strong> a consumer’s substationA1B1MVLVTr1CBMCBPA2B2Fig. H45 : Transformers <strong>in</strong> parallelEMVLVTr2CBMCBPA3B3MVLVTr3CBMSeveral transformers <strong>in</strong> parallel (see Fig. H45)b The circuit-breakers CBP outgo<strong>in</strong>g from <strong>the</strong> LV distribution board must each becapable of break<strong>in</strong>g <strong>the</strong> total fault current from all transformers connected to <strong>the</strong>busbars, viz: Isc1 + Isc2 + Isc3b The circuit-breakers CBM, each controll<strong>in</strong>g <strong>the</strong> output of a transformer, must becapable of deal<strong>in</strong>g with a maximum short-circuit current of (for example) Isc2 + Isc3only, for a short-circuit located on <strong>the</strong> upstream side of CBM1.From <strong>the</strong>se considerations, it will be seen that <strong>the</strong> circuit-breaker of <strong>the</strong> smallesttransformer will be subjected to <strong>the</strong> highest level of fault current <strong>in</strong> <strong>the</strong>secircumstances, while <strong>the</strong> circuit-breaker of <strong>the</strong> largest transformer will pass <strong>the</strong>lowest level of short-circuit currentb The rat<strong>in</strong>gs of CBMs must be chosen accord<strong>in</strong>g to <strong>the</strong> kVA rat<strong>in</strong>gs of <strong>the</strong>associated transformersNote: The essential conditions for <strong>the</strong> successful operation of 3-phase transformers<strong>in</strong> parallel may be summarized as follows:1. <strong>the</strong> phase shift of <strong>the</strong> voltages, primary to secondary, must be <strong>the</strong> same <strong>in</strong> all unitsto be paralleled.2. <strong>the</strong> open-circuit voltage ratios, primary to secondary, must be <strong>the</strong> same <strong>in</strong> all units.3. <strong>the</strong> short-circuit impedance voltage (Zsc%) must be <strong>the</strong> same for all units.For example, a 750 kVA transformer with a Zsc = 6% will share <strong>the</strong> load correctlywith a 1,000 kVA transformer hav<strong>in</strong>g a Zsc of 6%, i.e. <strong>the</strong> transformers will be loadedautomatically <strong>in</strong> proportion to <strong>the</strong>ir kVA rat<strong>in</strong>gs. For transformers hav<strong>in</strong>g a ratio of kVArat<strong>in</strong>gs exceed<strong>in</strong>g 2, parallel operation is not recommended.Figure H46 <strong>in</strong>dicates, for <strong>the</strong> most usual arrangement (2 or 3 transformers ofequal kVA rat<strong>in</strong>gs) <strong>the</strong> maximum short-circuit currents to which ma<strong>in</strong> and pr<strong>in</strong>cipalCBs (CBM and CBP respectively, <strong>in</strong> Figure H45) are subjected. It is based on <strong>the</strong>follow<strong>in</strong>g hypo<strong>the</strong>ses:b The short-circuit 3-phase power on <strong>the</strong> MV side of <strong>the</strong> transformer is 500 MVAb The transformers are standard 20/0.4 kV distribution-type units rated as listedb The cables from each transformer to its LV circuit-breaker comprise 5 metres ofs<strong>in</strong>gle core conductorsb Between each <strong>in</strong>com<strong>in</strong>g-circuit CBM and each outgo<strong>in</strong>g-circuit CBP <strong>the</strong>re is1 metre of busbarb The switchgear is <strong>in</strong>stalled <strong>in</strong> a floormounted enclosed switchboard, <strong>in</strong> an ambientairtemperature of 30 °CMoreover, this table shows selected circuit-breakers of M-G manufacturerecommended for ma<strong>in</strong> and pr<strong>in</strong>cipal circuit-breakers <strong>in</strong> each case.Example (see Fig. H47 next page)b Circuit-breaker selection for CBM duty:For a 800 kVA transformer In = 1.126 A; Icu (m<strong>in</strong>imum) = 38 kA (from Figure H46),<strong>the</strong> CBM <strong>in</strong>dicated <strong>in</strong> <strong>the</strong> table is a Compact NS1250N (Icu = 50 kA)b Circuit-breaker selection for CBP duty:The s.c. break<strong>in</strong>g capacity (Icu) required for <strong>the</strong>se circuit-breakers is given <strong>in</strong> <strong>the</strong>Figure H46 as 56 kA.A recommended choice for <strong>the</strong> three outgo<strong>in</strong>g circuits 1, 2 and 3 would be currentlimit<strong>in</strong>gcircuit-breakers types NSX400 L, NSX250 L and NSX100 L. The Icu rat<strong>in</strong>g <strong>in</strong>each case = 150 kA.H21Number and kVA rat<strong>in</strong>gs M<strong>in</strong>imum S.C break<strong>in</strong>g Ma<strong>in</strong> circuit-breakers (CBM) M<strong>in</strong>imum S.C break<strong>in</strong>g Rated current In ofof 20/0.4 kV transformers capacity of ma<strong>in</strong> CBs total discrim<strong>in</strong>ation with out capacity of pr<strong>in</strong>cipal CBs pr<strong>in</strong>cipal circuit-breaker(Icu) kA go<strong>in</strong>g circuit-breakers (CBP) (Icu) kA (CPB) 250A2 x 400 14 NW08N1/NS800N 27 NSX250H3 x 400 28 NW08N1/NS800N 42 NSX250H2 x 630 22 NW10N1/NS1000N 42 NSX250H3 x 630 44 NW10N1/NS1000N 67 NSX250H2 x 800 19 NW12N1/NS1250N 38 NSX250H3 x 800 38 NW12N1/NS1250N 56 NSX250H2 x 1,000 23 NW16N1/NS1600N 47 NSX250H3 x 1,000 47 NW16N1/NS1600N 70 NSX250H2 x 1,250 29 NW20N1/NS2000N 59 NSX250H3 x 1,250 59 NW20N1/NS2000N 88 NSX250L2 x 1,600 38 NW25N1/NS2500N 75 NSX250L3 x 1,600 75 NW25N1/NS2500N 113 NSX250L2 x 2,000 47 NW32N1/NS3200N 94 NSX250L3 x 2,000 94 NW32N1/NS3200N 141 NSX250LFig. H46 : Maximum values of short-circuit current to be <strong>in</strong>terrupted by ma<strong>in</strong> and pr<strong>in</strong>cipal circuit-breakers (CBM and CBP respectively), for several transformers <strong>in</strong> parallel© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection4 Circuit-breakerH22Short-circuit fault-current levels at any po<strong>in</strong>t <strong>in</strong>an <strong>in</strong>stallation may be obta<strong>in</strong>ed from tables400 ACBP1100 AFig. H47 : Transformers <strong>in</strong> parallelCBP23 Tr800 kVA20 kV/400 VCBM200 ACBP3These circuit-breakers provide <strong>the</strong> advantages of:v Absolute discrim<strong>in</strong>ation with <strong>the</strong> upstream (CBM) breakersv Exploitation of <strong>the</strong> “cascad<strong>in</strong>g” technique, with its associated sav<strong>in</strong>gs for alldownstream componentsChoice of outgo<strong>in</strong>g-circuit CBs and f<strong>in</strong>al-circuit CBsUse of table G40From this table, <strong>the</strong> value of 3-phase short-circuit current can be determ<strong>in</strong>ed rapidlyfor any po<strong>in</strong>t <strong>in</strong> <strong>the</strong> <strong>in</strong>stallation, know<strong>in</strong>g:b The value of short-circuit current at a po<strong>in</strong>t upstream of that <strong>in</strong>tended for <strong>the</strong> CBconcernedb The length, c.s.a., and <strong>the</strong> composition of <strong>the</strong> conductors between <strong>the</strong> two po<strong>in</strong>tsA circuit-breaker rated for a short-circuit break<strong>in</strong>g capacity exceed<strong>in</strong>g <strong>the</strong> tabulatedvalue may <strong>the</strong>n be selected.Detailed calculation of <strong>the</strong> short-circuit current levelIn order to calculate more precisely <strong>the</strong> short-circuit current, notably, when <strong>the</strong> shortcircuitcurrent-break<strong>in</strong>g capacity of a CB is slightly less than that derived from <strong>the</strong>table, it is necessary to use <strong>the</strong> method <strong>in</strong>dicated <strong>in</strong> chapter G clause 4.Two-pole circuit-breakers (for phase and neutral) with one protected pole onlyThese CBs are generally provided with an overcurrent protective device on <strong>the</strong>phase pole only, and may be used <strong>in</strong> TT, TN-S and IT schemes. In an IT scheme,however, <strong>the</strong> follow<strong>in</strong>g conditions must be respected:b Condition (B) of table G67 for <strong>the</strong> protection of <strong>the</strong> neutral conductor aga<strong>in</strong>stovercurrent <strong>in</strong> <strong>the</strong> case of a double faultb Short-circuit current-break<strong>in</strong>g rat<strong>in</strong>g: A 2-pole phase-neutral CB must, byconvention, be capable of break<strong>in</strong>g on one pole (at <strong>the</strong> phase-to-phase voltage) <strong>the</strong>current of a double fault equal to 15% of <strong>the</strong> 3-phase short-circuit current at <strong>the</strong> po<strong>in</strong>tof its <strong>in</strong>stallation, if that current is y 10 kA; or 25% of <strong>the</strong> 3-phase short-circuit currentif it exceeds 10 kAb Protection aga<strong>in</strong>st <strong>in</strong>direct contact: this protection is provided accord<strong>in</strong>g to <strong>the</strong>rules for IT schemesInsufficient short-circuit current break<strong>in</strong>g rat<strong>in</strong>gIn low-voltage distribution systems it sometimes happens, especially <strong>in</strong> heavy-dutynetworks, that <strong>the</strong> Isc calculated exceeds <strong>the</strong> Icu rat<strong>in</strong>g of <strong>the</strong> CBs available for<strong>in</strong>stallation, or system changes upstream result <strong>in</strong> lower level CB rat<strong>in</strong>gs be<strong>in</strong>gexceededb Solution 1: Check whe<strong>the</strong>r or not appropriate CBs upstream of <strong>the</strong> CBs affectedare of <strong>the</strong> current-limit<strong>in</strong>g type, allow<strong>in</strong>g <strong>the</strong> pr<strong>in</strong>ciple of cascad<strong>in</strong>g (described <strong>in</strong> subclause4.5) to be appliedb Solution 2: Install a range of CBs hav<strong>in</strong>g a higher rat<strong>in</strong>g. This solution iseconomically <strong>in</strong>terest<strong>in</strong>g only where one or two CBs are affectedb Solution 3: Associate current-limit<strong>in</strong>g fuses (gG or aM) with <strong>the</strong> CBs concerned, on<strong>the</strong> upstream side. This arrangement must, however, respect <strong>the</strong> follow<strong>in</strong>g rules:v The fuse rat<strong>in</strong>g must be appropriatev No fuse <strong>in</strong> <strong>the</strong> neutral conductor, except <strong>in</strong> certa<strong>in</strong> IT <strong>in</strong>stallations where a doublefault produces a current <strong>in</strong> <strong>the</strong> neutral which exceeds <strong>the</strong> short-circuit break<strong>in</strong>g rat<strong>in</strong>gof <strong>the</strong> CB. In this case, <strong>the</strong> blow<strong>in</strong>g of <strong>the</strong> neutral fuse must cause <strong>the</strong> CB to trip onall phases© Schneider Electric - all rights reservedThe technique of “cascad<strong>in</strong>g” uses <strong>the</strong>properties of current-limit<strong>in</strong>g circuit-breakersto permit <strong>the</strong> <strong>in</strong>stallation of all downstreamswitchgear, cables and o<strong>the</strong>r circuit componentsof significantly lower performance than wouldo<strong>the</strong>rwise be necessary, <strong>the</strong>reby simplify<strong>in</strong>g andreduc<strong>in</strong>g <strong>the</strong> cost of an <strong>in</strong>stallation4.5 Coord<strong>in</strong>ation between circuit-breakersCascad<strong>in</strong>gDef<strong>in</strong>ition of <strong>the</strong> cascad<strong>in</strong>g techniqueBy limit<strong>in</strong>g <strong>the</strong> peak value of short-circuit current pass<strong>in</strong>g through it, a current-limit<strong>in</strong>gCB permits <strong>the</strong> use, <strong>in</strong> all circuits downstream of its location, of switchgear andcircuit components hav<strong>in</strong>g much lower short-circuit break<strong>in</strong>g capacities, and <strong>the</strong>rmaland electromechanical withstand capabilities than would o<strong>the</strong>rwise be necessary.Reduced physical size and lower performance requirements lead to substantialeconomy and to <strong>the</strong> simplification of <strong>in</strong>stallation work. It may be noted that, while acurrent-limit<strong>in</strong>g circuit-breaker has <strong>the</strong> effect on downstream circuits of (apparently)<strong>in</strong>creas<strong>in</strong>g <strong>the</strong> source impedance dur<strong>in</strong>g short-circuit conditions, it has no sucheffect <strong>in</strong> any o<strong>the</strong>r condition; for example, dur<strong>in</strong>g <strong>the</strong> start<strong>in</strong>g of a large motor (wherea low source impedance is highly desirable). The range of Compact NSX currentlimit<strong>in</strong>gcircuit-breakers with powerful limit<strong>in</strong>g performances is particularly <strong>in</strong>terest<strong>in</strong>g.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection4 Circuit-breakerIn general, laboratory tests are necessary toensure that <strong>the</strong> conditions of implementationrequired by national standards are met andcompatible switchgear comb<strong>in</strong>ations must beprovided by <strong>the</strong> manufacturerConditions of implementationMost national standards admit <strong>the</strong> cascad<strong>in</strong>g technique, on condition that <strong>the</strong>amount of <strong>energy</strong> “let through” by <strong>the</strong> limit<strong>in</strong>g CB is less than <strong>the</strong> <strong>energy</strong> alldownstream CBs and components are able to withstand without damage.In practice this can only be verified for CBs by tests performed <strong>in</strong> a laboratory. Suchtests are carried out by manufacturers who provide <strong>the</strong> <strong>in</strong>formation <strong>in</strong> <strong>the</strong> form oftables, so that users can confidently design a cascad<strong>in</strong>g scheme based on <strong>the</strong>comb<strong>in</strong>ation of recommended circuit-breaker types. As an example, Figure H48<strong>in</strong>dicates <strong>the</strong> cascad<strong>in</strong>g possibilities of circuit-breaker types C60, DT40N, C120 andNG125 when <strong>in</strong>stalled downstream of current-limit<strong>in</strong>g CBs Compact NSX 250 N, Hor L for a 230/400 V or 240/415 V 3-phase <strong>in</strong>stallation.kA rmsShort-circuit 150 NSX250Lbreak<strong>in</strong>g capacity 70 NSX250Hof <strong>the</strong> upstream(limiter) CBs50 NSX250NPossible short-circuit 150 NG125Lbreak<strong>in</strong>g capacity of 70 NG125L<strong>the</strong> downstream CBs36 NG125N NG125N(benefit<strong>in</strong>g from <strong>the</strong>30 C60N/H=40AH23Fig. H48 : Example of cascad<strong>in</strong>g possibilities on a 230/400 V or 240/415 V 3-phase <strong>in</strong>stallationAdvantages of cascad<strong>in</strong>gThe current limitation benefits all downstream circuits that are controlled by <strong>the</strong>current-limit<strong>in</strong>g CB concerned.The pr<strong>in</strong>ciple is not restrictive, i.e. current-limit<strong>in</strong>g CBs can be <strong>in</strong>stalled at any po<strong>in</strong>t <strong>in</strong>an <strong>in</strong>stallation where <strong>the</strong> downstream circuits would o<strong>the</strong>rwise be <strong>in</strong>adequately rated.The result is:b Simplified short-circuit current calculationsb Simplification, i.e. a wider choice of downstream switchgear and appliancesb The use of lighter-duty switchgear and appliances, with consequently lower costb Economy of space requirements, s<strong>in</strong>ce light-duty equipment have generally asmaller volumeDiscrim<strong>in</strong>ation may be total or partial, andbased on <strong>the</strong> pr<strong>in</strong>ciples of current levels, ortime-delays, or a comb<strong>in</strong>ation of both. A morerecent development is based on <strong>the</strong> logictechniques.The Schneider Electric system takesadvantages of both current-limitation anddiscrim<strong>in</strong>ationPr<strong>in</strong>ciples of discrim<strong>in</strong>ative tripp<strong>in</strong>g (selectivity)Discrim<strong>in</strong>ation is achieved by automatic protective devices if a fault condition, occurr<strong>in</strong>gat any po<strong>in</strong>t <strong>in</strong> <strong>the</strong> <strong>in</strong>stallation, is cleared by <strong>the</strong> protective device located immediatelyupstream of <strong>the</strong> fault, while all o<strong>the</strong>r protective devices rema<strong>in</strong> unaffected (seeFig. H49).ABIsc0Total discrim<strong>in</strong>ationIscIr BIsc BPartial discrim<strong>in</strong>ation0B only opens A and B openIscIr B Is Isc BFig. H49 : Total and partial discrim<strong>in</strong>ationIs = discrim<strong>in</strong>ation limit© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection4 Circuit-breakerH24tB AIIr B Ir A Isc B Im AFig. H50 : Total discrim<strong>in</strong>ation between CBs A and BtB AIIr B Ir A Im A Is c B Is c AB only opens A and B openFig. H51 : Partial discrim<strong>in</strong>ation between CBs A and BDiscrim<strong>in</strong>ation between circuit-breakers A and B is total if <strong>the</strong> maximum value ofshort-circuit-current on circuit B (Isc B) does not exceed <strong>the</strong> short-circuit trip sett<strong>in</strong>gof circuit-breaker A (Im A). For this condition, B only will trip (see Fig. H50).Discrim<strong>in</strong>ation is partial if <strong>the</strong> maximum possible short-circuit current on circuit Bexceeds <strong>the</strong> short-circuit trip-current sett<strong>in</strong>g of circuit-breaker A. For this maximumcondition, both A and B will trip (see Fig. H51).Protection aga<strong>in</strong>st overload : discrim<strong>in</strong>ation based on current levels(see Fig. H52a)This method is realized by sett<strong>in</strong>g successive tripp<strong>in</strong>g thresholds at stepped levels,from downstream relays (lower sett<strong>in</strong>gs) towards <strong>the</strong> source (higher sett<strong>in</strong>gs).Discrim<strong>in</strong>ation is total or partial, depend<strong>in</strong>g on particular conditions, as noted above.As a rule of thumb, discrim<strong>in</strong>ation is achieved when:b IrA/IrB > 2:Protection aga<strong>in</strong>st low level short-circuit currents : discrim<strong>in</strong>ation based onstepped time delays (see Fig. H52b)This method is implemented by adjust<strong>in</strong>g <strong>the</strong> time-delayed tripp<strong>in</strong>g units, such thatdownstream relays have <strong>the</strong> shortest operat<strong>in</strong>g times, with progressively longerdelays towards <strong>the</strong> source.In <strong>the</strong> two-level arrangement shown, upstream circuit-breaker A is delayedsufficiently to ensure total discrim<strong>in</strong>ation with B (for example: Masterpact wi<strong>the</strong>lectronic trip unit).Discrim<strong>in</strong>ation based on a comb<strong>in</strong>ation of <strong>the</strong> two previous methods(see Fig. H52c)A time-delay added to a current level scheme can improve <strong>the</strong> overall discrim<strong>in</strong>ationperformance.The upstream CB has two high-speed magnetic tripp<strong>in</strong>g thresholds:b Im A: delayed magnetic trip or short-delay electronic tripb Ii: <strong>in</strong>stantaneous stripDiscrim<strong>in</strong>ation is total if Isc B < Ii (<strong>in</strong>stantaneous).Protection aga<strong>in</strong>st high level short-circuit currents: discrim<strong>in</strong>ation based onarc-<strong>energy</strong> levelsThis technology implemented <strong>in</strong> <strong>the</strong> Compact NSX range (current limit<strong>in</strong>g circuitbreaker)is extremely effective for achievement of total discrim<strong>in</strong>ation.Pr<strong>in</strong>ciple: When a very high level short-circuit current is detected by <strong>the</strong> two circuitsbreakerA and B, <strong>the</strong>ir contacts open simultaneously. As a result, <strong>the</strong> current is highlylimited.b The very high arc-<strong>energy</strong> at level B <strong>in</strong>duces <strong>the</strong> tripp<strong>in</strong>g of circuit-breaker Bb Then, <strong>the</strong> arc-<strong>energy</strong> is limited at level A and is not sufficient to <strong>in</strong>duce <strong>the</strong> tripp<strong>in</strong>gof AAs a rule of thumb, <strong>the</strong> discrim<strong>in</strong>ation between Compact NSX is total if <strong>the</strong> size ratiobetween A and B is greater than 2.5.a) tb)tAc) tBABABAIsc BIr BIr AIBIsc B∆tIIm AdelayedIi A<strong>in</strong>stantaneousI© Schneider Electric - all rights reservedFig. H52 : Discrim<strong>in</strong>ationSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection4 Circuit-breakerCurrent-level discrim<strong>in</strong>ationThis technique is directly l<strong>in</strong>ked to <strong>the</strong> stag<strong>in</strong>g of <strong>the</strong> Long Time (LT) tripp<strong>in</strong>g curvesof two serial-connected circuit-breakers.t D2 D1D1D2IIr2Ir1Isd 2 Isd1Fig. H53 : Current discrim<strong>in</strong>ationThe discrim<strong>in</strong>ation limit ls is:b Is = Isd2 if <strong>the</strong> thresholds lsd1 and lsd2 are too close or merge,b Is = Isd1 if <strong>the</strong> thresholds lsd1 and lsd2 are sufficiently far apart.As a rule, current discrim<strong>in</strong>ation is achieved when:b Ir1 / Ir2 < 2,b Isd1 / Isd2 > 2.The discrim<strong>in</strong>ation limit is:b Is = Isd1.H25Discrim<strong>in</strong>ation qualityDiscrim<strong>in</strong>ation is total if Is > Isc(D2), i.e. Isd1 > Isc(D2).This normally implies:b a relatively low level Isc(D2),b a large difference between <strong>the</strong> rat<strong>in</strong>gs of circuit-breakers D1 and D2.Current discrim<strong>in</strong>ation is normally used <strong>in</strong> f<strong>in</strong>al distribution.Discrim<strong>in</strong>ation based on time-delayed tripp<strong>in</strong>guses CBs referred to as “selective” (<strong>in</strong> somecountries).Implementation of <strong>the</strong>se CBs is relatively simpleand consists <strong>in</strong> delay<strong>in</strong>g <strong>the</strong> <strong>in</strong>stant of tripp<strong>in</strong>gof <strong>the</strong> several series-connected circuit-breakers<strong>in</strong> a stepped time sequenceTime discrim<strong>in</strong>ationThis is <strong>the</strong> extension of current discrim<strong>in</strong>ation and is obta<strong>in</strong>ed by stag<strong>in</strong>g over timeof <strong>the</strong> tripp<strong>in</strong>g curves. This technique consists of giv<strong>in</strong>g a time delay of t to <strong>the</strong> ShortTime (ST) tripp<strong>in</strong>g of D1.tD2D1D1D2Fig. H54 : Time discrim<strong>in</strong>ationIr2Ir1Isd 2 Isd1∆tIi1I© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection4 Circuit-breakerThe thresholds (Ir1, Isd1) of D1 and (Ir2, Isd2) comply with <strong>the</strong> stag<strong>in</strong>g rules ofcurrent discrim<strong>in</strong>ation.The discrim<strong>in</strong>ation limit ls of <strong>the</strong> association is at least equal to li1, <strong>the</strong> <strong>in</strong>stantaneousthreshold of D1.H26Masterpact NT06630 ACompact NSX250 ACompact NSX100 AMulti 9C60Discrim<strong>in</strong>ation qualityThere are two possible applications:b on f<strong>in</strong>al and/or <strong>in</strong>termediate feedersA category circuit-breakers can be used with time-delayed tripp<strong>in</strong>g of <strong>the</strong>upstream circuit-breaker. This allows extension of current discrim<strong>in</strong>ation upto <strong>the</strong> <strong>in</strong>stantaneous threshold li1 of <strong>the</strong> upstream circuit-breaker: Is = li1.If Isc(D2) is not too high - case of a f<strong>in</strong>al feeder - total discrim<strong>in</strong>ationcan be obta<strong>in</strong>ed.b on <strong>the</strong> <strong>in</strong>comers and feeders of <strong>the</strong> MSBAt this level, as cont<strong>in</strong>uity of supply takes priority, <strong>the</strong> <strong>in</strong>stallationcharacteristics allow use of B category circuit-breakers designed fortime-delayed tripp<strong>in</strong>g. These circuit-breakers have a high <strong>the</strong>rmal withstand(Icw u 50% Icn for t = 1s): Is = Icw1.Even for high lsc(D2), time discrim<strong>in</strong>ation normally provides totaldiscrim<strong>in</strong>ation: Icw1 > Icc(D2).Note: Use of B category circuit-breakers means that <strong>the</strong> <strong>in</strong>stallation must withstandhigh electrodynamic and <strong>the</strong>rmal stresses.Consequently, <strong>the</strong>se circuit-breakers have a high <strong>in</strong>stantaneous threshold li that canbe adjusted and disabled <strong>in</strong> order to protect <strong>the</strong> busbars if necessary.Practical example of discrim<strong>in</strong>ation at several levels with Schneider Electriccircuit-breakers (with electronic trip units)"Masterpact NT is totally selective with any moulded-case Compact NSX circuitbreaker, i.e., <strong>the</strong> downstream circuit-breaker will trip for any short-circuit value up toits break<strong>in</strong>g capacity. Fur<strong>the</strong>r, all Compact NSX CBs are totally selective, as long as<strong>the</strong> ration between sizes is greater than 1.6 and <strong>the</strong> ratio between rat<strong>in</strong>gs is greaterthan 2.5. The same rules apply for <strong>the</strong> total selectivity with <strong>the</strong> m<strong>in</strong>iature circuitbreakersMulti9 fur<strong>the</strong>r downstream (see Fig. H55).tBANon tripp<strong>in</strong>gtime of ACurrent-break<strong>in</strong>gtime for BIr BOnly B opensIcc BIIccFig. H55 : 4 level discrim<strong>in</strong>ation with Schneider Electric circuit breakers : Masterpact NTCompact NSX and Multi 9© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection4 Circuit-breakerEnergy discrim<strong>in</strong>ation with current limitationCascad<strong>in</strong>g between 2 devices is normally achieved by us<strong>in</strong>g <strong>the</strong> tripp<strong>in</strong>g of <strong>the</strong>upstream circuit-breaker A to help <strong>the</strong> downstream circuit-breaker B to break <strong>the</strong>current. The discrim<strong>in</strong>ation limit Is is consequently equal to <strong>the</strong> ultimate break<strong>in</strong>gcurrent Icu B of circuit-breaker B act<strong>in</strong>g alone, as cascad<strong>in</strong>g requires <strong>the</strong> tripp<strong>in</strong>g ofboth devices.The <strong>energy</strong> discrim<strong>in</strong>ation technology implemented <strong>in</strong> Compact NSX circuit-breakersallows to improve <strong>the</strong> discrim<strong>in</strong>ation limit to a value higher than <strong>the</strong> ultimate break<strong>in</strong>gcurrent Icu B of <strong>the</strong> downstream circuit-breaker. The pr<strong>in</strong>ciple is as follows:b The downstream limit<strong>in</strong>g circuit-breaker B sees a very high short-circuit current.The tripp<strong>in</strong>g is very fast ( 1.6b The ratio of rated currents of <strong>the</strong> two circuit-breakers is > 2.5Logic discrim<strong>in</strong>ation or “Zone Sequence Interlock<strong>in</strong>g – ZSI”This type of discrim<strong>in</strong>ation can be achieved with circuit-breakers equipped withspecially designed electronic trip units (Compact, Masterpact): only <strong>the</strong> Short TimeProtection (STP) and Ground Fault Protection (GFP) functions of <strong>the</strong> controlleddevices are managed by Logic Discrim<strong>in</strong>ation. In particular, <strong>the</strong> InstantaneousProtection function - <strong>in</strong>herent protection function - is not concerned.Sett<strong>in</strong>gs of controlled circuit-breakersb time delay: <strong>the</strong>re are no rules, but stag<strong>in</strong>g (if any)of <strong>the</strong> time delays of timediscrim<strong>in</strong>ation must be applied (ΔtD1 u ΔtD2 u ΔtD3),b thresholds: <strong>the</strong>re are no threshold rules to be applied, but natural stag<strong>in</strong>g of <strong>the</strong>protection device rat<strong>in</strong>gs must be complied with (IcrD1 u IcrD2 u IcrD3).Note: This technique ensures discrim<strong>in</strong>ation even with circuit-breakers of similarrat<strong>in</strong>gs.Pr<strong>in</strong>ciplesActivation of <strong>the</strong> Logic Discrim<strong>in</strong>ation function is via transmission of <strong>in</strong>formation on<strong>the</strong> pilot wire:b ZSI <strong>in</strong>put:v low level (no downstream faults): <strong>the</strong> Protection function is on standby with areduced time delay (y 0,1 s),v high level (presence of downstream faults): <strong>the</strong> relevant Protection function movesto <strong>the</strong> time delay status set on <strong>the</strong> device.b ZSI output:v low level: <strong>the</strong> trip unit detects no faults and sends no orders,v high level: <strong>the</strong> trip unit detects a fault and sends an order.OperationA pilot wire connects <strong>in</strong> cascad<strong>in</strong>g form <strong>the</strong> protection devices of an <strong>in</strong>stallation(see Fig. H56). When a fault occurs, each circuit-breaker upstream of <strong>the</strong> fault(detect<strong>in</strong>g a fault) sends an order (high level output) and moves <strong>the</strong> upstream circuitbreakerto its natural time delay (high level <strong>in</strong>put). The circuitbreaker placed justabove <strong>the</strong> fault does not receive any orders (low level <strong>in</strong>put) and thus trips almost<strong>in</strong>stantaneously.H27© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


H - LV switchgear: functions & selection4 Circuit-breakerDiscrim<strong>in</strong>ation qualityThis technique enables:b easy achievement as standard of discrim<strong>in</strong>ation on 3 levels or more,b elim<strong>in</strong>ation of important stresses on <strong>the</strong> <strong>in</strong>stallation, relat<strong>in</strong>g to timedelayedtripp<strong>in</strong>g of <strong>the</strong> protection device, <strong>in</strong> event of a fault directly on <strong>the</strong>upstream busbars.All <strong>the</strong> protection devices are thus virtually <strong>in</strong>stantaneous,b easy achievement of downstream discrim<strong>in</strong>ation with non-controlledcircuit-breakers.4.6 Discrim<strong>in</strong>ation MV/LV <strong>in</strong> a consumer’ssubstationH28Fig. H57 : Example1,000t(s)Full-load current1,760 A3-phaseshort-circuitcurrent level31.4 kANS 2000set at1,800 A63 A1,250 kVA20 kV / 400 VCompactNS2000set at 1,800 AIn general <strong>the</strong> transformer <strong>in</strong> a consumer’s substation is protected by MV fuses,suitably rated to match <strong>the</strong> transformer, <strong>in</strong> accordance with <strong>the</strong> pr<strong>in</strong>ciples laid down<strong>in</strong> IEC 60787 and IEC 60420, by follow<strong>in</strong>g <strong>the</strong> advice of <strong>the</strong> fuse manufacturer.The basic requirement is that a MV fuse will not operate for LV faults occurr<strong>in</strong>gdownstream of <strong>the</strong> transformer LV circuit-breaker, so that <strong>the</strong> tripp<strong>in</strong>g characteristiccurve of <strong>the</strong> latter must be to <strong>the</strong> left of that of <strong>the</strong> MV fuse pre-arc<strong>in</strong>g curve.This requirement generally fixes <strong>the</strong> maximum sett<strong>in</strong>gs for <strong>the</strong> LV circuit-breakerprotection:b Maximum short-circuit current-level sett<strong>in</strong>g of <strong>the</strong> magnetic tripp<strong>in</strong>g elementb Maximum time-delay allowable for <strong>the</strong> short-circuit current tripp<strong>in</strong>g element(see Fig. H57)b Short-circuit level at MV term<strong>in</strong>als of transformer: 250 MVAb Transformer MV/LV: 1,250 kVA 20/0.4 kVb MV fuses: 63 Ab Cabl<strong>in</strong>g, transformer - LV circuit-breaker: 10 metres s<strong>in</strong>gle-core cablesb LV circuit-breaker: Compact NSX 2000 set at 1,800 A (Ir)What is <strong>the</strong> maximum short-circuit trip current sett<strong>in</strong>g and its maximum time delayallowable?The curves of Figure H58 show that discrim<strong>in</strong>ation is assured if <strong>the</strong> short-time delaytripp<strong>in</strong>g unit of <strong>the</strong> CB is set at:b A level y 6 Ir = 10.8 kAb A time-delay sett<strong>in</strong>g of step 1 or 2200100101 4 6M<strong>in</strong>imum pre-arc<strong>in</strong>gcurve for 63 A HV fuses(current referred to <strong>the</strong>secondary side of <strong>the</strong>transformer)80.20.1Step 4Step 3Step 20.50Step 10.011,800 AIr10 kAIsc maxi31.4 kAI© Schneider Electric - all rights reservedFig. H58 : Curves of MV fuses and LV circuit-breakerSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Chapter JProtection aga<strong>in</strong>st voltage surges<strong>in</strong> LV1234ContentsGeneral1.1 What is a voltage surge? J21.2 The four voltage surge types J21.3 Ma<strong>in</strong> characteristics of voltage surges J41.4 Different propagation modes J5Overvoltage protection devices2.1 Primary protection devices (protection of <strong>in</strong>stallations J6aga<strong>in</strong>st lightn<strong>in</strong>g)2.2 Secondary protection devices (protection of <strong>in</strong>ternal J8<strong>in</strong>stallations aga<strong>in</strong>st lightn<strong>in</strong>g)Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV3.1 Surge protective device description J113.2 Surge protective device standards J113.3 Surge protective device data accord<strong>in</strong>g to IEC 61643-1 standard J113.4 Lightn<strong>in</strong>g protection standards J133.5 Surge arrester <strong>in</strong>stallation standards J13Choos<strong>in</strong>g a protection device4.1 Protection devices accord<strong>in</strong>g to <strong>the</strong> earth<strong>in</strong>g system J144.2 Internal architecture of surge arresters J154.3 Coord<strong>in</strong>ation of surge arresters J164.4 Selection guide J174.5 Choice of disconnector J224.6 End-of-life <strong>in</strong>dication of <strong>the</strong> surge arrester J234.7 Application example: supermarket J24J2J6J11J14J© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV1 General1.1 What is a voltage surge?A voltage surge is a voltage impulse or wave which is superposed on <strong>the</strong> ratednetwork voltage (see Fig. J1).VoltageLightn<strong>in</strong>g type impulse(duration = 100 µs)"Operat<strong>in</strong>g impulse"type dumped r<strong>in</strong>g wave(F = 100 kHz to 1 MHz)IrmsFig. J1 : Voltage surge examplesJThis type of voltage surge is characterised by ( see Fig. J2):b The rise time (tf) measured <strong>in</strong> μsb The gradient S measured <strong>in</strong> kV/μsA voltage surge disturbs equipment and causes electromagnetic radiation.Fur<strong>the</strong>rmore, <strong>the</strong> duration of <strong>the</strong> voltage surge (T) causes a surge of <strong>energy</strong> <strong>in</strong> <strong>the</strong>electrical circuits which is likely to destroy <strong>the</strong> equipment.Voltage (V or kV)U max50 %Rise time (tf)tVoltage surge duration (T)Fig. J2 : Ma<strong>in</strong> overvoltage characteristics1.2 The four voltage surge types© Schneider Electric - all rights reservedThere are four types of voltage surges which may disturb electrical <strong>in</strong>stallations andloads:b Atmospheric voltage surgesb Operat<strong>in</strong>g voltage surgesb Transient overvoltage at <strong>in</strong>dustrial frequencyb Voltage surges caused by electrostatic dischargeAtmospheric voltage surgesLightn<strong>in</strong>g risk – a few figuresBetween 2,000 and 5,000 storms are constantly form<strong>in</strong>g around <strong>the</strong> earth. Thesestorms are accompanied by lightn<strong>in</strong>g which constitutes a serious risk for both peopleand equipment. Strokes of lightn<strong>in</strong>g hit <strong>the</strong> ground at a rate of 30 to 100 strokes persecond. Every year, <strong>the</strong> earth is struck by about 3 billion strokes of lightn<strong>in</strong>g.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV1 Generalb Throughout <strong>the</strong> world, every year, thousands of people are struck by lightn<strong>in</strong>g andcountless animals are killedb Lightn<strong>in</strong>g also causes a large number of fires, most of which break out on farms(destroy<strong>in</strong>g build<strong>in</strong>gs or putt<strong>in</strong>g <strong>the</strong>m out of use)b Lightn<strong>in</strong>g also affects transformers, electricity meters, household appliances, andall electrical and electronic <strong>in</strong>stallations <strong>in</strong> <strong>the</strong> residential sector and <strong>in</strong> <strong>in</strong>dustry.b Tall build<strong>in</strong>gs are <strong>the</strong> ones most often struck by lightn<strong>in</strong>gb The cost of repair<strong>in</strong>g damage caused by lightn<strong>in</strong>g is very highb It is difficult to evaluate <strong>the</strong> consequences of disturbance caused to computer ortelecommunications networks, faults <strong>in</strong> PLC cycles and faults <strong>in</strong> regulation systems.Fur<strong>the</strong>rmore, <strong>the</strong> losses caused by a mach<strong>in</strong>e be<strong>in</strong>g put out of use can have f<strong>in</strong>ancialconsequences ris<strong>in</strong>g above <strong>the</strong> cost of <strong>the</strong> equipment destroyed by <strong>the</strong> lightn<strong>in</strong>g.Characteristics of lightn<strong>in</strong>g dischargeFigure J3 shows <strong>the</strong> values given by <strong>the</strong> light<strong>in</strong>g protection committee (TechnicalCommittee 81) of <strong>the</strong> I.E.C. As can be seen, 50 % of lightn<strong>in</strong>g strokes are of a forcegreater than 33 kA and 5 % are greater than 85 kA. The <strong>energy</strong> forces <strong>in</strong>volved arethus very high.Beyond peak Current Gradient Total Number ofprobability peak duration dischargesP% I (kA) S (kA/μs) T (s) n95 7 9.1 0.001 150 33 24 0.01 25 85 65 1.1 6Fig. J3 : Lightn<strong>in</strong>g discharge values given by <strong>the</strong> IEC lightn<strong>in</strong>g protection committeeJLightn<strong>in</strong>g comes from <strong>the</strong> discharge of electricalcharges accumulated <strong>in</strong> <strong>the</strong> cumulo-nimbusclouds which form a capacitor with <strong>the</strong> ground.Storm phenomena cause serious damage.Lightn<strong>in</strong>g is a high frequency electricalphenomenon which produces voltage surgeson all conductive elements, and especially onelectrical loads and wires.It is important to def<strong>in</strong>e <strong>the</strong> probability of adequate protection when protect<strong>in</strong>g a site.Fur<strong>the</strong>rmore, a lightn<strong>in</strong>g current is a high frequency (HF) impulse current reach<strong>in</strong>groughly a megahertz.The effects of lightn<strong>in</strong>gA lightn<strong>in</strong>g current is <strong>the</strong>refore a high frequency electrical current. As well asconsiderable <strong>in</strong>duction and voltage surge effects, it causes <strong>the</strong> same effects as anyo<strong>the</strong>r low frequency current on a conductor:b Thermal effects: fusion at <strong>the</strong> lightn<strong>in</strong>g impact po<strong>in</strong>ts and joule effect, due to <strong>the</strong>circulation of <strong>the</strong> current, caus<strong>in</strong>g firesb Electrodynamic effects: when <strong>the</strong> lightn<strong>in</strong>g currents circulate <strong>in</strong> parallel conductors,<strong>the</strong>y provoke attraction or repulsion forces between <strong>the</strong> wires, caus<strong>in</strong>g breaks ormechanical deformations (crushed or flattened wires)b Combustion effects: lightn<strong>in</strong>g can cause <strong>the</strong> air to expand and create overpressurewhich stretches over a distance of a dozen metres or so. A blast effect breaks w<strong>in</strong>dowsor partitions and can project animals or people several metres away from <strong>the</strong>ir orig<strong>in</strong>alposition. This shock wave is at <strong>the</strong> same time transformed <strong>in</strong>to a sound wave: thunderb Voltage surges conducted after an impact on overhead electrical or telephone l<strong>in</strong>esb Voltage surges <strong>in</strong>duced by <strong>the</strong> electromagnetic radiation effect of <strong>the</strong> lightn<strong>in</strong>gchannel which acts as an antenna over several kilometres and is crossed by aconsiderable impulse currentb The elevation of <strong>the</strong> earth potential by <strong>the</strong> circulation of <strong>the</strong> lightn<strong>in</strong>g current <strong>in</strong> <strong>the</strong>ground. This expla<strong>in</strong>s <strong>in</strong>direct strokes of lightn<strong>in</strong>g by step voltage and <strong>the</strong> breakdownof equipmentOperat<strong>in</strong>g voltage surgesA sudden change <strong>in</strong> <strong>the</strong> established operat<strong>in</strong>g conditions <strong>in</strong> an electrical networkcauses transient phenomena to occur. These are generally high frequency ordamped oscillation voltage surge waves (see Fig. J1).They are said to have a slow gradient: <strong>the</strong>ir frequency varies from several ten toseveral hundred kilohertz.Operat<strong>in</strong>g voltage surges may be created by:b The open<strong>in</strong>g of protection devices (fuse, circuit-breaker), and <strong>the</strong> open<strong>in</strong>g orclos<strong>in</strong>g of control devices (relays, contactors, etc.)b Inductive circuits due to motors start<strong>in</strong>g and stopp<strong>in</strong>g, or <strong>the</strong> open<strong>in</strong>g oftransformers such as MV/LV substationsb Capacitive circuits due to <strong>the</strong> connection of capacitor banks to <strong>the</strong> networkb All devices that conta<strong>in</strong> a coil, a capacitor or a transformer at <strong>the</strong> power supply<strong>in</strong>let: relays, contactors, television sets, pr<strong>in</strong>ters, computers, electric ovens, filters, etc.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV1 GeneralTransient overvoltages at <strong>in</strong>dustrial frequency (see Fig. J4)These overvoltages have <strong>the</strong> same frequency as <strong>the</strong> network (50, 60 or 400 Hz); andcan be caused by:b Phase/frame or phase/earth <strong>in</strong>sulat<strong>in</strong>g faults on a network with an <strong>in</strong>sulated orimpedant neutral, or by <strong>the</strong> breakdown of <strong>the</strong> neutral conductor. When this happens,s<strong>in</strong>gle phase devices will be supplied <strong>in</strong> 400 V <strong>in</strong>stead of 230 V.b A cable breakdown. For example, a medium voltage cable which falls on a lowvoltage l<strong>in</strong>e.b The arc<strong>in</strong>g of a high or medium voltage protective spark-gap caus<strong>in</strong>g a rise <strong>in</strong> earthpotential dur<strong>in</strong>g <strong>the</strong> action of <strong>the</strong> protection devices. These protection devices followautomatic switch<strong>in</strong>g cycles which will recreate a fault if it persists.tNormal voltage230/400 VTransient overvoltageNormal voltage230/400 VJFig. J4 : Transient overvoltage at <strong>in</strong>dustrial frequencyVoltage surges caused by electrical dischargeIn a dry environment, electrical charges accumulate and create a very strongelectrostatic field. For example, a person walk<strong>in</strong>g on carpet with <strong>in</strong>sulat<strong>in</strong>g soleswill become electrically charged to a voltage of several kilovolts. If <strong>the</strong> person walksclose to a conductive structure, he will give off an electrical discharge of severalamperes <strong>in</strong> a very short rise time of a few nanoseconds. If <strong>the</strong> structure conta<strong>in</strong>ssensitive electronics, a computer for example, its components or circuit boards maybe damaged.Three po<strong>in</strong>ts must be kept <strong>in</strong> m<strong>in</strong>d:b A direct or <strong>in</strong>direct lightn<strong>in</strong>g stroke mayhave destructive consequences on electrical<strong>in</strong>stallations several kilometres away fromwhere it fallsb Industrial or operat<strong>in</strong>g voltage surges alsocause considerable damageb The fact that a site <strong>in</strong>stallation is underground<strong>in</strong> no way protects it although it does limit <strong>the</strong>risk of a direct strike1.3 Ma<strong>in</strong> characteristics of voltage surgesFigure J5 below sums up <strong>the</strong> ma<strong>in</strong> characteristics of voltage surges.Type of voltage surge Voltage surge Duration Front gradientcoefficientor frequencyIndustrial frequency y 1.7 Long Industrial frequency(<strong>in</strong>sulation fault) 30 to 1,000 ms (50-60-400 Hz)Operation 2 to 4 Short Average1 to 100 ms 1 to 200 kHzAtmospheric > 4 Very short Very high1 to 100 μs 1 to 1,000 kV/μsFig. J5 : Ma<strong>in</strong> characteristics of voltage surges© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV1 General1.4 Different propagation modesCommon modeCommon mode voltage surges occur between <strong>the</strong> live parts and <strong>the</strong> earth:phase/earth or neutral/earth (see Fig. J6).They are especially dangerous for devices whose frame is ear<strong>the</strong>d due to <strong>the</strong> risk ofdielectric breakdown.PhNImcEquipmentVoltage surgecommon modeImcFig. J6 : Common modeDifferential modeDifferential mode voltage surges circulate between live conductors: Phase to phaseor phase to neutral (see Fig. J7). They are especially dangerous for electronicequipment, sensitive computer equipment, etc.JPhNImdU voltage surgedifferential modeImdEquipmentFig. J7 : Differential mode© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV2 Overvoltage protection devicesTwo major types of protection devices are used to suppress or limit voltage surges:<strong>the</strong>y are referred to as primary protection devices and secondary protection devices.2.1 Primary protection devices (protection of<strong>in</strong>stallations aga<strong>in</strong>st lightn<strong>in</strong>g)The purpose of primary protection devices is to protect <strong>in</strong>stallations aga<strong>in</strong>st directstrokes of lightn<strong>in</strong>g. They catch and run <strong>the</strong> lightn<strong>in</strong>g current <strong>in</strong>to <strong>the</strong> ground. Thepr<strong>in</strong>ciple is based on a protection area determ<strong>in</strong>ed by a structure which is higherthan <strong>the</strong> rest.The same applies to any peak effect produced by a pole, build<strong>in</strong>g or very highmetallic structure.There are three types of primary protection:b Lightn<strong>in</strong>g conductors, which are <strong>the</strong> oldest and best known lightn<strong>in</strong>g protectiondeviceb Overhead earth wiresb The meshed cage or Faraday cageThe lightn<strong>in</strong>g conductorThe lightn<strong>in</strong>g conductor is a tapered rod placed on top of <strong>the</strong> build<strong>in</strong>g. It is ear<strong>the</strong>d byone or more conductors (often copper strips) (see Fig. J8).JCopper stripdown conductorTest clamp© Schneider Electric - all rights reservedFig. J8 : Example of protection us<strong>in</strong>g a lightn<strong>in</strong>g conductorCrow-foot earth<strong>in</strong>gSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV2 Overvoltage protection devicesThe design and <strong>in</strong>stallation of a lightn<strong>in</strong>g conductor is <strong>the</strong> job of a <strong>specialist</strong>.Attention must be paid to <strong>the</strong> copper strip paths, <strong>the</strong> test clamps, <strong>the</strong> crow-footearth<strong>in</strong>g to help high frequency lightn<strong>in</strong>g currents run to <strong>the</strong> ground, and <strong>the</strong>distances <strong>in</strong> relation to <strong>the</strong> wir<strong>in</strong>g system (gas, water, etc.).Fur<strong>the</strong>rmore, <strong>the</strong> flow of <strong>the</strong> lightn<strong>in</strong>g current to <strong>the</strong> ground will <strong>in</strong>duce voltagesurges, by electromagnetic radiation, <strong>in</strong> <strong>the</strong> electrical circuits and build<strong>in</strong>gs to beprotected. These may reach several dozen kilovolts. It is <strong>the</strong>refore necessary tosymmetrically split <strong>the</strong> down conductor currents <strong>in</strong> two, four or more, <strong>in</strong> order tom<strong>in</strong>imise electromagnetic effects.Overhead earth wiresThese wires are stretched over <strong>the</strong> structure to be protected (see Fig. J9). They areused for special structures: rocket launch pads, military applications and lightn<strong>in</strong>gprotection cables for overhead high voltage power l<strong>in</strong>es (see Fig. J10).T<strong>in</strong> plated copper 25 mm 2d > 0.1 hMetal posthJFrame grounded earth beltFig. J9 : Example of lightn<strong>in</strong>g protection us<strong>in</strong>g overhead earth wiresii/2i/2Lightn<strong>in</strong>gprotectioncablesFig. J10 : Lightn<strong>in</strong>g protection wires© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV2 Overvoltage protection devicesPrimary lightn<strong>in</strong>g conductor protection devicessuch as a meshed cage or overhead earthwires are used to protect aga<strong>in</strong>st direct strokesof light<strong>in</strong>g.These protection devices do notprevent destructive secondary effects onequipment from occurr<strong>in</strong>g. For example, rises<strong>in</strong> earth potential and electromagnetic <strong>in</strong>ductionwhich are due to currents flow<strong>in</strong>g to <strong>the</strong> earth.To reduce secondary effects, LV surge arrestersmust be added on telephone and electricalpower networks.The meshed cage (Faraday cage)This pr<strong>in</strong>ciple is used for very sensitive build<strong>in</strong>gs hous<strong>in</strong>g computer or <strong>in</strong>tegratedcircuit production equipment. It consists <strong>in</strong> symmetrically multiply<strong>in</strong>g <strong>the</strong> number ofdown strips outside <strong>the</strong> build<strong>in</strong>g. Horizontal l<strong>in</strong>ks are added if <strong>the</strong> build<strong>in</strong>g is high; forexample every two floors (see Fig. J11). The down conductors are ear<strong>the</strong>d by frog’sfoot earth<strong>in</strong>g connections. The result is a series of <strong>in</strong>terconnected 15 x 15 m or10 x 10 m meshes. This produces better equipotential bond<strong>in</strong>g of <strong>the</strong> build<strong>in</strong>g andsplits lightn<strong>in</strong>g currents, thus greatly reduc<strong>in</strong>g electromagnetic fields and <strong>in</strong>duction.JFig. J11 : Example of protection us<strong>in</strong>g <strong>the</strong> meshed cage (Faraday cage) pr<strong>in</strong>cipleSecondary protection devices are classed <strong>in</strong>two categories: Serial protection and parallelprotection devices.Serial protection devices are specific to asystem or application.Parallel protection devices are used for: Powersupply network, telephone network, switch<strong>in</strong>gnetwork (bus).2.2 Secondary protection devices (protection of<strong>in</strong>ternal <strong>in</strong>stallations aga<strong>in</strong>st lightn<strong>in</strong>g)These handle <strong>the</strong> effects of atmospheric, operat<strong>in</strong>g or <strong>in</strong>dustrial frequency voltagesurges. They can be classified accord<strong>in</strong>g to <strong>the</strong> way <strong>the</strong>y are connected <strong>in</strong> an<strong>in</strong>stallation: serial or parallel protection.Serial protection deviceThis is connected <strong>in</strong> series to <strong>the</strong> power supply wires of <strong>the</strong> system to be protected(see Fig. J12).Power supply<strong>Installation</strong> to be protectedSerialprotectionUp© Schneider Electric - all rights reservedFig. J12 : Serial protection pr<strong>in</strong>cipleTransformersThey reduce voltage surges by <strong>in</strong>ductor effect and make certa<strong>in</strong> harmonicsdisappear by coupl<strong>in</strong>g. This protection is not very effective.FiltersBased on components such as resistors, <strong>in</strong>ductance coils and capacitors <strong>the</strong>yare suitable for voltage surges caused by <strong>in</strong>dustrial and operation disturbancecorrespond<strong>in</strong>g to a clearly def<strong>in</strong>ed frequency band. This protection device is notsuitable for atmospheric disturbance.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV2 Overvoltage protection devicesWave absorbersThey are essentially made up of air <strong>in</strong>ductance coils which limit <strong>the</strong> voltage surges,and surge arresters which absorb <strong>the</strong> currents. They are extremely suitable forprotect<strong>in</strong>g sensitive electronic and comput<strong>in</strong>g equipment. They only act aga<strong>in</strong>stvoltage surges. They are none<strong>the</strong>less extremely cumbersome and expensive.Network conditioners and static un<strong>in</strong>terrupted power supplies (UPS)These devices are essentially used to protect highly sensitive equipment, such ascomputer equipment, which requires a high quality electrical power supply. Theycan be used to regulate <strong>the</strong> voltage and frequency, stop <strong>in</strong>terference and ensure acont<strong>in</strong>uous electrical power supply even <strong>in</strong> <strong>the</strong> event of a ma<strong>in</strong>s power failure (for<strong>the</strong> UPS). On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong>y are not protected aga<strong>in</strong>st large, atmospheric typevoltage surges aga<strong>in</strong>st which it is still necessary to use surge arresters.Parallel protection deviceThe pr<strong>in</strong>cipleThe parallel protection is adapted to any <strong>in</strong>stallation power level (see Fig. J13).This type of overvoltage protection is <strong>the</strong> most commonly used.Power supplyParallelprotectionUp<strong>Installation</strong> tobe protectedFig. J13 : Parallel protection pr<strong>in</strong>cipleJMa<strong>in</strong> characteristicsb The rated voltage of <strong>the</strong> protection device must correspond to <strong>the</strong> network voltageat <strong>the</strong> <strong>in</strong>stallation term<strong>in</strong>alsb When <strong>the</strong>re is no voltage surge, a leakage current should not go through <strong>the</strong>protection device which is on standbyb When a voltage surge above <strong>the</strong> allowable voltage threshold of <strong>the</strong> <strong>in</strong>stallationto be protected occurs, <strong>the</strong> protection device abruptly conducts <strong>the</strong> voltage surgecurrent to <strong>the</strong> earth by limit<strong>in</strong>g <strong>the</strong> voltage to <strong>the</strong> desired protection level Up(see Fig. J14).U (V)Up0 I (A)Fig. J14 : Typical U/I curve of <strong>the</strong> ideal protection deviceWhen <strong>the</strong> voltage surge disappears, <strong>the</strong> protection device stops conduct<strong>in</strong>g andreturns to standby without a hold<strong>in</strong>g current. This is <strong>the</strong> ideal U/I characteristic curve:b The protection device response time (tr) must be as short as possible to protect <strong>the</strong><strong>in</strong>stallation as quickly as possibleb The protection device must have <strong>the</strong> capacity to be able to conduct <strong>the</strong> <strong>energy</strong>caused by <strong>the</strong> foreseeable voltage surge on <strong>the</strong> site to be protectedb The surge arrester protection device must be able to withstand <strong>the</strong> rated current In.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV2 Overvoltage protection devicesThe products usedb Voltage limitersThey are used <strong>in</strong> MV/LV substations at <strong>the</strong> transformer output, <strong>in</strong> IT earth<strong>in</strong>g scheme.They can run voltage surges to <strong>the</strong> earth, especially <strong>in</strong>dustrial frequency surges(see Fig. J15)MV/LVOvervoltagelimiterPIMPermanent<strong>in</strong>sulationmonitorFig. J15 : Voltage limiterJ10b LV surge arrestersThis term designates very different devices as far as technology and use areconcerned. Low voltage surge arresters come <strong>in</strong> <strong>the</strong> form of modules to be <strong>in</strong>stalled<strong>in</strong>side LV switchboard. There are also plug-<strong>in</strong> types and those that protect poweroutlets. They ensure secondary protection of nearby elements but have a small flowcapacity. Some are even built <strong>in</strong>to loads although <strong>the</strong>y cannot protect aga<strong>in</strong>st strongvoltage surgesb Low current surge arresters or overvoltage protectorsThese protect telephone or switch<strong>in</strong>g networks aga<strong>in</strong>st voltage surges from <strong>the</strong>outside (lightn<strong>in</strong>g), as well as from <strong>the</strong> <strong>in</strong>side (pollut<strong>in</strong>g equipment, switchgearswitch<strong>in</strong>g, etc.)Low current voltage surge arresters are also <strong>in</strong>stalled <strong>in</strong> distribution boxes orbuilt <strong>in</strong>to loads.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV3 Protection aga<strong>in</strong>st voltagesurges <strong>in</strong> LV3.1 Surge protective device descriptionA surge protective device (SDP) is a device that limits transient voltage surges andruns current waves to ground to limit <strong>the</strong> amplitude of <strong>the</strong> voltage surge to a safelevel for electrical <strong>in</strong>stallations and equipment.The surge protective device <strong>in</strong>cludes one or several non l<strong>in</strong>ear components.The surge protective device elim<strong>in</strong>ates voltage surges:b In common mode: Phase to earth or neutral to earthb In differential mode: Phase to phase or phase to neutralWhen a voltage surge exceeds <strong>the</strong> Uc threshold, <strong>the</strong> surge protective device (SDP)conducts <strong>the</strong> <strong>energy</strong> to earth <strong>in</strong> common mode. In differential mode <strong>the</strong> diverted<strong>energy</strong> is directed to ano<strong>the</strong>r active conductor.The surge protective device has an <strong>in</strong>ternal <strong>the</strong>rmal protection device which protectsaga<strong>in</strong>st burnout at its end of life. Gradually, over normal use after withstand<strong>in</strong>gseveral voltage surges, <strong>the</strong> Surge Protective Device degrades <strong>in</strong>to a conductivedevice. An <strong>in</strong>dicator <strong>in</strong>forms <strong>the</strong> user when end-of-life is close.Some surge protective devices have a remote <strong>in</strong>dication.In addition, protection aga<strong>in</strong>st short-circuits is ensured by an external circuit-breaker.3.2 Surge protective device standardsInternational standard IEC 61643-1 ed. 02/2005Surge protective devices connected to low-voltage power distribution systems.Three test classes are def<strong>in</strong>ed:b Class I tests: They are conducted us<strong>in</strong>g nom<strong>in</strong>al discharge current (In), voltageimpulse with 1.2/50 μs waveshape and impulse current Iimp.The class I tests is <strong>in</strong>tended to simulate partial conducted lightn<strong>in</strong>g current impulses.SPDs subjected to class I test methods are generally recommended for locationsat po<strong>in</strong>ts of high exposure, e.g., l<strong>in</strong>e entrances to build<strong>in</strong>gs protected by lightn<strong>in</strong>gprotection systems.b Class II tests: They are conducted us<strong>in</strong>g nom<strong>in</strong>al discharge current (In), voltageimpulse with 1.2/50 μs waveshapeb Class III tests: They are conducted us<strong>in</strong>g <strong>the</strong> comb<strong>in</strong>ation waveform (1.2/50 and8/20 μs).SPDs tested to class II or III test methods are subjected to impulses of shorterduration. These SPDs are generally recommended for locations with lesser exposure.These 3 test classes cannot be compared, s<strong>in</strong>ce each orig<strong>in</strong>ates <strong>in</strong> a country andeach has its own specificities. Moreover, each builder can refer to one of <strong>the</strong> 3 testclasses.European standard EN 61643-11 2002Some requirements as per IEC 61643-1. Moreover SPDs are classified <strong>in</strong> threecategories:Type 1: SPD tested to Class IType 2: SPD tested to Class IIType 3: SPD tested to Class IIIJ113.3 Surge protective device data accord<strong>in</strong>g toIEC 61643-1 standardb Surge protective device (SPD): A device that is <strong>in</strong>tended to limit transientovervoltages and divert surge currents. It conta<strong>in</strong>s at least one nonl<strong>in</strong>ear component.b Test classes: Surge arrester test classification.b In: Nom<strong>in</strong>al discharge current; <strong>the</strong> crest value of <strong>the</strong> current through <strong>the</strong> SPDhav<strong>in</strong>g a current waveshape of 8/20. This is used for <strong>the</strong> classification of <strong>the</strong> SPD for<strong>the</strong> class II test and also for precondition<strong>in</strong>g of <strong>the</strong> SPD for class I and II tests.b Imax: Maximum discharge current for class II test; crest value of a current through<strong>the</strong> SPD hav<strong>in</strong>g an 8/20 waveshape and magnitude accord<strong>in</strong>g to <strong>the</strong> test sequenceof <strong>the</strong> class II operat<strong>in</strong>g duty test. Imax is greater than In.b Ic: Cont<strong>in</strong>uous operat<strong>in</strong>g current; current that flows <strong>in</strong> an SPD when supplied atits permament full withstand operat<strong>in</strong>g voltage (Uc) for each mode. Ic correspondsto <strong>the</strong> sum of <strong>the</strong> currents that flow <strong>in</strong> <strong>the</strong> SPD’s protection component and <strong>in</strong> all <strong>the</strong><strong>in</strong>ternal circuits connected <strong>in</strong> parallel.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV3 Protection aga<strong>in</strong>st voltagesurges <strong>in</strong> LVb Iimp: Impulse current, it is def<strong>in</strong>ed by a current peak value Ipeak and <strong>the</strong> chargeQ. Tested accord<strong>in</strong>g to <strong>the</strong> test sequence of <strong>the</strong> operat<strong>in</strong>g duty test. This is used for<strong>the</strong> classification of <strong>the</strong> SPD for class I test.b Un: Rated network voltage.b Uc: Maximum cont<strong>in</strong>uous operat<strong>in</strong>g voltage; <strong>the</strong> maximum r.m.s. or d.c. voltagewhich may be cont<strong>in</strong>uously applied to <strong>the</strong> SPDs mode of protection. This is equal to<strong>the</strong> rated voltage.b Up: Voltage protection level; a parameter that characterizes <strong>the</strong> performance of<strong>the</strong> SPD <strong>in</strong> limit<strong>in</strong>g <strong>the</strong> voltage across its term<strong>in</strong>als, which is selected from a list ofpreferred values. This value shall be greater than <strong>the</strong> highest value of <strong>the</strong> measuredlimit<strong>in</strong>g voltages.The most common values for a 230/400 V network are:1 kV - 1.2 kV - 1.5 kV - 1.8 kV - 2 kV - 2.5 kV.b Ures: Residual voltage, <strong>the</strong> peak value of <strong>the</strong> voltage that appears between <strong>the</strong>term<strong>in</strong>als of an SPD due to <strong>the</strong> passage of discharge current.The SPD is characterised by Uc, Up, In and Imax (see Fig. J16)b To test <strong>the</strong> surge arrester, standardized voltage and current waves have beendef<strong>in</strong>ed that are specific to each country:v Voltage wavee.g. 1.2/50 μs (see Fig. J17)v Current waveExample 8/20 μs (see Fig. J18)UJ12U pU c< 1 mAI nI maxIFig. J16 : Voltage/current characteristicsMaxi100 %50 %VMaxi100 %50 %I1,250t820tFig. J17 : 1.2/50 μs waveFig. J18 : 8/20 μs wavev O<strong>the</strong>r possible wave characteristics:4/10 μs, 10/1000 μs, 30/60 μs, 10/350 μs...Comparison between different surge protective devices must be carried out us<strong>in</strong>g <strong>the</strong>same wave characteristics, <strong>in</strong> order to get relevant results.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV3 Protection aga<strong>in</strong>st voltagesurges <strong>in</strong> LV3.4 Lightn<strong>in</strong>g protection standardsThe IEC 62305 series (part 1 to 5) restructures and updates <strong>the</strong> publications ofIEC 61024 series, IEC 61312 series and IEC 61663 series.The need for protection, <strong>the</strong> economic benefits of <strong>in</strong>stall<strong>in</strong>g protection measures and<strong>the</strong> selection of adequate protection measures should be determ<strong>in</strong>ed <strong>in</strong> terms of riskmanagement. Risk management is <strong>the</strong> subject of IEC 62305-2.The criteria for design, <strong>in</strong>stallation and ma<strong>in</strong>tenance of lightn<strong>in</strong>g protection measuresare considered <strong>in</strong> three separate groups:b The first group concern<strong>in</strong>g protection measures to reduce physical damage and lifehazard <strong>in</strong> a structure is given <strong>in</strong> IEC 62305-3.b The second group concern<strong>in</strong>g protection measures to reduce failures of electricaland electronic systems <strong>in</strong> a structure is given <strong>in</strong> IEC 62305-4.b The third group concern<strong>in</strong>g protection measures to reduce physical damage andfailures of services connected to a structure (ma<strong>in</strong>ly electrical and telecommunicationl<strong>in</strong>es) is given <strong>in</strong> IEC 62305-5.3.5 Surge arrester <strong>in</strong>stallation standardsb International: IEC 61643-12 selection and application pr<strong>in</strong>ciplesb International: IEC 60364 <strong>Electrical</strong> <strong>in</strong>stallations of build<strong>in</strong>gsv IEC 60364-4-443: protection for safetyWhen an <strong>in</strong>stallation is supplied by, or <strong>in</strong>cludes, an overhead l<strong>in</strong>e, a protection deviceaga<strong>in</strong>st atmospheric overvoltages must be foreseen if <strong>the</strong> keraunic level of <strong>the</strong> sitebe<strong>in</strong>g considered corresponds to <strong>the</strong> external <strong>in</strong>fluences condition AQ 1 (more than25 days per year with thunderstorms).v IEC 60364-4-443-4: selection of equipment <strong>in</strong> <strong>the</strong> <strong>in</strong>stallation.This section helps with <strong>the</strong> choice of <strong>the</strong> protection level Up for <strong>the</strong> surge arrester <strong>in</strong>function of <strong>the</strong> loads to be protected.Rated residual voltage of protection devices must not be higher than <strong>the</strong> value <strong>in</strong> <strong>the</strong>voltage impulse withstand category II (see Fig. J19):J13Nom<strong>in</strong>al voltage of Required impulse withstand voltage for<strong>the</strong> <strong>in</strong>stallation (1) V kVThree-phase S<strong>in</strong>gle-phase Equipment at Equipment of Appliances Speciallysystems (2) systems with <strong>the</strong> orig<strong>in</strong> of distribution and protectedmiddle po<strong>in</strong>t <strong>the</strong> <strong>in</strong>stallation f<strong>in</strong>al circuits equipment(impulse (impulse (impulse (impulsewithstand withstand withstand withstandcategory IV) category III) category II) category I)120-240 4 2.5 1.5 0.8230/400 (2) - 6 4 2.5 1.5277/480 (2)400/690 - 8 6 4 2.51,000 - Values subject to system eng<strong>in</strong>eersFig. J19 : Choos<strong>in</strong>g equipment for <strong>the</strong> <strong>in</strong>stallation accord<strong>in</strong>g to IEC 60364(1) Accord<strong>in</strong>g to IEC 60038(2) In Canada and USA for voltages to earth higher than 300 V,<strong>the</strong> impulse withstand voltage correspond<strong>in</strong>g to <strong>the</strong>next higher voltage <strong>in</strong> column one applies.Category I is addressed to particular equipment eng<strong>in</strong>eer<strong>in</strong>g.Category II is addressed to product committees for equipmentfor connection to <strong>the</strong> ma<strong>in</strong>s.Category III is addressed to product committees of <strong>in</strong>stallationmaterial and some special product committees.Category IV is addressed to supply authorities and systemeng<strong>in</strong>eers (see also 443.2.2).© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV3 Protection aga<strong>in</strong>st voltagesurges <strong>in</strong> LVv IEC 60364-5-534: choos<strong>in</strong>g and implement<strong>in</strong>g electrical equipmentThis section describes surge arrester <strong>in</strong>stallation conditions:- Accord<strong>in</strong>g to earth<strong>in</strong>g systems: The maximum cont<strong>in</strong>uous operat<strong>in</strong>g voltage Ucof SPDs shall be equal to or higher than shown <strong>in</strong> Fig. J20.SPDs connectedbetweenL<strong>in</strong>e conductor andneutral conductorEach l<strong>in</strong>e conductor andPE conductorNeutral conductor and PEconductorEach l<strong>in</strong>e conductor andPEN conductorSystem configuration of distribution networkTT TN-C TN-S IT withdistributedneutralIT withoutdistributedneutral1.1 Uo NA 1.1 Uo 1.1 Uo NA1.1 Uo NA 1.1 Uo 3Uo (1) L<strong>in</strong>e-to-l<strong>in</strong>evoltage (1)Uo (1) NA Uo (1) Uo (1) NANA 1.1 Uo NA NA NANA: not applicableNOTE 1: Uo is <strong>the</strong> l<strong>in</strong>e-to-neutral voltage of <strong>the</strong> low-voltage system.NOTE 2: This table is based on IEC 61643-1 amendment 1.Fig. J20 : M<strong>in</strong>imum required Uc of <strong>the</strong> SPD dependent on supply system configurationJ14- At <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> <strong>in</strong>stallation: if <strong>the</strong> surge arrester is <strong>in</strong>stalled at <strong>the</strong> source ofan electrical <strong>in</strong>stallation supplied by <strong>the</strong> utility distribution network, its rated dischargecurrent may be lower than 5 kA.If a surge arrester is <strong>in</strong>stalled downstream from an earth leakage protection device,an RCD of <strong>the</strong> s type, with immunity to impulse currents of less than 3 kA (8/20 μs),must be used.- Protection aga<strong>in</strong>st overcurrent at 50 Hz and consequences of a SPD failure:protection aga<strong>in</strong>st SPDs short-circuits is provided by <strong>the</strong> overcurrent protectivedevices F2 which are to be selected accord<strong>in</strong>g to <strong>the</strong> maximum recommended rat<strong>in</strong>gfor <strong>the</strong> overcurrent protective device given <strong>in</strong> <strong>the</strong> manufacturer's SPD <strong>in</strong>structions.- In <strong>the</strong> presence of lightn<strong>in</strong>g conductors: a surge arrester must be <strong>in</strong>stalled,additional specifications for surge arresters must be applied (see IEC 62305 part 4).© Schneider Electric - all rights reserved(1) These values are related to worst case fault conditions,<strong>the</strong>refore <strong>the</strong> tolerance of 10 % is not taken <strong>in</strong>to accountSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV4 Choos<strong>in</strong>g a protection deviceWhen <strong>in</strong>stall<strong>in</strong>g surge arresters, several elements must be considered, such as:b Cascad<strong>in</strong>gb Position<strong>in</strong>g with respect to residual current devicesb The choice of disconnection circuit breakersThe earth<strong>in</strong>g system must also be taken <strong>in</strong>to account.4.1 Protection devices accord<strong>in</strong>g to <strong>the</strong> earth<strong>in</strong>gsystemb Common mode overvoltage: basic protection <strong>in</strong>volves <strong>the</strong> <strong>in</strong>stallation of a commonmode surge arrester between phase and PE or phase and PEN, whatever type ofearth<strong>in</strong>g system is used.b Differential mode overvoltage: <strong>in</strong> <strong>the</strong> TT and TN-S earth<strong>in</strong>g systems, earth<strong>in</strong>g <strong>the</strong>neutral leads to dissymmetry due to earth<strong>in</strong>g impedances, which causes differentialmode voltages to appear, whereas <strong>the</strong> overvoltage <strong>in</strong>duced by a lightn<strong>in</strong>g strike is acommon mode voltage.For example, let us consider a TT earth<strong>in</strong>g system. A two-pole surge arrester is<strong>in</strong>stalled <strong>in</strong> common mode to protect <strong>the</strong> <strong>in</strong>stallation (see Fig. J21).IIIJ15IFig. J21 : Common mode protection onlyThe neutral earth<strong>in</strong>g resistor R1 used for <strong>the</strong> pylons has a lower resistance than <strong>the</strong>earth<strong>in</strong>g resistor R2 used for <strong>the</strong> <strong>in</strong>stallation. The lightn<strong>in</strong>g current will flow throughcircuit ABCD to earth via <strong>the</strong> easiest path. It will pass through varistors V1 and V2 <strong>in</strong>series, caus<strong>in</strong>g a differential voltage equal to twice <strong>the</strong> residual voltage of <strong>the</strong> surgearrester (Up1 + Up2) to appear at <strong>the</strong> term<strong>in</strong>als of A and C at <strong>the</strong> entrance to <strong>the</strong><strong>in</strong>stallation <strong>in</strong> extreme cases.To protect <strong>the</strong> loads between Ph and N effectively, <strong>the</strong> differential mode voltage(between A and C) must be reduced.Ano<strong>the</strong>r earth<strong>in</strong>g system is <strong>the</strong>refore used (see Fig. J22).The lightn<strong>in</strong>g current flows through circuit ABH which has a lower impedance thancircuit ABCD, as <strong>the</strong> impedance of <strong>the</strong> component used between B and H is null (gasfilled spark gap).In this case, <strong>the</strong> differential voltage is equal to <strong>the</strong> residual voltage of <strong>the</strong> surgearrester (Up2).IFig. J22 : Common + differentiel mode protectionII© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV4 Choos<strong>in</strong>g a protection deviceMode Between TT TN-S TN-C ITDifferential phase and neutral yes yes - -Common phase and earth yes yes yes yesphase and earth yes yes - yes (if distributedneutral)Fig. J23 : Connections to be made accord<strong>in</strong>g to <strong>the</strong> earth<strong>in</strong>g systems used, <strong>in</strong> <strong>the</strong> case ofatmospheric overvoltages4.2 Internal architecture of surge arrestersb 2P, 3P, 4P surge arresters (see Fig. J24):v They provide protection aga<strong>in</strong>st common-mode overvoltages onlyv They are appropriate for TN-C and IT earth<strong>in</strong>g systems.J16Fig. J24 : 2P, 3P, 4P surge arrestersb 1P+N, 3P+N surge arresters (see Fig. J25):v They provide protection aga<strong>in</strong>st common-mode and differential-mode overvoltagesv They are appropriate for TT, TN-S, and IT earth<strong>in</strong>g systems.Fig. J25 : 1P+N, 3P+N surge arresters© Schneider Electric - all rights reservedPEEarth<strong>in</strong>g conductorMa<strong>in</strong> earth term<strong>in</strong>alFig. J26 : Connection exampleb S<strong>in</strong>gle-pole (1P) surge arresters (see Fig. J26):v They are used to satisfy <strong>the</strong> demand of different assemblies (accord<strong>in</strong>g to <strong>the</strong>manufacturer’s <strong>in</strong>structions) by supply<strong>in</strong>g only one product.However, special dimension<strong>in</strong>g will be required for N - PE protection(for example 1+N and 3P+N)v The assembly must be validated by means of <strong>the</strong> tests specified <strong>in</strong> EN 61643-11.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV4 Choos<strong>in</strong>g a protection deviceCascad<strong>in</strong>g protection requires a m<strong>in</strong>imumdistance of at least 10 m between <strong>the</strong> twoprotection devices.This is valid, whatever <strong>the</strong> field of application:domestic, tertiary or <strong>in</strong>dustrial.4.3 Coord<strong>in</strong>ation of surge arrestersThe overvoltage protection study of an <strong>in</strong>stallation may show that <strong>the</strong> site is highlyexposed and that <strong>the</strong> equipment to be protected is sensitive. The surge arrestermust be able to discharge high currents and have a low level of protection. This dualconstra<strong>in</strong>t cannot always be handled by a s<strong>in</strong>gle surge arrester. A second one will<strong>the</strong>refore be required (see Fig. J27).The first device, P1 (<strong>in</strong>com<strong>in</strong>g protection) will be placed at <strong>the</strong> <strong>in</strong>com<strong>in</strong>g end of <strong>the</strong><strong>in</strong>stallation.Its purpose will be to discharge <strong>the</strong> maximum amount of <strong>energy</strong> to earth with alevel of protection y 2000 V that can be withstood by <strong>the</strong> electrotechnical equipment(contactors, motors, etc.).The second device (f<strong>in</strong>e protection) will be placed <strong>in</strong> a distribution enclosure, asclose as possible to <strong>the</strong> sensitive loads. It will have a low discharge capacity and alow level of protection that will limit overvoltages significantly and <strong>the</strong>refore protectsensitive loads (y 1500 V).IFig. J27 : Cascad<strong>in</strong>g of surge arrestersIIFig. J28 : Coord<strong>in</strong>ation of surge arrestersJ17The f<strong>in</strong>e-protection device P2 is <strong>in</strong>stalled <strong>in</strong> parallel with <strong>the</strong> <strong>in</strong>com<strong>in</strong>g protectiondevice P1.If <strong>the</strong> distance L is too small, at <strong>the</strong> <strong>in</strong>com<strong>in</strong>g overvoltage, P2 with a protectionlevel of U2 = 1500 V will operate before P1 with a level of U1 = 2000 V. P2 will notwithstand an excessively high current. The protection devices must <strong>the</strong>refore becoord<strong>in</strong>ated to ensure that P1 activates before P2. To do this, we shall experimentwith <strong>the</strong> length L of <strong>the</strong> cable, i.e. <strong>the</strong> value of <strong>the</strong> self-<strong>in</strong>ductance between <strong>the</strong> twoprotection devices. This self-<strong>in</strong>ductance will block <strong>the</strong> current flow to P2 and cause acerta<strong>in</strong> delay, which will force P1 to operate before P2. A metre of cable gives a self<strong>in</strong>ductanceof approximately 1μH.The rule ∆U= Ldi causes a voltage drop of approximately 100 V/m/kA, 8/20 μsdtwave.For L = 10 m, we get UL1 = UL2 ≈ 1000 V.To ensure that P2 operates with a level of protection of 1500 V requiresU1 = UL1 + UL2 + U2 = 1000 + 1000 + 1500 V = 3500 V.Consequently, P1 operates before 2000 V and <strong>the</strong>refore protects P2.Note: if <strong>the</strong> distance between <strong>the</strong> surge arrester at <strong>the</strong> <strong>in</strong>com<strong>in</strong>g end of <strong>the</strong><strong>in</strong>stallation and <strong>the</strong> equipment to be protected exceeds 30 m, cascad<strong>in</strong>g <strong>the</strong> surgearresters is recommended, as <strong>the</strong> residual voltage of <strong>the</strong> surge arrester may riseto double <strong>the</strong> residual voltage at <strong>the</strong> term<strong>in</strong>als of <strong>the</strong> <strong>in</strong>com<strong>in</strong>g surge arrester; as <strong>in</strong><strong>the</strong> above example, <strong>the</strong> f<strong>in</strong>e protection surge arrester must be placed as close aspossible to <strong>the</strong> loads to be protected.<strong>Installation</strong> rules (see page Q12).© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV4 Choos<strong>in</strong>g a protection device4.4 Selection guide1Estimate <strong>the</strong> value of <strong>the</strong> equipment to be protectedTo estimate its value, consider:b The cost of <strong>the</strong> equipment <strong>in</strong> f<strong>in</strong>ancial termsb The economic impact if <strong>the</strong> equipment goes down.b Domestic equipment:v audio-video, computersv household appliancesv burglar alarm.b Sensitive equipment:v burglar alarmv fire alarmv access controlv video surveillance.b Professional equipment:v programmable mach<strong>in</strong>ev computer serverv sound or light control system.b Build<strong>in</strong>g equipment:v automated heat<strong>in</strong>g orair-condition<strong>in</strong>gv lift.b Heavy equipment:v medical <strong>in</strong>frastructurev production <strong>in</strong>frastructurev heavy computer process<strong>in</strong>g.J1823Determ<strong>in</strong>e <strong>the</strong> electrical architecture of build<strong>in</strong>gsLightn<strong>in</strong>g protection can be calculated for an entire build<strong>in</strong>g or for part of abuild<strong>in</strong>g that is electrically <strong>in</strong>dependentDepend<strong>in</strong>g on <strong>the</strong> size of <strong>the</strong> build<strong>in</strong>g and <strong>the</strong> extent of its electrical system, one ormore surge arresters must be used <strong>in</strong> <strong>the</strong> various switchboards <strong>in</strong> <strong>the</strong> <strong>in</strong>stallation.b Detached house.b Apartment, small semi-detached house.b Communal part of a build<strong>in</strong>g.b Professional premises.b Tertiary and <strong>in</strong>dustrial build<strong>in</strong>gs:v s<strong>in</strong>gle switchboard, ma<strong>in</strong> switchboardv distribution boardv sensitive equipment more than 30 m from <strong>the</strong> switchboard.Understand <strong>the</strong> risk of <strong>the</strong> impact of lightn<strong>in</strong>g on <strong>the</strong> siteLightn<strong>in</strong>g is attracted by high po<strong>in</strong>ts that conduct electricity. They can be:b Natural: tall trees, mounta<strong>in</strong> crest, wet areas, ferrous soilb Artificial: chimney, aerial, pylon, lightn<strong>in</strong>g conductor.Indirect effects can be <strong>in</strong>curred with<strong>in</strong> a fifty metre radius around <strong>the</strong> po<strong>in</strong>t of impact.Location of <strong>the</strong> build<strong>in</strong>gIn an urban, peri-urban,grouped hous<strong>in</strong>g area.In an area where <strong>the</strong>re is aparticular hazard (pylon, tree,mounta<strong>in</strong>ous region, mounta<strong>in</strong>crest, wet area or pond).© Schneider Electric - all rights reservedIn flat open country.In an exceptionally exposed area(lightn<strong>in</strong>g conductor on a build<strong>in</strong>gless than 50 metres away).Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV4 Choos<strong>in</strong>g a protection device1Equipment to beprotectedDomestic equipmentAudio-video, computers,household appliances,burglar alarm, etc.2Determ<strong>in</strong>e <strong>the</strong>architecture of <strong>the</strong>build<strong>in</strong>gDetached house,ProfessionalpremisesApartment, smallsemi-detachedhouseCommunal part of abuild<strong>in</strong>g3J19Risk level of<strong>the</strong> impact of alightn<strong>in</strong>g strikeChoice of type ofsurge arresterType 210 kAType 240 kAType 125 kA+Type 240 kAType 125 kA+Type 240 kAType 210 kAType 240 kAType 265 kAType 125 kA+Type 240 kAType 125 kA+Type 240 kANote:Type 1: very high discharge capacity surge arrester used with a lightn<strong>in</strong>g conductor with an impact level of and .Type 2: surge arrester used <strong>in</strong> cascade beh<strong>in</strong>d a type 1 surge arrester or alone <strong>in</strong> zone and .Fig. J32 : Domestic equipmentLightn<strong>in</strong>g also propagates throughtelecommunications networks.It can damage all <strong>the</strong> equipment connected to<strong>the</strong>se networks.Protection of telecommunications equipmentChoice of surge arrestersAnalogue telephone networks < 200 VPRCb© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV4 Choos<strong>in</strong>g a protection device1Sensitive equipment:Build<strong>in</strong>g equipment:Equipment to beprotectedBurglar alarm,fire alarm,access control,video-surveillance, etc.Automated heat<strong>in</strong>g orair-condition<strong>in</strong>g,lift, etc.2S<strong>in</strong>gleswitchboard,ma<strong>in</strong>switchboardDeterm<strong>in</strong>e <strong>the</strong>architecture of <strong>the</strong>build<strong>in</strong>gDistributionboardDedicatedprotection,more than30 m from aswitchboardJ203Risk level of<strong>the</strong> impact of alightn<strong>in</strong>g strikeChoice of type ofsurge arresterType 220 kAType 240 kAType 240 kAType 125 kAor35 kA+Type 240 kAType 220 kAType 28 kANote:Type 1: very high discharge capacity surge arrester used with a lightn<strong>in</strong>g conductor with an impact level of and .Type 2: surge arrester used <strong>in</strong> cascade beh<strong>in</strong>d a type 1 surge arrester or alone <strong>in</strong> zone and .Fig. J33 : Sensitive equipment, Build<strong>in</strong>g equipment© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV4 Choos<strong>in</strong>g a protection device1Equipment to beprotectedProfessional equipmentProgrammable mach<strong>in</strong>e,server,sound or light control system,etc.2Determ<strong>in</strong>e <strong>the</strong>architecture of <strong>the</strong>build<strong>in</strong>gS<strong>in</strong>gleswitchboard,ma<strong>in</strong>switchboardDistributionboardDedicatedprotection,more than30 m from aswitchboard3Risk level of<strong>the</strong> impact of alightn<strong>in</strong>g strikeJ21Choice of type ofsurge arresterType 240 kAType 265 kAType 265 kAType 125 kAor35 kA+Type 240 kAType 220 kAType 28 kANote:Type 1: very high discharge capacity surge arrester used with a lightn<strong>in</strong>g conductor with an impact level of and .Type 2: surge arrester used <strong>in</strong> cascade beh<strong>in</strong>d a type 1 surge arrester or alone <strong>in</strong> zone and .Fig. J34 : Professional equipment© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV4 Choos<strong>in</strong>g a protection device1Equipment to beprotectedHeavy equipmentMedical, production,or heavy computerprocess<strong>in</strong>g <strong>in</strong>frastructure,etc.2S<strong>in</strong>gleswitchboard,ma<strong>in</strong>switchboardDeterm<strong>in</strong>e <strong>the</strong>architecture of <strong>the</strong>build<strong>in</strong>gDistributionboardDedicatedprotection,more than30 m from aswitchboardJ223Risk level of<strong>the</strong> impact of alightn<strong>in</strong>g strikeChoice of type ofsurge arresterType 265 kAType 125 kA+Type 240 kAType 125 kAor35 kA+Type 240 kAType 125 kAor35 kA+Type 240 kAType 220 KAType 28 kANote:Type 1: very high discharge capacity surge arrester used with a lightn<strong>in</strong>g conductor with an impact level of and .Type 2: surge arrester used <strong>in</strong> cascade beh<strong>in</strong>d a type 1 surge arrester or alone <strong>in</strong> zone and .Fig. J35 : Heavy equipment© Schneider Electric - all rights reservedLightn<strong>in</strong>g can also propagate throughtelecommunications and computer networks.It can damage all <strong>the</strong> equipment connectedto <strong>the</strong>se networks: telephones, modems,computers, servers, etc.Protection of telecommunications and computer equipmentChoice of surge arresters PRC PRIAnalogue telephone networks < 200 VDigital networks, analogue l<strong>in</strong>es < 48 VDigital networks, analogue l<strong>in</strong>es < 6 VVLV load supply < 48 VbbbSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV4 Choos<strong>in</strong>g a protection device4.5 Choice of disconnectorThe disconnector is necessary to ensure <strong>the</strong> safety of <strong>the</strong> <strong>in</strong>stallationb One of <strong>the</strong> surge arrester parameters is <strong>the</strong> maximum current (Imax 8/20 µswave) that it can withstand without degradation. If this current is exceeded, <strong>the</strong> surgearrester will be destroyed; it will be permanently short circuited and it is essential toreplace it.The fault current must <strong>the</strong>refore be elim<strong>in</strong>ated by an external disconnector <strong>in</strong>stalledupstream.The disconnector provides <strong>the</strong> complete protection required by a surge arrester<strong>in</strong>stallation, i.e.:v It must be able to withstand standard test waves:- it must not trip at 20 impulses at In- it can trip at Imax without be<strong>in</strong>g destroyedv <strong>the</strong> surge arrester disconnects if it short-circuits.b The ready-to-cable surge arresters with an <strong>in</strong>tegrated disconnection circuit breakerare:v Combi PRF1v Quick PFv Quick PRD.Surge arrester / disconnection circuit breaker correspondencetableTypesType 1Type 2Surge arresternamesIscImax or Iimp6 kA 10 kA 15 kA 25 kA 36 kA 50 kA 70 kA 100 kAPRF1 Master 35 kA (1) Compact NSX160B 160A CompactNSX160F160APRD1 Master 25 kA (1) NG 125 N C 80A NG 125L C 80APRD1 25r NG 125 N C 80A NG 125L C 80APRF1Combi PRF1D125 DcurveIntegratedPRF1 12,5 r 12,5 kA (1) NG 125 N C 80A NG 125L C 80APF 65/ PRD 65r 65 kA (2) C60N 50A C curve C60H 50AC curvePF 40 / PRD 40r 40 kA (2) C60N 40A C curve C60H 40AC curveNG125L50A CcurveNG125L40A CcurveCompactNSX160N160AFuse NH 50A gL/gGQuick PRD 40r Integrated Contact usPF 20/ PRD 20r 20 kA (2) C60N 25A C curve C60H 25AC curveNG125L25A CcurveQuick PRD 20r Integrated Contact usQuick PF 10 10 kA (2) IntegratedPF 8/ PRD 8r 8 kA (2) C60N 20A C curve C60H 20AC curveNG125L 20A C curveQuick PRD 8 r Integrated Contact usFuse 22x58 40A gL/gGFuse 22x58 25A gL/gGJ23Isc: prospective short-circuit current at <strong>the</strong> po<strong>in</strong>t of <strong>in</strong>stallation.(1) Iimp.(2) Imax.Fig. J36 : Coord<strong>in</strong>ation table between SPD and its disconnector© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV4 Choos<strong>in</strong>g a protection deviceJ24© Schneider Electric - all rights reservedFig. J37 : Example of <strong>in</strong>dication for PRDFig. J39 : Example of <strong>in</strong>dication for Quick PRD4.6 End-of-life <strong>in</strong>dication of <strong>the</strong> surge arresterVarious <strong>in</strong>dication devices are provided to warn <strong>the</strong> user that <strong>the</strong> loads are no longerprotected aga<strong>in</strong>st atmospheric overvoltages.Type 1 surge arresters (with gas filled spark gap)PRF1 1P 260 V, Combi 1P+N and 3P+N and PRF1 MasterThese surge arresters have a light <strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong> module is <strong>in</strong> good work<strong>in</strong>gorder. This <strong>in</strong>dicator light requires a m<strong>in</strong>imum operat<strong>in</strong>g voltage of 120 V AC.b The light does not come on:v if <strong>the</strong> operat<strong>in</strong>g voltage is y 120 V ACv if <strong>the</strong>re is no network voltagev if <strong>the</strong> spark-over electronics are defective.Type 2 surge arresters (varistor, varistor + gas filled spark gap)PF, PRDAt end of life, <strong>the</strong> surge arrester or <strong>the</strong> cartridge are destroyed.b This can occur <strong>in</strong> two ways:v <strong>in</strong>ternal end-of-life disconnection: <strong>the</strong> accumulated electric shocks cause <strong>the</strong>varistors to age, result<strong>in</strong>g <strong>in</strong> an <strong>in</strong>crease <strong>in</strong> leakage current.Above 1 mA, a <strong>the</strong>rmal runaway occurs and <strong>the</strong> surge arrester disconnects.v external end-of-life disconnection: this occurs <strong>in</strong> <strong>the</strong> event of an excessiveovervoltage (direct lightn<strong>in</strong>g strike on <strong>the</strong> l<strong>in</strong>e); above <strong>the</strong> discharge capacity of <strong>the</strong>surge arrester, <strong>the</strong> varistor(s) are dead short-circuited to earth (or possibly betweenphase and neutral). This short-circuit is elim<strong>in</strong>ated when <strong>the</strong> mandatory associateddisconnection circuit breaker opens.Quick PRD and Quick PFWhatever <strong>the</strong> hazards of <strong>the</strong> power supply network, Quick PRD and Quick PF<strong>in</strong>corporate a perfectly coord<strong>in</strong>ated disconnector.b In <strong>the</strong> event of lightn<strong>in</strong>g strikes < Imax: like all surge arresters, <strong>the</strong>y have <strong>in</strong>ternalanti-age<strong>in</strong>g protection.b In <strong>the</strong> event of a lightn<strong>in</strong>g strike > Imax: Quick PRD and Quick PF are selfprotectedby <strong>the</strong>ir <strong>in</strong>tegrated disconnector.b In <strong>the</strong> event of neutral disconnection or phase-neutral reversal occurr<strong>in</strong>g on <strong>the</strong>power supply:Quick PRD and Quick PF are self-protected by <strong>the</strong>ir <strong>in</strong>tegrated disconnector.To simplify ma<strong>in</strong>tenance work, Quick PRD is fitted with local <strong>in</strong>dicators and draw-outcartridges that are mechanically comb<strong>in</strong>ed with <strong>the</strong> disconnector.Quick PRD has <strong>in</strong>dicator lights on <strong>the</strong> cartridges and on <strong>the</strong> <strong>in</strong>tegrated disconnector,so that <strong>the</strong> work to be carried out can quickly be located.For safety reasons, <strong>the</strong> disconnector opens automatically when a cartridge isremoved. It cannot be set until <strong>the</strong> cartridge is plugged <strong>in</strong>.When chang<strong>in</strong>g <strong>the</strong> cartridge, a phase/neutral failsafe system ensures that it can beplugged <strong>in</strong> safely.Operat<strong>in</strong>g state cont<strong>in</strong>uous displayQuick PRD has an <strong>in</strong>tegrated report<strong>in</strong>g contact to send <strong>in</strong>formation about <strong>the</strong>operat<strong>in</strong>g state of <strong>the</strong> surge arrester from a remote location.Monitor<strong>in</strong>g <strong>the</strong> surge arresters <strong>in</strong>stalled throughout <strong>the</strong> <strong>in</strong>stallation makes it possibleto be cont<strong>in</strong>uously aware of <strong>the</strong>ir operat<strong>in</strong>g state and to ensure that <strong>the</strong> protectiondevices are always <strong>in</strong> good work<strong>in</strong>g order.b A report<strong>in</strong>g contact gives <strong>the</strong> alert:v at end of life of a cartridgev if a cartridge is miss<strong>in</strong>g, as soon as it has been removedv if a fault occurs on <strong>the</strong> l<strong>in</strong>e (short-circuit, neutral disconnection, phase-neutralreversal)v <strong>in</strong> <strong>the</strong> event of local manual operation (handle down).Quick PF has an optional <strong>in</strong>dication report<strong>in</strong>g auxiliary (SR) that sends <strong>in</strong>formationabout <strong>the</strong> operat<strong>in</strong>g state of <strong>the</strong> surge arrester from a remote location.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


J - Protection aga<strong>in</strong>st voltage surges <strong>in</strong> LV4 Choos<strong>in</strong>g a protection deviceMV/LV transformer160 kVAMa<strong>in</strong>switchboardC6040 APRD40 kASwitchboard 1Switchboard2C6020 APRD8 kAID"si"ID"si"C6020 APRD8 kAHeat<strong>in</strong>g Light<strong>in</strong>g Freezer RefrigeratorStoreroom light<strong>in</strong>gPower outletsFire-fight<strong>in</strong>g system AlarmIT system CheckoutJ25Fig. J39 : Application example : supermarket4.7 Application example: supermarketSolutions and schematic diagramb The surge arrester selection guide has made it possible to determ<strong>in</strong>e <strong>the</strong> precisevalue of <strong>the</strong> surge arrester at <strong>the</strong> <strong>in</strong>com<strong>in</strong>g end of <strong>the</strong> <strong>in</strong>stallation and that of <strong>the</strong>associated disconnection circuit breaker.b As <strong>the</strong> sensitive devices (Uimp < 1.5 kV) are located more than 30 m from <strong>the</strong><strong>in</strong>com<strong>in</strong>g protection device, <strong>the</strong> f<strong>in</strong>e protection surge arresters must be <strong>in</strong>stalled asclose as possible to <strong>the</strong> loads.b To ensure better cont<strong>in</strong>uity of service for cold room areas:v"si" type residual current circuit breakers will be used to avoid nuisance tripp<strong>in</strong>gcaused by <strong>the</strong> rise <strong>in</strong> earth potential as <strong>the</strong> lightn<strong>in</strong>g wave passes through.b For protection aga<strong>in</strong>st atmospheric overvoltages:v <strong>in</strong>stall a surge arrester <strong>in</strong> <strong>the</strong> ma<strong>in</strong> switchboardv <strong>in</strong>stall a f<strong>in</strong>e protection surge arrester <strong>in</strong> each switchboard (1 and 2) supply<strong>in</strong>g <strong>the</strong>sensitive devices situated more than 30 m from <strong>the</strong> <strong>in</strong>com<strong>in</strong>g surge arresterv <strong>in</strong>stall a surge arrester on <strong>the</strong> telecommunications network to protect <strong>the</strong> devicessupplied, for example fire alarms, modems, telephones, faxes.Fig. J40 : Telecommunications networkCabl<strong>in</strong>g recommendationsb Ensure <strong>the</strong> equipotentiality of <strong>the</strong> earth term<strong>in</strong>ations of <strong>the</strong> build<strong>in</strong>g.b Reduce <strong>the</strong> looped power supply cable areas.<strong>Installation</strong> recommendationsb Install a surge arrester, Imax = 40 kA (8/20 µs) and a C60 disconnection circuitbreaker rated at 20 A.b Install f<strong>in</strong>e protection surge arresters, Imax = 8 kA (8/20 µs) and <strong>the</strong> associatedC60 disconnection circuit breakers rated at 20 A.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Chapter KEnergy Efficiency <strong>in</strong> electricaldistribution123456ContentsIntroductionK2Energy efficiency and electricityK32.1 Regulation is push<strong>in</strong>g <strong>energy</strong> efficiency worldwide K32.2 How to achieve Energy Efficiency K4Diagnosis through electrical measurementK73.1 Physical value acquisition K73.2 <strong>Electrical</strong> data for real objectives K83.3 Measurement starts with <strong>the</strong> "stand alone product" solution K10Energy sav<strong>in</strong>g solutionsk134.1 Motor systems and replacement K134.2 Pumps, fans and variable speed drives K144.3 Light<strong>in</strong>g K184.4 Load management strategies K204.5 Power factor correction K224.6 Harmonic filter<strong>in</strong>g K224.7 O<strong>the</strong>r measures K234.8 Communication and Information System K234.9 Mapp<strong>in</strong>g of solutions K30How to value <strong>energy</strong> sav<strong>in</strong>gsK315.1 Introduction to IPMVP and EVO K315.2 Pr<strong>in</strong>ciples and options of IPMVP K315.3 Six qualities of IPMVP K325.4 IPMVP'S options K325.5 Fundamental po<strong>in</strong>ts of an M&V plan K33From returns on <strong>in</strong>vestment to susta<strong>in</strong>ed performance K346.1 Technical support services K346.2 Operational support services K35K© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations1 IntroductionK14012010080604020020072008<strong>2009</strong>2010201120122013BaseSC1SC2Fig. K1 : How to reach a fall <strong>in</strong> consumption of 20% by 2020While <strong>the</strong>re are a number of factors <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> attitudes and op<strong>in</strong>ions towards<strong>energy</strong> efficiency – most notably <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g cost of <strong>energy</strong> and a ris<strong>in</strong>g socialconscience – it is likely to be legislative drivers that have <strong>the</strong> greatest impact onchang<strong>in</strong>g behaviours and practices. Respective governments <strong>in</strong>ternationally are<strong>in</strong>troduc<strong>in</strong>g <strong>energy</strong> sav<strong>in</strong>g targets and effect<strong>in</strong>g regulations to ensure <strong>the</strong>y are met.Reduc<strong>in</strong>g greenhouse gas emissions is a <strong>global</strong> target set at <strong>the</strong> Earth Summit <strong>in</strong>Kyoto <strong>in</strong> 1997 and f<strong>in</strong>ally ratified by 169 countries <strong>in</strong> December 2006 enabl<strong>in</strong>g <strong>the</strong>Agreement’s enactment <strong>in</strong> February 2005.Under <strong>the</strong> Kyoto Protocol <strong>in</strong>dustrialised countries have agreed to reduce <strong>the</strong>ircollective emissions of greenhouse gases by 5.2% by 2008-2012 compared to <strong>the</strong>year 1990 (however, compared to <strong>the</strong> emissions levels expected by 2012 prior to<strong>the</strong> Protocol, this limitation represents a 29% cut). The target <strong>in</strong> Europe is an 8%reduction overall with a target for CO 2 emissions to fall by 20% by 2020.Of <strong>the</strong> six greenhouse gases listed by Kyoto, one of <strong>the</strong> most significant by volumeof emissions is carbon dioxide (CO 2 ) and it is gas that is ma<strong>in</strong>ly emitted as a resultof electricity generation and use, as well as direct <strong>the</strong>rmal losses <strong>in</strong>, for example,heat<strong>in</strong>g.Up to 50% of CO 2 emissions attributable to residential and commercial build<strong>in</strong>gsis from electricity consumption. Moreover, as domestic appliances, computers andenterta<strong>in</strong>ment systems proliferate; and o<strong>the</strong>r equipment such as air condition<strong>in</strong>g andventilation systems <strong>in</strong>crease <strong>in</strong> use, electricity consumption is ris<strong>in</strong>g at a higher ratethan o<strong>the</strong>r <strong>energy</strong> usage.The ability to meet targets by simply persuad<strong>in</strong>g people to act differently or deploynew <strong>energy</strong> sav<strong>in</strong>g or <strong>energy</strong> efficient technology is unlikely to succeed. Justconsider<strong>in</strong>g construction and <strong>the</strong> built environment, new construction is far less than2% of exist<strong>in</strong>g stock. If newly constructed build<strong>in</strong>gs perform exactly as exist<strong>in</strong>g stock<strong>the</strong> result by 2020 will be an <strong>in</strong>crease <strong>in</strong> electricity consumption of 22%. On <strong>the</strong> o<strong>the</strong>rhand, if all new construction has <strong>energy</strong> consumption of 50% less than exist<strong>in</strong>gstock, <strong>the</strong> result is still an <strong>in</strong>crease of 18%.In order to reach a fall <strong>in</strong> consumption of 20% by 2020 <strong>the</strong> folllow<strong>in</strong>g has to happen:b All new build<strong>in</strong>gs constructed to consume 50% less <strong>energy</strong>b 1 <strong>in</strong> 10 exist<strong>in</strong>g build<strong>in</strong>gs reduce consumption by 30% each year(see Fig.K1).Significantly, by 2020 <strong>in</strong> most countries 80% of all build<strong>in</strong>gs will have already beenbuilt. The refurbishment of exist<strong>in</strong>g build<strong>in</strong>g stock and improv<strong>in</strong>g <strong>energy</strong> managementis vital <strong>in</strong> meet<strong>in</strong>g emission reduction targets. Given that <strong>in</strong> <strong>the</strong> west, most build<strong>in</strong>gshave already undergone <strong>the</strong>rmal <strong>in</strong>sulation upgrades such as cavity wall <strong>in</strong>sulation,loft <strong>in</strong>sulation and glaz<strong>in</strong>g, <strong>the</strong> only potential for fur<strong>the</strong>r sav<strong>in</strong>gs is by reduc<strong>in</strong>g <strong>the</strong>amount of <strong>energy</strong> consumed.Action on exist<strong>in</strong>g built environment will almost certa<strong>in</strong>ly become compulsory to meettargets fixed for <strong>the</strong> com<strong>in</strong>g years.As a result, governments are apply<strong>in</strong>g pressures to meet <strong>the</strong> ambitious targets. It isalmost certa<strong>in</strong> that ever more demand<strong>in</strong>g regulations will be enforced to address all<strong>energy</strong> uses, <strong>in</strong>clud<strong>in</strong>g exist<strong>in</strong>g build<strong>in</strong>gs and, naturally, <strong>in</strong>dustry. At <strong>the</strong> same time<strong>energy</strong> prices are ris<strong>in</strong>g as natural resources become exhausted and <strong>the</strong> electrical<strong>in</strong>frastructure <strong>in</strong> some countries struggles to cope with <strong>in</strong>creas<strong>in</strong>g demand.Technology exists to help tackle <strong>energy</strong> efficiency on many levels from reduc<strong>in</strong>gelectrical consumption to controll<strong>in</strong>g o<strong>the</strong>r <strong>energy</strong> sources more efficiently. Strongregulatory measures may be required to ensure <strong>the</strong>se technologies are adoptedquickly enough to impact on <strong>the</strong> 2020 targets.The most important <strong>in</strong>gredient however, lies with <strong>the</strong> ability of those <strong>in</strong> control of<strong>in</strong>dustry, bus<strong>in</strong>ess and government to concentrate <strong>the</strong>ir hearts and m<strong>in</strong>ds on mak<strong>in</strong>g<strong>energy</strong> efficiency a critical target. O<strong>the</strong>rwise, it might not be just <strong>the</strong> Kyoto targets onwhich <strong>the</strong> lights go out.The message to heed is that if those empowered to save <strong>energy</strong> don’t do sowill<strong>in</strong>gly now, <strong>the</strong>y will be compelled under legal threat to do so <strong>in</strong> <strong>the</strong> future.© Schneider Electric - all rights reserved20142015201620172018A m<strong>in</strong>imum renovation of 10% per year of exist<strong>in</strong>g stock iscompulsory to reach less 20%Renovation =New =70% of <strong>the</strong> sav<strong>in</strong>gs30% of <strong>the</strong> sav<strong>in</strong>gsSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations2 Energy efficiency and electricity2.1 Regulation is push<strong>in</strong>g Energy EfficiencyworldwideKyoto Protocol was <strong>the</strong> start of fix<strong>in</strong>g quantitative targets and agenda <strong>in</strong> CO 2emissions reduction with clear government's commitments.Beyond Kyoto commitment (which covers only <strong>the</strong> period up to 2012) manycountries have fixed longer time frame and targets <strong>in</strong> l<strong>in</strong>e with <strong>the</strong> last GIEECrecommendations to UNFCC to stabilise <strong>the</strong> CO 2 concentration at a level of 450 ppm(this should require a division by 2 before 2050 of <strong>the</strong> CO 2 emission level based on1990).European Union is a good example and firm commitment with a target of Iess20% before 2020 has been taken by heads of EU member states <strong>in</strong> March 2007(known as <strong>the</strong> 3x20: it <strong>in</strong>cludes reduction of 20% of CO 2 emission, Improvement of20% of <strong>the</strong> Energy Efficiency level and reach<strong>in</strong>g 20% of <strong>the</strong> <strong>energy</strong> produced fromrenewable).This commitment of Iess 20% <strong>in</strong> 2020 couId be extended to less 30% <strong>in</strong>2020 <strong>in</strong> case of post Kyoto <strong>in</strong>ternational agreement.Some European Countries are plann<strong>in</strong>g commitment for <strong>the</strong> 2050 with level ofreduction up to 50%. All of this illustrates that Energy Efficiency Iandscape andpolicies will be present <strong>in</strong> a long time frame.Reach<strong>in</strong>g <strong>the</strong>se targets wiII require real change and regulations, legislation,standardisation are enablers governments are re <strong>in</strong>forc<strong>in</strong>g everyday.All over <strong>the</strong> world Régulation/Législation is streng<strong>the</strong>n<strong>in</strong>g stakeholdersobligations and putt<strong>in</strong>g <strong>in</strong> place f<strong>in</strong>ancial & fiscal schemesb In USv Energy Policy Act of 2005v Build<strong>in</strong>g Codesv Energy Codes (10CFR434)v State Energy prograrn (10CFR420)v Energy Conservation for Consumer Goods (10CFR430)b In European Unionv EU Emission Trad<strong>in</strong>g Schemev Energy Performance of Build<strong>in</strong>g Directivev Energy Us<strong>in</strong>g Product Directivev End use of <strong>energy</strong> & <strong>energy</strong> services directiveb In Ch<strong>in</strong>av Ch<strong>in</strong>a Energy Conservation Lawv Ch<strong>in</strong>a Architecture law (EE <strong>in</strong> Build<strong>in</strong>g)v Ch<strong>in</strong>a Renewable Energy Lawv Top 1000 Industrial Energy Conservation ProgramKBuild<strong>in</strong>gEnergyPerformanceEnergyLabell<strong>in</strong>g ofDomesticAppliancesEmissionTrad<strong>in</strong>gSchemeComb<strong>in</strong>edHeat &PowerEnergyUs<strong>in</strong>gProductsEnd use ofEnergy &Energy ServicesEEDedicateddirectivesDec 02EPB2002/91Jul 03ELDA2003/66Oct 03ETS2003/87Feb 04CHP2004/8July 05Eco Design2005/32April 06EUE & ES2006/32Fig. K2 : EE Dedicated directivesVarious legislative and f<strong>in</strong>ancial-fiscal <strong>in</strong>centives schemes are developed atnational and regional levels such as:b Audit<strong>in</strong>g & assessment schemesb Performance labell<strong>in</strong>g schemesb Build<strong>in</strong>g Codesb Energy Performance Certificatesb Obligation to <strong>energy</strong> sellers to have <strong>the</strong>ir clients mak<strong>in</strong>g <strong>energy</strong> sav<strong>in</strong>gsb Voluntary agreements <strong>in</strong> Industryb F<strong>in</strong>ancial-market mechanism (tax credit, accelerated depreciation, whitecertificates,...)b Taxation and <strong>in</strong>centive schemes© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations2 Energy efficiency and electricityAll sectors are concerned and regulations impact not only new constructionand <strong>in</strong>stallation but as well <strong>the</strong> exist<strong>in</strong>g build<strong>in</strong>gs <strong>in</strong> <strong>in</strong>dustrial or <strong>in</strong>frastructureenvironment.In parallel Standardisation work has started with a lot of new standards be<strong>in</strong>gissued or <strong>in</strong> progress.In build<strong>in</strong>g all <strong>energy</strong> use are concerned:b Light<strong>in</strong>gb Ventilationb Heat<strong>in</strong>gb Cool<strong>in</strong>g and ACFor <strong>in</strong>dustries as well as commercial companies Energy Management Systemsstandards ( <strong>in</strong> I<strong>in</strong>e with <strong>the</strong> well known ISO 9001 for quality and ISO 14001 forenvironment) are under process <strong>in</strong> Standardisation Bodies. Energy EfficiencyServices standards are as well at work.2.2 How to achieve Energy EfficiencyPassive EEb Efficient devices and efficient <strong>in</strong>stallation (10 to 15%)Low consumption devices, <strong>in</strong>sulated build<strong>in</strong>g...KActive EEb Optimized usage of <strong>in</strong>stallation and devices (5 to 15%)Turn off devices when not needed, regulate motors orheat<strong>in</strong>g at <strong>the</strong> optimized level…b Permanent monitor<strong>in</strong>g and improvement program (2 to 8%)Rigorous ma<strong>in</strong>tenance program, measureand react <strong>in</strong> case of deviationFig. K2 : 30% Sav<strong>in</strong>gs are available today…© Schneider Electric - all rights reserved30% sav<strong>in</strong>gs are available through exist<strong>in</strong>g EE solutions, but to really understandwhere <strong>the</strong>se opportunities are, let’s understand first <strong>the</strong> ma<strong>in</strong> differences betweenPassive and Active EE.Passive EE is regarded as <strong>the</strong> <strong>in</strong>stallation of countermeasures aga<strong>in</strong>st <strong>the</strong>rmallosses, <strong>the</strong> use of low consumption equipment and so forth. Active Energy Efficiencyis def<strong>in</strong>ed as effect<strong>in</strong>g permanent change through measurement, monitor<strong>in</strong>g andcontrol of <strong>energy</strong> usage. It is vital, but <strong>in</strong>sufficient, to make use of <strong>energy</strong> sav<strong>in</strong>gequipment and devices such as low <strong>energy</strong> light<strong>in</strong>g. Without proper control, <strong>the</strong>semeasures often merely militate aga<strong>in</strong>st <strong>energy</strong> losses ra<strong>the</strong>r than make a realreduction <strong>in</strong> <strong>energy</strong> consumed and <strong>in</strong> <strong>the</strong> way it is used.Everyth<strong>in</strong>g that consumes power – from direct electricity consumption throughlight<strong>in</strong>g, heat<strong>in</strong>g and most significantly electric motors, but also <strong>in</strong> HVAC control,boiler control and so forth – must be addressed actively if susta<strong>in</strong>ed ga<strong>in</strong>s are to bemade. This <strong>in</strong>cludes chang<strong>in</strong>g <strong>the</strong> culture and m<strong>in</strong>dsets of groups of <strong>in</strong>dividuals,result<strong>in</strong>g <strong>in</strong> behavioural shifts at work and at home, but clearly, this need is reducedby greater use of technical controls.b 10 to 15% sav<strong>in</strong>gs are achievable through passive EE measures such as <strong>in</strong>stall<strong>in</strong>glow consumption devices, <strong>in</strong>sulat<strong>in</strong>g build<strong>in</strong>g, etc.b 5 to 15% can be achieved through such as optimiz<strong>in</strong>g usage of <strong>in</strong>stallation anddevices, turn off devices when not needed, regulat<strong>in</strong>g motors or heat<strong>in</strong>g at <strong>the</strong>optimized level…v Up to 40% of <strong>the</strong> potential sav<strong>in</strong>gs for a motor system are realized by <strong>the</strong> Drive &Automationv Up to 30% of <strong>the</strong> potential for sav<strong>in</strong>gs <strong>in</strong> a build<strong>in</strong>g light<strong>in</strong>g system can be realizedvia <strong>the</strong> light<strong>in</strong>g control systemSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations2 Energy efficiency and electricityb And a fur<strong>the</strong>r 2 to 8% can also be achieved through active EE measures such asputt<strong>in</strong>g <strong>in</strong> place a permanent monitor<strong>in</strong>g and improvement programBut sav<strong>in</strong>gs can be lost quickly if <strong>the</strong>re is:b Unplanned, unmanaged shutdowns of equipment and processesb Lack of automation and regulation (motors, heat<strong>in</strong>g)b No cont<strong>in</strong>uity of behaviorsEnergy Efficiency : it's easy, just follow <strong>the</strong> 4 susta<strong>in</strong>ability steps1 Measureb Energy metersb Power quality meters2 Fix <strong>the</strong> basics b Low consumption devicesb Insulation materialb Power qualityb Power reliability3 Automate4 Monitor and ImproveFig. K4 : The 4 susta<strong>in</strong>ability stepsb Build<strong>in</strong>g management systemsb Light<strong>in</strong>g control systemsb Motor control systemsb Home control systemsb Variable speed driveb Energy management softwareb Remote monitor<strong>in</strong>g systemsEnergy Efficiency is not different form o<strong>the</strong>r discipl<strong>in</strong>es and we take a very rationalapproach to it, very similar to <strong>the</strong> 6Sigma DMAIC (Def<strong>in</strong>e, Measure, Analyze,Improve and Control) approach.As always, <strong>the</strong> first th<strong>in</strong>g that we need to do is to measure <strong>in</strong> order to understandwhere are <strong>the</strong> ma<strong>in</strong> consumptions, what is <strong>the</strong> consumption pattern, etc. This <strong>in</strong>itialmeasurement, toge<strong>the</strong>r with some benchmark<strong>in</strong>g <strong>in</strong>formation, will allow us see howgood or bad we are do<strong>in</strong>g, to def<strong>in</strong>e <strong>the</strong> ma<strong>in</strong> improvement axis and an estimationof what can be expected <strong>in</strong> terms of ga<strong>in</strong>s. We can not improve what we can notmeasure.Then, we need to fix <strong>the</strong> basics or what is called passive EE. Change old endusedevices by Low consumption ones (bulbs, motors, etc), Improve <strong>the</strong> Insulation ofyour <strong>in</strong>stallations, and assure power quality reliability <strong>in</strong> order to be able to work <strong>in</strong> astable environment where <strong>the</strong> ga<strong>in</strong>s are go<strong>in</strong>g to susta<strong>in</strong>able over time.After that, we are ready to enter <strong>in</strong>to <strong>the</strong> automation phase or Active Energyefficiency. As already highlighted, everyth<strong>in</strong>g that consumes power must beaddressed actively if susta<strong>in</strong>ed ga<strong>in</strong>s are to be made.Active Energy Efficiency can be achieved not only when <strong>energy</strong> sav<strong>in</strong>g devicesand equipment are <strong>in</strong>stalled, but with all k<strong>in</strong>d of end-use devices. It is this aspect ofcontrol that is critical to achiev<strong>in</strong>g <strong>the</strong> maximum efficiency. As an example, consider alow consumption bulb that is left on <strong>in</strong> an empty room. All that is achieved is that less<strong>energy</strong> is wasted compared to us<strong>in</strong>g an ord<strong>in</strong>ary bulb, but <strong>energy</strong> is still wasted!Responsible equipment manufacturers are cont<strong>in</strong>ually develop<strong>in</strong>g more efficientproducts. However, while for <strong>the</strong> most part <strong>the</strong> efficiency of <strong>the</strong> equipment is a fairrepresentation of its <strong>energy</strong> sav<strong>in</strong>g potential - say, <strong>in</strong> <strong>the</strong> example of a domesticwash<strong>in</strong>g mach<strong>in</strong>e or refrigerator - it is not always <strong>the</strong> case <strong>in</strong> <strong>in</strong>dustrial andcommercial equipment. In many cases <strong>the</strong> overall <strong>energy</strong> performance of <strong>the</strong> systemis what really counts. Put simply, if an <strong>energy</strong> sav<strong>in</strong>g device is left permanentlyon stand-by it can be less efficient than a higher consum<strong>in</strong>g device that is alwaysswitched off when not <strong>in</strong> use.Summariz<strong>in</strong>g, manag<strong>in</strong>g <strong>energy</strong> is <strong>the</strong> key to maximiz<strong>in</strong>g its usefulness andeconomiz<strong>in</strong>g on its waste. While <strong>the</strong>re are <strong>in</strong>creas<strong>in</strong>g numbers of products that arenow more <strong>energy</strong> efficient than <strong>the</strong>ir predecessors, controll<strong>in</strong>g switch<strong>in</strong>g or reduc<strong>in</strong>gsett<strong>in</strong>gs of variables such as temperature or speed, makes <strong>the</strong> greatest impact.K© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations2 Energy efficiency and electricityThe key to susta<strong>in</strong>able sav<strong>in</strong>gs100%70%b Up to 8% per year is lost withoutmonitor<strong>in</strong>g and ma<strong>in</strong>tenance programb Up to 12% per year is lost withoutregulation and control systemsEnergyConsumptionEfficient devicesand <strong>in</strong>stallationOptimized usagevia automationMonitor<strong>in</strong>g & Ma<strong>in</strong>tenanceTimeFig. K5 : Control and monitor<strong>in</strong>g technologies will susta<strong>in</strong> <strong>the</strong> sav<strong>in</strong>gsAs you could see, 30% <strong>energy</strong> sav<strong>in</strong>g are available and quite easily achievabletoday but up to 8% per year can be lost without proper ma<strong>in</strong>tenance and diligentmonitor<strong>in</strong>g of your key <strong>in</strong>dicators. Information is key to susta<strong>in</strong><strong>in</strong>g <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs.You cannot manage what you cannot measure and <strong>the</strong>refore meter<strong>in</strong>g andmonitor<strong>in</strong>g devices coupled with proper analysis provide <strong>the</strong> tools required to take onthat challenge successfully.KLifecycle approach to Energy EfficiencyEnergy Audit& Measurebuild<strong>in</strong>g, <strong>in</strong>dustrialprocess…Fix <strong>the</strong> basicsLow consumptiondevices,Insulation materialPower factorcorrection…PassiveEnergy EfficiencyOptimize throughAutomation andregulationHVAC control,light<strong>in</strong>g control,variable speeddrives…Fig. K6 : Lifecycle solutions for Energy EfficiencyMonitor,ma<strong>in</strong>ta<strong>in</strong>,improveActiveEnergy EfficiencyMeters <strong>in</strong>stallationMonitor<strong>in</strong>g servicesEE analysis softwareControlImprove© Schneider Electric - all rights reservedEnergy Efficiency needs a structured approach <strong>in</strong> order to provide significant andsusta<strong>in</strong>able sav<strong>in</strong>gs. Schneider Electric take a customer lifecycle approach to tackleit. It starts with a diagnosis or audit on build<strong>in</strong>gs and <strong>in</strong>dustrial processes… This willprovide us an <strong>in</strong>dication of <strong>the</strong> situation and <strong>the</strong> ma<strong>in</strong> avenues to pursue sav<strong>in</strong>gs. Butis not enough, it is just <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g, what really counts is gett<strong>in</strong>g <strong>the</strong> results. Onlycompanies hav<strong>in</strong>g <strong>the</strong> means to be active <strong>in</strong> <strong>the</strong> whole process can be <strong>the</strong>re with<strong>the</strong>ir customers up to <strong>the</strong> real sav<strong>in</strong>gs and results.Then, we will fix <strong>the</strong> basics, automate and f<strong>in</strong>ally monitor, ma<strong>in</strong>ta<strong>in</strong> and improve.Then we are ready to start aga<strong>in</strong> and cont<strong>in</strong>ue <strong>the</strong> virtuous cycle.Energy Efficiency is an issue where a risk shar<strong>in</strong>g and a w<strong>in</strong>-w<strong>in</strong> relation shall beestablished to reach <strong>the</strong> goal.As targets are fixed over long timeframe (less 20% <strong>in</strong> 2020 , less 50% <strong>in</strong> 2050),for most of our customers EE programs are not one-shot <strong>in</strong>itiatives and permanentimprovement over <strong>the</strong> time is key. Therefore, frame services contracts is <strong>the</strong> idealway to deal with <strong>the</strong>se customer needs.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations3 Diagnosis through electricalmeasurementThe <strong>energy</strong> efficiency performance <strong>in</strong> terms of electricity can only be expressed <strong>in</strong>terms of fundamental physical measurements – voltage, current, harmonics, etc.These physical measurements are <strong>the</strong>n reprocessed to become digital data and <strong>the</strong>n<strong>in</strong>formation.In <strong>the</strong> raw form, data are of little use. Unfortunately, some <strong>energy</strong> managers becometotally immersed <strong>in</strong> data and see data collection and collation as <strong>the</strong>ir primary task.To ga<strong>in</strong> value from data <strong>the</strong>y must be transformed <strong>in</strong>to <strong>in</strong>formation (used to support<strong>the</strong> knowledge development of all those manag<strong>in</strong>g <strong>energy</strong>) and understand<strong>in</strong>g (usedto action <strong>energy</strong> sav<strong>in</strong>gs).The operational cycle is based on four processes: data collection; data analysis;communication; and action (see Fig. K7). These elements apply to any <strong>in</strong>formationsystem. The cycle works under condition that an adequate communication networkhas been set up.Communication(<strong>in</strong>formation tounderstand<strong>in</strong>g)Data analysis(data to <strong>in</strong>formation)Action(understand<strong>in</strong>gto results)Data collectionFig. K7 : The operational cycleKThe data process<strong>in</strong>g level results <strong>in</strong> <strong>in</strong>formation that can be understood by <strong>the</strong>recipient profile: <strong>the</strong> ability to <strong>in</strong>terpret <strong>the</strong> data by <strong>the</strong> user rema<strong>in</strong>s a considerablechallenge <strong>in</strong> terms of decision mak<strong>in</strong>g.The data is <strong>the</strong>n directly l<strong>in</strong>ked to loads that consume electricity – <strong>in</strong>dustrial process,light<strong>in</strong>g, air condition<strong>in</strong>g, etc. – and <strong>the</strong> service that <strong>the</strong>se loads provide for <strong>the</strong>company – quantity of products manufactured, comfort of visitors to a supermarket,ambient temperature <strong>in</strong> a refrigerated room, etc.The <strong>in</strong>formation system is <strong>the</strong>n ready to be used on a day to day basis by users toachieve <strong>energy</strong> efficiency objectives set by senior managers <strong>in</strong> <strong>the</strong> company.3.1 Physical value acquisitionThe quality of data starts with <strong>the</strong> measurement itself: at <strong>the</strong> right place, <strong>the</strong> righttime and just <strong>the</strong> right amount.Basically, electrical measurement is based on voltage and current go<strong>in</strong>g through <strong>the</strong>conductors. These values lead to all <strong>the</strong> o<strong>the</strong>rs: power, <strong>energy</strong>, power factor, etc.Firstly we will ensure consistency of <strong>the</strong> precision class of current transformers,voltage transformers and <strong>the</strong> precision of <strong>the</strong> measurement devices <strong>the</strong>mselves. Theprecision class will be lower for higher voltages: an error <strong>in</strong> <strong>the</strong> measurement of highvoltage for example represents a very large amount of <strong>energy</strong>.The total error is <strong>the</strong> quadratic sum of each error.2 2 2∑of error = error + error + ... + errorExample:a device with an error of 2% connected on a CT ’s with an error of 2% that means:2 2∑of error = ( 2) + ( 2) = 2,828% .That could mean a loss of 2,828 kWh for 100,000 kWh of consumption.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations3 Diagnosis through electricalmeasurementKA CT is def<strong>in</strong>ed by:b transformation ratio. For example: 50/5Ab precision class Cl. Example: Cl=0.5b precision power <strong>in</strong> VA to supply power to<strong>the</strong> measurement devices on <strong>the</strong> secondary.Example: 1.25 VAb limit precision factor <strong>in</strong>dicated as a factorapplied to In before saturation.Example: FLP (or Fs) =10 for measurementdevices with a precision power that is <strong>in</strong>conformity.PM700 measurement unitVoltage measurementIn low voltage, <strong>the</strong> voltage measurement is directly made by <strong>the</strong> measurementdevice. When <strong>the</strong> voltage level becomes <strong>in</strong>compatible with <strong>the</strong> device capacity, forexample <strong>in</strong> medium voltage, we have to put <strong>in</strong> voltage transformers.A VT (Voltage transformer) is def<strong>in</strong>ed by:b its primary voltage and secondary voltageb its apparent powerb its precision classCurrent measurementCurrent measurement is made by split or closed-core CT’s placed around <strong>the</strong> phaseand neutral conductors as appropriate.Accord<strong>in</strong>g to <strong>the</strong> required precision for measurement, <strong>the</strong> CT used for <strong>the</strong> protectionrelay also allows current measurement under normal conditions.Energy measurementTo measure <strong>energy</strong>, we consider two objectives:b A contractual bill<strong>in</strong>g objective, e.g. between an electricity company and its clientor even between an airport manager (sub-bill<strong>in</strong>g) and stores rent<strong>in</strong>g airport surfaceareas. In this case IEC 62053-21 for Classes 1 and 2 and IEC 62053-22 for Classes0.5S and 0.2S become applicable to measure active <strong>energy</strong>.The full measurement cha<strong>in</strong> – CT, VT and measurement unit – can reach a precisionclass Cl of 1 <strong>in</strong> low voltage, Cl 0.5 <strong>in</strong> medium voltage and 0.2 <strong>in</strong> high voltage, or even0.1 <strong>in</strong> <strong>the</strong> future.b An <strong>in</strong>ternal cost allocation objective for <strong>the</strong> company, e.g. to break-down <strong>the</strong> costof electricity for each product produced <strong>in</strong> a specific workshop. In this case of aprecision class between 1 and 2 for <strong>the</strong> whole cha<strong>in</strong> (CT, VT and measurementstation) is sufficient.It is recommended to match <strong>the</strong> full measurement cha<strong>in</strong> precision with actualmeasurement requirements: <strong>the</strong>re is no one s<strong>in</strong>gle universal solution, but a goodtechnical and economic compromise accord<strong>in</strong>g to <strong>the</strong> requirement to be satisfied.Note that <strong>the</strong> measurement precision also has a cost, to be compared with <strong>the</strong> returnon <strong>in</strong>vestment that we are expect<strong>in</strong>g.Generally ga<strong>in</strong>s <strong>in</strong> terms of <strong>energy</strong> efficiency are even greater when <strong>the</strong> electricalnetwork has not been equipped <strong>in</strong> this way until this po<strong>in</strong>t. In addition, permanentmodifications of <strong>the</strong> electrical network, accord<strong>in</strong>g to <strong>the</strong> company’s activity, ma<strong>in</strong>lycause us to search for significant and immediate optimizations straight away.Example:A class 1 analogue ammeter, rated 100 A, will display a measurement of +/-1 Aat 100 A. However if it displays 2 A, <strong>the</strong> measurement is correct to with<strong>in</strong> 1 A and<strong>the</strong>refore <strong>the</strong>re is uncerta<strong>in</strong>ty of 50%.A class 1 <strong>energy</strong> measurement station such as PM710 – like all o<strong>the</strong>r PowerMeter and Circuit Monitor Measurement Units – is accurate to 1% throughout <strong>the</strong>measurement range as described <strong>in</strong> IEC standards 62053.O<strong>the</strong>r physical measurements considerably enhance <strong>the</strong> data:b on/off, open/closed operat<strong>in</strong>g position of devices, etc.b <strong>energy</strong> meter<strong>in</strong>g impulseb transformer, motor temperatureb operation hours, quantity of switch<strong>in</strong>g operationsb motor loadb UPS battery loadb event logged equipment failuresb etc.3.2 <strong>Electrical</strong> data for real objectives© Schneider Electric - all rights reserved<strong>Electrical</strong> data is transformed <strong>in</strong>to <strong>in</strong>formation that is usually <strong>in</strong>tended to satisfyseveral objectives:b It can modify <strong>the</strong> behaviour of users to manage <strong>energy</strong> wisely and f<strong>in</strong>ally lowersoverall <strong>energy</strong> costsb It can contribute to field staff efficiency <strong>in</strong>creaseb It can contribute to decrease <strong>the</strong> cost of Energyb It can contribute to save <strong>energy</strong> by understand<strong>in</strong>g how it is used and how assetsand process can be optimized to be more <strong>energy</strong> efficientSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations3 Diagnosis through electricalmeasurementFig. K8 : Facility utility costs parallel <strong>the</strong> visualisation of anicebergb It may help <strong>in</strong> optimiz<strong>in</strong>g and <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> life duration of <strong>the</strong> assets associated to<strong>the</strong> electrical networkb And f<strong>in</strong>ally it may be a master piece <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> productivity of <strong>the</strong> associatedprocess (<strong>in</strong>dustrial process or even office, build<strong>in</strong>g management), by prevent<strong>in</strong>g, orreduc<strong>in</strong>g downtime, or <strong>in</strong>sur<strong>in</strong>g higher quality <strong>energy</strong> to <strong>the</strong> loads.Facility utility costs parallel <strong>the</strong> visualization of an iceberg (see Fig. K8). Whilean iceberg seems large above <strong>the</strong> surface, <strong>the</strong> size is completely overwhelm<strong>in</strong>gbeneath <strong>the</strong> surface. Similarly, electrical bills are brought to <strong>the</strong> surface each monthwhen your power provider sends you a bill. Sav<strong>in</strong>gs <strong>in</strong> this area are importantand can be considerable enough to be <strong>the</strong> only justification needed for a powermonitor<strong>in</strong>g system. However, <strong>the</strong>re are o<strong>the</strong>r less obvious yet more significantsav<strong>in</strong>gs opportunities to be found below <strong>the</strong> surface if you have <strong>the</strong> right tools at yourdisposal.Modify <strong>the</strong> behaviour of <strong>energy</strong> usersUs<strong>in</strong>g cost allocation reports, you can verify utility bill<strong>in</strong>g accuracy, distribute bills<strong>in</strong>ternally by department, make effective fact-based <strong>energy</strong> decisions and driveaccountability <strong>in</strong> every level of your organization. Then provid<strong>in</strong>g ownership ofelectricity costs to <strong>the</strong> appropriate level <strong>in</strong> an organization, you modify <strong>the</strong> behaviourof users to manage <strong>energy</strong> wisely and f<strong>in</strong>ally lowers overall <strong>energy</strong> costs.Increase field staff efficiencyOne of <strong>the</strong> big challenges of field staff <strong>in</strong> charge of <strong>the</strong> electrical network is to make<strong>the</strong> right decision and operate <strong>in</strong> <strong>the</strong> m<strong>in</strong>imum time.The first need of such people is <strong>the</strong>n to better know what happens on <strong>the</strong> network,and possibly to be <strong>in</strong>formed everywhere on <strong>the</strong> concerned site.This site-wise transparency is a key feature that enables a field staff to:b Understand <strong>the</strong> electrical <strong>energy</strong> flows – check that <strong>the</strong> network is correctly set-up,balanced, what are <strong>the</strong> ma<strong>in</strong> consumers, at what period of <strong>the</strong> day, or <strong>the</strong> week…b Understand <strong>the</strong> network behaviour – a trip on a feeder is easier to understandwhen you have access to <strong>in</strong>formation from downstream loads.b Be spontaneously <strong>in</strong>formed on events, even outside <strong>the</strong> concerned site by us<strong>in</strong>gtoday’s mobile communicationb Go<strong>in</strong>g straight forward to <strong>the</strong> right location on <strong>the</strong> site with <strong>the</strong> right spare part, andwith <strong>the</strong> understand<strong>in</strong>g of <strong>the</strong> complete pictureb Initiate a ma<strong>in</strong>tenance action tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> real usage of a device, not tooearly and not too lateb Therefore, provid<strong>in</strong>g to <strong>the</strong> electrician a way to monitor <strong>the</strong> electrical network canappear as a powerful mean to optimize and <strong>in</strong> certa<strong>in</strong> case drastically reduce <strong>the</strong>cost of power.Here are some examples of <strong>the</strong> ma<strong>in</strong> usage of <strong>the</strong> simplest monitor<strong>in</strong>g systems:b Benchmark between zones to detect abnormal consumption.b Track unexpected consumption.b Ensure that power consumption is not higher that your competitors.b Choose <strong>the</strong> right Power delivery contract with <strong>the</strong> Power Utility.b Set-up simple load-shedd<strong>in</strong>g just focus<strong>in</strong>g on optimiz<strong>in</strong>g manageable loads suchas lights.b Be <strong>in</strong> a position to ask for damage compensation due to non-quality deliveryfrom <strong>the</strong> Power Utilities – " The process has been stopped because of a sag on <strong>the</strong>networks".Implement<strong>in</strong>g <strong>energy</strong> efficiency projectsThe Power monitor<strong>in</strong>g system will deliver <strong>in</strong>formation that support a complete<strong>energy</strong> audit of a factility. Such audit can be <strong>the</strong> way to cover not only electricitybut also Water, Air, Gas and Steam. Measures, benchmark and normalized <strong>energy</strong>consumption <strong>in</strong>formation will tell how efficient <strong>the</strong> <strong>in</strong>dustrial facilities and processare. Appropriate action plans can <strong>the</strong>n be put <strong>in</strong> place. Their scope can be as wideas sett<strong>in</strong>g up control light<strong>in</strong>g, Build<strong>in</strong>g automation systems, variable speed drive,process automation, etc.Optimiz<strong>in</strong>g <strong>the</strong> assetsOne <strong>in</strong>creas<strong>in</strong>g fact is that electrical network evolves more and more and <strong>the</strong>n arecurrent question occurs : Will my network support this new evolution?This is typically where a Monitor<strong>in</strong>g system can help <strong>the</strong> network owner <strong>in</strong> mak<strong>in</strong>g<strong>the</strong> right decision.By its logg<strong>in</strong>g activity, it can archive <strong>the</strong> real use of <strong>the</strong> assets and <strong>the</strong>n evaluatequite accurately <strong>the</strong> spare capacity of a network, or a switchboard, a transformer…A better use of an asset may <strong>in</strong>crease its life duration.Monitor<strong>in</strong>g systems can provide accurate <strong>in</strong>formation of <strong>the</strong> exact use of an assetand <strong>the</strong>n <strong>the</strong> ma<strong>in</strong>tenance team can decide <strong>the</strong> appropriate ma<strong>in</strong>tenance operation,not too late, or not too early.In some cases also, <strong>the</strong> monitor<strong>in</strong>g of harmonics can be a positive factor for <strong>the</strong> lifeduration of some assets (such as motors or transformers).K© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations3 Diagnosis through electricalmeasurementIncreas<strong>in</strong>g <strong>the</strong> productivity by reduc<strong>in</strong>g <strong>the</strong> downtimeDowntime is <strong>the</strong> nightmare of any people <strong>in</strong> charge of an electrical network. It maycause dramatic loss for <strong>the</strong> company, and <strong>the</strong> pressure for power<strong>in</strong>g up aga<strong>in</strong> <strong>in</strong> <strong>the</strong>m<strong>in</strong>imum time – and <strong>the</strong> associated stress for <strong>the</strong> operator – is very high.A monitor<strong>in</strong>g and control system can help reduc<strong>in</strong>g <strong>the</strong> downtime very efficiently.Without speak<strong>in</strong>g of a remote control system which are <strong>the</strong> most sophisticatedsystem and which may be necessary for <strong>the</strong> most demand<strong>in</strong>g application, a simplemonitor<strong>in</strong>g system can already provide relevant <strong>in</strong>formation that will highly contribute<strong>in</strong> reduc<strong>in</strong>g <strong>the</strong> downtime:b Mak<strong>in</strong>g <strong>the</strong> operator spontaneously <strong>in</strong>formed, even remote, even out of <strong>the</strong>concerned site (Us<strong>in</strong>g <strong>the</strong> mobile communication such as DECT network or GSM/SMS)b Provid<strong>in</strong>g a <strong>global</strong> view of <strong>the</strong> whole network statusb Help<strong>in</strong>g <strong>the</strong> identification of <strong>the</strong> faulty zoneb Hav<strong>in</strong>g remotely <strong>the</strong> detailed <strong>in</strong>formation attached to each event caught by <strong>the</strong> fielddevices (reason for trip for example)Then remote control of a device is a must but not necessary mandatory. In manycases, a visit of <strong>the</strong> faulty zone is necessary where local actions are possible.Increas<strong>in</strong>g <strong>the</strong> productivity by improv<strong>in</strong>g <strong>the</strong> Energy QualitySome loads can be very sensitive to electricity quality, and operators may faceunexpected situations if <strong>the</strong> Energy quality is not under control.Monitor<strong>in</strong>g <strong>the</strong> Energy quality is <strong>the</strong>n an appropriate way to prevent such event and /or to fix specific issue.K10Compact NSX with Micrologic trip unitION 6200 meter<strong>in</strong>g unitTeSys U motor controller3.3 Measurement starts with <strong>the</strong> “stand aloneproduct” solutionThe choice of measurement products <strong>in</strong> electrical equipment is made accord<strong>in</strong>g toyour <strong>energy</strong> efficiency priorities and also current technological advances:b measurement and protection functions of <strong>the</strong> LV or MV electrical network are<strong>in</strong>tegrated <strong>in</strong> <strong>the</strong> same device,Example: Sepam meter<strong>in</strong>g and protection relays, Micrologic tripp<strong>in</strong>g unit for CompactNSX and Masterpact, TeSys U motor controller, NRC12 capacitor bank controller,Galaxy UPSsb <strong>the</strong> measurement function is <strong>in</strong> <strong>the</strong> device, separate from <strong>the</strong> protection function,e.g. built on board <strong>the</strong> LV circuit breaker.Example: PowerLogic ION 6200 meter<strong>in</strong>g unitThe progress made <strong>in</strong> real time <strong>in</strong>dustrial electronics and IT are used <strong>in</strong> a s<strong>in</strong>gledevice:b to meet requirements for simplification of switchboardsb to reduce acquisition costs and reduce <strong>the</strong> number of devicesb to facilitate product developments by software upgrade procedures© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations3 Diagnosis through electricalmeasurementExample of solutions for a medium-sized site:Analysesample Ltd. is a company specialized <strong>in</strong> analyz<strong>in</strong>g <strong>in</strong>dustrial samples fromregional factories: metals, plastics, etc., to certify <strong>the</strong>ir chemical characteristics.The company wants to carry out better control of its electrical consumption for <strong>the</strong>exist<strong>in</strong>g electrical furnaces, its air condition<strong>in</strong>g system and to ensure quality ofelectrical supply for high-precision electronic devices used to analyze <strong>the</strong> samples.<strong>Electrical</strong> network protected and monitored via <strong>the</strong> Intranet siteThe solution implemented <strong>in</strong>volves recover<strong>in</strong>g power data via meter<strong>in</strong>g units thatalso allows measurement of basic electrical parameters as well as verification of<strong>energy</strong> power quality. Connected to a web server, an Internet browser allows to use<strong>the</strong>m very simply and export data <strong>in</strong> a Microsoft Excel type spreadsheet. Powercurves can be plotted <strong>in</strong> real time by <strong>the</strong> spreadsheet (see Fig. K9).Therefore no IT <strong>in</strong>vestment, ei<strong>the</strong>r <strong>in</strong> software or hardware, is necessary to use <strong>the</strong>data.For example to reduce <strong>the</strong> electricity bill and limit consumption dur<strong>in</strong>g nighttimeand weekends, we have to study trend curves supplied by <strong>the</strong> measurement units(see Fig. K10).Fig. K9 : Example of electrical network protected andmonitored via <strong>the</strong> Intranet siteK11Fig. K10 : A Test to stop all light<strong>in</strong>g B Test to stop air condition<strong>in</strong>gHere consumption dur<strong>in</strong>g non-work<strong>in</strong>g hours seems excessive, consequently two decisions were taken:b reduc<strong>in</strong>g night time light<strong>in</strong>gb stopp<strong>in</strong>g air condition<strong>in</strong>g dur<strong>in</strong>g weekendsThe new curve obta<strong>in</strong>ed shows a significant drop <strong>in</strong> consumption.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations3 Diagnosis through electricalmeasurementBelow we give examples of measurements available via Modbus, RS485 or E<strong>the</strong>rnet(see Fig. K11):ExamplesKeep control over power consumptionMeasurement unitsPower Meter, CircuitMonitorMV protection andmeasurement relaysSepamLV protection andmeasurement relaysMasterpact &Compact Micrologictrip unitsCapacitor bankregulatorsVarlogicPower, <strong>in</strong>st., max., m<strong>in</strong>. b b b b -Energy, reset capability b b b - -Power factor, <strong>in</strong>st. b b b - -Cos φ <strong>in</strong>st. - - - b -Insulation monitorsVigilohm SystemImprove power supply availabilityCurrent, <strong>in</strong>st., max., m<strong>in</strong>., unbalance b b b b -Current, wave form capture b b b - -Voltage, <strong>in</strong>st., max., m<strong>in</strong>., unbalance b b b b -Voltage, wave form capture b b b - -Device status b b b b -Faults history b b b - -Frequency, <strong>in</strong>st., max., m<strong>in</strong>. b b b - -THDu, THDi b b b b -K12Manage electrical <strong>in</strong>stallation betterLoad temperature, load and device<strong>the</strong>rmal stateb b - b -Insulat<strong>in</strong>g resistance - - - - bMotor controllersLV variable speeddrivesLV softstarters MV softstarters UPSsExamples TeSys U ATV.1 ATS.8 Motorpact RVSS GalaxyKeep control over power consumptionPower, <strong>in</strong>st., max., m<strong>in</strong>. - b - b bEnergy, reset capability - b b b -Power factor, <strong>in</strong>st. - - b b bImprove power supply availabilityCurrent, <strong>in</strong>st., max., m<strong>in</strong>., unbalance b b b b bCurrent, wave form capture - - - b bDevice status b b b b bFaults history b b b b -THDu, THDi - b - - -© Schneider Electric - all rights reservedManage electrical <strong>in</strong>stallation betterLoad temperature, load and device<strong>the</strong>rmal stateb b b b bMotor runn<strong>in</strong>g hours - b b b -Battery follow up - - - - bFig. K11 : Examples of measurements available via Modbus, RS485 or E<strong>the</strong>rnetSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations4 Energy sav<strong>in</strong>g solutionsBased on <strong>the</strong> reports collected by <strong>the</strong> power monitor<strong>in</strong>g system or <strong>energy</strong><strong>in</strong>formation system, appropriate <strong>energy</strong> efficiency projects can be selected. Thereare various strategies for choos<strong>in</strong>g which projects to implement:b Often organizations like to get started with relatively low-cost, easy projects togenerate some quick w<strong>in</strong>s before mak<strong>in</strong>g larger <strong>in</strong>vestments.b The simple payback period (<strong>the</strong> length of time <strong>the</strong> project will take to pay for itself)is a popular method to rank and choose projects. Its advantage is simplicity of <strong>the</strong>analysis. The disadvantage is that this method may not take <strong>in</strong>to account <strong>the</strong> fulllong-term impact of <strong>the</strong> project.b O<strong>the</strong>r more complex methods such as net present value or <strong>in</strong>ternal rate of returncan also be used. Additional effort is required to make <strong>the</strong> analysis, but a truer<strong>in</strong>dication of <strong>the</strong> full project benefits is obta<strong>in</strong>ed.Energy sav<strong>in</strong>gs can be achieved <strong>in</strong> a number of ways:b Energy reduction measures that ei<strong>the</strong>r use less <strong>energy</strong> to achieve <strong>the</strong> sameresults, or reduce <strong>energy</strong> consumption by ensur<strong>in</strong>g that <strong>energy</strong> is not over-usedbeyond <strong>the</strong> real requirements. An example of <strong>the</strong> former is us<strong>in</strong>g high-efficiencylamps to provide <strong>the</strong> same illum<strong>in</strong>ation at lower <strong>energy</strong> cost. An example of <strong>the</strong> latteris reduc<strong>in</strong>g <strong>the</strong> number of lamps <strong>in</strong> over-illum<strong>in</strong>ated areas to reduce light<strong>in</strong>g levels to<strong>the</strong> required level.b Energy cost sav<strong>in</strong>g measures that do not reduce <strong>the</strong> total <strong>energy</strong> consumed, butreduce <strong>the</strong> per-unit cost. An example is schedul<strong>in</strong>g some activities at night to takeadvantage of time-of-day electricity tariffs. Peak demand avoidance and demandresponse schemes are o<strong>the</strong>r examples.b Energy reliability measures that not only contribute to operational efficiency byavoid<strong>in</strong>g downtime, but which also avoid <strong>the</strong> <strong>energy</strong> losses associated with restartsor rework<strong>in</strong>g spoiled batches.ComprehensiveEnergy StrategyK13ReduceConsumptionOptimizeUtilityCostsImproveReliability &AvailabilityFig. K12 : Comprehensive Energy strategyEfficiency (%)9590858075EFF 14 poleEFF 2EFF 32 pole 2 & 4pole701 15 90Rated Power (kW)Fig. K13 : Def<strong>in</strong>ition of <strong>energy</strong> efficiency classes for LV motorsestablished by <strong>the</strong> European Commission and CEMEP(European Committee of Manufacturers of <strong>Electrical</strong> Mach<strong>in</strong>esand Power Electronics)4.1 Motor systems and replacementS<strong>in</strong>ce <strong>in</strong> <strong>in</strong>dustry, 60% of consumed electricity is used to run motors, <strong>the</strong>re is a highlikelihood that motor systems will appear strongly among <strong>the</strong> identified opportunities.Two reasons to consider replac<strong>in</strong>g motors and <strong>the</strong>reby improve passive <strong>energy</strong>efficiency are:b to take advantage of new high-efficiency motor designsb to address oversiz<strong>in</strong>gDepend<strong>in</strong>g on horsepower, high efficiency motors operate between 1% and 10%more efficiently than standard motors. Motors that operate for long periods may begood candidates for replacement with high efficiency motors, especially if <strong>the</strong> exist<strong>in</strong>gmotor needs rew<strong>in</strong>d<strong>in</strong>g. Note that rewound motors are usually 3% – 4% less efficientthan <strong>the</strong> orig<strong>in</strong>al motor. However, if <strong>the</strong> motor receives low to moderate use (e.g.under 3000 hours per year), replacement of standard efficiency motors (particularlythose that have not yet been re-wound) with high efficiency motors may not beeconomical. Also, it is important to ensure <strong>the</strong> critical performance characteristics(such as speed) of <strong>the</strong> new motor are equivalent to those of <strong>the</strong> exist<strong>in</strong>g motor.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations4 Energy sav<strong>in</strong>g solutionsMotors are most efficient when operated between about 60% and 100% of <strong>the</strong>ir fullratedload. Efficiency falls sharply when load<strong>in</strong>g is below 50%. Historically, designershave tended to oversize motors by a significant safety marg<strong>in</strong> <strong>in</strong> order to elim<strong>in</strong>ateany risk of failure even under extremely unlikely conditions. Facility studies show thatabout one-third of motors are severely oversized and generally are runn<strong>in</strong>g below50% of rated load (1) . Average load<strong>in</strong>g of motors is around 60% (2) . Oversized motorsare not only <strong>in</strong>efficient but have higher <strong>in</strong>itial purchase cost than correctly-sized units.Larger motors can also contribute to lower power factor, which may lead to reactivepower charges on <strong>the</strong> electricity bill. Replacement considerations should take this<strong>in</strong>to account along with <strong>the</strong> rema<strong>in</strong><strong>in</strong>g useful life of <strong>the</strong> motor. In addition, note thatsome motors may be oversized but still be so lightly loaded or <strong>in</strong>frequently used that<strong>the</strong>y do not consume enough electricity to make it cost-effective to <strong>in</strong>stall a differentmotor.Clearly, wherever appropriate <strong>the</strong> two approaches should be comb<strong>in</strong>ed to replaceover-sized standard motors with high-efficiency motors sized suitably for <strong>the</strong>application.O<strong>the</strong>r tactics which can be applied to motor systems <strong>in</strong>clude:b Improve active <strong>energy</strong> efficiency by simply turn off motors when <strong>the</strong>y are notrequired. This may require improvements <strong>in</strong> automatic control, or education,monitor<strong>in</strong>g and perhaps <strong>in</strong>centives for operators. If <strong>the</strong> operator of <strong>the</strong> motor is notaccountable for its <strong>energy</strong> consumption, <strong>the</strong>y are more likely to leave it runn<strong>in</strong>g evenwhen not <strong>in</strong> use.b Check and if necessary correct shaft alignment, start<strong>in</strong>g with <strong>the</strong> largest motors.Misaligned motor coupl<strong>in</strong>gs waste <strong>energy</strong> and eventually lead to coupl<strong>in</strong>g failure anddowntime. An angular offset of 0.6 mm <strong>in</strong> a p<strong>in</strong> coupl<strong>in</strong>g can result <strong>in</strong> a power loss ofas much as 8%.4.2 Pumps, fans and variable speed drivesK1463% of <strong>energy</strong> used by motors is for fluid applications such as pumps and fans.Many of <strong>the</strong>se applications run <strong>the</strong> motor at full speed even when lower levels of floware required. To obta<strong>in</strong> <strong>the</strong> level of flow needed, <strong>in</strong>efficient methods such as valves,dampers and throttles are often used. In a car, <strong>the</strong>se methods would be equivalentto us<strong>in</strong>g <strong>the</strong> brake to control speed while keep<strong>in</strong>g <strong>the</strong> gas or accelerator pedal fullydepressed. These are still some of <strong>the</strong> most common control methods used <strong>in</strong><strong>in</strong>dustry. Given that motors are <strong>the</strong> lead<strong>in</strong>g <strong>energy</strong>-consum<strong>in</strong>g device, and pumpsand fans are <strong>the</strong> largest category of motor-driven equipment, <strong>the</strong>se applications arefrequently among <strong>the</strong> top-ranked <strong>energy</strong> sav<strong>in</strong>g opportunities.An Altivar variable speed drive is an active EE approach that can provide <strong>the</strong> meansto obta<strong>in</strong> <strong>the</strong> variable output required from <strong>the</strong> fan or pump along with significant<strong>energy</strong> sav<strong>in</strong>gs and o<strong>the</strong>r benefits. Well-chosen projects can result <strong>in</strong> simple paybackperiods as short as ten months, with many useful projects <strong>in</strong> <strong>the</strong> range of paybacksup to three years. Variable speed drives (VSD) can be useful <strong>in</strong> many applications,<strong>in</strong>clud<strong>in</strong>g air compressors, plastic <strong>in</strong>jection mould<strong>in</strong>g mach<strong>in</strong>es, and o<strong>the</strong>r mach<strong>in</strong>es.© Schneider Electric - all rights reserved(1) Operations and Ma<strong>in</strong>tenance Manual for EnergyManagement - James E. Piper(2) US Department of Energy fact sheetFig. K14 : Examples of centrifugal pump and fan which can benefit from variable speed controlSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations4 Energy sav<strong>in</strong>g solutionsMost pumps are required ei<strong>the</strong>r to move fluids between a source and a dest<strong>in</strong>ation(e.g. fill<strong>in</strong>g a reservoir at a higher level) or to circulate liquid <strong>in</strong> a system (e.g.to transfer heat). Fans are required to move air or o<strong>the</strong>r gases, or to ma<strong>in</strong>ta<strong>in</strong> apressure differential. To make <strong>the</strong> liquid or air flow at <strong>the</strong> required rate, pressure isrequired. Many pump<strong>in</strong>g or ventilation systems require <strong>the</strong> flow or pressure to varyfrom time to time.To change <strong>the</strong> flow or pressure <strong>in</strong> <strong>the</strong> system, <strong>the</strong>re are a number of possiblemethods. The suitability will depend on <strong>the</strong> design of <strong>the</strong> fan or pump, e.g. whe<strong>the</strong>ra pump is a positive displacement pump or rotodynamic pump, whe<strong>the</strong>r a fan is acentrifugal fan or axial fan.b Multiple pumps or fans: This leads to step <strong>in</strong>crease when additional pumps or fansare switched <strong>in</strong>, mak<strong>in</strong>g f<strong>in</strong>e control difficult. Usually <strong>the</strong>re are efficiency losses as<strong>the</strong> real needs are somewhere between <strong>the</strong> possible steps.b Stop/start control: This is only practical where <strong>in</strong>termittent flow is acceptable.b Flow control valve: This uses a valve to reduce <strong>the</strong> flow by <strong>in</strong>creased frictionalresistance to <strong>the</strong> output of <strong>the</strong> pump. This wastes <strong>energy</strong> s<strong>in</strong>ce <strong>the</strong> pump isproduc<strong>in</strong>g a flow which is <strong>the</strong>n cut back by <strong>the</strong> valve. In addition, pumps have apreferred operat<strong>in</strong>g range, and <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> resistance by this method can force<strong>the</strong> pump to operate <strong>in</strong> a range where its efficiency is lower (wast<strong>in</strong>g even more<strong>energy</strong>) and where its reliability is reduced.b Damper: Similar <strong>in</strong> effect to a flow control valve <strong>in</strong> a pump<strong>in</strong>g system, this reduces<strong>the</strong> flow by obstruct<strong>in</strong>g <strong>the</strong> output of <strong>the</strong> fan. This wastes <strong>energy</strong> s<strong>in</strong>ce <strong>the</strong> fan isproduc<strong>in</strong>g a flow which is <strong>the</strong>n cut back by <strong>the</strong> damper.b Bypass control: This technique keeps <strong>the</strong> pump runn<strong>in</strong>g at full power and routessurplus fluid output from <strong>the</strong> pump back to <strong>the</strong> source. It allows a low value of flowto be achieved without risk of <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> output pressure, but <strong>in</strong>efficiency is veryhigh s<strong>in</strong>ce <strong>the</strong> <strong>energy</strong> used to pump <strong>the</strong> surplus fluid is entirely wasted.b Spillage valve: Similar <strong>in</strong> effect to a bypass control valve <strong>in</strong> a pump<strong>in</strong>g system, thistechnique keeps <strong>the</strong> fan runn<strong>in</strong>g at full power and vents surplus flow. Inefficiency isvery high s<strong>in</strong>ce <strong>the</strong> <strong>energy</strong> used to move <strong>the</strong> vented air or gas is entirely wasted.b Variable pitch: Some fan designs allow <strong>the</strong> angle of <strong>the</strong> blades to be adapted tochange <strong>the</strong> output.b Inlet guide vane: <strong>the</strong>se are structures us<strong>in</strong>g f<strong>in</strong>s to improve or disrupt <strong>the</strong> rout<strong>in</strong>gof air or gas <strong>in</strong>to a fan. In this way <strong>the</strong>y <strong>in</strong>crease or decrease <strong>the</strong> airflow go<strong>in</strong>g <strong>in</strong> andhence <strong>in</strong>crease or decrease <strong>the</strong> output.K15actuatorsensormotorfan orpumpfixedshaft speed100% of nom<strong>in</strong>aloutput100% ofnom<strong>in</strong>aldamperor valvereduced output50% of nom<strong>in</strong>alsensorVSDpowerconsumed12.5% ofnom<strong>in</strong>almotorfan orpumpvariableshaft speed50% of nom<strong>in</strong>aloutput50% ofnom<strong>in</strong>alopenunchanged output50% of nom<strong>in</strong>alFig. K15 : Fan and pump control: <strong>in</strong> <strong>the</strong>oryWherever a fan or a pump has been <strong>in</strong>stalled for a range of required flow rates orpressure levels, it will have been sized to meet <strong>the</strong> greatest output demand. It will<strong>the</strong>refore usually be oversized, and will be operat<strong>in</strong>g <strong>in</strong>efficiently for o<strong>the</strong>r duties.Comb<strong>in</strong><strong>in</strong>g this with <strong>the</strong> <strong>in</strong>efficiency of <strong>the</strong> control methods listed above means that<strong>the</strong>re is generally an opportunity to achieve an <strong>energy</strong> cost sav<strong>in</strong>g by us<strong>in</strong>g controlmethods which reduce <strong>the</strong> power to drive <strong>the</strong> pump or fan dur<strong>in</strong>g <strong>the</strong> periods ofreduced demand. However, a fan or pump that is not required to perform variableduties may be runn<strong>in</strong>g at full speed without any of <strong>the</strong> above control methods, orwith those control methods present but unused (e.g. valves or dampers set to fullyopen). In this case <strong>the</strong> device will be operat<strong>in</strong>g at or close to its best efficiency and avariable frequency drive will not br<strong>in</strong>g any improvement.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations4 Energy sav<strong>in</strong>g solutionsFor those fans and pumps which are required to generate vary<strong>in</strong>g levels of output,a variable frequency drive reduces <strong>the</strong> speed of <strong>the</strong> pump or fan and <strong>the</strong> power itconsumes. Among fans, effectiveness will vary depend<strong>in</strong>g on <strong>the</strong> design. Centrifugalfans offer good potential, both with forward curved and backward curved impellers.Axial fans have a greater <strong>in</strong>tr<strong>in</strong>sic efficiency and normally do not offer enougheconomic potential for a VSD application. In pumps, <strong>the</strong> effectiveness will varydepend<strong>in</strong>g on a number of factors, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> ‘static head’ of <strong>the</strong> system (<strong>the</strong>effects of a difference <strong>in</strong> height between <strong>the</strong> source and dest<strong>in</strong>ation of <strong>the</strong> fluid) and‘friction head’ (<strong>the</strong> effects of <strong>the</strong> liquid mov<strong>in</strong>g <strong>in</strong> <strong>the</strong> pipes, valves and equipment).The variable frequency drive should always be matched with <strong>the</strong> safe operat<strong>in</strong>grange of <strong>the</strong> pump. Generally, variable speed drives br<strong>in</strong>g greater benefits <strong>in</strong> systemswhere <strong>the</strong> friction head is <strong>the</strong> dom<strong>in</strong>ant effect. In some cases, replac<strong>in</strong>g <strong>the</strong> fan orpump with a more efficient design may br<strong>in</strong>g greater benefits than retrofit of a VSD.A fan or pump that is <strong>in</strong>frequently used, even if it is <strong>in</strong>efficient, may not generateenough sav<strong>in</strong>gs to make replacement or VSD retrofit cost-effective. However notethat flow control by speed regulation is always more efficient than by control valve orbypass control.Fan and pump applications are governed by <strong>the</strong> aff<strong>in</strong>ity laws:b Flow is proportional to shaft speedv Half <strong>the</strong> shaft speed gives you half <strong>the</strong> flowb Pressure or head is proportional to <strong>the</strong> square of shaft speedv Half <strong>the</strong> shaft speed gives you quarter <strong>the</strong> pressureb Power is proportional to <strong>the</strong> cube of shaft speedv Half <strong>the</strong> shaft speed uses one–eighth of <strong>the</strong> powerv Hence half <strong>the</strong> flow uses one-eighth of <strong>the</strong> power120100K16P (%)8060402000 20 40 60 80 100 120Q (%)Fig. K16 : Theoretical power sav<strong>in</strong>g with a fan runn<strong>in</strong>g at half speedTherefore, if you don’t need <strong>the</strong> fan or pump to run at 100% flow or pressure output,you can reduce <strong>the</strong> power consumed by <strong>the</strong> fan, and <strong>the</strong> amount of <strong>the</strong> reduction canbe very substantial for moderate changes <strong>in</strong> flow. Unfortunately <strong>in</strong> practice, efficiencylosses <strong>in</strong> <strong>the</strong> various components render <strong>the</strong> <strong>the</strong>oretical values not achievable.P (W)© Schneider Electric - all rights reserved00 Q (m 3 /s)Fig. K17 : Power versus flow rate for <strong>the</strong> different fan control methods: downstream damper, <strong>in</strong>letvanes, and variable speed (top to bottom).Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations4 Energy sav<strong>in</strong>g solutionsThe actual achievable sav<strong>in</strong>gs depend on <strong>the</strong> design of <strong>the</strong> fan or pump, its <strong>in</strong>herentefficiency profile, <strong>the</strong> size of <strong>the</strong> motor, <strong>the</strong> number of hours used per year, and <strong>the</strong>local cost of electricity. These sav<strong>in</strong>gs can be estimated us<strong>in</strong>g a tool such as ECO8,or can be accurately forecast by <strong>in</strong>stall<strong>in</strong>g temporary meter<strong>in</strong>g and analyz<strong>in</strong>g <strong>the</strong>data obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> context of <strong>the</strong> appropriate curve.The drive can be <strong>in</strong>tegrated <strong>in</strong>to a variety of possible control methods:b Control by fix<strong>in</strong>g pressure but vary<strong>in</strong>g flow: This uses a pressure sensor connectedto <strong>the</strong> VSD which <strong>in</strong> turn varies <strong>the</strong> speed allow<strong>in</strong>g <strong>the</strong> fan or pump to <strong>in</strong>crease ordecrease <strong>the</strong> flow required by <strong>the</strong> system. This is a common method <strong>in</strong> water supplyschemes where constant pressure is required but water is required at differentflows dependant on <strong>the</strong> number of users at any given time. This is also common oncentralised cool<strong>in</strong>g and distribution systems and <strong>in</strong> irrigation where a vary<strong>in</strong>g numberof spray heads or irrigation sections are <strong>in</strong>volved.b Heat<strong>in</strong>g system control: In heat<strong>in</strong>g and cool<strong>in</strong>g systems <strong>the</strong>re is a requirement forflow to vary based on temperature. The VSD is controlled by a temperature sensor,which <strong>in</strong>creases or decreases <strong>the</strong> flow of hot or cold liquid or air based on <strong>the</strong> actualtemperature required by <strong>the</strong> process. This is similar to pressure control, where <strong>the</strong>flow also varies, but a constant temperature requirement from a temperature sensorreplaces that from a pressure sensor.b Control by fix<strong>in</strong>g flow but vary<strong>in</strong>g pressure: Constant flow may be required <strong>in</strong>irrigation and water supply systems. S<strong>in</strong>ce <strong>the</strong> water levels both upstream anddownstream of <strong>the</strong> pump<strong>in</strong>g station can change, <strong>the</strong> pressure will be variable. Alsomany cool<strong>in</strong>g, chiller, spray<strong>in</strong>g and wash<strong>in</strong>g applications require a specific volume ofwater to be supplied even if <strong>the</strong> suction and delivery conditions vary. Typically suctionconditions vary when <strong>the</strong> height of a suction reservoir or tank drops and deliverypressure can change if filters bl<strong>in</strong>d or if system resistance <strong>in</strong>creases occur throughblockages etc. A flowmeter is used to keep <strong>the</strong> flow rate constant, normally <strong>in</strong>stalled<strong>in</strong> <strong>the</strong> discharge l<strong>in</strong>e.The benefits achieved <strong>in</strong>clude:b Reduced <strong>energy</strong> consumption and hence cost sav<strong>in</strong>gs by replac<strong>in</strong>g <strong>in</strong>efficientcontrol methods or o<strong>the</strong>r obsolete components such as two-speed motorsb Better control and accuracy <strong>in</strong> achiev<strong>in</strong>g required flow and pressureb Reduced noise and vibration, as <strong>the</strong> <strong>in</strong>verter allows f<strong>in</strong>e adjustment of <strong>the</strong> speedsand so prevents <strong>the</strong> equipment runn<strong>in</strong>g at a resonant frequency of <strong>the</strong> pipes orductworkb Increased lifecycle and improved reliability, for example, pumps that are operated<strong>in</strong> a throttled condition usually suffer from reduced useful lifeb Simplified pipe or duct systems (elim<strong>in</strong>ation of dampers, control valves & by-passl<strong>in</strong>es)b Soft start & stop creates less risk of transient effects <strong>in</strong> <strong>the</strong> electrical network ormechanical stress on <strong>the</strong> rotat<strong>in</strong>g parts of <strong>the</strong> pump or fan. This also reduces waterhammer <strong>in</strong> pumps, because <strong>the</strong> drive provides smooth acceleration and deceleration<strong>in</strong>stead of abrupt speed variationsb Reduced ma<strong>in</strong>tenanceK17Without VSD With VSD Reduction % sav<strong>in</strong>gsAverage poweruse (2 motorsper fan)104 kW permotor40 kW per motor 64 kW per motor 62%Electricity costper fan£68.66 pertonne outputCO 2 rate 459,000 kg /yearAnnual runn<strong>in</strong>gcostPayback period£26.41 pertonne output175,541 kg /year£42.25 pertonne output283,459 kg /year£34,884 £13,341 £21,542Fig. K18 : Example of sav<strong>in</strong>gs for variable speed driven pumps10 months with local capital allowances claimed14 months without local capital allowancesAdditionally, significant <strong>energy</strong> sav<strong>in</strong>gs can be often be made simply by chang<strong>in</strong>gpulley sizes, to ensure a fan or pump runs at a more appropriate duty po<strong>in</strong>t. Thisdoesn’t provide <strong>the</strong> flexibility of variable speed control but costs very little, canprobably be done with<strong>in</strong> <strong>the</strong> ma<strong>in</strong>tenance budget and doesn’t require capitalapproval.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations4 Energy sav<strong>in</strong>g solutions4.3 Light<strong>in</strong>gLight<strong>in</strong>g can represent over 35% of <strong>energy</strong> consumption <strong>in</strong> build<strong>in</strong>gs depend<strong>in</strong>g on<strong>the</strong> bus<strong>in</strong>ess. Light<strong>in</strong>g control is one of <strong>the</strong> easiest ways to save <strong>energy</strong> costs for low<strong>in</strong>vestment and is one of <strong>the</strong> most common <strong>energy</strong> sav<strong>in</strong>g measures.K18Lamps and ballastsLight<strong>in</strong>g design for commercial build<strong>in</strong>gs is governed by standards, regulations andbuild<strong>in</strong>g codes. Light<strong>in</strong>g not only needs to be functional but must meet occupationalhealth and safety requirements and be fit for purpose. In many <strong>in</strong>stances, officelight<strong>in</strong>g is over-illum<strong>in</strong>ated, and substantial <strong>energy</strong> sav<strong>in</strong>gs are possible by passiveEE: replac<strong>in</strong>g <strong>in</strong>efficient, old technology lamps with high efficiency, low wattagelamps <strong>in</strong> conjunction with electronic ballasts.This is especially appropriate <strong>in</strong> areas where light<strong>in</strong>g is required constantly or forlong periods, because <strong>in</strong> such places <strong>the</strong>re is less opportunity to save <strong>energy</strong> byturn<strong>in</strong>g lights off. Simple payback periods vary but many projects have paybacks ofaround two years.Depend<strong>in</strong>g on <strong>the</strong> needs, type and age of your light<strong>in</strong>g <strong>in</strong>stallation, more efficientlamps may be available. For example, 40-watt T12 fluorescent lamps may bereplaced by newer 32-watt T8 fluorescent lamps. (T designates a tubular lamp. Thenumber is <strong>the</strong> diameter <strong>in</strong> eights of an <strong>in</strong>ch. T12 lamps are <strong>the</strong>refore 1.5 <strong>in</strong>ches <strong>in</strong>diameter. Standards vary between countries.) Chang<strong>in</strong>g <strong>the</strong> lamp will also requirechang<strong>in</strong>g <strong>the</strong> ballast.Fluorescent lamps conta<strong>in</strong> gases that emit ultraviolet light when excited by electricity.The phosphor coat<strong>in</strong>g of <strong>the</strong> lamp converts <strong>the</strong> ultraviolet light <strong>in</strong>to <strong>the</strong> visiblespectrum. If <strong>the</strong> electricity enter<strong>in</strong>g <strong>the</strong> lamp is not regulated, <strong>the</strong> light will cont<strong>in</strong>ueto ga<strong>in</strong> <strong>in</strong> <strong>in</strong>tensity. A ballast supplies <strong>the</strong> <strong>in</strong>itial electricity to create <strong>the</strong> light and <strong>the</strong>nregulates <strong>the</strong> current <strong>the</strong>reafter to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> correct light level. Ballasts are alsoused with arc lamps or mercury vapor lamps. New designs of electronic ballastsdeliver considerable sav<strong>in</strong>gs compared with older electromagnetic ballast designs.T8 lamps with electronic ballasts will use from 32% to 40% less electricity than T12lamps with electromagnetic ballasts.Electronic ballasts do have a disadvantage compared to magnetic ballasts. Magneticballasts operate at l<strong>in</strong>e frequency (50 or 60 Hz), but electronic ballasts operateat 20,000 to 60,000 Hz and can <strong>in</strong>troduce harmonic distortion or noise <strong>in</strong>to <strong>the</strong>electrical network. This can contribute to overheat<strong>in</strong>g or reduced life of transformers,motors, neutral l<strong>in</strong>es, overvoltage trips and damage to electronics.Usually this is not a problem apart from facilities with heavy light<strong>in</strong>g loads and a largenumber of electronic ballasts. Most makes of electronic ballasts <strong>in</strong>tegrate passivefilter<strong>in</strong>g with<strong>in</strong> <strong>the</strong> ballast to keep <strong>the</strong> total harmonic distortion to less than 20 percentof fundamental current.If <strong>the</strong> facility has strict needs for power quality, (e.g. hospitals, sensitivemanufactur<strong>in</strong>g environments, etc) electronic ballasts are available hav<strong>in</strong>g totalharmonic distortion of five percent or less.O<strong>the</strong>r types of light<strong>in</strong>g are also available and may be suitable depend<strong>in</strong>g on <strong>the</strong>requirements of <strong>the</strong> facility. An assessment of light<strong>in</strong>g needs will <strong>in</strong>clude evaluationof <strong>the</strong> activities tak<strong>in</strong>g place and <strong>the</strong> required degree of illum<strong>in</strong>ation and colourrender<strong>in</strong>g. Many older light<strong>in</strong>g systems were designed to provide more light thancurrent standards require. Sav<strong>in</strong>gs can be made by redesign<strong>in</strong>g a system to provide<strong>the</strong> m<strong>in</strong>imum necessary illum<strong>in</strong>ation.The use of high efficiency lamps <strong>in</strong> conjunction with electronic ballasts have anumber of advantages, firstly <strong>energy</strong> and cost sav<strong>in</strong>gs can be easily qualified,modern lamps and electronic ballasts are more reliable lead<strong>in</strong>g to reducedma<strong>in</strong>tenance costs, light<strong>in</strong>g levels are restored to more appropriate levels foroffice space, whilst comply<strong>in</strong>g with relevant build<strong>in</strong>g codes, practices and light<strong>in</strong>gstandards, <strong>the</strong> <strong>in</strong>cidence of ‘frequency beat” often associated with migra<strong>in</strong>es andeye stra<strong>in</strong> disappears and <strong>the</strong> color render<strong>in</strong>g of modern lamps produces a moreconducive work<strong>in</strong>g environment.© Schneider Electric - all rights reservedReflectorsA less common passive EE recommendation, but one which should be consideredalong with chang<strong>in</strong>g lamps and ballasts, is to replace reflectors. The reflector <strong>in</strong>a lum<strong>in</strong>aire (light fixture) directs light from <strong>the</strong> lamps towards <strong>the</strong> area where itis <strong>in</strong>tended to fall. Advances <strong>in</strong> materials and design have resulted <strong>in</strong> improvedreflector designs which can be retrofitted to exist<strong>in</strong>g lum<strong>in</strong>aires. This results <strong>in</strong><strong>in</strong>creased usable light, and may allow lamps to be removed, this sav<strong>in</strong>g <strong>energy</strong> whilema<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>the</strong> needed level of light<strong>in</strong>g.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations4 Energy sav<strong>in</strong>g solutions+ +Above: Around 70% of a fluorescent tube's light is directedsideways and upwards to <strong>the</strong> light fitt<strong>in</strong>gs surfaces;Below: KW/2's silver surface is shaped to reflect <strong>the</strong> maximumamount of light downward.Fig. K19 : Overview on KW/2 pr<strong>in</strong>ciple+A KW2 high efficiency reflector has a spectral efficiency of over 90%. This means twolamps may be replaced by a s<strong>in</strong>gle lamp. In this way it is possible to reduce <strong>energy</strong>costs attributed to light<strong>in</strong>g by 50% or more. Exist<strong>in</strong>g lum<strong>in</strong>aires may be retrofittedwith <strong>the</strong> space age technology reflector, whilst ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g spatial distance betweenlum<strong>in</strong>aires, mak<strong>in</strong>g retrofitt<strong>in</strong>g easy and cost effective, with m<strong>in</strong>imal disruption to <strong>the</strong>exist<strong>in</strong>g ceil<strong>in</strong>g design.Light<strong>in</strong>g controlImproved light<strong>in</strong>g control is ano<strong>the</strong>r method of <strong>in</strong>creas<strong>in</strong>g efficiency <strong>in</strong> light<strong>in</strong>g. Suchrecommendations are less common, but <strong>the</strong> simple payback period is typicallyshorter, between six and twelve months. By itself, passive EE from lamps, ballastsand reflectors does not maximize sav<strong>in</strong>gs, s<strong>in</strong>ce an <strong>energy</strong> efficient lamp will stillwaste <strong>energy</strong> if left on when not required. Although users can be sensitized toswitch off lights, <strong>in</strong> practice lapses are common, and automatic control is muchmore effective <strong>in</strong> obta<strong>in</strong><strong>in</strong>g and susta<strong>in</strong><strong>in</strong>g efficiency. The objective of light<strong>in</strong>gcontrol schemes is to provide <strong>the</strong> comfort and flexibility that users require, whilesimultaneously ensur<strong>in</strong>g active EE, m<strong>in</strong>imiz<strong>in</strong>g costs by ensur<strong>in</strong>g lights are turnedoff promptly whenever <strong>the</strong>y are not needed. The sophistication of such schemes canvary considerably.Some of <strong>the</strong> simplest methods <strong>in</strong>clude:b Timer switches to turn off lights after a fixed period has passed. Timers are bestdeployed <strong>in</strong> areas where occupancy is well def<strong>in</strong>ed (e.g. <strong>in</strong> hotel corridors where <strong>the</strong>time for a person to pass through is predictable).b Occupancy sensors / movement detectors to turn off lights when no movement hasbeen detected for a certa<strong>in</strong> period. Occupancy sensors are best deployed <strong>in</strong> offices,storerooms, stairwells, kitchens and bathrooms where <strong>the</strong> use of <strong>the</strong> facilities cannotbe predicted with a high degree of accuracy dur<strong>in</strong>g <strong>the</strong> day.b Photoelectric cells / daylight harvest<strong>in</strong>g sensors to control lights near w<strong>in</strong>dows.When bright exterior light is available, lamps are turned off or dimmed.b Programmable timers to switch lights on and off at predeterm<strong>in</strong>ed times (e.g. shopfronts, ensure office lights are turned off at nights and weekends).b Dimmable lights to ma<strong>in</strong>ta<strong>in</strong> a low level of illum<strong>in</strong>ation at off-peak periods (e.g. acar park<strong>in</strong>g lot which needs to be fully illum<strong>in</strong>ated dur<strong>in</strong>g peak use, perhaps untilmidnight, but which can have lower ambient illum<strong>in</strong>ation from midnight until dawn)b Voltage regulators to optimize <strong>the</strong> power consumed. Ballasts perform this functionon fluorescent light<strong>in</strong>g. Voltage regulators are also available for o<strong>the</strong>r light<strong>in</strong>g typessuch as high pressure sodium lamps.K19US Dept of Energy Industrial Assessment Centers databaseFig. K20 : Examples of light<strong>in</strong>g control devices: timers, light detectors, movement detectors,...Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>© Schneider Electric - all rights reserved


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations4 Energy sav<strong>in</strong>g solutionsMethods may be comb<strong>in</strong>ed, e.g. <strong>the</strong> ability to dim lights <strong>in</strong> <strong>the</strong> park<strong>in</strong>g lot may becomb<strong>in</strong>ed with movement detectors or override switches with a timer to <strong>in</strong>creaseillum<strong>in</strong>ation when needed if a user requires access outside normal hours.More sophisticated and customizable schemes can be implemented with <strong>in</strong>tegratedlight<strong>in</strong>g control systems. Aes<strong>the</strong>tic requirements can be <strong>in</strong>corporated, such as us<strong>in</strong>gprogrammable light<strong>in</strong>g panels to record a variety of light<strong>in</strong>g setups which can bereproduced at <strong>the</strong> touch of a button (e.g. for boardrooms requir<strong>in</strong>g different lightarrangements for meet<strong>in</strong>gs, presentations, demonstrations, etc). Wireless technologycan make retrofit applications simple and economical.Light<strong>in</strong>g control systems such as C-Bus and KNX offer <strong>the</strong> additional advantagethat <strong>the</strong>y can be networked and <strong>in</strong>tegrated with <strong>the</strong> build<strong>in</strong>g management system,for greater flexibility of control, central monitor<strong>in</strong>g and control function as well ascomb<strong>in</strong>ation of light<strong>in</strong>g controls with o<strong>the</strong>r build<strong>in</strong>g services such as HVAC for evengreater <strong>energy</strong> sav<strong>in</strong>gs.Light<strong>in</strong>g controls have <strong>the</strong> potential to realize <strong>energy</strong> sav<strong>in</strong>gs of 30% but thisdepends very much on application. A light<strong>in</strong>g survey and <strong>energy</strong> audit can helpdef<strong>in</strong>e <strong>the</strong> best light<strong>in</strong>g solution for <strong>the</strong> premises and activities performed as wellas identify areas for <strong>energy</strong> and cost sav<strong>in</strong>gs. In addition to office space, Schneideroffers solutions for exterior, car park<strong>in</strong>g and landscape light<strong>in</strong>g for optimum light<strong>in</strong>gand <strong>energy</strong> sav<strong>in</strong>gs.4.4 Load management strategiesS<strong>in</strong>ce electricity has to be generated <strong>in</strong> response to immediate needs, and cannoteconomically be stored, suppliers are obliged to size <strong>the</strong>ir generat<strong>in</strong>g capacityaccord<strong>in</strong>g to peak needs, which may occur <strong>in</strong>frequently. At o<strong>the</strong>r times, that capacityis surplus and represents capital tied up <strong>in</strong> facilities and equipment that are idle andunused. Suppliers are <strong>the</strong>refore motivated to smooth out peaks <strong>in</strong> electricity demand.Load management requires an active EE approach, s<strong>in</strong>ce even high-efficiencydevices will contribute to peak needs.K20Peak demand avoidanceOne way utilities encourage users to avoid peaks is by transferr<strong>in</strong>g <strong>the</strong> cost ofma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>the</strong> peak production capacity to those users who contribute most to<strong>the</strong> peaks. Utilities structure <strong>the</strong>ir bill<strong>in</strong>g with various components. One is always<strong>the</strong> actual consumption <strong>in</strong> <strong>the</strong> bill<strong>in</strong>g period, but ano<strong>the</strong>r component (<strong>the</strong> demandcharge) is normally based on <strong>the</strong> peak usage at some po<strong>in</strong>t dur<strong>in</strong>g <strong>the</strong> preced<strong>in</strong>gperiod, which could be twelve months or ano<strong>the</strong>r period such as a season. Thedemand charge is a premium that large users pay each month for <strong>the</strong> utility to have<strong>the</strong> extra generation capacity and <strong>in</strong>frastructure required to meet <strong>the</strong>ir peak demandlevels whenever <strong>the</strong>y need it – even if <strong>the</strong>y don’t use it very often. If a customercan avoid sett<strong>in</strong>g peaks <strong>in</strong> <strong>the</strong>ir <strong>energy</strong> usage, <strong>the</strong>y can m<strong>in</strong>imize <strong>the</strong> part of <strong>the</strong>ir<strong>energy</strong> bill driven by <strong>the</strong> peak consumption, even if <strong>the</strong>ir total consumption rema<strong>in</strong>s<strong>the</strong> same. Note that sett<strong>in</strong>g a new peak has a cont<strong>in</strong>u<strong>in</strong>g economic impact, becauseit determ<strong>in</strong>es <strong>the</strong> demand charge not only for that month, but for each subsequentmonth dur<strong>in</strong>g <strong>the</strong> period def<strong>in</strong>ed by <strong>the</strong> tariff, which may be as much as a year. Thismeans that a s<strong>in</strong>gle short event that spikes consumption for as little as a few m<strong>in</strong>utescan have a cont<strong>in</strong>u<strong>in</strong>g effect on <strong>the</strong> electricity bill.kWPeak DemandPeak Usagerescheduledto fit underlower thresholdShaved PeakDemand© Schneider Electric - all rights reservedFig. K21 : Example of load management strategyTimeSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations4 Energy sav<strong>in</strong>g solutionsPeak demand avoidance applications are PLC controlled automatic electricaldistribution control systems. A demand <strong>in</strong>terval is def<strong>in</strong>ed as a particular level ofconsumption <strong>in</strong> a period of time (e.g. kWh <strong>in</strong> a 15 m<strong>in</strong>ute period). The objective isto keep <strong>the</strong> total <strong>energy</strong> consumed <strong>in</strong> each period below <strong>the</strong> limit. If <strong>the</strong> customeris consum<strong>in</strong>g a large amount of power <strong>in</strong> a given period, <strong>the</strong> system will detect thata peak is approach<strong>in</strong>g. An alarm is activated, and unless an operator overrides <strong>the</strong>system, it will beg<strong>in</strong> to shed non-essential loads <strong>in</strong> a predeterm<strong>in</strong>ed order, until <strong>the</strong>alarm condition is cleared, or <strong>the</strong> demand <strong>in</strong>terval ends. All loads <strong>in</strong> a facility aredef<strong>in</strong>ed <strong>in</strong> one of three categories: critical, essential, and non-essential loads. Usuallyonly non-essential loads are shed, and <strong>the</strong> order of shedd<strong>in</strong>g can be configured.kWPeak dur<strong>in</strong>g month 2The peak set dur<strong>in</strong>g month 2 willdictate <strong>the</strong> demand charge for <strong>the</strong>next 12 months (or some o<strong>the</strong>r peirodset by <strong>the</strong> tariff).1 2 3 4 5Fig. K22 : Impact of peak demand on electricity billThe bill for month 4 will be based on<strong>the</strong> consumption (green) and <strong>the</strong> peakset dur<strong>in</strong>g month 2 (red l<strong>in</strong>e).Provid<strong>in</strong>g <strong>the</strong> customer has enough non-essential loads to be able to impact <strong>the</strong>irpeak consumption, it may be possible to reduce <strong>the</strong> demand charge by as much as10% to 30%. Demand charge can be up to 60% of <strong>the</strong> bill. The application usuallypays for itself <strong>in</strong> one year or less.K21Load schedul<strong>in</strong>gUtilities often have different rates that apply for different times of <strong>the</strong> day. Dur<strong>in</strong>gnormal daily bus<strong>in</strong>ess hours, <strong>the</strong> rates are <strong>the</strong> highest. Many users shift, orreschedule loads to take advantage of lower rates. These are loads that are not timesensitive or critical.Demand response (curtailment)Ano<strong>the</strong>r tactic is demand response (also known as demand curtailment). Demandresponse is a means to manage <strong>the</strong> demand from customers tak<strong>in</strong>g supplyconditions <strong>in</strong>to account. Utilities may offer f<strong>in</strong>ancial <strong>in</strong>centives to customers toreduce load dur<strong>in</strong>g periods when <strong>the</strong> utility does not have <strong>the</strong> distribution capacity tohandle <strong>the</strong> total demand. Typically this will be dur<strong>in</strong>g <strong>the</strong> hottest months of <strong>the</strong> year,when consumer and bus<strong>in</strong>ess needs for cool<strong>in</strong>g and ventilation are high and drawa lot of electricity <strong>in</strong> addition to normal requirements. In some countries, third-partyaggregators may manage schemes that monitor <strong>the</strong> network capacity and <strong>the</strong> realtimeprice of electricity on <strong>the</strong> network. Participants <strong>in</strong> <strong>the</strong> scheme receive <strong>in</strong>centivesto shed load, creat<strong>in</strong>g capacity which <strong>the</strong> aggregator can sell <strong>in</strong>to <strong>the</strong> network.In each case, <strong>the</strong> utility or aggregator offers a contract <strong>in</strong>clud<strong>in</strong>g an agreement from<strong>the</strong> customer to reduce <strong>the</strong> kW consumption at <strong>the</strong>ir site down to a predeterm<strong>in</strong>edlevel when notified. These contracts may conta<strong>in</strong> both emergency curtailments (when<strong>the</strong> participants <strong>in</strong> <strong>the</strong> scheme must comply or face penalties) and opt-<strong>in</strong> curtailments(where participants can evaluate <strong>the</strong> specific conditions for that particular curtailmentand decide whe<strong>the</strong>r or not to accept). Usually <strong>the</strong> contract limits <strong>the</strong> duration of <strong>the</strong>curtailment (e.g. 2 to 6 hours) and <strong>the</strong> number of times per year <strong>the</strong> curtailmentcan be activated (3 to 5). Industrial customers tend to have more opportunity toparticipate, s<strong>in</strong>ce build<strong>in</strong>g managers are less likely to be able to drop substantialloads without impact<strong>in</strong>g <strong>the</strong> build<strong>in</strong>g occupants’ comfort.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations4 Energy sav<strong>in</strong>g solutionsA curtailment is activated follow<strong>in</strong>g a notification by phone or via a signal outputfrom <strong>the</strong> utility revenue meter. Typically <strong>the</strong>re is 30 to 60 m<strong>in</strong>utes advance notice.The customer systematically reduces load until <strong>the</strong> curtailment level is obta<strong>in</strong>ed,ei<strong>the</strong>r by manually reduc<strong>in</strong>g or shutt<strong>in</strong>g off loads or by an automated PLC controlledsystem. The utility or aggregator <strong>the</strong>n signals <strong>the</strong> start of <strong>the</strong> curtailment period. After<strong>the</strong> curtailment period is complete, <strong>the</strong> utility or aggregator signals <strong>the</strong> end of <strong>the</strong>curtailment period. The customer may <strong>the</strong>n re-establish normal facility load<strong>in</strong>g andproduction.The return on <strong>in</strong>vestment from demand response schemes will vary depend<strong>in</strong>g onlocal tariff rates and electricity market. The <strong>in</strong>centive generally takes <strong>the</strong> form of acredit for <strong>the</strong> demand reduction dur<strong>in</strong>g <strong>the</strong> response period. If <strong>the</strong> customer hasenough non-essential loads to be able to impact peak consumption, he may be ableto benefit from <strong>in</strong>centives that <strong>in</strong> effect reduce <strong>the</strong> cost per unit by as much as 30%.Automated demand response control applications usually pay for <strong>the</strong>mselves <strong>in</strong> oneyear or less. Without such a scheme, loads have to be turned off manually, with asignificant chance of failure, for example, if a human operator does not act quicklyenough. Fail<strong>in</strong>g to comply with a curtailment br<strong>in</strong>gs f<strong>in</strong>ancial penalties, and so anautomated application which can support both peak demand avoidance and demandcurtailment can be a very good <strong>in</strong>vestment.Toge<strong>the</strong>r with <strong>the</strong> control applications, a demand response portal can makeparticipation <strong>in</strong> a demand response scheme much more convenient. Such a portalprovides a means for a utility or aggregator to notify <strong>the</strong> participants of emergencyor opt-<strong>in</strong> events. Participants can evaluate <strong>the</strong> conditions of an opt-<strong>in</strong> and view <strong>the</strong>ircurrent consumption and what <strong>the</strong>y would have to do <strong>in</strong> order to comply with <strong>the</strong>request before accept<strong>in</strong>g or reject<strong>in</strong>g <strong>the</strong> event. The portal also supports audit<strong>in</strong>g orcompleted events to demonstrate compliance with <strong>the</strong> conditions.K22On-site generationOn-site generation <strong>in</strong>creases <strong>the</strong> flexibility available to facility operators. Instead ofshedd<strong>in</strong>g loads, on-site generation can provide <strong>the</strong> power required to keep runn<strong>in</strong>gdur<strong>in</strong>g a period of peak avoidance or demand curtailment. The automated controlsystem can be extended to <strong>in</strong>tegrate control of on-site generation facilities <strong>in</strong>to <strong>the</strong>scheme. If <strong>the</strong> customer is buy<strong>in</strong>g electricity from a supplier at a time-of-use rate,<strong>the</strong> control system can be configured to cont<strong>in</strong>uously monitor <strong>the</strong> current cost ofelectricity from <strong>the</strong> supplier and compare it to <strong>the</strong> cost of <strong>energy</strong> generated on siteus<strong>in</strong>g ano<strong>the</strong>r fuel source. When <strong>the</strong> cost of electricity rises above <strong>the</strong> cost of us<strong>in</strong>g<strong>the</strong> generator (replac<strong>in</strong>g <strong>the</strong> fuel), <strong>the</strong> control scheme automatically shifts load to <strong>the</strong>on-site generation. When <strong>the</strong> cost falls, load is shifted back to <strong>the</strong> supply utility.However, <strong>in</strong> many places <strong>the</strong> local authorities only permit diesel generators to beused for a certa<strong>in</strong> maximum number of hours per year, <strong>in</strong> order to limit emissions.This has to be taken <strong>in</strong>to account as it limits <strong>the</strong> opportunities to make use of <strong>the</strong>generator.4.5 Power factor correctionIf <strong>the</strong> electricity supplier charges penalties for reactive power, implement<strong>in</strong>g powerfactor correction has <strong>the</strong> potential to br<strong>in</strong>g significant sav<strong>in</strong>gs on <strong>the</strong> electricity bill.Power factor correction solutions are typically passive EE measures that operatetransparently once <strong>in</strong>stalled, and don’t require any changes to exist<strong>in</strong>g procedures orbehaviour of staff. Simple payback periods can be less than a year.Power factor correction is treated <strong>in</strong> detail <strong>in</strong> chapter L.4.6 Harmonic filter<strong>in</strong>g© Schneider Electric - all rights reservedMany solutions to improve efficient use of electricity can have side effects, br<strong>in</strong>gharmonics <strong>in</strong>to <strong>the</strong> electrical network. High-efficiency motors, variable speed drives,electronic ballasts for fluorescent lights, and computers can all generate electricalpollution which can have significant effects. Harmonics can create transient overvoltageconditions that cause protection relays to trip and result <strong>in</strong> productiondowntime. They <strong>in</strong>crease heat and vibration and <strong>the</strong>reby decrease efficiency andshorten life of neutral conductors, transformers, motors and generators. Power factorcorrection capacitors may magnify harmonics, and can suffer from overload<strong>in</strong>g andpremature ag<strong>in</strong>g.Management of harmonics is treated <strong>in</strong> detail <strong>in</strong> chapter M.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations4 Energy sav<strong>in</strong>g solutions4.7 O<strong>the</strong>r measuresOutside <strong>the</strong> scope of <strong>the</strong> electrical <strong>in</strong>stallation, o<strong>the</strong>r <strong>energy</strong> sav<strong>in</strong>gs measuresmay be available depend<strong>in</strong>g on <strong>the</strong> activities present on <strong>the</strong> site. Productivityenhancements <strong>in</strong> production such as reduc<strong>in</strong>g bottlenecks, elim<strong>in</strong>at<strong>in</strong>g defectsand reduc<strong>in</strong>g materials can generate fur<strong>the</strong>r sav<strong>in</strong>gs. Combustion systems (suchas furnaces, ovens, boilers) and <strong>the</strong>rmal systems (such as steam systems, heatgeneration, conta<strong>in</strong>ment and recovery, cool<strong>in</strong>g towers, chillers, refrigerators, dryers)may also provide opportunities.4.8 Communication and Information SystemMost organisations will already have some level of <strong>energy</strong> <strong>in</strong>formation system, evenif it is not identified or managed as one. It should be appreciated that <strong>in</strong> a chang<strong>in</strong>gwork<strong>in</strong>g world, any <strong>in</strong>formation system will need to develop to meet its primeobjective - support<strong>in</strong>g management decision mak<strong>in</strong>g: a key po<strong>in</strong>t is to make <strong>the</strong><strong>energy</strong> <strong>in</strong>formation visible at any level of <strong>the</strong> organization through <strong>the</strong> communication<strong>in</strong>frastructure.Energy data is important data, it is one of <strong>the</strong> company’s assets. The company hasIT managers who are already <strong>in</strong> charge of manag<strong>in</strong>g its o<strong>the</strong>r IT systems. Theseare important players <strong>in</strong> <strong>the</strong> power monitor<strong>in</strong>g system and above all <strong>in</strong> that for dataexchange with<strong>in</strong> <strong>the</strong> corporate organization.Communication network at product, equipment and site levelThe day-to-day work<strong>in</strong>g of <strong>the</strong> <strong>energy</strong> <strong>in</strong>formation system can be illustrated by aclosed loop diagram (see Fig. K23).Modbus*Intranet*Understand<strong>in</strong>gK23InformationDataCommunicat<strong>in</strong>gmeasurement device*Energy <strong>in</strong>formation systems* Communication networkFig. K23 : System hierarchyVarious resources are used to send data from meter<strong>in</strong>g and protection devices<strong>in</strong>stalled <strong>in</strong> <strong>the</strong> user’s electrical cab<strong>in</strong>ets, e.g. via Schneider ElectricTransparentReady.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations4 Energy sav<strong>in</strong>g solutionsThe Modbus communication protocolModbus is an <strong>in</strong>dustrial messag<strong>in</strong>g protocol between equipment that is<strong>in</strong>terconnected via a physical transmission l<strong>in</strong>k e.g. RS 485 or E<strong>the</strong>rnet (via TCP/IP)or modem (GSM, Radio etc). This protocol is very widely implemented on meter<strong>in</strong>gand protection products for electrical networks.Initially created by Schneider Electric, Modbus is now a public resource managedby an <strong>in</strong>dependent organization Modbus-IDA – enabl<strong>in</strong>g total open<strong>in</strong>g up of itsspecification. An <strong>in</strong>dustrial standard s<strong>in</strong>ce 1979, Modbus allows millions of productsto communicate with one ano<strong>the</strong>r.The IETF, <strong>in</strong>ternational authority manag<strong>in</strong>g <strong>the</strong> Internet, has approved <strong>the</strong> creationof a port (502) for products connected to <strong>the</strong> Internet/Intranet and us<strong>in</strong>g <strong>the</strong> E<strong>the</strong>rnetModbus TCP/IP communication protocol.Modbus is a query/reply process between two pieces of equipment based on dataread<strong>in</strong>g and writ<strong>in</strong>g services (function codes).The query is emitted by a s<strong>in</strong>gle “master”, <strong>the</strong> reply is sent only by <strong>the</strong> “slave”equipment identified <strong>in</strong> <strong>the</strong> query (see Fig. K24).Each “slave” product connected to <strong>the</strong> Modbus network is set by <strong>the</strong> user with an IDnumber, called <strong>the</strong> Modbus address, between 1 and 247.The “master” – for example a web server <strong>in</strong>cluded <strong>in</strong> an electrical cab<strong>in</strong>et– simultaneously queries all of <strong>the</strong> products with a message compris<strong>in</strong>g its target’saddress, function code, memory location <strong>in</strong> <strong>the</strong> product and quantity of <strong>in</strong>formation,at most 253 octets.Only a product set with <strong>the</strong> correspond<strong>in</strong>g address answers <strong>the</strong> request for data.Exchange is only carried out on <strong>the</strong> <strong>in</strong>itiative of <strong>the</strong> master (here <strong>the</strong> web server): thisis <strong>the</strong> master-slave Modbus operat<strong>in</strong>g procedure.This query procedure followed by a reply, implies that <strong>the</strong> master will have all of <strong>the</strong>data available <strong>in</strong> a product when it is queried.The “master” manages all of <strong>the</strong> transaction queries successively if <strong>the</strong>y are <strong>in</strong>tendedfor <strong>the</strong> same product. This arrangement leads to <strong>the</strong> calculation of a maximumnumber of products connected to <strong>the</strong> master to optimize an acceptable responsetime for <strong>the</strong> query <strong>in</strong>itiator, particularly when it is a low rate RS485 l<strong>in</strong>k.K24Fig. K24 : The function codes allow writ<strong>in</strong>g or read<strong>in</strong>g of data.A transmission error software detection mechanism called CRC16 allows a message with anerror to be repeated and only <strong>the</strong> product concerned to respond.© Schneider Electric - all rights reservedYour Intranet networkData exchange from <strong>in</strong>dustrial data basically uses web technologies implementedpermanently on <strong>the</strong> corporate communication network, and more particularly on itsIntranet.The IT <strong>in</strong>frastructure manages <strong>the</strong> cohabitation of software applications: <strong>the</strong>company uses it to operate applications for <strong>the</strong> office, pr<strong>in</strong>t<strong>in</strong>g, data backup, for <strong>the</strong>corporate IT system, account<strong>in</strong>g, purchas<strong>in</strong>g, ERP, production facility control, API,MES, etc. The cohabitation of data on <strong>the</strong> same communication network does notpose any particular technological problem.When several PC’s, pr<strong>in</strong>ters and servers are connected to one ano<strong>the</strong>r <strong>in</strong> <strong>the</strong>company’s build<strong>in</strong>gs, very probably us<strong>in</strong>g <strong>the</strong> E<strong>the</strong>rnet local network and webservices: this company is <strong>the</strong>n immediately eligible to have <strong>energy</strong> efficiency datadelivered by its electrical cab<strong>in</strong>ets. Without any software development, all <strong>the</strong>y needis an Internet browser.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations4 Energy sav<strong>in</strong>g solutionsThe data from <strong>the</strong>se applications cross <strong>the</strong> local broadband E<strong>the</strong>rnet network up to1 Gb/s: <strong>the</strong> communication media generally used <strong>in</strong> this world is copper or optic fiber,which allows connection everywhere, <strong>in</strong> commercial or <strong>in</strong>dustrial build<strong>in</strong>gs and <strong>in</strong>electrical premises.If <strong>the</strong> company also has an <strong>in</strong>ternal Intranet communication network for email<strong>in</strong>gand shar<strong>in</strong>g web servers data, it uses an extremely common standardizedcommunication protocol: TCP/IP.The TCP/IP communication protocol is designed for widely used web services suchas HTTP to access web pages, SMTP for electronic messag<strong>in</strong>g between o<strong>the</strong>rservices.Applications SNMP NTP RTPS DHCP TFTP FTP HTTP SMTP ModbusTransport UDP TCPL<strong>in</strong>kPhysicalIPE<strong>the</strong>rnet 802.3 and E<strong>the</strong>rnet II<strong>Electrical</strong> data recorded <strong>in</strong> <strong>in</strong>dustrial web servers <strong>in</strong>stalled <strong>in</strong> electrical cab<strong>in</strong>ets aresent us<strong>in</strong>g <strong>the</strong> same standardized TCP/IP protocol <strong>in</strong> order to limit <strong>the</strong> recurrent ITma<strong>in</strong>tenance costs that are <strong>in</strong>tr<strong>in</strong>sic <strong>in</strong> an IT network. This is <strong>the</strong> operat<strong>in</strong>g pr<strong>in</strong>cipleof Schneider Electric Transparent Ready TM for communication of data on <strong>energy</strong>efficiency. The electrical cab<strong>in</strong>et is autonomous without <strong>the</strong> need for any additional ITsystem on a PC, all of <strong>the</strong> data related to <strong>energy</strong> efficiency is recorded and can becirculated <strong>in</strong> <strong>the</strong> usual way via <strong>the</strong> <strong>in</strong>tranet, GSM, fixed telephone l<strong>in</strong>k, etc.SecurityEmployees are well <strong>in</strong>formed, more efficient and work<strong>in</strong>g <strong>in</strong> complete electricalsafety: <strong>the</strong>y no longer need to go <strong>in</strong>to electrical rooms or make standard checkson electrical devices - <strong>the</strong>y just have to consult data. Under <strong>the</strong>se conditions,communicative systems give <strong>the</strong> company’s employees immediate and significantga<strong>in</strong>s and avoid worry<strong>in</strong>g about mak<strong>in</strong>g mistakes.It becomes possible for electricians, ma<strong>in</strong>tenance or production technicians, on-siteor visit<strong>in</strong>g managers to work toge<strong>the</strong>r <strong>in</strong> complete safety.Accord<strong>in</strong>g to <strong>the</strong> sensitivity of data, <strong>the</strong> IT manager will simply give users <strong>the</strong>appropriate access rights.Marg<strong>in</strong>al impact on local network ma<strong>in</strong>tenanceThe company’s IT manager has technical resources to add and monitor equipmentto <strong>the</strong> local company network.Based on standard web services <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> Modbus protocol on TCP/IP, anddue to <strong>the</strong> low level of bandwidth requirement characteristic <strong>in</strong> electrical networkmonitor<strong>in</strong>g systems as well as <strong>the</strong> use of technologies that are not impacted byviruses and worldwide IT standards, <strong>the</strong> IT manager does not have to make anyspecific <strong>in</strong>vestment to preserve <strong>the</strong> local network performance level or to protectaga<strong>in</strong>st any additional security problems (virus, hack<strong>in</strong>g, etc.).Empower<strong>in</strong>g external partnersAccord<strong>in</strong>g to <strong>the</strong> company’s security policy, it becomes possible to use supportservices of <strong>the</strong> usual partners <strong>in</strong> <strong>the</strong> electrical sector: contractors, utilities managers,panelbuilders, systems <strong>in</strong>tegrators or Schneider Electric Services can provideremote assistance and electrical data analysis to <strong>the</strong> company consum<strong>in</strong>g electricity.The messag<strong>in</strong>g web service can regularly send data by email or web pages can beremotely consulted us<strong>in</strong>g <strong>the</strong> appropriate techniques.K25© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations4 Energy sav<strong>in</strong>g solutionsFrom Network Monitor<strong>in</strong>g and Control System to IntelligentPower EquipmentTraditionally and for years, monitor<strong>in</strong>g and control systems have been centralizedand based on SCADA (Supervisory, Control and Data acquisition) automationsystems.Decid<strong>in</strong>g on <strong>in</strong>vest<strong>in</strong>g <strong>in</strong> such system – noted (3) <strong>in</strong> Figure K25 – was reallyreserved for high demand<strong>in</strong>g <strong>in</strong>stallation, because ei<strong>the</strong>r <strong>the</strong>y were big powerconsumers, or <strong>the</strong>ir process was very sensitive to Power non quality.Based on automation technology, such systems were very often designed,customised by a system <strong>in</strong>tegrator, and <strong>the</strong>n delivered on site. However <strong>the</strong> <strong>in</strong>itialcost, <strong>the</strong> skills needed to correctly operate such system, and <strong>the</strong> cost of upgrades tofollow <strong>the</strong> evolutions of <strong>the</strong> network may have discouraged potential users to <strong>in</strong>vest.Then based on a dedicated solution for electrician, <strong>the</strong> o<strong>the</strong>r approach noted (2)is much more fitt<strong>in</strong>g <strong>the</strong> electrical network specific needs and really <strong>in</strong>creases <strong>the</strong>payback of such system. However, due to its centralised architecture, <strong>the</strong> level costof such solution may still appear high.On some sites Type (2) and (3) can cohabit, provid<strong>in</strong>g <strong>the</strong> most accurate <strong>in</strong>formationto <strong>the</strong> electrician when needed.Nowadays, a new concept of <strong>in</strong>telligent Power equipment – noted (1) – has come.considered as an enter<strong>in</strong>g step for go<strong>in</strong>g to level 2 or 3, due <strong>the</strong> ability of <strong>the</strong>sesolutions to co-exist on a site.FunctionlevelsGeneralpurposesitemonitor<strong>in</strong>g3Eqt gatewayGeneralpurposemonitor<strong>in</strong>gsystemK26PowerEquipmentO<strong>the</strong>rutilitiesProcessSpecialisednetworkmonitor<strong>in</strong>g2Eqt gatewayPowerEquipmentSpecialisedmonitor<strong>in</strong>gsuch asPower LogicION-EntrepriseWeb browserstandard1Basicmonitor<strong>in</strong>gEqt serverIntelligentPowerEquipmentO<strong>the</strong>rutilitiesStandard network Sensitive electrical networks High demand<strong>in</strong>g sitesSystemcomplexityFig. K26 : Monitor<strong>in</strong>g system position<strong>in</strong>g© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations4 Energy sav<strong>in</strong>g solutionsb Level 1Intelligent equipment based architecture (see Fig. K26)This new architecture has appeared recently due to Web technology capabilities, andcan really be positioned as an entry po<strong>in</strong>t <strong>in</strong>to monitor<strong>in</strong>g systems.Based on Web technologies it takes <strong>the</strong> maximum benefits of standardcommunication services and protocols, and license-free software.The access to electricity <strong>in</strong>formation can be done from everywhere <strong>in</strong> <strong>the</strong> site, andelectrical staff can ga<strong>in</strong> a lot <strong>in</strong> efficiency.Openness to <strong>the</strong> Internet is also offered for out of <strong>the</strong> site services.Standard remoteWeb browserInternetStandard localWeb browserIntranet (E<strong>the</strong>rnet/IP)Equipment serverGatewayIntelligence Power EquipmentModbus1 2 3Circuit breakersMeter 1Meter 2 Meter 3K27Fig. K26 : Intelligent equipment architectureb Level 2Electrician specialized centralised architecture (see Fig. K27)Dedicated to electrician, this architecture is based on a specific supervisioncentralised mean that fully match <strong>the</strong> needs for monitor<strong>in</strong>g an electrical network.Then it offers naturally a lower level of skill to set up and ma<strong>in</strong>ta<strong>in</strong> it – all <strong>Electrical</strong>Distribution devices are already present <strong>in</strong> a dedicated library. F<strong>in</strong>ally its purchasecost is really m<strong>in</strong>imized, due <strong>the</strong> low level of system <strong>in</strong>tegrator effort.Dedicated supervisorfor electricianModbus (SL or E<strong>the</strong>rnet/IP)GatewayCommunicat<strong>in</strong>g Power Equipment1 2 3Circuit breakersFig. K27 : ED <strong>specialist</strong> monitor<strong>in</strong>g systemModbusMeter 1 Meter 2 Meter 3© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations4 Energy sav<strong>in</strong>g solutionsb Level 3Conventional general purpose centralised architecture (see Fig. K28)Here is a typical architecture based on standard automation pieces such as SCADAsystems, and gateways.This architecture is typically used for high demand<strong>in</strong>g <strong>in</strong>stallation which requires highavailability of electricity.In such case, real time performance is key, ei<strong>the</strong>r to be achieved automatically orthrough 24/7 operation team on site.In order to comply with very high availability constra<strong>in</strong>t, such system very oftenrequests to support transparently (i.e with no visible impact) a first fault of systemlevel components such as <strong>the</strong> SCADA itself, <strong>the</strong> communication <strong>in</strong>frastructure, ...Energy efficiency is also an important matter, and such solution should offer all <strong>the</strong>mean to clearly master <strong>the</strong> <strong>energy</strong> consumption and quality on site. <strong>Electrical</strong> assetsprotection is <strong>the</strong>n <strong>the</strong> 3d ma<strong>in</strong> matter, and such solution should offer a mean toprevent any damage of <strong>the</strong>se very expensive electrical and process assets.Connectivity with <strong>the</strong> Process control system is also required, especially through<strong>the</strong> remote control of <strong>the</strong> operat<strong>in</strong>g mode of motors (MV and LV). Solutions such asPowerLogic SCADA (Modbus or IEC 61850 based) appear <strong>the</strong> most appropriate.ConventionalsupervisorModbus (SL or E<strong>the</strong>rnet/IP)GatewayCommunicat<strong>in</strong>g Power EquipmentK28Modbus1 2 3Circuit breakersMeter 1 Meter 2 Meter 3Fig. K28 : Real-time conventional monitor<strong>in</strong>g and control system© Schneider Electric - all rights reservede-Support becomes accessibleThe sett<strong>in</strong>g up of an <strong>in</strong>formation system to support a <strong>global</strong> <strong>energy</strong> efficiencyapproach very quickly leads to economic ga<strong>in</strong>s, <strong>in</strong> general with an ROI of less than2 years for electricity.An additional benefit, that is still underestimated today, is <strong>the</strong> leverage that this leadsto <strong>in</strong> terms of <strong>in</strong>formation technologies <strong>in</strong> <strong>the</strong> electrical sector. The electrical networkcan be analyzed from time to time by third parties – <strong>in</strong> particular us<strong>in</strong>g externalcompetencies via <strong>the</strong> <strong>in</strong>ternet for very specific issues:b Electricity supply contracts. Chang<strong>in</strong>g of supplier at a given po<strong>in</strong>t <strong>in</strong> time, e.g.permanent economic analysis of <strong>the</strong> costs related to consumption becomes possiblewithout hav<strong>in</strong>g to wait for an annual review.b Total management of electrical data – via <strong>in</strong>ternet – to transform it <strong>in</strong>to relevant<strong>in</strong>formation that is fed back via a personalized web portal. Consumer usage<strong>in</strong>formation is now a value-added commodity, available to a wide range of users. It'seasy to post customer usage data on <strong>the</strong> Internet – mak<strong>in</strong>g it useful to <strong>the</strong> users isano<strong>the</strong>r matter.b Complex electrical fault diagnosis to call <strong>in</strong> an electrotechnical expert, a rareresource that is easily accessible on <strong>the</strong> web.b Monitor<strong>in</strong>g of consumption and generat<strong>in</strong>g alerts <strong>in</strong> <strong>the</strong> case of abnormalconsumption peaks.b A ma<strong>in</strong>tenance service that is no more than necessary to meet pressure onoverheads via facility management services.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations4 Energy sav<strong>in</strong>g solutionsEnergy efficiency is no longer an issue that <strong>the</strong> company has to face on its own,many e-partners can back up <strong>the</strong> approach as necessary – <strong>in</strong> particular when <strong>the</strong>measurement and decision mak<strong>in</strong>g assistance stage is reached, on condition that<strong>the</strong> electrical network is metered and communicative via <strong>in</strong>ternet.Implementation can be gradual start<strong>in</strong>g by mak<strong>in</strong>g a few key pieces of equipmentcommunicative and gradually extend<strong>in</strong>g <strong>the</strong> system so as to be more accurate or togive wider coverage of <strong>the</strong> <strong>in</strong>stallation.The company can choose its policy: ask one or more partners to analyze <strong>the</strong> data,do it itself or comb<strong>in</strong>e <strong>the</strong>se options.The company may decide to manage its electrical <strong>energy</strong> itself, or ask a partner tomonitor <strong>the</strong> quality to ensure active monitor<strong>in</strong>g of performances <strong>in</strong> terms of ag<strong>in</strong>g.Example:Schneider Electric proposes e-Services that offers load data visualization and analysisapplication <strong>in</strong> ASP mode. It simplifies processes for tenants with geographically diverse locationsby provid<strong>in</strong>g convenient <strong>in</strong>tegrated bill<strong>in</strong>g and usage <strong>in</strong>formation for all locations comb<strong>in</strong>ed.The system turns customer usage data <strong>in</strong>to useful <strong>in</strong>formation, easily accessible to all <strong>in</strong>ternalusers. It helps control costs by show<strong>in</strong>g customers how <strong>the</strong>ir organizations use power.A wide range of functionality serves <strong>the</strong> needs of staff from <strong>the</strong> same platform:Data Access and Analysis , Historical and Estimated Bills, Rate Comparison, What-if Analysis- Assess <strong>the</strong> impact of operational changes, such as shift<strong>in</strong>g <strong>energy</strong> between time periods orreduc<strong>in</strong>g usage by fixed amounts or percentages, Automatic Alarm<strong>in</strong>g, Memorized Reports,Benchmark<strong>in</strong>g - Benchmark usage data from multiple facilities by apply<strong>in</strong>g normalization factorssuch as square footage, operat<strong>in</strong>g hours, and units of production. Multiple Commodities - Accessusage data for gas and water as well as electricity etc.New York Chicago Los Angeles SeattleE<strong>the</strong>rnet/VPN E<strong>the</strong>rnet/VPNK29WEBWea<strong>the</strong>r <strong>in</strong>foUtility tariffs & ratesWEBReal-time pric<strong>in</strong>gElectricityWater & GasPower QualityReportsEnergy CostAnalysisNormalize data us<strong>in</strong>g:- Temperature- Occupancy rates- Rooms- O<strong>the</strong>r parametersXMLCorporateDatabaseODBCStores data <strong>in</strong>clud<strong>in</strong>g:- Occupancy rates- Square footage- O<strong>the</strong>r parametersFig. K29 : Typical solution example© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical <strong>in</strong>stallations4 Energy sav<strong>in</strong>g solutions4.9 Mapp<strong>in</strong>g of solutions:Energy sav<strong>in</strong>gs Cost optimization Availability &ReliabilityVariable speed drives High efficiency motorsand transformersMV motor supplyPower factor correction Harmonic management Configuration of circuitsBack-up generators UPS (see page N11)Soft starters Protection coord<strong>in</strong>ationiMCC Intelligent Equipmentbased architectureLevel 1Electrician specializedcentralised architectureLevel 2Conventional generalpurpose centralisedarchitectureLevel 3 K30Fig. K31 : Mapp<strong>in</strong>g of solutions© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical distribution5 How to value <strong>energy</strong> sav<strong>in</strong>gsIPMVP (International PerformanceMeasurement & Verification Protocol) is amethodology to value <strong>the</strong> energetic sav<strong>in</strong>gs.Certa<strong>in</strong> <strong>in</strong>formation <strong>in</strong> this chapter is taken from<strong>the</strong> IPMVP guide volume 1 published by EVOwww.evo-world.org5.1 Introduction to IPMVP and EVOToday, <strong>the</strong> <strong>in</strong>terest <strong>in</strong> <strong>energy</strong> efficiency project, for whatever purpose, <strong>in</strong>dustrial orpublic, has never been greater. It is noticed that one of <strong>the</strong> most important barriersto a widespread implementation of <strong>energy</strong> efficiency projects is <strong>the</strong> lack of reliableand commercially-viable f<strong>in</strong>anc<strong>in</strong>g result. The more we <strong>in</strong>vest for a project, <strong>the</strong> bigger<strong>the</strong> need for a reliable proof is. Therefore, <strong>the</strong>re is a cont<strong>in</strong>u<strong>in</strong>g need for standardmethods to quantify <strong>the</strong> results of <strong>energy</strong> efficiency <strong>in</strong>vestments.That’s why Efficiency Valuation Organization (EVO) published IPMVP: InternationalPerformance Measurement and Verification Protocol, a guidance documentdescrib<strong>in</strong>g common practice <strong>in</strong> measur<strong>in</strong>g, comput<strong>in</strong>g and report<strong>in</strong>g sav<strong>in</strong>gsachieved by <strong>energy</strong> efficiency projects at end user facilities.The first edition of IPMVP was published <strong>in</strong> March 1996 and <strong>the</strong> second <strong>in</strong> 2004.Until now, EVO has published three volumes of IPMVP:b Volume I : Concepts and Options for Determ<strong>in</strong><strong>in</strong>g Energy and Water Sav<strong>in</strong>gsb Volume II : Indoor Environmental Quality (IEQ) Issuesb Volume III : ApplicationsThe first volume is used by Schneider Electric <strong>in</strong> <strong>energy</strong> efficiency projects.This publication provides methods, with different levels of cost and accuracy, fordeterm<strong>in</strong><strong>in</strong>g sav<strong>in</strong>gs ei<strong>the</strong>r for <strong>the</strong> whole facility or for <strong>the</strong> <strong>energy</strong> efficiency actiononly.IPMVP also specifies <strong>the</strong> contents of a Measurement and Verification Plan(M&V Plan) which def<strong>in</strong>es all activities necessary to demonstrate <strong>the</strong> short-termperformance of an <strong>in</strong>dustrial retrofit project and its result.5.2 Pr<strong>in</strong>ciples and options of IPMVPPr<strong>in</strong>ciple of IPMVPEnergyUseBasel<strong>in</strong>e<strong>energy</strong>InreasedproductionSav<strong>in</strong>gsAdjustedbasel<strong>in</strong>e<strong>energy</strong>K31Solution<strong>in</strong>stallationReport<strong>in</strong>g periodMeasured <strong>energy</strong>Basel<strong>in</strong>e periodReport<strong>in</strong>g periodTimeFig. K31 : Pr<strong>in</strong>ciple of basel<strong>in</strong>e def<strong>in</strong>itionBefore <strong>the</strong> <strong>in</strong>stallation of <strong>energy</strong> efficiency solution, a certa<strong>in</strong> time <strong>in</strong>terval is studiedto determ<strong>in</strong>e <strong>the</strong> relationship between <strong>energy</strong> use and conditions of production,this period is called basel<strong>in</strong>e. We can do <strong>the</strong> measurement dur<strong>in</strong>g this time ormore simply use <strong>the</strong> <strong>energy</strong> bill of <strong>the</strong> plant. Follow<strong>in</strong>g <strong>the</strong> <strong>in</strong>stallation, this basel<strong>in</strong>erelationship was used to estimate how much <strong>energy</strong> <strong>the</strong> plant would have used if<strong>the</strong>re had been no solution (called <strong>the</strong> “adjusted-basel<strong>in</strong>e <strong>energy</strong>”). The sav<strong>in</strong>gsis <strong>the</strong> difference between <strong>the</strong> adjusted-basel<strong>in</strong>e <strong>energy</strong> and <strong>the</strong> <strong>energy</strong> that wasactually metered dur<strong>in</strong>g <strong>the</strong> report<strong>in</strong>g period.Sav<strong>in</strong>gs = (Adjusted Basel<strong>in</strong>e Period Use or Demand - Report<strong>in</strong>g-Period Use orDemand)OrSav<strong>in</strong>gs = Basel<strong>in</strong>e Period Use or Demand - Report<strong>in</strong>g-Period Use or Demand± Adjustments© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical distribution5 How to value <strong>energy</strong> sav<strong>in</strong>gs5.3 Six qualities of IPMVPWhen an M&V plan is drawn up for an IPMVP action, it must guarantee sixpr<strong>in</strong>ciples:b Accurate: M&V reports should be as accurate as <strong>the</strong> M&V budget will allow. M&Vcosts should normally be small relative to <strong>the</strong> monetary value of <strong>the</strong> sav<strong>in</strong>gs be<strong>in</strong>gevaluated.b Complete: The report<strong>in</strong>g of <strong>energy</strong> sav<strong>in</strong>gs should consider all effects of a project.b Conservative: Where judgements are made about uncerta<strong>in</strong> quantities, M&Vprocedures should be designed to under-estimate sav<strong>in</strong>gs.b Consistent: The report<strong>in</strong>g of a project’s <strong>energy</strong> effectiveness should be consistentbetween:v different types of <strong>energy</strong> efficiency projects;v different <strong>energy</strong> management professionals for any one project;v different periods of time for <strong>the</strong> same project;v and <strong>energy</strong> efficiency projects and new <strong>energy</strong> supply projects.b Relevant: The determ<strong>in</strong>ation of sav<strong>in</strong>gs should measure <strong>the</strong> performanceparameters of concern, or least well known, while o<strong>the</strong>r less critical or predictableparameters may be estimated.b Transparent: All M&V activities should be clearly and fully disclosed.5.4 IPMVP’s optionsOption A Option B Option C Option DDef<strong>in</strong>itionRetrofit isolation: keyparameter measurementRetrofit isolation: all parametermeasurementWhole facilityCalibrated simulationK32DescriptionSav<strong>in</strong>gs are determ<strong>in</strong>ed byfield measurement of <strong>the</strong> keyperformance parameter(s)which def<strong>in</strong>e <strong>the</strong> <strong>energy</strong> useof <strong>the</strong> system affected by <strong>the</strong><strong>energy</strong> efficiency solution.Parameters not selectedfor field measurement areestimated.Sav<strong>in</strong>gs are determ<strong>in</strong>ed by fieldmeasurement of <strong>the</strong> <strong>energy</strong>use of <strong>the</strong> system affected by<strong>the</strong> solution.Sav<strong>in</strong>gs are determ<strong>in</strong>ed bymeasur<strong>in</strong>g <strong>energy</strong> use at<strong>the</strong> whole facility or subfacilitylevel. Cont<strong>in</strong>uousmeasurements of <strong>the</strong> entirefacility’s <strong>energy</strong> use are takenthroughout <strong>the</strong> report<strong>in</strong>g period.Sav<strong>in</strong>gs are determ<strong>in</strong>edthrough simulation of <strong>the</strong><strong>energy</strong> use of <strong>the</strong> whole facility,or of a sub-facility. Simulationrout<strong>in</strong>es are demonstratedto adequately model actual<strong>energy</strong> performance measured<strong>in</strong> <strong>the</strong> facility.Calculation of sav<strong>in</strong>gsEng<strong>in</strong>eer<strong>in</strong>g calculation ofbasel<strong>in</strong>e and report<strong>in</strong>g period<strong>energy</strong> from:- short-term or cont<strong>in</strong>uousmeasurements of key operat<strong>in</strong>gparameter(s); and- estimated values.Short-term or cont<strong>in</strong>uousmeasurements of basel<strong>in</strong>e andreport<strong>in</strong>g period <strong>energy</strong>Analysis of whole facilitybasel<strong>in</strong>e and report<strong>in</strong>g perioddata.Rout<strong>in</strong>e adjustments arerequired, us<strong>in</strong>g techniquessuch as simple comparison orregression analysis.Energy use simulation,calibrated with hourly ormonthly utility bill<strong>in</strong>g data.When use this option?On one hand, this option cangive a result with considerableuncerta<strong>in</strong>ty because of <strong>the</strong>estimation of some parameters.On <strong>the</strong> o<strong>the</strong>r hand, it is notexpensive compared to <strong>the</strong>option B.Option B is less cheap thanoption A as all parameters aremeasured. But if a customerasks for a high precision level,it would be a good choice.When <strong>the</strong>re is a multifaceted<strong>energy</strong> management programaffect<strong>in</strong>g many systems <strong>in</strong> afacility, a choice of option C canhelp <strong>in</strong> sav<strong>in</strong>g money and work.Option D is used only when<strong>the</strong> basel<strong>in</strong>e data is missed.Example: a facility where nometer existed before solution’s<strong>in</strong>stallation and <strong>the</strong> measure of<strong>the</strong> basel<strong>in</strong>e period takes toomuch time and money.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical distribution5 How to value <strong>energy</strong> sav<strong>in</strong>gsOption selection processStartECMperformanceMeasure facility orECM performance?FacilityperformanceAble to isolateECM withmeter(s)?YesNeed fullperfomancedemonstration?YesInstall isolationmeters for allparameters andassess <strong>in</strong>teractiveeffectsMiss<strong>in</strong>g basel<strong>in</strong>eor report<strong>in</strong>g perioddata?NoNoNoInstall isolation metersfor key parametersassess <strong>in</strong>teractive effects,and estimate well knowparametersMiss<strong>in</strong>g basel<strong>in</strong>eor report<strong>in</strong>g perioddata?YesNoYesNoAnalysis ofma<strong>in</strong> meterdataExpectedsav<strong>in</strong>gs >10%?YesNeed toseparately assesseach ECM?YesSimulatesystem orfacilityCalibratesimulationSimulate with andwithout ECM(s)NoObta<strong>in</strong>calibrationdataK33Option BRetrofit isolation:All parametermeasurementOption ARetrofit isolation:Key parametermeasurementOption CWhole facilityOption DCalibratedsimulationFig. K32 : Option selection process5.5 Fundamental po<strong>in</strong>ts of an M&V planb Energy efficiency project’s <strong>in</strong>tentb Selected IPMVP option and measurement boundaryb Basel<strong>in</strong>e: period, <strong>energy</strong> and conditionsb Report<strong>in</strong>g period : duration and conditionb Basis for adjustmentb Analysis procedure: <strong>the</strong> data analysis procedures, algorithms and assumptions tobe used.b Energy pricesb Meter specificationsb Monitor<strong>in</strong>g responsibilitiesb Expected accuracyb Budget for IPMVP activitiesb Report formatb Quality assuranceOur services with IPMVPSign <strong>the</strong>energeticperformancecontractEstablishan M&VplanCollect <strong>the</strong>basel<strong>in</strong>e<strong>in</strong>formationProject<strong>in</strong>stallationMeasure <strong>the</strong> report<strong>in</strong>g,report <strong>in</strong>formation andcalculate <strong>the</strong> sav<strong>in</strong>gs© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical distribution6 From returns on <strong>in</strong>vestment tosusta<strong>in</strong>ed performanceOnce <strong>energy</strong> audits have been conducted and <strong>energy</strong> sav<strong>in</strong>gs measures are put<strong>in</strong> place with quantified return, it is imperative to implement follow up actions tosusta<strong>in</strong> performance. Without an ongo<strong>in</strong>g cycle of cont<strong>in</strong>uous improvement, <strong>energy</strong>performance tends to revert to a level close to that before <strong>the</strong> implementation ofsav<strong>in</strong>gs measures.Energy Performance CurveSav<strong>in</strong>gs with On-go<strong>in</strong>g ServicesSav<strong>in</strong>gs without proper O&MEnergy Audit& Consult<strong>in</strong>gEnergyConservationMeasuresServicesContactK34The cont<strong>in</strong>uous improvement cycle requires <strong>the</strong> existence, productive use andma<strong>in</strong>tenance of a power monitor<strong>in</strong>g system. Such system will be used for proactiveon-go<strong>in</strong>g analysis of site <strong>energy</strong> usage, as well as recommendations forimprovements to <strong>the</strong> electrical distribution system. In order to ensure optimalperformance of such system and <strong>the</strong> best use of <strong>the</strong> collected data, it is <strong>in</strong>dustrycommon practice to perform <strong>the</strong> technical and operational services described below.Schneider Electric experts can deliver such services upon request.6.1 Technical support servicesPower Monitor<strong>in</strong>g systems which are not actively ma<strong>in</strong>ta<strong>in</strong>ed tend to deteriorate for avariety of reasons.b The software can lose communications with devices result<strong>in</strong>g <strong>in</strong> lost data.b Dur<strong>in</strong>g <strong>the</strong> life of any software product upgrades, service packs and patches arereleased to address issues such as: uncovered bugs, operat<strong>in</strong>g system softwareupdates, new hardware product support etc.b Databases which are not ma<strong>in</strong>ta<strong>in</strong>ed can become very large, unwieldy and evencorrupt.b The electrical distribution system itself may be chang<strong>in</strong>g so that <strong>the</strong> powermonitor<strong>in</strong>g system no longer matches it.b Firmware updates for hardware devices are released periodically to address bugsor provide improved or additional functionality.Remote servicesSupport is provided by email, telephone and VPN or o<strong>the</strong>r remote connection from<strong>the</strong> support center to <strong>the</strong> customer’s server. Typical services available <strong>in</strong>clude:b Toll free hotl<strong>in</strong>e for troubleshoot<strong>in</strong>g assistanceb Senior support representative assigned to siteb Free software upgrades dur<strong>in</strong>g <strong>the</strong> contract validityb Periodic remote system checks, ma<strong>in</strong>tenance and report<strong>in</strong>gb Remote software upgradesb 24/7 telephonic support© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


K - Energy Efficiency <strong>in</strong> electrical distribution6 From returns on <strong>in</strong>vestment tosusta<strong>in</strong>ed performanceOn site servicesMonthly, quarterly, biannual or annual (as agreed) site visits for system ma<strong>in</strong>tenance.Typical services provided are:b Install all PowerLogic software upgradesb Perform firmware upgrades to all PowerLogic monitor<strong>in</strong>g devicesb System troubleshoot<strong>in</strong>g to <strong>the</strong> device levelb Modification of graphic screens per customer <strong>in</strong>putb Modification of alarms and data logs per customer <strong>in</strong>putb Reconfiguration of system to match changes to <strong>the</strong> electrical distribution system6.2 Operational support servicesThese contracts are designed to meet <strong>the</strong> need for <strong>energy</strong> analysis and improvementrecommendations.Hosted systemsIn this scenario <strong>the</strong> user’s usage data is pushed to a Schneider Electric hostedserver. The user accesses his <strong>in</strong>formation via a web browser. Typical <strong>in</strong>formationmade available is <strong>the</strong> follow<strong>in</strong>g:b Energy consumption datab Carbon emissions datab Degree day analysisb Normalized performance <strong>in</strong>dicatorsb Regression analysisb CUSUM analysis (Cumulative Sum)On site systemsHere <strong>the</strong> user has a server at one or multiple sites. Different software packages canbe <strong>in</strong> use depend<strong>in</strong>g on <strong>the</strong> need. The services <strong>in</strong>clude all <strong>the</strong> reports offered <strong>in</strong> <strong>the</strong>hosted system plus <strong>the</strong> follow<strong>in</strong>g:b An up front site <strong>energy</strong> audit with improvement recommendationsb Direct l<strong>in</strong>e to an <strong>energy</strong> consultantb Periodic data analysis, report<strong>in</strong>g and recommendations (monthly, quarterly,biannual or annual as required)b Consolidated data from multiple facilitiesb Load profilesb Power quality report<strong>in</strong>gK35© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Chapter LPower factor correction andharmonic filter<strong>in</strong>g12345678910ContentsReactive <strong>energy</strong> and power factor1.1 The nature of reactive <strong>energy</strong> L21.2 Equipment and appliances requir<strong>in</strong>g reactive <strong>energy</strong> L21.3 The power factor L31.4 Practical values of power factor L4Why to improve <strong>the</strong> power factor?L52.1 Reduction <strong>in</strong> <strong>the</strong> cost of electricity L52.2 Technical/economic optimization L5How to improve <strong>the</strong> power factor?L73.1 Theoretical pr<strong>in</strong>ciples L73.2 By us<strong>in</strong>g what equipment? L73.3 The choice between a fixed or automatically-regulated bank L9of capacitorsWhere to <strong>in</strong>stall power factor correction capacitors? L104.1 Global compensation L104.2 Compensation by sector L104.3 Individual compensation L11How to decide <strong>the</strong> optimum level of compensation? L125.1 General method L125.2 Simplified method L125.3 Method based on <strong>the</strong> avoidance of tariff penalties L145.4 Method based on reduction of declared maximum apparentpower (kVA)L14Compensation at <strong>the</strong> term<strong>in</strong>als of a transformerL156.1 Compensation to <strong>in</strong>crease <strong>the</strong> available active power output L156.2 Compensation of reactive <strong>energy</strong> absorbed by <strong>the</strong> transformer L16Power factor correction of <strong>in</strong>duction motorsL187.1 Connection of a capacitor bank and protection sett<strong>in</strong>gs L187.2 How self-excitation of an <strong>in</strong>duction motor can be avoided L19Example of an <strong>in</strong>stallation before andL20after power-factor correctionThe effects of harmonicsL2L219.1 Problems aris<strong>in</strong>g from power-system harmonics L219.2 Possible solutions L219.3 Choos<strong>in</strong>g <strong>the</strong> optimum solution L23Implementation of capacitor banksL2410.1 Capacitor elements L2410.2 Choice of protection, control devices and connect<strong>in</strong>g cables L25L© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


L - Power factor correction andharmonic filter<strong>in</strong>g1 Reactive <strong>energy</strong> and powerfactorLAlternat<strong>in</strong>g current systems supply two forms of<strong>energy</strong>:b “Active” <strong>energy</strong> measured <strong>in</strong> kilowatt hours(kWh) which is converted <strong>in</strong>to mechanical work,heat, light, etcb “Reactive” <strong>energy</strong>, which aga<strong>in</strong> takes twoforms:v “Reactive” <strong>energy</strong> required by <strong>in</strong>ductivecircuits (transformers, motors, etc.),v “Reactive” <strong>energy</strong> supplied by capacitivecircuits (cable capacitance, power capacitors,etc)1.1 The nature of reactive <strong>energy</strong>All <strong>in</strong>ductive (i.e. electromagnetic) mach<strong>in</strong>es and devices that operate on AC systemsconvert electrical <strong>energy</strong> from <strong>the</strong> power system generators <strong>in</strong>to mechanical workand heat. This <strong>energy</strong> is measured by kWh meters, and is referred to as “active”or “wattful” <strong>energy</strong>. In order to perform this conversion, magnetic fields have to beestablished <strong>in</strong> <strong>the</strong> mach<strong>in</strong>es, and <strong>the</strong>se fields are associated with ano<strong>the</strong>r form of<strong>energy</strong> to be supplied from <strong>the</strong> power system, known as “reactive” or “wattless”<strong>energy</strong>.The reason for this is that <strong>in</strong>ductive circuit cyclically absorbs <strong>energy</strong> from <strong>the</strong> system(dur<strong>in</strong>g <strong>the</strong> build-up of <strong>the</strong> magnetic fields) and re-<strong>in</strong>jects that <strong>energy</strong> <strong>in</strong>to <strong>the</strong> system(dur<strong>in</strong>g <strong>the</strong> collapse of <strong>the</strong> magnetic fields) twice <strong>in</strong> every power-frequency cycle.An exactly similar phenomenon occurs with shunt capacitive elements <strong>in</strong> a powersystem, such as cable capacitance or banks of power capacitors, etc. In this case,<strong>energy</strong> is stored electrostatically. The cyclic charg<strong>in</strong>g and discharg<strong>in</strong>g of capacitivecircuit reacts on <strong>the</strong> generators of <strong>the</strong> system <strong>in</strong> <strong>the</strong> same manner as that describedabove for <strong>in</strong>ductive circuit, but <strong>the</strong> current flow to and from capacitive circuit <strong>in</strong> exactphase opposition to that of <strong>the</strong> <strong>in</strong>ductive circuit. This feature is <strong>the</strong> basis on whichpower factor correction schemes depend.It should be noted that while this “wattless” current (more accurately, <strong>the</strong> “wattless”component of a load current) does not draw power from <strong>the</strong> system, it does causepower losses <strong>in</strong> transmission and distribution systems by heat<strong>in</strong>g <strong>the</strong> conductors.In practical power systems, “wattless” components of load currents are <strong>in</strong>variably<strong>in</strong>ductive, while <strong>the</strong> impedances of transmission and distribution systems arepredom<strong>in</strong>antly <strong>in</strong>ductively reactive. The comb<strong>in</strong>ation of <strong>in</strong>ductive current pass<strong>in</strong>gthrough an <strong>in</strong>ductive reactance produces <strong>the</strong> worst possible conditions of voltagedrop (i.e. <strong>in</strong> direct phase opposition to <strong>the</strong> system voltage).For <strong>the</strong>se reasons (transmission power losses and voltage drop), <strong>the</strong> power-supplyauthorities reduce <strong>the</strong> amount of “wattless” (<strong>in</strong>ductive) current as much as possible.“Wattless” (capacitive) currents have <strong>the</strong> reverse effect on voltage levels and producevoltage-rises <strong>in</strong> power systems.The power (kW) associated with “active” <strong>energy</strong> is usually represented by <strong>the</strong> letter P.The reactive power (kvar) is represented by Q. Inductively-reactive power isconventionally positive (+ Q) while capacitively-reactive power is shown as anegative quantity (- Q).The apparent power S (kVA) is a comb<strong>in</strong>ation of P and Q (see Fig. L1).Sub-clause 1.3 shows <strong>the</strong> relationship between P, Q, and S.S(kVA)Q(kvar)P(kW)Fig. L1 : An electric motor requires active power P and reactive power Q from <strong>the</strong> power system© Schneider Electric - all rights reservedFig. L2 : Power consum<strong>in</strong>g items that also require reactive<strong>energy</strong>1.2 Equipement and appliances requir<strong>in</strong>g reactive<strong>energy</strong>All AC equipement and appliances that <strong>in</strong>clude electromagnetic devices, or dependon magnetically-coupled w<strong>in</strong>d<strong>in</strong>gs, require some degree of reactive current to createmagnetic flux.The most common items <strong>in</strong> this class are transformers and reactors, motors anddischarge lamps (with magnetic ballasts) (see Fig. L2).The proportion of reactive power (kvar) with respect to active power (kW) when anitem of equipement is fully loaded varies accord<strong>in</strong>g to <strong>the</strong> item concerned be<strong>in</strong>g:b 65-75% for asynchronous motorsb 5-10% for transformersSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


L - Power factor correction andharmonic filter<strong>in</strong>g1 Reactive <strong>energy</strong> and powerfactorThe power factor is <strong>the</strong> ratio of kW to kVA.The closer <strong>the</strong> power factor approaches itsmaximum possible value of 1, <strong>the</strong> greater <strong>the</strong>benefit to consumer and supplier.PF = P (kW) / S (kVA)P = Active powerS = Apparent power1.3 The power factorDef<strong>in</strong>ition of power factorThe power factor of a load, which may be a s<strong>in</strong>gle power-consum<strong>in</strong>g item, or anumber of items (for example an entire <strong>in</strong>stallation), is given by <strong>the</strong> ratio of P/S i.e.kW divided by kVA at any given moment.The value of a power factor will range from 0 to 1.If currents and voltages are perfectly s<strong>in</strong>usoidal signals, power factor equals cos ϕ.A power factor close to unity means that <strong>the</strong> reactive <strong>energy</strong> is small compared with<strong>the</strong> active <strong>energy</strong>, while a low value of power factor <strong>in</strong>dicates <strong>the</strong> opposite condition.Power vector diagramb Active power P (<strong>in</strong> kW)v S<strong>in</strong>gle phase (1 phase and neutral): P = V I cos ϕv S<strong>in</strong>gle phase (phase to phase): P = U I cos ϕv Three phase (3 wires or 3 wires + neutral): P = 3U I cos ϕb Reactive power Q (<strong>in</strong> kvar)v S<strong>in</strong>gle phase (1 phase and neutral): P = V I s<strong>in</strong> ϕv S<strong>in</strong>gle phase (phase to phase): Q = U I s<strong>in</strong> ϕv Three phase (3 wires or 3 wires + neutral): P = 3 U I s<strong>in</strong> ϕb Apparent power S (<strong>in</strong> kVA)v S<strong>in</strong>gle phase (1 phase and neutral): S = V Iv S<strong>in</strong>gle phase (phase to phase): S = U Iv Three phase (3 wires or 3 wires + neutral): P = 3 U Iwhere:V = Voltage between phase and neutralU = Voltage between phasesI = L<strong>in</strong>e currentϕ = Phase angle between vectors V and I.v For balanced and near-balanced loads on 4-wire systemsCurrent and voltage vectors, and derivation of <strong>the</strong> power diagramThe power “vector” diagram is a useful artifice, derived directly from <strong>the</strong> true rotat<strong>in</strong>gvector diagram of currents and voltage, as follows:The power-system voltages are taken as <strong>the</strong> reference quantities, and one phaseonly is considered on <strong>the</strong> assumption of balanced 3-phase load<strong>in</strong>g.The reference phase voltage (V) is co-<strong>in</strong>cident with <strong>the</strong> horizontal axis, and <strong>the</strong>current (I) of that phase will, for practically all power-system loads, lag <strong>the</strong> voltage byan angle ϕ.The component of I which is <strong>in</strong> phase with V is <strong>the</strong> “wattful” component of I and isequal to I cos ϕ, while VI cos ϕ equals <strong>the</strong> active power (<strong>in</strong> kW) <strong>in</strong> <strong>the</strong> circuit, if V isexpressed <strong>in</strong> kV.The component of I which lags 90 degrees beh<strong>in</strong>d V is <strong>the</strong> wattless component ofI and is equal to I s<strong>in</strong> ϕ, while VI s<strong>in</strong> ϕ equals <strong>the</strong> reactive power (<strong>in</strong> kvar) <strong>in</strong> <strong>the</strong>circuit, if V is expressed <strong>in</strong> kV.If <strong>the</strong> vector I is multiplied by V, expressed <strong>in</strong> kV, <strong>the</strong>n VI equals <strong>the</strong> apparent power(<strong>in</strong> kVA) for <strong>the</strong> circuit.The simple formula is obta<strong>in</strong>ed: S 2 = P 2 + Q 2The above kW, kvar and kVA values per phase, when multiplied by 3, can <strong>the</strong>reforeconveniently represent <strong>the</strong> relationships of kVA, kW, kvar and power factor for a total3-phase load, as shown <strong>in</strong> Figure L3 .LϕP = VI cos ϕ (kW)VFig. L3 : Power diagramQ = VI s<strong>in</strong> ϕ (kvar)S = VI (kVA)P = Active powerQ = Reactive powerS = Apparent power© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


L - Power factor correction andharmonic filter<strong>in</strong>g1 Reactive <strong>energy</strong> and powerfactorAn example of power calculations (see Fig. L4 )Type of Apparent power Active power Reactive powercircuit S (kVA) P (kW) Q (kvar)S<strong>in</strong>gle-phase (phase and neutral) S = VI P = VI cos ϕ Q = VI s<strong>in</strong> ϕS<strong>in</strong>gle-phase (phase to phase) S = UI P = UI cos ϕ Q = UI s<strong>in</strong> ϕExample 5 kW of load 10 kVA 5 kW 8.7 kvarcos ϕ = 0.5Three phase 3-wires or 3-wires + neutral S = 3 UI P = 3 UI cos ϕ Q = 3 UI s<strong>in</strong> ϕExample Motor Pn = 51 kW 65 kVA 56 kW 33 kvarcos ϕ = 0.86ρ = 0.91 (motor efficiency)Fig. L4 : Example <strong>in</strong> <strong>the</strong> calculation of active and reactive power1.4 Practical values of power factorThe calculations for <strong>the</strong> three-phase example above are as follows:Pn = delivered shaft power = 51 kWP = active power consumedP = Pn 56 kWρ = 510.91=S = apparent powerPS =cos ϕ = 56= 6 50.86kVASo that, on referr<strong>in</strong>g to diagram Figure L5 or us<strong>in</strong>g a pocket calculator, <strong>the</strong> value oftan ϕ correspond<strong>in</strong>g to a cos ϕ of 0.86 is found to be 0.59Q = P tan ϕ = 56 x 0.59 = 33 kvar (see Figure L15).AlternativelyL2 2 2 2Q = S -P= 65 - 56 = 33 kvarAverage power factor values for <strong>the</strong> most commonly-used equipment andappliances (see Fig. L6)© Schneider Electric - all rights reservedP = 56 kWϕS = 65 kVAFig. L5 : Calculation power diagramQ = 33 kvarEquipment and appliances cos ϕ tan ϕb Common loaded at 0% 0.17 5.80<strong>in</strong>duction motor 25% 0.55 1.5250% 0.73 0.9475% 0.80 0.75100% 0.85 0.62b Incandescent lamps 1.0 0b Fluorescent lamps (uncompensated) 0.5 1.73b Fluorescent lamps (compensated) 0.93 0.39b Discharge lamps 0.4 to 0.6 2.29 to 1.33b Ovens us<strong>in</strong>g resistance elements 1.0 0b Induction heat<strong>in</strong>g ovens (compensated) 0.85 0.62b Dielectric type heat<strong>in</strong>g ovens 0.85 0.62b Resistance-type solder<strong>in</strong>g mach<strong>in</strong>es 0.8 to 0.9 0.75 to 0.48b Fixed 1-phase arc-weld<strong>in</strong>g set 0.5 1.73b Arc-weld<strong>in</strong>g motor-generat<strong>in</strong>g set 0.7 to 0.9 1.02 to 0.48b Arc-weld<strong>in</strong>g transformer-rectifier set 0.7 to 0.8 1.02 to 0.75b Arc furnace 0.8 0.75Fig. L6 : Values of cos ϕ and tan ϕ for commonly-used equipmentSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


L - Power factor correction andharmonic filter<strong>in</strong>g2 Why to improve <strong>the</strong> powerfactor?An improvement of <strong>the</strong> power factor of an<strong>in</strong>stallation presents several technical andeconomic advantages, notably <strong>in</strong> <strong>the</strong> reductionof electricity bills2.1 Reduction <strong>in</strong> <strong>the</strong> cost of electricityGood management <strong>in</strong> <strong>the</strong> consumption of reactive <strong>energy</strong> br<strong>in</strong>gs economicadvantages.These notes are based on an actual tariff structure commonly applied <strong>in</strong> Europe,designed to encourage consumers to m<strong>in</strong>imize <strong>the</strong>ir consumption of reactive <strong>energy</strong>.The <strong>in</strong>stallation of power-factor correction capacitors on <strong>in</strong>stallations permits <strong>the</strong>consumer to reduce his electricity bill by ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>the</strong> level of reactive-powerconsumption below a value contractually agreed with <strong>the</strong> power supply authority.In this particular tariff, reactive <strong>energy</strong> is billed accord<strong>in</strong>g to <strong>the</strong> tan ϕ criterion.As previously noted:tan ϕ =Q (kvarh)P (kWh)The power supply authority delivers reactive <strong>energy</strong> for free:b If <strong>the</strong> reactive <strong>energy</strong> represents less than 40% of <strong>the</strong> active <strong>energy</strong> (tan ϕ < 0.4)for a maximum period of 16 hours each day (from 06-00 h to 22-00 h) dur<strong>in</strong>g <strong>the</strong>most-heavily loaded period (often <strong>in</strong> w<strong>in</strong>ter)b Without limitation dur<strong>in</strong>g light-load periods <strong>in</strong> w<strong>in</strong>ter, and <strong>in</strong> spr<strong>in</strong>g and summer.Dur<strong>in</strong>g <strong>the</strong> periods of limitation, reactive <strong>energy</strong> consumption exceed<strong>in</strong>g 40% of<strong>the</strong> active <strong>energy</strong> (i.e. tan ϕ > 0.4) is billed monthly at <strong>the</strong> current rates. Thus, <strong>the</strong>quantity of reactive <strong>energy</strong> billed <strong>in</strong> <strong>the</strong>se periods will be:kvarh (to be billed) = kWh (tan ϕ > 0.4) where:v kWh is <strong>the</strong> active <strong>energy</strong> consumed dur<strong>in</strong>g <strong>the</strong> periods of limitationv kWh tan ϕ is <strong>the</strong> total reactive <strong>energy</strong> dur<strong>in</strong>g a period of limitationv 0.4 kWh is <strong>the</strong> amount of reactive <strong>energy</strong> delivered free dur<strong>in</strong>g a period oflimitationtan ϕ = 0.4 corresponds to a power factor of 0.93 so that, if steps are taken to ensurethat dur<strong>in</strong>g <strong>the</strong> limitation periods <strong>the</strong> power factor never falls below 0.93,<strong>the</strong> consumer will have noth<strong>in</strong>g to pay for <strong>the</strong> reactive power consumed.Aga<strong>in</strong>st <strong>the</strong> f<strong>in</strong>ancial advantages of reduced bill<strong>in</strong>g, <strong>the</strong> consumer must balance<strong>the</strong> cost of purchas<strong>in</strong>g, <strong>in</strong>stall<strong>in</strong>g and ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>the</strong> power factor improvementcapacitors and controll<strong>in</strong>g switchgear, automatic control equipment (where steppedlevels of compensation are required) toge<strong>the</strong>r with <strong>the</strong> additional kWh consumed by<strong>the</strong> dielectric losses of <strong>the</strong> capacitors, etc. It may be found that it is more economicto provide partial compensation only, and that pay<strong>in</strong>g for some of <strong>the</strong> reactive <strong>energy</strong>consumed is less expensive than provid<strong>in</strong>g 100% compensation.The question of power-factor correction is a matter of optimization, except <strong>in</strong> verysimple cases.LPower factor improvement allows <strong>the</strong> use ofsmaller transformers, switchgear and cables,etc. as well as reduc<strong>in</strong>g power losses andvoltage drop <strong>in</strong> an <strong>in</strong>stallation2.2 Technical/economic optimizationA high power factor allows <strong>the</strong> optimization of <strong>the</strong> components of an <strong>in</strong>stallation.Overat<strong>in</strong>g of certa<strong>in</strong> equipment can be avoided, but to achieve <strong>the</strong> best results, <strong>the</strong>correction should be effected as close to <strong>the</strong> <strong>in</strong>dividual <strong>in</strong>ductive items as possible.Reduction of cable sizeFigure L7 shows <strong>the</strong> required <strong>in</strong>crease <strong>in</strong> <strong>the</strong> size of cables as <strong>the</strong> power factor isreduced from unity to 0.4, for <strong>the</strong> same active power transmitted.Multiply<strong>in</strong>g factor 1 1.25 1.67 2.5for <strong>the</strong> cross-sectionalarea of <strong>the</strong> cable core(s)cos ϕ 1 0.8 0.6 0.4Fig. L7 : Multiply<strong>in</strong>g factor for cable size as a function of cos ϕ© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


L - Power factor correction andharmonic filter<strong>in</strong>g2 Why to improve <strong>the</strong> powerfactor?Reduction of losses (P, kW) <strong>in</strong> cablesLosses <strong>in</strong> cables are proportional to <strong>the</strong> current squared, and are measured by <strong>the</strong>kWh meter of <strong>the</strong> <strong>in</strong>stallation. Reduction of <strong>the</strong> total current <strong>in</strong> a conductor by 10% forexample, will reduce <strong>the</strong> losses by almost 20%.Reduction of voltage dropPower factor correction capacitors reduce or even cancel completely <strong>the</strong> (<strong>in</strong>ductive)reactive current <strong>in</strong> upstream conductors, <strong>the</strong>reby reduc<strong>in</strong>g or elim<strong>in</strong>at<strong>in</strong>g voltagedrops.Note: Over compensation will produce a voltage rise at <strong>the</strong> capacitor level.Increase <strong>in</strong> available powerBy improv<strong>in</strong>g <strong>the</strong> power factor of a load supplied from a transformer, <strong>the</strong> currentthrough <strong>the</strong> transformer will be reduced, <strong>the</strong>reby allow<strong>in</strong>g more load to be added. Inpractice, it may be less expensive to improve <strong>the</strong> power factor (1) , than to replace <strong>the</strong>transformer by a larger unit.This matter is fur<strong>the</strong>r elaborated <strong>in</strong> clause 6.L© Schneider Electric - all rights reserved(1) S<strong>in</strong>ce o<strong>the</strong>r benefits are obta<strong>in</strong>ed from a high value ofpower factor, as previously noted.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


L - Power factor correction andharmonic filter<strong>in</strong>g3 How to improve <strong>the</strong> power factor?Improv<strong>in</strong>g <strong>the</strong> power factor of an <strong>in</strong>stallationrequires a bank of capacitors which acts as asource of reactive <strong>energy</strong>. This arrangement issaid to provide reactive <strong>energy</strong> compensationa) Reactive current components only flow patternIL - IC IC IL ILCLLoadb) When IC = IL, all reactive power is supplied from <strong>the</strong>capacitor bankIL - IC = 0 IC IL ILCLc) With load current added to case (b)IRICCIR + ILILLLoadIRLoadFig. L8 : Show<strong>in</strong>g <strong>the</strong> essential features of power-factorcorrectionϕ'ϕQcFig. L9 : Diagram show<strong>in</strong>g <strong>the</strong> pr<strong>in</strong>ciple of compensation:Qc = P (tan ϕ - tan ϕ’)S'SQ'PRRRQ3.1 Theoretical pr<strong>in</strong>ciplesAn <strong>in</strong>ductive load hav<strong>in</strong>g a low power factor requires <strong>the</strong> generators andtransmission/distribution systems to pass reactive current (lagg<strong>in</strong>g <strong>the</strong> systemvoltage by 90 degrees) with associated power losses and exaggerated voltagedrops, as noted <strong>in</strong> sub-clause 1.1. If a bank of shunt capacitors is added to <strong>the</strong>load, its (capacitive) reactive current will take <strong>the</strong> same path through <strong>the</strong> powersystem as that of <strong>the</strong> load reactive current. S<strong>in</strong>ce, as po<strong>in</strong>ted out <strong>in</strong> sub-clause1.1, this capacitive current Ic (which leads <strong>the</strong> system voltage by 90 degrees) is<strong>in</strong> direct phase opposition to <strong>the</strong> load reactive current (IL), <strong>the</strong> two componentsflow<strong>in</strong>g through <strong>the</strong> same path will cancel each o<strong>the</strong>r, such that if <strong>the</strong> capacitor bankis sufficiently large and Ic = IL <strong>the</strong>re will be no reactive current flow <strong>in</strong> <strong>the</strong> systemupstream of <strong>the</strong> capacitors.This is <strong>in</strong>dicated <strong>in</strong> Figure L8 (a) and (b) which show <strong>the</strong> flow of <strong>the</strong> reactivecomponents of current only.In this figure:R represents <strong>the</strong> active-power elements of <strong>the</strong> loadL represents <strong>the</strong> (<strong>in</strong>ductive) reactive-power elements of <strong>the</strong> loadC represents <strong>the</strong> (capacitive) reactive-power elements of <strong>the</strong> power-factor correctionequipment (i.e. capacitors).It will be seen from diagram (b) of Figure L9, that <strong>the</strong> capacitor bank C appearsto be supply<strong>in</strong>g all <strong>the</strong> reactive current of <strong>the</strong> load. For this reason, capacitors aresometimes referred to as “generators of lagg<strong>in</strong>g vars”.In diagram (c) of Figure L9, <strong>the</strong> active-power current component has been added,and shows that <strong>the</strong> (fully-compensated) load appears to <strong>the</strong> power system as hav<strong>in</strong>ga power factor of 1.In general, it is not economical to fully compensate an <strong>in</strong>stallation.Figure L9 uses <strong>the</strong> power diagram discussed <strong>in</strong> sub-clause 1.3 (see Fig. L3) toillustrate <strong>the</strong> pr<strong>in</strong>ciple of compensation by reduc<strong>in</strong>g a large reactive power Q to asmaller value Q’ by means of a bank of capacitors hav<strong>in</strong>g a reactive power Qc.In do<strong>in</strong>g so, <strong>the</strong> magnitude of <strong>the</strong> apparent power S is seen to reduce to S’.Example:A motor consumes 100 kW at a power factor of 0.75 (i.e. tan ϕ = 0.88). To improve<strong>the</strong> power factor to 0.93 (i.e. tan ϕ = 0.4), <strong>the</strong> reactive power of <strong>the</strong> capacitor bankmust be : Qc = 100 (0.88 - 0.4) = 48 kvarThe selected level of compensation and <strong>the</strong> calculation of rat<strong>in</strong>g for <strong>the</strong> capacitorbank depend on <strong>the</strong> particular <strong>in</strong>stallation. The factors requir<strong>in</strong>g attention areexpla<strong>in</strong>ed <strong>in</strong> a general way <strong>in</strong> clause 5, and <strong>in</strong> clauses 6 and 7 for transformers andmotors.Note: Before start<strong>in</strong>g a compensation project, a number of precautions should beobserved. In particular, oversiz<strong>in</strong>g of motors should be avoided, as well as <strong>the</strong> noloadrunn<strong>in</strong>g of motors. In this latter condition, <strong>the</strong> reactive <strong>energy</strong> consumed by amotor results <strong>in</strong> a very low power factor (≈ 0.17); this is because <strong>the</strong> kW taken by <strong>the</strong>motor (when it is unloaded) are very small.3.2 By us<strong>in</strong>g what equipment?Compensation at LVAt low voltage, compensation is provided by:b Fixed-value capacitorb Equipment provid<strong>in</strong>g automatic regulation, or banks which allow cont<strong>in</strong>uousadjustment accord<strong>in</strong>g to requirements, as load<strong>in</strong>g of <strong>the</strong> <strong>in</strong>stallation changesNote: When <strong>the</strong> <strong>in</strong>stalled reactive power of compensation exceeds 800 kvar, and <strong>the</strong>load is cont<strong>in</strong>uous and stable, it is often found to be economically advantageous to<strong>in</strong>stal capacitor banks at <strong>the</strong> medium voltage level.L© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


L - Power factor correction andharmonic filter<strong>in</strong>g3 How to improve <strong>the</strong> power factor?Compensation can be carried out by afixed value of capacitance <strong>in</strong> favourablecircumstancesFixed capacitors (see Fig. L10)This arrangement employs one or more capacitor(s) to form a constant level ofcompensation. Control may be:b Manual: by circuit-breaker or load-break switchb Semi-automatic: by contactorb Direct connection to an appliance and switched with itThese capacitors are applied:b At <strong>the</strong> term<strong>in</strong>als of <strong>in</strong>ductive devices (motors and transformers)b At busbars supply<strong>in</strong>g numerous small motors and <strong>in</strong>ductive appliance for which<strong>in</strong>dividual compensation would be too costlyb In cases where <strong>the</strong> level of load is reasonably constantFig. L10 : Example of fixed-value compensation capacitorsLCompensation is more-commonly effected bymeans of an automatically-controlled steppedbank of capacitorsAutomatic capacitor banks (see Fig. L11)This k<strong>in</strong>d of equipment provides automatic control of compensation, ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>the</strong>power factor with<strong>in</strong> close limits around a selected level. Such equipment is applied atpo<strong>in</strong>ts <strong>in</strong> an <strong>in</strong>stallation where <strong>the</strong> active-power and/or reactive-power variations arerelatively large, for example:b At <strong>the</strong> busbars of a general power distribution boardb At <strong>the</strong> term<strong>in</strong>als of a heavily-loaded feeder cable© Schneider Electric - all rights reservedFig. L11 : Example of automatic-compensation-regulat<strong>in</strong>g equipmentSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


L - Power factor correction andharmonic filter<strong>in</strong>g3 How to improve <strong>the</strong> power factor?Automatically-regulated banks of capacitorsallow an immediate adaptation of compensationto match <strong>the</strong> level of loadThe pr<strong>in</strong>ciples of, and reasons, for us<strong>in</strong>g automaticcompensationA bank of capacitors is divided <strong>in</strong>to a number of sections, each of which is controlledby a contactor. Closure of a contactor switches its section <strong>in</strong>to parallel operation witho<strong>the</strong>r sections already <strong>in</strong> service. The size of <strong>the</strong> bank can <strong>the</strong>refore be <strong>in</strong>creased ordecreased <strong>in</strong> steps, by <strong>the</strong> closure and open<strong>in</strong>g of <strong>the</strong> controll<strong>in</strong>g contactors.A control relay monitors <strong>the</strong> power factor of <strong>the</strong> controlled circuit(s) and is arrangedto close and open appropriate contactors to ma<strong>in</strong>ta<strong>in</strong> a reasonably constantsystem power factor (with<strong>in</strong> <strong>the</strong> tolerance imposed by <strong>the</strong> size of each step ofcompensation). The current transformer for <strong>the</strong> monitor<strong>in</strong>g relay must evidentlybe placed on one phase of <strong>the</strong> <strong>in</strong>com<strong>in</strong>g cable which supplies <strong>the</strong> circuit(s) be<strong>in</strong>gcontrolled, as shown <strong>in</strong> Figure L12.A Varset Fast capacitor bank is an automatic power factor correction equipment<strong>in</strong>clud<strong>in</strong>g static contactors (thyristors) <strong>in</strong>stead of usual contactors. Static correctionis particularly suitable for a certa<strong>in</strong> number of <strong>in</strong>stallations us<strong>in</strong>g equipment with fastcycle and/or sensitive to transient surges.The advantages of static contactors are :b Immediate response to all power factor fluctuation (response time 2 s or 40 msaccord<strong>in</strong>g to regulator option)b Unlimited number of operationsb Elim<strong>in</strong>ation of transient phenomena on <strong>the</strong> network on capacitor switch<strong>in</strong>gb Fully silent operationBy closely match<strong>in</strong>g compensation to that required by <strong>the</strong> load, <strong>the</strong> possibility ofproduc<strong>in</strong>g overvoltages at times of low load will be avoided, <strong>the</strong>reby prevent<strong>in</strong>gan overvoltage condition, and possible damage to appliances and equipment.Overvoltages due to excessive reactive compensation depend partly on <strong>the</strong> value ofsource impedance.CT In / 5 A cl 1VarmetricrelayLFig. L12 : The pr<strong>in</strong>ciple of automatic-compensation control3.3 The choice between a fixed or automaticallyregulatedbank of capacitorsCommonly-applied rulesWhere <strong>the</strong> kvar rat<strong>in</strong>g of <strong>the</strong> capacitors is less than, or equal to 15% of <strong>the</strong> supplytransformer rat<strong>in</strong>g, a fixed value of compensation is appropriate. Above <strong>the</strong> 15%level, it is advisable to <strong>in</strong>stall an automatically-controlled bank of capacitors.The location of low-voltage capacitors <strong>in</strong> an <strong>in</strong>stallation constitutes <strong>the</strong> mode ofcompensation, which may be <strong>global</strong> (one location for <strong>the</strong> entire <strong>in</strong>stallation), partial(section-by-section), local (at each <strong>in</strong>dividual device), or some comb<strong>in</strong>ation of <strong>the</strong>latter two. In pr<strong>in</strong>ciple, <strong>the</strong> ideal compensation is applied at a po<strong>in</strong>t of consumptionand at <strong>the</strong> level required at any <strong>in</strong>stant.In practice, technical and economic factors govern <strong>the</strong> choice.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


L - Power factor correction andharmonic filter<strong>in</strong>g4 Where to <strong>in</strong>stall correctioncapacitors?Where a load is cont<strong>in</strong>uous and stable, <strong>global</strong>compensation can be applied4.1 Global compensation (see Fig. L13)Pr<strong>in</strong>cipleThe capacitor bank is connected to <strong>the</strong> busbars of <strong>the</strong> ma<strong>in</strong> LV distribution board for<strong>the</strong> <strong>in</strong>stallation, and rema<strong>in</strong>s <strong>in</strong> service dur<strong>in</strong>g <strong>the</strong> period of normal load.AdvantagesThe <strong>global</strong> type of compensation:b Reduces <strong>the</strong> tariff penalties for excessive consumption of kvarsb Reduces <strong>the</strong> apparent power kVA demand, on which stand<strong>in</strong>g charges are usuallybasedb Relieves <strong>the</strong> supply transformer, which is <strong>the</strong>n able to accept more load ifnecessaryCommentsb Reactive current still flows <strong>in</strong> all conductors of cables leav<strong>in</strong>g (i.e. downstream of)<strong>the</strong> ma<strong>in</strong> LV distribution boardb For <strong>the</strong> above reason, <strong>the</strong> siz<strong>in</strong>g of <strong>the</strong>se cables, and power losses <strong>in</strong> <strong>the</strong>m, arenot improved by <strong>the</strong> <strong>global</strong> mode of compensation.no.1L10Fig. L13 : Global compensationM M M M© Schneider Electric - all rights reservedCompensation by sector is recommendedwhen <strong>the</strong> <strong>in</strong>stallation is extensive, and where <strong>the</strong>load/time patterns differ from one part of<strong>the</strong> <strong>in</strong>stallation to ano<strong>the</strong>rno. 1no. 2 no. 2M M M MFig. L14 : Compensation by sector4.2 Compensation by sector (see Fig. L14)Pr<strong>in</strong>cipleCapacitor banks are connected to busbars of each local distribution board, as shown<strong>in</strong> Figure L14.A significant part of <strong>the</strong> <strong>in</strong>stallation benefits from this arrangement, notably <strong>the</strong> feedercables from <strong>the</strong> ma<strong>in</strong> distribution board to each of <strong>the</strong> local distribution boards atwhich <strong>the</strong> compensation measures are applied.AdvantagesThe compensation by sector:b Reduces <strong>the</strong> tariff penalties for excessive consumption of kvarsb Reduces <strong>the</strong> apparent power kVA demand, on which stand<strong>in</strong>g charges are usuallybasedb Relieves <strong>the</strong> supply transformer, which is <strong>the</strong>n able to accept more load ifnecessaryb The size of <strong>the</strong> cables supply<strong>in</strong>g <strong>the</strong> local distribution boards may be reduced, orwill have additional capacity for possible load <strong>in</strong>creasesb Losses <strong>in</strong> <strong>the</strong> same cables will be reducedCommentsb Reactive current still flows <strong>in</strong> all cables downstream of <strong>the</strong> local distribution boardsb For <strong>the</strong> above reason, <strong>the</strong> siz<strong>in</strong>g of <strong>the</strong>se cables, and <strong>the</strong> power losses <strong>in</strong> <strong>the</strong>m,are not improved by compensation by sectorb Where large changes <strong>in</strong> loads occur, <strong>the</strong>re is always a risk of overcompensationand consequent overvoltage problemsSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


L - Power factor correction andharmonic filter<strong>in</strong>g4 Where to <strong>in</strong>stall correctioncapacitors?Individual compensation should be consideredwhen <strong>the</strong> power of motor is significant withrespect to power of <strong>the</strong> <strong>in</strong>stallation4.3 Individual compensationPr<strong>in</strong>cipleCapacitors are connected directly to <strong>the</strong> term<strong>in</strong>als of <strong>in</strong>ductive circuit (notably motors,see fur<strong>the</strong>r <strong>in</strong> Clause 7). Individual compensation should be considered when <strong>the</strong>power of <strong>the</strong> motor is significant with respect to <strong>the</strong> declared power requirement(kVA) of <strong>the</strong> <strong>in</strong>stallation.The kvar rat<strong>in</strong>g of <strong>the</strong> capacitor bank is <strong>in</strong> <strong>the</strong> order of 25% of <strong>the</strong> kW rat<strong>in</strong>g of <strong>the</strong>motor. Complementary compensation at <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> <strong>in</strong>stallation (transformer)may also be beneficial.AdvantagesIndividual compensation:b Reduces <strong>the</strong> tariff penalties for excessive consumption of kvarsb Reduces <strong>the</strong> apparent power kVA demandb Reduces <strong>the</strong> size of all cables as well as <strong>the</strong> cable lossesCommentsb Significant reactive currents no longer exist <strong>in</strong> <strong>the</strong> <strong>in</strong>stallationL11© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


L - Power factor correction andharmonic filter<strong>in</strong>g5 How to decide <strong>the</strong> optimum levelof compensation?5.1 General methodList<strong>in</strong>g of reactive power demands at <strong>the</strong> design stageThis list<strong>in</strong>g can be made <strong>in</strong> <strong>the</strong> same way (and at <strong>the</strong> same time) as that for <strong>the</strong>power load<strong>in</strong>g described <strong>in</strong> chapter A. The levels of active and reactive powerload<strong>in</strong>g, at each level of <strong>the</strong> <strong>in</strong>stallation (generally at po<strong>in</strong>ts of distribution and subdistributionof circuits) can <strong>the</strong>n be determ<strong>in</strong>ed.Technical-economic optimization for an exist<strong>in</strong>g <strong>in</strong>stallationThe optimum rat<strong>in</strong>g of compensation capacitors for an exist<strong>in</strong>g <strong>in</strong>stallation can bedeterm<strong>in</strong>ed from <strong>the</strong> follow<strong>in</strong>g pr<strong>in</strong>cipal considerations:b Electricity bills prior to <strong>the</strong> <strong>in</strong>stallation of capacitorsb Future electricity bills anticipated follow<strong>in</strong>g <strong>the</strong> <strong>in</strong>stallation of capacitorsb Costs of:v Purchase of capacitors and control equipment (contactors, relay<strong>in</strong>g, cab<strong>in</strong>ets, etc.)v <strong>Installation</strong> and ma<strong>in</strong>tenance costsv Cost of dielectric heat<strong>in</strong>g losses <strong>in</strong> <strong>the</strong> capacitors, versus reduced losses <strong>in</strong> cables,transformer, etc., follow<strong>in</strong>g <strong>the</strong> <strong>in</strong>stallation of capacitorsSeveral simplified methods applied to typical tariffs (common <strong>in</strong> Europe) are shown<strong>in</strong> sub-clauses 5.3 and 5.4.5.2 Simplified methodL12General pr<strong>in</strong>cipleAn approximate calculation is generally adequate for most practical cases, and maybe based on <strong>the</strong> assumption of a power factor of 0.8 (lagg<strong>in</strong>g) before compensation.In order to improve <strong>the</strong> power factor to a value sufficient to avoid tariff penalties (thisdepends on local tariff structures, but is assumed here to be 0.93) and to reducelosses, volt-drops, etc. <strong>in</strong> <strong>the</strong> <strong>in</strong>stallation, reference can be made to Figure L15 nextpage.From <strong>the</strong> figure, it can be seen that, to raise <strong>the</strong> power factor of <strong>the</strong> <strong>in</strong>stallation from0.8 to 0.93 will require 0.355 kvar per kW of load. The rat<strong>in</strong>g of a bank of capacitorsat <strong>the</strong> busbars of <strong>the</strong> ma<strong>in</strong> distribution board of <strong>the</strong> <strong>in</strong>stallation would beQ (kvar) = 0.355 x P (kW).This simple approach allows a rapid determ<strong>in</strong>ation of <strong>the</strong> compensation capacitorsrequired, albeit <strong>in</strong> <strong>the</strong> <strong>global</strong>, partial or <strong>in</strong>dependent mode.ExampleIt is required to improve <strong>the</strong> power factor of a 666 kVA <strong>in</strong>stallation from 0.75 to 0.928.The active power demand is 666 x 0.75 = 500 kW.In Figure L15, <strong>the</strong> <strong>in</strong>tersection of <strong>the</strong> row cos ϕ = 0.75 (before correction) with<strong>the</strong> column cos ϕ = 0.93 (after correction) <strong>in</strong>dicates a value of 0.487 kvar ofcompensation per kW of load.For a load of 500 kW, <strong>the</strong>refore, 500 x 0.487 = 244 kvar of capacitive compensationis required.Note: this method is valid for any voltage level, i.e. is <strong>in</strong>dependent of voltage.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


L - Power factor correction andharmonic filter<strong>in</strong>g5 How to decide <strong>the</strong> optimum levelof compensation?Before kvar rat<strong>in</strong>g of capacitor bank to <strong>in</strong>stall per kW of load, to improve cos ϕ (<strong>the</strong> power factor) or tan ϕ,compensation to a given valuetan ϕ 0.75 0.59 0.48 0.46 0.43 0.40 0.36 0.33 0.29 0.25 0.20 0.14 0.0tan ϕ cos ϕ cos ϕ 0.80 0.86 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 12.29 0.40 1.557 1.691 1.805 1.832 1.861 1.895 1.924 1.959 1.998 2.037 2.085 2.146 2.2882.22 0.41 1.474 1.625 1.742 1.769 1.798 1.831 1.840 1.896 1.935 1.973 2.021 2.082 2.2252.16 0.42 1.413 1.561 1.681 1.709 1.738 1.771 1.800 1.836 1.874 1.913 1.961 2.022 2.1642.10 0.43 1.356 1.499 1.624 1.651 1.680 1.713 1.742 1.778 1.816 1.855 1.903 1.964 2.1072.04 0.44 1.290 1.441 1.558 1.585 1.614 1.647 1.677 1.712 1.751 1.790 1.837 1.899 2.0411.98 0.45 1.230 1.384 1.501 1.532 1.561 1.592 1.628 1.659 1.695 1.737 1.784 1.846 1.9881.93 0.46 1.179 1.330 1.446 1.473 1.502 1.533 1.567 1.600 1.636 1.677 1.725 1.786 1.9291.88 0.47 1.130 1.278 1.397 1.425 1.454 1.485 1.519 1.532 1.588 1.629 1.677 1.758 1.8811.83 0.48 1.076 1.228 1.343 1.370 1.400 1.430 1.464 1.497 1.534 1.575 1.623 1.684 1.8261.78 0.49 1.030 1.179 1.297 1.326 1.355 1.386 1.420 1.453 1.489 1.530 1.578 1.639 1.7821.73 0.50 0.982 1.232 1.248 1.276 1.303 1.337 1.369 1.403 1.441 1.481 1.529 1.590 1.7321.69 0.51 0.936 1.087 1.202 1.230 1.257 1.291 1.323 1.357 1.395 1.435 1.483 1.544 1.6861.64 0.52 0.894 1.043 1.160 1.188 1.215 1.249 1.281 1.315 1.353 1.393 1.441 1.502 1.6441.60 0.53 0.850 1.000 1.116 1.144 1.171 1.205 1.237 1.271 1.309 1.349 1.397 1.458 1.6001.56 0.54 0.809 0.959 1.075 1.103 1.130 1.164 1.196 1.230 1.268 1.308 1.356 1.417 1.5591.52 0.55 0.769 0.918 1.035 1.063 1.090 1.124 1.156 1.190 1.228 1.268 1.316 1.377 1.5191.48 0.56 0.730 0.879 0.996 1.024 1.051 1.085 1.117 1.151 1.189 1.229 1.277 1.338 1.4801.44 0.57 0.692 0.841 0.958 0.986 1.013 1.047 1.079 1.113 1.151 1.191 1.239 1.300 1.4421.40 0.58 0.665 0.805 0.921 0.949 0.976 1.010 1.042 1.076 1.114 1.154 1.202 1.263 1.4051.37 0.59 0.618 0.768 0.884 0.912 0.939 0.973 1.005 1.039 1.077 1.117 1.165 1.226 1.3681.33 0.60 0.584 0.733 0.849 0.878 0.905 0.939 0.971 1.005 1.043 1.083 1.131 1.192 1.3341.30 0.61 0.549 0.699 0.815 0.843 0.870 0.904 0.936 0.970 1.008 1.048 1.096 1.157 1.2991.27 0.62 0.515 0.665 0.781 0.809 0.836 0.870 0.902 0.936 0.974 1.014 1.062 1.123 1.2651.23 0.63 0.483 0.633 0.749 0.777 0.804 0.838 0.870 0.904 0.942 0.982 1.030 1.091 1.2331.20 0.64 0.450 0.601 0.716 0.744 0.771 0.805 0.837 0.871 0.909 0.949 0.997 1.058 1.2001.17 0.65 0.419 0.569 0.685 0.713 0.740 0.774 0.806 0.840 0.878 0.918 0.966 1.007 1.1691.14 0.66 0.388 0.538 0.654 0.682 0.709 0.743 0.775 0.809 0.847 0.887 0.935 0.996 1.1381.11 0.67 0.358 0.508 0.624 0.652 0.679 0.713 0.745 0.779 0.817 0.857 0.905 0.966 1.1081.08 0.68 0.329 0.478 0.595 0.623 0.650 0.684 0.716 0.750 0.788 0.828 0.876 0.937 1.0791.05 0.69 0.299 0.449 0.565 0.593 0.620 0.654 0.686 0.720 0.758 0.798 0.840 0.907 1.0491.02 0.70 0.270 0.420 0.536 0.564 0.591 0.625 0.657 0.691 0.729 0.769 0.811 0.878 1.0200.99 0.71 0.242 0.392 0.508 0.536 0.563 0.597 0.629 0.663 0.701 0.741 0.783 0.850 0.9920.96 0.72 0.213 0.364 0.479 0.507 0.534 0.568 0.600 0.634 0.672 0.712 0.754 0.821 0.9630.94 0.73 0.186 0.336 0.452 0.480 0.507 0.541 0.573 0.607 0.645 0.685 0.727 0.794 0.9360.91 0.74 0.159 0.309 0.425 0.453 0.480 0.514 0.546 0.580 0.618 0.658 0.700 0.767 0.9090.88 0.75 0.132 0.82 0.398 0.426 0.453 0.487 0.519 0.553 0.591 0.631 0.673 0.740 0.8820.86 0.76 0.105 0.255 0.371 0.399 0.426 0.460 0.492 0.526 0.564 0.604 0.652 0.713 0.8550.83 0.77 0.079 0.229 0.345 0.373 0.400 0.434 0.466 0.500 0.538 0.578 0.620 0.687 0.8290.80 0.78 0.053 0.202 0.319 0.347 0.374 0.408 0.440 0.474 0.512 0.552 0.594 0.661 0.8030.78 0.79 0.026 0.176 0.292 0.320 0.347 0.381 0.413 0.447 0.485 0.525 0.567 0.634 0.7760.75 0.80 0.150 0.266 0.294 0.321 0.355 0.387 0.421 0.459 0.499 0.541 0.608 0.7500.72 0.81 0.124 0.240 0.268 0.295 0.329 0.361 0.395 0.433 0.473 0.515 0.582 0.7240.70 0.82 0.098 0.214 0.242 0.269 0.303 0.335 0.369 0.407 0.447 0.489 0.556 0.6980.67 0.83 0.072 0.188 0.216 0.243 0.277 0.309 0.343 0.381 0.421 0.463 0.530 0.6720.65 0.84 0.046 0.162 0.190 0.217 0.251 0.283 0.317 0.355 0.395 0.437 0.504 0.6450.62 0.85 0.020 0.136 0.164 0.191 0.225 0.257 0.291 0.329 0.369 0.417 0.478 0.6200.59 0.86 0.109 0.140 0.167 0.198 0.230 0.264 0.301 0.343 0.390 0.450 0.5930.57 0.87 0.083 0.114 0.141 0.172 0.204 0.238 0.275 0.317 0.364 0.424 0.5670.54 0.88 0.054 0.085 0.112 0.143 0.175 0.209 0.246 0.288 0.335 0.395 0.5380.51 0.89 0.028 0.059 0.086 0.117 0.149 0.183 0.230 0.262 0.309 0.369 0.5120.48 0.90 0.031 0.058 0.089 0.121 0.155 0.192 0.234 0.281 0.341 0.484L13Value selected as an example on section 5.2Value selected as an example on section 5.4Fig. L15 : kvar to be <strong>in</strong>stalled per kW of load, to improve <strong>the</strong> power factor of an <strong>in</strong>stallation© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


L - Power factor correction andharmonic filter<strong>in</strong>g5 How to decide <strong>the</strong> optimum levelof compensation?L14In <strong>the</strong> case of certa<strong>in</strong> (common) types oftariff, an exam<strong>in</strong>ation of several bills cover<strong>in</strong>g<strong>the</strong> most heavily-loaded period of <strong>the</strong> yearallows determ<strong>in</strong>ation of <strong>the</strong> kvar level ofcompensation required to avoid kvarh (reactive<strong>energy</strong>)charges. The pay-back period of abank of power-factor-correction capacitorsand associated equipment is generally about18 months5.3 Method based on <strong>the</strong> avoidance of tariffpenaltiesThe follow<strong>in</strong>g method allows calculation of <strong>the</strong> rat<strong>in</strong>g of a proposed capacitor bank,based on bill<strong>in</strong>g details, where <strong>the</strong> tariff structure corresponds with (or is similar to)<strong>the</strong> one described <strong>in</strong> sub-clause 2.1 of this chapter.The method determ<strong>in</strong>es <strong>the</strong> m<strong>in</strong>imum compensation required to avoid <strong>the</strong>se chargeswhich are based on kvarh consumption.The procedure is as follows:b Refer to <strong>the</strong> bills cover<strong>in</strong>g consumption for <strong>the</strong> 5 months of w<strong>in</strong>ter (<strong>in</strong> France <strong>the</strong>seare November to March <strong>in</strong>clusive).Note: <strong>in</strong> tropical climates <strong>the</strong> summer months may constitute <strong>the</strong> period of heaviestload<strong>in</strong>g and highest peaks (ow<strong>in</strong>g to extensive air condition<strong>in</strong>g loads) so that aconsequent variation of high-tariff periods is necessary <strong>in</strong> this case. The rema<strong>in</strong>der ofthis example will assume W<strong>in</strong>ter conditions <strong>in</strong> France.b Identify <strong>the</strong> l<strong>in</strong>e on <strong>the</strong> bills referr<strong>in</strong>g to “reactive-<strong>energy</strong> consumed” and “kvarhto be charged”. Choose <strong>the</strong> bill which shows <strong>the</strong> highest charge for kvarh (aftercheck<strong>in</strong>g that this was not due to some exceptional situation).For example: 15,966 kvarh <strong>in</strong> January.b Evaluate <strong>the</strong> total period of loaded operation of <strong>the</strong> <strong>in</strong>stallation for that month, for<strong>in</strong>stance: 220 hours (22 days x 10 hours). The hours which must be counted arethose occurr<strong>in</strong>g dur<strong>in</strong>g <strong>the</strong> heaviest load and <strong>the</strong> highest peak loads occurr<strong>in</strong>g on<strong>the</strong> power system. These are given <strong>in</strong> <strong>the</strong> tariff documents, and are (commonly)dur<strong>in</strong>g a 16-hour period each day, ei<strong>the</strong>r from 06.00 h to 22.00 h or from 07.00 h to23.00 h accord<strong>in</strong>g to <strong>the</strong> region. Outside <strong>the</strong>se periods, no charge is made for kvarhconsumption.b The necessary value of compensation <strong>in</strong> kvar = kvarh billed/number of hours ofoperation (1) = QcThe rat<strong>in</strong>g of <strong>the</strong> <strong>in</strong>stalled capacitor bank is generally chosen to be slightly largerthan that calculated.Certa<strong>in</strong> manufacturers can provide “slide rules” especially designed to facilitate<strong>the</strong>se k<strong>in</strong>ds of calculation, accord<strong>in</strong>g to particular tariffs. These devices andaccompany<strong>in</strong>g documentation advice on suitable equipment and control schemes,as well as draw<strong>in</strong>g attention to constra<strong>in</strong>ts imposed by harmonic voltages on <strong>the</strong>power system. Such voltages require ei<strong>the</strong>r over dimensioned capacitors (<strong>in</strong> terms ofheat-dissipation, voltage and current rat<strong>in</strong>gs) and/or harmonic-suppression <strong>in</strong>ductorsor filters.© Schneider Electric - all rights reservedFor 2-part tariffs based partly on a declared valueof kVA, Figure L17 allows determ<strong>in</strong>ation of <strong>the</strong>kvar of compensation required to reduce <strong>the</strong>value of kVA declared, and to avoid exceed<strong>in</strong>g itϕ'ϕCos ϕ = 0.7Cos ϕ'= 0.95S = 122 kVAS' = 90 kVAQ = 87.1 kvarQc = 56 kvarQ' = 28.1 kvarS'SP = 85.4 kWFig. L16 : Reduction of declared maximum kVA by powerfactorimprovement(1) In <strong>the</strong> bill<strong>in</strong>g period, dur<strong>in</strong>g <strong>the</strong> hours for whichreactive <strong>energy</strong> is charged for <strong>the</strong> case considered above:15,996 kvarhQc = = 73 kvar220 hQ'QcQ5.4 Method based on reduction of declaredmaximum apparent power (kVA)For consumers whose tariffs are based on a fixed charge per kVA declared, plus acharge per kWh consumed, it is evident that a reduction <strong>in</strong> declared kVA would bebeneficial. The diagram of Figure L16 shows that as <strong>the</strong> power factor improves, <strong>the</strong>kVA value dim<strong>in</strong>ishes for a given value of kW (P). The improvement of <strong>the</strong> powerfactor is aimed at (apart from o<strong>the</strong>r advantages previously mentioned) reduc<strong>in</strong>g <strong>the</strong>declared level and never exceed<strong>in</strong>g it, <strong>the</strong>reby avoid<strong>in</strong>g <strong>the</strong> payment of an excessiveprice per kVA dur<strong>in</strong>g <strong>the</strong> periods of excess, and/or tripp<strong>in</strong>g of <strong>the</strong> <strong>the</strong> ma<strong>in</strong> circuitbreaker.Figure L15 (previous page) <strong>in</strong>dicates <strong>the</strong> value of kvar of compensation perkW of load, required to improve from one value of power factor to ano<strong>the</strong>r.Example:A supermarket has a declared load of 122 kVA at a power factor of 0.7 lagg<strong>in</strong>g, i.e.anactive-power load of 85.4 kW. The particular contract for this consumer was based onstepped values of declared kVA (<strong>in</strong> steps of 6 kVA up to 108 kVA, and 12 kVA stepsabove that value, this is a common feature <strong>in</strong> many types of two-part tariff). In <strong>the</strong>case be<strong>in</strong>g considered, <strong>the</strong> consumer was billed on <strong>the</strong> basis of132 kVA. Referr<strong>in</strong>g to Figure L15, it can be seen that a 60 kvar bank of capacitorswill improve <strong>the</strong> power factor of <strong>the</strong> load from 0.7 to 0.95 (0.691 x 85.4 = 59 kvar<strong>in</strong> <strong>the</strong> figure). The declared value of kVA will <strong>the</strong>n be 85.4 = 90 kVA , i.e. animprovement of 30%.0.95Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


L - Power factor correction andharmonic filter<strong>in</strong>g6 Compensation at <strong>the</strong> term<strong>in</strong>alsof a transformerThe <strong>in</strong>stallation of a capacitor bank can avoid<strong>the</strong> need to change a transformer <strong>in</strong> <strong>the</strong> event ofa load <strong>in</strong>crease6.1 Compensation to <strong>in</strong>crease <strong>the</strong> available activepower outputSteps similar to those taken to reduce <strong>the</strong> declared maximum kVA, i.e. improvementof <strong>the</strong> load power factor, as discussed <strong>in</strong> subclause 5.4, will maximise <strong>the</strong> availabletransformer capacity, i.e. to supply more active power.Cases can arise where <strong>the</strong> replacement of a transformer by a larger unit, to overcomea load growth, may be avoided by this means. Figure L17 shows directly <strong>the</strong> power(kW) capability of fully-loaded transformers at different load power factors, fromwhich <strong>the</strong> <strong>in</strong>crease of active-power output can be obta<strong>in</strong>ed as <strong>the</strong> value of powerfactor <strong>in</strong>creases.tan ϕ cos ϕ Nom<strong>in</strong>al rat<strong>in</strong>g of transformers (<strong>in</strong> kVA)00 160 250 315 400 500 630 800 1000 1250 1600 20000.00 1 100 160 250 315 400 500 630 800 1000 1250 1600 20000.20 0.98 98 157 245 309 392 490 617 784 980 1225 1568 19600.29 0.96 96 154 240 302 384 480 605 768 960 1200 1536 19200.36 0.94 94 150 235 296 376 470 592 752 940 1175 1504 18800.43 0.92 92 147 230 290 368 460 580 736 920 1150 1472 18400.48 0.90 90 144 225 284 360 450 567 720 900 1125 1440 18000.54 0.88 88 141 220 277 352 440 554 704 880 1100 1408 17600.59 0.86 86 138 215 271 344 430 541 688 860 1075 1376 17200.65 0.84 84 134 210 265 336 420 529 672 840 1050 1344 16800.70 0.82 82 131 205 258 328 410 517 656 820 1025 1312 16400.75 0.80 80 128 200 252 320 400 504 640 800 1000 1280 16000.80 0.78 78 125 195 246 312 390 491 624 780 975 1248 15600.86 0.76 76 122 190 239 304 380 479 608 760 950 1216 15200.91 0.74 74 118 185 233 296 370 466 592 740 925 1184 14800.96 0.72 72 115 180 227 288 360 454 576 720 900 1152 14401.02 0.70 70 112 175 220 280 350 441 560 700 875 1120 1400Fig. L17 : Active-power capability of fully-loaded transformers, when supply<strong>in</strong>g loads at different values of power factorExample: (see Fig. L18 )An <strong>in</strong>stallation is supplied from a 630 kVA transformer loaded at 450 kW (P1) with a450mean power factor of 0.8 lagg<strong>in</strong>g. The apparent power S1= = 562kVA0.8The correspond<strong>in</strong>g reactive power2 2Q1= S1 − P1 = 337 kvarThe anticipated load <strong>in</strong>crease P2 = 100 kW at a power factor of 0.7 lagg<strong>in</strong>g.The apparent power 100 S 2 = = 143 kVAThe correspond<strong>in</strong>g reactive 0.7 powerL15QP1S1SS2Q1Q2P2QQ mFig. L18 : Compensation Q allows <strong>the</strong> <strong>in</strong>stallation-loadextension S2 to be added, without <strong>the</strong> need to replace <strong>the</strong>exist<strong>in</strong>g transformer, <strong>the</strong> output of which is limited to SP2 2Q2 = S2 − P2 = 102kvarWhat is <strong>the</strong> m<strong>in</strong>imum value of capacitive kvar to be <strong>in</strong>stalled, <strong>in</strong> order to avoid achange of transformer?Total power now to be supplied:P = P1 + P2 = 550 kWThe maximum reactive power capability of <strong>the</strong> 630 kVA transformer when deliver<strong>in</strong>g550 kW is:2 2Qm = S − P Qm = 630 2 − 5502 = 307 kvarTotal reactive power required by <strong>the</strong> <strong>in</strong>stallation before compensation:Q1 + Q2 = 337 + 102 = 439 kvarSo that <strong>the</strong> m<strong>in</strong>imum size of capacitor bank to <strong>in</strong>stall:Qkvar = 439 - 307 = 132 kvarIt should be noted that this calculation has not taken account of load peaks and <strong>the</strong>irduration.The best possible improvement, i.e. correction which atta<strong>in</strong>s a power factor of1 would permit a power reserve for <strong>the</strong> transformer of 630 - 550 = 80 kW.The capacitor bank would <strong>the</strong>n have to be rated at 439 kvar.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


L - Power factor correction andharmonic filter<strong>in</strong>g6 Compensation at <strong>the</strong> term<strong>in</strong>alsof a transformerL16Where meter<strong>in</strong>g is carried out at <strong>the</strong> MV sideof a transformer, <strong>the</strong> reactive-<strong>energy</strong> losses <strong>in</strong><strong>the</strong> transformer may need to be compensated(depend<strong>in</strong>g on <strong>the</strong> tariff)Perfect transformerPrimaryw<strong>in</strong>d<strong>in</strong>gSecondaryw<strong>in</strong>d<strong>in</strong>gFig. L19 : Transformer reactances per phaseLeakage reactanceMagnetiz<strong>in</strong>greactanceThe reactive power absorbed by a transformercannot be neglected, and can amount to (about)5% of <strong>the</strong> transformer rat<strong>in</strong>g when supply<strong>in</strong>gits full load. Compensation can be provided bya bank of capacitors. In transformers, reactivepower is absorbed by both shunt (magnetiz<strong>in</strong>g)and series (leakage flux) reactances. Completecompensation can be provided by a bank ofshunt-connected LV capacitorsI s<strong>in</strong>'I s<strong>in</strong>'IESourceXLVLoadFig. L20 : Reactive power absorption by series <strong>in</strong>ductanceIVEIXL6.2 Compensation of reactive <strong>energy</strong> absorbed by<strong>the</strong> transformerThe nature of transformer <strong>in</strong>ductive reactancesAll previous references have been to shunt connected devices such as those used<strong>in</strong> normal loads, and power factor-correct<strong>in</strong>g capacitor banks etc. The reason forthis is that shunt connected equipment requires (by far) <strong>the</strong> largest quantities ofreactive <strong>energy</strong> <strong>in</strong> power systems; however, series-connected reactances, such as<strong>the</strong> <strong>in</strong>ductive reactances of power l<strong>in</strong>es and <strong>the</strong> leakage reactance of transformerw<strong>in</strong>d<strong>in</strong>gs, etc., also absorb reactive <strong>energy</strong>.Where meter<strong>in</strong>g is carried out at <strong>the</strong> MV side of a transformer, <strong>the</strong> reactive-<strong>energy</strong>losses <strong>in</strong> <strong>the</strong> transformer may (depend<strong>in</strong>g on <strong>the</strong> tariff) need to be compensated. Asfar as reactive-<strong>energy</strong> losses only are concerned, a transformer may be representedby <strong>the</strong> elementary diagram of Figure L19. All reactance values are referred to<strong>the</strong> secondary side of <strong>the</strong> transformer, where <strong>the</strong> shunt branch represents <strong>the</strong>magnetiz<strong>in</strong>g-current path. The magnetiz<strong>in</strong>g current rema<strong>in</strong>s practically constant (atabout 1.8% of full-load current) from no load to full load, <strong>in</strong> normal circumstances,i.e. with a constant primary voltage, so that a shunt capacitor of fixed value can be<strong>in</strong>stalled at <strong>the</strong> MV or LV side, to compensate for <strong>the</strong> reactive <strong>energy</strong> absorbed.Reactive-power absorption <strong>in</strong> series-connected(leakage flux) reactance XLA simple illustration of this phenomenon is given by <strong>the</strong> vector diagram ofFigure L20.The reactive-current component through <strong>the</strong> load = I s<strong>in</strong> ϕ so that QL = VI s<strong>in</strong> ϕ.The reactive-current component from <strong>the</strong> source = I s<strong>in</strong> ϕ’ so that QE = EI s<strong>in</strong> ϕ’.It can be seen that E > V and s<strong>in</strong> ϕ’ > s<strong>in</strong> ϕ.The difference between EI s<strong>in</strong> ϕ’ and VI s<strong>in</strong> ϕ gives <strong>the</strong> kvar per phase absorbedby XL.It can be shown that this kvar value is equal to I 2 XL (which is analogous to <strong>the</strong> I 2 Ractive power (kW) losses due to <strong>the</strong> series resistance of power l<strong>in</strong>es, etc.).From <strong>the</strong> I 2 XL formula it is very simple to deduce <strong>the</strong> kvar absorbed at any load valuefor a given transformer, as follows:If per-unit values are used (<strong>in</strong>stead of percentage values) direct multiplication of Iand XL can be carried out.Example:A 630 kVA transformer with a short-circuit reactance voltage of 4% is fully loaded.What is its reactive-power (kvar) loss?4% = 0.04 pu Ipu = 1loss = I 2 XL = 1 2 x 0.04 = 0.04 pu kvarwhere 1 pu = 630 kVAThe 3-phase kvar losses are 630 x 0.04 = 25.2 kvar (or, quite simply, 4% of 630 kVA).At half load i.e. I = 0.5 pu <strong>the</strong> losses will be0.5 2 x 0.04 = 0.01 pu = 630 x 0.01 = 6.3 kvar and so on...This example, and <strong>the</strong> vector diagram of Figure L20 show that:b The power factor at <strong>the</strong> primary side of a loaded transformer is different (normallylower) than that at <strong>the</strong> secondary side (due to <strong>the</strong> absorption of vars)b Full-load kvar losses due to leakage reactance are equal to <strong>the</strong> transformerpercentage reactance (4% reactance means a kvar loss equal to 4% of <strong>the</strong> kVA rat<strong>in</strong>gof <strong>the</strong> transformer)b kvar losses due to leakage reactance vary accord<strong>in</strong>g to <strong>the</strong> current(or kVA load<strong>in</strong>g) squared© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


L - Power factor correction andharmonic filter<strong>in</strong>g6 Compensation at <strong>the</strong> term<strong>in</strong>alsof a transformerTo determ<strong>in</strong>e <strong>the</strong> total kvar losses of a transformer <strong>the</strong> constant magnetiz<strong>in</strong>g-currentcircuit losses (approx. 1.8% of <strong>the</strong> transformer kVA rat<strong>in</strong>g) must be added to <strong>the</strong>forego<strong>in</strong>g “series” losses. Figure L21 shows <strong>the</strong> no-load and full-load kvar losses fortypical distribution transformers. In pr<strong>in</strong>ciple, series <strong>in</strong>ductances can be compensatedby fixed series capacitors (as is commonly <strong>the</strong> case for long MV transmission l<strong>in</strong>es).This arrangement is operationally difficult, however, so that, at <strong>the</strong> voltage levelscovered by this guide, shunt compensation is always applied.In <strong>the</strong> case of MV meter<strong>in</strong>g, it is sufficient to raise <strong>the</strong> power factor to a po<strong>in</strong>t where<strong>the</strong> transformer plus load reactive-power consumption is below <strong>the</strong> level at which abill<strong>in</strong>g charge is made. This level depends on <strong>the</strong> tariff, but often corresponds to atan ϕ value of 0.31 (cos ϕ of 0.955).Rated power (kVA) Reactive power (kvar) to be compensatedNo loadFull load100 2.5 6.1160 3.7 9.6250 5.3 14.7315 6.3 18.4400 7.6 22.9500 9.5 28.7630 11.3 35.7800 20 54.51000 23.9 72.41250 27.4 94.51600 31.9 1262000 37.8 176Fig. L21 : Reactive power consumption of distribution transformers with 20 kV primary w<strong>in</strong>d<strong>in</strong>gsAs a matter of <strong>in</strong>terest, <strong>the</strong> kvar losses <strong>in</strong> a transformer can be completelycompensated by adjust<strong>in</strong>g <strong>the</strong> capacitor bank to give <strong>the</strong> load a (slightly) lead<strong>in</strong>gpower factor. In such a case, all of <strong>the</strong> kvar of <strong>the</strong> transformer is be<strong>in</strong>g supplied from<strong>the</strong> capacitor bank, while <strong>the</strong> <strong>in</strong>put to <strong>the</strong> MV side of <strong>the</strong> transformer is at unity powerfactor, as shown <strong>in</strong> Figure L22.L17E (Input voltage)IϕV (Load voltage)IXLLoadcurrentI0 Compensation currentFig. L22 : Overcompensation of load to completely compensate transformer reactive-power lossesIn practical terms, <strong>the</strong>refore, compensation for transformer-absorbed kvar is <strong>in</strong>cluded<strong>in</strong> <strong>the</strong> capacitors primarily <strong>in</strong>tended for powerfactor correction of <strong>the</strong> load, ei<strong>the</strong>r<strong>global</strong>ly, partially, or <strong>in</strong> <strong>the</strong> <strong>in</strong>dividual mode. Unlike most o<strong>the</strong>r kvar-absorb<strong>in</strong>g items,<strong>the</strong> transformer absorption (i.e. <strong>the</strong> part due to <strong>the</strong> leakage reactance) changessignificantly with variations of load level, so that, if <strong>in</strong>dividual compensation is appliedto <strong>the</strong> transformer, <strong>the</strong>n an average level of load<strong>in</strong>g will have to be assumed.Fortunately, this kvar consumption generally forms only a relatively small part of <strong>the</strong>total reactive power of an <strong>in</strong>stallation, and so mismatch<strong>in</strong>g of compensation at timesof load change is not likely to be a problem.Figure L21 <strong>in</strong>dicates typical kvar loss values for <strong>the</strong> magnetiz<strong>in</strong>g circuit (“no-loadkvar” columns), as well as for <strong>the</strong> total losses at full load, for a standard range ofdistribution transformers supplied at 20 kV (which <strong>in</strong>clude <strong>the</strong> losses due to <strong>the</strong>leakage reactance).© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


L - Power factor correction andharmonic filter<strong>in</strong>g7 Power factor correction of<strong>in</strong>duction motorsIndividual motor compensation is recommendedwhere <strong>the</strong> motor power (kVA) is large withrespect to <strong>the</strong> declared power of <strong>the</strong> <strong>in</strong>stallation7.1 Connection of a capacitor bank and protectionsett<strong>in</strong>gsGeneral precautionsBecause of <strong>the</strong> small kW consumption, <strong>the</strong> power factor of a motor is very low at noloador on light load. The reactive current of <strong>the</strong> motor rema<strong>in</strong>s practically constant atall loads, so that a number of unloaded motors constitute a consumption of reactivepower which is generally detrimental to an <strong>in</strong>stallation, for reasons expla<strong>in</strong>ed <strong>in</strong>preced<strong>in</strong>g sections.Two good general rules <strong>the</strong>refore are that unloaded motors should be switched off,and motors should not be oversized (s<strong>in</strong>ce <strong>the</strong>y will <strong>the</strong>n be lightly loaded).ConnectionThe bank of capacitors should be connected directly to <strong>the</strong> term<strong>in</strong>als of <strong>the</strong> motor.Special motorsIt is recommended that special motors (stepp<strong>in</strong>g, plugg<strong>in</strong>g, <strong>in</strong>ch<strong>in</strong>g, revers<strong>in</strong>g motors,etc.) should not be compensated.Effect on protection sett<strong>in</strong>gsAfter apply<strong>in</strong>g compensation to a motor, <strong>the</strong> current to <strong>the</strong> motor-capacitorcomb<strong>in</strong>ation will be lower than before, assum<strong>in</strong>g <strong>the</strong> same motor-driven loadconditions. This is because a significant part of <strong>the</strong> reactive component of <strong>the</strong> motorcurrent is be<strong>in</strong>g supplied from <strong>the</strong> capacitor, as shown <strong>in</strong> Figure L23.Where <strong>the</strong> overcurrent protection devices of <strong>the</strong> motor are located upstream of <strong>the</strong>motor capacitor connection (and this will always be <strong>the</strong> case for term<strong>in</strong>al-connectedcapacitors), <strong>the</strong> overcurrent relay sett<strong>in</strong>gs must be reduced <strong>in</strong> <strong>the</strong> ratio:cos ϕ before compensation / cos ϕ after compensationFor motors compensated <strong>in</strong> accordance with <strong>the</strong> kvar values <strong>in</strong>dicated <strong>in</strong> Figure L24(maximum values recommended for avoidance of self-excitation of standard<strong>in</strong>duction motors, as discussed <strong>in</strong> sub-clause 7.2), <strong>the</strong> above-mentioned ratiowill have a value similar to that <strong>in</strong>dicated for <strong>the</strong> correspond<strong>in</strong>g motor speed <strong>in</strong>Figure L25.L18BeforecompensationTransformerActivepowerAftercompensationPowermadeavailable3-phase motors 230/400 VNom<strong>in</strong>al power kvar to be <strong>in</strong>stalledSpeed of rotation (rpm)kW hp 3000 1500 1000 75022 30 6 8 9 1030 40 7.5 10 11 12.537 50 9 11 12.5 1645 60 11 13 14 1755 75 13 17 18 2175 100 17 22 25 2890 125 20 25 27 30110 150 24 29 33 37132 180 31 36 38 43160 218 35 41 44 52200 274 43 47 53 61250 340 52 57 63 71280 380 57 63 70 79355 482 67 76 86 98400 544 78 82 97 106450 610 87 93 107 117CFigure L24 : Maximum kvar of power factor correction applicable to motor term<strong>in</strong>als without riskof self excitation© Schneider Electric - all rights reservedMMotorMReactivepowersuppliedby capacitorFig. L23 : Before compensation, <strong>the</strong> transformer supplies all<strong>the</strong> reactive power; after compensation, <strong>the</strong> capacitor suppliesa large part of <strong>the</strong> reactive powerSpeed <strong>in</strong> rpmReduction factor750 0.881000 0.901500 0.913000 0.93Fig. L25 : Reduction factor for overcurrent protection after compensationSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


L - Power factor correction andharmonic filter<strong>in</strong>g7 Power factor correction of<strong>in</strong>duction motorsWhen a capacitor bank is connected to <strong>the</strong>term<strong>in</strong>als of an <strong>in</strong>duction motor, it is importantto check that <strong>the</strong> size of <strong>the</strong> bank is less thanthat at which self-excitation can occurFig. L26 : Connection of <strong>the</strong> capacitor bank to <strong>the</strong> motor7.2 How self-excitation of an <strong>in</strong>duction motor can beavoidedWhen a motor is driv<strong>in</strong>g a high-<strong>in</strong>ertia load, <strong>the</strong> motor will cont<strong>in</strong>ue to rotate (unlessdeliberately braked) after <strong>the</strong> motor supply has been switched off.The “magnetic <strong>in</strong>ertia” of <strong>the</strong> rotor circuit means that an emf will be generated <strong>in</strong> <strong>the</strong>stator w<strong>in</strong>d<strong>in</strong>gs for a short period after switch<strong>in</strong>g off, and would normally reduce tozero after 1 or 2 cycles, <strong>in</strong> <strong>the</strong> case of an uncompensated motor.Compensation capacitors however, constitute a 3-phase “wattless” load for thisdecay<strong>in</strong>g emf, which causes capacitive currents to flow through <strong>the</strong> stator w<strong>in</strong>d<strong>in</strong>gs.These stator currents will produce a rotat<strong>in</strong>g magnetic field <strong>in</strong> <strong>the</strong> rotor which actsexactly along <strong>the</strong> same axis and <strong>in</strong> <strong>the</strong> same direction as that of <strong>the</strong> decay<strong>in</strong>gmagnetic field.The rotor flux consequently <strong>in</strong>creases; <strong>the</strong> stator currents <strong>in</strong>crease; and <strong>the</strong> voltageat <strong>the</strong> term<strong>in</strong>als of <strong>the</strong> motor <strong>in</strong>creases; sometimes to dangerously-high levels. Thisphenomenon is known as self-excitation and is one reason why AC generatorsare not normally operated at lead<strong>in</strong>g power factors, i.e. <strong>the</strong>re is a tendency tospontaneously (and uncontrollably) self excite.Notes:1. The characteristics of a motor be<strong>in</strong>g driven by <strong>the</strong> <strong>in</strong>ertia of <strong>the</strong> load are notrigorously identical to its no-load characteristics. This assumption, however, issufficiently accurate for practical purposes.2. With <strong>the</strong> motor act<strong>in</strong>g as a generator, <strong>the</strong> currents circulat<strong>in</strong>g are largely reactive,so that <strong>the</strong> brak<strong>in</strong>g (retard<strong>in</strong>g) effect on <strong>the</strong> motor is ma<strong>in</strong>ly due only to <strong>the</strong> loadrepresented by <strong>the</strong> cool<strong>in</strong>g fan <strong>in</strong> <strong>the</strong> motor.3. The (almost 90° lagg<strong>in</strong>g) current taken from <strong>the</strong> supply <strong>in</strong> normal circumstances by<strong>the</strong> unloaded motor, and <strong>the</strong> (almost 90° lead<strong>in</strong>g) current supplied to <strong>the</strong> capacitorsby <strong>the</strong> motor act<strong>in</strong>g as a generator, both have <strong>the</strong> same phase relationshipto <strong>the</strong> term<strong>in</strong>alvoltage. It is for this reason that <strong>the</strong> two characteristics may besuperimposed on <strong>the</strong> graph.In order to avoid self-excitation as described above, <strong>the</strong> kvar rat<strong>in</strong>g of <strong>the</strong> capacitorbank must be limited to <strong>the</strong> follow<strong>in</strong>g maximum value:Qc y 0.9 x Io x Un x 3 where Io = <strong>the</strong> no-load current of <strong>the</strong> motor and Un =phase-to-phase nom<strong>in</strong>al voltage of <strong>the</strong> motor <strong>in</strong> kV. Figure L24 previous page givesappropriate values of Qc correspond<strong>in</strong>g to this criterion.ExampleA 75 kW, 3,000 rpm, 400 V, 3-phase motor may have a capacitor bank no largerthan 17 kvar accord<strong>in</strong>g to Figure L24. The table values are, <strong>in</strong> general, too small toadequately compensate <strong>the</strong> motor to <strong>the</strong> level of cos ϕ normally required. Additionalcompensation can, however, be applied to <strong>the</strong> system, for example an overall bank,<strong>in</strong>stalled for <strong>global</strong> compensation of a number of smaller appliances.High-<strong>in</strong>ertia motors and/or loadsIn any <strong>in</strong>stallation where high-<strong>in</strong>ertia motor driven loads exist, <strong>the</strong> circuit-breakers orcontactors controll<strong>in</strong>g such motors should, <strong>in</strong> <strong>the</strong> event of total loss of power supply,be rapidly tripped.If this precaution is not taken, <strong>the</strong>n self excitation to very high voltages is likely tooccur, s<strong>in</strong>ce all o<strong>the</strong>r banks of capacitors <strong>in</strong> <strong>the</strong> <strong>in</strong>stallation will effectively be <strong>in</strong>parallel with those of <strong>the</strong> high-<strong>in</strong>ertia motors.The protection scheme for <strong>the</strong>se motors should <strong>the</strong>refore <strong>in</strong>clude an overvoltagetripp<strong>in</strong>g relay, toge<strong>the</strong>r with reverse-power check<strong>in</strong>g contacts (<strong>the</strong> motor will feedpower to <strong>the</strong> rest of <strong>the</strong> <strong>in</strong>stallation, until <strong>the</strong> stored <strong>in</strong>ertial <strong>energy</strong> is dissipated).If <strong>the</strong> capacitor bank associated with a high <strong>in</strong>ertia motor is larger than thatrecommended <strong>in</strong> Figure L24, <strong>the</strong>n it should be separately controlled by a circuitbreakeror contactor, which trips simultaneously with <strong>the</strong> ma<strong>in</strong> motor-controll<strong>in</strong>gcircuit-breaker or contactor, as shown <strong>in</strong> Figure L26.Clos<strong>in</strong>g of <strong>the</strong> ma<strong>in</strong> contactor is commonly subject to <strong>the</strong> capacitor contactor be<strong>in</strong>gpreviously closed.L19© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


L - Power factor correction andharmonic filter<strong>in</strong>g8 Example of an <strong>in</strong>stallationbefore and after power-factorcorrection<strong>Installation</strong> before P.F. correction kVA=kW+kvarkWkVA(1)kvarb kvarh are billed heavily above <strong>the</strong> declaredlevelb Apparent power kVA is significantly greaterthan <strong>the</strong> kW demandb The correspond<strong>in</strong>g excess current causeslosses (kWh) which are billedb The <strong>in</strong>stallation must be over-dimensioned<strong>Installation</strong> after P.F. correction kVA=kW+kvarkWkVAb The consumption of kvarh isv Elim<strong>in</strong>ated, orv Reduced, accord<strong>in</strong>g to <strong>the</strong> cos ϕ requiredb The tariff penaltiesv For reactive <strong>energy</strong> where applicablev For <strong>the</strong> entire bill <strong>in</strong> some cases areelim<strong>in</strong>atedb The fixed charge based on kVA demand isadjusted to be close to <strong>the</strong> active power kWdemand630 kVA400 VCharacteristics of <strong>the</strong> <strong>in</strong>stallation500 kW cos ϕ = 0.75b Transformer is overloadedb The power demand isP 500S = = = 665 kVAcos ϕ 0.75S = apparent power630 kVA400 VCharacteristics of <strong>the</strong> <strong>in</strong>stallation500 kW cos ϕ = 0.928b Transformer no longer overloadedb The power-demand is 539 kVAb There is 14% spare-transformer capacityavailableb The current flow<strong>in</strong>g <strong>in</strong>to <strong>the</strong> <strong>in</strong>stallationdownstream of <strong>the</strong> circuit breaker isI = P = 960 A3U cos ϕb The current flow<strong>in</strong>g <strong>in</strong>to <strong>the</strong> <strong>in</strong>stallationthrough <strong>the</strong> circuit breaker is 778 AL20b Losses <strong>in</strong> cables are calculated as afunction of <strong>the</strong> current squared: 960 2P=I 2 Rb The losses <strong>in</strong> <strong>the</strong> cables arereduced to7782 = 65% of <strong>the</strong> former value,960 2<strong>the</strong>reby economiz<strong>in</strong>g <strong>in</strong> kWh consumedcos ϕ = 0.75b Reactive <strong>energy</strong> is supplied through <strong>the</strong>transformer and via <strong>the</strong> <strong>in</strong>stallation wir<strong>in</strong>gb The transformer, circuit breaker, and cablesmust be over-dimensionedcos ϕ = 0.928b Reactive <strong>energy</strong> is supplied by <strong>the</strong> capacitorbank250 kvarCapacitor bank rat<strong>in</strong>g is 250 kvar<strong>in</strong> 5 automatically-controlled steps of 50 kvar.cos ϕ = 0.75workshopcos ϕ = 0.75workshop© Schneider Electric - all rights reservedFig. K27 : Technical-economic comparison of an <strong>in</strong>stallation before and after power-factor correction(1) The arrows denote vector quantities.(2) Particularly <strong>in</strong> <strong>the</strong> pre-corrected case.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>Note: In fact, <strong>the</strong> cos ϕ of <strong>the</strong> workshop rema<strong>in</strong>s at 0.75 but cos ϕ for all <strong>the</strong><strong>in</strong>stallation upstream of <strong>the</strong> capacitor bank to <strong>the</strong> transformer LV term<strong>in</strong>alsis 0.928.As mentioned <strong>in</strong> Sub-clause 6.2 <strong>the</strong> cos ϕ at <strong>the</strong> HV side of <strong>the</strong> transformerwill be slightly lower (2) , due to <strong>the</strong> reactive power losses <strong>in</strong> <strong>the</strong> transformer.


L - Power factor correction andharmonic filter<strong>in</strong>g9 The effects of harmonics9.1 Problems aris<strong>in</strong>g from power-system harmonicsEquipment which uses power electronics components (variable-speed motorcontrollers, thyristor-controlled rectifiers, etc.) have considerably <strong>in</strong>creased <strong>the</strong>problems caused by harmonics <strong>in</strong> power supply systems.Harmonics have existed from <strong>the</strong> earliest days of <strong>the</strong> <strong>in</strong>dustry and were (and stillare) caused by <strong>the</strong> non-l<strong>in</strong>ear magnetiz<strong>in</strong>g impedances of transformers, reactors,fluorescent lamp ballasts, etc.Harmonics on symmetrical 3-phase power systems are generally odd-numbered: 3 rd ,5 th , 7 th , 9 th ..., and <strong>the</strong> magnitude decreases as <strong>the</strong> order of <strong>the</strong> harmonic <strong>in</strong>creases.A number of features may be used <strong>in</strong> various ways to reduce specific harmonics tonegligible values - total elim<strong>in</strong>ation is not possible. In this section, practical means ofreduc<strong>in</strong>g <strong>the</strong> <strong>in</strong>fluence of harmonics are recommended, with particular reference tocapacitor banks.Capacitors are especially sensitive to harmonic components of <strong>the</strong> supply voltagedue to <strong>the</strong> fact that capacitive reactance decreases as <strong>the</strong> frequency <strong>in</strong>creases.In practice, this means that a relatively small percentage of harmonic voltage cancause a significant current to flow <strong>in</strong> <strong>the</strong> capacitor circuit.The presence of harmonic components causes <strong>the</strong> (normally s<strong>in</strong>usoidal) wave formof voltage or current to be distorted; <strong>the</strong> greater <strong>the</strong> harmonic content, <strong>the</strong> greater <strong>the</strong>degree of distortion.If <strong>the</strong> natural frequency of <strong>the</strong> capacitor bank/ power-system reactance comb<strong>in</strong>ationis close to a particular harmonic, <strong>the</strong>n partial resonance will occur, with amplifiedvalues of voltage and current at <strong>the</strong> harmonic frequency concerned. In this particularcase, <strong>the</strong> elevated current will cause overheat<strong>in</strong>g of <strong>the</strong> capacitor, with degradationof <strong>the</strong> dielectric, which may result <strong>in</strong> its eventual failure.Several solutions to <strong>the</strong>se problems are available. This can be accomplished byb Shunt connected harmonic filter and/or harmonic-suppression reactors orb Active power filters orb Hybrid filtersHarmonics are taken <strong>in</strong>to account ma<strong>in</strong>ly byoversiz<strong>in</strong>g capacitors and <strong>in</strong>clud<strong>in</strong>g harmonicsuppressionreactors <strong>in</strong> series with <strong>the</strong>mHarmonicgeneratorIharFilterFig. L28 : Operation pr<strong>in</strong>ciple of passive filter9.2 Possible solutionsPassive filter (see Fig. L28)Counter<strong>in</strong>g <strong>the</strong> effects of harmonicsThe presence of harmonics <strong>in</strong> <strong>the</strong> supply voltage results <strong>in</strong> abnormally high currentlevels through <strong>the</strong> capacitors. An allowance is made for this by design<strong>in</strong>g for an r.m.s.value of current equal to 1.3 times <strong>the</strong> nom<strong>in</strong>al rated current. All series elements,such as connections, fuses, switches, etc., associated with <strong>the</strong> capacitors aresimilarly oversized, between 1.3 to 1.5 times nom<strong>in</strong>al rat<strong>in</strong>g.Harmonic distortion of <strong>the</strong> voltage wave frequently produces a “peaky” wave form,<strong>in</strong> which <strong>the</strong> peak value of <strong>the</strong> normal s<strong>in</strong>usoidal wave is <strong>in</strong>creased. This possibility,toge<strong>the</strong>r with o<strong>the</strong>r overvoltage conditions likely to occur when counter<strong>in</strong>g <strong>the</strong> effectsof resonance, as described below, are taken <strong>in</strong>to account by <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> <strong>in</strong>sulationlevel above that of “standard” capacitors. In many <strong>in</strong>stances, <strong>the</strong>se two countermeasures are all that is necessary to achieve satisfactory operation.Counter<strong>in</strong>g <strong>the</strong> effects of resonanceCapacitors are l<strong>in</strong>ear reactive devices, and consequently do not generate harmonics.The <strong>in</strong>stallation of capacitors <strong>in</strong> a power system (<strong>in</strong> which <strong>the</strong> impedances arepredom<strong>in</strong>antly <strong>in</strong>ductive) can, however, result <strong>in</strong> total or partial resonance occurr<strong>in</strong>gat one of <strong>the</strong> harmonic frequencies.The harmonic order ho of <strong>the</strong> natural resonant frequency between <strong>the</strong> system<strong>in</strong>ductance and <strong>the</strong> capacitor bank is given byh o =SscQwhereSsc = <strong>the</strong> level of system short-circuit kVA at <strong>the</strong> po<strong>in</strong>t of connection of <strong>the</strong> capacitorQ = capacitor bank rat<strong>in</strong>g <strong>in</strong> kvar; and ho = <strong>the</strong> harmonic order of <strong>the</strong> naturalfrequency f o i.e. fo for a 50 Hz system, or fo for a 60 Hz system.5060L21© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


L - Power factor correction andharmonic filter<strong>in</strong>g9 The effects of harmonicsFor example: h o =SscQmay give a value for h o of 2.93 which shows that <strong>the</strong>IharHarmonicgeneratorActivefilterIsIactL<strong>in</strong>earloadnatural frequency of <strong>the</strong> capacitor/system-<strong>in</strong>ductance comb<strong>in</strong>ation is close to <strong>the</strong> 3 rdharmonic frequency of <strong>the</strong> system.fFrom ho= oit can be seen that f o = 50 h o = 50 x 2.93 = 146.5 Hz50The closer a natural frequency approaches one of <strong>the</strong> harmonics present on <strong>the</strong>system, <strong>the</strong> greater will be <strong>the</strong> (undesirable) effect. In <strong>the</strong> above example, strongresonant conditions with <strong>the</strong> 3 rd harmonic component of a distorted wave wouldcerta<strong>in</strong>ly occur.In such cases, steps are taken to change <strong>the</strong> natural frequency to a value which willnot resonate with any of <strong>the</strong> harmonics known to be present. This is achieved by <strong>the</strong>addition of a harmonic-suppression <strong>in</strong>ductor connected <strong>in</strong> series with <strong>the</strong> capacitorbank.On 50 Hz systems, <strong>the</strong>se reactors are often adjusted to br<strong>in</strong>g <strong>the</strong> resonant frequencyof <strong>the</strong> comb<strong>in</strong>ation, i.e. <strong>the</strong> capacitor bank + reactors to 190 Hz. The reactors areadjusted to 228 Hz for a 60 Hz system. These frequencies correspond to a valuefor h o of 3.8 for a 50 Hz system, i.e. approximately mid-way between <strong>the</strong> 3 rd and 5 thharmonics.In this arrangement, <strong>the</strong> presence of <strong>the</strong> reactor <strong>in</strong>creases <strong>the</strong> fundamentalfrequency (50 Hz or 60 Hz) current by a small amount (7-8%) and <strong>the</strong>refore <strong>the</strong>voltage across <strong>the</strong> capacitor <strong>in</strong> <strong>the</strong> same proportion.This feature is taken <strong>in</strong>to account, for example, by us<strong>in</strong>g capacitors which aredesigned for 440 V operation on 400 V systems.L22Fig. L29 : Operation pr<strong>in</strong>ciple of active filterIharActivefilterIactIsActive filter (see Fig. L29)Active filters are based on power electronic technology. They are generally <strong>in</strong>stalled<strong>in</strong> parallel with <strong>the</strong> non l<strong>in</strong>ear load.Active filters analyse <strong>the</strong> harmonics drawn by <strong>the</strong> load and <strong>the</strong>n <strong>in</strong>ject <strong>the</strong> sameharmonic current to <strong>the</strong> load with <strong>the</strong> appropriate phase. As a result, <strong>the</strong> harmoniccurrents are totally neutralised at <strong>the</strong> po<strong>in</strong>t considered. This means <strong>the</strong>y no longerflow upstream and are no longer supplied by <strong>the</strong> source.A ma<strong>in</strong> advantage of active conditioners is that <strong>the</strong>y cont<strong>in</strong>ue to guarantee efficientharmonic compensation even when changes are made to <strong>the</strong> <strong>in</strong>stallation. They arealso exceptionally easy to use as <strong>the</strong>y feature:b Auto-configuration to harmonic loads whatever <strong>the</strong>ir order of magnitudeb Elim<strong>in</strong>ation of overload risksb Compatibility with electrical generator setsb Connection to any po<strong>in</strong>t of <strong>the</strong> electrical networkb Several conditioners can be used <strong>in</strong> <strong>the</strong> same <strong>in</strong>stallation to <strong>in</strong>crease depollutionefficiency (for example when a new mach<strong>in</strong>e is <strong>in</strong>stalled)Active filters may provide also power factor correction.HarmonicgeneratorHybride filterFig. L30 : Operation pr<strong>in</strong>ciple of hybrid filterL<strong>in</strong>earloadHybrid filter (see Fig. L30)This type of filter comb<strong>in</strong>es advantages of passive and active filter. One frequencycan be filtered by passive filter and all <strong>the</strong> o<strong>the</strong>r frequencies are filtered by activefilter.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


L - Power factor correction andharmonic filter<strong>in</strong>g9 The effects of harmonics9.3 Choos<strong>in</strong>g <strong>the</strong> optimum solutionFigure L31 below shows <strong>the</strong> criteria that can be taken <strong>in</strong>to account to select <strong>the</strong>most suitable technology depend<strong>in</strong>g on <strong>the</strong> application.Passive filter Active filter Hybrid filterApplications Industrial Tertiary Industrial… with total power of non greater than lower than greater thanl<strong>in</strong>ear loads (variable speed 200 kVA 200 kVA 200 kVAdrive, UPS, rectifier…)Power factor correctionNoNecessity of reduc<strong>in</strong>g <strong>the</strong>harmonic distorsion <strong>in</strong>voltage for sensitive loadsNecessity of reduc<strong>in</strong>g<strong>the</strong> harmonic distorsion<strong>in</strong> current to avoid cableoverloadNecessity of be<strong>in</strong>g <strong>in</strong> Noaccordance with strictlimits of harmonicrejectedFig. L31 : Selection of <strong>the</strong> most suitable technology depend<strong>in</strong>g on <strong>the</strong> applicationFor passive filter, a choice is made from <strong>the</strong> follow<strong>in</strong>g parameters:b Gh = <strong>the</strong> sum of <strong>the</strong> kVA rat<strong>in</strong>gs of all harmonic-generat<strong>in</strong>g devices (staticconverters, <strong>in</strong>verters, speed controllers, etc.) connected to <strong>the</strong> busbars from which<strong>the</strong> capacitor bank is supplied. If <strong>the</strong> rat<strong>in</strong>gs of some of <strong>the</strong>se devices are quoted <strong>in</strong>kW only, assume an average power factor of 0.7 to obta<strong>in</strong> <strong>the</strong> kVA rat<strong>in</strong>gsb Ssc = <strong>the</strong> 3-phase short-circuit level <strong>in</strong> kVA at <strong>the</strong> term<strong>in</strong>als of <strong>the</strong> capacitor bankb Sn = <strong>the</strong> sum of <strong>the</strong> kVA rat<strong>in</strong>gs of all transformers supply<strong>in</strong>g (i.e. directlyconnected to) <strong>the</strong> system level of which <strong>the</strong> busbars form a partIf a number of transformers are operat<strong>in</strong>g <strong>in</strong> parallel, <strong>the</strong> removal from service of oneor more, will significantly change <strong>the</strong> values of Ssc and Sn. From <strong>the</strong>se parameters,a choice of capacitor specification which will ensure an acceptable level of operationwith <strong>the</strong> system harmonic voltages and currents, can be made, by reference toFigure L32.L23b General rule valid for any size of transformerSscGh Ssc120Gh120i SscGh > Ssc7070Standard capacitors Capacitor voltage rat<strong>in</strong>g Capacitor voltage rat<strong>in</strong>g<strong>in</strong>creased by 10% <strong>in</strong>creased by 10%(except 230 V units) + harmonic-suppression reactorb Simplified rule if transformer(s) rat<strong>in</strong>g Sn y 2 MVAGh i 0.15 Sn 0.15 Sn < Gh i 0.25 Sn 0.25 Sn < Gh i 0.60 Sn Gh > 0.60 SnStandard capacitors Capacitor voltage rat<strong>in</strong>g Capacitor voltage rat<strong>in</strong>g Filters<strong>in</strong>creased by 10% <strong>in</strong>creased by 10%(except 230 V units) + harmonic suppressionreactorFig. L32 : Choice of solutions for limit<strong>in</strong>g harmonics associated with a LV capacitor bank suppliedvia transformer(s)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


L - Power factor correction andharmonic filter<strong>in</strong>g10 Implementation of capacitorbanks10.1 Capacitor elementsTechnologyThe capacitors are dry-type units (i.e. are not impregnated by liquid dielectric)compris<strong>in</strong>g metallized polypropylene self-heal<strong>in</strong>g film <strong>in</strong> <strong>the</strong> form of a two-film roll.They are protected by a high-quality system (overpressure disconnector used witha high break<strong>in</strong>g capacity fuse) which switches off <strong>the</strong> capacitor if an <strong>in</strong>ternal faultoccurs.The protection scheme operates as follows:b A short-circuit through <strong>the</strong> dielectric will blow <strong>the</strong> fuseb Current levels greater than normal, but <strong>in</strong>sufficient to blow <strong>the</strong> fuse sometimesoccur, e.g. due to a microscopic flow <strong>in</strong> <strong>the</strong> dielectric film. Such “faults” often re-sealdue to local heat<strong>in</strong>g caused by <strong>the</strong> leakage current, i.e. <strong>the</strong> units are said to be “selfheal<strong>in</strong>g”b If <strong>the</strong> leakage current persists, <strong>the</strong> defect may develop <strong>in</strong>to a short-circuit, and <strong>the</strong>fuse will blowb Gas produced by vaporiz<strong>in</strong>g of <strong>the</strong> metallisation at <strong>the</strong> faulty location will graduallybuild up a pressure with<strong>in</strong> <strong>the</strong> plastic conta<strong>in</strong>er, and will eventually operate apressure-sensitive device to short-circuit <strong>the</strong> unit, <strong>the</strong>reby caus<strong>in</strong>g <strong>the</strong> fuse to blowCapacitors are made of <strong>in</strong>sulat<strong>in</strong>g material provid<strong>in</strong>g <strong>the</strong>m with double <strong>in</strong>sulation andavoid<strong>in</strong>g <strong>the</strong> need for a ground connection (see Fig. L33).a)HRC fuseDischargeresistorMetallicdiscOverpressure disconnectdeviceL24© Schneider Electric - all rights reserved(1) Merl<strong>in</strong>-Ger<strong>in</strong> designationb)<strong>Electrical</strong> characteristicsStandardFig. L33 : Capacitor element, (a) cross-section, (b) electrical characteristicsSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>IEC 60439-1, NFC 54-104, VDE 0560 CSAStandards, UL testsOperat<strong>in</strong>g range Rated voltage 400 VRated frequency50 HzCapacitance tolerance - 5% to + 10%Temperature range Maximum temperature 55 °C(up to 65 kvar) Average temperature over 45 °C24 hAverage annual 35 °CtemperatureM<strong>in</strong>imum temperature - 25 °CInsulation level50 Hz 1 m<strong>in</strong> withstand voltage : 6 kV1.2/50 μs impulse withstand voltage : 25 kVPermissible current overload Classic range (1) Comfort range (1)30% 50%Permissible voltage overload 10% 20%


L - Power factor correction andharmonic filter<strong>in</strong>g10 Implementation of capacitorbanks10.2 Choice of protection, control devices andconnect<strong>in</strong>g cablesThe choice of upstream cables and protection and control devices depends on <strong>the</strong>current load<strong>in</strong>g.For capacitors, <strong>the</strong> current is a function of:b The applied voltage and its harmonicsb The capacitance valueThe nom<strong>in</strong>al current In of a 3-phase capacitor bank is equal to:QIn =Un 3with:v Q: kvar rat<strong>in</strong>gv Un: Phase-to-phase voltage (kV)The permitted range of applied voltage at fundamental frequency, plus harmoniccomponents, toge<strong>the</strong>r with manufactur<strong>in</strong>g tolerances of actual capacitance (for adeclared nom<strong>in</strong>al value) can result <strong>in</strong> a 50% <strong>in</strong>crease above <strong>the</strong> calculated value ofcurrent. Approximately 30% of this <strong>in</strong>crease is due to <strong>the</strong> voltage <strong>in</strong>creases, while afur<strong>the</strong>r 15% is due to <strong>the</strong> range of manufactur<strong>in</strong>g tolerances, so that1.3 x 1.15 = 1.5All components carry<strong>in</strong>g <strong>the</strong> capacitor current <strong>the</strong>refore, must be adequate to coverthis “worst-case” condition, <strong>in</strong> an ambient temperature of 50 °C maximum. In <strong>the</strong>case where temperatures higher than 50 °C occur <strong>in</strong> enclosures, etc. derat<strong>in</strong>g of <strong>the</strong>components will be necessary.ProtectionThe size of <strong>the</strong> circuit-breaker can be chosen <strong>in</strong> order to allow <strong>the</strong> sett<strong>in</strong>g of longtime delay at:b 1.36 x In for Classic range (1)b 1.50 x In for Comfort range (1)b 1.12 x In for Harmony range (1) (tuned at 2.7 f) (2)b 1.19 x In for Harmony range (1) (tuned at 3.8 f)b 1.31 x In for Harmony range (1) (tuned at 4.3 f)Short time delay sett<strong>in</strong>g (short-circuit protection) must be <strong>in</strong>sensitive to <strong>in</strong>rushcurrent. The sett<strong>in</strong>g will be 10 x In for Classic, Comfort and Harmony range (1) .Example 150 kvar – 400V – 50 Hz – Classic range50,000In = = 72 A( 400 x 1.732 )Long time delay sett<strong>in</strong>g: 1.36 x 72 = 98 AShort time delay sett<strong>in</strong>g: 10 x In = 720 AExample 250 kvar – 400V – 50 Hz – Harmony range (tuned at 4.3 f)In = 72 ALong time delay sett<strong>in</strong>g: 1.31 x 72 = 94 AShort time delay sett<strong>in</strong>g: 10 x In = 720 AL25Upstream cablesFigure L34 next page gives <strong>the</strong> m<strong>in</strong>imum cross section area of <strong>the</strong> upstream cablefor Rectiphase capacitors.(1) Merl<strong>in</strong>-Ger<strong>in</strong> designation(2) Harmony capacitor banks are equipped with a harmonicsuppression reactor.Cables for controlThe m<strong>in</strong>imum cross section area of <strong>the</strong>se cables will be 1.5 mm 2 for 230 V.For <strong>the</strong> secondary side of <strong>the</strong> transformer, <strong>the</strong> recommended cross sectionarea is u 2.5 mm 2 .Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>© Schneider Electric - all rights reserved


L - Power factor correction andharmonic filter<strong>in</strong>g10 Implementation of capacitorbanksBank power Copper Alum<strong>in</strong>ium(kvar) cross- section cross- section230 V 400 V (mm 2 ) (mm 2 )5 10 2.5 1610 20 4 1615 30 6 1620 40 10 1625 50 16 2530 60 25 3540 80 35 5050 100 50 7060 120 70 9570 140 95 12090-100 180 120 185200 150 240120 240 185 2 x 95150 250 240 2 x 120300 2 x 95 2 x 150180-210 360 2 x 120 2 x 185245 420 2 x 150 2 x 240280 480 2 x 185 2 x 300315 540 2 x 240 3 x 185350 600 2 x 300 3 x 240385 660 3 x 150 3 x 240420 720 3 x 185 3 x 300Fig L34 : Cross-section of cables connect<strong>in</strong>g medium and high power capacitor banks (1)L26© Schneider Electric - all rights reserved(1) M<strong>in</strong>imum cross-section not allow<strong>in</strong>g for any correctionfactors (<strong>in</strong>stallation mode, temperature, etc.). The calculationswere made for s<strong>in</strong>gle-pole cables laid <strong>in</strong> open air at 30 °C.Voltage transientsHigh-frequency voltage and current transients occur when switch<strong>in</strong>g a capacitorbank <strong>in</strong>to service. The maximum voltage peak does not exceed (<strong>in</strong> <strong>the</strong> absence ofharmonics) twice <strong>the</strong> peak value of <strong>the</strong> rated voltage when switch<strong>in</strong>g unchargedcapacitors.In <strong>the</strong> case of a capacitor be<strong>in</strong>g already charged at <strong>the</strong> <strong>in</strong>stant of switch closure,however, <strong>the</strong> voltage transient can reach a maximum value approach<strong>in</strong>g 3 times <strong>the</strong>normal rated peak value.This maximum condition occurs only if:b The exist<strong>in</strong>g voltage at <strong>the</strong> capacitor is equal to <strong>the</strong> peak value of rated voltage,andb The switch contacts close at <strong>the</strong> <strong>in</strong>stant of peak supply voltage, andb The polarity of <strong>the</strong> power-supply voltage is opposite to that of <strong>the</strong> chargedcapacitorIn such a situation, <strong>the</strong> current transient will be at its maximum possible value, viz:Twice that of its maximum when clos<strong>in</strong>g on to an <strong>in</strong>itially uncharged capacitor, aspreviously noted.For any o<strong>the</strong>r values of voltage and polarity on <strong>the</strong> pre-charged capacitor, <strong>the</strong>transient peaks of voltage and current will be less than those mentioned above.In <strong>the</strong> particular case of peak rated voltage on <strong>the</strong> capacitor hav<strong>in</strong>g <strong>the</strong> same polarityas that of <strong>the</strong> supply voltage, and clos<strong>in</strong>g <strong>the</strong> switch at <strong>the</strong> <strong>in</strong>stant of supply-voltagepeak, <strong>the</strong>re would be no voltage or current transients.Where automatic switch<strong>in</strong>g of stepped banks of capacitors is considered, <strong>the</strong>refore,care must be taken to ensure that a section of capacitors about to be energized isfully discharged.The discharge delay time may be shortened, if necessary, by us<strong>in</strong>g dischargeresistors of a lower resistance value.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Chapter MHarmonic management12345678ContentsThe problem: why is it necessary to detectand elim<strong>in</strong>ate harmonics?StandardsGeneralMa<strong>in</strong> effects of harmonics <strong>in</strong> <strong>in</strong>stallations4.1 Resonance M64.2 Increased losses M64.3 Overloads on equipment M74.4 Disturbances affect<strong>in</strong>g sensitive loads M94.5 Economic impact M10Essential <strong>in</strong>dicators of harmonic distortionM11and measurement pr<strong>in</strong>ciples5.1 Power factor M115.2 Crest factor M115.3 Power values and harmonics M115.4 Harmonic spectrum and harmonic distortion M125.5 Total harmonic distortion (THD) M125.6 Usefulness of <strong>the</strong> various <strong>in</strong>dicators M13Measur<strong>in</strong>g <strong>the</strong> <strong>in</strong>dicatorsM146.1 Devices used to measure <strong>the</strong> <strong>in</strong>dicators M146.2 Procedures for harmonic analysis of distribution networks M146.3 Keep<strong>in</strong>g a close eye on harmonics M15Detection devicesM16Solutions to attenuate harmonicsM2M3M4M6M178.1 Basic solutions M178.2 Harmonic filter<strong>in</strong>g M188.3 The method M208.4 Specific products M20M© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


M - Harmonic management1 The problem: why is it necessaryto detect and elim<strong>in</strong>ate harmonics?Disturbances caused by harmonicsHarmonics flow<strong>in</strong>g <strong>in</strong> distribution networks downgrade <strong>the</strong> quality of electrical power.This can have a number of negative effects:b Overloads on distribution networks due to <strong>the</strong> <strong>in</strong>crease <strong>in</strong> rms currentb Overloads <strong>in</strong> neutral conductors due to <strong>the</strong> cumulative <strong>in</strong>crease <strong>in</strong> third-orderharmonics created by s<strong>in</strong>gle-phase loadsb Overloads, vibration and premature age<strong>in</strong>g of generators, transformers and motorsas well as <strong>in</strong>creased transformer humb Overloads and premature age<strong>in</strong>g of power-factor correction capacitorsb Distortion of <strong>the</strong> supply voltage that can disturb sensitive loadsb Disturbances <strong>in</strong> communication networks and on telephone l<strong>in</strong>esEconomic impact of disturbancesHarmonics have a major economic impact:b Premature age<strong>in</strong>g of equipment means it must be replaced sooner unlessoversized right from <strong>the</strong> startb Overloads on <strong>the</strong> distribution network can require higher subscribed power levelsand <strong>in</strong>crease lossesb Distortion of current waveforms provokes nuisance tripp<strong>in</strong>g that can stopproductionIncreas<strong>in</strong>gly serious consequencesOnly ten years ago, harmonics were not yet considered a real problem because<strong>the</strong>ir effects on distribution networks were generally m<strong>in</strong>or. However, <strong>the</strong> massive<strong>in</strong>troduction of power electronics <strong>in</strong> equipment has made <strong>the</strong> phenomenon far moreserious <strong>in</strong> all sectors of economic activity.In addition, <strong>the</strong> equipment caus<strong>in</strong>g <strong>the</strong> harmonics is often vital to <strong>the</strong> company ororganisation.Which harmonics must be measured and elim<strong>in</strong>ated?The most frequently encountered harmonics <strong>in</strong> three-phase distribution networksare <strong>the</strong> odd orders. Harmonic amplitudes normally decrease as <strong>the</strong> frequency<strong>in</strong>creases. Above order 50, harmonics are negligible and measurements are nolonger mean<strong>in</strong>gful. Sufficiently accurate measurements are obta<strong>in</strong>ed by measur<strong>in</strong>gharmonics up to order 30.Utilities monitor harmonic orders 3, 5, 7, 11 and 13. Generally speak<strong>in</strong>g, harmoniccondition<strong>in</strong>g of <strong>the</strong> lowest orders (up to 13) is sufficient. More comprehensivecondition<strong>in</strong>g takes <strong>in</strong>to account harmonic orders up to 25.M© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


M - Harmonic management2 StandardsHarmonic emissions are subject to various standards and regulations:b Compatibility standards for distribution networksb Emissions standards apply<strong>in</strong>g to <strong>the</strong> equipment caus<strong>in</strong>g harmonicsb Recommendations issued by utilities and applicable to <strong>in</strong>stallationsIn view of rapidly attenuat<strong>in</strong>g <strong>the</strong> effects of harmonics, a triple system of standardsand regulations is currently <strong>in</strong> force based on <strong>the</strong> documents listed below.Standards govern<strong>in</strong>g compatibility between distribution networks andproductsThese standards determ<strong>in</strong>e <strong>the</strong> necessary compatibility between distributionnetworks and products:b The harmonics caused by a device must not disturb <strong>the</strong> distribution networkbeyond certa<strong>in</strong> limitsb Each device must be capable of operat<strong>in</strong>g normally <strong>in</strong> <strong>the</strong> presence ofdisturbances up to specific levelsb Standard IEC 61000-2-2 for public low-voltage power supply systemsb Standard IEC 61000-2-4 for LV and MV <strong>in</strong>dustrial <strong>in</strong>stallationsStandards govern<strong>in</strong>g <strong>the</strong> quality of distribution networksb Standard EN 50160 stipulates <strong>the</strong> characteristics of electricity supplied by publicdistribution networksb Standard IEEE 519 presents a jo<strong>in</strong>t approach between Utilities and customersto limit <strong>the</strong> impact of non-l<strong>in</strong>ear loads. What is more, Utilities encourage preventiveaction <strong>in</strong> view of reduc<strong>in</strong>g <strong>the</strong> deterioration of power quality, temperature rise and <strong>the</strong>reduction of power factor. They will be <strong>in</strong>creas<strong>in</strong>gly <strong>in</strong>cl<strong>in</strong>ed to charge customers formajor sources of harmonicsStandards govern<strong>in</strong>g equipmentb Standard IEC 61000-3-2 or EN 61000-3-2 for low-voltage equipment with ratedcurrent under 16 Ab Standard IEC 61000-3-12 for low-voltage equipment with rated current higher than16 A and lower than 75 AMaximum permissible harmonic levelsInternational studies have collected data result<strong>in</strong>g <strong>in</strong> an estimation of typicalharmonic contents often encountered <strong>in</strong> electrical distribution networks. Figure M1presents <strong>the</strong> levels that, <strong>in</strong> <strong>the</strong> op<strong>in</strong>ion of many utilities, should not be exceeded.Odd harmonic orders Odd harmonic orders Even harmonic ordersnon-multiples of 3 multiples of 3Order h LV MV EMV Order h LV MV EMV Order h LV MV EMV5 6 6 2 3 5 2.5 1.5 2 2 1.5 1.57 5 5 2 9 1.5 1.5 1 4 1 1 111 3.5 3.5 1.5 15 0.3 0.3 0.3 6 0.5 0.5 0.513 3 3 1.5 21 0.2 0.2 0.2 8 0.5 0.2 0.217 2 2 1 > 21 0.2 0.2 0.2 10 0.5 0.2 0.219 1.5 1.5 1 12 0.2 0.2 0.223 1.5 1 0.7 > 12 0.2 0.2 0.225 1.5 1 0.7> 25 0.2 0.2 0.1+ 25/h + 25/h + 25/hMFig. M1 : Maximum permissible harmonic levels© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


M - Harmonic management3 GeneralThe presence of harmonics <strong>in</strong>dicates a distorted current or voltage wave. Thedistortion of <strong>the</strong> current or voltage wave means that <strong>the</strong> distribution of electrical<strong>energy</strong> is disturbed and power quality is not optimum.Harmonic currents are caused by non-l<strong>in</strong>ear loads connected to <strong>the</strong> distributionnetwork. The flow of harmonic currents causes harmonic voltages via distributionnetworkimpedances and consequently distortion of <strong>the</strong> supply voltage.Orig<strong>in</strong> of harmonicsDevices and systems that cause harmonics are present <strong>in</strong> all sectors, i.e. <strong>in</strong>dustrial,commercial and residential. Harmonics are caused by non-l<strong>in</strong>ear loads (i.e. loadsthat draw current with a waveform that is not <strong>the</strong> same as that of <strong>the</strong> supply voltage).Examples of non-l<strong>in</strong>ear loads are:b Industrial equipment (weld<strong>in</strong>g mach<strong>in</strong>es, arc furnaces, <strong>in</strong>duction furnaces,rectifiers)b Variable-speed drives for asynchronous or DC motorsb UPSsb Office equipment (computers, photocopy mach<strong>in</strong>es, fax mach<strong>in</strong>es, etc.)b Home appliances (television sets, micro-wave ovens, fluorescent light<strong>in</strong>g)b Certa<strong>in</strong> devices <strong>in</strong>volv<strong>in</strong>g magnetic saturation (transformers)Disturbances caused by non-l<strong>in</strong>ear loads: harmonic current and voltageNon-l<strong>in</strong>ear loads draw harmonic currents that flow <strong>in</strong> <strong>the</strong> distribution network.Harmonic voltages are caused by <strong>the</strong> flow of harmonic currents through <strong>the</strong>impedances of <strong>the</strong> supply circuits (transformer and distribution network for situationssimilar to that shown <strong>in</strong> Figure M2).AZ hI hBNon-l<strong>in</strong>earloadFig. M2 : S<strong>in</strong>gle-l<strong>in</strong>e diagram show<strong>in</strong>g <strong>the</strong> impedance of <strong>the</strong> supply circuit for a harmonic of order hMThe reactance of a conductor <strong>in</strong>creases as a function of <strong>the</strong> frequency of <strong>the</strong> currentflow<strong>in</strong>g through <strong>the</strong> conductor. For each harmonic current (order h), <strong>the</strong>re is <strong>the</strong>reforean impedance Zh <strong>in</strong> <strong>the</strong> supply circuit.When <strong>the</strong> harmonic current of order h flows through impedance Zh, it creates aharmonic voltage Uh, where Uh = Zh x Ih (Ohm law). The voltage at po<strong>in</strong>t B is<strong>the</strong>refore distorted. All devices supplied via po<strong>in</strong>t B receive a distorted voltage.For a given harmonic current, <strong>the</strong> distortion is proportional to <strong>the</strong> impedance <strong>in</strong> <strong>the</strong>distribution network.Flow of harmonic currents <strong>in</strong> distribution networksThe non-l<strong>in</strong>ear loads can be considered to re<strong>in</strong>ject <strong>the</strong> harmonic currents upstream<strong>in</strong>to <strong>the</strong> distribution network, toward <strong>the</strong> source.Figures M3 and M4 next page show an <strong>in</strong>stallation disturbed by harmonics. FigureM3 shows <strong>the</strong> flow of <strong>the</strong> current at 50 Hz <strong>in</strong> <strong>the</strong> <strong>in</strong>stallation and Figure M4 shows<strong>the</strong> harmonic current (order h).© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


M - Harmonic management3 GeneralZ lI 50 HzNon-l<strong>in</strong>earloadFig. M3 : <strong>Installation</strong> supply<strong>in</strong>g a non-l<strong>in</strong>ear load, where only <strong>the</strong> phenomena concern<strong>in</strong>g <strong>the</strong>50 Hz frequency (fundamental frequency) are shownZ hI hNon-l<strong>in</strong>earloadV hVh = Harmonic voltage= Z hx I hFig. M4 : Same <strong>in</strong>stallation, where only <strong>the</strong> phenomena concern<strong>in</strong>g <strong>the</strong> frequency of harmonicorder h are shownSupply of <strong>the</strong> non-l<strong>in</strong>ear load creates <strong>the</strong> flow of a current I 50Hz (shown <strong>in</strong>figure M3), to which is added each of <strong>the</strong> harmonic currents Ih (shown <strong>in</strong> figure M4),correspond<strong>in</strong>g to each harmonic order h.Still consider<strong>in</strong>g that <strong>the</strong> loads re<strong>in</strong>ject harmonic current upstream <strong>in</strong>to <strong>the</strong>distribution network, it is possible to create a diagram show<strong>in</strong>g <strong>the</strong> harmonic currents<strong>in</strong> <strong>the</strong> network (see Fig. M5).Backup powersupplyGIh aRectifierArc furnaceWeld<strong>in</strong>g mach<strong>in</strong>ePower-factorcorrectionIh bVariable-speed driveMV/LVAIh dFluorescent ordischarge lampsMIh eDevices draw<strong>in</strong>g rectifiedcurrent (televisions,computer hardware, etc.)Harmonicdisturbances todistribution networkand o<strong>the</strong>r users(do not createharmonics)L<strong>in</strong>ear loadsNote <strong>in</strong> <strong>the</strong> diagram that though certa<strong>in</strong> loads create harmonic currents <strong>in</strong> <strong>the</strong> distributionnetwork, o<strong>the</strong>r loads can absorb <strong>the</strong> harmonic currents.Fig. M5 : Flow of harmonic currents <strong>in</strong> a distribution networkHarmonics have major economic effects <strong>in</strong> <strong>in</strong>stallations:b Increases <strong>in</strong> <strong>energy</strong> costsb Premature age<strong>in</strong>g of equipmentb Production losses© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


M - Harmonic management4 Ma<strong>in</strong> effects of harmonics <strong>in</strong><strong>in</strong>stallations4.1 ResonanceThe simultaneous use of capacitive and <strong>in</strong>ductive devices <strong>in</strong> distribution networksresults <strong>in</strong> parallel or series resonance manifested by very high or very lowimpedance values respectively. The variations <strong>in</strong> impedance modify <strong>the</strong> current andvoltage <strong>in</strong> <strong>the</strong> distribution network. Here, only parallel resonance phenomena, <strong>the</strong>most common, will be discussed.Consider <strong>the</strong> follow<strong>in</strong>g simplified diagram (see Fig. M6) represent<strong>in</strong>g an <strong>in</strong>stallationmade up of:b A supply transformerb L<strong>in</strong>ear loadsb Non-l<strong>in</strong>ear loads draw<strong>in</strong>g harmonic currentsb Power factor correction capacitorsFor harmonic analysis, <strong>the</strong> equivalent diagram (see Fig. M7) is shown below.Impedance Z is calculated by:Z=jLsω1-LsCω2neglect<strong>in</strong>g R and where:Ls = Supply <strong>in</strong>ductance (upstream network + transformer + l<strong>in</strong>e)C = Capacitance of <strong>the</strong> power factor correction capacitorsR = Resistance of <strong>the</strong> l<strong>in</strong>ear loadsIh = Harmonic currentResonance occurs when <strong>the</strong> denom<strong>in</strong>ator 1-LsCw 2 tends toward zero. Thecorrespond<strong>in</strong>g frequency is called <strong>the</strong> resonance frequency of <strong>the</strong> circuit. At thatfrequency, impedance is at its maximum and high amounts of harmonic voltagesappear with <strong>the</strong> result<strong>in</strong>g major distortion <strong>in</strong> <strong>the</strong> voltage. The voltage distortion isaccompanied, <strong>in</strong> <strong>the</strong> Ls+C circuit, by <strong>the</strong> flow of harmonic currents greater thanthose drawn by <strong>the</strong> loads.The distribution network and <strong>the</strong> power factor correction capacitors are subjected tohigh harmonic currents and <strong>the</strong> result<strong>in</strong>g risk of overloads. To avoid resonance, antiharmoniccoils can be <strong>in</strong>stalled <strong>in</strong> series with <strong>the</strong> capacitors.4.2 Increased lossesI hLosses <strong>in</strong> conductorsMCThe active power transmitted to a load is a function of <strong>the</strong> fundamental component I1of <strong>the</strong> current.When <strong>the</strong> current drawn by <strong>the</strong> load conta<strong>in</strong>s harmonics, <strong>the</strong> rms value of <strong>the</strong>current, Irms, is greater than <strong>the</strong> fundamental I1.The def<strong>in</strong>ition of THD be<strong>in</strong>g:Non-l<strong>in</strong>earloadCapacitorbankL<strong>in</strong>earloadTHD =2⎛ Irms⎞⎜ ⎟ −1⎝ I1⎠Fig. M6 : Diagram of an <strong>in</strong>stallationLs C R Ihit may be deduced that: Irms = I1 1+ THD 2Figure M8 (next page) shows, as a function of <strong>the</strong> harmonic distortion:b The <strong>in</strong>crease <strong>in</strong> <strong>the</strong> rms current Irms for a load draw<strong>in</strong>g a given fundamentalcurrentb The <strong>in</strong>crease <strong>in</strong> Joule losses, not tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> sk<strong>in</strong> effect(The reference po<strong>in</strong>t <strong>in</strong> <strong>the</strong> graph is 1 for Irms and Joules losses, <strong>the</strong> case when<strong>the</strong>re are no harmonics)The harmonic currents provoke an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> Joule losses <strong>in</strong> all conductors <strong>in</strong>which <strong>the</strong>y flow and additional temperature rise <strong>in</strong> transformers, devices, cables, etc.© Schneider Electric - all rights reservedZFig. M7 : Equivalent diagram of <strong>the</strong> <strong>in</strong>stallation shown <strong>in</strong>Figure M6Losses <strong>in</strong> asynchronous mach<strong>in</strong>esThe harmonic voltages (order h) supplied to asynchronous mach<strong>in</strong>es provoke <strong>in</strong> <strong>the</strong>rotor <strong>the</strong> flow of currents with frequencies higher than 50 Hz that are <strong>the</strong> cause ofadditional losses.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


M - Harmonic management4 Ma<strong>in</strong> effects of harmonics <strong>in</strong><strong>in</strong>stallations2.221.81.61.41.210.8 THD0 20 40 60 80 100 120 (%)Joules lossesIrmsFig. M8 : Increase <strong>in</strong> rms current and Joule losses as a function of <strong>the</strong> THDOrders of magnitudeb A virtually rectangular supply voltage provokes a 20% <strong>in</strong>crease <strong>in</strong> lossesb A supply voltage with harmonics u5 = 8% (of U1, <strong>the</strong> fundamental voltage),u7 = 5%, u11 = 3%, u13 = 1%, i.e. total harmonic distortion THDu equal to 10%,results <strong>in</strong> additional losses of 6%Losses <strong>in</strong> transformersHarmonic currents flow<strong>in</strong>g <strong>in</strong> transformers provoke an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> “copper”losses due to <strong>the</strong> Joule effect and <strong>in</strong>creased “iron” losses due to eddy currents. Theharmonic voltages are responsible for “iron” losses due to hysteresis.It is generally considered that losses <strong>in</strong> w<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>crease as <strong>the</strong> square of <strong>the</strong> THDiand that core losses <strong>in</strong>crease l<strong>in</strong>early with <strong>the</strong> THDu.In utility-distribution transformers, where distortion levels are limited, losses <strong>in</strong>creasebetween 10 and 15%.Losses <strong>in</strong> capacitorsThe harmonic voltages applied to capacitors provoke <strong>the</strong> flow of currentsproportional to <strong>the</strong> frequency of <strong>the</strong> harmonics. These currents cause additionallosses.ExampleA supply voltage has <strong>the</strong> follow<strong>in</strong>g harmonics:Fundamental voltage U1, harmonic voltages u5 = 8% (of U1), u7 = 5%, u11 = 3%,u13 = 1%, i.e. total harmonic distortion THDu equal to 10%. The amperage of <strong>the</strong>current is multiplied by 1.19. Joule losses are multiplied by 1.19 2 , i.e. 1.4.M4.3 Overloads on equipmentGeneratorsGenerators supply<strong>in</strong>g non-l<strong>in</strong>ear loads must be derated due to <strong>the</strong> additional lossescaused by harmonic currents.The level of derat<strong>in</strong>g is approximately 10% for a generator where <strong>the</strong> overall loadis made up of 30% of non-l<strong>in</strong>ear loads. It is <strong>the</strong>refore necessary to oversize <strong>the</strong>generator.Un<strong>in</strong>terruptible power systems (UPS)The current drawn by computer systems has a very high crest factor. A UPS sizedtak<strong>in</strong>g <strong>in</strong>to account exclusively <strong>the</strong> rms current may not be capable of supply<strong>in</strong>g <strong>the</strong>necessary peak current and may be overloaded.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


M - Harmonic management4 Ma<strong>in</strong> effects of harmonics <strong>in</strong><strong>in</strong>stallationsTransformersb The curve presented below (see Fig. M9) shows <strong>the</strong> typical derat<strong>in</strong>g required for atransformer supply<strong>in</strong>g electronic loadskVA(%)10090807060504030201000 20 40 60 80 100%ElectronicloadFig. M9 : Derat<strong>in</strong>g required for a transformer supply<strong>in</strong>g electronic loadsExampleIf <strong>the</strong> transformer supplies an overall load compris<strong>in</strong>g 40% of electronic loads, it mustbe derated by 40%.b Standard UTE C15-112 provides a derat<strong>in</strong>g factor for transformers as a function of<strong>the</strong> harmonic currents.k =1⎛ 40 ⎞1.6 21+0.1 ⎜ ∑hT h ⎟⎝ h=2 ⎠MT h = I Ih1Typical values:b Current with a rectangular waveform (1/h spectrum (1) ): k = 0.86b Frequency-converter current (THD ≈ 50%): k = 0.80Asynchronous mach<strong>in</strong>esStandard IEC 60892 def<strong>in</strong>es a weighted harmonic factor (Harmonic voltage factor)for which <strong>the</strong> equation and maximum value are provided below.HVF =13Uh∑ i 0.02 h2h=2ExampleA supply voltage has a fundamental voltage U1 and harmonic voltages u3 = 2% ofU1, u5 = 3%, u7 = 1%. The THDu is 3.7% and <strong>the</strong> MVF is 0.018. The MVF valueis very close to <strong>the</strong> maximum value above which <strong>the</strong> mach<strong>in</strong>e must be derated.Practically speak<strong>in</strong>g, for supply to <strong>the</strong> mach<strong>in</strong>e, a THDu of 10% must not beexceeded.© Schneider Electric - all rights reserved(1) In fact, <strong>the</strong> current waveform is similar to a rectangularwaveform. This is <strong>the</strong> case for all current rectifiers (three-phaserectifiers, <strong>in</strong>duction furnaces).CapacitorsAccord<strong>in</strong>g to IEC 60831-1 standard, <strong>the</strong> rms current flow<strong>in</strong>g <strong>in</strong> <strong>the</strong> capacitors mustnot exceed 1.3 times <strong>the</strong> rated current.Us<strong>in</strong>g <strong>the</strong> example mentioned above, <strong>the</strong> fundamental voltage U1, harmonic voltagesvoltages u5 = 8% u5 (of = U1), 8% u7 (of = U1), 5%, u7 u11 = 5%, = 3%, u11 u13 = 3%, = 1%, u13 i.e. = total 1%, harmonic i.e. total harmonicdistortion THDu equal to 10%, <strong>the</strong> result is I rmsI1 = 1 . 19 ,, at at <strong>the</strong> <strong>the</strong> rated voltage. For For avoltage equal equal to to 1.1 1.1 times <strong>the</strong> <strong>the</strong> rated voltage, <strong>the</strong> current limit I rmsI1 = 1 . 3is reachedand it is necessary to resize <strong>the</strong> capacitors.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


M - Harmonic management4 Ma<strong>in</strong> effects of harmonics <strong>in</strong><strong>in</strong>stallationsNeutral conductorsConsider a system made up of a balanced three-phase source and three identicals<strong>in</strong>gle-phase loads connected between <strong>the</strong> phases and <strong>the</strong> neutral (see Fig. M10).Figure M11 shows an example of <strong>the</strong> currents flow<strong>in</strong>g <strong>in</strong> <strong>the</strong> three phases and <strong>the</strong>result<strong>in</strong>g current <strong>in</strong> <strong>the</strong> neutral conductor.In this example, <strong>the</strong> current <strong>in</strong> <strong>the</strong> neutral conductor has an rms value that is higherthan <strong>the</strong> rms value of <strong>the</strong> current <strong>in</strong> a phase by a factor equal to <strong>the</strong> square root of 3.The neutral conductor must <strong>the</strong>refore be sized accord<strong>in</strong>gly.Ir(A)tIstIttInMt020 40t (ms)Fig. M11 : Example of <strong>the</strong> currents flow<strong>in</strong>g <strong>in</strong> <strong>the</strong> various conductors connected to a three-phaseload (In = Ir + Is + It)I rLoadI sI tI nLoadLoadFig. M10 : Flow of currents <strong>in</strong> <strong>the</strong> various conductorsconnected to a three-phase source4.4 Disturbances affect<strong>in</strong>g sensitive loadsEffects of distortion <strong>in</strong> <strong>the</strong> supply voltageDistortion of <strong>the</strong> supply voltage can disturb <strong>the</strong> operation of sensitive devices:b Regulation devices (temperature)b Computer hardwareb Control and monitor<strong>in</strong>g devices (protection relays)Distortion of telephone signalsHarmonics cause disturbances <strong>in</strong> control circuits (low current levels). The level ofdistortion depends on <strong>the</strong> distance that <strong>the</strong> power and control cables run <strong>in</strong> parallel,<strong>the</strong> distance between <strong>the</strong> cables and <strong>the</strong> frequency of <strong>the</strong> harmonics.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


M - Harmonic management4 Ma<strong>in</strong> effects of harmonics <strong>in</strong><strong>in</strong>stallations4.5 Economic impactEnergy lossesHarmonics cause additional losses (Joule effect) <strong>in</strong> conductors and equipment.Higher subscription costsThe presence of harmonic currents can require a higher subscribed power level andconsequently higher costs.What is more, utilities will be <strong>in</strong>creas<strong>in</strong>gly <strong>in</strong>cl<strong>in</strong>ed to charge customers for majorsources of harmonics.Oversiz<strong>in</strong>g of equipmentb Derat<strong>in</strong>g of power sources (generators, transformers and UPSs) means <strong>the</strong>y mustbe oversizedb Conductors must be sized tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> flow of harmonic currents.In addition, due <strong>the</strong> <strong>the</strong> sk<strong>in</strong> effect, <strong>the</strong> resistance of <strong>the</strong>se conductors <strong>in</strong>creaseswith frequency. To avoid excessive losses due to <strong>the</strong> Joule effect, it is necessary tooversize conductorsb Flow of harmonics <strong>in</strong> <strong>the</strong> neutral conductor means that it must be oversized as wellReduced service life of equipmentWhen <strong>the</strong> level of distortion <strong>in</strong> <strong>the</strong> supply voltage approaches 10%, <strong>the</strong> durationof <strong>the</strong> service life of equipment is significantly reduced. The reduction has beenestimated at:b 32.5% for s<strong>in</strong>gle-phase mach<strong>in</strong>esb 18% for three-phase mach<strong>in</strong>esb 5% for transformersTo ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> service lives correspond<strong>in</strong>g to <strong>the</strong> rated load, equipment must beoversized.Nuisance tripp<strong>in</strong>g and <strong>in</strong>stallation shutdownCircuit-breakers <strong>in</strong> <strong>the</strong> <strong>in</strong>stallation are subjected to current peaks caused byharmonics.These current peaks cause nuisance tripp<strong>in</strong>g with <strong>the</strong> result<strong>in</strong>g production losses, aswell as <strong>the</strong> costs correspond<strong>in</strong>g to <strong>the</strong> time required to start <strong>the</strong> <strong>in</strong>stallation up aga<strong>in</strong>.M10ExamplesGiven <strong>the</strong> economic consequences for <strong>the</strong> <strong>in</strong>stallations mentioned below, it wasnecessary to <strong>in</strong>stall harmonic filters.Computer centre for an <strong>in</strong>surance companyIn this centre, nuisance tripp<strong>in</strong>g of a circuit-breaker was calculated to have cost100 k€ per hour of down time.Pharmaceutical laboratoryHarmonics caused <strong>the</strong> failure of a generator set and <strong>the</strong> <strong>in</strong>terruption of a longdurationtest on a new medication. The consequences were a loss estimated at17 M€.Metallurgy factoryA set of <strong>in</strong>duction furnaces caused <strong>the</strong> overload and destruction of threetransformers rang<strong>in</strong>g from 1500 to 2500 kVA over a s<strong>in</strong>gle year. The cost of <strong>the</strong><strong>in</strong>terruptions <strong>in</strong> production were estimated at 20 k€ per hour.Factory produc<strong>in</strong>g garden furnitureThe failure of variable-speed drives resulted <strong>in</strong> production shutdowns estimated at10 k€ per hour.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


M - Harmonic management5 Essential <strong>in</strong>dicators of harmonicdistortion and measurementpr<strong>in</strong>ciplesA number of <strong>in</strong>dicators are used to quantify and evaluate <strong>the</strong> harmonic distortion<strong>in</strong> current and voltage waveforms, namely:b Power factorb Crest factorb Distortion powerb Harmonic spectrumb Harmonic-distortion valuesThese <strong>in</strong>dicators are <strong>in</strong>dispensable <strong>in</strong> determ<strong>in</strong><strong>in</strong>g any necessary corrective action.5.1 Power factorDef<strong>in</strong>itionThe power factor PF is <strong>the</strong> ratio between <strong>the</strong> active power P and <strong>the</strong> apparentpower S.PF =P SAmong electricians, <strong>the</strong>re is often confusion with:P1cos ϕ =S1WhereWhereP1 = active power of <strong>the</strong> fundamentalS1 = apparent power of <strong>the</strong> fundamentalThe cos ϕ concerns exclusively <strong>the</strong> fundamental frequency and <strong>the</strong>refore differsfrom <strong>the</strong> power factor PF when <strong>the</strong>re are harmonics <strong>in</strong> <strong>the</strong> <strong>in</strong>stallation.Interpret<strong>in</strong>g <strong>the</strong> power factorAn <strong>in</strong>itial <strong>in</strong>dication that <strong>the</strong>re are significant amounts of harmonics is a measuredpower factor PF that is different (lower) than <strong>the</strong> measured cos ϕ.5.2 Crest factorDef<strong>in</strong>itionThe crest factor is <strong>the</strong> ratio between <strong>the</strong> value of <strong>the</strong> peak current or voltage (Im orUm) and its rms value.b For a s<strong>in</strong>usoidal signal, <strong>the</strong> crest factor is <strong>the</strong>refore equal to 2.b For a non-s<strong>in</strong>usoidal signal, <strong>the</strong> crest factor can be ei<strong>the</strong>r greater than or lessthan 2.In <strong>the</strong> latter case, <strong>the</strong> crest factor signals divergent peak values with respect to <strong>the</strong>rms value.M11Interpretation of <strong>the</strong> crest factorThe typical crest factor for <strong>the</strong> current drawn by non-l<strong>in</strong>ear loads is much higherthan 2. It is generally between 1.5 and 2 and can even reach 5 <strong>in</strong> critical cases.A high crest factor signals high transient overcurrents which, when detected byprotection devices, can cause nuisance tripp<strong>in</strong>g.5.3 Power values and harmonicsActive powerThe active power P of a signal compris<strong>in</strong>g harmonics is <strong>the</strong> sum of <strong>the</strong> activepowers result<strong>in</strong>g from <strong>the</strong> currents and voltages of <strong>the</strong> same order.Reactive powerReactive power is def<strong>in</strong>ed exclusively <strong>in</strong> terms of <strong>the</strong> fundamental, i.e.Q = U1 x I1 x s<strong>in</strong>ϕ1Distortion powerWhen harmonics are present, <strong>the</strong> distortion power D is def<strong>in</strong>ed asD = (S 2 - P 2 - Q 2 ) 1/2 where S is <strong>the</strong> apparent power.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


M - Harmonic management5 Essential <strong>in</strong>dicators of harmonicdistortion and measurementpr<strong>in</strong>ciples5.4 Harmonic spectrum and harmonic distortionPr<strong>in</strong>cipleEach type of device caus<strong>in</strong>g harmonics draws a particular form of harmonic current(amplitude and phase displacement).These values, notably <strong>the</strong> amplitude for each harmonic order, are essential foranalysis.Individual harmonic distortion (or harmonic distortion oforder h)The <strong>in</strong>dividual harmonic distortion is def<strong>in</strong>ed as <strong>the</strong> percentage of harmonics fororder h with respect to <strong>the</strong> fundamental.( ) =u % 100 U hhU1orIi h % 100 h( ) =I1Harmonic spectrumBy represent<strong>in</strong>g <strong>the</strong> amplitude of each harmonic order with respect to its frequency, itis possible to obta<strong>in</strong> a graph called <strong>the</strong> harmonic spectrum.Figure M12 shows an example of <strong>the</strong> harmonic spectrum for a rectangular signal.Rms valueThe rms value of <strong>the</strong> voltage and current can be calculated as a function of <strong>the</strong> rmsvalue of <strong>the</strong> various harmonic orders.U(t)Irms=andUrms=∞∑Ih 2h=1∞∑Uh 2h=115.5 Total harmonic distortion (THD)M12tThe term THD means Total Harmonic Distortion and is a widely used notion <strong>in</strong>def<strong>in</strong><strong>in</strong>g <strong>the</strong> level of harmonic content <strong>in</strong> alternat<strong>in</strong>g signals.Def<strong>in</strong>ition of THDFor a signal y, <strong>the</strong> THD is def<strong>in</strong>ed as:© Schneider Electric - all rights reserved1003320H %012 3 4 5 6Fig. M12 : Harmonic spectrum of a rectangular signal, for avoltage U (t)h∞∑yh 2h=2THD =y1This complies with <strong>the</strong> def<strong>in</strong>ition given <strong>in</strong> standard IEC 61000-2-2.Note that <strong>the</strong> value can exceed 1.Accord<strong>in</strong>g to <strong>the</strong> standard, <strong>the</strong> variable h can be limited to 50. The THD is <strong>the</strong> meansto express as a s<strong>in</strong>gle number <strong>the</strong> distortion affect<strong>in</strong>g a current or voltage flow<strong>in</strong>g at agiven po<strong>in</strong>t <strong>in</strong> <strong>the</strong> <strong>in</strong>stallation.The THD is generally expressed as a percentage.Current or voltage THDFor current harmonics, <strong>the</strong> equation is:∞∑Ih 2h=2THD i =I1Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


M - Harmonic management5 Essential <strong>in</strong>dicators of harmonicdistortion and measurementpr<strong>in</strong>ciples1.210.80.60.40.2PFcos ϕ050Figure L13 Fig. shows M13 : a Variation graph of <strong>in</strong>THDu = 0PFcosϕ100150THDi(%)as a function of THDI.as a function of <strong>the</strong> THDi, whereThe equation below is equivalent to <strong>the</strong> above, but easier and more direct when <strong>the</strong>total rms value is available:THD i = ⎛ 2I ⎞⎝ ⎜ rms⎟ −1I1⎠For voltage harmonics, <strong>the</strong> equation is:THDu=∞∑Uh 2h=2U1Relation between power factor and THD (see Fig. M13)When <strong>the</strong> voltage is s<strong>in</strong>usoidal or virtually s<strong>in</strong>usoidal, it may be said that:P ≈ P1 = U 1. I1.cosϕ1Consequently : PF = P U 1. I1.cosϕ≈1S U 1.Irmsas:II1 =rmshence: PF ≈121+ THDicosϕ 121+ THDiFigure M13 L13 shows a graph ofPFcosϕas a function of THDi. THDI.5.6 Usefulness of <strong>the</strong> various <strong>in</strong>dicatorsThe THDu characterises <strong>the</strong> distortion of <strong>the</strong> voltage wave.Below are a number of THDu values and <strong>the</strong> correspond<strong>in</strong>g phenomena <strong>in</strong> <strong>the</strong><strong>in</strong>stallation:b THDu under 5% - normal situation, no risk of malfunctionsb 5 to 8% - significant harmonic pollution, some malfunctions are possibleb Higher than 8% - major harmonic pollution, malfunctions are probable. In-depthanalysis and <strong>the</strong> <strong>in</strong>stallation of attenuation devices are requiredThe THDi characterises <strong>the</strong> distortion of <strong>the</strong> current wave.The disturb<strong>in</strong>g device is located by measur<strong>in</strong>g <strong>the</strong> THDi on <strong>the</strong> <strong>in</strong>comer and eachoutgoer of <strong>the</strong> various circuits and thus follow<strong>in</strong>g <strong>the</strong> harmonic trail.Below are a number of THDi values and <strong>the</strong> correspond<strong>in</strong>g phenomena <strong>in</strong> <strong>the</strong><strong>in</strong>stallation:b THDi under 10% - normal situation, no risk of malfunctionsb 10 to 50% - significant harmonic pollution with a risk of temperature rise and <strong>the</strong>result<strong>in</strong>g need to oversize cables and sourcesb Higher than 50% - major harmonic pollution, malfunctions are probable. In-depthanalysis and <strong>the</strong> <strong>in</strong>stallation of attenuation devices are requiredPower factor PFUsed to evaluate <strong>the</strong> necessary oversiz<strong>in</strong>g for <strong>the</strong> power source of <strong>the</strong> <strong>in</strong>stallation.Crest factorUsed to characterise <strong>the</strong> aptitude of a generator (or UPS) to supply high<strong>in</strong>stantaneous currents. For example, computer equipment draws highly distortedcurrent for which <strong>the</strong> crest factor can reach 3 to 5.Spectrum (decomposition of <strong>the</strong> signal <strong>in</strong>to frequencies)It provides a different representation of electrical signals and can be used to evaluate<strong>the</strong>ir distortion.M13© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


M - Harmonic management6 Measur<strong>in</strong>g <strong>the</strong> <strong>in</strong>dicators6.1 Devices used to measure <strong>the</strong> <strong>in</strong>dicatorsDevice selectionThe traditional observation and measurement methods <strong>in</strong>clude:b Observations us<strong>in</strong>g an oscilloscopeAn <strong>in</strong>itial <strong>in</strong>dication on <strong>the</strong> distortion affect<strong>in</strong>g a signal can be obta<strong>in</strong>ed by view<strong>in</strong>g <strong>the</strong>current or <strong>the</strong> voltage on an oscilloscope.The waveform, when it diverges from a s<strong>in</strong>usoidal, clearly <strong>in</strong>dicates <strong>the</strong> presence ofharmonics. Current and voltage peaks can be viewed.Note, however, that this method does not offer precise quantification of <strong>the</strong> harmoniccomponentsb Analogue spectral analysersThey are made up of passband filters coupled with an rms voltmeter. They offermediocre performance and do not provide <strong>in</strong>formation on phase displacement.Only <strong>the</strong> recent digital analysers can determ<strong>in</strong>e sufficiently precisely <strong>the</strong>values of all <strong>the</strong> mentioned <strong>in</strong>dicators.Functions of digital analysersThe microprocessors <strong>in</strong> digital analysers:b Calculate <strong>the</strong> values of <strong>the</strong> harmonic <strong>in</strong>dicators (power factor, crest factor,distortion power, THD)b Carry out various complementary functions (corrections, statistical detection,measurement management, display, communication, etc.)b In multi-channel analysers, supply virtually <strong>in</strong> real time <strong>the</strong> simultaneous spectraldecomposition of <strong>the</strong> currents and voltagesAnalyser operation and data process<strong>in</strong>gThe analogue signals are converted <strong>in</strong>to a series of numerical values.Us<strong>in</strong>g this data, an algorithm implement<strong>in</strong>g <strong>the</strong> Fast Fourier Transform (FFT)calculates <strong>the</strong> amplitudes and <strong>the</strong> phases of <strong>the</strong> harmonics over a large number oftime w<strong>in</strong>dows.Most digital analysers measure harmonics up to order 20 or 25 when calculat<strong>in</strong>g <strong>the</strong>THD.Process<strong>in</strong>g of <strong>the</strong> successive values calculated us<strong>in</strong>g <strong>the</strong> FFT (smooth<strong>in</strong>g,classification, statistics) can be carried out by <strong>the</strong> measurement device or by externalsoftware.M146.2 Procedures for harmonic analysis of distributionnetworksMeasurements are carried out on <strong>in</strong>dustrial or commercial site:b Preventively, to obta<strong>in</strong> an overall idea on distribution-network status (network map)b In view of corrective action:v To determ<strong>in</strong>e <strong>the</strong> orig<strong>in</strong> of a disturbance and determ<strong>in</strong>e <strong>the</strong> solutions required toelim<strong>in</strong>ate itv To check <strong>the</strong> validity of a solution (followed by modifications <strong>in</strong> <strong>the</strong> distributionnetwork to check <strong>the</strong> reduction <strong>in</strong> harmonics)© Schneider Electric - all rights reservedOperat<strong>in</strong>g modeThe current and voltage are studied:b At <strong>the</strong> supply sourceb On <strong>the</strong> busbars of <strong>the</strong> ma<strong>in</strong> distribution switchboard (or on <strong>the</strong> MV busbars)b On each outgo<strong>in</strong>g circuit <strong>in</strong> <strong>the</strong> ma<strong>in</strong> distribution switchboard (or on <strong>the</strong>MV busbars)For <strong>the</strong> measurements, it is necessary to know <strong>the</strong> precise operat<strong>in</strong>g conditionsof <strong>the</strong> <strong>in</strong>stallation and particularly <strong>the</strong> status of <strong>the</strong> capacitor banks (operat<strong>in</strong>g, notoperat<strong>in</strong>g, <strong>the</strong> number of disconnected steps).Analysis resultsb Determ<strong>in</strong>e any necessary derat<strong>in</strong>g of equipment <strong>in</strong> <strong>the</strong> <strong>in</strong>stallation orb Quantify any necessary harmonic protection and filter<strong>in</strong>g systems to be <strong>in</strong>stalled <strong>in</strong><strong>the</strong> distribution networkb Enable comparison between <strong>the</strong> measured values and <strong>the</strong> reference values of <strong>the</strong>utility (maximum harmonic values, acceptable values, reference values)Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


M - Harmonic management6 Measur<strong>in</strong>g <strong>the</strong> <strong>in</strong>dicatorsUse of measurement devicesMeasurement devices serve to show both <strong>the</strong> <strong>in</strong>stantaneous and long-term effects ofharmonics. Analysis requires values spann<strong>in</strong>g durations rang<strong>in</strong>g from a few secondsto several m<strong>in</strong>utes over observation periods of a number of days.The required values <strong>in</strong>clude:b The amplitudes of <strong>the</strong> harmonic currents and voltagesb The <strong>in</strong>dividual harmonic content of each harmonic order of <strong>the</strong> current and voltageb The THD for <strong>the</strong> current and voltageb Where applicable, <strong>the</strong> phase displacement between <strong>the</strong> harmonic voltage andcurrent of <strong>the</strong> same harmonic order and <strong>the</strong> phase of <strong>the</strong> harmonics with respect to acommon reference (e.g. <strong>the</strong> fundamental voltage)6.3 Keep<strong>in</strong>g a close eye on harmonicsThe harmonic <strong>in</strong>dicators can be measured:b Ei<strong>the</strong>r by devices permanently <strong>in</strong>stalled <strong>in</strong> <strong>the</strong> distribution networkb Or by an expert present at least a half day on <strong>the</strong> site (limited perception)Permanent devices are preferableFor a number of reasons, <strong>the</strong> <strong>in</strong>stallation of permanent measurement devices <strong>in</strong> <strong>the</strong>distribution network is preferable.b The presence of an expert is limited <strong>in</strong> time. Only a number of measurements atdifferent po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> <strong>in</strong>stallation and over a sufficiently long period (one week to amonth) provide an overall view of operation and take <strong>in</strong>to account all <strong>the</strong> situationsthat can occur follow<strong>in</strong>g:v Fluctuations <strong>in</strong> <strong>the</strong> supply sourcev Variations <strong>in</strong> <strong>the</strong> operation of <strong>the</strong> <strong>in</strong>stallationv The addition of new equipment <strong>in</strong> <strong>the</strong> <strong>in</strong>stallationb Measurement devices <strong>in</strong>stalled <strong>in</strong> <strong>the</strong> distribution network prepare and facilitate <strong>the</strong>diagnosis of <strong>the</strong> experts, thus reduc<strong>in</strong>g <strong>the</strong> number and duration of <strong>the</strong>ir visitsb Permanent measurement devices detect any new disturbances aris<strong>in</strong>g follow<strong>in</strong>g<strong>the</strong> <strong>in</strong>stallation of new equipment, <strong>the</strong> implementation of new operat<strong>in</strong>g modes orfluctuations <strong>in</strong> <strong>the</strong> supply networkTake advantage of built-<strong>in</strong> measurement and detection devicesMeasurement and detection devices built <strong>in</strong>to <strong>the</strong> electrical distribution equipment:b For an overall evaluation of network status (preventive analysis), avoid:v Rent<strong>in</strong>g measurement equipmentv Call<strong>in</strong>g <strong>in</strong> expertsv Hav<strong>in</strong>g to connect and disconnect <strong>the</strong> measurement equipment.For <strong>the</strong> overall evaluation of network status, <strong>the</strong> analysis on <strong>the</strong> ma<strong>in</strong> low-voltagedistribution switchboards (MLVS) can often be carried out by <strong>the</strong> <strong>in</strong>com<strong>in</strong>g deviceand/or <strong>the</strong> measurement devices equipp<strong>in</strong>g each outgo<strong>in</strong>g circuitb For corrective action, are <strong>the</strong> means to:v Determ<strong>in</strong>e <strong>the</strong> operat<strong>in</strong>g conditions at <strong>the</strong> time of <strong>the</strong> <strong>in</strong>cidentv Draw up a map of <strong>the</strong> distribution network and evaluate <strong>the</strong> implemented solutionThe diagnosis is improved by <strong>the</strong> use of equipment <strong>in</strong>tended for <strong>the</strong> studied problem.M15© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


M - Harmonic management7 Detection devicesM16PowerLogic System with Power Meter andCircuit Monitor, Micrologic offer a completerange of devices for <strong>the</strong> detection of harmonicdistortionFig. M14 : Circuit monitorMeasurements are <strong>the</strong> first step <strong>in</strong> ga<strong>in</strong><strong>in</strong>g control over harmonic pollution.Depend<strong>in</strong>g on <strong>the</strong> conditions <strong>in</strong> each <strong>in</strong>stallation, different types of equipmentprovide <strong>the</strong> necessary solution.Power-monitor<strong>in</strong>g unitsPower Meter and Circuit Monitor <strong>in</strong> <strong>the</strong> PowerLogic SystemThese products offer high-performance measurement capabilities for low andmedium-voltage distribution networks. They are digital units that <strong>in</strong>clude powerqualitymonitor<strong>in</strong>g functions.PowerLogic System is a complete offer compris<strong>in</strong>g Power Meter (PM) and CircuitMonitor (CM). This highly modular offer covers needs rang<strong>in</strong>g from <strong>the</strong> most simple(Power Meter) up to highly complex requirements (Circuit Monitor). These productscan be used <strong>in</strong> new or exist<strong>in</strong>g <strong>in</strong>stallations where <strong>the</strong> level of power quality must beexcellent. The operat<strong>in</strong>g mode can be local and/or remote.Depend<strong>in</strong>g on its position <strong>in</strong> <strong>the</strong> distribution network, a Power Meter provides an <strong>in</strong>itial<strong>in</strong>dication on power quality. The ma<strong>in</strong> measurements carried out by a Power Meter are:b Current and voltage THDb Power factorDepend<strong>in</strong>g on <strong>the</strong> version, <strong>the</strong>se measurements can be comb<strong>in</strong>ed with timestamp<strong>in</strong>gand alarm functions.A Circuit Monitor (see Fig. M14) carries out a detailed analysis of power qualityand also analyses disturbances on <strong>the</strong> distribution network. The ma<strong>in</strong> functions of aCircuit Monitor are:b Measurement of over 100 electrical parametersb Storage <strong>in</strong> memory and time-stamp<strong>in</strong>g of m<strong>in</strong>imum and maximum values for eachelectrical parameterb Alarm functions tripped by electrical parameter valuesb Record<strong>in</strong>g of event datab Record<strong>in</strong>g of current and voltage disturbancesb Harmonic analysisb Waveform capture (disturbance monitor<strong>in</strong>g)Micrologic - a power-monitor<strong>in</strong>g unit built <strong>in</strong>to <strong>the</strong> circuit-breakerFor new <strong>in</strong>stallations, <strong>the</strong> Micrologic H control unit (see Fig. M15), an <strong>in</strong>tegral partof Masterpact power circuit-breakers, is particularly useful for measurements at <strong>the</strong>head of an <strong>in</strong>stallation or on large outgo<strong>in</strong>g circuits.The Micrologic H control unit offers precise analysis of power quality and detaileddiagnostics on events. It is designed for operation <strong>in</strong> conjunction with a switchboarddisplay unit or a supervisor. It can:b Measure current, voltage, active and reactive powerb Measure current and voltage THDb Display <strong>the</strong> amplitude and phase of current and voltage harmonics up to <strong>the</strong> 51 st orderb Carry out waveform capture (disturbance monitor<strong>in</strong>g)The functions offered by <strong>the</strong> Micrologic H control unit are equivalent to those of aCircuit Monitor.© Schneider Electric - all rights reservedFig. M15 : Micrologic H control unit with harmonic meter<strong>in</strong>g forMasterpact NT and NW circuit-breakersOperation of power-monitor<strong>in</strong>g unitsSoftware for remote operation and analysisIn <strong>the</strong> more general framework of a distribution network requir<strong>in</strong>g monitor<strong>in</strong>g,<strong>the</strong> possibility of <strong>in</strong>terconnect<strong>in</strong>g <strong>the</strong>se various devices can be offered <strong>in</strong> acommunication network, thus mak<strong>in</strong>g it possible to centralise <strong>in</strong>formation and obta<strong>in</strong>an overall view of disturbances throughout <strong>the</strong> distribution network.Depend<strong>in</strong>g on <strong>the</strong> application, <strong>the</strong> operator can <strong>the</strong>n carry out measurements <strong>in</strong> realtime, calculate demand values, run waveform captures, anticipate on alarms, etc.The power-monitor<strong>in</strong>g units transmit all <strong>the</strong> available data over ei<strong>the</strong>r a Modbus,Digipact or E<strong>the</strong>rnet network.The essential goal of this system is to assist <strong>in</strong> identify<strong>in</strong>g and plann<strong>in</strong>g ma<strong>in</strong>tenancework. It is an effective means to reduce servic<strong>in</strong>g time and <strong>the</strong> cost of temporarily<strong>in</strong>stall<strong>in</strong>g devices for on-site measurements or <strong>the</strong> siz<strong>in</strong>g of equipment (filters).Supervision software SMSSMS is a very complete software used to analyse distribution networks, <strong>in</strong> conjunctionwith <strong>the</strong> products <strong>in</strong> <strong>the</strong> PowerLogic System. Installed on a standard PC, it can:b Display measurements <strong>in</strong> real timeb Display historical logs over a given periodb Select <strong>the</strong> manner <strong>in</strong> which data is presented (tables, various curves)b Carry out statistical process<strong>in</strong>g of data (display bar charts)Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


M - Harmonic management8 Solutions to attenuateharmonicsThere are three different types of solutions to attenuate harmonics:b Modifications <strong>in</strong> <strong>the</strong> <strong>in</strong>stallationb Special devices <strong>in</strong> <strong>the</strong> supply systemb Filter<strong>in</strong>g8.1 Basic solutionsTo limit <strong>the</strong> propagation of harmonics <strong>in</strong> <strong>the</strong> distribution network, different solutionsare available and should be taken <strong>in</strong>to account particularly when design<strong>in</strong>g a new<strong>in</strong>stallation.Position <strong>the</strong> non-l<strong>in</strong>ear loads upstream <strong>in</strong> <strong>the</strong> systemOverall harmonic disturbances <strong>in</strong>crease as <strong>the</strong> short-circuit power decreases.All economic considerations aside, it is preferable to connect <strong>the</strong> non-l<strong>in</strong>ear loads asfar upstream as possible (see Fig. M16).Z 2SensitiveloadsZ 1Non-l<strong>in</strong>earloadsWhere impedanceZ 1< Z 2Fig. M16 : Non-l<strong>in</strong>ear loads positioned as far upstream as possible (recommended layout)Group <strong>the</strong> non-l<strong>in</strong>ear loadsWhen prepar<strong>in</strong>g <strong>the</strong> s<strong>in</strong>gle-l<strong>in</strong>e diagram, <strong>the</strong> non-l<strong>in</strong>ear devices should be separatedfrom <strong>the</strong> o<strong>the</strong>rs (see Fig. M17). The two groups of devices should be supplied bydifferent sets of busbars.M17SensitiveloadsYesL<strong>in</strong>e impedancesNoNon-l<strong>in</strong>earload 1Non-l<strong>in</strong>earload 2Fig. M17 : Group<strong>in</strong>g of non-l<strong>in</strong>ear loads and connection as far upstream as possible(recommended layout)Create separate sourcesIn attempt<strong>in</strong>g to limit harmonics, an additional improvement can be obta<strong>in</strong>ed bycreat<strong>in</strong>g a source via a separate transformer as <strong>in</strong>dicated <strong>in</strong> <strong>the</strong> Figure M18 nextpage.The disadvantage is <strong>the</strong> <strong>in</strong>crease <strong>in</strong> <strong>the</strong> cost of <strong>the</strong> <strong>in</strong>stallation.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


M - Harmonic management8 Solutions to attenuateharmonicsNon-l<strong>in</strong>earloadsMVnetworkL<strong>in</strong>earloadsFig. M18 : Supply of non-l<strong>in</strong>ear loads via a separate transformerTransformers with special connectionsDifferent transformer connections can elim<strong>in</strong>ate certa<strong>in</strong> harmonic orders, as<strong>in</strong>dicated <strong>in</strong> <strong>the</strong> examples below:b A Dyd connection suppresses 5 th and 7 th harmonics (see Fig. M19)b A Dy connection suppresses <strong>the</strong> 3 rd harmonicb A DZ 5 connection suppresses <strong>the</strong> 5 th harmonich11, h13h5, h7, h11, h13h5, h7, h11, h13Fig. M19 : A Dyd transformer blocks propagation of <strong>the</strong> 5 th and 7 th harmonics to <strong>the</strong> upstreamnetworkInstall reactorsWhen variable-speed drives are supplied, it is possible to smooth <strong>the</strong> currentby <strong>in</strong>stall<strong>in</strong>g l<strong>in</strong>e reactors. By <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> impedance of <strong>the</strong> supply circuit, <strong>the</strong>harmonic current is limited.<strong>Installation</strong> of harmonic suppression reactors on capacitor banks <strong>in</strong>creases <strong>the</strong>impedance of <strong>the</strong> reactor/capacitor comb<strong>in</strong>ation for high-order harmonics.This avoids resonance and protects <strong>the</strong> capacitors.M18Select <strong>the</strong> suitable system earth<strong>in</strong>g arrangementTNC systemIn <strong>the</strong> TNC system, a s<strong>in</strong>gle conductor (PEN) provides protection <strong>in</strong> <strong>the</strong> event of anearth fault and <strong>the</strong> flow of unbalance currents.Under steady-state conditions, <strong>the</strong> harmonic currents flow <strong>in</strong> <strong>the</strong> PEN. The latter,however, has a certa<strong>in</strong> impedance with as a result slight differences <strong>in</strong> potential (afew volts) between devices that can cause electronic equipment to malfunction.The TNC system must <strong>the</strong>refore be reserved for <strong>the</strong> supply of power circuits at <strong>the</strong>head of <strong>the</strong> <strong>in</strong>stallation and must not be used to supply sensitive loads.TNS systemThis system is recommended if harmonics are present.The neutral conductor and <strong>the</strong> protection conductor PE are completely separate and<strong>the</strong> potential throughout <strong>the</strong> distribution network is <strong>the</strong>refore more uniform.8.2 Harmonic filter<strong>in</strong>g© Schneider Electric - all rights reservedIn cases where <strong>the</strong> preventive action presented above is <strong>in</strong>sufficient, it is necessaryto equip <strong>the</strong> <strong>in</strong>stallation with filter<strong>in</strong>g systems.There are three types of filters:b Passiveb Activeb HybridSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


M - Harmonic management8 Solutions to attenuateharmonicsI harNon-l<strong>in</strong>earloadFig. M20 : Operat<strong>in</strong>g pr<strong>in</strong>ciple of a passive filterI harNon-l<strong>in</strong>earloadFilterAHCFig. M22 : Operat<strong>in</strong>g pr<strong>in</strong>ciple of a hybrid filterIsIactFig. M21 : Operat<strong>in</strong>g pr<strong>in</strong>ciple of an active filterI harNon-l<strong>in</strong>earloadAHCIactHybride filterL<strong>in</strong>earloadIsL<strong>in</strong>earloadPassive filtersTypical applicationsb Industrial <strong>in</strong>stallations with a set of non-l<strong>in</strong>ear loads represent<strong>in</strong>g more than200 kVA (variable-speed drives, UPSs, rectifiers, etc.)b <strong>Installation</strong>s requir<strong>in</strong>g power-factor correctionb <strong>Installation</strong>s where voltage distortion must be reduced to avoid disturb<strong>in</strong>g sensitiveloadsb <strong>Installation</strong>s where current distortion must be reduced to avoid overloadsOperat<strong>in</strong>g pr<strong>in</strong>cipleAn LC circuit, tuned to each harmonic order to be filtered, is <strong>in</strong>stalled <strong>in</strong> parallel with<strong>the</strong> non-l<strong>in</strong>ear load (see Fig. M20). This bypass circuit absorbs <strong>the</strong> harmonics, thusavoid<strong>in</strong>g <strong>the</strong>ir flow <strong>in</strong> <strong>the</strong> distribution network.Generally speak<strong>in</strong>g, <strong>the</strong> passive filter is tuned to a harmonic order close to <strong>the</strong> orderto be elim<strong>in</strong>ated. Several parallel-connected branches of filters can be used if asignificant reduction <strong>in</strong> <strong>the</strong> distortion of a number of harmonic orders is required.Active filters (active harmonic conditioner)Typical applicationsb Commercial <strong>in</strong>stallations with a set of non-l<strong>in</strong>ear loads represent<strong>in</strong>g less than200 kVA (variable-speed drives, UPSs, office equipment, etc.)b <strong>Installation</strong>s where current distortion must be reduced to avoid overloads.Operat<strong>in</strong>g pr<strong>in</strong>cipleThese systems, compris<strong>in</strong>g power electronics and <strong>in</strong>stalled <strong>in</strong> series or parallel with<strong>the</strong> non-l<strong>in</strong>ear load, compensate <strong>the</strong> harmonic current or voltage drawn by <strong>the</strong> load.Figure M21 shows a parallel-connected active harmonic conditioner (AHC)compensat<strong>in</strong>g <strong>the</strong> harmonic current (Ihar = -Iact).The AHC <strong>in</strong>jects <strong>in</strong> opposite phase <strong>the</strong> harmonics drawn by <strong>the</strong> non-l<strong>in</strong>ear load, suchthat <strong>the</strong> l<strong>in</strong>e current Is rema<strong>in</strong>s s<strong>in</strong>usoidal.Hybrid filtersTypical applicationsb Industrial <strong>in</strong>stallations with a set of non-l<strong>in</strong>ear loads represent<strong>in</strong>g more than200 kVA (variable-speed drives, UPSs, rectifiers, etc.)b <strong>Installation</strong>s requir<strong>in</strong>g power-factor correctionb <strong>Installation</strong>s where voltage distortion must be reduced to avoid disturb<strong>in</strong>g sensitiveloadsb <strong>Installation</strong>s where current distortion must be reduced to avoid overloadsb <strong>Installation</strong>s where strict limits on harmonic emissions must be metOperat<strong>in</strong>g pr<strong>in</strong>ciplePassive and active filters are comb<strong>in</strong>ed <strong>in</strong> a s<strong>in</strong>gle system to constitute a hybrid filter(see Fig. M22). This new filter<strong>in</strong>g solution offers <strong>the</strong> advantages of both types offilters and covers a wide range of power and performance levels.Selection criteriaPassive filterIt offers both power-factor correction and high current-filter<strong>in</strong>g capacity.Passive filters also reduce <strong>the</strong> harmonic voltages <strong>in</strong> <strong>in</strong>stallations where <strong>the</strong> supplyvoltage is disturbed. If <strong>the</strong> level of reactive power supplied is high, it is advised to turnoff <strong>the</strong> passive filter at times when <strong>the</strong> percent load is low.Prelim<strong>in</strong>ary studies for a filter must take <strong>in</strong>to account <strong>the</strong> possible presence of apower factor correction capacitor bank which may have to be elim<strong>in</strong>ated.Active harmonic conditionersThey filter harmonics over a wide range of frequencies and can adapt to any type ofload.On <strong>the</strong> o<strong>the</strong>r hand, power rat<strong>in</strong>gs are low.Hybrid filtersThey comb<strong>in</strong>e <strong>the</strong> performance of both active and passive filters.M19© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


M - Harmonic management8 Solutions to attenuateharmonicsA complete set of services can be offered toelim<strong>in</strong>ate harmonics:b <strong>Installation</strong> analysisb Measurement and monitor<strong>in</strong>g systemsb Filter<strong>in</strong>g solutions8.3 The methodThe best solution, <strong>in</strong> both technical and f<strong>in</strong>ancial terms, is based on <strong>the</strong> results of an<strong>in</strong>-depth study.Harmonic audit of MV and LV networksBy call<strong>in</strong>g on an expert, you are guaranteed that <strong>the</strong> proposed solution will produceeffective results (e.g. a guaranteed maximum THDu).A harmonic audit is carried out by an eng<strong>in</strong>eer specialised <strong>in</strong> <strong>the</strong> disturbancesaffect<strong>in</strong>g electrical distribution networks and equipped with powerful analysis andsimulation equipment and software.The steps <strong>in</strong> an audit are <strong>the</strong> follow<strong>in</strong>g:b Measurement of disturbances affect<strong>in</strong>g current and phase-to-phase and phaseto-neutralvoltages at <strong>the</strong> supply source, <strong>the</strong> disturbed outgo<strong>in</strong>g circuits and <strong>the</strong>non-l<strong>in</strong>ear loadsb Computer modell<strong>in</strong>g of <strong>the</strong> phenomena to obta<strong>in</strong> a precise explanation of <strong>the</strong>causes and determ<strong>in</strong>e <strong>the</strong> best solutionsb A complete audit report present<strong>in</strong>g:v The current levels of disturbancesv The maximum permissible levels of disturbances (IEC 61000, IEC 34, etc.)b A proposal conta<strong>in</strong><strong>in</strong>g solutions with guaranteed levels of performanceb F<strong>in</strong>ally, implementation of <strong>the</strong> selected solution, us<strong>in</strong>g <strong>the</strong> necessary means andresources.The entire audit process is certified ISO 9002.M208.4 Specific productsPassive filtersPassive filters are made up of coils and capacitors set up <strong>in</strong> resonant circuits tunedto <strong>the</strong> specific harmonic order that must be elim<strong>in</strong>ated.A system may comprise a number of filters to elim<strong>in</strong>ate several harmonic orders.Suitable for 400 V three-phase voltages, <strong>the</strong> power rat<strong>in</strong>gs can reach:b 265 kvar / 470 A for harmonic order 5b 145 kvar / 225 A for harmonic order 7b 105 kvar / 145 A for harmonic order 11Passive filters can be created for all voltage and current levels.Active filtersb S<strong>in</strong>eWave active harmonic conditionersv Suitable for 400 V three-phase voltages, <strong>the</strong>y can deliver between 20 and 120 Aper phasev S<strong>in</strong>eWave covers all harmonic orders from 2 to 25. Condition<strong>in</strong>g can be total ortarget specific harmonic ordersv Attenuation: THDi load / THDi upstream greater than 10 at rated capacityv Functions <strong>in</strong>clude power factor correction, condition<strong>in</strong>g of zero-sequenceharmonics, diagnostics and ma<strong>in</strong>tenance system, parallel connection, remotecontrol, Ibus/RS485 communication <strong>in</strong>terfaceb Accus<strong>in</strong>e active filtersv Suitable for 400 and 480 V three-phase voltages, <strong>the</strong>y can filter between 50 and 30A per phasev All harmonic orders up to 50 are filteredv Functions <strong>in</strong>clude power factor correction, parallel connection, <strong>in</strong>stantaneousresponse to load variationsHybrid filtersThese filters comb<strong>in</strong>e <strong>the</strong> advantages of both a passive filter and <strong>the</strong> S<strong>in</strong>eWaveactive harmonic conditioner <strong>in</strong> a s<strong>in</strong>gle system.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Chapter NCharacteristics of particularsources and loads12345ContentsProtection of a LV generator setand <strong>the</strong> downstream circuits1.1 Generator protection N21.2 Downstream LV network protection N51.3 The monitor<strong>in</strong>g functions N51.4 Generator Set parallel-connection N10Un<strong>in</strong>terruptible Power Supply units (UPS)N112.1 Availability and quality of electrical power N112.2 Types of static UPSs N122.3 Batteries N152.4 System earth<strong>in</strong>g arrangements for <strong>in</strong>stallations compris<strong>in</strong>g UPSs N162.5 Choice of protection schemes N182.6 <strong>Installation</strong>, connection and siz<strong>in</strong>g of cables N202.7 The UPSs and <strong>the</strong>ir environment N222.8 Complementary equipment N22Protection of LV/LV transformersN243.1 Transformer-energiz<strong>in</strong>g <strong>in</strong>rush current N243.2 Protection for <strong>the</strong> supply circuit of a LV/LV transformer N243.3 Typical electrical characteristics of LV/LV 50 Hz transformers N253.4 Protection of LV/LV transformers, us<strong>in</strong>g Merl<strong>in</strong> Ger<strong>in</strong>circuit-breakersN25Light<strong>in</strong>g circuitsN274.1 The different lamp technologies N274.2 <strong>Electrical</strong> characteristics of lamps N294.3 Constra<strong>in</strong>ts related to light<strong>in</strong>g devices and recommendations N344.4 Light<strong>in</strong>g of public areas N42Asynchronous motorsN455.1 Functions for <strong>the</strong> motor circuit N455.2 Standards N475.3 Applications N495.4 Maximum rat<strong>in</strong>g of motors <strong>in</strong>stalled for consumers supplied at LV N545.5 Reactive-<strong>energy</strong> compensation (power-factor correction) N54N2N© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads1 Protection of a LV generator setand <strong>the</strong> downstream circuitsMost <strong>in</strong>dustrial and large commercial electrical <strong>in</strong>stallations <strong>in</strong>clude certa<strong>in</strong> importantloads for which a power supply must be ma<strong>in</strong>ta<strong>in</strong>ed, <strong>in</strong> <strong>the</strong> event that <strong>the</strong> utilityelectrical supply fails:b Ei<strong>the</strong>r, because safety systems are <strong>in</strong>volved (emergency light<strong>in</strong>g, automatic fireprotectionequipment, smoke dispersal fans, alarms and signalization, and so on…) orb Because it concerns priority circuits, such as certa<strong>in</strong> equipment, <strong>the</strong> stoppage ofwhich would entail a loss of production, or <strong>the</strong> destruction of a mach<strong>in</strong>e tool, etc.One of <strong>the</strong> current means of ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a supply to <strong>the</strong> so-called “priority” loads, <strong>in</strong><strong>the</strong> event that o<strong>the</strong>r sources fail, is to <strong>in</strong>stall a diesel generator set connected, via achange-over switch, to an emergency-power standby switchboard, from which <strong>the</strong>priority services are fed (see Fig. N1).HVLVGChange-over switchNon-priority circuitsPriority circuitsFig N1 : Example of circuits supplied from a transformer or from an alternator1.1 Generator protectionFigure N2 below shows <strong>the</strong> electrical siz<strong>in</strong>g parameters of a Generator Set. Pn, Unand In are, respectively, <strong>the</strong> power of <strong>the</strong> <strong>the</strong>rmal motor, <strong>the</strong> rated voltage and <strong>the</strong>rated current of <strong>the</strong> generator.Un, InNThermalmotorPnRSTt (s)Fig N2 : Block diagram of a generator setN© Schneider Electric - all rights reserved1,000100121073210IIn0 1.1 1.2 1.5 2 3 4 5OverloadsFig N3 : Example of an overload curve t = f(I/In)Overload protectionThe generator protection curve must be analysed (see Fig. N3).Standards and requirements of applications can also stipulate specific overloadconditions. For example:I/Int1.1 > 1 h1.5 30 sThe sett<strong>in</strong>g possibilities of <strong>the</strong> overload protection devices (or Long Time Delay) willclosely follow <strong>the</strong>se requirements.Note on overloadsb For economic reasons, <strong>the</strong> <strong>the</strong>rmal motor of a replacement set may be strictly sizedfor its nom<strong>in</strong>al power. If <strong>the</strong>re is an active power overload, <strong>the</strong> diesel motor will stall.The active power balance of <strong>the</strong> priority loads must take this <strong>in</strong>to accountb A production set must be able to withstand operat<strong>in</strong>g overloads:v One hour overloadv One hour 10% overload every 12 hours (Prime Power)Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads1 Protection of a LV generator setand <strong>the</strong> downstream circuitsShort-circuit current protectionMak<strong>in</strong>g <strong>the</strong> short-circuit currentThe short-circuit current is <strong>the</strong> sum:b Of an aperiodic currentb Of a damped s<strong>in</strong>usoidal currentThe short-circuit current equation shows that it is composed of three successivephases (see Fig. N4).I rms1 2 31 - Subtransient conditions2 - Transient conditions3 - Steady state conditions≈ 3 InGenerator with compoundexcitation or over-excitationIn≈ 0.3 In0010 to 20 msFault appears0.1 to 0.3 sGenerator with serialexcitationt (s)Fig N4 : Short-circuit current level dur<strong>in</strong>g <strong>the</strong> 3 phasesb Subtransient phaseWhen a short-circuit appears at <strong>the</strong> term<strong>in</strong>als of a generator, <strong>the</strong> current is first madeat a relatively high value of around 6 to 12 In dur<strong>in</strong>g <strong>the</strong> first cycle (0 to 20 ms).The amplitude of <strong>the</strong> short-circuit output current is def<strong>in</strong>ed by three parameters:v The subtransient reactance of <strong>the</strong> generatorv The level of excitation prior to <strong>the</strong> time of <strong>the</strong> fault andv The impedance of <strong>the</strong> faulty circuit.The short-circuit impedance of <strong>the</strong> generator to be considered is <strong>the</strong> subtransientreactance x’’d expressed <strong>in</strong> % by <strong>the</strong> manufacturer. The typical value is 10 to 15%.We determ<strong>in</strong>e <strong>the</strong> subtransient short-circuit impedance of <strong>the</strong> generator:2U x′′dX′′ d(ohms) = n where S = 3 Un In100 Sb Transient phaseThe transient phase is placed 100 to 500 ms after <strong>the</strong> time of <strong>the</strong> fault. Start<strong>in</strong>g from<strong>the</strong> value of <strong>the</strong> fault current of <strong>the</strong> subtransient period, <strong>the</strong> current drops to 1.5 to2 times <strong>the</strong> current In.The short-circuit impedance to be considered for this period is <strong>the</strong> transientreactance x’d expressed <strong>in</strong> % by <strong>the</strong> manufacturer. The typical value is 20 to 30%.b Steady state phaseThe steady state occurs after 500 ms.When <strong>the</strong> fault persists, <strong>the</strong> output voltage collapses and <strong>the</strong> exciter regulation seeksto raise this output voltage. The result is a stabilised susta<strong>in</strong>ed short-circuit current:v If generator excitation does not <strong>in</strong>crease dur<strong>in</strong>g a short-circuit (no fieldoverexcitation) but is ma<strong>in</strong>ta<strong>in</strong>ed at <strong>the</strong> level preced<strong>in</strong>g <strong>the</strong> fault, <strong>the</strong> current stabilisesat a value that is given by <strong>the</strong> synchronous reactance Xd of <strong>the</strong> generator. The typicalvalue of xd is greater than 200%. Consequently, <strong>the</strong> f<strong>in</strong>al current will be less than <strong>the</strong>full-load current of <strong>the</strong> generator, normally around 0.5 In.v If <strong>the</strong> generator is equipped with maximum field excitation (field overrid<strong>in</strong>g) or withcompound excitation, <strong>the</strong> excitation “surge” voltage will cause <strong>the</strong> fault current to<strong>in</strong>crease for 10 seconds, normally to 2 to 3 times <strong>the</strong> full-load current of <strong>the</strong> generator.N© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads1 Protection of a LV generator setand <strong>the</strong> downstream circuitsCalculat<strong>in</strong>g <strong>the</strong> short-circuit currentManufacturers normally specify <strong>the</strong> impedance values and time constants requiredfor analysis of operation <strong>in</strong> transient or steady state conditions (see Fig. N5).(kVA) 75 200 400 800 1,600 2,500x”d 10.5 10.4 12.9 10.5 18.8 19.1x’d 21 15.6 19.4 18 33.8 30.2xd 280 291 358 280 404 292Fig N5 : Example of impedance table (<strong>in</strong> %)Resistances are always negligible compared with reactances. The parameters for <strong>the</strong>short-circuit current study are:b Value of <strong>the</strong> short-circuit current at generator term<strong>in</strong>alsShort-circuit current amplitude <strong>in</strong> transient conditions is:In1Isc3 =(X’d <strong>in</strong> ohms)X ′ d 3orInIsc3 = 100 (x’d <strong>in</strong>%)x ′ dUn is <strong>the</strong> generator phase-to-phase output voltage.Note: This value can be compared with <strong>the</strong> short-circuit current at <strong>the</strong> term<strong>in</strong>als of atransformer. Thus, for <strong>the</strong> same power, currents <strong>in</strong> event of a short-circuit close to agenerator will be 5 to 6 times weaker than those that may occur with a transformer(ma<strong>in</strong> source).This difference is accentuated still fur<strong>the</strong>r by <strong>the</strong> fact that generator set power isnormally less than that of <strong>the</strong> transformer (see Fig. N6).Source 1MV2,000 kVALVGS500 kVA42 kANC2.5 kAND1NCMa<strong>in</strong>/standbyNOD2Non-priority circuitsPriority circuitsNC: Normally closedNO: Normally open© Schneider Electric - all rights reservedFig N6 : Example of a priority services switchboard supplied (<strong>in</strong> an emergency) from a standbygenerator setWhen <strong>the</strong> LV network is supplied by <strong>the</strong> Ma<strong>in</strong> source 1 of 2,000 kVA, <strong>the</strong> short-circuitcurrent is 42 kA at <strong>the</strong> ma<strong>in</strong> LV board busbar. When <strong>the</strong> LV network is supplied by <strong>the</strong>Replacement Source 2 of 500 kVA with transient reactance of 30%, <strong>the</strong> short-circuitcurrent is made at approx. 2.5 kA, i.e. at a value 16 times weaker than with <strong>the</strong> Ma<strong>in</strong>source.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads1 Protection of a LV generator setand <strong>the</strong> downstream circuits1.2 Downstream LV network protectionPriority circuit protectionChoice of break<strong>in</strong>g capacityThis must be systematically checked with <strong>the</strong> characteristics of <strong>the</strong> ma<strong>in</strong> source(MV/LV transformer).Sett<strong>in</strong>g of <strong>the</strong> Short Time Delay (STD) tripp<strong>in</strong>g currentb Subdistribution boardsThe rat<strong>in</strong>gs of <strong>the</strong> protection devices for <strong>the</strong> subdistribution and f<strong>in</strong>al distributioncircuits are always lower than <strong>the</strong> generator rated current. Consequently, except <strong>in</strong>special cases, conditions are <strong>the</strong> same as with transformer supply.b Ma<strong>in</strong> LV switchboardv The siz<strong>in</strong>g of <strong>the</strong> ma<strong>in</strong> feeder protection devices is normally similar to that of <strong>the</strong>generator set. Sett<strong>in</strong>g of <strong>the</strong> STD must allow for <strong>the</strong> short-circuit characteristic of <strong>the</strong>generator set (see “Short-circuit current protection” before)v Discrim<strong>in</strong>ation of protection devices on <strong>the</strong> priority feeders must be provided<strong>in</strong> generator set operation (it can even be compulsory for safety feeders). It isnecessary to check proper stagger<strong>in</strong>g of STD sett<strong>in</strong>g of <strong>the</strong> protection devices of<strong>the</strong> ma<strong>in</strong> feeders with that of <strong>the</strong> subdistribution protection devices downstream(normally set for distribution circuits at 10 In).Note: When operat<strong>in</strong>g on <strong>the</strong> generator set, use of a low sensitivity ResidualCurrent Device enables management of <strong>the</strong> <strong>in</strong>sulation fault and ensures very simplediscrim<strong>in</strong>ation.Safety of peopleIn <strong>the</strong> IT (2 nd fault) and TN ground<strong>in</strong>g systems, protection of people aga<strong>in</strong>st <strong>in</strong>directcontacts is provided by <strong>the</strong> STD protection of circuit-breakers. Their operation ona fault must be ensured, whe<strong>the</strong>r <strong>the</strong> <strong>in</strong>stallation is supplied by <strong>the</strong> ma<strong>in</strong> source(Transformer) or by <strong>the</strong> replacement source (generator set).Calculat<strong>in</strong>g <strong>the</strong> <strong>in</strong>sulation fault currentZero-sequence reactance formulated as a% of Uo by <strong>the</strong> manufacturer x’o.The typical value is 8%.The phase-to-neutral s<strong>in</strong>gle-phase short-circuit current is given by:Un 3I f =2 X′ d + X′oThe <strong>in</strong>sulation fault current <strong>in</strong> <strong>the</strong> TN system is slightly greater than <strong>the</strong> threephase fault current. For example, <strong>in</strong> event of an <strong>in</strong>sulation fault on <strong>the</strong> system <strong>in</strong> <strong>the</strong>previous example, <strong>the</strong> <strong>in</strong>sulation fault current is equal to 3 kA.1.3 The monitor<strong>in</strong>g functionsDue to <strong>the</strong> specific characteristics of <strong>the</strong> generator and its regulation, <strong>the</strong> properoperat<strong>in</strong>g parameters of <strong>the</strong> generator set must be monitored when special loads areimplemented.The behaviour of <strong>the</strong> generator is different from that of <strong>the</strong> transformer:b The active power it supplies is optimised for a power factor = 0.8b At less than power factor 0.8, <strong>the</strong> generator may, by <strong>in</strong>creased excitation, supplypart of <strong>the</strong> reactive powerNCapacitor bankAn off-load generator connected to a capacitor bank may self-excite, consequently<strong>in</strong>creas<strong>in</strong>g its overvoltage.The capacitor banks used for power factor regulation must <strong>the</strong>refore be disconnected.This operation can be performed by send<strong>in</strong>g <strong>the</strong> stopp<strong>in</strong>g setpo<strong>in</strong>t to <strong>the</strong> regulator(if it is connected to <strong>the</strong> system manag<strong>in</strong>g <strong>the</strong> source switch<strong>in</strong>gs) or by open<strong>in</strong>g <strong>the</strong>circuit-breaker supply<strong>in</strong>g <strong>the</strong> capacitors.If capacitors cont<strong>in</strong>ue to be necessary, do not use regulation of <strong>the</strong> power factor relay<strong>in</strong> this case (<strong>in</strong>correct and over-slow sett<strong>in</strong>g).Motor restart and re-accelerationA generator can supply at most <strong>in</strong> transient period a current of between 3 and 5 timesits nom<strong>in</strong>al current.A motor absorbs roughly 6 In for 2 to 20 s dur<strong>in</strong>g start-up.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads1 Protection of a LV generator setand <strong>the</strong> downstream circuitsIf <strong>the</strong> sum of <strong>the</strong> motor power is high, simultaneous start-up of loads generates ahigh pick-up current that can be damag<strong>in</strong>g. A large voltage drop, due to <strong>the</strong> highvalue of <strong>the</strong> generator transient and subtransient reactances will occur (20% to30%), with a risk of:b Non-start<strong>in</strong>g of motorsb Temperature rise l<strong>in</strong>ked to <strong>the</strong> prolonged start<strong>in</strong>g time due to <strong>the</strong> voltage dropb Tripp<strong>in</strong>g of <strong>the</strong> <strong>the</strong>rmal protection devicesMoreover, all <strong>the</strong> network and actuators are disturbed by <strong>the</strong> voltage drop.Application (see Fig. N7)A generator supplies a set of motors.Generator characteristics: Pn = 130 kVA at a power factor of 0.8,In = 150 Ax’d = 20% (for example) hence Isc = 750 A.b The Σ Pmotors is 45 kW (45% of generator power)Calculat<strong>in</strong>g voltage drop at start-up:Σ PMotors = 45 kW, Im = 81 A, hence a start<strong>in</strong>g current Id = 480 A for 2 to 20 s.Voltage drop on on <strong>the</strong> <strong>the</strong> busbar for for simultaneous motor start<strong>in</strong>g:∆U ⎛ Id− In⎞= ⎜ ⎟ <strong>in</strong> %U ⎝ Isc− In⎠ΔU ∆U = 55%which is is not not tolerable for for motors (failure to to start).b <strong>the</strong> Σ Pmotors is 20 kW (20% of generator power)Calculat<strong>in</strong>g voltage drop at start-up:Σ PMotors = 20 kW, Im = 35 A, hence a start<strong>in</strong>g current Id = 210 A for 2 to 20 s.Voltage drop on <strong>the</strong> busbar:∆U ⎛ Id− In⎞= ⎜ ⎟ <strong>in</strong> %U ⎝ Isc− In⎠ΔU ∆U = 10%which is high but tolerable (depend<strong>in</strong>g on <strong>the</strong> type of loads).PLCGNFNRemote control 1F F FRemote control 2MotorsResistive loadsFig N7 : Restart<strong>in</strong>g of priority motors (ΣP > 1/3 Pn)© Schneider Electric - all rights reservedRestart<strong>in</strong>g tipsb If <strong>the</strong> Pmax of <strong>the</strong> largest motor > 1 Pn, , a progressive soft starter must starter bemust be3<strong>in</strong>stalled on this motorIf <strong>the</strong> Pmax of <strong>the</strong> b largest If Σ Pmotors > 1 Pn, , a motor progressive cascade starter restart<strong>in</strong>g must must be be managed by a PLC3b If Σ Pmotors < 1 3 Pn , <strong>the</strong>re are no restart<strong>in</strong>g problemsSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads1 Protection of a LV generator setand <strong>the</strong> downstream circuitsNon-l<strong>in</strong>ear loads – Example of a UPSNon-l<strong>in</strong>ear loadsThese are ma<strong>in</strong>ly:b Saturated magnetic circuitsb Discharge lamps, fluorescent lightsb Electronic convertersb Information Technology Equipment: PC, computers, etc.These loads generate harmonic currents: supplied by a Generator Set, this cancreate high voltage distortion due to <strong>the</strong> low short-circuit power of <strong>the</strong> generator.Un<strong>in</strong>terruptible Power Supply (UPS) (see Fig. N8)The comb<strong>in</strong>ation of a UPS and generator set is <strong>the</strong> best solution for ensur<strong>in</strong>g qualitypower supply with long autonomy for <strong>the</strong> supply of sensitive loads.It is also a non-l<strong>in</strong>ear load due to <strong>the</strong> <strong>in</strong>put rectifier. On source switch<strong>in</strong>g, <strong>the</strong> autonomyof <strong>the</strong> UPS on battery must allow start<strong>in</strong>g and connection of <strong>the</strong> Generator Set.<strong>Electrical</strong> utilityHV <strong>in</strong>comerGNCNOMa<strong>in</strong>s 1feederMa<strong>in</strong>s 2feederBy-passUn<strong>in</strong>terruptiblepower supplyNon-sensitiveloadSensitive feedersFig N8 : Generator set- UPS comb<strong>in</strong>ation for Quality <strong>energy</strong>NUPS powerUPS <strong>in</strong>rush power must allow for:b Nom<strong>in</strong>al power of <strong>the</strong> downstream loads. This is <strong>the</strong> sum of <strong>the</strong> apparent powersPa absorbed by each application. Fur<strong>the</strong>rmore, so as not to oversize <strong>the</strong> <strong>in</strong>stallation,<strong>the</strong> overload capacities at UPS level must be considered (for example: 1.5 In for1 m<strong>in</strong>ute and 1.25 In for 10 m<strong>in</strong>utes)b The power required to recharge <strong>the</strong> battery: This current is proportional to <strong>the</strong>autonomy required for a given power. The siz<strong>in</strong>g Sr of a UPS is given by:Sr = 1.17 x PnFigure N9 next page def<strong>in</strong>es <strong>the</strong> pick-up currents and protection devices forsupply<strong>in</strong>g <strong>the</strong> rectifier (Ma<strong>in</strong>s 1) and <strong>the</strong> standby ma<strong>in</strong>s (Ma<strong>in</strong>s 2).© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads1 Protection of a LV generator setand <strong>the</strong> downstream circuitsNom<strong>in</strong>al power Current value (A)Pn (kVA) Ma<strong>in</strong>s 1 with 3Ph battery Ma<strong>in</strong>s 2 or 3Ph application400 V - I1 400 V - Iu40 86 60.560 123 9180 158 121100 198 151120 240 182160 317 243200 395 304250 493 360300 590 456400 793 608500 990 760600 1,180 912800 1,648 1,215Fig N9 : Pick-up current for supply<strong>in</strong>g <strong>the</strong> rectifier and standby ma<strong>in</strong>sGenerator Set/UPS comb<strong>in</strong>ationb Restart<strong>in</strong>g <strong>the</strong> Rectifier on a Generator SetThe UPS rectifier can be equipped with a progressive start<strong>in</strong>g of <strong>the</strong> charger toprevent harmful pick-up currents when <strong>in</strong>stallation supply switches to <strong>the</strong> GeneratorSet (see Fig. N10).Ma<strong>in</strong>s 1GS start<strong>in</strong>gt (s)UPS chargerstart<strong>in</strong>gN20 ms5 to 10 sFig N10 : Progressive start<strong>in</strong>g of a type 2 UPS rectifier© Schneider Electric - all rights reservedb Harmonics and voltage distortionTotal voltage distortion τ is def<strong>in</strong>ed by:τ(%) =ΣU h 2U1where Uh is <strong>the</strong> harmonic voltage of order h.This value depends on:v The harmonic currents generated by <strong>the</strong> rectifier (proportional to <strong>the</strong> power Sr of<strong>the</strong> rectifier)v The longitud<strong>in</strong>al subtransient reactance X”d of <strong>the</strong> generatorv The power Sg of <strong>the</strong> generatorWe def<strong>in</strong>e U′ Rcc(%) = X′′d Sr<strong>the</strong> generator relative short-circuit voltage, brought toSgrectifier power, i.e. t = f(U’Rcc).Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads1 Protection of a LV generator setand <strong>the</strong> downstream circuitsNote 1: As subtransient reactance is great, harmonic distortion is normally too highcompared with <strong>the</strong> tolerated value (7 to 8%) for reasonable economic siz<strong>in</strong>g of <strong>the</strong>generator: use of a suitable filter is an appropriate and cost-effective solution.Note 2: Harmonic distortion is not harmful for <strong>the</strong> rectifier but may be harmful for <strong>the</strong>o<strong>the</strong>r loads supplied <strong>in</strong> parallel with <strong>the</strong> rectifier.ApplicationA chart is used to f<strong>in</strong>d <strong>the</strong> distortion τ as a function of U’Rcc (see Fig. N11).τ (%) (Voltage harmonic distortion)181716151413121110987654321001 23 4 5 6 7 8 9 10 11 12Without filterWith filter(<strong>in</strong>corporated)U'Rcc = X''d SrSgFig N11 : Chart for calculat<strong>in</strong>g harmonic distorsionThe chart gives:b Ei<strong>the</strong>r τ as a function of U’Rccb Or U’Rcc as a function of τFrom which generator set siz<strong>in</strong>g, Sg, is determ<strong>in</strong>ed.Example: Generator siz<strong>in</strong>gb 300 kVA UPS without filter, subtransient reactance of 15%The power Sr of <strong>the</strong> rectifier is Sr = 1.17 x 300 kVA = 351 kVAFor a τ < 7%, <strong>the</strong> chart gives U’Rcc = 4%, power Sg is:Sg =351 x15 4≈ 1,400 kVANcb 300 kVA UPS with filter, subtransient reactance of 15%For τ = 5%, <strong>the</strong> calculation gives U’Rcc = 12%, power Sg is:Sg = 351 x15 ≈ 500 kVA12Note: With an upstream transformer of 630 kVA on <strong>the</strong> 300 kVA UPS without filter,<strong>the</strong> 5% ratio would be obta<strong>in</strong>ed.The result is that operation on generator set must be cont<strong>in</strong>ually monitored forharmonic currents.If voltage harmonic distortion is too great, use of a filter on <strong>the</strong> network is <strong>the</strong> mosteffective solution to br<strong>in</strong>g it back to values that can be tolerated by sensitive loads.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads1 Protection of a LV generator setand <strong>the</strong> downstream circuits1.4 Generator Set parallel-connectionParallel-connection of <strong>the</strong> generator set irrespective of <strong>the</strong> application type - Safetysource, Replacement source or Production source - requires f<strong>in</strong>er management ofconnection, i.e. additional monitor<strong>in</strong>g functions.MV <strong>in</strong>comerParallel operationAs generator sets generate <strong>energy</strong> <strong>in</strong> parallel on <strong>the</strong> same load, <strong>the</strong>y must besynchronised properly (voltage, frequency) and load distribution must be balancedproperly. This function is performed by <strong>the</strong> regulator of each Generator Set (<strong>the</strong>rmaland excitation regulation). The parameters (frequency, voltage) are monitored beforeconnection: if <strong>the</strong> values of <strong>the</strong>se parameters are correct, connection can take place.Insulation faults (see Fig. N12)An <strong>in</strong>sulation fault <strong>in</strong>side <strong>the</strong> metal cas<strong>in</strong>g of a generator set may seriously damage<strong>the</strong> generator of this set if <strong>the</strong> latter resembles a phase-to-neutral short-circuit. Thefault must be detected and elim<strong>in</strong>ated quickly, else <strong>the</strong> o<strong>the</strong>r generators will generate<strong>energy</strong> <strong>in</strong> <strong>the</strong> fault and trip on overload: <strong>in</strong>stallation cont<strong>in</strong>uity of supply will no longer beguaranteed. Ground Fault Protection (GFP) built <strong>in</strong>to <strong>the</strong> generator circuit is used to:b Quickly disconnect <strong>the</strong> faulty generator and preserve cont<strong>in</strong>uity of supplyb Act at <strong>the</strong> faulty generator control circuits to stop it and reduce <strong>the</strong> risk of damageThis GFP is of <strong>the</strong> “Residual Sens<strong>in</strong>g” type and must be <strong>in</strong>stalled as close aspossible to <strong>the</strong> protection device as per a TN-C/TN-S (1) system at each generator setwith ground<strong>in</strong>g of frames by a separate PE. This k<strong>in</strong>d of protection is usually called“Restricted Earth Fault”.FHV busbarFGGenerator no. 1Generator no. 2ProtectedareaRSRSPELVFig N13 : Energy transfer direction – Generator Set as ageneratorUnprotectedareaPEPENPEPENPhasesNN10MV <strong>in</strong>comerPEFig N12 : Insulation fault <strong>in</strong>side a generatorFHV busbarFGGenerator Set operat<strong>in</strong>g as a load (see Fig. N13 and Fig. N14)One of <strong>the</strong> parallel-connected generator sets may no longer operate as a generatorbut as a motor (by loss of its excitation for example). This may generate overload<strong>in</strong>gof <strong>the</strong> o<strong>the</strong>r generator set(s) and thus place <strong>the</strong> electrical <strong>in</strong>stallation out of operation.To check that <strong>the</strong> generator set really is supply<strong>in</strong>g <strong>the</strong> <strong>in</strong>stallation with power(operation as a generator), <strong>the</strong> proper flow direction of <strong>energy</strong> on <strong>the</strong> coupl<strong>in</strong>g busbarmust be checked us<strong>in</strong>g a specific “reverse power” check. Should a faultoccur, i.e. <strong>the</strong> set operates as a motor, this function will elim<strong>in</strong>ate <strong>the</strong> faulty set.© Schneider Electric - all rights reservedLVFig N14 : Energy transfer direction – Generator Set as a load(1) The system is <strong>in</strong> TN-C for sets seen as <strong>the</strong> “generator” and<strong>in</strong> TN-S for sets seen as “loads”Ground<strong>in</strong>g parallel-connected Generator SetsGround<strong>in</strong>g of connected generator sets may lead to circulation of earth fault currents(triplen harmonics) by connection of neutrals for common ground<strong>in</strong>g (ground<strong>in</strong>gsystem of <strong>the</strong> TN or TT type). Consequently, to prevent <strong>the</strong>se currents from flow<strong>in</strong>gbetween <strong>the</strong> generator sets, we recommend <strong>the</strong> <strong>in</strong>stallation of a decoupl<strong>in</strong>gresistance <strong>in</strong> <strong>the</strong> ground<strong>in</strong>g circuit.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads2 Un<strong>in</strong>terruptible Power Supplyunits (UPS)2.1 Availability and quality of electrical powerThe disturbances presented above may affect:b Safety of human lifeb Safety of propertyb The economic viability of a company or production processDisturbances must <strong>the</strong>refore be elim<strong>in</strong>ated.A number of technical solutions contribute to this goal, with vary<strong>in</strong>g degrees ofeffectiveness. These solutions may be compared on <strong>the</strong> basis of two criteria:b Availability of <strong>the</strong> power suppliedb Quality of <strong>the</strong> power suppliedThe availability of electrical power can be thought of as <strong>the</strong> time per year that poweris present at <strong>the</strong> load term<strong>in</strong>als. Availability is ma<strong>in</strong>ly affected by power <strong>in</strong>terruptionsdue to utility outages or electrical faults.A number of solutions exist to limit <strong>the</strong> risk:b Division of <strong>the</strong> <strong>in</strong>stallation so as to use a number of different sources ra<strong>the</strong>r thanjust oneb Subdivision of <strong>the</strong> <strong>in</strong>stallation <strong>in</strong>to priority and non-priority circuits, where <strong>the</strong>supply of power to priority circuits can be picked up if necessary by ano<strong>the</strong>r availablesourceb Load shedd<strong>in</strong>g, as required, so that a reduced available power rat<strong>in</strong>g can be usedto supply standby powerb Selection of a system earth<strong>in</strong>g arrangement suited to service-cont<strong>in</strong>uity goals, e.g.IT systemb Discrim<strong>in</strong>ation of protection devices (selective tripp<strong>in</strong>g) to limit <strong>the</strong> consequencesof a fault to a part of <strong>the</strong> <strong>in</strong>stallationNote that <strong>the</strong> only way of ensur<strong>in</strong>g availability of power with respect to utility outagesis to provide, <strong>in</strong> addition to <strong>the</strong> above measures, an autonomous alternate source, atleast for priority loads (see Fig. N15).2.5 kA GAlternate sourceN11Non-priority circuitsPriority circuitsFig. N15 : Availability of electrical powerThis source takes over from <strong>the</strong> utility <strong>in</strong> <strong>the</strong> event of a problem, but two factors mustbe taken <strong>in</strong>to account:b The transfer time (time required to take over from <strong>the</strong> utility) which must beacceptable to <strong>the</strong> loadb The operat<strong>in</strong>g time dur<strong>in</strong>g which it can supply <strong>the</strong> loadThe quality of electrical power is determ<strong>in</strong>ed by <strong>the</strong> elim<strong>in</strong>ation of <strong>the</strong> disturbances at<strong>the</strong> load term<strong>in</strong>als.An alternate source is a means to ensure <strong>the</strong> availability of power at <strong>the</strong> loadterm<strong>in</strong>als, however, it does not guarantee, <strong>in</strong> many cases, <strong>the</strong> quality of <strong>the</strong> powersupplied with respect to <strong>the</strong> above disturbances.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads2 Un<strong>in</strong>terruptible Power Supplyunits (UPS)Today, many sensitive electronic applications require an electrical power supplywhich is virtually free of <strong>the</strong>se disturbances, to say noth<strong>in</strong>g of outages, withtolerances that are stricter than those of <strong>the</strong> utility.This is <strong>the</strong> case, for example, for computer centers, telephone exchanges and many<strong>in</strong>dustrial-process control and monitor<strong>in</strong>g systems.These applications require solutions that ensure both <strong>the</strong> availability and quality ofelectrical power.The UPS solutionThe solution for sensitive applications is to provide a power <strong>in</strong>terface between <strong>the</strong>utility and <strong>the</strong> sensitive loads, provid<strong>in</strong>g voltage that is:b Free of all disturbances present <strong>in</strong> utility power and <strong>in</strong> compliance with <strong>the</strong> stricttolerances required by loadsb Available <strong>in</strong> <strong>the</strong> event of a utility outage, with<strong>in</strong> specified tolerancesUPSs (Un<strong>in</strong>terruptible Power Supplies) satisfy <strong>the</strong>se requirements <strong>in</strong> terms of poweravailability and quality by:b Supply<strong>in</strong>g loads with voltage comply<strong>in</strong>g with strict tolerances, through use of an<strong>in</strong>verterb Provid<strong>in</strong>g an autonomous alternate source, through use of a batteryb Stepp<strong>in</strong>g <strong>in</strong> to replace utility power with no transfer time, i.e. without any <strong>in</strong>terruption<strong>in</strong> <strong>the</strong> supply of power to <strong>the</strong> load, through use of a static switchThese characteristics make UPSs <strong>the</strong> ideal power supply for all sensitive applicationsbecause <strong>the</strong>y ensure power quality and availability, whatever <strong>the</strong> state of utility power.A UPS comprises <strong>the</strong> follow<strong>in</strong>g ma<strong>in</strong> components:b Rectifier/charger, which produces DC power to charge a battery and supply an<strong>in</strong>verterb Inverter, which produces quality electrical power, i.e.v Free of all utility-power disturbances, notably micro-outagesv With<strong>in</strong> tolerances compatible with <strong>the</strong> requirements of sensitive electronic devices(e.g. for Galaxy, tolerances <strong>in</strong> amplitude ± 0.5% and frequency ± 1%, compared to± 10% and ± 5% <strong>in</strong> utility power systems, which correspond to improvement factorsof 20 and 5, respectively)b Battery, which provides sufficient backup time (8 m<strong>in</strong>utes to 1 hour or more) toensure <strong>the</strong> safety of life and property by replac<strong>in</strong>g <strong>the</strong> utility as requiredb Static switch, a semi-conductor based device which transfers <strong>the</strong> load from <strong>the</strong><strong>in</strong>verter to <strong>the</strong> utility and back, without any <strong>in</strong>terruption <strong>in</strong> <strong>the</strong> supply of power2.2 Types of static UPSsN12© Schneider Electric - all rights reservedTypes of static UPSs are def<strong>in</strong>ed by standard IEC 62040.The standard dist<strong>in</strong>guishes three operat<strong>in</strong>g modes:b Passive standby (also called off-l<strong>in</strong>e)b L<strong>in</strong>e <strong>in</strong>teractiveb Double conversion (also called on-l<strong>in</strong>e)These def<strong>in</strong>itions concern UPS operation with respect to <strong>the</strong> power source <strong>in</strong>clud<strong>in</strong>g<strong>the</strong> distribution system upstream of <strong>the</strong> UPS.Standard IEC 62040 def<strong>in</strong>es <strong>the</strong> follow<strong>in</strong>g terms:b Primary power: power normally cont<strong>in</strong>uously available which is usually supplied byan electrical utility company, but sometimes by <strong>the</strong> user’s own generationb Standby power: power <strong>in</strong>tended to replace <strong>the</strong> primary power <strong>in</strong> <strong>the</strong> event ofprimary-power failureb Bypass power: power supplied via <strong>the</strong> bypassPractically speak<strong>in</strong>g, a UPS is equipped with two AC <strong>in</strong>puts, which are called <strong>the</strong>normal AC <strong>in</strong>put and bypass AC <strong>in</strong>put <strong>in</strong> this guide.b The normal AC <strong>in</strong>put, noted as ma<strong>in</strong>s <strong>in</strong>put 1, is supplied by <strong>the</strong> primary power, i.e.by a cable connected to a feeder on <strong>the</strong> upstream utility or private distribution systemb The bypass AC <strong>in</strong>put, noted as ma<strong>in</strong>s <strong>in</strong>put 2, is generally supplied by standbypower, i.e. by a cable connected to an upstream feeder o<strong>the</strong>r than <strong>the</strong> one supply<strong>in</strong>g<strong>the</strong> normal AC <strong>in</strong>put, backed up by an alternate source (e.g. by an eng<strong>in</strong>e-generatorset or ano<strong>the</strong>r UPS, etc.)When standby power is not available, <strong>the</strong> bypass AC <strong>in</strong>put is supplied with primarypower (second cable parallel to <strong>the</strong> one connected to <strong>the</strong> normal AC <strong>in</strong>put).The bypass AC <strong>in</strong>put is used to supply <strong>the</strong> bypass l<strong>in</strong>e(s) of <strong>the</strong> UPS, if <strong>the</strong>yexist. Consequently, <strong>the</strong> bypass l<strong>in</strong>e(s) is supplied with primary or standby power,depend<strong>in</strong>g on <strong>the</strong> availability of a standby-power source.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads2 Un<strong>in</strong>terruptible Power Supplyunits (UPS)BatteryChargerInverterNormal modeBattery backup modeAC <strong>in</strong>putLoadFig. N16 : UPS operat<strong>in</strong>g <strong>in</strong> passive standby modeBatteryIf only one AC <strong>in</strong>putInverterStaticswitchNormal modeBattery backup modeBypass modeNormalAC <strong>in</strong>putLoadFig. N17 : UPS operat<strong>in</strong>g <strong>in</strong> l<strong>in</strong>e-<strong>in</strong>teractive modeFilter/conditionerBypassAC <strong>in</strong>putBypassUPS operat<strong>in</strong>g <strong>in</strong> passive-standby (off-l<strong>in</strong>e) modeOperat<strong>in</strong>g pr<strong>in</strong>cipleThe <strong>in</strong>verter is connected <strong>in</strong> parallel with <strong>the</strong> AC <strong>in</strong>put <strong>in</strong> a standby (see Fig. N16).b Normal modeThe load is supplied by utility power via a filter which elim<strong>in</strong>ates certa<strong>in</strong> disturbancesand provides some degree of voltage regulation (<strong>the</strong> standard speaks of “additionaldevices…to provide power condition<strong>in</strong>g”). The <strong>in</strong>verter operates <strong>in</strong> passive standbymode.b Battery backup modeWhen <strong>the</strong> AC <strong>in</strong>put voltage is outside specified tolerances for <strong>the</strong> UPS or <strong>the</strong> utilitypower fails, <strong>the</strong> <strong>in</strong>verter and <strong>the</strong> battery step <strong>in</strong> to ensure a cont<strong>in</strong>uous supply ofpower to <strong>the</strong> load follow<strong>in</strong>g a very short (


N - Characteristics of particular sources and loads2 Un<strong>in</strong>terruptible Power Supplyunits (UPS)b Bypass modeThis type of UPS is generally equipped with a static bypass, sometimes referred toas a static switch (see Fig. N18).The load can be transferred without <strong>in</strong>terruption to <strong>the</strong> bypass AC <strong>in</strong>put (suppliedwith utility or standby power, depend<strong>in</strong>g on <strong>the</strong> <strong>in</strong>stallation), <strong>in</strong> <strong>the</strong> event of <strong>the</strong>follow<strong>in</strong>g:v UPS failurev Load-current transients (<strong>in</strong>rush or fault currents)v Load peaksHowever, <strong>the</strong> presence of a bypass assumes that <strong>the</strong> <strong>in</strong>put and output frequenciesare identical and if <strong>the</strong> voltage levels are not <strong>the</strong> same, a bypass transformer isrequired.For certa<strong>in</strong> loads, <strong>the</strong> UPS must be synchronized with <strong>the</strong> bypass power to ensureload-supply cont<strong>in</strong>uity. What is more, when <strong>the</strong> UPS is <strong>in</strong> bypass mode, a disturbanceon <strong>the</strong> AC <strong>in</strong>put source may be transmitted directly to <strong>the</strong> load because <strong>the</strong> <strong>in</strong>verterno longer steps <strong>in</strong>.Note: Ano<strong>the</strong>r bypass l<strong>in</strong>e, often called <strong>the</strong> ma<strong>in</strong>tenance bypass, is available forma<strong>in</strong>tenance purposes. It is closed by a manual switch.NormalAC <strong>in</strong>putBypassAC <strong>in</strong>putIf only one AC <strong>in</strong>putBatteryInverterStaticswitch(staticbypass)Manualma<strong>in</strong>tenancebypassLoadN14Normal modeBattery backup modeBypass modeFig. N18 : UPS operat<strong>in</strong>g <strong>in</strong> double-conversion (on-l<strong>in</strong>e) mode© Schneider Electric - all rights reservedUsageIn this configuration, <strong>the</strong> time required to transfer <strong>the</strong> load to <strong>the</strong> <strong>in</strong>verter is negligibledue to <strong>the</strong> static switch.Also, <strong>the</strong> output voltage and frequency do not depend on <strong>the</strong> <strong>in</strong>put voltage andfrequency conditions. This means that <strong>the</strong> UPS, when designed for this purpose, canoperate as a frequency converter.Practically speak<strong>in</strong>g, this is <strong>the</strong> ma<strong>in</strong> configuration used for medium and highpower rat<strong>in</strong>gs (from 10 kVA upwards).The rest of this chapter will consider only thisconfiguration.Note: This type of UPS is often called “on-l<strong>in</strong>e”, mean<strong>in</strong>g that <strong>the</strong> load is cont<strong>in</strong>uouslysupplied by <strong>the</strong> <strong>in</strong>verter, regardless of <strong>the</strong> conditions on <strong>the</strong> AC <strong>in</strong>put source. Thisterm is mislead<strong>in</strong>g, however, because it also suggests “supplied by utility power”,when <strong>in</strong> fact <strong>the</strong> load is supplied by power that has been reconstituted by <strong>the</strong> doubleconversionsystem. That is why standard IEC 62040 recommends <strong>the</strong> term “doubleconversion”.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads2 Un<strong>in</strong>terruptible Power Supplyunits (UPS)2.3 BatteriesSelection of battery typeA battery is made up of <strong>in</strong>terconnected cells which may be vented or of <strong>the</strong>recomb<strong>in</strong>ation type.There are two ma<strong>in</strong> families of batteries:b Nickel-cadmium batteriesb Lead-acid batteriesb Vented cells (lead-antimony): They are equipped with ports tov Release to <strong>the</strong> atmosphere <strong>the</strong> oxygen and hydrogen produced dur<strong>in</strong>g <strong>the</strong> differentchemical reactionsv Top off <strong>the</strong> electrolyte by add<strong>in</strong>g distilled or dem<strong>in</strong>eralized waterb Recomb<strong>in</strong>ation cells (lead, pure lead, lead-t<strong>in</strong> batteries): The gas recomb<strong>in</strong>ationrate is at least 95% and <strong>the</strong>y <strong>the</strong>refore do not require water to be added dur<strong>in</strong>gservice lifeBy extension, reference will be made to vented or recomb<strong>in</strong>ation batteries(recomb<strong>in</strong>ation batteries are also often called “sealed” batteries).The ma<strong>in</strong> types of batteries used <strong>in</strong> conjunction with UPSs are:b Sealed lead-acid batteries, used 95% of <strong>the</strong> time because <strong>the</strong>y are easy toma<strong>in</strong>ta<strong>in</strong> and do not require a special roomb Vented lead-acid batteriesb Vented nickel-cadmium batteriesThe above three types of batteries may be proposed, depend<strong>in</strong>g on economic factorsand <strong>the</strong> operat<strong>in</strong>g requirements of <strong>the</strong> <strong>in</strong>stallation, with all <strong>the</strong> available service-lifedurations.Capacity levels and backup times may be adapted to suit <strong>the</strong> user’s needs.The proposed batteries are also perfectly suited to UPS applications <strong>in</strong> that <strong>the</strong>y are<strong>the</strong> result of collaboration with lead<strong>in</strong>g battery manufacturers.Selection of back up timeSelection depends on:b The average duration of power-system failuresb Any available long-last<strong>in</strong>g standby power (eng<strong>in</strong>e-generator set, etc.)b The type of applicationThe typical range generally proposed is:b Standard backup times of 10, 15 or 30 m<strong>in</strong>utesb Custom backup timesThe follow<strong>in</strong>g general rules apply:b Computer applicationsBattery backup time must be sufficient to cover file-sav<strong>in</strong>g and system-shutdownprocedures required to ensure a controlled shutdown of <strong>the</strong> computer system.Generally speak<strong>in</strong>g, <strong>the</strong> computer department determ<strong>in</strong>es <strong>the</strong> necessary backuptime, depend<strong>in</strong>g on its specific requirements.b Industrial processesThe backup time calculation should take <strong>in</strong>to account <strong>the</strong> economic cost <strong>in</strong>curred byan <strong>in</strong>terruption <strong>in</strong> <strong>the</strong> process and <strong>the</strong> time required to restart.N15Selection tableFigure N19 next page sums up <strong>the</strong> ma<strong>in</strong> characteristics of <strong>the</strong> various types ofbatteries.Increas<strong>in</strong>gly, recomb<strong>in</strong>ation batteries would seem to be <strong>the</strong> market choice for <strong>the</strong>follow<strong>in</strong>g reasons:b No ma<strong>in</strong>tenanceb Easy implementationb <strong>Installation</strong> <strong>in</strong> all types of rooms (computer rooms, technical rooms not specifically<strong>in</strong>tended for batteries, etc.)In certa<strong>in</strong> cases, however, vented batteries are preferred, notably for:b Long service lifeb Long backup timesb High power rat<strong>in</strong>gsVented batteries must be <strong>in</strong>stalled <strong>in</strong> special rooms comply<strong>in</strong>g with preciseregulations and require appropriate ma<strong>in</strong>tenance.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads2 Un<strong>in</strong>terruptible Power Supplyunits (UPS)Service life Compact Operat<strong>in</strong>g- Frequency Special Costtemperature of roomtolerances ma<strong>in</strong>tenanceSealed lead-acid 5 or 10 years + + Low No Low mediumVented lead-acid 5 or 10 years + ++ Medium Yes LowNickel-cadmium 5 or 10 years ++ +++ High no HighFig. N19 : Ma<strong>in</strong> characteristics of <strong>the</strong> various types of batteriesFig. N20 : Shelf mount<strong>in</strong>g<strong>Installation</strong> methodsDepend<strong>in</strong>g on <strong>the</strong> UPS range, <strong>the</strong> battery capacity and backup time, <strong>the</strong> battery is:b Sealed type and housed <strong>in</strong> <strong>the</strong> UPS cab<strong>in</strong>etb Sealed type and housed <strong>in</strong> one to three cab<strong>in</strong>etsb Vented or sealed type and rack-mounted. In this case <strong>the</strong> <strong>in</strong>stallation method may bev On shelves (see Fig. N20)This <strong>in</strong>stallation method is possible for sealed batteries or ma<strong>in</strong>tenance-free ventedbatteries which do not require topp<strong>in</strong>g up of <strong>the</strong>ir electrolyte.v Tier mount<strong>in</strong>g (see Fig. N21)This <strong>in</strong>stallation method is suitable for all types of batteries and for vented batteries<strong>in</strong> particular, as level check<strong>in</strong>g and fill<strong>in</strong>g are made easy.v In cab<strong>in</strong>ets (see Fig. N22)This <strong>in</strong>stallation method is suitable for sealed batteries. It is easy to implement andoffers maximum safety.2.4 System earth<strong>in</strong>g arrangements for <strong>in</strong>stallationscompris<strong>in</strong>g UPSsN16Fig. N21 : Tier mount<strong>in</strong>gFig. N22 : Cab<strong>in</strong>et mount<strong>in</strong>gApplication of protection systems, stipulated by <strong>the</strong> standards, <strong>in</strong> <strong>in</strong>stallationscompris<strong>in</strong>g a UPS, requires a number of precautions for <strong>the</strong> follow<strong>in</strong>g reasons:b The UPS plays two rolesv A load for <strong>the</strong> upstream systemv A power source for downstream systemb When <strong>the</strong> battery is not <strong>in</strong>stalled <strong>in</strong> a cab<strong>in</strong>et, an <strong>in</strong>sulation fault on <strong>the</strong> DC systemcan lead to <strong>the</strong> flow of a residual DC componentThis component can disturb <strong>the</strong> operation of certa<strong>in</strong> protection devices, notablyRCDs used for <strong>the</strong> protection of persons.Protection aga<strong>in</strong>st direct contact (see Fig. N23)All <strong>in</strong>stallations satisfy <strong>the</strong> applicable requirements because <strong>the</strong> equipment is housed<strong>in</strong> cab<strong>in</strong>ets provid<strong>in</strong>g a degree of protection IP 20. This is true even for <strong>the</strong> batterywhen it is housed <strong>in</strong> a cab<strong>in</strong>et.When batteries are not <strong>in</strong>stalled <strong>in</strong> a cab<strong>in</strong>et, i.e. generally <strong>in</strong> a special room, <strong>the</strong>measures presented at <strong>the</strong> end of this chapter should be implemented.Note: The TN system (version TN-S or TN-C) is <strong>the</strong> most commonly recommendedsystem for <strong>the</strong> supply of computer systems.© Schneider Electric - all rights reservedType of arrangement IT system TT system TN systemOperation b Signal<strong>in</strong>g of first <strong>in</strong>sulation fault b Disconnection for first b Disconnection for first <strong>in</strong>sulation faultb Locat<strong>in</strong>g and elim<strong>in</strong>ation of first fault <strong>in</strong>sulation faultb Disconnection for second <strong>in</strong>sulation faultTechniques for protection b Interconnection and earth<strong>in</strong>g of b Earth<strong>in</strong>g of conductive parts b Interconnection and earth<strong>in</strong>g ofof persons conductive parts comb<strong>in</strong>ed with use of RCDs conductive parts and neutral imperativeb Surveillance of first fault us<strong>in</strong>g an b First <strong>in</strong>sulation fault results <strong>in</strong> b First <strong>in</strong>sulation fault results <strong>in</strong><strong>in</strong>sulation monitor<strong>in</strong>g device (IMD) <strong>in</strong>terruption by detect<strong>in</strong>g leakage <strong>in</strong>terruption by detect<strong>in</strong>g overcurrentsb Second fault results <strong>in</strong> circuit <strong>in</strong>terruption currents (circuit-breaker or fuse)(circuit-breaker or fuse)Advantages and b Solution offer<strong>in</strong>g <strong>the</strong> best cont<strong>in</strong>uity of b Easiest solution <strong>in</strong> terms of design b Low-cost solution <strong>in</strong> terms of <strong>in</strong>stallationdisadvantages service (first fault is signalled) and <strong>in</strong>stallation b Difficult designb Requires competent surveillance b No <strong>in</strong>sulation monitor<strong>in</strong>g device (calculation of loop impedances)personnel (location of first fault) (IMD) required b Qualified operat<strong>in</strong>g personnel requiredb However, each fault results <strong>in</strong> b Flow of high fault currents<strong>in</strong>terruption of <strong>the</strong> concerned circuitFig. N23 : Ma<strong>in</strong> characteristics of system earth<strong>in</strong>g arrangementsSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads2 Un<strong>in</strong>terruptible Power Supplyunits (UPS)Essential po<strong>in</strong>ts to be checked for UPSsFigure N24 shows all <strong>the</strong> essential po<strong>in</strong>ts that must be <strong>in</strong>terconnected as well as <strong>the</strong>devices to be <strong>in</strong>stalled (transformers, RCDs, etc.) to ensure <strong>in</strong>stallation conformitywith safety standards.T0 neutralT0IMD 1CB0Earth 1CB1CB2T1 neutralT1T2T2 neutralBypassneutralQ1Q4SQ3BPUPS exposedconductivepartsNQ5NUPS outputIMD 2N17DownstreamneutralEarth 2CB3LoadexposedconductivepartsEarth3Fig. N24 : The essential po<strong>in</strong>ts that must be connected <strong>in</strong> system earth<strong>in</strong>g arrangements© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads2 Un<strong>in</strong>terruptible Power Supplyunits (UPS)2.5 Choice of protection schemesThe circuit-breakers have a major role <strong>in</strong> an <strong>in</strong>stallation but <strong>the</strong>ir importance oftenappears at <strong>the</strong> time of accidental events which are not frequent. The best siz<strong>in</strong>g ofUPS and <strong>the</strong> best choice of configuration can be compromised by a wrong choice ofonly one circuit-breaker.Circuit-breaker selectionFigure N25 shows how to select <strong>the</strong> circuit-breakers.100IrdownstreamIrupstreamSelect <strong>the</strong> break<strong>in</strong>g capacities ofCB1 and CB2 for <strong>the</strong> short-circuitcurrent of <strong>the</strong> most powerful source(generally <strong>the</strong> transformer)GECB2 curveCB3 curveTripp<strong>in</strong>g time (<strong>in</strong> seconds)1010.1ImdownstreamImupstreamGeneratorshort-circuitThermal limitof static powerHowever, CB1 and CB2 musttrip on a short-circuit suppliedby <strong>the</strong> least powerful source(generally <strong>the</strong> generator)CB2 must protect <strong>the</strong> UPS staticswitch if a short circuit occursdownstream of <strong>the</strong> switchCB1CB20.01CB2The overload capacity of <strong>the</strong> staticswitch is 10 to 12 In for 20 ms,where In is <strong>the</strong> current flow<strong>in</strong>gthrough <strong>the</strong> UPS at full rated loadCB30.0010.1 110 100Energiz<strong>in</strong>g ofa transformerEnergiz<strong>in</strong>g of allloads downstreamof UPSI/In of upstreamcircuit breakerN18The Im current of CB2 must be calculated for simultaneousenergiz<strong>in</strong>g of all <strong>the</strong> loads downstream of <strong>the</strong> UPSThe trip unit of CB3 muqt be set not to trip for <strong>the</strong> overcurrent when <strong>the</strong> load is energizedCB3If bypass power is not used to handle overloads, <strong>the</strong> UPS current must trip <strong>the</strong> CB3 circuitbreaker with <strong>the</strong> highest rat<strong>in</strong>g© Schneider Electric - all rights reservedFor distant short-circuits, <strong>the</strong> CB3 unit sett<strong>in</strong>g must not result <strong>in</strong> a dangerous touch voltage.If necessary, <strong>in</strong>stall an RCDFig. N25 : Circuit-breakers are submitted to a variety of situationsIrdownstreamUcSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads2 Un<strong>in</strong>terruptible Power Supplyunits (UPS)Rat<strong>in</strong>gThe selected rat<strong>in</strong>g (rated current) for <strong>the</strong> circuit-breaker must be <strong>the</strong> one just above<strong>the</strong> rated current of <strong>the</strong> protected downstream cable.Break<strong>in</strong>g capacityThe break<strong>in</strong>g capacity must be selected just above <strong>the</strong> short-circuit current that canoccur at <strong>the</strong> po<strong>in</strong>t of <strong>in</strong>stallation.Ir and Im thresholdsThe table below <strong>in</strong>dicates how to determ<strong>in</strong>e <strong>the</strong> Ir (overload ; <strong>the</strong>rmal or longtime)and Im (short-circuit ; magnetic or short time) thresholds to ensure discrim<strong>in</strong>ation,depend<strong>in</strong>g on <strong>the</strong> upstream and downstream trip units.Remark (see Fig. N26)b Time discrim<strong>in</strong>ation must be implemented by qualified personnel because timedelays before tripp<strong>in</strong>g <strong>in</strong>crease <strong>the</strong> <strong>the</strong>rmal stress (I 2 t) downstream (cables, semiconductors,etc.). Caution is required if tripp<strong>in</strong>g of CB2 is delayed us<strong>in</strong>g <strong>the</strong> Imthreshold time delayb Energy discrim<strong>in</strong>ation does not depend on <strong>the</strong> trip unit, only on <strong>the</strong> circuit-breakerType of downstream Ir upstream / Im upstream / Im upstream /circuit Ir downstream Im downstream Im downstreamratio ratio ratioDownstream trip unit All types Magnetic ElectronicDistribution > 1.6 >2 >1.5Asynchronous motor >3 >2 >1.5Fig. N26 : Ir and Im thresholds depend<strong>in</strong>g on <strong>the</strong> upstream and downstream trip unitsSpecial case of generator short-circuitsFigure N27 shows <strong>the</strong> reaction of a generator to a short-circuit.To avoid any uncerta<strong>in</strong>ty concern<strong>in</strong>g <strong>the</strong> type of excitation, we will trip at <strong>the</strong> firstpeak (3 to 5 In as per X”d) us<strong>in</strong>g <strong>the</strong> Im protection sett<strong>in</strong>g without a time delay.Irms3 InGenerator withover-excitationN19In0.3 InGenerator withseries excitationtSubtransientconditions 10 to 20 msTransient conditions100 to 300 msFig. N27 : Generator dur<strong>in</strong>g short-circuit© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads2 Un<strong>in</strong>terruptible Power Supplyunits (UPS)2.6 <strong>Installation</strong>, connection and siz<strong>in</strong>g of cablesReady-to-use UPS unitsThe low power UPSs, for micro computer systems for example, are compact readyto-useequipement. The <strong>in</strong>ternal wir<strong>in</strong>g is built <strong>in</strong> <strong>the</strong> factory and adapted to <strong>the</strong>characteristics of <strong>the</strong> devices.Not ready-to-use UPS unitsFor <strong>the</strong> o<strong>the</strong>r UPSs, <strong>the</strong> wire connections to <strong>the</strong> power supply system, to <strong>the</strong> batteryand to <strong>the</strong> load are not <strong>in</strong>cluded.Wir<strong>in</strong>g connections depend on <strong>the</strong> current level as <strong>in</strong>dicated <strong>in</strong> Figure N28 below.IuMa<strong>in</strong>s 1SWStatic switchIuI1Rectifier/chargerInverterLoadMa<strong>in</strong>s 2IbBatterycapacity C10Fig.N28 : Current to be taken <strong>in</strong>to account for <strong>the</strong> selection of <strong>the</strong> wire connectionsCalculation of currents I1, Iub The <strong>in</strong>put current Iu from <strong>the</strong> power network is <strong>the</strong> load currentb The <strong>in</strong>put current I1 of <strong>the</strong> charger/rectifier depends on:v The capacity of <strong>the</strong> battery (C10) and <strong>the</strong> charg<strong>in</strong>g mode (Ib)v The characteristics of <strong>the</strong> chargerv The efficiency of <strong>the</strong> <strong>in</strong>verterb The current Ib is <strong>the</strong> current <strong>in</strong> <strong>the</strong> connection of <strong>the</strong> batteryThese currents are given by <strong>the</strong> manufacturers.N20Cable temperature rise and voltage dropsThe cross section of cables depends on:b Permissible temperature riseb Permissible voltage dropFor a given load, each of <strong>the</strong>se parameters results <strong>in</strong> a m<strong>in</strong>imum permissible crosssection. The larger of <strong>the</strong> two must be used.When rout<strong>in</strong>g cables, care must be taken to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> required distances betweencontrol circuits and power circuits, to avoid any disturbances caused by HF currents.© Schneider Electric - all rights reservedTemperature risePermissible temperature rise <strong>in</strong> cables is limited by <strong>the</strong> withstand capacity of cable<strong>in</strong>sulation.Temperature rise <strong>in</strong> cables depends on:b The type of core (Cu or Al)b The <strong>in</strong>stallation methodb The number of touch<strong>in</strong>g cablesStandards stipulate, for each type of cable, <strong>the</strong> maximum permissible current.Voltage dropsThe maximum permissible voltage drops are:b 3% for AC circuits (50 or 60 Hz)b 1% for DC circuitsSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads2 Un<strong>in</strong>terruptible Power Supplyunits (UPS)Selection tablesFigure N29 <strong>in</strong>dicates <strong>the</strong> voltage drop <strong>in</strong> percent for a circuit made up of 100 metersof cable. To calculate <strong>the</strong> voltage drop <strong>in</strong> a circuit with a length L, multiply <strong>the</strong> value <strong>in</strong><strong>the</strong> table by L/100.b Sph: Cross section of conductorsb I n : Rated current of protection devices on circuitThree-phase circuitIf <strong>the</strong> voltage drop exceeds 3% (50-60 Hz), <strong>in</strong>crease <strong>the</strong> cross section of conductors.DC circuitIf <strong>the</strong> voltage drop exceeds 1%, <strong>in</strong>crease <strong>the</strong> cross section of conductors.a - Three-phase circuits (copper conductors)50-60 Hz - 380 V / 400 V / 415 V three-phase, cos ϕ = 0.8, balanced system three-phase + NIn Sph (mN 2 )(A) 10 16 25 35 50 70 95 120 150 185 240 30010 0.915 1.220 1.6 1.125 2.0 1.3 0.932 2.6 1.7 1.140 3.3 2.1 1.4 1.050 4.1 2.6 1.7 1.3 1.063 5.1 3.3 2.2 1.6 1.2 0.970 5.7 3.7 2.4 1.7 1.3 1.0 0.880 6.5 4.2 2.7 2.1 1.5 1.2 0.9 0.7100 8.2 5.3 3.4 2.6 2.0 2.0 1.1 0.9 0.8125 6.6 4.3 3.2 2.4 2.4 1.4 1.1 1.0 0.8160 5.5 4.3 3.2 3.2 1.8 1.5 1.2 1.1 0.9200 5.3 3.9 3.9 2.2 1.8 1.6 1.3 1.2 0.9250 4.9 4.9 2.8 2.3 1.9 1.7 1.4 1.2320 3.5 2.9 2.5 2.1 1.9 1.5400 4.4 3.6 3.1 2.7 2.3 1.9500 4.5 3.9 3.4 2.9 2.4600 4.9 4.2 3.6 3.0800 5.3 4.4 3.81,000 6.5 4.7For a three-phase 230 V circuit, multiply <strong>the</strong> result by eFor a s<strong>in</strong>gle-phase 208/230 V circuit, multiply <strong>the</strong> result by 2b - DC circuits (copper conductors)In Sph (mN2)(A) - - 25 35 50 70 95 120 150 185 240 300100 5.1 3.6 2.6 1.9 1.3 1.0 0.8 0.7 0.5 0.4125 4.5 3.2 2.3 1.6 1.3 1.0 0.8 0.6 0.5160 4.0 2.9 2.2 1.6 1.2 1.1 0.6 0.7200 3.6 2.7 2.2 1.6 1.3 1.0 0.8250 3.3 2.7 2.2 1.7 1.3 1.0320 3.4 2.7 2.1 1.6 1.3400 3.4 2.8 2.1 1.6500 3.4 2.6 2.1600 4.3 3.3 2.7800 4.2 3.41,000 5.3 4.21,250 5.3N21Fig. N29 : Voltage drop <strong>in</strong> percent for [a] three-phase circuits and [b] DC circuitsSpecial case for neutral conductorsIn three-phase systems, <strong>the</strong> third-order harmonics (and <strong>the</strong>ir multiples) of s<strong>in</strong>glephaseloads add up <strong>in</strong> <strong>the</strong> neutral conductor (sum of <strong>the</strong> currents on <strong>the</strong> threephases).For this reason, <strong>the</strong> follow<strong>in</strong>g rule may be applied:neutral cross section = 1.5 x phase cross section© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads2 Un<strong>in</strong>terruptible Power Supplyunits (UPS)ExampleConsider a 70-meter 400 V three-phase circuit, with copper conductors and a ratedcurrent of 600 A.Standard IEC 60364 <strong>in</strong>dicates, depend<strong>in</strong>g on <strong>the</strong> <strong>in</strong>stallation method and <strong>the</strong> load, am<strong>in</strong>imum cross section.We shall assume that <strong>the</strong> m<strong>in</strong>imum cross section is 95 mm 2 .It is first necessary to check that <strong>the</strong> voltage drop does not exceed 3%.The table for three-phase circuits on <strong>the</strong> previous page <strong>in</strong>dicates, for a 600 A currentflow<strong>in</strong>g <strong>in</strong> a 300 mm 2 cable, a voltage drop of 3% for 100 meters of cable, i.e. for70 meters:3 x 70 = 2.1 %100Therefore less than 3%A identical calculation can be run for a DC current of 1,000 A.In a ten-meter cable, <strong>the</strong> voltage drop for 100 meters of 240 mN 2 cable is 5.3%, i.e.for ten meters:5.3 x 10 = 0.53 %100Therefore less than 3%2.7 The UPSs and <strong>the</strong>ir environmentThe UPSs can communicate with electrical and comput<strong>in</strong>g environment. They canreceive some data and provide <strong>in</strong>formation on <strong>the</strong>ir operation <strong>in</strong> order:b To optimize <strong>the</strong> protectionFor example, <strong>the</strong> UPS provides essential <strong>in</strong>formation on operat<strong>in</strong>g status to <strong>the</strong>computer system (load on <strong>in</strong>verter, load on static bypass, load on battery, low batterywarn<strong>in</strong>g)b To remotely controlThe UPS provides measurement and operat<strong>in</strong>g status <strong>in</strong>formation to <strong>in</strong>form andallow operators to take specific actionsb To manage <strong>the</strong> <strong>in</strong>stallationThe operator has a build<strong>in</strong>g and <strong>energy</strong> management system which allow to obta<strong>in</strong>and save <strong>in</strong>formation from UPSs, to provide alarms and events and to take actions.This evolution towards compatibilty between computer equipment and UPSs has <strong>the</strong>effect to <strong>in</strong>corporate new built-<strong>in</strong> UPS functions.2.8 Complementary equipmentN22TransformersA two-w<strong>in</strong>d<strong>in</strong>g transformer <strong>in</strong>cluded on <strong>the</strong> upstream side of <strong>the</strong> static contactor ofcircuit 2 allows:b A change of voltage level when <strong>the</strong> power network voltage is different to that of <strong>the</strong>loadb A change of system of earth<strong>in</strong>g between <strong>the</strong> networksMoreover, such a transformer :b Reduces <strong>the</strong> short-circuit current level on <strong>the</strong> secondary, (i.e load) side comparedwith that on <strong>the</strong> power network sideb Prevents third harmonic currents which may be present on <strong>the</strong> secondary sidefrom pass<strong>in</strong>g <strong>in</strong>to <strong>the</strong> power-system network, provid<strong>in</strong>g that <strong>the</strong> primary w<strong>in</strong>d<strong>in</strong>g isconnected <strong>in</strong> delta.© Schneider Electric - all rights reservedAnti-harmonic filterThe UPS system <strong>in</strong>cludes a battery charger which is controlled by thyristors ortransistors. The result<strong>in</strong>g regularly-chopped current cycles “generate” harmoniccomponents <strong>in</strong> <strong>the</strong> power-supply network.These <strong>in</strong>desirable components are filtered at <strong>the</strong> <strong>in</strong>put of <strong>the</strong> rectifier and for mostcases this reduces <strong>the</strong> harmonic current level sufficiently for all practical purposes.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads2 Un<strong>in</strong>terruptible Power Supplyunits (UPS)In certa<strong>in</strong> specific cases however, notably <strong>in</strong> very large <strong>in</strong>stallations, an additionalfilter circuit may be necessary.For example when :b The power rat<strong>in</strong>g of <strong>the</strong> UPS system is large relative to <strong>the</strong> MV/LV transformersupplly<strong>in</strong>g itb The LV busbars supply loads which are particularly sensitive to harmonicsb A diesel (or gas-turb<strong>in</strong>e, etc,) driven alternator is provided as a standby powersupplyIn such cases, <strong>the</strong> manufacturer of <strong>the</strong> UPS system should be consultedCommunication equipmentCommunication with equipment associated with computer systems may entail <strong>the</strong>need for suitable facilities with<strong>in</strong> <strong>the</strong> UPS system. Such facilities may be <strong>in</strong>corporated<strong>in</strong> an orig<strong>in</strong>al design (see Fig. N30a ), or added to exist<strong>in</strong>g systems on request(see Fig. N30b ).Fig. N30a : Ready-to-use UPS unit (with DIN module)Fig. N30b : UPS unit achiev<strong>in</strong>g disponibility and quality of computer system power supplyN23© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads3 Protection of LV/LV transformersThese transformers are generally <strong>in</strong> <strong>the</strong> range of several hundreds of VA to somehundreds of kVA and are frequently used for:b Chang<strong>in</strong>g <strong>the</strong> low voltage level for:v Auxiliary supplies to control and <strong>in</strong>dication circuitsv Light<strong>in</strong>g circuits (230 V created when <strong>the</strong> primary system is 400 V 3-phase3-wires)b Chang<strong>in</strong>g <strong>the</strong> method of earth<strong>in</strong>g for certa<strong>in</strong> loads hav<strong>in</strong>g a relatively highcapacitive current to earth (computer equipment) or resistive leakage current(electric ovens, <strong>in</strong>dustrial-heat<strong>in</strong>g processes, mass-cook<strong>in</strong>g <strong>in</strong>stallations, etc.)LV/LV transformers are generally supplied with protective systems <strong>in</strong>corporated,and <strong>the</strong> manufacturers must be consulted for details. Overcurrent protection must,<strong>in</strong> any case, be provided on <strong>the</strong> primary side. The exploitation of <strong>the</strong>se transformersrequires a knowledge of <strong>the</strong>ir particular function, toge<strong>the</strong>r with a number of po<strong>in</strong>tsdescribed below.Note: In <strong>the</strong> particular cases of LV/LV safety isolat<strong>in</strong>g transformers at extra-lowvoltage, an ear<strong>the</strong>d metal screen between <strong>the</strong> primary and secondary w<strong>in</strong>d<strong>in</strong>gsis frequently required, accord<strong>in</strong>g to circumstances, as recommended <strong>in</strong> EuropeanStandard EN 60742.3.1 Transformer-energiz<strong>in</strong>g <strong>in</strong>rush currentAt <strong>the</strong> moment of energiz<strong>in</strong>g a transformer, high values of transient current (which<strong>in</strong>cludes a significant DC component) occur, and must be taken <strong>in</strong>to account whenconsider<strong>in</strong>g protection schemes (see Fig. N31).It5 sI 1 st peak10 to 25 In20msIrRMS value of<strong>the</strong> 1 st peakImIiIInFig N31 : Transformer-energiz<strong>in</strong>g <strong>in</strong>rush currenttN24Fig N32 : Tripp<strong>in</strong>g characteristic of a Compact NS type STR(electronic)tThe magnitude of <strong>the</strong> current peak depends on:b The value of voltage at <strong>the</strong> <strong>in</strong>stant of energizationb The magnitude and polarity of <strong>the</strong> residual flux exist<strong>in</strong>g <strong>in</strong> <strong>the</strong> core of <strong>the</strong>transformerb Characteristics of <strong>the</strong> load connected to <strong>the</strong> transformerThe first current peak can reach a value equal to 10 to 15 times <strong>the</strong> full-load r.m.s.current, but for small transformers (< 50 kVA) may reach values of 20 to 25 times<strong>the</strong> nom<strong>in</strong>al full-load current. This transient current decreases rapidly, with a timeconstant θ of <strong>the</strong> order of several ms to severals tens of ms.3.2 Protection for <strong>the</strong> supply circuit of aLV/LV transformer© Schneider Electric - all rights reservedInRMS value of<strong>the</strong> 1 st peak10In 14InFig N33 : Tripp<strong>in</strong>g characteristic of a Multi 9 curve DIThe protective device on <strong>the</strong> supply circuit for a LV/LV transformer must avoid <strong>the</strong>possibility of <strong>in</strong>correct operation due to <strong>the</strong> magnetiz<strong>in</strong>g <strong>in</strong>rush current surge, notedabove.It is necessary to use <strong>the</strong>refore:b Selective (i.e. slighly time-delayed) circuit-breakers of <strong>the</strong> type Compact NS STR(see Fig. N32) orb Circuit-breakers hav<strong>in</strong>g a very high magnetic-trip sett<strong>in</strong>g, of <strong>the</strong> types Compact NSor Multi 9 curve D (see Fig. N33)Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads3 Protection of LV/LV transformersFig N34 : ExampleNS250NTrip unitSTR 22E3 x 70 mm 2400/230 V125 kVAExampleA 400 V 3-phase circuit is supply<strong>in</strong>g a 125 kVA 400/230 V transformer (In = 180 A)for which <strong>the</strong> first <strong>in</strong>rush current peak can reach 12 In, i.e. 12 x 180 = 2,160 A.This current peak corresponds to a rms value of 1,530 A.A compact NS 250N circuit-breaker with Ir sett<strong>in</strong>g of 200 A and Im sett<strong>in</strong>g at 8 x Irwould <strong>the</strong>refore be a suitable protective device.A particular case: Overload protection <strong>in</strong>stalled at <strong>the</strong> secondary side of <strong>the</strong>transformer (see Fig. N34)An advantage of overload protection located on <strong>the</strong> secondary side is that <strong>the</strong> shortcircuitprotection on <strong>the</strong> primary side can be set at a high value, or alternatively acircuit-breaker type MA (magnetic only) can be used. The primary side short-circuitprotection sett<strong>in</strong>g must, however, be sufficiently sensitive to ensure its operation <strong>in</strong><strong>the</strong> event of a short-circuit occur<strong>in</strong>g on <strong>the</strong> secondary side of <strong>the</strong> transformer.Note: The primary protection is sometimes provided by fuses, type aM. This practicehas two disadvantages:b The fuses must be largely oversized (at least 4 times <strong>the</strong> nom<strong>in</strong>al full-load ratedcurrent of <strong>the</strong> transformer)b In order to provide isolat<strong>in</strong>g facilities on <strong>the</strong> primary side, ei<strong>the</strong>r a load-break switchor a contactor must be associated with <strong>the</strong> fuses.3.3 Typical electrical characteristics of LV/LV 50 Hztransformers3-phasekVA rat<strong>in</strong>g 5 6.3 8 10 12.5 16 20 25 31.5 40 50 63 80 100 125 160 200 250 315 400 500 630 800No-load 100 110 130 150 160 170 270 310 350 350 410 460 520 570 680 680 790 950 1160 1240 1485 1855 2160losses (W)Full-load 250 320 390 500 600 840 800 1180 1240 1530 1650 2150 2540 3700 3700 5900 5900 6500 7400 9300 9400 11400 13400losses (W)Short-circuit 4.5 4.5 4.5 5.5 5.5 5.5 5.5 5.5 5 5 4.5 5 5 5.5 4.5 5.5 5 5 4.5 6 6 5.5 5.5voltage (%)1-phasekVA rat<strong>in</strong>g 8 10 12.5 16 20 25 31.5 40 50 63 80 100 125 160No-load losses (W) 105 115 120 140 150 175 200 215 265 305 450 450 525 635Full-load losses (W) 400 530 635 730 865 1065 1200 1400 1900 2000 2450 3950 3950 4335Short-circuit voltage (%) 5 5 5 4.5 4.5 4.5 4 4 5 5 4.5 5.5 5 53.4 Protection of LV/LV transformers, us<strong>in</strong>gMerl<strong>in</strong> Ger<strong>in</strong> circuit-breakersMulti 9 circuit-breakerTransformer power rat<strong>in</strong>g (kVA) Cricuit breaker Size230/240 V 1-ph 230/240 V 3-ph 400/415 V 3-ph curve D or K (A)400/415 V 1-ph0.05 0.09 0.16 C60, NG125 0.50.11 0.18 0.32 C60, NG125 10.21 0.36 0.63 C60, NG125 20.33 0.58 1.0 C60, NG125 30.67 1.2 2.0 C60, NG125 61.1 1.8 3.2 C60, C120, NG125 101.7 2.9 5.0 C60, C120, NG125 162.1 3.6 6.3 C60, C120, NG125 202.7 4.6 8.0 C60, C120, NG125 253.3 5.8 10 C60, C120, NG125 324.2 7.2 13 C60, C120, NG125 405.3 9.2 16 C60, C120, NC100, NG125 506.7 12 20 C60, C120, NC100, NG125 638.3 14 25 C120, NC100, NG125 8011 18 32 C120, NC100, NG125 10013 23 40 C120, NG125 125N25© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads3 Protection of LV/LV transformersCompact NSX100 to NSX250 circuit-breakers with TM-D trip unitsTransformer power rat<strong>in</strong>g (kVA) Circuit-breaker Trip unit230/240 V 1-ph 230/240 V 3-ph 400/415 V 3-ph400/415 V 1-ph3 5…6 9…12 NSX100B/F/N/H/S/L TM16D5 8…9 14…16 NSX100B/F/N/H/S/L TM25D7…9 13…16 22…28 NSX100B/F/N/H/S/L TM40D12…15 20…25 35…44 NSX100B/F/N/H/S/L TM63D16…19 26…32 45…56 NSX100B/F/N/H/S/L TM80D18…23 32…40 55…69 NSX160B/F/N/H/S/L TM100D23…29 40…50 69…87 NSX160B/F/N/H/S/L TM125D29…37 51…64 89…111 NSX250B/F/N/H/S/L TM160D37…46 64…80 111…139 NSX250B/F/N/H/S/L TM200DCompact NSX100 to NS1600 / Masterpact circuit-breakers with Micrologic tripunitsTransformer power rat<strong>in</strong>g (kVA) Circuit-breaker Trip unit Sett<strong>in</strong>g230/240 V 1-ph 230/240 V 3-ph 400/415 V 3-ph Ir max400/415 V 1-ph4…7 6…13 11…22 NSX100B/F/N/H/S/L Micrologic 2.2 or 6.2 40 0.89…19 16…30 27…56 NSX100B/F/N/H/S/L Micrologic 2.2 or 6.2 100 0.815…30 5…50 44…90 NSX160B/F/N/H/S/L Micrologic 2.2 or 6.2 160 0.823…46 40…80 70…139 NSX250B/F/N/H/S/L Micrologic 2.2 or 6.2 250 0.837…65 64…112 111…195 NSX400F/N/H/S Micrologic 2.3 or 6.3 400 0.737…55 64…95 111…166 NSX400L Micrologic 2.3 or 6.3 400 0.658…83 100…144 175…250 NSX630F/N//H/S/L Micrologic 2.3 or 6.3 630 0.658…150 100…250 175…436 NS630bN/bH NT06H1 Micrologic 5.0/6.0/7.0 174…184 107…319 222…554 NS800N/H - NT08H1- NW08N1/H1 Micrologic 5.0/6.0/7.0 190…230 159…398 277…693 NS1000N/H - NT10H1- NW10N1/H1 Micrologic 5.0/6.0/7.0 1115…288 200…498 346…866 NS1250N/H - NT12H1 - NW12N1/H1 Micrologic 5.0/6.0/7.0 1147…368 256…640 443…1,108 NS1600N/H - NT16H1 - NW16N1/H1 Micrologic 5.0/6.0/7.0 1184…460 320…800 554…1,385 NW20N1/H1 Micrologic 5.0/6.0/7.0 1230…575 400…1,000 690…1,730 NW25H2/H3 Micrologic 5.0/6.0/7.0 1294…736 510…1,280 886…2,217 NW32H2/H3 Micrologic 5.0/6.0/7.0 1N26© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads4 Light<strong>in</strong>g circuitsA source of comfort and productivity, light<strong>in</strong>g represents 15% of <strong>the</strong> quantity ofelectricity consumed <strong>in</strong> <strong>in</strong>dustry and 40% <strong>in</strong> build<strong>in</strong>gs. The quality of light<strong>in</strong>g (lightstability and cont<strong>in</strong>uity of service) depends on <strong>the</strong> quality of <strong>the</strong> electrical <strong>energy</strong>thus consumed. The supply of electrical power to light<strong>in</strong>g networks has <strong>the</strong>reforeassumed great importance.To help with <strong>the</strong>ir design and simplify <strong>the</strong> selection of appropriate protection devices,an analysis of <strong>the</strong> different lamp technologies is presented. The dist<strong>in</strong>ctive featuresof light<strong>in</strong>g circuits and <strong>the</strong>ir impact on control and protection devices are discussed.Recommendations relative to <strong>the</strong> difficulties of light<strong>in</strong>g circuit implementation are given.4.1 The different lamp technologiesa -b -Fig. N35 : Compact fluorescent lamps [a] standard,[b] <strong>in</strong>ductionArtificial lum<strong>in</strong>ous radiation can be produced from electrical <strong>energy</strong> accord<strong>in</strong>g to twopr<strong>in</strong>ciples: <strong>in</strong>candescence and electrolum<strong>in</strong>escence.Incandescence is <strong>the</strong> production of light via temperature elevation. The mostcommon example is a filament heated to white state by <strong>the</strong> circulation of an electricalcurrent. The <strong>energy</strong> supplied is transformed <strong>in</strong>to heat by <strong>the</strong> Joule effect and <strong>in</strong>tolum<strong>in</strong>ous flux.Lum<strong>in</strong>escence is <strong>the</strong> phenomenon of emission by a material of visible or almostvisible lum<strong>in</strong>ous radiation. A gas (or vapors) subjected to an electrical dischargeemits lum<strong>in</strong>ous radiation (Electrolum<strong>in</strong>escence of gases).S<strong>in</strong>ce this gas does not conduct at normal temperature and pressure, <strong>the</strong> dischargeis produced by generat<strong>in</strong>g charged particles which permit ionization of <strong>the</strong> gas. Thenature, pressure and temperature of <strong>the</strong> gas determ<strong>in</strong>e <strong>the</strong> light spectrum.Photolum<strong>in</strong>escence is <strong>the</strong> lum<strong>in</strong>escence of a material exposed to visible or almostvisible radiation (ultraviolet, <strong>in</strong>frared).When <strong>the</strong> substance absorbs ultraviolet radiation and emits visible radiation whichstops a short time after energization, this is fluorescence.Incandescent lampsIncandescent lamps are historically <strong>the</strong> oldest and <strong>the</strong> most often found <strong>in</strong> commonuse.They are based on <strong>the</strong> pr<strong>in</strong>ciple of a filament rendered <strong>in</strong>candescent <strong>in</strong> a vacuum orneutral atmosphere which prevents combustion.A dist<strong>in</strong>ction is made between:b Standard bulbsThese conta<strong>in</strong> a tungsten filament and are filled with an <strong>in</strong>ert gas (nitrogen andargon or krypton).b Halogen bulbsThese also conta<strong>in</strong> a tungsten filament, but are filled with a halogen compoundand an <strong>in</strong>ert gas (krypton or xenon). This halogen compound is responsible for <strong>the</strong>phenomenon of filament regeneration, which <strong>in</strong>creases <strong>the</strong> service life of <strong>the</strong> lampsand avoids <strong>the</strong>m blacken<strong>in</strong>g. It also enables a higher filament temperature and<strong>the</strong>refore greater lum<strong>in</strong>osity <strong>in</strong> smaller-size bulbs.The ma<strong>in</strong> disadvantage of <strong>in</strong>candescent lamps is <strong>the</strong>ir significant heat dissipation,result<strong>in</strong>g <strong>in</strong> poor lum<strong>in</strong>ous efficiency.Fluorescent lampsThis family covers fluorescent tubes and compact fluorescent lamps. Theirtechnology is usually known as “low-pressure mercury”.In fluorescent tubes, an electrical discharge causes electrons to collide withions of mercury vapor, result<strong>in</strong>g <strong>in</strong> ultraviolet radiation due to energization of <strong>the</strong>mercury atoms. The fluorescent material, which covers <strong>the</strong> <strong>in</strong>side of <strong>the</strong> tubes, <strong>the</strong>ntransforms this radiation <strong>in</strong>to visible light.Fluorescent tubes dissipate less heat and have a longer service life than<strong>in</strong>candescent lamps, but <strong>the</strong>y do need an ignition device called a “starter” and adevice to limit <strong>the</strong> current <strong>in</strong> <strong>the</strong> arc after ignition. This device called “ballast” isusually a choke placed <strong>in</strong> series with <strong>the</strong> arc.Compact fluorescent lamps are based on <strong>the</strong> same pr<strong>in</strong>ciple as a fluorescent tube.The starter and ballast functions are provided by an electronic circuit (<strong>in</strong>tegrated <strong>in</strong><strong>the</strong> lamp) which enables <strong>the</strong> use of smaller tubes folded back on <strong>the</strong>mselves.Compact fluorescent lamps (see Fig. N35) were developed to replace <strong>in</strong>candescentlamps: They offer significant <strong>energy</strong> sav<strong>in</strong>gs (15 W aga<strong>in</strong>st 75 W for <strong>the</strong> same level ofbrightness) and an <strong>in</strong>creased service life.Lamps known as “<strong>in</strong>duction” type or “without electrodes” operate on <strong>the</strong> pr<strong>in</strong>ciple ofionization of <strong>the</strong> gas present <strong>in</strong> <strong>the</strong> tube by a very high frequency electromagneticfield (up to 1 GHz). Their service life can be as long as 100,000 hrs.N27© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads4 Light<strong>in</strong>g circuitsFig. N36 : Discharge lampsDischarge lamps (see Fig. N36)The light is produced by an electrical discharge created between two electrodes with<strong>in</strong>a gas <strong>in</strong> a quartz bulb. All <strong>the</strong>se lamps <strong>the</strong>refore require a ballast to limit <strong>the</strong> current <strong>in</strong><strong>the</strong> arc. A number of technologies have been developed for different applications.Low-pressure sodium vapor lamps have <strong>the</strong> best light output, however <strong>the</strong> colorrender<strong>in</strong>g is very poor s<strong>in</strong>ce <strong>the</strong>y only have a monochromatic orange radiation.High-pressure sodium vapor lamps produce a white light with an orange t<strong>in</strong>ge.In high-pressure mercury vapor lamps, <strong>the</strong> discharge is produced <strong>in</strong> a quartz orceramic bulb at high pressure. These lamps are called “fluorescent mercury dischargelamps”. They produce a characteristically bluish white light.Metal halide lamps are <strong>the</strong> latest technology. They produce a color with a broad colorspectrum. The use of a ceramic tube offers better lum<strong>in</strong>ous efficiency and better colorstability.Light Emitt<strong>in</strong>g Diodes (LED)The pr<strong>in</strong>ciple of light emitt<strong>in</strong>g diodes is <strong>the</strong> emission of light by a semi-conductoras an electrical current passes through it. LEDs are commonly found <strong>in</strong> numerousapplications, but <strong>the</strong> recent development of white or blue diodes with a high lightoutput opens new perspectives, especially for signal<strong>in</strong>g (traffic lights, exit signs oremergency light<strong>in</strong>g).LEDs are low-voltage and low-current devices, thus suitable for battery-supply.A converter is required for a l<strong>in</strong>e power supply.The advantage of LEDs is <strong>the</strong>ir low <strong>energy</strong> consumption. As a result, <strong>the</strong>y operateat a very low temperature, giv<strong>in</strong>g <strong>the</strong>m a very long service life. Conversely, a simplediode has a weak light <strong>in</strong>tensity. A high-power light<strong>in</strong>g <strong>in</strong>stallation <strong>the</strong>refore requiresconnection of a large number of units <strong>in</strong> series and parallel.Technology Application Advantages DisadvantagesStandard - Domestic use - Direct connection without - Low lum<strong>in</strong>ous efficiency and<strong>in</strong>candescent - Localized decorative <strong>in</strong>termediate switchgear high electricity consumptionlight<strong>in</strong>g - Reasonable purchase price - Significant heat dissipation- Compact size - Short service life- Instantaneous light<strong>in</strong>g- Good color render<strong>in</strong>gHalogen - Spot light<strong>in</strong>g - Direct connection - Average lum<strong>in</strong>ous efficiency<strong>in</strong>candescent - Intense light<strong>in</strong>g - Instantaneous efficiency- Excellent color render<strong>in</strong>gFluorescent tube - Shops, offices, workshops - High lum<strong>in</strong>ous efficiency - Low light <strong>in</strong>tensity of s<strong>in</strong>gle unit- Outdoors - Average color render<strong>in</strong>g - Sensitive to extreme temperaturesN28Compact - Domestic use - Good lum<strong>in</strong>ous efficiency - High <strong>in</strong>itial <strong>in</strong>vestmentfluorescent lamp - Offices - Good color render<strong>in</strong>g compared to <strong>in</strong>candescent lamps- Replacement of<strong>in</strong>candescent lampsHP mercury vapor - Workshops, halls, hangars - Good lum<strong>in</strong>ous efficiency - Light<strong>in</strong>g and relight<strong>in</strong>g time- Factory floors - Acceptable color render<strong>in</strong>g of a few m<strong>in</strong>utes- Compact size- Long service lifeHigh-pressure - Outdoors - Very good lum<strong>in</strong>ous efficiency - Light<strong>in</strong>g and relight<strong>in</strong>g timesodium - Large halls of a few m<strong>in</strong>utesLow-pressure - Outdoors - Good visibility <strong>in</strong> foggy wea<strong>the</strong>r - Long light<strong>in</strong>g time (5 m<strong>in</strong>.)sodium - Emergency light<strong>in</strong>g - Economical to use - Mediocre color render<strong>in</strong>gMetal halide - Large areas - Good lum<strong>in</strong>ous efficiency - Light<strong>in</strong>g and relight<strong>in</strong>g time- Halls with high ceil<strong>in</strong>gs - Good color render<strong>in</strong>g of a few m<strong>in</strong>utes- Long service lifeLED - Signal<strong>in</strong>g (3-color traffic - Insensitive to <strong>the</strong> number of - Limited number of colorslights, “exit” signs and switch<strong>in</strong>g operations - Low brightness of s<strong>in</strong>gle unitemergency light<strong>in</strong>g)- Low <strong>energy</strong> consumption- Low temperature© Schneider Electric - all rights reservedTechnology Power (watt) Efficiency (lumen/watt) Service life (hours)Standard <strong>in</strong>candescent 3 – 1,000 10 – 15 1,000 – 2,000Halogen <strong>in</strong>candescent 5 – 500 15 – 25 2,000 – 4,000Fluorescent tube 4 – 56 50 – 100 7,500 – 24,000Compact fluorescent lamp 5 – 40 50 – 80 10,000 – 20,000HP mercury vapor 40 – 1,000 25 – 55 16,000 – 24,000High-pressure sodium 35 – 1,000 40 – 140 16,000 – 24,000Low-pressure sodium 35 – 180 100 – 185 14,000 – 18,000Metal halide 30 – 2,000 50 – 115 6,000 – 20,000LED 0.05 – 0.1 10 – 30 40,000 – 100,000Fig. N37 : Usage and technical characteristics of light<strong>in</strong>g devicesSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads4 Light<strong>in</strong>g circuitsa]3002001000-100-200-3000b]3002001000-100-2000.01 0.02-3000 0.01 0.02t (s)t (s)Fig. N38 : Shape of <strong>the</strong> voltage supplied by a light dimmer at50% of maximum voltage with <strong>the</strong> follow<strong>in</strong>g techniques:a] “cut-on control”b] “cut-off control”4.2 <strong>Electrical</strong> characteristics of lampsIncandescent lamps with direct power supplyDue to <strong>the</strong> very high temperature of <strong>the</strong> filament dur<strong>in</strong>g operation (up to 2,500 °C),its resistance varies greatly depend<strong>in</strong>g on whe<strong>the</strong>r <strong>the</strong> lamp is on or off. As <strong>the</strong> coldresistance is low, a current peak occurs on ignition that can reach 10 to 15 times <strong>the</strong>nom<strong>in</strong>al current for a few milliseconds or even several milliseconds.This constra<strong>in</strong>t affects both ord<strong>in</strong>ary lamps and halogen lamps: it imposes areduction <strong>in</strong> <strong>the</strong> maximum number of lamps that can be powered by devices such asremote-control switches, modular contactors and relays for busbar trunk<strong>in</strong>g.Extra Low Voltage (ELV) halogen lampsb Some low-power halogen lamps are supplied with ELV 12 or 24 V, via atransformer or an electronic converter. With a transformer, <strong>the</strong> magnetizationphenomenon comb<strong>in</strong>es with <strong>the</strong> filament resistance variation phenomenon atswitch-on. The <strong>in</strong>rush current can reach 50 to 75 times <strong>the</strong> nom<strong>in</strong>al current for a fewmilliseconds. The use of dimmer switches placed upstream significantly reduces thisconstra<strong>in</strong>t.b Electronic converters, with <strong>the</strong> same power rat<strong>in</strong>g, are more expensive thansolutions with a transformer. This commercial handicap is compensated by a greaterease of <strong>in</strong>stallation s<strong>in</strong>ce <strong>the</strong>ir low heat dissipation means <strong>the</strong>y can be fixed on aflammable support. Moreover, <strong>the</strong>y usually have built-<strong>in</strong> <strong>the</strong>rmal protection.New ELV halogen lamps are now available with a transformer <strong>in</strong>tegrated <strong>in</strong> <strong>the</strong>irbase. They can be supplied directly from <strong>the</strong> LV l<strong>in</strong>e supply and can replace normallamps without any special adaptation.Dimm<strong>in</strong>g for <strong>in</strong>candescent lampsThis can be obta<strong>in</strong>ed by vary<strong>in</strong>g <strong>the</strong> voltage applied to <strong>the</strong> lampereThis voltage variation is usually performed by a device such as a Triac dimmerswitch, by vary<strong>in</strong>g its fir<strong>in</strong>g angle <strong>in</strong> <strong>the</strong> l<strong>in</strong>e voltage period. The wave form of <strong>the</strong>voltage applied to <strong>the</strong> lamp is illustrated <strong>in</strong> Figure N38a. This technique knownas “cut-on control” is suitable for supply<strong>in</strong>g power to resistive or <strong>in</strong>ductive circuits.Ano<strong>the</strong>r technique suitable for supply<strong>in</strong>g power to capacitive circuits has beendeveloped with MOS or IGBT electronic components. This techniques varies <strong>the</strong>voltage by block<strong>in</strong>g <strong>the</strong> current before <strong>the</strong> end of <strong>the</strong> half-period (see Fig. N38b) andis known as “cut-off control”.Switch<strong>in</strong>g on <strong>the</strong> lamp gradually can also reduce, or even elim<strong>in</strong>ate, <strong>the</strong> current peakon ignition.As <strong>the</strong> lamp current is distorted by <strong>the</strong> electronic switch<strong>in</strong>g, harmonic currentsare produced. The 3 rd harmonic order is predom<strong>in</strong>ant, and <strong>the</strong> percentage of 3 rdharmonic current related to <strong>the</strong> maximum fundamental current (at maximum power)is represented on Figure N39.Note that <strong>in</strong> practice, <strong>the</strong> power applied to <strong>the</strong> lamp by a dimmer switch can only vary<strong>in</strong> <strong>the</strong> range between 15 and 85% of <strong>the</strong> maximum power of <strong>the</strong> lampere50.045.040.035.030.025.020.015.010.05.00i3 (%)0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0Fig. N39 : Percentage of 3 rd harmonic current as a function of <strong>the</strong> power applied to an<strong>in</strong>candescent lamp us<strong>in</strong>g an electronic dimmer switchPower (%)N29© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads4 Light<strong>in</strong>g circuitsAccord<strong>in</strong>g to IEC standard 61000-3-2 sett<strong>in</strong>g harmonic emission limits for electric orelectronic systems with current y 16 A, <strong>the</strong> follow<strong>in</strong>g arrangements apply:b Independent dimmers for <strong>in</strong>candescent lamps with a rated power less than orequal to 1 kW have no limits appliedb O<strong>the</strong>rwise, or for <strong>in</strong>candescent light<strong>in</strong>g equipment with built-<strong>in</strong> dimmer or dimmerbuilt <strong>in</strong> an enclosure, <strong>the</strong> maximum permissible 3 rd harmonic current is equal to2.30 AFluorescent lamps with magnetic ballastFluorescent tubes and discharge lamps require <strong>the</strong> <strong>in</strong>tensity of <strong>the</strong> arc to be limited,and this function is fulfilled by a choke (or magnetic ballast) placed <strong>in</strong> series with <strong>the</strong>bulb itself (see Fig. N40).This arrangement is most commonly used <strong>in</strong> domestic applications with a limitednumber of tubes. No particular constra<strong>in</strong>t applies to <strong>the</strong> switches.Dimmer switches are not compatible with magnetic ballasts: <strong>the</strong> cancellation of <strong>the</strong>voltage for a fraction of <strong>the</strong> period <strong>in</strong>terrupts <strong>the</strong> discharge and totally ext<strong>in</strong>guishes<strong>the</strong> lampereThe starter has a dual function: preheat<strong>in</strong>g <strong>the</strong> tube electrodes, and <strong>the</strong>n generat<strong>in</strong>gan overvoltage to ignite <strong>the</strong> tube. This overvoltage is generated by <strong>the</strong> open<strong>in</strong>g of acontact (controlled by a <strong>the</strong>rmal switch) which <strong>in</strong>terrupts <strong>the</strong> current circulat<strong>in</strong>g <strong>in</strong> <strong>the</strong>magnetic ballast.Dur<strong>in</strong>g operation of <strong>the</strong> starter (approx. 1 s), <strong>the</strong> current drawn by <strong>the</strong> lum<strong>in</strong>aire isapproximately twice <strong>the</strong> nom<strong>in</strong>al current.S<strong>in</strong>ce <strong>the</strong> current drawn by <strong>the</strong> tube and ballast assembly is essentially <strong>in</strong>ductive, <strong>the</strong>power factor is very low (on average between 0.4 and 0.5). In <strong>in</strong>stallations consist<strong>in</strong>gof a large number of tubes, it is necessary to provide compensation to improve <strong>the</strong>power factor.For large light<strong>in</strong>g <strong>in</strong>stallations, centralized compensation with capacitor banks is apossible solution, but more often this compensation is <strong>in</strong>cluded at <strong>the</strong> level of eachlum<strong>in</strong>aire <strong>in</strong> a variety of different layouts (see Fig. N41).a] Ballast b] C Ballast c]BallastLampaCLampaLampaCBallastLampN30Compensation layout Application CommentsWithout compensation Domestic S<strong>in</strong>gle connectionParallel [a]Offices, workshops, Risk of overcurrents for control devicessuperstoresSeries [b]Choose capacitors with highoperat<strong>in</strong>g voltage (450 to 480 V)Duo [c]Avoids flickerFig. N41 : The various compensation layouts: a] parallel; b] series; c] dual series also called“duo” and <strong>the</strong>ir fields of applicationThe compensation capacitors are <strong>the</strong>refore sized so that <strong>the</strong> <strong>global</strong> power factor isgreater than 0.85. In <strong>the</strong> most common case of parallel compensation, its capacityis on average 1 µF for 10 W of active power, for any type of lampere However, thiscompensation is <strong>in</strong>compatible with dimmer switches.© Schneider Electric - all rights reservedFig. N40 : Magnetic ballastsConstra<strong>in</strong>ts affect<strong>in</strong>g compensationThe layout for parallel compensation creates constra<strong>in</strong>ts on ignition of <strong>the</strong> lampereS<strong>in</strong>ce <strong>the</strong> capacitor is <strong>in</strong>itially discharged, switch-on produces an overcurrent.An overvoltage also appears, due to <strong>the</strong> oscillations <strong>in</strong> <strong>the</strong> circuit made up of <strong>the</strong>capacitor and <strong>the</strong> power supply <strong>in</strong>ductance.The follow<strong>in</strong>g example can be used to determ<strong>in</strong>e <strong>the</strong> orders of magnitude.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads4 Light<strong>in</strong>g circuitsAssum<strong>in</strong>g an assembly of 50 fluorescent tubes of 36 W each:b Total active power: 1,800 Wb Apparent power: 2 kVAb Total rms current: 9 Ab Peak current: 13 AWith:b A total capacity: C = 175 µFb A l<strong>in</strong>e <strong>in</strong>ductance (correspond<strong>in</strong>g to a short-circuit current of 5 kA): L = 150 µHThe maximum peak current at switch-on equals:-6Cx 10Ic = Vmax= 230 2 175 = 350 AL-6150 x 10The <strong>the</strong>oretical peak current at switch-on can <strong>the</strong>refore reach 27 times <strong>the</strong> peakcurrent dur<strong>in</strong>g normal operation.The shape of <strong>the</strong> voltage and current at ignition is given <strong>in</strong> Figure N42 for switchclos<strong>in</strong>g at <strong>the</strong> l<strong>in</strong>e supply voltage peak.There is <strong>the</strong>refore a risk of contact weld<strong>in</strong>g <strong>in</strong> electromechanical control devices(remote-control switch, contactor, circuit-breaker) or destruction of solid stateswitches with semi-conductors.(V)6004002000t (s)-200-400-60000.02 0.04 0.06(A)3002001000-100-200t (s)N31-30000.02 0.04 0.06Fig. N42 : Power supply voltage at switch-on and <strong>in</strong>rush currentIn reality, <strong>the</strong> constra<strong>in</strong>ts are usually less severe, due to <strong>the</strong> impedance of <strong>the</strong> cables.Ignition of fluorescent tubes <strong>in</strong> groups implies one specific constra<strong>in</strong>t. When a groupof tubes is already switched on, <strong>the</strong> compensation capacitors <strong>in</strong> <strong>the</strong>se tubes whichare already energized participate <strong>in</strong> <strong>the</strong> <strong>in</strong>rush current at <strong>the</strong> moment of ignition ofa second group of tubes: <strong>the</strong>y “amplify” <strong>the</strong> current peak <strong>in</strong> <strong>the</strong> control switch at <strong>the</strong>moment of ignition of <strong>the</strong> second group.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads4 Light<strong>in</strong>g circuitsThe table <strong>in</strong> Figure N43, result<strong>in</strong>g from measurements, specifies <strong>the</strong> magnitude of<strong>the</strong> first current peak, for different values of prospective short-circuit current Isc. It isseen that <strong>the</strong> current peak can be multiplied by 2 or 3, depend<strong>in</strong>g on <strong>the</strong> number oftubes already <strong>in</strong> use at <strong>the</strong> moment of connection of <strong>the</strong> last group of tubes.Number of tubes Number of tubes Inrush current peak (A)already <strong>in</strong> use connected Isc = 1,500 A Isc = 3,000 A Isc = 6,000 A0 14 233 250 32014 14 558 556 57528 14 608 607 62442 14 618 616 632Fig. N43 : Magnitude of <strong>the</strong> current peak <strong>in</strong> <strong>the</strong> control switch of <strong>the</strong> moment of ignition of asecond group of tubesNone<strong>the</strong>less, sequential ignition of each group of tubes is recommended so as toreduce <strong>the</strong> current peak <strong>in</strong> <strong>the</strong> ma<strong>in</strong> switch.The most recent magnetic ballasts are known as “low-loss”. The magnetic circuit hasbeen optimized, but <strong>the</strong> operat<strong>in</strong>g pr<strong>in</strong>ciple rema<strong>in</strong>s <strong>the</strong> same. This new generationof ballasts is com<strong>in</strong>g <strong>in</strong>to widespread use, under <strong>the</strong> <strong>in</strong>fluence of new regulations(European Directive, Energy Policy Act - USA).In <strong>the</strong>se conditions, <strong>the</strong> use of electronic ballasts is likely to <strong>in</strong>crease, to <strong>the</strong>detriment of magnetic ballasts.N32Fluorescent lamps with electronic ballastElectronic ballasts are used as a replacement for magnetic ballasts to supply powerto fluorescent tubes (<strong>in</strong>clud<strong>in</strong>g compact fluorescent lamps) and discharge lamps.They also provide <strong>the</strong> “starter” function and do not need any compensation capacity.The pr<strong>in</strong>ciple of <strong>the</strong> electronic ballast (see Fig. N44) consists of supply<strong>in</strong>g <strong>the</strong> lamparc via an electronic device that generates a rectangular form AC voltage with afrequency between 20 and 60 kHz.Supply<strong>in</strong>g <strong>the</strong> arc with a high-frequency voltage can totally elim<strong>in</strong>ate <strong>the</strong> flickerphenomenon and strobe effects. The electronic ballast is totally silent.Dur<strong>in</strong>g <strong>the</strong> preheat<strong>in</strong>g period of a discharge lamp, this ballast supplies <strong>the</strong> lamp with<strong>in</strong>creas<strong>in</strong>g voltage, impos<strong>in</strong>g an almost constant current. In steady state, it regulates<strong>the</strong> voltage applied to <strong>the</strong> lamp <strong>in</strong>dependently of any fluctuations <strong>in</strong> <strong>the</strong> l<strong>in</strong>e voltage.S<strong>in</strong>ce <strong>the</strong> arc is supplied <strong>in</strong> optimum voltage conditions, this results <strong>in</strong> <strong>energy</strong>sav<strong>in</strong>gs of 5 to 10% and <strong>in</strong>creased lamp service life. Moreover, <strong>the</strong> efficiency of <strong>the</strong>electronic ballast can exceed 93%, whereas <strong>the</strong> average efficiency of a magneticdevice is only 85%.The power factor is high (> 0.9).The electronic ballast is also used to provide <strong>the</strong> light dimm<strong>in</strong>g function. Vary<strong>in</strong>g <strong>the</strong>frequency <strong>in</strong> fact varies <strong>the</strong> current magnitude <strong>in</strong> <strong>the</strong> arc and hence <strong>the</strong> lum<strong>in</strong>ous<strong>in</strong>tensity.Inrush currentThe ma<strong>in</strong> constra<strong>in</strong>t that electronic ballasts br<strong>in</strong>g to l<strong>in</strong>e supplies is <strong>the</strong> high<strong>in</strong>rush current on switch-on l<strong>in</strong>ked to <strong>the</strong> <strong>in</strong>itial load of <strong>the</strong> smooth<strong>in</strong>g capacitors(see Fig. N45).© Schneider Electric - all rights reservedFig. N44 : Electronic ballastTechnology Max. <strong>in</strong>rush current DurationRectifier with PFC 30 to 100 In y 1 msRectifier with choke 10 to 30 In y 5 msMagnetic ballast y 13 In 5 to 10 msFig. N45 : Orders of magnitude of <strong>the</strong> <strong>in</strong>rush current maximum values, depend<strong>in</strong>g on <strong>the</strong>technologies usedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads4 Light<strong>in</strong>g circuitsIn reality, due to <strong>the</strong> wir<strong>in</strong>g impedances, <strong>the</strong> <strong>in</strong>rush currents for an assembly of lampsis much lower than <strong>the</strong>se values, <strong>in</strong> <strong>the</strong> order of 5 to 10 In for less than 5 ms.Unlike magnetic ballasts, this <strong>in</strong>rush current is not accompanied by an overvoltage.Harmonic currentsFor ballasts associated with high-power discharge lamps, <strong>the</strong> current drawn from<strong>the</strong> l<strong>in</strong>e supply has a low total harmonic distortion (< 20% <strong>in</strong> general and < 10% for<strong>the</strong> most sophisticated devices). Conversely, devices associated with low-powerlamps, <strong>in</strong> particular compact fluorescent lamps, draw a very distorted current(see Fig. N46). The total harmonic distortion can be as high as 150%. In <strong>the</strong>seconditions, <strong>the</strong> rms current drawn from <strong>the</strong> l<strong>in</strong>e supply equals 1.8 times <strong>the</strong> currentcorrespond<strong>in</strong>g to <strong>the</strong> lamp active power, which corresponds to a power factor of 0.55.(A)0.60.40.20t (s)-0.2-0.4-0.600.02Fig. N46 : Shape of <strong>the</strong> current drawn by a compact fluorescent lampIn order to balance <strong>the</strong> load between <strong>the</strong> different phases, light<strong>in</strong>g circuits are usuallyconnected between phases and neutral <strong>in</strong> a balanced way. In <strong>the</strong>se conditions,<strong>the</strong> high level of third harmonic and harmonics that are multiple of 3 can cause anoverload of <strong>the</strong> neutral conductor. The least favorable situation leads to a neutralcurrent which may reach 3 times <strong>the</strong> current <strong>in</strong> each phase.Harmonic emission limits for electric or electronic systems are set by IEC standard61000-3-2. For simplification, <strong>the</strong> limits for light<strong>in</strong>g equipment are given here only forharmonic orders 3 and 5 which are <strong>the</strong> most relevant (see Fig. N47).Harmonic Active <strong>in</strong>put Active <strong>in</strong>put power y 25Worder power > 25W one of <strong>the</strong> 2 sets of limits apply:% of fundamental % of fundamental Harmonic current relativecurrent current to active power3 30 86 3.4 mA/W5 10 61 1.9 mA/WN33Fig. N47 : Maximum permissible harmonic currentLeakage currentsElectronic ballasts usually have capacitors placed between <strong>the</strong> power supplyconductors and <strong>the</strong> earth. These <strong>in</strong>terference-suppress<strong>in</strong>g capacitors are responsiblefor <strong>the</strong> circulation of a permanent leakage current <strong>in</strong> <strong>the</strong> order of 0.5 to 1 mA perballast. This <strong>the</strong>refore results <strong>in</strong> a limit be<strong>in</strong>g placed on <strong>the</strong> number of ballasts thatcan be supplied by a Residual Current Differential Safety Device (RCD).At switch-on, <strong>the</strong> <strong>in</strong>itial load of <strong>the</strong>se capacitors can also cause <strong>the</strong> circulation of acurrent peak whose magnitude can reach several amps for 10 µs. This current peakmay cause unwanted tripp<strong>in</strong>g of unsuitable devices.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads4 Light<strong>in</strong>g circuitsHigh-frequency emissionsElectronic ballasts are responsible for high-frequency conducted and radiatedemissions.The very steep ris<strong>in</strong>g edges applied to <strong>the</strong> ballast output conductors cause currentpulses circulat<strong>in</strong>g <strong>in</strong> <strong>the</strong> stray capacities to earth. As a result, stray currents circulate<strong>in</strong> <strong>the</strong> earth conductor and <strong>the</strong> power supply conductors. Due to <strong>the</strong> high frequencyof <strong>the</strong>se currents, <strong>the</strong>re is also electromagnetic radiation. To limit <strong>the</strong>se HF emissions,<strong>the</strong> lamp should be placed <strong>in</strong> <strong>the</strong> immediate proximity of <strong>the</strong> ballast, thus reduc<strong>in</strong>g<strong>the</strong> length of <strong>the</strong> most strongly radiat<strong>in</strong>g conductors.The different power supply modes (see Fig. N48)Technology Power supply mode O<strong>the</strong>r deviceStandard <strong>in</strong>candescent Direct power supply Dimmer switchHalogen <strong>in</strong>candescentELV halogen <strong>in</strong>candescent Transformer Electronic converterFluorescent tube Magnetic ballast and starter Electronic ballastElectronic dimmer +ballastCompact fluorescent lamp Built-<strong>in</strong> electronic ballastMercury vapor Magnetic ballast Electronic ballastHigh-pressure sodiumLow-pressure sodiumMetal halideFig. N48 : Different power supply modesN344.3 Constra<strong>in</strong>ts related to light<strong>in</strong>g devices andrecommendationsThe current actually drawn by lum<strong>in</strong>airesThe riskThis characteristic is <strong>the</strong> first one that should be def<strong>in</strong>ed when creat<strong>in</strong>g an<strong>in</strong>stallation, o<strong>the</strong>rwise it is highly probable that overload protection devices will tripand users may often f<strong>in</strong>d <strong>the</strong>mselves <strong>in</strong> <strong>the</strong> dark.It is evident that <strong>the</strong>ir determ<strong>in</strong>ation should take <strong>in</strong>to account <strong>the</strong> consumption ofall components, especially for fluorescent light<strong>in</strong>g <strong>in</strong>stallations, s<strong>in</strong>ce <strong>the</strong> powerconsumed by <strong>the</strong> ballasts has to be added to that of <strong>the</strong> tubes and bulbs.The solutionFor <strong>in</strong>candescent light<strong>in</strong>g, it should be remembered that <strong>the</strong> l<strong>in</strong>e voltage can be morethan 10% of its nom<strong>in</strong>al value, which would <strong>the</strong>n cause an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> currentdrawn.For fluorescent light<strong>in</strong>g, unless o<strong>the</strong>rwise specified, <strong>the</strong> power of <strong>the</strong> magneticballasts can be assessed at 25% of that of <strong>the</strong> bulbs. For electronic ballasts, thispower is lower, <strong>in</strong> <strong>the</strong> order of 5 to 10%.The thresholds for <strong>the</strong> overcurrent protection devices should <strong>the</strong>refore be calculatedas a function of <strong>the</strong> total power and <strong>the</strong> power factor, calculated for each circuit.© Schneider Electric - all rights reservedOvercurrents at switch-onThe riskThe devices used for control and protection of light<strong>in</strong>g circuits are those such asrelays, triac, remote-control switches, contactors or circuit-breakers.The ma<strong>in</strong> constra<strong>in</strong>t applied to <strong>the</strong>se devices is <strong>the</strong> current peak on energization.This current peak depends on <strong>the</strong> technology of <strong>the</strong> lamps used, but also on <strong>the</strong><strong>in</strong>stallation characteristics (supply transformer power, length of cables, number oflamps) and <strong>the</strong> moment of energization <strong>in</strong> <strong>the</strong> l<strong>in</strong>e voltage period. A high currentpeak, however fleet<strong>in</strong>g, can cause <strong>the</strong> contacts on an electromechanical controldevice to weld toge<strong>the</strong>r or <strong>the</strong> destruction of a solid state device with semiconductors.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads4 Light<strong>in</strong>g circuitsTwo solutionsBecause of <strong>the</strong> <strong>in</strong>rush current, <strong>the</strong> majority of ord<strong>in</strong>ary relays are <strong>in</strong>compatible withlight<strong>in</strong>g device power supply. The follow<strong>in</strong>g recommendations are <strong>the</strong>refore usuallymade:b Limit <strong>the</strong> number of lamps to be connected to a s<strong>in</strong>gle device so that <strong>the</strong>ir totalpower is less than <strong>the</strong> maximum permissible power for <strong>the</strong> deviceb Check with <strong>the</strong> manufacturers what operat<strong>in</strong>g limits <strong>the</strong>y suggest for <strong>the</strong> devices.This precaution is particularly important when replac<strong>in</strong>g <strong>in</strong>candescent lamps withcompact fluorescent lampsBy way of example, <strong>the</strong> table <strong>in</strong> Figure N49 <strong>in</strong>dicates <strong>the</strong> maximum number ofcompensated fluorescent tubes that can be controlled by different devices with16 A rat<strong>in</strong>g. Note that <strong>the</strong> number of controlled tubes is well below <strong>the</strong> numbercorrespond<strong>in</strong>g to <strong>the</strong> maximum power for <strong>the</strong> devices.Tube unit power Number of tubes Maximum number of tubes that can berequirement correspond<strong>in</strong>g controlled by(W) to <strong>the</strong> power Contactors Remote Circuit-6 A x 230 V GC16 A control breakersCT16 A switches C60-16 ATL16 A18 204 15 50 11236 102 15 25 5658 63 10 16 34Fig. N49 : The number of controlled tubes is well below <strong>the</strong> number correspond<strong>in</strong>g to <strong>the</strong>maximum power for <strong>the</strong> devicesBut a technique exists to limit <strong>the</strong> current peak on energization of circuits withcapacitive behavior (magnetic ballasts with parallel compensation and electronicballasts). It consists of ensur<strong>in</strong>g that activation occurs at <strong>the</strong> moment when <strong>the</strong> l<strong>in</strong>evoltage passes through zero. Only solid state switches with semi-conductors offerthis possibility (see Fig. N50a). This technique has proved to be particularly usefulwhen design<strong>in</strong>g new light<strong>in</strong>g circuits.More recently, hybrid technology devices have been developed that comb<strong>in</strong>e a solidstate switch (activation on voltage passage through zero) and an electromechanicalcontactor short-circuit<strong>in</strong>g <strong>the</strong> solid state switch (reduction of losses <strong>in</strong> <strong>the</strong> semiconductors)(see Fig. N50b).N35a b cFig. N50 : “Standard” CT+ contactor [a], CT+ contactor with manual override, pushbutton forselection of operat<strong>in</strong>g mode and <strong>in</strong>dicator lamp show<strong>in</strong>g <strong>the</strong> active operat<strong>in</strong>g mode [b], and TL +remote-control switch [c] (Merl<strong>in</strong> Ger<strong>in</strong> brand)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads4 Light<strong>in</strong>g circuitsModular contactors and impulse relays donot use <strong>the</strong> same technologies. Their rat<strong>in</strong>g isdeterm<strong>in</strong>ed accord<strong>in</strong>g to different standards.For example, for a given rat<strong>in</strong>g, an impulserelay is more efficient than a modularcontactor for <strong>the</strong> control of light fitt<strong>in</strong>gs witha strong <strong>in</strong>rush current, or with a low powerfactor (non-compensated <strong>in</strong>ductive circuit).Choice of relay rat<strong>in</strong>g accord<strong>in</strong>g to lamp typeb Figure 51 below shows <strong>the</strong> maximum number of light fitt<strong>in</strong>gs for each relay,accord<strong>in</strong>g to <strong>the</strong> type, power and configuration of a given lamp. As an <strong>in</strong>dication, <strong>the</strong>total acceptable power is also mentioned.b These values are given for a 230 V circuit with 2 active conductors (s<strong>in</strong>gle-phasephase/neutral or two-phase phase/phase). For 110 V circuits, divide <strong>the</strong> values <strong>in</strong> <strong>the</strong>table by 2.b To obta<strong>in</strong> <strong>the</strong> equivalent values for <strong>the</strong> whole of a 230 V three-phase circuit,multiply <strong>the</strong> number of lamps and <strong>the</strong> total acceptable power:v by 3 (1.73) for circuits without neutral;v by 3 for circuits with neutral.Note: The power rat<strong>in</strong>gs of <strong>the</strong> lamps most commonly used are shown <strong>in</strong> bold.N36© Schneider Electric - all rights reservedTypeof lampUnit powerand capacitance of power factorcorrection capacitorMaximum number of light fitt<strong>in</strong>gs for a s<strong>in</strong>gle-phase circuitand maximum power output per circuitTL impulse relayCT contactor16 A 32 A 16 A 25 A 40 A 63 ABasic <strong>in</strong>candescent lampsLV halogen lampsReplacement mercury vapour lamps (without ballast)40 W60 W75 W4025201500 Wto1600 W10666534000 Wto4200 W3830251550 Wto2000 W5745382300 Wto2850 W11585704600 Wto5250 W125100100 W 16 42 19 28 50 73150 W 10 28 12 18 35 50200 W 8 21 10 14 26 37300 W 5 1500 W 13 4000 W 7 2100 W 10 3000 W 18 5500 W500 W 3 8 4 6 10 to 151000 W 1 4 2 3 6 6000 W 81500 W 1 2 1 2 4 5ELV 12 or 24 V halogen lampsWith ferromagnetic transformer 20 W 70 1350 W 180 3600 W 15 300 W 23 450 W 42 850 W50 W 28 to 74 to 10 to 15 to 27 to 4275 W 19 1450 W 50 3750 W 8 600 W 12 900 W 23 1950 W 35100 W 14 37 6 8 18 27With electronic transformer 20 W 60 1200 W 160 3200 W 62 1250 W 90 1850 W 182 3650 W50 W 25 to 65 to 25 to 39 to 76 to 11475 W 18 1400 W 44 3350 W 20 1600 W 28 2250 W 53 4200 W 78100 W 14 33 16 22 42 60Fluorescent tubes with starter and ferromagnetic ballast1 tube15 W 83 1250 W 213 3200 W 22 330 W 30 450 W 70 1050 Wwithout compensation (1)18 W 70to186to22to30to70to1001300 W 3350 W 850 W 1200 W 2400 W20 W 62 160 22 30 70 10036 W 35 93 20 28 60 9040 W 31 81 20 28 60 9058 W 21 55 13 17 35 5665 W 20 50 13 17 35 5680 W 16 41 10 15 30 48115 W 11 29 7 10 20 321 tube15 W 5 µF 60 900 W 160 2400 W 15 200 W 20 300 W 40 600 Wwith parallel compensation (2) 18 W 5 µF 50 133 15 to 20 to 40 to 6020 W 5 µF 45 120 15 800 W 20 1200 W 40 2400 W 6036 W 5 µF 25 66 15 20 40 6040 W 5 µF 22 60 15 20 40 6058 W 7 µF 16 42 10 15 30 4365 W 7 µF 13 37 10 15 30 4380 W 7 µF 11 30 10 15 30 43115 W 16 µF 7 20 5 7 14 202 or 4 tubes2 x 18 W 56 2000 W 148 5300 W 30 1100 W 46 1650 W 80 2900 Wwith series compensation4 x 18 W 28 74 16to24to44to681500 W 2400 W 3800 W2 x 36 W 28 74 16 24 44 682 x 58 W 17 45 10 16 27 422 x 65 W 15 40 10 16 27 422 x 80 W 12 33 9 13 22 342 x 115 W 8 23 6 10 16 25Fluorescent tubes with electronic ballast1 or 2 tubes 18 W 80 1450 W 212 3800 W 74 1300 W 111 2000 W 222 4000 W36 W 40 to 106 to 38 to 58 to 117 to 17658 W 26 1550 W 69 4000 W 25 1400 W 37 2200 W 74 4400 W 1112 x 18 W 40 106 36 55 111 1662 x 36 W 20 53 20 30 60 902 x 58 W 13 34 12 19 38 57Fig. N51 : Maximum number of light fitt<strong>in</strong>gs for each relay, accord<strong>in</strong>g to <strong>the</strong> type, power and configuration of a given lamp (Cont<strong>in</strong>ued on opposite page)172 6900 Wto7500 W25 7500 Wto8000 W63 1250 Wto2850 W275 5500 Wto6000 W100 1500 Wto3850 W60 900 Wto3500 W123 4450 Wto5900 W333 6000 Wto6600 WSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads4 Light<strong>in</strong>g circuitsTypeof lampUnit powerand capacitance of power factorMaximum number of light fitt<strong>in</strong>gs for a s<strong>in</strong>gle-phase circuitand maximum power output per circuitcorrection capacitorTL impulse relayCT contactor16 A 32 A 16 A 25 A 40 A 63 ACompact fluorescent lampsWith external electronic ballast 5 W 240 1200 W 630 3150 W 210 1050 W 330 1650 W 670 3350 W not tested7 W 171 to 457 to 150 to 222 to 478 to9 W 138 1450 W 366 3800 W 122 1300 W 194 2000 W 383 4000 W11 W 118 318 104 163 32718 W 77 202 66 105 21626 W 55 146 50 76 153With <strong>in</strong>tegral electronic ballast 5 W 170 850 W 390 1950 W 160 800 W 230 1150 W 470 2350 W 710 3550 W(replacement for <strong>in</strong>candescent 7 W 121 to 285 to 114 to 164 to 335 to 514 tolamps)9 W 100 1050 W 233 2400 W 94 900 W 133 1300 W 266 2600 W 411 3950 W11 W 86 200 78 109 222 34018 W 55 127 48 69 138 21326 W 40 92 34 50 100 151High-pressure mercury vapour lamps with ferromagnetic ballast without ignitorReplacement high-pressure sodium vapour lamps with ferromagnetic ballast with <strong>in</strong>tegral ignitor (3)Without compensation (1) 50 W not tested,15 750 W 20 1000 W 34 1700 W 53 2650 W80 W <strong>in</strong>frequent use10 to 15 to 27 to 40 to125 / 110 W (3) 8 1000 W 10 1600 W 20 2800 W 28 4200 W250 / 220 W (3) 4 6 10 15400 / 350 W (3) 2 4 6 10700 W 1 2 4 6With parallel compensation (2) 50 W 7 µF 10 500 W 15 750 W 28 1400 W 43 2150 W80 W 8 µF 9 to 13 to 25 to 38 to125 / 110 W (3) 10 µF 9 1400 W 10 1600 W 20 3500 W 30 5000 W250 / 220 W (3) 18 µF 4 6 11 17400 / 350 W (3) 25 µF 3 4 8 12700 W 40 µF 2 2 5 71000 W 60 µF 0 1 3 5Low-pressure sodium vapour lamps with ferromagnetic ballast with external ignitorWithout compensation (1) 35 W not tested,5 270 W 9 320 W 14 500 W 24 850 W55 W <strong>in</strong>frequent use5 to 9 to 14 to 24 to90 W 3 360 W 6 720 W 9 1100 W 19 1800 W135 W 2 4 6 10180 W 2 4 6 10With parallel compensation (2) 35 W 20 µF 38 1350 W 102 3600 W 3 100 W 5 175 W 10 350 W 15 550 W55 W 20 µF 24 63 3 to 5 to 10 to 15 to90 W 26 µF 15 40 2 180 W 4 360 W 8 720 W 11 1100 W135 W 40 µF 10 26 1 2 5 7180 W 45 µF 7 18 1 2 4 6High-pressure sodium vapour lampsMetal-iodide lampsWith ferromagnetic ballast with 35 W not tested,16 600 W 24 850 W 42 1450 W 64 2250 Wexternal ignitor, without 70 W <strong>in</strong>frequent use8 12 to 20 to 32 tocompensation (1)150 W 4 7 1200 W 13 2000 W 18 3200 W250 W 2 4 8 11400 W 1 3 5 81000 W 0 1 2 3With ferromagnetic ballast with 35 W 6 µF 34 1200 W 88 3100 W 12 450 W 18 650 W 31 1100 W 50 1750 Wexternal ignitor and parallel 70 W 12 µF 17 to 45 to 6 to 9 to 16 to 25 tocompensation (2)150 W 20 µF 8 1350 W 22 3400 W 4 1000 W 6 2000 W 10 4000 W 15 6000 W250 W 32 µF 5 13 3 4 7 10400 W 45 µF 3 8 2 3 5 71000 W 60 µF 1 3 1 2 3 52000 W 85 µF 0 1 0 1 2 3With electronic ballast 35 W 38 1350 W 87 3100 W 24 850 W 38 1350 W 68 2400 W 102 3600 W70 W 29 to 77 to 18 to 29 to 51 to 76 to150 W 14 2200 W 33 5000 W 9 1350 W 14 2200 W 26 4000 W 40 6000 WN37(1) Circuits with non-compensated ferromagnetic ballasts consume twice as much current for a given lamp power output. This expla<strong>in</strong>s <strong>the</strong> small number of lamps <strong>in</strong> thisconfiguration.(2) The total capacitance of <strong>the</strong> power factor correction capacitors <strong>in</strong> parallel <strong>in</strong> a circuit limits <strong>the</strong> number of lamps that can be controlled by a contactor. The totaldownstream capacitance of a modular contactor of rat<strong>in</strong>g 16, 25, 40 or 63 A should not exceed 75, 100, 200 or 300 µF respectively. Allow for <strong>the</strong>se limits to calculate <strong>the</strong>maximum acceptable number of lamps if <strong>the</strong> capacitance values are different from those <strong>in</strong> <strong>the</strong> table.(3) High-pressure mercury vapour lamps without ignitor, of power 125, 250 and 400 W, are gradually be<strong>in</strong>g replaced by high-pressure sodium vapour lamps with <strong>in</strong>tegralignitor, and respective power of 110, 220 and 350 W.Fig. N51 : Maximum number of light fitt<strong>in</strong>gs for each relay, accord<strong>in</strong>g to <strong>the</strong> type, power and configuration of a given lamp (Concluded)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads4 Light<strong>in</strong>g circuitsProtection of lamp circuits: Maximum number of lamps and MCB rat<strong>in</strong>g versuslamp type, unit power and MCB tripp<strong>in</strong>g curveDur<strong>in</strong>g start up of discharge lamps (with <strong>the</strong>ir ballast), <strong>the</strong> <strong>in</strong>rush current drawn byeach lamp may be <strong>in</strong> <strong>the</strong> order of:b 25 x circuit start current for <strong>the</strong> first 3 msb 7 x circuit start current for <strong>the</strong> follow<strong>in</strong>g 2 sFor fluorescent lamps with High Frequency Electronic control ballast, <strong>the</strong> protectivedevice rat<strong>in</strong>gs must cope with 25 x <strong>in</strong>rush for 250 to 350 µs.However due to <strong>the</strong> circuit resistance <strong>the</strong> total <strong>in</strong>rush current seen by <strong>the</strong> MCB islower than <strong>the</strong> summation of all <strong>in</strong>dividual lamp <strong>in</strong>rush current if directly connected to<strong>the</strong> MCB.The tables below (see Fig. N52 to NXX) take <strong>in</strong>to account:b Circuits cables have a length of 20 meters from distribution board to <strong>the</strong> first lampand 7 meters between each additional fitt<strong>in</strong>gs.b MCB rat<strong>in</strong>g is given to protect <strong>the</strong> lamp circuit <strong>in</strong> accordance with <strong>the</strong> cable crosssection, and without unwanted tripp<strong>in</strong>g upon lamp start<strong>in</strong>g.b MCB tripp<strong>in</strong>g curve (C = <strong>in</strong>stantaneous trip sett<strong>in</strong>g 5 to 10 In, D = <strong>in</strong>stantaneoustrip sett<strong>in</strong>g 10 to 14 In).Lamppower (W)Number of lamps per circuit1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20MCB rat<strong>in</strong>g C & D tripp<strong>in</strong>g curve14/18 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 614 x2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 614 x3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 10 10 1014 x4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 10 10 10 1018 x2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 618 x4 6 6 6 6 6 6 6 6 6 6 6 6 6 10 10 10 10 10 10 1021/24 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 621/24 x2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 628 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 628 x2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 10 10 1035/36/39 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 635/36 x2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 10 10 10 10 1038/39 x2 6 6 6 6 6 6 6 6 6 6 6 6 10 10 10 10 10 10 10 1040/42 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 640/42 x2 6 6 6 6 6 6 6 6 6 6 6 10 10 10 10 10 10 10 10 1649/50 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 649/50 x2 6 6 6 6 6 6 6 6 6 6 10 10 10 10 10 10 16 16 16 1654/55 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 10 1054/55 x2 6 6 6 6 6 6 6 6 10 10 10 10 10 10 16 16 16 16 16 1660 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 10 10 10 10N38Fig. N52 : Fluorescent tubes with electronic ballast - Vac = 230 V© Schneider Electric - all rights reservedLamppower (W)Number of lamps per circuit1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20MCB rat<strong>in</strong>g C & D tripp<strong>in</strong>g curve6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 69 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 611 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 613 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 614 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 615 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 616 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 617 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 618 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 620 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 621 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 623 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 625 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 10Fig. N53 : Compact fluorescent lamps - Vac = 230 VSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads4 Light<strong>in</strong>g circuitsLamppower (W)Number of lamps per circuit1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20MCB rat<strong>in</strong>g C tripp<strong>in</strong>g curve50 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 10 10 10 1080 6 6 6 6 6 6 6 6 6 6 10 10 10 10 10 10 10 16 16 16125 6 6 6 10 10 10 10 10 10 10 10 16 16 16 16 16 16 16 20 20250 6 10 10 16 16 16 16 16 16 20 20 25 25 25 32 32 32 32 40 40400 6 16 20 25 25 32 32 32 32 32 32 40 40 40 50 50 50 50 63 631000 16 32 40 50 50 50 50 63 63 - - - - - - - - - - -MCB rat<strong>in</strong>g D tripp<strong>in</strong>g curve50 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 10 10 10 1080 6 6 6 6 6 6 6 6 6 6 10 10 10 10 10 10 10 16 16 16125 6 6 6 6 6 6 10 10 10 10 10 16 16 16 16 16 16 16 20 20250 6 6 10 10 10 10 16 16 16 20 20 25 25 25 32 32 32 32 40 40400 6 10 16 16 20 20 25 25 25 32 32 40 40 40 50 50 50 50 63 631000 10 20 25 32 40 40 50 63 63 - - - - - - - - - - -Fig. N54 : High pressure mercury vapour (with ferromagnetic ballast and PF correction) - Vac = 230 VLamppower (W)Number of lamps per circuit1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20MCB rat<strong>in</strong>g C tripp<strong>in</strong>g curveFerromagnetic ballast18 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 626 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 635/36 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 655 6 6 6 6 6 6 6 6 6 6 6 6 6 10 10 10 10 10 10 1091 6 6 6 6 6 6 6 6 6 10 10 10 10 10 10 10 16 16 16 16131 6 6 6 10 10 10 10 10 10 10 10 10 16 16 16 16 16 16 16 20135 6 6 6 10 10 10 10 10 10 10 10 16 16 16 16 16 16 20 20 20180 6 6 10 10 10 10 10 10 16 16 16 16 20 20 20 20 25 25 25 25Electronic ballast36 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 655 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 666 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 10 10 1091 6 6 6 6 6 10 10 10 10 10 10 10 10 10 10 10 16 16 16 16MCB rat<strong>in</strong>g D tripp<strong>in</strong>g curveFerromagnetic ballast18 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 626 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 635/36 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 655 6 6 6 6 6 6 6 6 6 6 6 6 6 6 10 10 10 10 10 1091 6 6 6 6 6 6 6 6 6 6 10 10 10 10 10 10 16 16 16 16131 6 6 6 6 6 6 6 10 10 10 10 10 16 16 16 16 16 16 16 20135 6 6 6 6 6 6 10 10 10 10 10 16 16 16 16 16 16 20 20 20180 6 6 6 6 10 10 10 10 16 16 16 16 20 20 20 20 25 25 25 25Electronic ballast36 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 655 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 666 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 10 10 1091 6 6 6 6 6 6 6 6 6 10 10 10 10 10 10 10 16 16 16 16N39Fig. N55 : Low pressure sodium (with PF correction) - Vac = 230 V© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads4 Light<strong>in</strong>g circuitsLamppower (W)Number of lamps per circuit1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20MCB rat<strong>in</strong>g C tripp<strong>in</strong>g curveFerromagnetic ballast50 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 10 10 10 1070 6 6 6 6 6 6 6 6 6 6 10 10 10 10 10 10 10 16 16 16100 6 6 6 6 6 6 6 6 10 10 10 10 10 16 16 16 16 16 16 16150 6 6 10 10 10 10 10 10 6 16 16 16 16 16 16 20 20 20 25 25250 6 10 16 16 16 20 20 20 20 20 20 25 25 25 32 32 32 32 40 40400 10 16 20 25 32 32 32 32 32 32 32 40 40 40 50 50 50 50 63 631000 16 32 40 50 50 50 50 63 63 - - - - - - - - - - -Electronic ballast35 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 650 6 6 6 6 6 6 6 6 6 6 6 6 6 10 10 10 10 10 10 10100 6 6 6 6 6 6 6 6 10 10 10 10 10 10 16 16 16 16 16 16MCB rat<strong>in</strong>g D tripp<strong>in</strong>g curveFerromagnetic ballast50 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 10 10 10 1070 6 6 6 6 6 6 6 6 6 6 10 10 10 10 10 10 10 16 16 16100 6 6 6 6 6 6 6 6 10 10 10 10 10 16 16 16 16 16 16 16150 6 6 6 6 6 10 10 10 10 16 16 16 16 16 16 20 20 20 25 25250 6 6 10 10 16 16 16 16 16 20 20 25 25 25 32 32 32 32 40 40400 6 10 16 16 20 20 25 25 25 32 32 40 40 40 50 50 50 50 63 631000 10 20 32 32 40 40 50 63 63 - - - - - - - - - - -Electronic ballast35 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 650 6 6 6 6 6 6 6 6 6 6 6 6 6 10 10 10 10 10 10 10100 6 6 6 6 6 6 6 6 10 10 10 10 10 10 16 16 16 16 16 16Fig. N56 : High pressure sodium (with PF correction) - Vac = 230 VN40Lamppower (W)Number of lamps per circuit1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20MCB rat<strong>in</strong>g C tripp<strong>in</strong>g curveFerromagnetic ballast35 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 670 6 6 6 6 6 6 6 6 6 6 10 10 10 10 10 10 10 16 16 16150 6 6 10 10 10 10 10 10 10 16 16 16 16 16 16 20 20 20 25 25250 6 10 16 16 16 20 20 20 20 20 20 25 25 25 32 32 32 32 40 40400 6 16 20 25 25 32 32 32 32 32 32 40 40 40 50 50 50 50 63 631000 16 32 40 50 50 50 50 63 63 63 63 63 63 63 63 63 63 63 63 631800/2000 25 50 63 63 63 - - - - - - - - - - - - - - -Electronic ballast35 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 670 6 6 6 6 6 6 6 6 6 6 6 6 10 10 10 10 10 10 10 10150 6 6 6 10 10 10 10 10 10 10 16 16 16 16 16 16 16 20 20 20MCB rat<strong>in</strong>g D tripp<strong>in</strong>g curveFerromagnetic ballast35 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 670 6 6 6 6 6 6 6 6 6 6 6 10 10 10 10 10 10 16 16 16150 6 6 6 6 6 10 10 10 10 16 16 16 16 16 16 20 20 20 25 25250 6 6 10 10 16 16 16 16 16 20 20 25 25 25 32 32 32 32 40 40400 6 10 16 16 20 20 25 25 25 32 32 40 40 40 50 50 50 50 63 631000 16 20 32 32 40 50 50 63 63 - - - - - - - - - - -1800 16 32 40 50 63 63 - - - - - - - - - - - - - -2000 20 32 40 50 63 - - - - - - - - - - - - - - -Electronic ballast35 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 670 6 6 6 6 6 6 6 6 6 6 6 6 10 10 10 10 10 10 10 10150 6 6 6 6 6 6 6 10 10 10 16 16 16 16 16 16 16 20 20 20Fig. N57 : Metal halide (with PF correction) - Vac = 230 V© Schneider Electric - all rights reservedLamppower (W)Number of lamps per circuit1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20MCB rat<strong>in</strong>g C tripp<strong>in</strong>g curve1800 16 32 40 50 50 50 50 63 63 - - - - - - - - - - -2000 16 32 40 50 50 50 50 63 63 - - - - - - - - - - -MCB rat<strong>in</strong>g D tripp<strong>in</strong>g curve1800 16 20 32 32 32 32 50 63 63 - - - - - - - - - - -2000 16 25 32 32 32 32 50 63 - - - - - - - - - - - -Fig. N58 : Metal halide (with ferromagnetic ballast and PF correction) - Vac = 400 VSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads4 Light<strong>in</strong>g circuitsOverload of <strong>the</strong> neutral conductorThe riskIn an <strong>in</strong>stallation <strong>in</strong>clud<strong>in</strong>g, for example, numerous fluorescent tubes with electronicballasts supplied between phases and neutral, a high percentage of 3 rd harmoniccurrent can cause an overload of <strong>the</strong> neutral conductor. Figure N59 below gives anoverview of typical H3 level created by light<strong>in</strong>g.Lamp type Typical power Sett<strong>in</strong>g mode Typical H3 levelIncandescend lamp 100 W Light dimmer 5 to 45 %with dimmerELV halogen lamp 25 W Electronic ELV 5 %transformerFluorescent tube 100 W Magnetic ballast 10 %< 25 W Electronic ballast 85 %> 25 W + PFC 30 %Discharge lamp 100 W Magnetic ballast 10 %<strong>Electrical</strong> ballast 30 %Fig. N59 : Overview of typical H3 level created by light<strong>in</strong>gThe solutionFirstly, <strong>the</strong> use of a neutral conductor with a small cross-section (half) should beprohibited, as requested by <strong>Installation</strong> standard IEC 60364, section 523–5–3.As far as overcurrent protection devices are concerned, it is necessary to provide4-pole circuit-breakers with protected neutral (except with <strong>the</strong> TN-C system for which<strong>the</strong> PEN, a comb<strong>in</strong>ed neutral and protection conductor, should not be cut).This type of device can also be used for <strong>the</strong> break<strong>in</strong>g of all poles necessary to supplylum<strong>in</strong>aires at <strong>the</strong> phase-to-phase voltage <strong>in</strong> <strong>the</strong> event of a fault.A break<strong>in</strong>g device should <strong>the</strong>refore <strong>in</strong>terrupt <strong>the</strong> phase and Neutral circuitsimultaneously.Leakage currents to earthThe riskAt switch-on, <strong>the</strong> earth capacitances of <strong>the</strong> electronic ballasts are responsible forresidual current peaks that are likely to cause un<strong>in</strong>tentional tripp<strong>in</strong>g of protectiondevices.Two solutionsThe use of Residual Current Devices provid<strong>in</strong>g immunity aga<strong>in</strong>st this type of impulsecurrent is recommended, even essential, when equipp<strong>in</strong>g an exist<strong>in</strong>g <strong>in</strong>stallation(see Fig. N60).For a new <strong>in</strong>stallation, it is sensible to provide solid state or hybrid control devices(contactors and remote-control switches) that reduce <strong>the</strong>se impulse currents(activation on voltage passage through zero).N41OvervoltagesThe riskAs illustrated <strong>in</strong> earlier sections, switch<strong>in</strong>g on a light<strong>in</strong>g circuit causes a transient statewhich is manifested by a significant overcurrent. This overcurrent is accompanied by astrong voltage fluctuation applied to <strong>the</strong> load term<strong>in</strong>als connected to <strong>the</strong> same circuit.These voltage fluctuations can be detrimental to correct operation of sensitive loads(micro-computers, temperature controllers, etc.)The SolutionIt is advisable to separate <strong>the</strong> power supply for <strong>the</strong>se sensitive loads from <strong>the</strong> light<strong>in</strong>gcircuit power supply.Fig. N60 : s.i. residual current devices with immunity aga<strong>in</strong>stimpulse currents (Merl<strong>in</strong> Ger<strong>in</strong> brand)Sensitivity of light<strong>in</strong>g devices to l<strong>in</strong>e voltage disturbancesShort <strong>in</strong>terruptionsb The riskDischarge lamps require a relight<strong>in</strong>g time of a few m<strong>in</strong>utes after <strong>the</strong>ir power supplyhas been switched off.b The solutionPartial light<strong>in</strong>g with <strong>in</strong>stantaneous relight<strong>in</strong>g (<strong>in</strong>candescent lamps or fluorescenttubes, or “hot restrike” discharge lamps) should be provided if safety requirements sodictate. Its power supply circuit is, depend<strong>in</strong>g on current regulations, usually dist<strong>in</strong>ctfrom <strong>the</strong> ma<strong>in</strong> light<strong>in</strong>g circuit.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads4 Light<strong>in</strong>g circuitsVoltage fluctuationsb The riskThe majority of light<strong>in</strong>g devices (with <strong>the</strong> exception of lamps supplied by electronicballasts) are sensitive to rapid fluctuations <strong>in</strong> <strong>the</strong> supply voltage. These fluctuationscause a flicker phenomenon which is unpleasant for users and may even causesignificant problems. These problems depend on both <strong>the</strong> frequency of variationsand <strong>the</strong>ir magnitude.Standard IEC 61000-2-2 (“compatibility levels for low-frequency conducteddisturbances”) specifies <strong>the</strong> maximum permissible magnitude of voltage variations asa function of <strong>the</strong> number of variations per second or per m<strong>in</strong>ute.These voltage fluctuations are caused ma<strong>in</strong>ly by high-power fluctuat<strong>in</strong>g loads (arcfurnaces, weld<strong>in</strong>g mach<strong>in</strong>es, start<strong>in</strong>g motors).b The solutionSpecial methods can be used to reduce voltage fluctuations. None<strong>the</strong>less, it isadvisable, wherever possible, to supply light<strong>in</strong>g circuits via a separate l<strong>in</strong>e supply.The use of electronic ballasts is recommended for demand<strong>in</strong>g applications(hospitals, clean rooms, <strong>in</strong>spection rooms, computer rooms, etc).Developments <strong>in</strong> control and protection equipmentThe use of light dimmers is more and more common. The constra<strong>in</strong>ts on ignition are<strong>the</strong>refore reduced and derat<strong>in</strong>g of control and protection equipment is less important.New protection devices adapted to <strong>the</strong> constra<strong>in</strong>ts on light<strong>in</strong>g circuits are be<strong>in</strong>g<strong>in</strong>troduced, for example Merl<strong>in</strong> Ger<strong>in</strong> brand circuit-breakers and modular residualcurrent circuit-breakers with special immunity, such as s.i. type ID switches andVigi circuit-breakers. As control and protection equipment evolves, some now offerremote control, 24-hour management, light<strong>in</strong>g control, reduced consumption, etc.4.4 Light<strong>in</strong>g of public areasNormal light<strong>in</strong>gRegulations govern<strong>in</strong>g <strong>the</strong> m<strong>in</strong>imum requirements for build<strong>in</strong>gs receiv<strong>in</strong>g <strong>the</strong> public <strong>in</strong>most European countries are as follows:b <strong>Installation</strong>s which illum<strong>in</strong>ates areas accessible to <strong>the</strong> public must be controlledand protected <strong>in</strong>dependently from <strong>in</strong>stallations provid<strong>in</strong>g illum<strong>in</strong>ation to o<strong>the</strong>r areasb Loss of supply on a f<strong>in</strong>al light<strong>in</strong>g circuit (i.e. fuse blown or CB tripped) must notresult <strong>in</strong> total loss of illum<strong>in</strong>ation <strong>in</strong> an area which is capable of accommodat<strong>in</strong>g morethan 50 personsb Protection by Residual Current Devices (RCD) must be divided amongst severaldevices (i.e. more than on device must be used)N42Emergency light<strong>in</strong>g and o<strong>the</strong>r systemsWhen we refer to emergency light<strong>in</strong>g, we mean <strong>the</strong> auxiliary light<strong>in</strong>g that is triggeredwhen <strong>the</strong> standard light<strong>in</strong>g fails.Emergency light<strong>in</strong>g is subdivided as follows (EN-1838):Safety light<strong>in</strong>gIt orig<strong>in</strong>ates from <strong>the</strong> emergency light<strong>in</strong>g and is <strong>in</strong>tended to provide light<strong>in</strong>g for people toevacuate an area safely or for those who try to fi nish a potentially dangerous operation beforeleav<strong>in</strong>g <strong>the</strong> area. It is <strong>in</strong>tended to illum<strong>in</strong>ate <strong>the</strong> means of evacuation and ensure cont<strong>in</strong>uousvisibility and ready usage <strong>in</strong> safety when standard or emergency light<strong>in</strong>g is needed.Safety light<strong>in</strong>g may be fur<strong>the</strong>r subdivided as follows:© Schneider Electric - all rights reservedSafety light<strong>in</strong>g for escape routesIt orig<strong>in</strong>ates from <strong>the</strong> safety light<strong>in</strong>g, and is<strong>in</strong>tended to ensure that <strong>the</strong> escape meanscan be clearly identifi ed and used safelywhen <strong>the</strong> area is busy.Anti-panic light<strong>in</strong>g <strong>in</strong> extended areasIt orig<strong>in</strong>ates from <strong>the</strong> safety light<strong>in</strong>g, and is<strong>in</strong>tended to avoid panic and to provide <strong>the</strong>necessary light<strong>in</strong>g to allow people to reacha possible escape route area.Emergency light<strong>in</strong>g and safety signs for escape routesThe emergency light<strong>in</strong>g and safety signs for escape routes are very important for allthose who design emergency systems. Their suitable choice helps improve safetylevels and allows emergency situations to be handled better.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads4 Light<strong>in</strong>g circuitsStandard EN 1838 ("Light<strong>in</strong>g applications. Emergency light<strong>in</strong>g") gives somefundamental concepts concern<strong>in</strong>g what is meant by emergency light<strong>in</strong>g for escaperoutes:"The <strong>in</strong>tention beh<strong>in</strong>d light<strong>in</strong>g escape routes is to allow safe exit by <strong>the</strong> occupants,provid<strong>in</strong>g <strong>the</strong>m with suffi cient visibility and directions on <strong>the</strong> escape route …"The concept referred to above is very simple:The safety signs and escape route light<strong>in</strong>g must be two separate th<strong>in</strong>gs.Functions and operation of <strong>the</strong> lum<strong>in</strong>airesThe manufactur<strong>in</strong>g specifi cations are covered by standard EN 60598-2-22,"Particular Requirements - Lum<strong>in</strong>aires for Emergency Light<strong>in</strong>g", which must be readwith EN 60598-1, "Lum<strong>in</strong>aires – Part 1: General Requirements and Tests".DurationA basic requirement is to determ<strong>in</strong>e <strong>the</strong> duration required for <strong>the</strong> emergency light<strong>in</strong>g.Generally it is 1 hour but some countries may have different duration requirementsaccord<strong>in</strong>g to statutory technical standards.OperationWe should clarify <strong>the</strong> different types of emergency lum<strong>in</strong>aires:b Non-ma<strong>in</strong>ta<strong>in</strong>ed lum<strong>in</strong>airesv The lamp will only switch on if <strong>the</strong>re is a fault <strong>in</strong> <strong>the</strong> standard light<strong>in</strong>gv The lamp will be powered by <strong>the</strong> battery dur<strong>in</strong>g failurev The battery will be automatically recharged when <strong>the</strong> ma<strong>in</strong>s power supply isrestoredb Ma<strong>in</strong>ta<strong>in</strong>ed lum<strong>in</strong>airesv The lamp can be switched on <strong>in</strong> cont<strong>in</strong>uous modev A power supply unit is required with <strong>the</strong> ma<strong>in</strong>s, especially for power<strong>in</strong>g <strong>the</strong> lamp,which can be disconnected when <strong>the</strong> area is not busyv The lamp will be powered by <strong>the</strong> battery dur<strong>in</strong>g failure.DesignThe <strong>in</strong>tegration of emergency light<strong>in</strong>g with standard light<strong>in</strong>g must comply strictly wi<strong>the</strong>lectrical system standards <strong>in</strong> <strong>the</strong> design of a build<strong>in</strong>g or particular place.All regulations and laws must be complied with <strong>in</strong> order to design a system which isup to standard (see Fig. N61).The ma<strong>in</strong> functions of an emergency light<strong>in</strong>g systemwhen standard light<strong>in</strong>g fails are <strong>the</strong> follow<strong>in</strong>g:b Clearly show <strong>the</strong> escaperoute us<strong>in</strong>g clear signs.b Provide sufficient emergencylight<strong>in</strong>g along <strong>the</strong> escape pathsso that people can safely f<strong>in</strong>d<strong>the</strong>ir ways to <strong>the</strong> exits.N43b Ensure that alarms and<strong>the</strong> fire safety equipmentpresent along <strong>the</strong> way outare easily identifiable.Fig. N61 : The ma<strong>in</strong> functions of an emergency light<strong>in</strong>g systemEuropean standardsThe design of emergency light<strong>in</strong>g systems is regulated by a number of legislativeprovisions that are updated and implemented from time to time by newdocumentation published on request by <strong>the</strong> authorities that deal with European and<strong>in</strong>ternational technical standards and regulations.Each country has its own laws and regulations, <strong>in</strong> addition to technical standards© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads4 Light<strong>in</strong>g circuitswhich govern different sectors. Basically <strong>the</strong>y describe <strong>the</strong> places that must beprovided with emergency light<strong>in</strong>g as well as its technical specifi cations. Thedesigner's job is to ensure that <strong>the</strong> design project complies with <strong>the</strong>se standards.EN 1838A very important document on a European level regard<strong>in</strong>g emergency light<strong>in</strong>g is <strong>the</strong>Standard EN 1838, "Light<strong>in</strong>g applications. Emergency light<strong>in</strong>g".This standard presents specifi c requirements and constra<strong>in</strong>ts regard<strong>in</strong>g <strong>the</strong>operation and <strong>the</strong> function of emergency light<strong>in</strong>g systems.CEN and CENELEC standardsWith <strong>the</strong> CEN (Comité Européen de Normalisation) and CENELEC standards(Comité Européen de Normalisation Electrotechnique), we are <strong>in</strong> a standardisedenvironment of particular <strong>in</strong>terest to <strong>the</strong> technician and <strong>the</strong> designer. A numberof sections deal with emergencies. An <strong>in</strong>itial dist<strong>in</strong>ction should be made betweenlum<strong>in</strong>aire standards and <strong>in</strong>stallation standards.EN 60598-2-22 and EN-60598-1Emergency light<strong>in</strong>g lum<strong>in</strong>aires are subject to European standard EN 60598-2-22, "Particular Requirements - Lum<strong>in</strong>aires for Emergency Light<strong>in</strong>g", which is an<strong>in</strong>tegrative text (of specifi cations and analysis) of <strong>the</strong> Standard EN-60598-1,Lum<strong>in</strong>aires – "Part 1: General Requirements and Tests".N44© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads5 Asynchronous motorsThe asynchronous (i.e. <strong>in</strong>duction) motor isrobust and reliable, and very widely used.95% of motors <strong>in</strong>stalled around <strong>the</strong> world areasynchronous. The protection of <strong>the</strong>se motorsis consequently a matter of great importance<strong>in</strong> numerous applications.The consequence of an <strong>in</strong>correctly protected motor can <strong>in</strong>clude <strong>the</strong> follow<strong>in</strong>g:b For persons:v Asphyxiation due to <strong>the</strong> blockage of motor ventilationv Electrocution due to <strong>in</strong>sulation failure <strong>in</strong> <strong>the</strong> motorv Accident due to non stopp<strong>in</strong>g of <strong>the</strong> motor follow<strong>in</strong>g <strong>the</strong> failure of <strong>the</strong> control circuit<strong>in</strong> case of <strong>in</strong>correct overcurrent protectionb For <strong>the</strong> driven mach<strong>in</strong>e and <strong>the</strong> processv Shaft coupl<strong>in</strong>gs and axles, etc, damaged due to a stalled rotorv Loss of productionv Manufactur<strong>in</strong>g time delayedb For <strong>the</strong> motorv Motor w<strong>in</strong>d<strong>in</strong>gs burnt out due to stalled rotorv Cost of dismantl<strong>in</strong>g and re<strong>in</strong>stall<strong>in</strong>g or replacement of motorv Cost of repairs to <strong>the</strong> motorTherefore, <strong>the</strong> safety of persons and goods, and reliability and availability levels arehighly dependant on <strong>the</strong> choice of protective equipment.In economic terms, <strong>the</strong> overall cost of failure must be considered. This costis <strong>in</strong>creas<strong>in</strong>g with <strong>the</strong> size of <strong>the</strong> motor and with <strong>the</strong> difficulties of access andreplacement. Loss of production is a fur<strong>the</strong>r, and evidently important factor.Specific features of motor performance <strong>in</strong>fluence <strong>the</strong> power supply circuits requiredfor satisfactory operationA motor power-supply circuit presents certa<strong>in</strong> constra<strong>in</strong>ts not normally encountered<strong>in</strong> o<strong>the</strong>r (common) distribution circuits, ow<strong>in</strong>g to <strong>the</strong> particular characteristics, specificto motors, such as:b High start-up current (see Fig. N62) which is mostly reactive, and can <strong>the</strong>refore be<strong>the</strong> cause of important voltage dropb Number and frequency of start-up operations are generally highb The high start-up current means that motor overload protective devices must haveoperat<strong>in</strong>g characteristics which avoid tripp<strong>in</strong>g dur<strong>in</strong>g <strong>the</strong> start<strong>in</strong>g period5.1 Functions for <strong>the</strong> motor circuittd1 to 10s20 to30 mstI" = 8 to 12 InId = 5 to 8 InIn = rated current of <strong>the</strong> motorIn Id I"Fig. N62 : Direct on-l<strong>in</strong>e start<strong>in</strong>g current characteristics of an<strong>in</strong>duction motorIFunctions generally provided are:b Basic functions <strong>in</strong>clud<strong>in</strong>g:v Isolat<strong>in</strong>g facilityv Motor control (local or remote)v Protection aga<strong>in</strong>st short-circuitsv Protection aga<strong>in</strong>st overloadb Complementary protections <strong>in</strong>clud<strong>in</strong>g:v Thermal protection by direct w<strong>in</strong>d<strong>in</strong>g temperature measurementv Thermal protection by <strong>in</strong>direct w<strong>in</strong>d<strong>in</strong>g temperature determ<strong>in</strong>ationv Permanent <strong>in</strong>sulation-resistance monitor<strong>in</strong>gv Specific motor protection functionsb Specific control equipment <strong>in</strong>clud<strong>in</strong>g:v Electromechanical startersv Control and Protective Switch<strong>in</strong>g devices (CPS)v Soft-start controllersv Variable speed drivesBasic functionsIsolat<strong>in</strong>g facilityIt is necessary to isolate <strong>the</strong> circuits, partially or totally, from <strong>the</strong>ir power supplynetwork for satety of personnel dur<strong>in</strong>g ma<strong>in</strong>tenance work. “Isolation” function isprovided by disconnectors. This function can be <strong>in</strong>cluded <strong>in</strong> o<strong>the</strong>r devices designedto provide isolation such as disconnector/circuit-breaker.Motor controlThe motor control function is to make and break <strong>the</strong> motor current. In case of manualcontrol, this function can be provided by motor-circuit-breakers or switches.In case of remote control, this function can be provided by contactors, starters or CPS.The control function can also be <strong>in</strong>itiated by o<strong>the</strong>r means:b Overload protectionb Complementary protectionb Under voltage release (needed for a lot of mach<strong>in</strong>es)The control function can also be provided by specific control equipment.N45© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads5 Asynchronous motorsProtection aga<strong>in</strong>st short-circuitsb Phase-to-phase short-circuitThis type of fault <strong>in</strong>side <strong>the</strong> mach<strong>in</strong>e is very rare. It is generally due to mechanical<strong>in</strong>cident of <strong>the</strong> power supply cable of <strong>the</strong> motor.b Phase-to-earth short-circuitThe deterioration of w<strong>in</strong>d<strong>in</strong>g <strong>in</strong>sulation is <strong>the</strong> ma<strong>in</strong> cause. The result<strong>in</strong>g fault currentdepends on <strong>the</strong> system of earth<strong>in</strong>g. For <strong>the</strong> TN system, <strong>the</strong> result<strong>in</strong>g fault current isvery high and <strong>in</strong> most cases <strong>the</strong> motor will be deteriorated. For <strong>the</strong> o<strong>the</strong>r systems ofearth<strong>in</strong>g, protection of <strong>the</strong> motor can be achieved by earth fault protection.For short-circuit protection, it is recommended to pay special attention to avoidunexpected tripp<strong>in</strong>g dur<strong>in</strong>g <strong>the</strong> start<strong>in</strong>g period of <strong>the</strong> motor. The <strong>in</strong>rush current of astandard motor is about 6 to 8 times its rated current but dur<strong>in</strong>g a fault <strong>the</strong> currentcan be as high as 15 times <strong>the</strong> rated current. So, <strong>the</strong> start<strong>in</strong>g current must not beseen as a fault by <strong>the</strong> protection. In addition, a fault occur<strong>in</strong>g <strong>in</strong> a motor circuit mustnot disturb any upstream circuit. As a consequence, discrim<strong>in</strong>ation/selectivity ofmagnetic protections must be respected with all parts of <strong>the</strong> <strong>in</strong>stallation.Protection aga<strong>in</strong>st overloadMechanical overloads due to <strong>the</strong> driven mach<strong>in</strong>e are <strong>the</strong> ma<strong>in</strong> orig<strong>in</strong>s of <strong>the</strong> overloadfor a motor application. They cause overload current and motor overheat<strong>in</strong>g. The lifeof <strong>the</strong> motor can be reduced and sometimes, <strong>the</strong> motor can be deteriorated. So, it isnecessary to detect motor overload. This protection can be provided by:b Specific <strong>the</strong>rmal overload relayb Specific <strong>the</strong>rmal-magnetic circuit-breaker commonly referred to as “motor circuitbreaker”b Complementary protection (see below) like <strong>the</strong>rmal sensor or electronicmultifunction relayb Electronic soft start controllers or variable speed drives (see below)N46© Schneider Electric - all rights reservedComplementary protectionsb Thermal protection by direct w<strong>in</strong>d<strong>in</strong>g temperature measurementProvided by <strong>the</strong>rmal sensors <strong>in</strong>corporated <strong>in</strong>side <strong>the</strong> w<strong>in</strong>d<strong>in</strong>gs of <strong>the</strong> motor andassociated relays.b Thermal protection by <strong>in</strong>direct w<strong>in</strong>d<strong>in</strong>g temperature determ<strong>in</strong>ationProvided by multifunction relays through current measurement and tak<strong>in</strong>g <strong>in</strong>toaccount <strong>the</strong> characteristics of <strong>the</strong> motors (e.g.: <strong>the</strong>rmal time constant).b Permanent <strong>in</strong>sulation-resistance monitor<strong>in</strong>g relays or residual current differentialrelaysThey provide detection and protection aga<strong>in</strong>st earth leakage current and short-circuitto earth, allow<strong>in</strong>g ma<strong>in</strong>tenance operation before destruction of <strong>the</strong> motor.b Specific motor protection functionsSuch as protection aga<strong>in</strong>st too long start<strong>in</strong>g period or stalled rotor, protectionaga<strong>in</strong>st unbalanced, loss or permutation of phases, earth fault protection, no loadprotection, rotor blocked (dur<strong>in</strong>g start or after)…; pre alarm overheat<strong>in</strong>g <strong>in</strong>dication,communication, can also be provided by multifunction relays.Specific control equipmentb Electromechanical starters (star-delta, auto-transformer, rheostatic rotorstarters,…)They are generally used for application with no load dur<strong>in</strong>g <strong>the</strong> start<strong>in</strong>g period (pump,fan, small centrifuge, mach<strong>in</strong>e-tool, etc.)v AdvantagesGood torque/current ratio; great reduction of <strong>in</strong>rush current.v DisadvantagesLow torque dur<strong>in</strong>g <strong>the</strong> start<strong>in</strong>g period; no easy adjustment; power cut off dur<strong>in</strong>g <strong>the</strong>transition and transient phenomenon; 6 motor connection cables needed.b Control and Protective Switch<strong>in</strong>g devices (CPS)They provide all <strong>the</strong> basic functions listed before with<strong>in</strong> a s<strong>in</strong>gle unit and also somecomplementary functions and <strong>the</strong> possibility of communication. These devices alsoprovide cont<strong>in</strong>uity of service <strong>in</strong> case of short-circuit.b Soft-start controllersUsed for applications with pump, fan, compressor, conveyor.v AdvantagesReduced <strong>in</strong>rush current, voltage drop and mechanical stress dur<strong>in</strong>g <strong>the</strong> motor start;built-<strong>in</strong> <strong>the</strong>rmal protection; small size device; possibility of communicationv DisadvantagesLow torque dur<strong>in</strong>g <strong>the</strong> start<strong>in</strong>g period; <strong>the</strong>rmal dissipation.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads5 Asynchronous motorsb Variable speed drivesThey are used for applications with pump, fan, compressor, conveyor, mach<strong>in</strong>e withhigh load torque, mach<strong>in</strong>e with high <strong>in</strong>ertia.v AdvantagesCont<strong>in</strong>uous speed variation (adjustment typically from 2 to 130% of nom<strong>in</strong>al speed),overspeed is possible; accurate control of acceleration and deceleration; hightorque dur<strong>in</strong>g <strong>the</strong> start<strong>in</strong>g and stopp<strong>in</strong>g periods; low <strong>in</strong>rush current, built-<strong>in</strong> <strong>the</strong>rmalprotection, possibility of communication.v DisadvantagesThermal dissipation, volume, cost.5.2 StandardsThe motor control and protection can be achieved <strong>in</strong> different way:b By us<strong>in</strong>g an association of a SCPD (Short-Circuit-Protective-Device) andelectromechanical devices such asv An electromechanical starters fulfill<strong>in</strong>g <strong>the</strong> standard IEC 60947-4-1v A semiconductor starter fulfill<strong>in</strong>g <strong>the</strong> standard IEC 60947-4-2v A variable speed drives fulfill<strong>in</strong>g <strong>the</strong> standard series IEC 61800b By us<strong>in</strong>g a CPS, s<strong>in</strong>gle device cover<strong>in</strong>g all <strong>the</strong> basic functions, and fulfill<strong>in</strong>g <strong>the</strong>standard IEC 60947-6-2In this document, only <strong>the</strong> motor circuits <strong>in</strong>clud<strong>in</strong>g association of electromechanicaldevices such as, starters and protection aga<strong>in</strong>st short-circuit, are considered. Thedevices meet<strong>in</strong>g <strong>the</strong> standard 60947-6-2, <strong>the</strong> semiconductor starters and <strong>the</strong> variablespeed drives will be considered only for specific po<strong>in</strong>ts.A motor circuit will meet <strong>the</strong> rules of <strong>the</strong> IEC 60947-4-1 and ma<strong>in</strong>ly:b The co-ord<strong>in</strong>ation between <strong>the</strong> devices of <strong>the</strong> motor circuitb The tripp<strong>in</strong>g class of <strong>the</strong> <strong>the</strong>rmal relaysb The category of utilization of <strong>the</strong> contactorsb The <strong>in</strong>sulation co-ord<strong>in</strong>ationNote: The first and last po<strong>in</strong>ts are satisfied <strong>in</strong>herently by <strong>the</strong> devices meet<strong>in</strong>g <strong>the</strong>IEC 60947-6-2 because <strong>the</strong>y provide a cont<strong>in</strong>uity of service.Standardization of <strong>the</strong> association circuit-breaker + contactor+ <strong>the</strong>rmal relayControl devices categoriesThe standards <strong>in</strong> <strong>the</strong> IEC 60947 series def<strong>in</strong>e <strong>the</strong> utilisation categoriesaccord<strong>in</strong>gto <strong>the</strong> purposes <strong>the</strong> control gear is designed for (see Fig. N63). Each category ischaracterised by one or more operat<strong>in</strong>g conditions such as:b Currentsb Voltagesb Power factor or time constantb And if necessary, o<strong>the</strong>r operat<strong>in</strong>g conditionsN47Type of current Operat<strong>in</strong>g categories Typical usesAlternat<strong>in</strong>g current AC-1 Non <strong>in</strong>ductive or slightly <strong>in</strong>ductive load, resistance furnace.Power distribution (light<strong>in</strong>g, generators, etc.).AC-2AC-3AC-4Brush motor: start<strong>in</strong>g, break<strong>in</strong>g.Heavy duty equipment (hoist<strong>in</strong>g, handl<strong>in</strong>g, crusher, roll<strong>in</strong>g-mill tra<strong>in</strong>, etc.).Squirrel cage motor: start<strong>in</strong>g, switch<strong>in</strong>g off runn<strong>in</strong>g motors. Motor control (pumps, compressors, fans, mach<strong>in</strong>etools,conveyors,presses, etc.).Squirrel cage motor: start<strong>in</strong>g, plugg<strong>in</strong>g, <strong>in</strong>ch<strong>in</strong>g. Heavy-duty equipment (hoist<strong>in</strong>g, handl<strong>in</strong>g, crusher, roll<strong>in</strong>g-milltra<strong>in</strong>, etc.).Direct current DC-1 Non <strong>in</strong>ductive or slightly <strong>in</strong>ductive load, resistance furnace.DC-3DC-5Shunt wound motor: start<strong>in</strong>g, revers<strong>in</strong>g, counter-current break<strong>in</strong>g, <strong>in</strong>ch<strong>in</strong>g.Dynamic break<strong>in</strong>g for direct currentmotors.Series wound motor: start<strong>in</strong>g, revers<strong>in</strong>g, counter-current break<strong>in</strong>g, <strong>in</strong>ch<strong>in</strong>g.Dynamic break<strong>in</strong>g for direct currentmotors.* Category AC-3 can be used for <strong>the</strong> <strong>in</strong>ch<strong>in</strong>g or revers<strong>in</strong>g, counter-current break<strong>in</strong>g for occasional operations of a limited length of time, such as for <strong>the</strong>assembly ofa mach<strong>in</strong>e. The number of operations per limited length of time normally do not exceed five per m<strong>in</strong>ute and ten per 10 m<strong>in</strong>utes.Fig. N63 : Contactor utilisation categories based on <strong>the</strong> purposes <strong>the</strong>y are designed for, accord<strong>in</strong>g to IEC 60947-1© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads5 Asynchronous motorsThe follow<strong>in</strong>g is also taken <strong>in</strong>to consideration:b Circuit mak<strong>in</strong>g and break<strong>in</strong>g conditionsb Type of load (squirrel cage motor, brush motor, resistor)b Conditions <strong>in</strong> which mak<strong>in</strong>g and break<strong>in</strong>g take place (motor runn<strong>in</strong>g,motor stalled,start<strong>in</strong>g process, counter-current break<strong>in</strong>g, etc.)Coord<strong>in</strong>ation between protections and controlIt is coord<strong>in</strong>ation, <strong>the</strong> most efficient comb<strong>in</strong>ation of <strong>the</strong> different protections(aga<strong>in</strong>stshort circuits and overloads) and <strong>the</strong> control device (contactor) which make up amotor starter unit.Studied for a given power, it provides <strong>the</strong> best possible protection of <strong>the</strong> equipmentcontrolled by this motor starter unit (see Fig. N64).It has <strong>the</strong> double advantage of reduc<strong>in</strong>g equipment and ma<strong>in</strong>tenance costsas <strong>the</strong>different protections complement each o<strong>the</strong>r as exactly as possible,with no uselessredundancy.Trip curve overload relayFuseTrip of <strong>the</strong> overload relay aloneThermal limit of <strong>the</strong> breakerOverload relay limitBreak<strong>in</strong>g current with SCPD (1) (1).Magnetic tripp<strong>in</strong>g of <strong>the</strong> breakerN48Fig. N64 : The basics of coord<strong>in</strong>ation© Schneider Electric - all rights reservedThere are different types of coord<strong>in</strong>ationTwo types of coord<strong>in</strong>ation (type 1 and type 2) are def<strong>in</strong>ed by IEC 60947-4-1.b Type 1 coord<strong>in</strong>ation:The commonest standard solution. It requires that <strong>in</strong> event of a short circuit, <strong>the</strong>contactor or <strong>the</strong> starter do not put people or <strong>in</strong>stallations <strong>in</strong> danger. It admits <strong>the</strong>necessity of repairs or part replacements before service restoration.b Type 2 coord<strong>in</strong>ation:The high performance solution. It requires that <strong>in</strong> <strong>the</strong> event of a short circuit, <strong>the</strong>contactor or <strong>the</strong> starter do not put people or <strong>in</strong>stallations <strong>in</strong> danger and that itis able to work afterwards. It admits <strong>the</strong> risk of contact weld<strong>in</strong>g. In this case, <strong>the</strong>manufacturer must specify <strong>the</strong> measures to take for equipment ma<strong>in</strong>tenance.b Some manufacturers offer:The highest performance solution, which is “Total coord<strong>in</strong>ation”.This coord<strong>in</strong>ation requires that <strong>in</strong> <strong>the</strong> event of a short circuit, <strong>the</strong> contactor or<strong>the</strong> starter do not put people or <strong>in</strong>stallations <strong>in</strong> danger and that it is able to workafterwards. It does not admit <strong>the</strong> risk of contact weld<strong>in</strong>g and <strong>the</strong> start<strong>in</strong>g of <strong>the</strong> motorstarter unit must be immediate.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads5 Asynchronous motorsControl and protection switch<strong>in</strong>g gear (CPS)CPS or “starter-controllers” are designed to fulfil control and protection functionssimultaneously (overload and short circuit). In addition, <strong>the</strong>y are designed to carryout control operations <strong>in</strong> <strong>the</strong> event of a short circuit.They can also assure additional functions such as <strong>in</strong>sulation, <strong>the</strong>reby totally fulfill<strong>in</strong>g<strong>the</strong> function of “motor starter unit”. They comply with standard IEC 60947-6-2, whichnotably def<strong>in</strong>es <strong>the</strong> assigned values and utilisation categories of a CPS, as dostandards IEC 60947-1 and 60947-4-1.The functions performed by a CPS are comb<strong>in</strong>ed and coord<strong>in</strong>ated <strong>in</strong> such a way asto allow for uptime at all currents up to <strong>the</strong> Ics work<strong>in</strong>g short circuit break<strong>in</strong>g capacityof <strong>the</strong> CPS. The CPS may or may not consist of one device, but its characteristics areassigned as for a s<strong>in</strong>gle device. Fur<strong>the</strong>rmore, <strong>the</strong> guarantee of “total” coord<strong>in</strong>ation ofall <strong>the</strong> functions ensures <strong>the</strong> user has a simple choice with optimal protectionwhich is easy to implement.Although presented as a s<strong>in</strong>gle unit, a CPS can offer identical or greater modularitythan <strong>the</strong> “three product” motor starter unit solution. This is <strong>the</strong> case with <strong>the</strong> “Tesys U”starter-controller (see Fig. N65).Fig. N65 : Example of a CPS modularity (Tesys Ustarter controller by Telemecanique)N49This starter-controller can at any time br<strong>in</strong>g <strong>in</strong> or change a control unit with protectionand control functions for motors from 0.15A to 32A <strong>in</strong> a generic “base power” or“base unit” of a 32 A calibre.Additional functionality’s can also be <strong>in</strong>stalled with regard to:b Power, revers<strong>in</strong>g block, limiterb Controlv Functions modules, alarms, motor load, automatic resett<strong>in</strong>g, etc,v Communication modules: AS-I, Modbus, Profibus, CAN-Open, etc,v Auxiliary contact modules, added contacts.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads5 Asynchronous motorsCommunications functions are possible with this system (see Fig. N66).Available functions: Standard Control units: Upgradeable MultifunctionStarter status (ready, runn<strong>in</strong>g, with default)Alarms (overcurrents…)Thermal alarmRemote resett<strong>in</strong>g by busIndication of motor loadDefaults differentiationParameter sett<strong>in</strong>g and protection function reference“Log file” function“Monitor<strong>in</strong>g” functionStart and Stop controlsInformation conveyed by bus (Modbus) and functions performedFig. N66 : Tesys U Communication functionsWhat sort of coord<strong>in</strong>ation does one choose?The choice of <strong>the</strong> coord<strong>in</strong>ation type depends on <strong>the</strong> operation parameters.It should be made to achieve <strong>the</strong> best balance of user needs and <strong>in</strong>stallation costs.b Type 1Acceptable when uptime is not required and <strong>the</strong> system can be reactivated afterreplac<strong>in</strong>g <strong>the</strong> faulty parts.In this case <strong>the</strong> ma<strong>in</strong>tenance service must be efficient (available andcompetent).The advantage is reduced equipment costs.b Type 2To be considered when <strong>the</strong> uptime is required.It requires a reduced ma<strong>in</strong>tenance service.When immediate motor start<strong>in</strong>g is necessary, “Total coord<strong>in</strong>ation”mustbe reta<strong>in</strong>ed.No ma<strong>in</strong>tenance service is necessary.The coord<strong>in</strong>ations offered <strong>in</strong> <strong>the</strong> manufacturers’ catalogues simplify <strong>the</strong> users’ choiceand guarantees that <strong>the</strong> motor starter unit complies with <strong>the</strong> standard.5.3 ApplicationsN50© Schneider Electric - all rights reservedThe control and protection of a motor can consist of one, two, three or four differentdevices which provide one or several functions.In <strong>the</strong> case of <strong>the</strong> comb<strong>in</strong>ation of several devices, co-ord<strong>in</strong>ation between <strong>the</strong>mis essential <strong>in</strong> order to provide optimized protection of <strong>the</strong> motor application.To protect a motor circuit, many parameters must be taken <strong>in</strong>to account. Theydepend on:b The application (type of driven mach<strong>in</strong>e, safety of operation, number of operations,etc.)b The cont<strong>in</strong>uity performance requested by <strong>the</strong> applicationb The standards to be enforced to provide security and safety.The electrical functions to be provided are quite different:b Start, normal operation and stop without unexpected tripp<strong>in</strong>g while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>gcontrol requirements, number of operations, durability and safety requirements(emergency stops), as well as circuit and motor protection, disconnection (isolation)for safety of personnel dur<strong>in</strong>g ma<strong>in</strong>tenance work.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads5 Asynchronous motorsAmong <strong>the</strong> many possible methods ofprotect<strong>in</strong>g a motor, <strong>the</strong> association of acircuit breaker + contactor + <strong>the</strong>rmal relay (1)provides many advantagesBasic protection schemes: circuit-breaker + contactor+ <strong>the</strong>rmal relayAvantagesThe comb<strong>in</strong>ation of devices facilitates <strong>in</strong>stallation work, as well as operation andma<strong>in</strong>tenance, by:b The reduction of <strong>the</strong> ma<strong>in</strong>tenance work load: <strong>the</strong> circuit-breaker avoids <strong>the</strong> need toreplace blown fuses and <strong>the</strong> necessity of ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a stock (of different sizes andtypes)b Better cont<strong>in</strong>uity performance: <strong>the</strong> <strong>in</strong>stallation can be re-energized immediatelyfollow<strong>in</strong>g <strong>the</strong> elim<strong>in</strong>ation of a fault and after check<strong>in</strong>g of <strong>the</strong> starterb Additional complementary devices sometimes required on a motor circuit areeasily accomodatedb Tripp<strong>in</strong>g of all three phases is assured (<strong>the</strong>reby avoid<strong>in</strong>g <strong>the</strong> possibility of “s<strong>in</strong>glephas<strong>in</strong>g”)b Full load current switch<strong>in</strong>g possibility (by circuit-breaker) <strong>in</strong> <strong>the</strong> event of contactorfailure, e.g. contact weld<strong>in</strong>gb Interlock<strong>in</strong>gb Diverse remote <strong>in</strong>dicationsb Better protection for <strong>the</strong> starter <strong>in</strong> case of overcurrent and <strong>in</strong> particular for impedantshort-circuit (2) correspond<strong>in</strong>g to currents up to about 30 times In of motor (see Fig. N67).b Possibility of add<strong>in</strong>g RCD:v Prevention of risk of fire (sensitivity 500 mA)v Protection aga<strong>in</strong>st destruction of <strong>the</strong> motor (short-circuit of lam<strong>in</strong>ations) by <strong>the</strong>early detection of earth fault currents (sensitivity 300 mA to 30 A)tCircuitbreaker1.05 to 1.20 InMagneticrelayEnd ofstart-upperiodOperat<strong>in</strong>g curveof <strong>the</strong>rmal relayContactorThermalrelay1 to10 sCable <strong>the</strong>rmal withstand limitLimit of <strong>the</strong>rmal relay constra<strong>in</strong>tCableMotor20 to30 msInIsI" magn.Short circuit current break<strong>in</strong>g capacityof <strong>the</strong> association (CB + contactor)Operat<strong>in</strong>g curve of <strong>the</strong>MA type circuit breakerIShort circuit current break<strong>in</strong>g capacityof <strong>the</strong> CBN51Fig. N67 : Tripp<strong>in</strong>g characteristics of a circuit-breaker + contactor + <strong>the</strong>rmal relay (1)ConclusionThe comb<strong>in</strong>ation of a circuit-breaker + contactor + <strong>the</strong>rmal relay for <strong>the</strong> control andprotection of motor circuits is em<strong>in</strong>ently appropriate when:b The ma<strong>in</strong>tenance service for an <strong>in</strong>stallation is reduced, which is generally <strong>the</strong> case<strong>in</strong> tertiary and small and medium sized <strong>in</strong>dustrial sitesb The job specification calls for complementary functionsb There is an operational requirement for a load break<strong>in</strong>g facility <strong>in</strong> <strong>the</strong> event of needof ma<strong>in</strong>tenance.(1) The comb<strong>in</strong>ation of a contactor with a <strong>the</strong>rmal relay iscommonly referred to as a “discontactor”.(2) In <strong>the</strong> majority of cases, short-circuit faults occur at <strong>the</strong>motor, so that <strong>the</strong> current is limited by <strong>the</strong> cable and <strong>the</strong> wir<strong>in</strong>gof <strong>the</strong> starter and are called impedant short-circuits© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads5 Asynchronous motorsKey po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> successful comb<strong>in</strong>ation of a circuit-breakerand a discontactorStandards def<strong>in</strong>e precisely <strong>the</strong> elements which must be taken <strong>in</strong>to account toachieve a correct coord<strong>in</strong>ation of type 2:b Absolute compatibility between <strong>the</strong> <strong>the</strong>rmal relay of <strong>the</strong> discontactor and <strong>the</strong>magnetic trip of <strong>the</strong> circuit-breaker. In Figure N68 <strong>the</strong> <strong>the</strong>rmal relay is protected ifits limit boundary for <strong>the</strong>rmal withstand is placed to <strong>the</strong> right of <strong>the</strong> circuit-breakermagnetic trip characteristic curve. In <strong>the</strong> case of a motor control circuit-breaker<strong>in</strong>corporat<strong>in</strong>g both magnetic and <strong>the</strong>rmal relay devices, coord<strong>in</strong>ation is provided bydesign.b The overcurrent break<strong>in</strong>g capability of <strong>the</strong> contactor must be greater than <strong>the</strong>current correspond<strong>in</strong>g to <strong>the</strong> sett<strong>in</strong>g of <strong>the</strong> circuit-breaker magnetic trip relay.b When submitted to a short-circuit current, <strong>the</strong> contactor and its <strong>the</strong>rmal relay mustperform <strong>in</strong> accordance with <strong>the</strong> requirements correspond<strong>in</strong>g to <strong>the</strong> specified type ofco-ord<strong>in</strong>ation.Compacttype MAt21 Operat<strong>in</strong>g curve of <strong>the</strong> MA type circuit breaker2 Operat<strong>in</strong>g curve of <strong>the</strong>rmal relay3 Limit of <strong>the</strong>rmal relay constra<strong>in</strong>tIcc ext.13Fig. N68 : The <strong>the</strong>rmal-withstand limit of <strong>the</strong> <strong>the</strong>rmal relay must be to <strong>the</strong> right of <strong>the</strong> CBmagnetic-trip characteristicIN52It is not possible to predict <strong>the</strong> short-circuitcurrent-break<strong>in</strong>g capacity of a circuit-breaker+ contactor comb<strong>in</strong>ation. Only laboratory testsby manufacturers allow to do it. So, SchneiderElectric can give table with comb<strong>in</strong>ation ofMulti 9 and Compact type MA circuit-breakerswith different types of startersShort-circuit current-break<strong>in</strong>g capacity of a circuit-breaker+ contactor comb<strong>in</strong>ationAt <strong>the</strong> selection stage, <strong>the</strong> short-circuit current-break<strong>in</strong>g capacity which must becompared to <strong>the</strong> prospective short-circuit current is:b Ei<strong>the</strong>r, that of <strong>the</strong> circuit-breaker + contactor comb<strong>in</strong>ation if <strong>the</strong> circuit-breakerand <strong>the</strong> contactor are physically close toge<strong>the</strong>r (see Fig. N69) (same drawer orcompartment of a motor control cab<strong>in</strong>et). A short-circuit downstream of <strong>the</strong>comb<strong>in</strong>ation will be limited to some extent by <strong>the</strong> impedances of <strong>the</strong> contactor and<strong>the</strong> <strong>the</strong>rmal relay. The comb<strong>in</strong>ation can <strong>the</strong>refore be used on a circuit for which<strong>the</strong> prospective short-circuit current level exceeds <strong>the</strong> rated short-circuit currentbreak<strong>in</strong>gcapacity of <strong>the</strong> circuit-breaker. This feature very often presents a significanteconomic advantageb Or that of <strong>the</strong> circuit-breaker only, for <strong>the</strong> case where <strong>the</strong> contactor is separated(see Fig. N70) with <strong>the</strong> risk of short-circuit between <strong>the</strong> contactor and <strong>the</strong> circuitbreaker.© Schneider Electric - all rights reservedMFig. N69 : Circuit-breaker and contactor mounted side by sideFig. N70 : Circuit-breaker and contactor mounted separatelyMSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads5 Asynchronous motorsChoice of <strong>in</strong>stantaneous magnetic-trip relay for <strong>the</strong> circuitbreakerThe operat<strong>in</strong>g threshold must never be less than 12 In for this relay, <strong>in</strong> order to avoidunexpected tripp<strong>in</strong>g due to <strong>the</strong> first current peak dur<strong>in</strong>g motor start<strong>in</strong>g.Complementary protectionsComplementary protections are:b Thermal sensors <strong>in</strong> <strong>the</strong> motor (w<strong>in</strong>d<strong>in</strong>gs, bear<strong>in</strong>gs, cool<strong>in</strong>g-air ducts, etc.)b Multifunction protections (association of functions)b Insulation-failure detection devices on runn<strong>in</strong>g or stationary motorThermal sensorsThermal sensors are used to detect abnormal temperature rise <strong>in</strong> <strong>the</strong> motor by directmeasurement. The <strong>the</strong>rmal sensors are generally embedded <strong>in</strong> <strong>the</strong> stator w<strong>in</strong>d<strong>in</strong>gs(for LV motors), <strong>the</strong> signal be<strong>in</strong>g processed by an associated control device act<strong>in</strong>g totrip <strong>the</strong> contactor or <strong>the</strong> circuit-breaker (see Fig. N71).Fig. N71 : Overheat<strong>in</strong>g protection by <strong>the</strong>rmal sensorsMutifunction motor protection relayThe multifunction relay, associated with a number of sensors and <strong>in</strong>dication modules,provides protection for motor and also for some functions, protection of <strong>the</strong> drivenmach<strong>in</strong>e such as:b Thermal overloadb Stalled rotor, or start<strong>in</strong>g period too longb Overheat<strong>in</strong>gb Unbalanced phase current, loss of one phase, <strong>in</strong>verse rotationb Earth fault (by RCD)b Runn<strong>in</strong>g at no-load, blocked rotor on start<strong>in</strong>gThe avantages are essentially:b A comprehensive protection, provid<strong>in</strong>g a reliable, high performance and permanentmonitor<strong>in</strong>g/control functionb Efficient monitor<strong>in</strong>g of all motor-operat<strong>in</strong>g schedulesb Alarm and control <strong>in</strong>dicationsb Possibility of communication via communication busesExample: Telemecanique LT6 relay with permanent monitor<strong>in</strong>g/control functionand communication by bus, or multifunction control unit LUCM and communicationmodule for TeSys model U.Preventive protection of stationary motorsThis protection concerns <strong>the</strong> monitor<strong>in</strong>g of <strong>the</strong> <strong>in</strong>sulation resistance level of astationary motor, <strong>the</strong>reby avoid<strong>in</strong>g <strong>the</strong> undesirable consequences of <strong>in</strong>sulation failuredur<strong>in</strong>g operation such as:b Failure to start or to perform correctly for motor used on emergency systemsb Loss of productionThis type of protection is essential for emergency systems motors, especially when<strong>in</strong>stalled <strong>in</strong> humid and/or dusty locations. Such protection avoids <strong>the</strong> destruction ofa motor by short-circuit to earth dur<strong>in</strong>g start<strong>in</strong>g (one of <strong>the</strong> most frequently-occur<strong>in</strong>g<strong>in</strong>cidents) by giv<strong>in</strong>g a warn<strong>in</strong>g <strong>in</strong>form<strong>in</strong>g that ma<strong>in</strong>tenance work is necessary torestore <strong>the</strong> motor to a satisfactory operationnal condition.N53© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads5 Asynchronous motorsExample of application:Motors driv<strong>in</strong>g pumps for “spr<strong>in</strong>klers” fire-protection systems or irrigation pumps forseasonal operation.A Vigilohm SN21 (Merl<strong>in</strong> Ger<strong>in</strong>) monitors <strong>the</strong> <strong>in</strong>sulation of a motor, and signalsaudibly and visually any abnormal reduction of <strong>the</strong> <strong>in</strong>sulation resistance level.Fur<strong>the</strong>rmore, this relay can prevent any attempt to start <strong>the</strong> motor, if necessary(see Fig. N72).SM21M E R LIN G E R INSM20IN OUTFig. N72 : Preventive protection of stationary motorsN54Limitative protectionsResidual current diffential protective devices (RCDs) can be very sensitive anddetect low values of leakage current which occur when <strong>the</strong> <strong>in</strong>sulation to earth of an<strong>in</strong>stallation deteriorates (by physical damage, contam<strong>in</strong>ation, excessive humidity,and so on). Some versions of RCDs, with dry contacts, specially designed for suchapplications, provide <strong>the</strong> follow<strong>in</strong>g:b To avoid <strong>the</strong> destruction of a motor (by perforation and short-circuit<strong>in</strong>g of <strong>the</strong>lam<strong>in</strong>ations of <strong>the</strong> stator) caused by an eventual arc<strong>in</strong>g fault to earth. This protectioncan detect <strong>in</strong>cipient fault conditions by operat<strong>in</strong>g at leakage currents <strong>in</strong> <strong>the</strong> range of300 mA to 30 A, accord<strong>in</strong>g to <strong>the</strong> size of <strong>the</strong> motor (approx sensitivity: 5% In)b To reduce <strong>the</strong> risk of fire: sensitivity y 500 mAFor example, RH99M relay (Merl<strong>in</strong> Ger<strong>in</strong>) provides (see Fig. N73):b 5 sensitivities (0.3; 1; 3; 10; 30 A)b Possibility of discrim<strong>in</strong>ation or to take account of particular operation by virtue of 3possible time delays (0, 90, 250 ms)b Automatic break<strong>in</strong>g if <strong>the</strong> circuit from <strong>the</strong> current transformer to <strong>the</strong> relay is brokenb Protection aga<strong>in</strong>st unwanted tripp<strong>in</strong>gsb Protection aga<strong>in</strong>st DC leakage currents (type A RCD)RH99M© Schneider Electric - all rights reservedFig. N73 : Example us<strong>in</strong>g relay RH99MM E R LIN G E R INSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


N - Characteristics of particular sources and loads5 Asynchronous motorsThe importance of limit<strong>in</strong>g <strong>the</strong> voltage drop at <strong>the</strong> motor term<strong>in</strong>als dur<strong>in</strong>gstart-upIn order to have a motor start<strong>in</strong>g and accelerat<strong>in</strong>g to its normal speed <strong>in</strong> <strong>the</strong>appropriate time, <strong>the</strong> torque of <strong>the</strong> motor must exceed <strong>the</strong> load torque by at least70%. However, <strong>the</strong> start<strong>in</strong>g current is much higher than <strong>the</strong> full-load current of<strong>the</strong> motor. As a result, if <strong>the</strong> voltage drop is very high, <strong>the</strong> motor torque will beexcessively reduced (motor torque is proportional to U 2 ) and it will result, for extremecase, <strong>in</strong> failure to start.Example:b With 400 V ma<strong>in</strong>ta<strong>in</strong>ed at <strong>the</strong> term<strong>in</strong>als of a motor, its torque would be 2.1 timesthat of <strong>the</strong> load torqueb For a voltage drop of 10% dur<strong>in</strong>g start-up, <strong>the</strong> motor torque would be2.1 x 0.9 2 = 1.7 times <strong>the</strong> load torque, and <strong>the</strong> motor would accelerate to its ratedspeed normallyb For a voltage drop of 15% dur<strong>in</strong>g start-up, <strong>the</strong> motor torque would be2.1 x 0.85 2 = 1.5 times <strong>the</strong> load torque, so that <strong>the</strong> motor start<strong>in</strong>g time wouldbe longer than normalIn general, a maximum allowable voltage drop of 10% is recommended dur<strong>in</strong>gstart-up of <strong>the</strong> motor.5.4 Maximum rat<strong>in</strong>g of motors <strong>in</strong>stalled forconsumers supplied at LVThe disturbances caused on LV distribution networks dur<strong>in</strong>g <strong>the</strong> start-up of largedirect-on-l<strong>in</strong>e AC motors can cause considerable nuisance to neighbour<strong>in</strong>gconsumers, so that most power-supply utilities have strict rules <strong>in</strong>tended to limit suchdisturbances to tolerable levels. The amount of disturbance created by a given motordepends on <strong>the</strong> “strength” of <strong>the</strong> network, i.e. on <strong>the</strong> short-circuit fault level at <strong>the</strong>po<strong>in</strong>t concerned. The higher <strong>the</strong> fault level, <strong>the</strong> “stronger” <strong>the</strong> system and <strong>the</strong> lower<strong>the</strong> disturbance (pr<strong>in</strong>cipally voltage drop) experienced by neibour<strong>in</strong>g consumers. Fordistribution networks <strong>in</strong> many countries, typical values of maximum allowable start<strong>in</strong>gcurrents and correspond<strong>in</strong>g maximum power rat<strong>in</strong>gs for direct-on-l<strong>in</strong>e motors areshown <strong>in</strong> Figures N74 and N75 below.Type of motor Location Maximum start<strong>in</strong>g current (A)Overhead-l<strong>in</strong>e network Underground-cable networkS<strong>in</strong>gle phase Dwell<strong>in</strong>gs 45 45O<strong>the</strong>rs 100 200Three phase Dwell<strong>in</strong>gs 60 60O<strong>the</strong>rs 125 250Fig. N74 : Maximum permitted values of start<strong>in</strong>g current for direct-on-l<strong>in</strong>e LV motors (230/400 V)LocationType of motorS<strong>in</strong>gle phase 230 V(kW)Three phase 400 VDirect-on-l<strong>in</strong>e start<strong>in</strong>g O<strong>the</strong>r methodsat full load (kW) of start<strong>in</strong>g (kW)Dwell<strong>in</strong>gs 1.4 5.5 11O<strong>the</strong>rs Overhead 3 11 22l<strong>in</strong>e networkUnderground 5.5 22 45cable networkN55Fig. N75 : Maximum permitted power rat<strong>in</strong>gs for LV direct-on-l<strong>in</strong>e start<strong>in</strong>g motorsS<strong>in</strong>ce, even <strong>in</strong> areas supplied by one power utility only, “weak” areas of <strong>the</strong> networkexist as well as “strong” areas, it is always advisable to secure <strong>the</strong> agreement of <strong>the</strong>power supplier before acquir<strong>in</strong>g <strong>the</strong> motors for a new project.O<strong>the</strong>r (but generally more costly) alternative start<strong>in</strong>g arrangements exist, whichreduce <strong>the</strong> large start<strong>in</strong>g currents of direct-on-l<strong>in</strong>e motors to acceptable levels; forexample, star-delta starters, slip-r<strong>in</strong>g motor, “soft start” electronic devices, etc.5.5 Reactive-<strong>energy</strong> compensation (power-factorcorrection)The method to correct <strong>the</strong> power factor is <strong>in</strong>dicated <strong>in</strong> chapter L.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Chapter PResidential and o<strong>the</strong>r speciallocations123ContentsResidential and similar premises1.1 General P21.2 Distribution boards components P21.3 Protection of people P41.4 Circuits P61.5 Protection aga<strong>in</strong>st overvoltages and lightn<strong>in</strong>g P7Bathrooms and showersP82.1 Classification of zones P82.2 Equipotential bond<strong>in</strong>g P112.3 Requirements prescribed for each zone P11Recommendations applicable to special <strong>in</strong>stallations P12and locationsP2P© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


P - Residential and o<strong>the</strong>r special locations1 Residential and similar premises<strong>Electrical</strong> <strong>in</strong>stallations for residential premisesneed a high standard of safety and reliabilityThe power distribution utility connects <strong>the</strong> LVneutral po<strong>in</strong>t to its MV/LV distribution tranformerto earth.All LV <strong>in</strong>stallations must be protected by RCDs.All exposed conductive parts must be bondedtoge<strong>the</strong>r and connected to <strong>the</strong> earth.1.1 GeneralRelated standardsMost countries have national regulations and-or standards govern<strong>in</strong>g <strong>the</strong> rulesto be strictly observed <strong>in</strong> <strong>the</strong> design and realization of electrical <strong>in</strong>stallations forresidential and similar premises. The relevant <strong>in</strong>ternational standard is <strong>the</strong> publicationIEC 60364.The power networkThe vast majority of power distribution utilities connect <strong>the</strong> low voltage neutral po<strong>in</strong>tof <strong>the</strong>ir MV/LV distribution transformers to earth.The protection of persons aga<strong>in</strong>st electric shock <strong>the</strong>refore depends, <strong>in</strong> such case, on<strong>the</strong> pr<strong>in</strong>ciple discussed <strong>in</strong> chapter F. The measures required depend on whe<strong>the</strong>r <strong>the</strong>TT, TN or IT scheme of earth<strong>in</strong>g is adopted.RCDs are essential for TT and IT ear<strong>the</strong>d <strong>in</strong>stallations. For TN <strong>in</strong>stallations, highspeed overcurrent devices or RCDs may provide protection aga<strong>in</strong>st direct contactof <strong>the</strong> electrical circuits. To extend <strong>the</strong> protection to flexible leads beyond <strong>the</strong> fixedsocket outlets and to ensure protection aga<strong>in</strong>st fires of electrical orig<strong>in</strong> RCDs shallbe <strong>in</strong>stalled.The quality of electrical equipment used <strong>in</strong>residential premises is commonly ensured by amark of conformity situated on <strong>the</strong> front of eachitem1.2 Distribution boards components (see Fig. P1)Distribution boards (generally only one <strong>in</strong> residential premises) usually <strong>in</strong>clude<strong>the</strong> meter(s) and <strong>in</strong> some cases (notably where <strong>the</strong> supply utilities impose a TTearth<strong>in</strong>g system and/or tariff conditions which limit <strong>the</strong> maximum permitted currentconsumption) an <strong>in</strong>com<strong>in</strong>g supply differential circuit-breaker which <strong>in</strong>cludes anovercurrent trip. This circuit-breaker is freely accessible to <strong>the</strong> consumer.EnclosureService connectionLightn<strong>in</strong>g protectionIncom<strong>in</strong>g-supplycircuit breakerDistribution boardCombi surge arresterPOvercurrentprotectionand isolationProtection aga<strong>in</strong>stdirect and <strong>in</strong>directcontact,and protectionaga<strong>in</strong>st fireRemote controlMCB phase and neutralDifferentialMCBRemote control switchTL 16 ADifferential loadswitch© Schneider Electric - all rights reservedFig. P1 : Presentation of realizable functions on a consumer unitEnergy managementProgrammable <strong>the</strong>rmostatTHPProgrammable time switchIHPLoad shedd<strong>in</strong>g switchCDStContactors, off-peakor manual control CTSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


P - Residential and o<strong>the</strong>r special locations1 Residential and similar premisesOn <strong>in</strong>stallations which are TN ear<strong>the</strong>d, <strong>the</strong> supply utilities usually protect <strong>the</strong><strong>in</strong>stallation simply by means of sealed fuse cut-outs immediately upstream of <strong>the</strong>meter(s) (see Fig. P2). The consumer has no access to <strong>the</strong>se fuses.MeterFuse …or …Circuit breakerdepend<strong>in</strong>g onearth<strong>in</strong>g systemDistributionboardFig. P2 : Components of a control and distribution boardFig. P3 : Incom<strong>in</strong>g-supply circuit-breakerFig. P4 : Control and distribution boardIf, <strong>in</strong> a TT scheme, <strong>the</strong> value of 80 Ω for <strong>the</strong>resistance of <strong>the</strong> electrode can not be met <strong>the</strong>n,30 mA RCDs must be <strong>in</strong>stalled to take over <strong>the</strong>function of <strong>the</strong> earth leakage protection of <strong>the</strong><strong>in</strong>com<strong>in</strong>g supply circuit-breakerThe <strong>in</strong>com<strong>in</strong>g supply circuit-breaker (see Fig. P3)The consumer is allowed to operate this CB if necessary (e.g to reclose it if <strong>the</strong>current consumption has exceeded <strong>the</strong> authorized limit; to open it <strong>in</strong> case ofemergency or for isolation purposes).The rated residual current of <strong>the</strong> <strong>in</strong>com<strong>in</strong>g circuit-breaker <strong>in</strong> <strong>the</strong> earth leakageprotection shall be 300 mA.If <strong>the</strong> <strong>in</strong>stallation is TT, <strong>the</strong> earth electrode resistance shall be less than50 VR 300 mA 166 . In practice, <strong>the</strong> earth electrode resistance of a new <strong>in</strong>stallationshall be less than 80 Ω Ω ( R 2 ). .The control and distribution board (consumer unit) (see Fig. P4)This board comprises:b A control panel for mount<strong>in</strong>g (where appropriate) <strong>the</strong> <strong>in</strong>com<strong>in</strong>g supply circuitbreakerand o<strong>the</strong>r control auxiliaries, as requiredb A distribution panel for hous<strong>in</strong>g 1, 2 or 3 rows (of 24 multi 9 units) or similar MCBsor fuse units, etc.b <strong>Installation</strong> accessories for fix<strong>in</strong>g conductors, and rails for mount<strong>in</strong>g MCBs, fusesbases, etc, neutral busbar and earth<strong>in</strong>g bar, and so onb Service cable ducts or conduits, surface mounted or <strong>in</strong> cable chases embedded <strong>in</strong><strong>the</strong> wallNote: to facilitate future modifications to <strong>the</strong> <strong>in</strong>stallation, it is recommended to keepall relevant documents (photos, diagrams, characteristics, etc.) <strong>in</strong> a suitable locationclose to <strong>the</strong> distribution board.The board should be <strong>in</strong>stalled at a height such that <strong>the</strong> operat<strong>in</strong>g handles,<strong>in</strong>dicat<strong>in</strong>g dials (of meters) etc., are between 1 metre and 1.80 metres from <strong>the</strong> floor(1.30 metres <strong>in</strong> situations where handicapped or elderly people are concerned).Lightn<strong>in</strong>g arrestersThe <strong>in</strong>stallation of lightn<strong>in</strong>g arresters at <strong>the</strong> service position of a LV <strong>in</strong>stallation isstrongly recommended for <strong>in</strong>stallations which <strong>in</strong>clude sensitive (e.g electronic)equipment.These devices must automatically disconnect <strong>the</strong>mselves from <strong>the</strong> <strong>in</strong>stallation <strong>in</strong>case of failure or be protected by a MCB. In <strong>the</strong> case of residential <strong>in</strong>stallations, <strong>the</strong>use of a 300 mA differential <strong>in</strong>com<strong>in</strong>g supply circuit-breaker type S (i.e slightly timedelayed)will provide effective earth leakage protection, while, at <strong>the</strong> same time, willnot trip unnecessarily each time a lightn<strong>in</strong>g arrester discharges <strong>the</strong> current (of anovervoltage-surge) to earth.Resistance value of <strong>the</strong> earth electrodeIn <strong>the</strong> case where <strong>the</strong> resistance to earth exceeds 80 Ω, one or several 30 mA RCDsshould be used <strong>in</strong> place of <strong>the</strong> earth leakage protection of <strong>the</strong> <strong>in</strong>com<strong>in</strong>g supplycircuit-breaker.P© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


P - Residential and o<strong>the</strong>r special locations1 Residential and similar premisesWhere utility power supply systems andconsumers’ <strong>in</strong>stallations form a TT ear<strong>the</strong>dsystem, <strong>the</strong> govern<strong>in</strong>g standards impose <strong>the</strong> useof RCDs to ensure <strong>the</strong> protection of persons1.3 Protection of peopleOn TT ear<strong>the</strong>d systems, <strong>the</strong> protection of persons is ensured by <strong>the</strong> follow<strong>in</strong>gmeasures:b Protection aga<strong>in</strong>st <strong>in</strong>direct contact hazards by RCDs (see Fig. P5) of mediumsensitivity (300 mA) at <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> <strong>in</strong>stallation (<strong>in</strong>corporated <strong>in</strong> <strong>the</strong> <strong>in</strong>com<strong>in</strong>gsupply circuit-breaker or, on <strong>the</strong> <strong>in</strong>com<strong>in</strong>g feed to <strong>the</strong> distribution board). Thismeasure is associated with a consumer <strong>in</strong>stalled earth electrode to which must beconnected <strong>the</strong> protective earth conductor (PE) from <strong>the</strong> exposed conductive parts ofall class I <strong>in</strong>sulated appliances and equipment, as well as those from <strong>the</strong> earth<strong>in</strong>gp<strong>in</strong>s of all socket outletsb When <strong>the</strong> CB at <strong>the</strong> orig<strong>in</strong> of an <strong>in</strong>stallation has no RCD protection, <strong>the</strong> protectionof persons shall be ensured by class II level of <strong>in</strong>sulation on all circuits upstreamof <strong>the</strong> first RCDs. In <strong>the</strong> case where <strong>the</strong> distribution board is metallic, care shall betaken that all live parts are double <strong>in</strong>sulated (supplementary clearances or <strong>in</strong>sulation,use of covers, etc.) and wir<strong>in</strong>g reliably fixedb Obligatory protection by 30 mA sensitive RCDs of socket outlet circuits, andcircuits feed<strong>in</strong>g bathroom, laundry rooms, and so on (for details of this latterobligation, refer to clause 3 of this chapter)300 mA30 mA 30 mADiversecircuitsSocket-outletscircuitBathroom and/orshower roomFig. P5 : <strong>Installation</strong> with <strong>in</strong>com<strong>in</strong>g-supply circuit-breaker hav<strong>in</strong>g <strong>in</strong>stantaneous differentialprotectionPIncom<strong>in</strong>g supply circuit-breaker with <strong>in</strong>stantaneous differentialrelayIn this case:b An <strong>in</strong>sulation fault to earth could result <strong>in</strong> a shutdown of <strong>the</strong> entire <strong>in</strong>stallationb Where a lightn<strong>in</strong>g arrester is <strong>in</strong>stalled, its operation (i.e. discharg<strong>in</strong>g a voltagesurge to earth) could appear to an RCD as an earth fault, with a consequentshutdown of <strong>the</strong> <strong>in</strong>stallationRecommendation of suitable Merl<strong>in</strong> Ger<strong>in</strong> componentsb Incom<strong>in</strong>g supply circuit-breaker with 300 mA differential andb High sensitivity 30 mA RCD (for example differential circuit-breaker 1P + N typeDeclic Vigi) on <strong>the</strong> circuits supply<strong>in</strong>g socket outletsb High sensitivity 30 mA RCD (for example differential load switch type ID’clic) oncircuits to bathrooms, shower rooms, laundry rooms, etc. (light<strong>in</strong>g, heat<strong>in</strong>g, socketoutlets)© Schneider Electric - all rights reservedIncom<strong>in</strong>g supply circuit-breaker with type S time delayeddifferential relayThis type of CB affords protection aga<strong>in</strong>st fault to earth, but by virtue of a short timedelay, provides a measure of discrim<strong>in</strong>ation with downstream <strong>in</strong>stantaneous RCDs.Tripp<strong>in</strong>g of <strong>the</strong> <strong>in</strong>com<strong>in</strong>g supply CB and its consequences (on deep freezers, forexample) is <strong>the</strong>reby made less probable <strong>in</strong> <strong>the</strong> event of lightn<strong>in</strong>g, or o<strong>the</strong>r causes ofvoltage surges. The discharge of voltage surge current to earth, through <strong>the</strong> surgearrester, will leave <strong>the</strong> type S circuit-breaker unaffected.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


P - Residential and o<strong>the</strong>r special locations1 Residential and similar premisesRecommendation of suitable Merl<strong>in</strong> Ger<strong>in</strong> components (see Fig. P6)b Incom<strong>in</strong>g supply circuit-breaker with 300 mA differential type S andb High sensitivity 30 mA RCD (for example differential circuit-breaker 1P + N typeDeclic Vigi) on <strong>the</strong> circuits supply<strong>in</strong>g wash<strong>in</strong>g mach<strong>in</strong>es and dish-wash<strong>in</strong>g mach<strong>in</strong>eb High sensitivity 30 mA RCD (for example differential load switch type ID’clic) oncircuits to bathrooms, shower rooms, laundry rooms, etc. (light<strong>in</strong>g, heat<strong>in</strong>g, socketoutlets)300 mA - type S12DiversecircuitsHigh-risk location(laundry room)30 mA 30 mA 30 mASocketoutletcircuitBathroom and/orshower roomFig. P6 : <strong>Installation</strong> with <strong>in</strong>com<strong>in</strong>g-supply circuit-breaker hav<strong>in</strong>g short time delay differentialprotection, type S5 3 4Diversecircuits300 mA 30 mA 30 mA 30 mAHigh-risk circuit(dish-wash<strong>in</strong>gmach<strong>in</strong>e)Socket-outletcircuitBathroom and/orshower roomFig. P7 : <strong>Installation</strong> with <strong>in</strong>com<strong>in</strong>g-supply circuit-breakerhav<strong>in</strong>g no differential protectionIncom<strong>in</strong>g supply circuit-breaker without differential protectionIn this case <strong>the</strong> protection of persons must be ensured by:b Class II level of <strong>in</strong>sulation up to <strong>the</strong> downstream term<strong>in</strong>als of <strong>the</strong> RCDsb All outgo<strong>in</strong>g circuits from <strong>the</strong> distribution board must be protected by 30 mA or300 mA RCDs accord<strong>in</strong>g to <strong>the</strong> type of circuit concerned as discussed <strong>in</strong> chapter F.Where a voltage surge arrester is <strong>in</strong>stalled upstream of <strong>the</strong> distribution board(to protect sensitive electronic equipment such as microprocessors, videocassetterecorders, TV sets, electronic cash registers, etc.) it is imperative that <strong>the</strong>device automatically disconnects itself from <strong>the</strong> <strong>in</strong>stallation follow<strong>in</strong>g a rare (butalways possible) failure. Some devices employ replaceable fus<strong>in</strong>g elements; <strong>the</strong>recommended method however as shown <strong>in</strong> Figure P7, is to use a circuit-breaker.Recommendation of suitable Merl<strong>in</strong> Ger<strong>in</strong> componentsFigure P7 refers:1. Incom<strong>in</strong>g-supply circuit-breaker without differential protection2. Automatic disconnection device (if a lightn<strong>in</strong>g arrester is <strong>in</strong>stalled)3. 30 mA RCD (for example differential circuit-breaker 1P + N type Declic Vigi) oneach circuit supply<strong>in</strong>g one or more socket-outlets4. 30 mA RCD (for example differential load swith type ID’clic) on circuits tobathrooms and shower rooms (light<strong>in</strong>g, heat<strong>in</strong>g and socket-outlets) or a 30 mAdifferential circuit-breaker per circuit5. 300 mA RCD (for example differential load swith) on all <strong>the</strong> o<strong>the</strong>r circuitsP© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


P - Residential and o<strong>the</strong>r special locations1 Residential and similar premisesThe distribution and division of circuits providescomfort and facilitates rapid location of fault1.4 CircuitsSubdivisionNational standards commonly recommend <strong>the</strong> subdivision of circuits accord<strong>in</strong>g to <strong>the</strong>number of utilization categories <strong>in</strong> <strong>the</strong> <strong>in</strong>stallation concerned (see Fig. P8):b At least 1 circuit for light<strong>in</strong>g. Each circuit supply<strong>in</strong>g a maximum of 8 light<strong>in</strong>g po<strong>in</strong>tsb At least 1 circuit for socket-outlets rated 10/16 A, each circuit supply<strong>in</strong>g a maximumof 8 sockets. These sockets may be s<strong>in</strong>gle or double units (a double unit is made upof two 10/16 A sockets mounted on a common base <strong>in</strong> an embedded box, identicalto that of a s<strong>in</strong>gle unitb 1 circuit for each appliance such as water heater, wash<strong>in</strong>g mach<strong>in</strong>e, dish-wash<strong>in</strong>gmach<strong>in</strong>e, cooker, refrigerator, etc. Recommended numbers of 10/16 A (or similar)socket-outlets and fixed light<strong>in</strong>g po<strong>in</strong>ts, accord<strong>in</strong>g to <strong>the</strong> use for which <strong>the</strong> variousrooms of a dwell<strong>in</strong>g are <strong>in</strong>tended, are <strong>in</strong>dicated <strong>in</strong> Figure P9SocketoutletsLight<strong>in</strong>gHeat<strong>in</strong>gWash<strong>in</strong>gmach<strong>in</strong>eCook<strong>in</strong>gapparatusRoom function M<strong>in</strong>imum number M<strong>in</strong>imum numberof fixed light<strong>in</strong>g po<strong>in</strong>ts of 10/16 A socket-outletsLiv<strong>in</strong>g room 1 5Bedroom, lounge, 1 3bureau, d<strong>in</strong><strong>in</strong>g roomKitchen 2 4 (1)Bathroom, shower room 2 1 or 2Entrance hall, box room 1 1WC, storage space 1 -Laundry room - 1(1) Of which 2 above <strong>the</strong> work<strong>in</strong>g surface and 1 for a specialized circuit: <strong>in</strong> additionan <strong>in</strong>dependent socket-outlet of 16 A or 20 A for a cooker and a junction box orsocket-outlet for a 32 A specialized circuitFig. P8 : Circuit division accord<strong>in</strong>g to utilizationFig P9 : Recommended m<strong>in</strong>imum number of light<strong>in</strong>g and power po<strong>in</strong>ts <strong>in</strong> residential premisesThe <strong>in</strong>clusion of a protective conductor <strong>in</strong> allcircuits is required by IEC and most nationalstandardsProtective conductorsIEC and most national standards require that each circuit <strong>in</strong>cludes a protectiveconductor. This practice is strongly recommended where class I <strong>in</strong>sulated appliancesand equipment are <strong>in</strong>stalled, which is <strong>the</strong> general case.The protective conductors must connect <strong>the</strong> earth<strong>in</strong>g-p<strong>in</strong> contact <strong>in</strong> each socketoutlet,and <strong>the</strong> earth<strong>in</strong>g term<strong>in</strong>al <strong>in</strong> class I equipment, to <strong>the</strong> ma<strong>in</strong> earth<strong>in</strong>g term<strong>in</strong>alat <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> <strong>in</strong>stallation.Fur<strong>the</strong>rmore, 10/16 A (or similarly sized) socket-outlets must be provided withshuttered contact orifices.PCross-sectional-area (c.s.a.) of conductors (see Fig. P10)The c.s.a. of conductors and <strong>the</strong> rated current of <strong>the</strong> associated protective devicedepend on <strong>the</strong> current magnitude of <strong>the</strong> circuit, <strong>the</strong> ambient temperature, <strong>the</strong> k<strong>in</strong>d of<strong>in</strong>stallation, and <strong>the</strong> <strong>in</strong>fluence of neighbour<strong>in</strong>g circuits (refer to chapter G)Moreover, <strong>the</strong> conductors for <strong>the</strong> phase wires, <strong>the</strong> neutral and <strong>the</strong> protectiveconductors of a given circuit must all be of equal c.s.a. (assum<strong>in</strong>g <strong>the</strong> same materialfor <strong>the</strong> conductors concerned, i.e. all copper or all alum<strong>in</strong>ium).© Schneider Electric - all rights reservedFig. P10 : Circuit-breaker 1 phase + N - 2 x 9 mm spacesSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


P - Residential and o<strong>the</strong>r special locations1 Residential and similar premisesFigure P11 <strong>in</strong>dicates <strong>the</strong> c.s.a. required for commonly-used appliancesProtective devices 1 phase + N <strong>in</strong> 2 x 9 mm spaces comply with requirements forisolation, and for mark<strong>in</strong>g of circuit current rat<strong>in</strong>g and conductor sizes.Type of circuit c. s. a. of <strong>the</strong> Maximum power Protective devices<strong>in</strong>gle-phase 230 Vconductors1 ph + N or 1 ph + N + PEFixed light<strong>in</strong>g 1.5 mm 2 2,300 W Circuit-breaker 16 A(2.5 mm 2 ) Fuse 10 A10/16 A 2.5 mm 2 4,600 W Circuit-breaker 25 A(4 mm 2 ) Fuse 20 AIndividual-load circuitsWater heater 2.5 mm 2 4,600 W Circuit-breaker 25 A(4 mm 2 ) Fuse 20 ADish-wash<strong>in</strong>g mach<strong>in</strong>e 2.5 mm 2 4,600 W Circuit-breaker 25 A(4 mm 2 ) Fuse 20 AClo<strong>the</strong>s-wash<strong>in</strong>g mach<strong>in</strong>e 2.5 mm 2 4,600 W Circuit-breaker 25 A(4 mm 2 ) Fuse 20 ACooker or hotplate (1) 6 mm 2 7,300 W Circuit-breaker 40 A(10 mm 2 ) Fuse 32 AElectric space heater 1.5 mm 2 2,300 W Circuit-breaker 16 A(2.5 mm 2 ) Fuse 10 A(1) In a 230/400 V 3-phase circuit, <strong>the</strong> c. s. a. is 4 mm 2 for copper or 6 mm 2 for alum<strong>in</strong>ium, and protection is provided by a 32 Acircuit-breaker or by 25 A fuses.Fig. P11 : C. s. a. of conductors and current rat<strong>in</strong>g of <strong>the</strong> protective devices <strong>in</strong> residential <strong>in</strong>stallations (<strong>the</strong> c. s. a. of alum<strong>in</strong>ium conductors are shown <strong>in</strong> brackets)1.5 Protection aga<strong>in</strong>st overvoltages and lightn<strong>in</strong>gThe choice of surge arrester is described <strong>in</strong> chapter J<strong>Installation</strong> rulesThree pr<strong>in</strong>cipal rules must be respected:1 - It is imperative that <strong>the</strong> three lengths of cable used for <strong>the</strong> <strong>in</strong>stallation of <strong>the</strong> surgearrester each be less than 50 cm i.e.:b <strong>the</strong> live conductors connected to <strong>the</strong> isolat<strong>in</strong>g switchb from <strong>the</strong> isolat<strong>in</strong>g switch to <strong>the</strong> surge arresterb from <strong>the</strong> surge arrester to <strong>the</strong> ma<strong>in</strong> distribution board (MDB) earth bar (notto be confused with <strong>the</strong> ma<strong>in</strong> protective-earth (PE) conductor or <strong>the</strong> ma<strong>in</strong> earthterm<strong>in</strong>al for <strong>the</strong> <strong>in</strong>stallation.The MDB earth bar must evidently be located <strong>in</strong> <strong>the</strong>same cab<strong>in</strong>et as <strong>the</strong> surge arrester.2 - It is necessary to use an isolat<strong>in</strong>g switch of a type recommended by <strong>the</strong>manufacturer of <strong>the</strong> surge arrester.3 - In <strong>the</strong> <strong>in</strong>terest of a good cont<strong>in</strong>uity of supply it is recommended that <strong>the</strong>circuit-breaker be of <strong>the</strong> time-delayed or selective type.P© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


P - Residential and o<strong>the</strong>r special locations2 Bathrooms and showersBathrooms and showers rooms are areas of high risk, because of <strong>the</strong> very lowresistance of <strong>the</strong> human body when wet or immersed <strong>in</strong> water.Precaution to be taken are <strong>the</strong>refore correspond<strong>in</strong>gly rigorous, and <strong>the</strong> regulationsare more severe than those for most o<strong>the</strong>r locations.The relevant standard is IEC 60364-7-701.Precautions to observe are based on three aspects:b The def<strong>in</strong>ition of zones, numbered 0,1, 2, 3 <strong>in</strong> which <strong>the</strong> placement (or exclusion)of any electrical device is strictly limited or forbidden and, where permitted, <strong>the</strong>electrical and mechanical protection is prescribedb The establishment of an equipotential bond between all exposed and extraneousmetal parts <strong>in</strong> <strong>the</strong> zones concernedb The strict adherence to <strong>the</strong> requirements prescribed for each particular zones, astabled <strong>in</strong> clause 32.1 Classification of zonesSub-clause 701.32 of IEC 60364-7-701 def<strong>in</strong>es <strong>the</strong> zones 0, 1, 2, 3 as shown <strong>in</strong> <strong>the</strong>follow<strong>in</strong>g diagrams (see Fig. P12 below to Fig P18 opposite and next pages):Zone 1*Zone 0Zone 2 Zone 3Zone 1*Zone 0Zone 2 Zone 30.60 m 2.40 m0.60 m2.40 mZone 1Zone 2Zone 3Zone 12.25 mZone 0P0.60 m2.40 m(*) Zone 1 is above <strong>the</strong> bath as shown <strong>in</strong> <strong>the</strong> vertical cross-sectionFig. P12 : Zones 0, 1, 2 and 3 <strong>in</strong> proximity to a bath-tub© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


2 Bathrooms and showersZone 0Zone 1 Zone 2Zone 0Zone 3 Zone 1 Zone 2 Zone 30.60 m2.40 m0.60 m2.40 mZone 1 Zone 2Zone 3Zone 12.25 mZone 00.60 m2.40 mFig. P13 : Zones 0, 1, 2 and 3 <strong>in</strong> proximity of a shower with bas<strong>in</strong>Zone 1Zone 2Fixed showerhead (1)0.60 m 0.60 mZone 10.60 m0.60 mZone 2Fixed showerhead (1)Zone 32.40 mZone 32.40 mZone 1Zone2Zone 32.25 m(1) When <strong>the</strong> shower head is at <strong>the</strong> end of a flexible tube, <strong>the</strong> vertical central axis ofa zone passes through <strong>the</strong> fixed end of <strong>the</strong> flexible tubeFig. P14 : Zones 0, 1, 2 and 3 <strong>in</strong> proximity of a shower without bas<strong>in</strong>P0.60 mPrefabricatedshowercab<strong>in</strong>et0.60 mFig. P15 : No switch or socket-outlet is permitted with<strong>in</strong> 60 cm of <strong>the</strong> door open<strong>in</strong>g of a showercab<strong>in</strong>et© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


P - Residential and o<strong>the</strong>r special locations2 Bathrooms and showersClassesof external<strong>in</strong>fluencesClassesof external<strong>in</strong>fluencesAD 3BB 2BC 3AD 3BB 3BC 3AD 7BB 3BC 3Fig. P16 : Individual showers with dress<strong>in</strong>g cubiclesZone 3Dress<strong>in</strong>g cubicles (zone 2)Shower cab<strong>in</strong>ets (zone 1)AD 3BB 2BC 3WCAD 3BB 2BC 3Classesof external<strong>in</strong>fluencesClassesof external<strong>in</strong>fluencesh < 1.10mAD 51.10m < h < 2.25mAD 3BB 3BC 3Dress<strong>in</strong>g cubiclesZone 2h < 1.10mAD 51.10m < h < 2.25mAD 3BB 3BC 3AD 7BB 3BC 3Zone 1WCAD 3BB 2BC 3Fig. P17 : Individual showers with separate <strong>in</strong>dividual dress<strong>in</strong>g cubiclesClassesof external<strong>in</strong>fluencesAD 3BB 2BC 3Dress<strong>in</strong>g roomZone 2Classesof external<strong>in</strong>fluencesh < 1.10mAD 51.10m < h < 2.25mAD 3BB 3BC 3h < 1.10mAD 51.10m < h < 2.25mAD 3BB 3BC 3Zone 2Zone 1AD 7BB 3BC 3P10Fig. P18 : Communal showers and common dress<strong>in</strong>g roomNote: Classes of external <strong>in</strong>fluences (see Fig. E46).© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


P - Residential and o<strong>the</strong>r special locations2 Bathrooms and showers2.2 Equipotential bond<strong>in</strong>g (see Fig. P19)To <strong>the</strong> ear<strong>the</strong>lectrodeMetallic pipesh i 2 mWater-dra<strong>in</strong>agepip<strong>in</strong>gSocket-outletGazRadiatorLight<strong>in</strong>gMetal bathEquipotential conductorsfor a bathroomMetaldoor-frameFig. P19 : Supplementary equipotential bond<strong>in</strong>g <strong>in</strong> a bathroom2.3 Requirements prescribed for each zoneThe table of clause 3 describes <strong>the</strong> application of <strong>the</strong> pr<strong>in</strong>ciples mentioned <strong>in</strong> <strong>the</strong>forego<strong>in</strong>g text and <strong>in</strong> o<strong>the</strong>r similar or related casesP11© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


P - Residential and o<strong>the</strong>r special locations3 Recommendations applicable tospecial <strong>in</strong>stallations and locationsFigure P20 below summarizes <strong>the</strong> ma<strong>in</strong> requirements prescribed <strong>in</strong> many nationaland <strong>in</strong>ternational standards.Note: Section <strong>in</strong> brackets refer to sections of IEC 60364-7P12© Schneider Electric - all rights reservedLocations Protection pr<strong>in</strong>ciples IP Wir<strong>in</strong>g Switchgear Socket-outlets <strong>Installation</strong>level and cables materialsDomestic dwell<strong>in</strong>gs b TT or TN-S systems 20 Switch operat<strong>in</strong>g handles Protection byand o<strong>the</strong>r habitations b Differential protection and similar devices on 30 mA RCDsv 300 mA if <strong>the</strong> earth electrodedistribution panels,resistance is y 80 ohms <strong>in</strong>stantaneousto be mountedor short time delay (type S)between 1 metre andv 30 mA if <strong>the</strong> earth electrode1.80 metre above <strong>the</strong> floorresistance is u 500 ohmsb surge arrester at <strong>the</strong> orig<strong>in</strong> of <strong>the</strong><strong>in</strong>stallation ifv supply is from overhead l<strong>in</strong>e with bareconductors, and ifv <strong>the</strong> keraunic level > 25b a protective earth (PE) conductoron all circuitsBathrooms or shower Supplementary equipotential bond<strong>in</strong>grooms (section 701) <strong>in</strong> zones 0, 1, 2 and 3Zone 0 SELV 12 V only 27 Class II Special applianceslimited tostrict m<strong>in</strong>imumZone 1 SELV 12 V 25 Class II Special apllianceslimited toWater heaterstrict m<strong>in</strong>imumZone 2 SELV 12 V or 30 mA RCD 24 Class II Special applianceslimited toWater heaterstrict m<strong>in</strong>imumClass II lum<strong>in</strong>airesZone 3 21 Only socket-outlets protected by :b 30 mA RCD orb <strong>Electrical</strong> separation orb SELV 50 VSwimm<strong>in</strong>g baths Supplementary equipotential bond<strong>in</strong>g(section 702) <strong>in</strong> zones 0, 1, and 2Zone 0 SELV 12 V 28 Class II Special applianceslimited tostrict m<strong>in</strong>imumZone 1 25 Class II Special applianceslimited tostrict m<strong>in</strong>imumZone 2 22 Only socket-outlets protected by :(<strong>in</strong>door)b 30 mA RCD or24 b electrical separation or(outdoor)b SELV 50 VSaunas 24 Class II Adapted to temperature(section 703)Work sites Conventional voltage limit UL 44 Mechanically Protection by(section 704) reduced to 25 V protected 30 mA RCDsAgricultural and Conventional voltage limit UL 35 Protection byhorticultural reduced to 25 V 30 mA RCDsestablishments Protection aga<strong>in</strong>st fire risks(section 705)by 500 mA RCDsRestricted conductive 2x Protection of:locations (section 706)b Portable tools by:v SELV orv <strong>Electrical</strong> separationb Hand-held lampsv By SELVb Fixed equipement byv SELVv <strong>Electrical</strong> separationv 30 mA RCDsv Special supplementaryequipotential bond<strong>in</strong>gFig. P20 : Ma<strong>in</strong> requirements prescribed <strong>in</strong> many national and <strong>in</strong>ternational standards (cont<strong>in</strong>ued on opposite page)Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


P - Residential and o<strong>the</strong>r special locations3 Recommendations applicable tospecial <strong>in</strong>stallations and locationsLocations Protection pr<strong>in</strong>ciples IP Wir<strong>in</strong>g Switchgear Socket-outlets <strong>Installation</strong>level and cables materialsFounta<strong>in</strong>sProtection by 30 mA RCDs and(section 702)equipotential bond<strong>in</strong>g of all exposedand extraneous conductive partsData process<strong>in</strong>g TN-S system recommended(section 707)TT system if leakage current is limited.Protective conductor 10 mm 2 m<strong>in</strong>imum<strong>in</strong> alum<strong>in</strong>ium. Smaller sizes (<strong>in</strong> copper)must be doubled.Caravan park 55 Flexible cable of Socket-outlets(section 708) 25 metres shall be placedlengthat a height of0.80 m to 1.50 mfrom <strong>the</strong> ground.Protection ofcircuits by30 mA RCDs(one per 6socket-outlets)Mar<strong>in</strong>as and pleasure The cable length for connection to Protection ofcraft (section 709) pleasure craft must not exceeded 25 m circuits by30 mA RCDs(one per 6socket-outlets)Medical locations IT medical system equipotential Only magnetic Protection of circuitsGroup 2 : Operat<strong>in</strong>g groud<strong>in</strong>g, limited to one operat<strong>in</strong>g protection for <strong>the</strong> by <strong>the</strong>rmal-magnetic<strong>the</strong>atres and similar <strong>the</strong>atre and not exceed<strong>in</strong>g 10 kVA primary of LV/LV protection only. One(section 710) transformer. Monitor<strong>in</strong>g to three per circuit.of secondary loadsand transformertemperatureMedical locations TT or TNS Protection byGroup 1 :30 mA RCDsHospitalization andsimilar (section 710)Exhibitions, shows and TT or TN-S systems 4x Protection bystands (section 711)30 mA RCDsBalneo<strong>the</strong>rapy Individual: see section 701(cure-centre baths) (volumes 0 and 1)Collective: see section 702(volumes 0 and 1)Motor-fuel fill<strong>in</strong>g Explosion risks <strong>in</strong> security zones Limited to <strong>the</strong>stationsnecessary m<strong>in</strong>imumMotor vehicules Protection by RCDs or byelectrical separationExternal light<strong>in</strong>g 23 Protection by<strong>in</strong>stallations30 mA RCDs(section 714)Mobile or transportable The use of TN-C system is not30 mA RCDsunits (section 717) permitted <strong>in</strong>side any unit must be used forall socket-outletssupply<strong>in</strong>gequipmentoutside <strong>the</strong> unitFig. P20 : Ma<strong>in</strong> requirements prescribed <strong>in</strong> many national and <strong>in</strong>ternational standards (concluded)P13© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Chapter QEMC guidel<strong>in</strong>es12345Contents<strong>Electrical</strong> distributionEarth<strong>in</strong>g pr<strong>in</strong>ciples and structuresImplementationQ53.1 Equipotential bond<strong>in</strong>g <strong>in</strong>side and outside build<strong>in</strong>gs Q53.2 Improv<strong>in</strong>g equipotential conditions Q53.3 Separat<strong>in</strong>g cables Q73.4 False floor Q73.5 Cable runn<strong>in</strong>g Q83.6 Implementation of shielded cables Q113.7 Communication networks Q113.8 Implementation of surge arrestors Q123.9 Cab<strong>in</strong>et cabl<strong>in</strong>g Q153.10 Standards Q15Coupl<strong>in</strong>g mechanisms and counter-measuresQ164.1 General Q164.2 Common-mode impedance coupl<strong>in</strong>g Q174.3 Capacitive coupl<strong>in</strong>g Q184.4 Inductive coupl<strong>in</strong>g Q194.5 Radiated coupl<strong>in</strong>g Q20Wir<strong>in</strong>g recommendationsQ225.1 Signal classes Q225.2 Wir<strong>in</strong>g recommendations Q22Q2Q3Q© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es1 <strong>Electrical</strong> distributionThe system earth<strong>in</strong>g arrangement must be properly selected to ensure <strong>the</strong>safety of life and property. The behaviour of <strong>the</strong> different systems with respectto EMC considerations must be taken <strong>in</strong>to account. Figure Q1 below presents asummary of <strong>the</strong>ir ma<strong>in</strong> characteristics.European standards (see EN 50174-2 § 6.4 and EN 50310 § 6.3) recommend <strong>the</strong>TN-S system which causes <strong>the</strong> fewest EMC problems for <strong>in</strong>stallations compris<strong>in</strong>g<strong>in</strong>formation-technology equipment (<strong>in</strong>clud<strong>in</strong>g telecom equipment).TT TN-S IT TN-CSafety of persons Good GoodRCD mandatory Cont<strong>in</strong>uity of <strong>the</strong> PE conductor must be ensured throughout <strong>the</strong> <strong>in</strong>stallationSafety of property Good Poor Good PoorMedium fault current High fault current Low current for first fault High fault current(< a few dozen amperes) (around 1 kA) (< a few dozen mA), (around 1 kA)but high for second faultAvailability of <strong>energy</strong> Good Good Excellent GoodEMC behaviour Good Excellent Poor (to be avoided) Poor- Risk of overvoltages - Few equipotential - Risk of overvoltages (should never be used)- Equipotential problems - Common-mode filters - Neutral and PE areproblems - Need to manage and surge arrestors <strong>the</strong> same- Need to manage devices with high must handle <strong>the</strong> phase- - Circulation of disturbeddevices with high leakage currents to-phase voltages currents <strong>in</strong> exposedleakage currents - High fault currents - RCDs subject to conductive parts (high(transient disturbances) nuisance tripp<strong>in</strong>g if magnetic-field radiation)common-mode - High fault currentscapacitors are present (transient disturbances)- Equivalent toTN system for secondfaultFig. Q1 : Ma<strong>in</strong> characteristics of system earth<strong>in</strong>gWhen an <strong>in</strong>stallation <strong>in</strong>cludes high-power equipment (motors, air-condition<strong>in</strong>g, lifts,power electronics, etc.), it is advised to <strong>in</strong>stall one or more transformers specificallyfor <strong>the</strong>se systems. <strong>Electrical</strong> distribution must be organised <strong>in</strong> a star system and alloutgo<strong>in</strong>g circuits must exit <strong>the</strong> ma<strong>in</strong> low-voltage switchboard (MLVS).Electronic systems (control/monitor<strong>in</strong>g, regulation, measurement <strong>in</strong>struments, etc.)must be supplied by a dedicated transformer <strong>in</strong> a TN-S system.Figure Q2 below illustrate <strong>the</strong>se recommendations.Transformer© Schneider Electric - all rights reservedQDisturb<strong>in</strong>gdevicesSensitivedevicesDisturb<strong>in</strong>gdevicesSensitivedevicesDisturb<strong>in</strong>gdevicesNot recommended Preferable ExcellentFig. Q2 : Recommendations of separated distributionsLight<strong>in</strong>gAir condition<strong>in</strong>gSensitivedevicesSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es2 Earth<strong>in</strong>g pr<strong>in</strong>ciples andstructuresThis section deals with <strong>the</strong> earth<strong>in</strong>g and equipotential bond<strong>in</strong>g of <strong>in</strong>formation-technologydevices and o<strong>the</strong>r similar devices requir<strong>in</strong>g <strong>in</strong>terconnections for signall<strong>in</strong>g purposes.Earth<strong>in</strong>g networks are designed to fulfil a number of functions. They can be<strong>in</strong>dependent or operate toge<strong>the</strong>r to provide one or more of <strong>the</strong> follow<strong>in</strong>g:b Safety of persons with respect to electrical hazardsb Protection of equipment with respect to electrical hazardsb A reference value for reliable, high-quality signalsb Satisfactory EMC performanceThe system earth<strong>in</strong>g arrangement is generally designed and <strong>in</strong>stalled <strong>in</strong> view ofobta<strong>in</strong><strong>in</strong>g a low impedance capable of divert<strong>in</strong>g fault currents and HF currents awayfrom electronic devices and systems. There are different types of system earth<strong>in</strong>garrangements and some require that specific conditions be met. These conditionsare not always met <strong>in</strong> typical <strong>in</strong>stallations. The recommendations presented <strong>in</strong> thissection are <strong>in</strong>tended for such <strong>in</strong>stallations.For professional and <strong>in</strong>dustrial <strong>in</strong>stallations, a common bond<strong>in</strong>g network (CBN) maybe useful to ensure better EMC performance with respect to <strong>the</strong> follow<strong>in</strong>g po<strong>in</strong>ts:b Digital systems and new technologiesb Compliance with <strong>the</strong> EMC requirements of EEC 89/336 (emission and immunity)b The wide number of electrical applicationsb A high level of system safety and security, as well as reliability and/or availabilityFor residential premises, however, where <strong>the</strong> use of electrical devices is limited, anisolated bond<strong>in</strong>g network (IBN) or, even better, a mesh IBN may be a solution.It is now recognised that <strong>in</strong>dependent, dedicated earth electrodes, each serv<strong>in</strong>g aseparate earth<strong>in</strong>g network, are a solution that is not acceptable <strong>in</strong> terms of EMC,but also represent a serious safety hazard. In certa<strong>in</strong> countries, <strong>the</strong> national build<strong>in</strong>gcodes forbid such systems.Use of a separate “clean” earth<strong>in</strong>g network for electronics and a “dirty” earth<strong>in</strong>gnetwork for <strong>energy</strong> is not recommended <strong>in</strong> view of obta<strong>in</strong><strong>in</strong>g correct EMC, evenwhen a s<strong>in</strong>gle electrode is used (see Fig. Q3 and Fig. Q4). In <strong>the</strong> event of a lightn<strong>in</strong>gstrike, a fault current or HF disturbances as well as transient currents will flow <strong>in</strong> <strong>the</strong><strong>in</strong>stallation. Consequently, transient voltages will be created and result <strong>in</strong> failures ordamage to <strong>the</strong> <strong>in</strong>stallation. If <strong>in</strong>stallation and ma<strong>in</strong>tenance are carried out properly,this approach may be dependable (at power frequencies), but it is generally notsuitable for EMC purposes and is not recommended for general use.Surge arrestors"Clean"earth<strong>in</strong>g network<strong>Electrical</strong>earth<strong>in</strong>g networkSeparate earth electrodesFig. Q3 : Independent earth electrodes, a solution generally not acceptable for safety and EMCreasonsQSurge arrestors"Clean"earth<strong>in</strong>g network<strong>Electrical</strong>earth<strong>in</strong>g networkS<strong>in</strong>gle earth electrodeFig. Q4 : <strong>Installation</strong> with a s<strong>in</strong>gle earth electrode© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es2 Earth<strong>in</strong>g pr<strong>in</strong>ciples andstructuresThe recommended configuration for <strong>the</strong> earth<strong>in</strong>g network and electrodes is two orthree dimensional (see Fig. Q5). This approach is advised for general use, both<strong>in</strong> terms of safety and EMC. This recommendation does not exclude o<strong>the</strong>r specialconfigurations that, when correctly ma<strong>in</strong>ta<strong>in</strong>ed, are also suitable.Equipotential bond<strong>in</strong>g required formulti-level build<strong>in</strong>gsSurge arrestors"<strong>Electrical</strong>" and "communication"earth<strong>in</strong>g as neededMultiple <strong>in</strong>terconnected earth electrodesFig. Q5 : <strong>Installation</strong> with multiple earth electrodesFig. Q6 : Each level has a mesh and <strong>the</strong> meshes are<strong>in</strong>terconnected at several po<strong>in</strong>ts between levels. Certa<strong>in</strong>ground-floor meshes are re<strong>in</strong>forced to meet <strong>the</strong> needs ofcerta<strong>in</strong> areasIn a typical <strong>in</strong>stallation for a multi-level build<strong>in</strong>g, each level should have itsown earth<strong>in</strong>g network (generally a mesh) and all <strong>the</strong> networks must be both<strong>in</strong>terconnected and connected to <strong>the</strong> earth electrode. At least two connections arerequired (built <strong>in</strong> redundancy) to ensure that, if one conductor breaks, no section of<strong>the</strong> earth<strong>in</strong>g network is isolated.Practically speak<strong>in</strong>g, more than two connections are made to obta<strong>in</strong> better symmetry<strong>in</strong> current flow, thus reduc<strong>in</strong>g differences <strong>in</strong> voltage and <strong>the</strong> overall impedancebetween <strong>the</strong> various levels <strong>in</strong> <strong>the</strong> build<strong>in</strong>g.The many parallel paths have different resonance frequencies. If one path has a highimpedance, it is most probably shunted by ano<strong>the</strong>r path with a different resonancefrequency. On <strong>the</strong> whole, over a wide frequency spectrum (dozens of Hz and MHz), alarge number of paths results <strong>in</strong> a low-impedance system (see Fig. Q6).Each room <strong>in</strong> <strong>the</strong> build<strong>in</strong>g should have earth<strong>in</strong>g-network conductors for equipotentialbond<strong>in</strong>g of devices and systems, cableways, trunk<strong>in</strong>g systems and structures. Thissystem can be re<strong>in</strong>forced by connect<strong>in</strong>g metal pipes, gutters, supports, frames, etc.In certa<strong>in</strong> special cases, such as control rooms or computers <strong>in</strong>stalled on false floors,ground reference plane or earth<strong>in</strong>g strips <strong>in</strong> areas for electronic systems can be usedto improve earth<strong>in</strong>g of sensitive devices and protection <strong>in</strong>terconnection cables.Q© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es3 Implementation3.1 Equipotential bond<strong>in</strong>g <strong>in</strong>side and outsidebuild<strong>in</strong>gsThe fundamental goals of earth<strong>in</strong>g and bond<strong>in</strong>g are <strong>the</strong> follow<strong>in</strong>g:b SafetyBy limit<strong>in</strong>g <strong>the</strong> touch voltage and <strong>the</strong> return path of fault currentsb EMCBy avoid<strong>in</strong>g differences <strong>in</strong> potential and provid<strong>in</strong>g a screen<strong>in</strong>g effect.Stray currents are <strong>in</strong>evitably propagated <strong>in</strong> an earth<strong>in</strong>g network. It is impossible toelim<strong>in</strong>ate all <strong>the</strong> sources of disturbances for a site. Earth loops are also <strong>in</strong>evitable.When a magnetic field affects a site, e.g. <strong>the</strong> field created by lightn<strong>in</strong>g, differences <strong>in</strong>potential are created <strong>in</strong> <strong>the</strong> loops formed by <strong>the</strong> various conductors and <strong>the</strong> currentsflow<strong>in</strong>g <strong>in</strong> <strong>the</strong> earth<strong>in</strong>g system. Consequently, <strong>the</strong> earth<strong>in</strong>g network is directlyaffected by any counter-measures taken outside <strong>the</strong> build<strong>in</strong>g.As long as <strong>the</strong> currents flow <strong>in</strong> <strong>the</strong> earth<strong>in</strong>g system and not <strong>in</strong> <strong>the</strong> electronic circuits,<strong>the</strong>y do no damage. However, when earth<strong>in</strong>g networks are not equipotential, e.g.when <strong>the</strong>y are star connected to <strong>the</strong> earth electrode, <strong>the</strong> HF stray currents will flowwherever <strong>the</strong>y can, <strong>in</strong>clud<strong>in</strong>g <strong>in</strong> control wires. Equipment can be disturbed, damagedor even destroyed.The only <strong>in</strong>expensive means to divide <strong>the</strong> currents <strong>in</strong> an earth<strong>in</strong>g system andma<strong>in</strong>ta<strong>in</strong> satisfactory equipotential characteristics is to <strong>in</strong>terconnect <strong>the</strong> earth<strong>in</strong>gnetworks. This contributes to better equipotential bond<strong>in</strong>g with<strong>in</strong> <strong>the</strong> earth<strong>in</strong>gsystem, but does not remove <strong>the</strong> need for protective conductors. To meet legalrequirements <strong>in</strong> terms of <strong>the</strong> safety of persons, sufficiently sized and identifiedprotective conductors must rema<strong>in</strong> <strong>in</strong> place between each piece of equipment and<strong>the</strong> earth<strong>in</strong>g term<strong>in</strong>al. What is more, with <strong>the</strong> possible exception of a build<strong>in</strong>g with asteel structure, a large number of conductors for <strong>the</strong> surge-arrestor or <strong>the</strong> lightn<strong>in</strong>gprotectionnetwork must be directly connected to <strong>the</strong> earth electrode.The fundamental difference between a protective conductor (PE) and a surgearrestordown-lead is that <strong>the</strong> first conducts <strong>in</strong>ternal currents to <strong>the</strong> neutral of <strong>the</strong>MV/LV transformer whereas <strong>the</strong> second carries external current (from outside <strong>the</strong><strong>in</strong>stallation) to <strong>the</strong> earth electrode.In a build<strong>in</strong>g, it is advised to connect an earth<strong>in</strong>g network to all accessible conduct<strong>in</strong>gstructures, namely metal beams and door frames, pipes, etc. It is generally sufficientto connect metal trunk<strong>in</strong>g, cable trays and l<strong>in</strong>tels, pipes, ventilation ducts, etc. atas many po<strong>in</strong>ts as possible. In places where <strong>the</strong>re is a large amount of equipmentand <strong>the</strong> size of <strong>the</strong> mesh <strong>in</strong> <strong>the</strong> bond<strong>in</strong>g network is greater than four metres, anequipotential conductor should be added. The size and type of conductor are not ofcritical importance.It is imperative to <strong>in</strong>terconnect <strong>the</strong> earth<strong>in</strong>g networks of build<strong>in</strong>gs that have sharedcable connections. Interconnection of <strong>the</strong> earth<strong>in</strong>g networks must take place via anumber of conductors and all <strong>the</strong> <strong>in</strong>ternal metal structures of <strong>the</strong> build<strong>in</strong>gs or l<strong>in</strong>k<strong>in</strong>g<strong>the</strong> build<strong>in</strong>gs (on <strong>the</strong> condition that <strong>the</strong>y are not <strong>in</strong>terrupted).In a given build<strong>in</strong>g, <strong>the</strong> various earth<strong>in</strong>g networks (electronics, comput<strong>in</strong>g, telecom,etc.) must be <strong>in</strong>terconnected to form a s<strong>in</strong>gle equipotential bond<strong>in</strong>g network.This earth<strong>in</strong>g-network must be as meshed as possible. If <strong>the</strong> earth<strong>in</strong>g network isequipotential, <strong>the</strong> differences <strong>in</strong> potential between communicat<strong>in</strong>g devices will be lowand a large number of EMC problems disappear. Differences <strong>in</strong> potential are alsoreduced <strong>in</strong> <strong>the</strong> event of <strong>in</strong>sulation faults or lightn<strong>in</strong>g strikes.If equipotential conditions between build<strong>in</strong>gs cannot be achieved or if <strong>the</strong> distancebetween build<strong>in</strong>gs is greater than ten metres, it is highly recommended to useoptical fibre for communication l<strong>in</strong>ks and galvanic <strong>in</strong>sulators for measurement andcommunication systems.These measures are mandatory if <strong>the</strong> electrical supply system uses <strong>the</strong> IT orTN-C system.Q3.2 Improv<strong>in</strong>g equipotential conditionsBond<strong>in</strong>g networksEven though <strong>the</strong> ideal bond<strong>in</strong>g network would be made of sheet metal or a f<strong>in</strong>emesh, experience has shown that for most disturbances, a three-metre mesh size issufficient to create a mesh bond<strong>in</strong>g network.Examples of different bond<strong>in</strong>g networks are shown <strong>in</strong> Figure Q7 next page. Them<strong>in</strong>imum recommended structure comprises a conductor (e.g. copper cable or strip)surround<strong>in</strong>g <strong>the</strong> room.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es3 ImplementationIBNPEMesh BNMesh IBNMesh BNTrunkLocal meshLocal meshIBNTree structureIBNStar (IBN)CBNBN: Bond<strong>in</strong>g networkCBN: Common bond<strong>in</strong>g networkIBN: Isolated bond<strong>in</strong>g networkFig. Q7 : Examples of bond<strong>in</strong>g networksThe length of connections between a structural element and <strong>the</strong> bond<strong>in</strong>g networkdoes not exceed 50 centimetres and an additional connection should be <strong>in</strong>stalled<strong>in</strong> parallel at a certa<strong>in</strong> distance from <strong>the</strong> first. The <strong>in</strong>ductance of <strong>the</strong> connectionbetween <strong>the</strong> earth<strong>in</strong>g bar of <strong>the</strong> electrical enclosure for a set of equipment and <strong>the</strong>bond<strong>in</strong>g network (see below) should be less than one µHenry (0.5 µH, if possible).For example, it is possible to use a s<strong>in</strong>gle 50 cm conductor or two parallel conductorsone meter long, <strong>in</strong>stalled at a m<strong>in</strong>imum distance from one ano<strong>the</strong>r (at least 50 cm) toreduce <strong>the</strong> mutual <strong>in</strong>ductance between <strong>the</strong> two conductors.Where possible, connection to <strong>the</strong> bond<strong>in</strong>g network should be at an <strong>in</strong>tersection todivide <strong>the</strong> HF currents by four without leng<strong>the</strong>n<strong>in</strong>g <strong>the</strong> connection. The profile of <strong>the</strong>bond<strong>in</strong>g conductors is not important, but a flat profile is preferable. The conductorshould also be as short as possible.© Schneider Electric - all rights reservedQParallel earth<strong>in</strong>g conductor (PEC)The purpose of a parallel earth<strong>in</strong>g conductor is to reduce <strong>the</strong> common-mode currentflow<strong>in</strong>g <strong>in</strong> <strong>the</strong> conductors that also carry <strong>the</strong> differential-mode signal (<strong>the</strong> commonmodeimpedance and <strong>the</strong> surface area of <strong>the</strong> loop are reduced).The parallel earth<strong>in</strong>g conductor must be designed to handle high currents when itis used for protection aga<strong>in</strong>st lightn<strong>in</strong>g or for <strong>the</strong> return of high fault currents. Whencable shield<strong>in</strong>g is used as a parallel earth<strong>in</strong>g conductor, it cannot handle such highcurrents and <strong>the</strong> solution is to run <strong>the</strong> cable along metal structural elements orcableways which <strong>the</strong>n act as o<strong>the</strong>r parallel earth<strong>in</strong>g conductors for <strong>the</strong> entire cable.Ano<strong>the</strong>r possibility is to run <strong>the</strong> shielded cable next to a large parallel earth<strong>in</strong>gconductor with both <strong>the</strong> shielded cable and <strong>the</strong> parallel earth<strong>in</strong>g conductor connectedat each end to <strong>the</strong> local earth<strong>in</strong>g term<strong>in</strong>al of <strong>the</strong> equipment or <strong>the</strong> device.For very long distances, additional connections to <strong>the</strong> network are advised for<strong>the</strong> parallel earth<strong>in</strong>g conductor, at irregular distances between <strong>the</strong> devices. Theseadditional connections form a shorter return path for <strong>the</strong> disturb<strong>in</strong>g currents flow<strong>in</strong>gthrough <strong>the</strong> parallel earth<strong>in</strong>g conductor. For U-shaped trays, shield<strong>in</strong>g and tubes, <strong>the</strong>additional connections should be external to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> separation with <strong>the</strong> <strong>in</strong>terior(“screen<strong>in</strong>g” effect).Bond<strong>in</strong>g conductorsBond<strong>in</strong>g conductors may be metal strips, flat braids or round conductors. For highfrequencysystems, metal strips and flat braids are preferable (sk<strong>in</strong> effect) because around conductor has a higher impedance than a flat conductor with <strong>the</strong> same crosssection. Where possible, <strong>the</strong> length to width ratio should not exceed 5.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es3 Implementation3.3 Separat<strong>in</strong>g cablesThe physical separation of high and low-current cables is very important for EMC,particularly if low-current cables are not shielded or <strong>the</strong> shield<strong>in</strong>g is not connectedto <strong>the</strong> exposed conductive parts (ECPs). The sensitivity of electronic equipment is <strong>in</strong>large part determ<strong>in</strong>ed by <strong>the</strong> accompany<strong>in</strong>g cable system.If <strong>the</strong>re is no separation (different types of cables <strong>in</strong> separate cableways, m<strong>in</strong>imumdistance between high and low-current cables, types of cableways, etc.),electromagnetic coupl<strong>in</strong>g is at its maximum. Under <strong>the</strong>se conditions, electronicequipment is sensitive to EMC disturbances flow<strong>in</strong>g <strong>in</strong> <strong>the</strong> affected cables.Use of busbar trunk<strong>in</strong>g systems such as Canalis or busbar ducts for high powerrat<strong>in</strong>gs is strongly advised. The levels of radiated magnetic fields us<strong>in</strong>g <strong>the</strong>se types oftrunk<strong>in</strong>g systems is 10 to 20 times lower than standard cables or conductors.The recommendations <strong>in</strong> <strong>the</strong> “Cable runn<strong>in</strong>g” and “Wir<strong>in</strong>g recommendations”sections should be taken <strong>in</strong>to account.3.4 False floorsThe <strong>in</strong>clusion of <strong>the</strong> floors <strong>in</strong> <strong>the</strong> mesh contributes to equipotentiality of <strong>the</strong> area andconsequently to <strong>the</strong> distribution and dilution of disturb<strong>in</strong>g LF currents.The screen<strong>in</strong>g effect of a false floor is directly related to its equipotentiality. If <strong>the</strong>contact between <strong>the</strong> floor plates is poor (rubber antistatic jo<strong>in</strong>ts, for example) or if<strong>the</strong> contact between <strong>the</strong> support brackets is faulty (pollution, corrosion, mildew, etc.or if <strong>the</strong>re are no support brackets), it is necessary to add an equipotential mesh. Inthis case, it is sufficient to ensure effective electrical connections between <strong>the</strong> metalsupport columns. Small spr<strong>in</strong>g clips are available on <strong>the</strong> market to connect <strong>the</strong> metalcolumns to <strong>the</strong> equipotential mesh. Ideally, each column should be connected, butit is often sufficient to connect every o<strong>the</strong>r column <strong>in</strong> each direction. A mesh 1.5 to2 metres is size is suitable <strong>in</strong> most cases. The recommended cross-sectional area of<strong>the</strong> copper is 10 mm 2 or more. In general, a flat braid is used. To reduce <strong>the</strong> effects ofcorrosion, it is advised to use t<strong>in</strong>-plated copper (see Fig. Q8).Perforated floor plates act like normal floor plates when <strong>the</strong>y have a cellular steelstructure.Preventive ma<strong>in</strong>tenance is required for <strong>the</strong> floor plates approximately every five years(depend<strong>in</strong>g on <strong>the</strong> type of floor plate and <strong>the</strong> environment, <strong>in</strong>clud<strong>in</strong>g humidity, dustand corrosion). Rubber or polymer antistatic jo<strong>in</strong>ts must be ma<strong>in</strong>ta<strong>in</strong>ed, similar to <strong>the</strong>bear<strong>in</strong>g surfaces of <strong>the</strong> floor plates (clean<strong>in</strong>g with a suitable product).False floorQSpr<strong>in</strong>g clipsMetal support columnsFig. Q8 : False floor implementationu 10 mm 2© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es3 Implementation3.5 Cable runn<strong>in</strong>gSelection of materials and <strong>the</strong>ir shape depends on <strong>the</strong> follow<strong>in</strong>g criteria:b Severity of <strong>the</strong> EM environment along cableways (proximity of sources ofconducted or radiated EM disturbances)b Authorised level of conducted and radiated emissionsb Type of cables (shielded?, twisted?, optical fibre?)b EMI withstand capacity of <strong>the</strong> equipment connected to <strong>the</strong> wir<strong>in</strong>g systemb O<strong>the</strong>r environmental constra<strong>in</strong>ts (chemical, mechanical, climatic, fire, etc.)b Future extensions planned for <strong>the</strong> wir<strong>in</strong>g systemNon-metal cableways are suitable <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g cases:b A cont<strong>in</strong>uous, low-level EM environmentb A wir<strong>in</strong>g system with a low emission levelb Situations where metal cableways should be avoided (chemical environment)b Systems us<strong>in</strong>g optical fibresFor metal cableways, it is <strong>the</strong> shape (flat, U-shape, tube, etc.) ra<strong>the</strong>r than <strong>the</strong> crosssectionalarea that determ<strong>in</strong>es <strong>the</strong> characteristic impedance. Closed shapes arebetter than open shapes because <strong>the</strong>y reduce common-mode coupl<strong>in</strong>g. Cablewaysoften have slots for cable straps. The smaller <strong>the</strong> better. The types of slots caus<strong>in</strong>g<strong>the</strong> fewest problems are those cut parallel and at some distance from <strong>the</strong> cables.Slots cut perpendicular to <strong>the</strong> cables are not recommended (see Fig. Q9).Mediocre OK BetterFig. Q9 : CEM performance of various types of metal cablewaysIn certa<strong>in</strong> cases, a poor cableway <strong>in</strong> EMI terms may be suitable if <strong>the</strong>EM environment is low, if shielded cables or optical fibres are employed, or separatecableways are used for <strong>the</strong> different types of cables (power, data process<strong>in</strong>g, etc.).It is a good idea to reserve space <strong>in</strong>side <strong>the</strong> cableway for a given quantity ofadditional cables. The height of <strong>the</strong> cables must be lower than <strong>the</strong> partitions of <strong>the</strong>cableway as shown below. Covers also improve <strong>the</strong> EMC performance of cableways.In U-shaped cableways, <strong>the</strong> magnetic field decreases <strong>in</strong> <strong>the</strong> two corners.That expla<strong>in</strong>s why deep cableways are preferable (see Fig. Q10).Q© Schneider Electric - all rights reservedNO!Fig. Q10 : <strong>Installation</strong> of different types of cablesYES!Area protected aga<strong>in</strong>st external EM fieldDifferent types of cables (power and low-level connections) should not be <strong>in</strong>stalled <strong>in</strong><strong>the</strong> same bundle or <strong>in</strong> <strong>the</strong> same cableway. Cableways should never be filled to morethan half capacity.Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es3 ImplementationIt is recommended to electromagnetically separate groups from one ano<strong>the</strong>r, ei<strong>the</strong>rus<strong>in</strong>g shield<strong>in</strong>g or by <strong>in</strong>stall<strong>in</strong>g <strong>the</strong> cables <strong>in</strong> different cableways. The quality of <strong>the</strong>shield<strong>in</strong>g determ<strong>in</strong>es <strong>the</strong> distance between groups. If <strong>the</strong>re is no shield<strong>in</strong>g, sufficientdistances must be ma<strong>in</strong>ta<strong>in</strong>ed (see Fig. Q11).The distance between power and control cables must be at least 5 times <strong>the</strong> radiusof <strong>the</strong> larger power cable.Forbidden Correct IdealPower cablesAuxiliary circuits (relay contacts)Control (digital)Measurements (analogue)Note: All metal parts must be electrically <strong>in</strong>terconnectedFig. Q11 : Recommendation to <strong>in</strong>stall groups of cables <strong>in</strong> metal cablewaysMetal build<strong>in</strong>g components can be used for EMC purposes. Steel beams (L, H, Uor T shaped) often form an un<strong>in</strong>terrupted ear<strong>the</strong>d structure with large transversalsections and surfaces with numerous <strong>in</strong>termediate earth<strong>in</strong>g connections. Cablesshould if possible be run along such beams. Inside corners are better than <strong>the</strong>outside surfaces (see Fig. Q12).RecommendedAcceptableNot recommendedFig. Q12 : Recommendation to <strong>in</strong>stall cables <strong>in</strong> steel beamsBoth ends of metal cableways must always be connected to local earth electrodes.For very long cableways, additional connections to <strong>the</strong> earth<strong>in</strong>g system arerecommended between connected devices. Where possible, <strong>the</strong> distance between<strong>the</strong>se earth<strong>in</strong>g connections should be irregular (for symmetrical wir<strong>in</strong>g systems) toavoid resonance at identical frequencies. All connections to <strong>the</strong> earth<strong>in</strong>g systemshould be short.Metal and non-metal cableways are available. Metal solutions offer betterEMC characteristics. A cableway (cable trays, conduits, cable brackets, etc.) mustoffer a cont<strong>in</strong>uous, conduct<strong>in</strong>g metal structure from beg<strong>in</strong>n<strong>in</strong>g to end.An alum<strong>in</strong>ium cableway has a lower DC resistance than a steel cableway of <strong>the</strong>same size, but <strong>the</strong> transfer impedance (Zt) of steel drops at a lower frequency,particularly when <strong>the</strong> steel has a high relative permeability µ r . Care must be takenwhen different types of metal are used because direct electrical connection is notauthorised <strong>in</strong> certa<strong>in</strong> cases to avoid corrosion. That could be a disadvantage <strong>in</strong> termsof EMC.When devices connected to <strong>the</strong> wir<strong>in</strong>g system us<strong>in</strong>g unshielded cables are notaffected by low-frequency disturbances, <strong>the</strong> EMC of non-metal cableways can beimproved by add<strong>in</strong>g a parallel earth<strong>in</strong>g conductor (PEC) <strong>in</strong>side <strong>the</strong> cableway. Bo<strong>the</strong>nds must be connected to <strong>the</strong> local earth<strong>in</strong>g system. Connections should be madeto a metal part with low impedance (e.g. a large metal panel of <strong>the</strong> device case).The PEC should be designed to handle high fault and common-mode currents.Q© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es3 ImplementationImplementationWhen a metal cableway is made up of a number of short sections, care is required toensure cont<strong>in</strong>uity by correctly bond<strong>in</strong>g <strong>the</strong> different parts. The parts should preferablybe welded along all edges. Riveted, bolted or screwed connections are authorised aslong as <strong>the</strong> contact surfaces conduct current (no pa<strong>in</strong>t or <strong>in</strong>sulat<strong>in</strong>g coat<strong>in</strong>gs) and areprotected aga<strong>in</strong>st corrosion. Tighten<strong>in</strong>g torques must be observed to ensure correctpressure for <strong>the</strong> electrical contact between two parts.When a particular shape of cableway is selected, it should be used for <strong>the</strong> entirelength. All <strong>in</strong>terconnections must have a low impedance. A s<strong>in</strong>gle wire connectionbetween two parts of <strong>the</strong> cableway produces a high local impedance that cancels itsEMC performance.Start<strong>in</strong>g at a few MHz, a ten-centimetre connection between two parts of <strong>the</strong> cablewayreduces <strong>the</strong> attenuation factor by more than a factor of ten (see Fig. Q13).NO!NOT RECOMMENDEDYES!Fig. Q13 : Metal cableways assemblyEach time modifications or extensions are made, it is very important to make sure<strong>the</strong>y are carried out accord<strong>in</strong>g to EMC rules (e.g. never replace a metal cableway bya plastic version!).Covers for metal cableways must meet <strong>the</strong> same requirements as those apply<strong>in</strong>g to<strong>the</strong> cableways <strong>the</strong>mselves. A cover should have a large number of contacts along <strong>the</strong>entire length. If that is not possible, it must be connected to <strong>the</strong> cableway at least at<strong>the</strong> two ends us<strong>in</strong>g short connections (e.g. braided or meshed connections).When cableways must be <strong>in</strong>terrupted to pass through a wall (e.g. firewalls), lowimpedanceconnections must be used between <strong>the</strong> two parts (see Fig. Q14).Q10© Schneider Electric - all rights reservedMediocre OK BetterFig. Q14 : Recommendation for metal cableways assembly to pass through a wallSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es3 Implementation3.6 Implementation of shielded cablesWhen <strong>the</strong> decision is made to use shielded cables, it is also necessary to determ<strong>in</strong>ehow <strong>the</strong> shield<strong>in</strong>g will be bonded (type of earth<strong>in</strong>g, connector, cable entry, etc.),o<strong>the</strong>rwise <strong>the</strong> benefits are considerably reduced. To be effective, <strong>the</strong> shield<strong>in</strong>g shouldbe bonded over 360°. Figure Q15 below show different ways of earth<strong>in</strong>g <strong>the</strong> cableshield<strong>in</strong>g.For computer equipment and digital l<strong>in</strong>ks, <strong>the</strong> shield<strong>in</strong>g should be connected at eachend of <strong>the</strong> cable.Connection of <strong>the</strong> shield<strong>in</strong>g is very important for EMC and <strong>the</strong> follow<strong>in</strong>g po<strong>in</strong>ts shouldbe noted.If <strong>the</strong> shielded cable connects equipment located <strong>in</strong> <strong>the</strong> same equipotential bond<strong>in</strong>garea, <strong>the</strong> shield<strong>in</strong>g must be connected to <strong>the</strong> exposed conductive parts (ECP) atboth ends. If <strong>the</strong> connected equipment is not <strong>in</strong> <strong>the</strong> same equipotential bond<strong>in</strong>g area,<strong>the</strong>re are a number of possibilities.b Connection of only one end to <strong>the</strong> ECPs is dangerous. If an <strong>in</strong>sulation fault occurs,<strong>the</strong> voltage <strong>in</strong> <strong>the</strong> shield<strong>in</strong>g can be fatal for an operator or destroy equipment. Inaddition, at high frequencies, <strong>the</strong> shield<strong>in</strong>g is not effective.b Connection of both ends to <strong>the</strong> ECPs can be dangerous if an <strong>in</strong>sulation faultoccurs. A high current flows <strong>in</strong> <strong>the</strong> shield<strong>in</strong>g and can damage it. To limit this problem,a parallel earth<strong>in</strong>g conductor (PEC) must be run next to <strong>the</strong> shielded cable. The sizeof <strong>the</strong> PEC depends on <strong>the</strong> short-circuit current <strong>in</strong> <strong>the</strong> given part of <strong>the</strong> <strong>in</strong>stallation.It is clear that if <strong>the</strong> <strong>in</strong>stallation has a well meshed earth<strong>in</strong>g network, this problemdoes not arise.All bond<strong>in</strong>g connections must be made to bare metalNot acceptableAcceptableCollar, clamp, etc.Bond<strong>in</strong>g wireBond<strong>in</strong>g barconnectedto <strong>the</strong> chassisPoorly connected shield<strong>in</strong>g = reduced effectivenessCorrectCollar, clamp, etc.IdealEquipotential metal panelCable gland = circumferential contact toequipotential metal panelFig. Q15 : Implementation of shielded cablesQ113.7 Communication networksCommunication networks cover large distances and <strong>in</strong>terconnect equipment<strong>in</strong>stalled <strong>in</strong> rooms that may have distribution systems with different system earth<strong>in</strong>garrangements. In addition, if <strong>the</strong> various sites are not equipotential, high transientcurrents and major differences <strong>in</strong> potential may occur between <strong>the</strong> various devicesconnected to <strong>the</strong> networks. As noted above, this is <strong>the</strong> case when <strong>in</strong>sulationfaults and lightn<strong>in</strong>g strikes occur. The dielectric withstand capacity (between liveconductors and exposed conductive parts) of communication cards <strong>in</strong>stalled <strong>in</strong>PCs or PLCs generally does not exceed 500 V. At best, <strong>the</strong> withstand capacity canreach 1.5 kV. In meshed <strong>in</strong>stallations with <strong>the</strong> TN-S system and relatively smallcommunication networks, this level of withstand capacity is acceptable. In all cases,however, protection aga<strong>in</strong>st lightn<strong>in</strong>g strikes (common and differential modes) isrecommended.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es3 ImplementationThe type of communication cable employed is an important parameter. It mustbe suited to <strong>the</strong> type of transmission. To create a reliable communication l<strong>in</strong>k, <strong>the</strong>follow<strong>in</strong>g parameters must be taken <strong>in</strong>to account:b Characteristic impedanceb Twisted pairs or o<strong>the</strong>r arrangementb Resistance and capacitance per unit lengthb Signal attenutation per unit lengthb The type(s) of shield<strong>in</strong>g usedIn addition, it is important to use symmetrical (differential) transmission l<strong>in</strong>ks because<strong>the</strong>y offer higher performance <strong>in</strong> terms of EMC.In environments with severe EM conditions, however, or for wide communicationnetworks between <strong>in</strong>stallations that are not or are only slightly equipotential, <strong>in</strong>conjunction with IT, TT or TN-C systems, it is highly recommended to use opticalfibre l<strong>in</strong>ks.For safety reasons, <strong>the</strong> optical fibre must not have metal parts (risk of electric shockif <strong>the</strong> fibre l<strong>in</strong>ks two areas with different potentials).3.8 Implementation of surge arrestorsConnectionsThey must be as short as possible. In fact, one of <strong>the</strong> essential characteristicsfor equipment protection is <strong>the</strong> maximum level of voltage that <strong>the</strong> equipment canwithstand at its term<strong>in</strong>als. A surge arrester with a protection level suitable for <strong>the</strong>equipment to be protected should be chosen (see Fig. 16). The total length of <strong>the</strong>connections is L = L1 + L2 + L3. It represents an impedance of roughly 1 µH/m forhigh frequency currents.Application of <strong>the</strong> rule ∆U = L didtwith an 8/20 µs wave and a current of 8 kA leads to a voltage of 1,000 V peak permetre of cable.∆U = 1.10 -6 x 8.10 3 = 1,000 V8.10 -6 U equipmentL1L = L1 + L2 + L3 < 50 cmdisconnectioncircuit-breakerL2surge arresterU1Upload to beprotectedL3U2Q12Fig. Q16 : Surge arrester connection: L < 50 cmThis gives U equipment = Up + U1 + U2.If L1 + L2 + L3 = 50 cm, this will result <strong>in</strong> a voltage surge of 500 V for a current of8 kA.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es3 ImplementationWir<strong>in</strong>g rulesb Rule 1The first rule to be respected is not to exceed a distance of 50 cm when connect<strong>in</strong>g<strong>the</strong> surge arrester to its disconnection circuit-breaker. The surge arrester connectionsare shown <strong>in</strong> Figure Q17.d1d1disconnectord2Quick PRDSPDd3SPDImax: 65kA (8/20)In: 20kA (8/20)Up: 1,5kVUc: 340Vad3d1 + d2 + d3 y 50 cmd1 + d2 + d3 35 cmFig. Q17 : SPD with separate or <strong>in</strong>tegrated disconnectorb Rule 2The outgo<strong>in</strong>g feeders of <strong>the</strong> protected conductors must be connected right at <strong>the</strong>term<strong>in</strong>als of <strong>the</strong> surge arrester and disconnection circuit-breaker (see Fig. Q18).Power supplyProtected feedersL < 35 cmQuick PRDFig. Q18 : Connections are right at <strong>the</strong> SPD's term<strong>in</strong>alsQ13© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es3 Implementationb Rule 3The phase, neutral and PE <strong>in</strong>com<strong>in</strong>g wires must be tightly coupled to reduce <strong>the</strong> loopsurfaces (see Fig. Q19).Clean cables polluted byneighbour<strong>in</strong>g polluted cablesClean cable paths separatedfrom polluted cable pathsprotectedoutgo<strong>in</strong>gfeedersNOIntermediateearth term<strong>in</strong>alLargeframeloopsurfaceSmallframeloopsurfaceYESIntermediateearthterm<strong>in</strong>alL NMa<strong>in</strong> earthterm<strong>in</strong>alL NMa<strong>in</strong> earthterm<strong>in</strong>alFig. Q19 : Example of wir<strong>in</strong>g precautions to be taken <strong>in</strong> a box (rules 2, 3, 4, 5)b Rule 4The surge arrester's <strong>in</strong>com<strong>in</strong>g wires must be moved away from <strong>the</strong> outgo<strong>in</strong>g wires toavoid mix<strong>in</strong>g <strong>the</strong> polluted cables with <strong>the</strong> protected cables (see Fig. Q19).b Rule 5The cables must be flattened aga<strong>in</strong>st <strong>the</strong> metallic frames of <strong>the</strong> box <strong>in</strong> order tom<strong>in</strong>imise <strong>the</strong> frame loops and thus benefit from a disturbance screen<strong>in</strong>g effect.If <strong>the</strong> box is made of plastic and <strong>the</strong> loads particularly sensitive, it must be replacedby a metal box.In all cases, you must check that <strong>the</strong> metallic frames of <strong>the</strong> boxes or cab<strong>in</strong>ets areframe grounded by very short connections.F<strong>in</strong>ally, if screened cables are used, extra lengths which serve no purpose("pigtails"), must be cut off as <strong>the</strong>y reduce screen<strong>in</strong>g effectiveness.Q14© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es3 Implementation3.9 Cab<strong>in</strong>et cabl<strong>in</strong>g (Fig. Q20)Each cab<strong>in</strong>et must be equipped with an earth<strong>in</strong>g bar or a ground reference metalsheet. All shielded cables and external protection circuits must be connected to thispo<strong>in</strong>t. Anyone of <strong>the</strong> cab<strong>in</strong>et metal sheets or <strong>the</strong> DIN rail can be used as <strong>the</strong> groundreference.Plastic cab<strong>in</strong>ets are not recommended. In this case, <strong>the</strong> DIN rail must be used asground reference.PotentialReference PlateFig. Q20 : The protected device must be connected to <strong>the</strong> surge-arrestor term<strong>in</strong>als3.10 StandardsIt is absolutely essential to specify <strong>the</strong> standards and recommendations that must betaken <strong>in</strong>to account for <strong>in</strong>stallations.Below are several documents that may be used:b EN 50174-1b EN 50174-2Information technology - Cabl<strong>in</strong>g <strong>in</strong>stallation.Part 1: Specification and quality assuranceInformation technology - Cabl<strong>in</strong>g <strong>in</strong>stallation.Part 2: <strong>Installation</strong> plann<strong>in</strong>g and practices <strong>in</strong>side build<strong>in</strong>gsQ15© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es4 Coupl<strong>in</strong>g mechanisms andcounter-measures4.1 GeneralAn EM <strong>in</strong>terference phenomenon may be summed up <strong>in</strong> Figure Q21 below.SourceOrig<strong>in</strong> ofemitted disturbancesExample:Coupl<strong>in</strong>gMeans by whichdisturbances aretransmittedVictimEquipment likelyto be disturbedRadiated wavesWalkie-talkieTV setFig. Q21 : EM <strong>in</strong>terference phenomenonQ16The different sources of disturbances are:b Radio-frequency emissionsv Wireless communication systems (radio, TV, CB, radio telephones, remote controls)v Radarb <strong>Electrical</strong> equipmentv High-power <strong>in</strong>dustrial equipment (<strong>in</strong>duction furnaces, weld<strong>in</strong>g mach<strong>in</strong>es, statorcontrol systems)v Office equipment (computers and electronic circuits, photocopy mach<strong>in</strong>es, largemonitors)v Discharge lamps (neon, fluorescent, flash, etc.)v Electromechanical components (relays, contactors, solenoids, current <strong>in</strong>terruptiondevices)b Power systemsv Power transmission and distribution systemsv <strong>Electrical</strong> transportation systemsb Lightn<strong>in</strong>gb Electrostatic discharges (ESD)b Electromagnetic nuclear pulses (EMNP)The potential victims are:b Radio and television receivers, radar, wireless communication systemsb Analogue systems (sensors, measurement acquisition, amplifiers, monitors)b Digital systems (computers, computer communications, peripheral equipment)The different types of coupl<strong>in</strong>g are:b Common-mode impedance (galvanic) coupl<strong>in</strong>gb Capacitive coupl<strong>in</strong>gb Inductive coupl<strong>in</strong>gb Radiated coupl<strong>in</strong>g (cable to cable, field to cable, antenna to antenna)© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es4 Coupl<strong>in</strong>g mechanisms andcounter-measures4.2 Common-mode impedance coupl<strong>in</strong>gDef<strong>in</strong>itionTwo or more devices are <strong>in</strong>terconnected by <strong>the</strong> power supply and communicationcables (see Fig. Q22). When external currents (lightn<strong>in</strong>g, fault currents, disturbances)flow via <strong>the</strong>se common-mode impedances, an undesirable voltage appears betweenpo<strong>in</strong>ts A and B which are supposed to be equipotential. This stray voltage candisturb low-level or fast electronic circuits.All cables, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> protective conductors, have an impedance, particularly athigh frequencies.StrayovervoltageDevice 1Z sign.Device 2I2ECPsSignal l<strong>in</strong>eECPsZ1I1Z2The exposed conductive parts (ECP) of devices 1 and 2 are connected to a commonearth<strong>in</strong>g term<strong>in</strong>al via connections with impedances Z1 and Z2.The stray overvoltage flows to <strong>the</strong> earth via Z1. The potential of device 1 <strong>in</strong>creasesto Z1 I1. The difference <strong>in</strong> potential with device 2 (<strong>in</strong>itial potential = 0) results <strong>in</strong> <strong>the</strong>appearance of current I2.I2Z1Z1 I1= ( Zsign + Z2) I2⇒ =I1Zsign + Z2( )I Current I2, present on <strong>the</strong> signal l<strong>in</strong>e, disturbs device 2.Fig. Q22 : Def<strong>in</strong>ition of common-mode impedance coupl<strong>in</strong>gExamples (see Fig. Q23)b Devices l<strong>in</strong>ked by a common reference conductor (e.g. PEN, PE) affected by fastor <strong>in</strong>tense (di/dt) current variations (fault current, lightn<strong>in</strong>g strike, short-circuit, loadchanges, chopp<strong>in</strong>g circuits, harmonic currents, power factor correction capacitorbanks, etc.)b A common return path for a number of electrical sourcesDevice 1 Device 2Signal cableDisturbedcableFaultcurrentsLightn<strong>in</strong>gstrikeQ17Disturb<strong>in</strong>gcurrentDifference <strong>in</strong>potentialZMCFig. Q23 : Example of common-mode impedance coupl<strong>in</strong>g© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es4 Coupl<strong>in</strong>g mechanisms andcounter-measuresCounter-measures (see Fig. Q24)If <strong>the</strong>y cannot be elim<strong>in</strong>ated, common-mode impedances must at least be as low aspossible. To reduce <strong>the</strong> effects of common-mode impedances, it is necessary to:b Reduce impedances:v Mesh <strong>the</strong> common references,v Use short cables or flat braids which, for equal sizes, have a lower impedance thanround cables,v Install functional equipotential bond<strong>in</strong>g between devices.b Reduce <strong>the</strong> level of <strong>the</strong> disturb<strong>in</strong>g currents by add<strong>in</strong>g common-mode filter<strong>in</strong>g anddifferential-mode <strong>in</strong>ductorsStrayovervoltageDevice 1Z sign.Device 2I2Z sup.PECZ1I1Z2If <strong>the</strong> impedance of <strong>the</strong> parallel earth<strong>in</strong>g conductor PEC (Z sup) is very lowcompared to Z sign, most of <strong>the</strong> disturb<strong>in</strong>g current flows via <strong>the</strong> PEC, i.e. notvia <strong>the</strong> signal l<strong>in</strong>e as <strong>in</strong> <strong>the</strong> previous case.The difference <strong>in</strong> potential between devices 1 and 2 becomes very low and <strong>the</strong>disturbance acceptable.Fig. Q24 : Counter-measures of common-mode impedance coupl<strong>in</strong>gQ18© Schneider Electric - all rights reservedUVsourceVvictimFig. Q25 : Typical result of capacitive coupl<strong>in</strong>g (capacitivecross-talk)tt4.3 Capacitive coupl<strong>in</strong>gDef<strong>in</strong>itionThe level of disturbance depends on <strong>the</strong> voltage variations (dv/dt) and <strong>the</strong> value of<strong>the</strong> coupl<strong>in</strong>g capacitance between <strong>the</strong> disturber and <strong>the</strong> victim.Capacitive coupl<strong>in</strong>g <strong>in</strong>creases with:b The frequencyb The proximity of <strong>the</strong> disturber to <strong>the</strong> victim and <strong>the</strong> length of <strong>the</strong> parallel cablesb The height of <strong>the</strong> cables with respect to a ground referenc<strong>in</strong>g planeb The <strong>in</strong>put impedance of <strong>the</strong> victim circuit (circuits with a high <strong>in</strong>put impedance aremore vulnerable)b The <strong>in</strong>sulation of <strong>the</strong> victim cable (ε r of <strong>the</strong> cable <strong>in</strong>sulation), particularly for tightlycoupled pairsFigure Q25 shows <strong>the</strong> results of capacitive coupl<strong>in</strong>g (cross-talk) between two cables.Examples (see Fig. Q26 opposite page)b Nearby cables subjected to rapid voltage variations (dv/dt)b Start-up of fluorescent lampsb High-voltage switch-mode power supplies (photocopy mach<strong>in</strong>es, etc.)b Coupl<strong>in</strong>g capacitance between <strong>the</strong> primary and secondary w<strong>in</strong>d<strong>in</strong>gs oftransformersb Cross-talk between cablesSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es4 Coupl<strong>in</strong>g mechanisms andcounter-measuresDifferential modeCommon modeSourceVictimVsDMIvDMVsCMIvCMSourceVictimMetal shield<strong>in</strong>gVs DM: Source of <strong>the</strong> disturb<strong>in</strong>g voltage (differential mode)Iv DM: Disturb<strong>in</strong>g current on victim side (differential mode)Vs CM: Source of <strong>the</strong> disturb<strong>in</strong>g voltage (common mode)Iv CM: Disturb<strong>in</strong>g current on victim side (common mode)Fig. Q26 : Example of capacitive coupl<strong>in</strong>gSourceFig. Q27 : Cable shield<strong>in</strong>g with perforations reduces capacitivecoupl<strong>in</strong>gCVictimCounter-measures (see Fig. Q27)b Limit <strong>the</strong> length of parallel runs of disturbers and victims to <strong>the</strong> strict m<strong>in</strong>imumb Increase <strong>the</strong> distance between <strong>the</strong> disturber and <strong>the</strong> victimb For two-wire connections, run <strong>the</strong> two wires as close toge<strong>the</strong>r as possibleb Position a PEC bonded at both ends and between <strong>the</strong> disturber and <strong>the</strong> victimb Use two or four-wire cables ra<strong>the</strong>r than <strong>in</strong>dividual conductorsb Use symmetrical transmission systems on correctly implemented, symmetricalwir<strong>in</strong>g systemsb Shield <strong>the</strong> disturb<strong>in</strong>g cables, <strong>the</strong> victim cables or both (<strong>the</strong> shield<strong>in</strong>g must bebonded)b Reduce <strong>the</strong> dv/dt of <strong>the</strong> disturber by <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> signal rise time where possible4.4 Inductive coupl<strong>in</strong>gDef<strong>in</strong>itionThe disturber and <strong>the</strong> victim are coupled by a magnetic field. The level of disturbancedepends on <strong>the</strong> current variations (di/dt) and <strong>the</strong> mutual coupl<strong>in</strong>g <strong>in</strong>ductance.Inductive coupl<strong>in</strong>g <strong>in</strong>creases with:b The frequencyb The proximity of <strong>the</strong> disturber to <strong>the</strong> victim and <strong>the</strong> length of <strong>the</strong> parallel cables,b The height of <strong>the</strong> cables with respect to a ground referenc<strong>in</strong>g plane,b The load impedance of <strong>the</strong> disturb<strong>in</strong>g circuit.Examples (see Fig. Q28 next page)b Nearby cables subjected to rapid current variations (di/dt)b Short-circuitsb Fault currentsb Lightn<strong>in</strong>g strikesb Stator control systemsb Weld<strong>in</strong>g mach<strong>in</strong>esb InductorsQ19© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es4 Coupl<strong>in</strong>g mechanisms andcounter-measuresiDisturb<strong>in</strong>gcableHVictim pairiDisturb<strong>in</strong>gcableHVictim loopVictim loopDifferential modeCommon modeFig. Q28 : Example of <strong>in</strong>ductive coupl<strong>in</strong>gCounter-measuresb Limit <strong>the</strong> length of parallel runs of disturbers and victims to <strong>the</strong> strict m<strong>in</strong>imumb Increase <strong>the</strong> distance between <strong>the</strong> disturber and <strong>the</strong> victimb For two-wire connections, run <strong>the</strong> two wires as close toge<strong>the</strong>r as possibleb Use multi-core or touch<strong>in</strong>g s<strong>in</strong>gle-core cables, preferably <strong>in</strong> a triangular layoutb Position a PEC bonded at both ends and between <strong>the</strong> disturber and <strong>the</strong> victimb Use symmetrical transmission systems on correctly implemented, symmetricalwir<strong>in</strong>g systemsb Shield <strong>the</strong> disturb<strong>in</strong>g cables, <strong>the</strong> victim cables or both (<strong>the</strong> shield<strong>in</strong>g must bebonded)b Reduce <strong>the</strong> dv/dt of <strong>the</strong> disturber by <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> signal rise time where possible(series-connected resistors or PTC resistors on <strong>the</strong> disturb<strong>in</strong>g cable, ferrite r<strong>in</strong>gs on<strong>the</strong> disturb<strong>in</strong>g and/or victim cable)4.5 Radiated coupl<strong>in</strong>gDef<strong>in</strong>itionThe disturber and <strong>the</strong> victim are coupled by a medium (e.g. air). The level ofdisturbance depends on <strong>the</strong> power of <strong>the</strong> radiat<strong>in</strong>g source and <strong>the</strong> effectivenessof <strong>the</strong> emitt<strong>in</strong>g and receiv<strong>in</strong>g antenna. An electromagnetic field comprises both anelectrical field and a magnetic field. The two fields are correlated. It is possible toanalyse separately <strong>the</strong> electrical and magnetic components.The electrical field (E field) and <strong>the</strong> magnetic field (H field) are coupled <strong>in</strong> wir<strong>in</strong>gsystems via <strong>the</strong> wires and loops (see Fig. Q29).E fieldH fieldiQ20VField-to-cable coupl<strong>in</strong>gField-to-loop coupl<strong>in</strong>g© Schneider Electric - all rights reservedFig. Q29 : Def<strong>in</strong>ition of radiated coupl<strong>in</strong>gSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es4 Coupl<strong>in</strong>g mechanisms andcounter-measuresWhen a cable is subjected to a variable electrical field, a current is generated <strong>in</strong> <strong>the</strong>cable. This phenomenon is called field-to-cable coupl<strong>in</strong>g.Similarly, when a variable magnetic field flows through a loop, it creates a counterelectromotive force that produces a voltage between <strong>the</strong> two ends of <strong>the</strong> loop. Thisphenomenon is called field-to-loop coupl<strong>in</strong>g.Examples (see Fig. Q30)b Radio-transmission equipment (walkie-talkies, radio and TV transmitters, mobileservices)b Radarb Automobile ignition systemsb Arc-weld<strong>in</strong>g mach<strong>in</strong>esb Induction furnacesb Power switch<strong>in</strong>g systemsb Electrostatic discharges (ESD)b Light<strong>in</strong>gE fieldEM fieldiSignalcableDevice 1 Device 2DevicehhArea of <strong>the</strong>earth loopGround reference planeExample of field-to-cable coupl<strong>in</strong>gExample of field-to-loop coupl<strong>in</strong>gFig. Q30 : Examples of radiated coupl<strong>in</strong>gCounter-measuresTo m<strong>in</strong>imise <strong>the</strong> effects of radiated coupl<strong>in</strong>g, <strong>the</strong> measures below are required.For field-to-cable coupl<strong>in</strong>gb Reduce <strong>the</strong> antenna effect of <strong>the</strong> victim by reduc<strong>in</strong>g <strong>the</strong> height (h) of <strong>the</strong> cable withrespect to <strong>the</strong> ground referenc<strong>in</strong>g planeb Place <strong>the</strong> cable <strong>in</strong> an un<strong>in</strong>terrupted, bonded metal cableway (tube, trunk<strong>in</strong>g, cabletray)b Use shielded cables that are correctly <strong>in</strong>stalled and bondedb Add PECsb Place filters or ferrite r<strong>in</strong>gs on <strong>the</strong> victim cableFor field-to-loop coupl<strong>in</strong>gb Reduce <strong>the</strong> surface of <strong>the</strong> victim loop by reduc<strong>in</strong>g <strong>the</strong> height (h) and <strong>the</strong> lengthof <strong>the</strong> cable. Use <strong>the</strong> solutions for field-to-cable coupl<strong>in</strong>g. Use <strong>the</strong> Faraday cagepr<strong>in</strong>ciple.Radiated coupl<strong>in</strong>g can be elim<strong>in</strong>ated us<strong>in</strong>g <strong>the</strong> Faraday cage pr<strong>in</strong>ciple. A possiblesolution is a shielded cable with both ends of <strong>the</strong> shield<strong>in</strong>g connected to <strong>the</strong> metalcase of <strong>the</strong> device. The exposed conductive parts must be bonded to enhanceeffectiveness at high frequencies.Radiated coupl<strong>in</strong>g decreases with <strong>the</strong> distance and when symmetrical transmissionl<strong>in</strong>ks are used.Q21© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es5 Wir<strong>in</strong>g recommendations5.1 Signal classes (see Fig. Q31)1 - Power connections(supply + PE)2 - RelayconnectionsUnshielded cables ofdifferent groupsShielded cables ofdifferent groupsDeviceeNO!hYES!Groundreferenceplane4 - Analogue l<strong>in</strong>k(sensor)3 - Digital l<strong>in</strong>k(bus)Risk of cross-talk <strong>in</strong> common mode if e < 3 hFig. Q31 : Internal signals can be grouped <strong>in</strong> four classesSensitivecableDisturb<strong>in</strong>gcableNO!SensitivecableDisturb<strong>in</strong>gcable30 cm u 1 mYES!Cross <strong>in</strong>compatiblecables at right anglesFig. Q32 : Wir<strong>in</strong>g recommendations for cables carry<strong>in</strong>gdifferent types of signalsNO!YES!Four classes of <strong>in</strong>ternal signals are:b Class 1Ma<strong>in</strong>s power l<strong>in</strong>es, power circuits with a high di/dt, switch-mode converters, powerregulationcontrol devices.This class is not very sensitive, but disturbs <strong>the</strong> o<strong>the</strong>r classes (particularly <strong>in</strong>common mode).b Class 2Relay contacts.This class is not very sensitive, but disturbs <strong>the</strong> o<strong>the</strong>r classes (switch<strong>in</strong>g, arcs whencontacts open).b Class 3Digital circuits (HF switch<strong>in</strong>g).This class is sensitive to pulses, but also disturbs <strong>the</strong> follow<strong>in</strong>g class.b Class 4Analogue <strong>in</strong>put/output circuits (low-level measurements, active sensor supplycircuits). This class is sensitive.It is a good idea to use conductors with a specific colour for each class tofacilitate identification and separate <strong>the</strong> classes. This is useful dur<strong>in</strong>g design andtroubleshoot<strong>in</strong>g.Standard cableTwo dist<strong>in</strong>ct pairs5.2 Wir<strong>in</strong>g recommendationsQ22Poorly implementedribbon cableDigital connectionAnalogue pairBond<strong>in</strong>g wiresFig. Q33 : Use of cables and ribbon cableCorrectly implementedribbon cableCables carry<strong>in</strong>g different types of signals must be physically separated(see Fig. Q32 above)Disturb<strong>in</strong>g cables (classes 1 and 2) must be placed at some distance from <strong>the</strong>sensitive cables (classes 3 and 4) (see Fig. Q32 and Fig. Q33)In general, a 10 cm separation between cables laid flat on sheet metal is sufficient(for both common and differential modes). If <strong>the</strong>re is enough space, a distance of30 cm is preferable. If cables must be crossed, this should be done at right angles toavoid cross-talk (even if <strong>the</strong>y touch). There are no distance requirements if <strong>the</strong> cablesare separated by a metal partition that is equipotential with respect to <strong>the</strong> ECPs.However, <strong>the</strong> height of <strong>the</strong> partition must be greater than <strong>the</strong> diameter of <strong>the</strong> cables.© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es5 Wir<strong>in</strong>g recommendationsA cable should carry <strong>the</strong> signals of a s<strong>in</strong>gle group (see Fig. Q34)If it is necessary to use a cable to carry <strong>the</strong> signals of different groups, <strong>in</strong>ternalshield<strong>in</strong>g is necessary to limit cross-talk (differential mode). The shield<strong>in</strong>g, preferablybraided, must be bonded at each end for groups 1, 2 and 3.It is advised to overshield disturb<strong>in</strong>g and sensitive cables (see Fig. Q35)The overshield<strong>in</strong>g acts as a HF protection (common and differential modes) if itis bonded at each end us<strong>in</strong>g a circumferential connector, a collar or a clampereHowever, a simple bond<strong>in</strong>g wire is not sufficient.NO!ElectroniccontroldeviceShielded pairUnshielded cable for stator controlElectromechanicaldeviceSensorElectroniccontroldeviceYES!Shielded pair + overshield<strong>in</strong>gShielded cable for stator controlBonded us<strong>in</strong>g a clampElectromechanicaldeviceSensorFig. Q35 : Shield<strong>in</strong>g and overshield<strong>in</strong>g for disturb<strong>in</strong>g and/or sensitive cablesPower +analogueNO!Digital +relay contactsPower connectionsRelay I/O connectionsPower +relay contactsShield<strong>in</strong>gYES!Digital +analogueDigital connectionsAnalogue connectionsAvoid us<strong>in</strong>g a s<strong>in</strong>gle connector for different groups (see Fig. Q36)Except where necessary for groups 1 and 2 (differential mode). If a s<strong>in</strong>gle connectoris used for both analogue and digital signals, <strong>the</strong> two groups must be separated by atleast one set of contacts connected to 0 V used as a barrier.All free conductors (reserve) must always be bonded at each end(see Fig. Q37)For group 4, <strong>the</strong>se connections are not advised for l<strong>in</strong>es with very low voltageand frequency levels (risk of creat<strong>in</strong>g signal noise, by magnetic <strong>in</strong>duction, at <strong>the</strong>transmission frequencies).Fig. Q34 : Incompatible signals = different cablesNO!YES!NO!YES!ElectronicsystemElectronicsystemWires notequipotentiallybondedQ23Digital connectionsAnalogue connectionsFig. Q36 : Segregation applies to connectors as well!Equipotential sheet metal panelFig. Q37 : Free wires must be equipotentially bondedEquipotential sheet metal panel© Schneider Electric - all rights reservedSchneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Q - EMC guidel<strong>in</strong>es5 Wir<strong>in</strong>g recommendationsThe two conductors must be <strong>in</strong>stalled as close toge<strong>the</strong>r as possible(see Fig. Q38)This is particularly important for low-level sensors. Even for relay signals with acommon, <strong>the</strong> active conductors should be accompanied by at least one commonconductor per bundle. For analogue and digital signals, twisted pairs are a m<strong>in</strong>imumrequirement. A twisted pair (differential mode) guarantees that <strong>the</strong> two wires rema<strong>in</strong>toge<strong>the</strong>r along <strong>the</strong>ir entire length.NO!YES!PCB withrelay contactI/OsArea ofloop too largePCB withrelay contactI/Os- +Power supply- +Power supplyFig. Q38 : The two wires of a pair must always be run close toge<strong>the</strong>rGroup-1 cables do not need to be shielded if <strong>the</strong>y are filteredBut <strong>the</strong>y should be made of twisted pairs to ensure compliance with <strong>the</strong> previoussection.Cables must always be positioned along <strong>the</strong>ir entire length aga<strong>in</strong>st <strong>the</strong> bondedmetal parts of devices (see Fig. Q39)For example: Covers, metal trunk<strong>in</strong>g, structure, etc. In order to take advantage of <strong>the</strong>dependable, <strong>in</strong>expensive and significant reduction effect (common mode) and anticross-talkeffect (differential mode).NO!YES!Chassis 1Chassis 1Chassis 2Chassis 2NO!YES!Metal trayChassis 3Chassis 3Q24PowersupplyI/O <strong>in</strong>terfacePowersupplyI/O <strong>in</strong>terfacePower or disturb<strong>in</strong>g cablesRelay cablesMeasurement or sensitive cablesAll metal parts (frame, structure, enclosures, etc.) are equipotentialFig. Q39 : Run wires along <strong>the</strong>ir entire length aga<strong>in</strong>st <strong>the</strong> bonded metal parts© Schneider Electric - all rights reservedFig. Q40 : Cable distribution <strong>in</strong> cable traysThe use of correctly bonded metal trunk<strong>in</strong>g considerably improves<strong>in</strong>ternal EMC (see Fig. Q40)Schneider Electric - <strong>Electrical</strong> <strong>in</strong>stallation guide <strong>2009</strong>


Make <strong>the</strong> most of your <strong>energy</strong>ISBN 978-2-9531643-0-59 782953 164305Schneider Electric Industries SASHead Office89, bd Frankl<strong>in</strong> RooseveltF-92506 Rueil-Malmaison CedexFRANCEAs standarts, specifications and designs change from time to time, please ask for confirmationof <strong>the</strong> <strong>in</strong>formation given <strong>in</strong> this pubication.This document has beenpr<strong>in</strong>ted on ecological paperEIGED306001ENART.82292012/2008

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!